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ABSTRACT: Early-actinide-based (U, Np, and Pu) single-
molecule magnets (SMMs) have yet to show magnetic properties
similar to those of highly anisotropic lanthanide-based ones.
However, there are not many studies exploring the late-actinides
(more than half-filled f shells) as potential candidates for SMM
applications. We computationally explored the electronic structure
and magnetic properties of a hypothetical Cf(III) complex
isostructural to the experimentally synthesized Dy(dbm)3(bpy)
complex (bpy = 2,2′-bipyridine; dbm = dibenzoylmethanoate) via
multireference methods and compared them to those of the
Dy(III) analogue. This study shows that the Cf(III) complex can
behave as a SMM and has a greater magnetic susceptibility
compared to other experimentally and computationally studied early-actinide-based (U, Np, and Pu) magnetic complexes. However,
Cf spontaneously undergoes α-decay and converts to Cm. Thus, we also explored the isostructural Cm(III)-based complex. The
computed magnetic susceptibility and g-tensor values show that the Cm(III) complex has poor SMM behavior in comparison to
both the Dy(III) and Cf(III) complexes, suggesting that the performance of Cf(III)-based magnets may be affected by α-decay and
can explain the poor performance of experimentally studied Cf(III)-based molecular magnets in the literature. Further, this study
suggests that the ligand field is dominant in Cf(III), which helps to increase the magnetization blocking barrier by nearly 3 times that
of its 4f congener.

■ INTRODUCTION
Single-molecule magnets (SMMs) exhibit magnetic hysteresis,
a process in which a system becomes magnetized through
exposure to a magnetic field and slowly demagnetizes upon
removal of the field.1 SMMs can become highly magnetized in
one of two equilibrium states depending on the direction of the
applied magnetic field. The effective magnetic relaxation
energy barrier, Ueff, which separates these two bistable
magnetic states, scales with the square of the total spin, S,
and the size of anisotropy, D.2 Early SMMs were composed of
polynuclear transition-metal clusters to maximize S, but
magnetic hysteresis was observed at only very low temper-
atures (4 K).3−5

In the case of transition-metal complexes, ligand-field effects
dominate the splitting of the ground and excited states; hence,
the spin−orbit coupling is small, and the nature of the
magnetic bistability can be defined by spin substates, ms.

6 For
lanthanides, the spin−orbit coupling dominates over the ligand
field,7 and the states are composed of mJ sublevels, which is the
projection of the total angular momentum, J, along the
magnetic anisotropy axis. The energy gap between the ground
and first excited mJ states can be increased further through
crystal-field (CF) splitting, and thus Ueff may also increase.8−11

Both the large magnetic moments and unquenched orbital
angular momentum of lanthanides are crucial properties in

designing SMMs with higher blocking temperatures (TB)
closer to room temperature. Dysprosium metallocenes have
been at the forefront of lanthanide SMM research,12−15 with
large Ueff barriers (up to 1541 cm−1) and magnetic blocking
temperatures reported above the liquid-nitrogen temperature
(TB = 80 K).16

Extensive research has been performed to understand how
to engineer lanthanide-based SMMs with ideal magnetic
properties,17−20 but fewer studies have been performed on
actinides.21−24 Because actinides have much larger spin−orbit
coupling constant values than lanthanides, actinide-based
SMMs can potentially produce greater magnetic anisotropy
barriers and magnetic moments upon the systematic design of
ligands.25 Additionally, the greater radial extent of the 5f
orbitals compared to that of the 4f orbitals21,26−28 increases the
likelihood of covalency between the actinide and ligand (and
therefore partial quenching of the angular momentum), which
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can produce strong magnetic exchange.29,30 These unique
features require new design techniques to be developed
specifically for late-actinide-based SMMs.

The most common actinide-based SMMs contain uranium
(due to its abundance and stability), but they have yet to reach
the success of highly anisotropic lanthanide-based
SMMs.9,30−39 There are much greater challenges associated
with synthesizing and characterizing SMMs containing
actinides rather than lanthanides because they are less
accessible, expensive, and hazardous to handle. However,
computational chemistry provides a safe alternative to
experimental actinide chemistry and the opportunity to
determine and understand design criteria for actinide-based
SMMs, allowing this field to grow more rapidly.

Complexes containing 5f-block metals are generally multi-
reference and have large spin−orbit coupling, so it is not
surprising that there are serious limitations of density
functional theory (DFT) in computing ground- or excited-
state properties of uranium complexes.40 One way to
approximately account for these characteristics is to use the
complete active space self-consistent field (CASSCF) with
spin−orbit coupling (CASSCF-SO); CASSCF-SO has been
shown previously to be successful in predicting magnetic
susceptibilities of actinide-based SMMs.23,33,41−43 Recently,
Goodwin et al.44 isolated and characterized a californium
metallocene complex, which opens up the possibility of Cf(III)
to act as a potential candidate for SMM applications. The
magnetic properties of a few Cf(III) compounds have been
measured,45−47 and some computational studies of the
electronic structure of Cf(III) complexes have recently been
published,44,45,48,49 but, to the best of our knowledge, there are
no computational studies of the magnetic properties of Cf(III)
SMMs.

In this work, we determined the magnetic properties of a
Cf(III) complex which is isostructural to the previously
synthesized Dy(dbm)3(bpy) complex (bpy = 2,2′-bipyridine;
dbm = dibenzoylmethanoate).50,51 There are few reports of
Cf(III) complexes in the literature, and further Cf(III)-based
SMMs are also not reported. Here we chose a simplified model
of the Dy(III) complex and the Cf(III) analogue to make the
calculations affordable. Because Cf(III) can easily undergo α-
decay and convert to Cm(III),45 we also investigated the
isostructural Cm(III) complex to determine the effect of this
ligand field on different trivalent actinides and how it affects
the performance of Cf(III)-based magnets. Therefore, this
study on isoelectronic Dy(III) and Cf(III) complexes could

open up possibilities to study other Cf(III)-based SMMs both
computationally and experimentally in the near future.

■ COMPUTATIONAL METHODS
DFT Calculations. The experimental crystal structure of the

Dy(dbm)3(bpy) complex51 (referred to here as Dy-Ph; Figure 1a)
was used as an initial structure for all of the DFT geometry
optimizations. In order to reduce the computational cost, the phenyl
rings of the dibenzoylmethanoate linkers in the Dy-Ph complex were
replaced with methyl groups. We will refer to this truncated complex
as Dy-Me (Figure 1b). The Dy(III) ion was replaced with Cf(III) and
Cm(III) in the optimized truncated complex to generate the Cf-Me
and Cm-Me structures. Geometry optimizations of the highest spin
state (sextet for Dy and Cf and octet for Cm) for the Dy-Ph, Dy-Me,
Cf-Me, and Cm-Me complexes were performed with DFT using the
BP86 functional,52 which has been shown to predict accurate
geometries for actinide complexes.41,42 The TZ2P basis set was
used for the metal centers (Dy, Cf, and Cm) and the DZP basis set for
the C, H, O, and N atoms.53 The zero-order regular approximation
(ZORA) was used to include scalar relativistic effects.54−56 All DFT
computations were performed using the ADF2016 software pack-
age.57−59

Multireference Calculations. The electronic structures of the
Dy-Ph, Dy-Me, Cf-Me, and Cm-Me complexes (at the DFT-
optimized geometry) were analyzed using the CASSCF method60,61

as implemented in the OpenMolcas (version 19.11, tag 1312-
g91e1abe) software package.62 The resolution of identity Cholesky
decomposition63 was used to compute the two-electron integrals at a
reduced cost. Second-order Douglas−Kroll−Hess (DKH) Hamil-
tonian was employed to incorporate scalar relativistic effects, together
with relativistic all-electron basis sets. Two different basis set
approaches were used. The first consisted of the cc-pVDZ-DK3
basis set for the metal centers (Dy, Cf, and Cm)64,65 and the cc-
pVDZ-DK basis set for the H, C, N, and O atoms66,67 (referred to
here as BS1). The second basis set consisted of the cc-pVTZ-DK3
basis sets for the metal centers (Dy, Cf, and Cm),64,65 the cc-pVTZ-
DK basis set for the N and O atoms66,67 and the cc-pVDZ-DK basis
sets for the C and H atoms (referred to here as BS2).

All metals are in the formal 3+ oxidation state, and Dy(III), Cf(III),
and Cm(III) have the valence electronic configurations 4f9, 5f9, and
5f7, respectively. We performed state-averaged CASSCF (SA-
CASSCF) calculations with an active space that includes all f
electrons and f orbitals. This results in a (9,7) active space for the Dy
and Cf complexes and a (7,7) active space for the Cm complex. For
the Dy and Cf complexes, the (9,7) active space gives rise to 21 sextet,
224 quartet, and 490 doublet states, which were all included in the
SA-CASSCF calculations within their respective spin symmetry. For
the Cm complex, the (7,7) active space generates one octet, 48 sextet,
392 quartet, and 784 doublet states. All of the octet, sextet, and
quartet configurations and the first 600 doublet states are included in
the SA-CASSCF calculations within their respective spin symmetry.

Figure 1. Schematic representations of the (a) Dy-Ph (1ph) and (b) M-Me [M = DyIII (1me), CfIII (2me), and CmIII (3me)] complexes.
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Moreover, for the Cf(III) complex, we also performed SA-CASSCF
calculations by including the five 6d orbitals for a CAS(9,12) active
space using 21 sextets and 128 quartets only.

State interaction was described via the restricted-active-space self-
interaction (RASSI) method.68 For the Dy and Cf complexes, 21
sextet, 128 quartet, and 130 doublet states were included in the
RASSI calculation, and for the Cm complex, 1 octet, 21 sextet, 119
quartet, and 41 doublet states were included in the RASSI calculation.
These states were included based on a selected energy cutoff, where
there was a large energy gap between the highest excited state
included and the next excited state. An effective one-electron Fock-
type spin−orbit Hamiltonian was used. Two-electron terms were
treated as screening corrections of the one-electron terms. The
atomic-mean-field integrals, as implemented in OpenMolcas, were
employed.69 The spin−orbit interaction was computed a posteriori to
SA-CASSCF (SA-CASSCF-SO).

The effect of dynamic correlation was included using extended
multistate complete active space second-order perturbation (XMS-
CASPT2) theory.70−72 Recent work on Dy(III) complexes by Reta et
al.73 showed that when only 21 sextet roots (and no other spin states)
from the SA-CASSCF calculation (referred to here as SA-CASSCF-
low) are coupled with RASSI (SA-CASSCF-SO-low), they give
similar results in terms of the magnetic properties compared to similar
calculations using 21 sextet, 128 quartet, and 130 doublet roots. Thus,
in order to reduce the computational cost at the XMS-CASPT2 level,
we use the above protocol and compute only 21 sextet roots for the
Dy-Me and Cf-Me complexes. The NOMULT keyword in Open-
Molcas was used to reduce the computational cost by disallowing state
mixing. Three groups of CASSCF sextet states, 11, 7, and 3 states,
which correspond to the H6 , F6 , and P6 terms, respectively, were used
to run three independent XMS-CASPT2 computations. This was
done to retain a degeneracy that is artificially lifted by introducing
mixing between the states and state-averaging with multistate and
extended multistate approaches. Spin−orbit coupling was then
accounted for with RASSI (XMS-CASPT2-SO). This approach was
previously used in the multireference study of other Dy(III)
compounds.16

The SINGLE_ANISO program74−76 was employed to compute g
tensors, magnetic blocking barriers, magnetic susceptibility (χT)
curves using the van Vleck formalism,77 and magnetic moments (μ) of
the spin−orbit-coupled states. The CF Hamiltonian that is projected
on the eight ground-state Kramers doublets (KDs) of 2J + 1
eigenfunctions is expressed as6,78

=
= =

H B O J( )
k q k

k

k
q

k
q

CF
2,4,6 ,... (1)

where Ôk
q are the extended Stevens operators79 and Bkq are the CF

parameters of rank k = 2, 4, and 6.6 The B2
0, B4

0, and B6
0 parameters

indicate the axial CF splitting, which helps to increase the axial
anisotropy of the system, while the nonaxial terms B2

±1±2, B4
±1,±2,±3,±4,

and B6
±1,±2,±3,±4,±5,±6 denote the transverse aniostropy in the complex.

The nonzero CF terms are determined by the symmetry or point
group of the ion in question, particularly the first coordination sphere
around the metal center.6 The blocking barrier diagrams are plotted in
the paper with respect to the relative energies of the KDs, which
connect (via the magnetic moment operator) the intra-KD and inter-
KD states with the QTM, TA-QTM, and Orbach/Raman
probabilities. The absolute values of the transition probabilities or
the transition magnetic dipole moments were computed using the
SINGLE_ANISO module80 according to the expression

=
| | + | | + | |i j i j i j

QTM
abs abs abs

3
x y z

(2)

where μx, μy, and μz are the components of the total magnetic
moment, μ, and i and j are spin−orbit-coupled KD states, where i ≠ j.

■ RESULTS AND DISCUSSION
Structural Analysis of the Dy-Ph, Dy-Me, Cf-Me, and

Cm-Me Complexes. To determine the accuracy of our
predicted structures, we first compared the DFT-computed
Dy−N and Dy−O bond lengths of the Dy-Ph complex to the
experimental values (X-ray structure), as reported in Table 1.

Here the experimental crystal structure is denoted as Dy-Ph
(or 1ph), and the DFT-optimized geometry is denoted as Dy-
Ph(DFT) (or 1ph

opt). The computed bond lengths are within
0.02 Å of the experimental values. This suggests that the BP86
functional gives reasonable bond distances, and this protocol
was used for the truncated model complexes Dy-Me (or 1me),
Cf-Me (or 2me), and Cm-Me (or 3me). The replacement of the
phenyl ring with the methyl group does not change
significantly the Dy−N and Dy−O bond lengths. The Cf−
N/O and Cm−N/O bond lengths are slightly elongated (less
than 0.1 Å difference) compared with the corresponding Dy
ones (Table 1).

Magnetic Properties of 1ph and 1ph
opt Complexes. We

first discuss complexes 1ph and 1ph
opt shown in Figure 1. The

ground-state electronic configuration of the Dy(III) free ion
has a term symbol H15/2

6 . For the 1ph complex, from the SA-
CASSCF calculations, the sextet state is the ground state and
the quartet and doublet states lie 24966 and 37470 cm−1 above
the sextet ground state, respectively (Figure S1). The sextet,
quartet, and doublet spin states span energy ranges of 0−
35327, 24966−107293, and 37470−180563 cm−1, respectively.
There is a 12081 cm−1 energy gap between the 128th and
129th quartet spin states and a 2749 cm−1 gap between the
130th and 131st doublet spin states. Thus, in the RASSI
calculation, we included the first 21 sextet, 128 quartet, and
130 doublet states (overall covering a ∼50000 cm−1 energy
window). At the 1ph

opt geometry, the energy differences before
inclusion of spin−orbit coupling are similar to those at the 1ph
geometry. The SA-CASSCF-SO relative energies of the ground
and excited spin states of complexes 1ph and 1ph

opt are shown in
Table 2 (also in Table S1).

We then computed the magnetic susceptibility curve for
complexes 1ph and 1ph

opt, and in both cases, the value at 0 K is
overestimated compared to the experiment (Figure 2). The
discrepancy between the theoretically computed χT and the
experimental value may be due to the fact that neither full
dynamic correlation in the electronic structure calculation nor
intermolecular exchange interactions within the unit cell in the
magnetic susceptibility simulations are incorporated.

Using BS2, the computed blocking barrier height is 159.7
cm−1 for 1ph and 117.3 cm−1 for 1ph

opt. The blocking barrier plots
for both complexes are shown in Figure 3. These plots are
generated by computing the transition magnetic moment
matrix elements in the basis of the mJ multiplets using the
SINGLE_ANISO code. The g values for the ground-state KDs

Table 1. M−N (Å) and M−O (Å) Bond Lengths in the 1ph,
1phopt, 1me, 2me, and 3me Complexes

complex M−N (Å) M−O (Å)

1ph 2.576 2.314
1ph

opt 2.599 2.323
1me 2.604 2.327
2me 2.636 2.368
3me 2.672 2.394
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show highly uniaxial anisotropy, which is one of the necessary
criteria for good SMM behavior. The g values for the first eight
KDs using BS2 (and BS1) are reported in Table 3 (and in
Table S3). The calculations performed with either BS1 and
BS2 predict similar magnetic properties (Figure 2 and Table
S2). Thus, only the BS2 results are discussed in the main
paper, and the BS1 results are presented in the Supporting
Information.

In order to understand the various competing magnetic
relaxation processes, we analyzed the transition magnetic
moments between the intra-KD (between the ±mJ levels) and
inter-KDs (between the mJ and mJ−1 levels). The intra-KD
transition or the expectation value of ⟨+mJ|μ|−mJ⟩ is known as
QTM, and for the excited-state KDs, the intra-KD transition is
called thermally assisted QTM or TA-QTM. The largest
transition magnetic moment matrix element connecting the
KDs indicates the most probable pathway of magnetic
relaxation. In the case of complex 1ph

opt, the ground state is |
±15/2⟩ and the transverse magnetic moment between |+15/2⟩ to
|−15/2⟩ is on the order of 10−3 μB (Figure 3). The transition
magnetic moments are higher between the |±15/2⟩ and |±13/2⟩
states compared to that of the QTM between the |+15/2⟩ and
|−15/2⟩ states, which suggests that at higher temperatures
excited mJ state(s) will be accessible and magnetic relaxation
may take place via TA-QTM. Because the TA-QTM at the first
excited state is significant and greater or equal to 0.1 μB, the
magnetization in both the 1ph

opt and 1ph complexes is likely to
relax via the first excited-state KD.

Effect of Linker Truncation. In order to reduce the
computational cost, the phenyl linkers of dibenzoylmethanoate
were truncated to methyl groups. As shown in Table 1,
truncation of the ligands corresponds to a negligible change in
the bond lengths in the first coordination sphere. We further
investigated the effect of linker truncation on the magnetic
properties of the Dy(III) complexes. As shown in Figure 4,
linker truncation barely affects the magnetic susceptibility
curves at the BS1 and BS2 SA-CASSCF-SO levels of theory.
The energies of the first nine KDs and g-tensor values for both
the 1ph

opt and 1me complexes are reported in Tables S3−S5.

Table 2. Relative Energies (cm−1) of the Lowest Nine Spin−
orbit States, KDs, of 1ph and 1phopt Using SA-CASSCF-SO and
the BS2 Basis Sets

KD state 1ph 1ph
opt

KD1 0.0 0.0
KD2 159.7 117.3
KD3 220.5 155.7
KD4 251.4 197.6
KD5 299.4 235.6
KD6 341.8 288.8
KD7 407.6 380.1
KD8 493.4 496.1
KD9 3636.7 3590.1

Figure 2. Comparison of the experimental and computed χT curves
as a function of T for both complexes 1ph and 1ph

opt, computed at the
SA-CASSCF-SO level with the BS1 and BS2 basis sets.

Figure 3. Comparison of the blocking barriers of (a) 1ph and (b) 1ph
opt

using SA-CASSCF-SO with the BS2 basis set. The red lines indicate
quantum tunneling of magnetization (QTM) or termally assisted
QTM (TA-QTM) processes between |±mJ⟩ states. The green and
blue lines indicate the transitions between the inter-KDs (via Orbach
and/or Raman mechanisms). The values correspond to transition
magnetic moment matrix elements (in μB) between the mJ levels.

Table 3. Comparison of g Values for 1ph and 1phopt Complexes
at the SA-CASSCF-SO Level with the BS2 Basis Set

1ph 1ph
opt

KD state gx gy gz gx gy gz
KD1 0.00 0.01 19.43 0.00 0.00 19.58
KD2 0.23 0.36 15.63 0.62 0.80 16.84
KD3 2.46 3.40 13.72 0.97 1.78 13.52
KD4 8.93 5.81 1.33 3.47 4.94 8.11
KD5 2.08 3.72 12.97 2.69 4.21 9.88
KD6 0.84 1.30 17.47 0.12 0.32 17.39
KD7 0.09 0.28 18.58 0.07 0.13 18.43
KD8 0.02 0.06 19.39 0.01 0.02 19.48
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These tables show that linker truncation does not affect the
magnetic properties of these Dy(III) magnets, and hence this
truncation scheme can serve as a good model for exploring the
magnetic properties of complexes containing other metals such
as Cf(III) and Cm(III) while maintaining computational
efficiency.

Comparison of the Magnetic Properties of 1me, 2me,
and 3me. At the SA-CASSCF level of theory, in the energy
spectrum of the 1me complex, the sextet, quartet, and doublet
states spanned over 0−35315, 24953−107279, and 37439−
180547 cm−1, respectively, which is similar to that of the 1ph
complex. For the 2me complex, the SA-CASSCF energy
windows for the sextet, quartet, and doublet spin states are
0−25981, 18857−78804, and 28562−132354 cm−1, respec-
tively (Figure S2). For 1me and 2me, there are gaps of 12906
and 7907 cm−1, respectively, between the 128th and 129th
quartet spin states and gaps of 2805 and 985 cm−1,
respectively, between the 130th and 131st doublet spin states.
Similar to the 1ph complex, we also included 21 sextet, 128
quartet, and 130 doublet states in the RASSI-SO calculations
for the other complexes. The energies of the lowest nine KDs
are reported in Table 4. The CF splitting between the ground
state and the first excited state is ∼200 cm−1 larger in 2me than
in 1me. This is expected because actinides exert a stronger
crystal field than lanthanides due to the larger radial extension
of the 5f orbitals. As in the 1ph case, there is a large gap in
energy between the eighth and ninth KDs for both the 1me and
2me complexes (Table 4). Thus, we included only the first eight

KDs when computing the anisotropic barrier of the 2me
complex.

The magnetic susceptibility curves for 1me and 2me are
shown in Figure 5. The χT value for 2me is slightly lower than

that of the 1me complex over the 0−300 K temperature range.
This can be attributed to the larger CF splitting of Cf(III)
compared to the Dy(III) species, which causes a reduction in
the χT value. Also, in Table 4, it is seen that the energy
separations between the mJ states are higher in the case of Cf-
Me compared to Dy-Me, which suggests a steeper decrease in
the χT curve in accordance with subsequent depopulation of
the mJ states at lower temperatures. A similar difference has
been previously observed between Cf2O3 and Dy2O3.47

Moreover, the magnetic susceptibility of the free Cf(III) ion
is 9.7 cm3 K mol−1, whereas that of Dy(III) is 10.2 cm3 K −1 at
approximately 0 K.47 The χT value of the Cf-Me complex at
300 K is at least 10 times higher than those of other early-
actinide-based SMMs.23,41,42 This is because Cf(III) has a
6H15/2 ground state [similar to Dy(III)], which has the largest g
factor in combination with the highest J value.81 The relative
energies of the first few KDs (Table 4) indicate that the
blocking barrier of the 1me and 2me complexes are around 118.3
and 329.0 cm−1, respectively. The g-tensor values correspond-
ing to the ground-state KD of the 1me complex are gx = gy =
0.01 and gz = 19.37, similar to those of the 2me complex, gx = gy
= 0.0 and gz = 18.95 (Table 5). Both 1me and 2me exhibit highly
axial magnetic anisotropy (Tables 5 and S6). The gz axis for the

Figure 4. Comparison of the χT curves of complexes 1ph
opt [or Dy-

Ph(DFT)] and 1me (or Dy-Me) using the SA-CASSCF-SO method
with the BS1 and BS2 basis sets.

Table 4. Relative Energies (cm−1) of the Lowest Nine KDs
of 1me, 2me, and 3me Using the SA-CASSCF-SO Method with
the BS2 Basis Set

1me 2me 3me

KD1 0.0 0.0 0.0
KD2 118.3 329.0 5.8
KD3 169.6 398.9 9.4
KD4 199.9 481.0 13.2
KD5 232.0 544.8 26141.2
KD6 278.3 664.2 26296.3
KD7 356.7 813.7 26411.7
KD8 490.8 1107.7 26681
KD9 3599.4 8280.9 28414.6

Figure 5. Comparison of the computed χT versus T curves of the 1me
(or Dy-Me), 2me (or Cf-Me), and 3me (or Cm-Me) complexes using
the SA-CASSCF-SO method with the BS2 basis set.

Table 5. Comparison of g Values, gz Angles of the Ground
State and First Excited-State KD Energies and
Wavefunction Decomposition of 1me and 2me from the SA-
CASSCF-SO Method with the BS2 Basis Set

complex

energy of
the KDs
(cm−1) gx gy gz

gz
angle
(deg)

wavefunction
{mJ}

1me 0.0 0.011 0.012 19.376 91%|±15/2⟩
118.3 0.428 0.534 15.931 18.0 68%|±13/2⟩,

16%|±9/2⟩
2me 0.0 0.007 0.009 18.951 93%|±15/2⟩

329.0 0.858 1.410 14.538 18.2 64%|±13/2⟩,
19%|±9/2⟩
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ground-state KD for both 1me and 2me point toward the same
direction (Figure S3). This suggests that 2me has a magnetic
behavior similar to that of 1me, and 2me may behave as a
suitable SMM candidate. The gz angle of the first excited-state
KD is ∼18° in both complexes, indicating possible relaxation
via the first excited-state KD (Table 5).

The blocking barrier is reported for both the 1me and 2me
complexes in Figure 6. In both cases, the transition magnetic

moments from the |±15/2⟩ to |±13/2⟩ states (shown in green in
Figure 6) are higher than the ground-state QTM process. For
the 1me and 2me complexes, the magnetic relaxation will likely
take place via the first excited state through the TA-QTM
process (Figure 6). Further, the magnetic blocking barrier of
2me is 211 cm−1 higher than that of 1me, suggesting that the
magnetic relaxation may be slower in the case of the 2me
complex. It is important to mention that the methods used
here to compute the barrier to magnetic reversal do not
account for the spin−lattice relaxation processes explicitly. The
SINGLE_ANISO module computes only the mixing coef-
ficients between the intra- and inter-KDs, and thus the
transition magnetic moments shown in Figures 3 and 6 only
account for the static picture of the magnetic relaxation.

To further rationalize the enhancement in the computed
blocking barrier height of 2me compared to 1me, the ab initio

CF parameters obtained from the SINGLE_ANISO module
were analyzed.76 We also investigated the effect of the basis set
on the magnetic susceptibility, relative energy of KDs, and g-
tensor and blocking barrier values (Figures S4−S6 and Tables
S7 and S8). Both basis sets (BS1 and BS2) used in this work
give similar values. From Table S9, it is clearly seen that 2me
has larger contributions from the axial CF parameters (B2

0, B4
0,

and B6
0) compared to the 4f congener, which supports the fact

that the 2me complex has a stronger axial anisotropy arising
from stronger CF splitting. Additionally, the nonaxial or
transverse CF parameters are high in both complexes, which
indicates significant mixing of the components of the ground-
state J = 15/2 manifold (Table 5). Possibly due to this reason,
the ground-state QTM for both complexes are small but
nonnegligible, and this causes the higher excited-state TA-
QTM values to be high and allows relaxation from the first
excited-state KD.

In order to understand the effect of the 6d orbitals on the
spin−orbit states, we have performed a CAS(9,12) calculation
for the 2me complex. The results show that, upon the
incorporation of the five virtual 6d orbitals into the active
space, the spin−orbit energy states are higher in energy
compared to the CAS(9,7) active space results (Table S10).
For instance, the energy of the first excited-state KD increases
by 100 cm−1. This behavior is also observed in previous cases
in the Pu(III) system42 and is not unexpected because the
empty 6d orbitals were separated by a large energy gap (0.4
hartree in the DFT level) from the 5f orbitals in the 2me
complex. This is a typical situation that occurs in active space-
based calculations, when one cannot use a complete active
space. Perhaps the definite way to do it would be to perform
CASPT2 on top of the different active spaces, and one would
probably see converged results. However, CASPT2 calcu-
lations with so many states are not feasible. To summarize, we
think that the inclusion of 5f → 6d excitations may deteriorate
the quality of blocking barrier calculations for the Cf(III)
complex at the CASSCF level, compared with the calculations
including only the 5f orbitals in the active space.

Cf(III) readily undergoes α-decay and converts to Cm-
(III);45 thus, we also explored the magnetic properties of the
3me complex. Our study shows that, for Cm(III), the octet spin
state is very stable and the J = 7/2 state is the ground state with
the term symbol S7/2

8 . The computed magnetic susceptibility
(Figure 5) of the 3me complex is significantly lower and flatter
than that of the 2me complex, and the g values are also less
anisotropic (Table S6). Moreover, the first four KDs are
extremely close in energy (within 13 cm−1). This is because the
orbital angular momentum is zero for Cm(III) at the ground
state, and the sextet excited states lie more than 26000 cm−1

away from the octet ground state (Table 4). This suggests that
the magnetic properties of the 2me complex will be lost if
Cf(III) decays to Cm(III).

Effect of Dynamic Correlation on the Magnetic
Properties of the 1me and 2me Complexes. Similar to
Reta et al.,73 we first compared the magnetic properties of the
Dy-Me and Cf-Me complexes using the SA-CASSCF-SO
(including 21 sextet, 128 quartet, and 130 doublet states) and
SA-CASSCF-SO-low (including only the lowest 21 sextet
states) levels of theory. Our results show a negligible change in
the magnetic susceptibility (Figure S6) and energies of the
lowest eight KDs (Table S11) for 1me but a larger shift in the
magnetic susceptibility in the case of 2me. Furthermore,

Figure 6. Comparison of the blocking barriers for (a) 1me and (b) 2me
computed using SA-CASSCF-SO and the BS2 basis set. The red lines
indicate QTM or TA-QTM processes between |±mJ⟩ states. The
green and blue lines indicate the transitions between the inter-KDs
(via Orbach and/or Raman mechanisms). The values correspond to
transition magnetic moment matrix elements (μB) between the mJ
levels.
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without the quartet and doublet roots, the ninth KD energy for
2me is underestimated by 2500 cm−1. However, the energy of
the ninth KD is still higher by ∼3000 cm−1 (for 1me) and
∼5700 cm−1 (for 2me) at the SA-CASSCF-SO-low level, and
hence we decided not to include it in the magnetic property
calculation.

Next, we compared the energy spectrum of the 21 sextet
roots using XMS-CASPT2 to that of SA-CASSCF. Although it
would be desirable to include the lower spin states in the XMS-
CASPT2 calculations, this is unaffordable due to the huge
computational cost. Our results show that the energy window
of the sextet decreases by ∼7000 and ∼6400 cm−1 for the 1me
and 2me complexes, respectively, at the XMS-CASPT2 level
compared to SA-CASSCF (Table S12).

The XMS-CASPT2-SO magnetic susceptibility curve is
similar to the SA-CASSCF-SO-low one (Figure 7). We also

note that the energies of the first eight KDs are similar at the
two levels of theory (Table 6). At all levels of theory, SA-

CASSCF-SO, SA-CASSCF-SO-low, and XMS-CASPT2-SO,
1me and 2me undergo magnetic relaxation via the first excited-
state KDs. The XMS-CASPT2-SO-computed barrier heights
are 162.0 and 418.6 cm−1 for 1me and 2me, respectively, and
120.1 and 363.1 cm−1 using SA-CASSCF-SO-low. A further
comparison of the g-tensor values in Table S13 also shows that

both the 1me and 2me complexes are highly anisotropic at the
XMS-CASPT2-SO level of theory.

■ CONCLUSION
We explored the electronic and magnetic properties of a not
yet synthesized Cf(III) complex, isostructural to the
experimentally synthesized Dy(dbm)3(bpy) complex (bpy =
2,2′-bipyridine; dbm = dibenzoylmethanoate) via multi-
reference methods and compared the two systems. Both the
Dy(III) and Cf(III) species show promising SMM properties,
namely, highly uniaxial magnetic anisotropy and magnetic
bistability. Due to the inherently stronger spin−orbit coupling
and CF splitting present in actinide-based complexes, the
computed blocking barrier height of the Cf(III) species is
higher than that of the Dy(III) analogue. Analysis of the g
values and electronic structures shows similar behavior of the
two species. The axial CF parameters and relative energies of
the KDs point toward stronger CF splitting in the Cf(III)
species, which can have a major influence on the magnetic
relaxation behavior. By α-decay, the Cf(III) complex would
spontaneously convert into the Cm(III) analogue, which,
according to our calculations, would not retain the favorable
magnetic properties of Cf(III). This is the first study of a
hypothetical Cf(III) complex able to mimic the behavior of
Dy-based SMMs. We believe that this study will trigger more
experimental work in the field of late-actinide-based SMMs.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c04013.

Relevant tables and figures of computed energy plots, g-
tensor directions, etc. (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Laura Gagliardi − Department of Chemistry, Pritzker School
of Molecular Engineering, James Franck Institute, Chicago
Center for Theoretical Chemistry, The University of Chicago,
Chicago, Illinois 60637, United States; orcid.org/0000-
0001-5227-1396; Email: lgagliardi@uchicago.edu

Authors
Debmalya Ray − Department of Chemistry, Chemical Theory
Center, and Minnesota Supercomputing Institute, University
of Minnesota, Minneapolis, Minnesota 55455, United States;

orcid.org/0000-0002-8309-8183
Meagan S. Oakley − Department of Chemistry, Chemical
Theory Center, and Minnesota Supercomputing Institute,
University of Minnesota, Minneapolis, Minnesota 55455,
United States; orcid.org/0000-0001-5072-7572

Arup Sarkar − Department of Chemistry, Pritzker School of
Molecular Engineering, James Franck Institute, Chicago
Center for Theoretical Chemistry, The University of Chicago,
Chicago, Illinois 60637, United States; orcid.org/0000-
0002-6880-8220

Xiaojing Bai − Department of Chemistry, Chemical Theory
Center, and Minnesota Supercomputing Institute, University
of Minnesota, Minneapolis, Minnesota 55455, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.inorgchem.2c04013

Figure 7. Comparison of the computed χT versus T curves of the 1me
(or Dy-Me) and 1me (or Cf-Me) complexes using the SA-CASSCF-
SO-low and XMS-CASPT2-SO methods and the BS2 basis set.

Table 6. Relative Energies (cm−1) of the First Nine KDs of
1me and 2me Using the SA-CASSCF-SO-low and XMS-
CASPT2-SO Levels of Theory (Using the BS2 Basis Set)

1me 2me

SA-CASSCF-
SO-low

XMS-
CASPT2-SO

SA-CASSCF-
SO-low

XMS-
CASPT2-SO

KD1 0.0 0.0 0.0 0.0
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