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ABSTRACT: Kinases have been the focus of drug discovery
programs for three decades leading to over 70 therapeutic kinase
inhibitors and biophysical affinity measurements for over 130,000
kinase-compound pairs. Nonetheless, the precise target spectrum
for many kinases remains only partly understood. In this study, we
describe a computational approach to unlocking qualitative and
quantitative kinome-wide binding measurements for structure-
based machine learning. Our study has three components: (i) a
Kinase Inhibitor Complex (KinCo) data set comprising in silico
predicted kinase structures paired with experimental binding
constants, (ii) a machine learning loss function that integrates
qualitative and quantitative data for model training, and (iii) a structure-based machine learning model trained on KinCo. We show
that our approach outperforms methods trained on crystal structures alone in predicting binary and quantitative kinase-compound
interaction affinities; relative to structure-free methods, our approach also captures known kinase biochemistry and more successfully
generalizes to distant kinase sequences and compound scaffolds.

■ INTRODUCTION
Mammalian kinases make up a large family of enzymes that
bind ATP and catalyze phosphotransfer to a protein or small
molecule substrate. Among the set of approximately 700
human proteins having structures associated with kinase
activity, 544 have a highly conserved Protein Kinase Like
(PKL) three-dimensional fold.1−3 These kinases have diverse
functions in the regulation of cell division, migration,
morphology, and metabolism, and many are components of
multienzyme signal transduction cascades.4 Multiple kinases
involved in cell signaling networks are mutated or differentially
expressed in human disease, often serving as driver mutations
in cancer.5 As a result, kinases have been the focus of intense
drug development efforts. Most kinase inhibitors are ATP-
competitive molecules that interact with the ATP binding site
although some, generally referred to as “allosteric inhibitors”,
bind outside the catalytic site.6,7

Due to the conserved structure of the ATP binding site,
small molecule kinase inhibitors commonly inhibit kinases
other than the one they were designed to target (we will refer
to the intended or most commonly accepted target as the
“nominal target”).8,9 For example, crizotinib was developed as
an inhibitor of the MET tyrosine kinase but was later found to
also inhibit ALK, and this later activity enabled its approval for
advanced or metastatic nonsmall-cell-lung-cancers carrying
ALK fusion genes.10 A complete understanding of the target
spectrum of kinase inhibitors is rarely achieved in preclinical
development, and the polypharmacology of many approved
therapeutics is only discovered after they are in widespread

use.8 It would nonetheless be highly advantageous were
preclinical drug development programs able to accurately
predict the full spectrum of kinases that a particular small
molecule is likely to bind and use this information as part of in
silico compound optimization.

A variety of experimental assays are available to measure
interactions between kinase inhibitors and their kinase targets
at the kinome scale. These include several different types of
competitive binding assays that measure binding to ATP-like
scaffolds in the presence and absence of a small molecule
inhibitor of interest. For example, binding of native kinases
present in cell extracts to bead-bound ATP scaffolds can be
assayed using mass spectrometry and binding of libraries of
recombinant kinases to scaffolds can be measured using
PCR.11−14 These assays are relatively expensive to perform,
and different methods do not return identical results,
emphasizing the importance of computational approaches to
data fusion and interpretation. Multiple methods have been
described for predicting interactions between proteins and
small molecules,15,16 including ones that consider the ligand
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alone (“ligand-based”) or the ligand in combination with the
target protein.17

Ligand-based methods are usually developed for a single
target protein by abstracting away target structure and are thus
only suitable for proteins that have already been profiled
against a substantial number of compounds.18 For proteins
with limited compound affinity data, more general models that
utilize information from multiple protein-compound com-
plexes are preferable. Models integrating target information can
be further subdivided into those that utilize the 3D atomic
structure of the target protein (“structure-based”) and ones
that do not (“structure-free“).19 Structure-free methods can be
effective at predicting kinase-ligand affinity but lack geo-
metrical and chemical interpretability; such models infer
protein sequence and compound features favorable for binding
based on co-occurrences in a data set but generate relatively
little insights into structural features of protein-compound
interaction.20,21

Structure-based models predict binding affinities directly
from experimentally determined or predicted structures of
protein-compound cocomplexes using either physics-based
force fields or machine-learned energy functions. Physics-based
methods, such as free energy perturbation, often produce
highly accurate predictions but require substantial computing
resources, complicating large-scale in silico screening.22

Machine learning-based methods are fast but have traditionally
struggled to generalize to compounds or proteins whose
structures deviate substantially from those in training sets.18

Many previous well-performant machine learning-based
methods rely on precalculated complex features to represent
the protein−ligand complex,23−26 and most are generic models
not adapted to a specific target family.27 However, due to
advances in deep learning, numerous approaches have been
developed in the past few years to represent protein−ligand
complexes as point clouds, grids, and graphs and infer, based
on data, interaction motifs important for affinity predic-
tion.28−32 Irrespective of their architectural details, all such
models require measured binding affinities as well as structures
of the corresponding complexes as input.19 They infer the
relationship between input (structure) and output (binding
affinity) using neural networks that uncover recurring
structural motifs predictive of binding affinity.18 Given that
the number of experimental cocrystal structures currently
available in the public domain is orders of magnitude smaller
than the number of binding affinity measurements, structure-
based modeling has historically faced a data imbalance
problem that has limited its applicability and utility.33

Predicted structures of protein−ligand complexes provide
one way to overcome the lack of experimental structural data.
These methods are rapidly becoming as accurate as
experimentally determined structures, at least for single
domains, and attempts have been made to use predicted
structures in a limited manner, for example by docking the
structures of chemical ligands, derived from their experimen-
tally determined poses in other cocomplexes, into apo
structures of proteins of interest.34 Kinase-small molecule
affinity data derived from profiling methods9,12,13,35 have been
underutilized as a resource for machine learning in large part
because the data are heterogeneous, spanning quantitative
binding constants (derived from fits to dose response curves)
and qualitative binary labels (e.g., “disassociation constant ≥ 10
μM”). While qualitative binary labels do not permit direct
comparison of binding affinities, they do provide valuable data

on the selectivity of kinase inhibitors as well as upper and
lower bounds on their affinity.36 Furthermore, qualitative data
are far more abundant than quantitative data due to the high
expense of measuring full dose response curves. This suggests
the likely value of integrating qualitative and quantitative data
in a way that simultaneously extracts the maximum
information possible from both. In contrast, existing ML
models generally use one form of data or the other or binarize
quantitative data to merge them with binary data, losing
continuous-valued quantitation in the process. Overcoming the
challenges inherent in combining qualitative and quantitative
affinity data in ML model training is thus of fundamental
importance.

In this study, we developed a machine learning approach to
modeling the interactions between kinases and ATP-
competitive inhibitors. Our approach introduces two advances
to address the twin challenges of limited structural data and
heterogeneous binding affinity. First, we describe the Kinase
Inhibitor Complexes data set KinCo (https://lsp.connect.hms.
harvard.edu/ikinco/) that contains experimental binding
constants and predicted atomic structures for over 130,000
kinase-compound pairs. KinCo makes it possible to utilize
nearly all publicly available kinase-compound affinity data for
structure-based machine learning even when experimental
structural data is unavailable. Second, we introduce a novel loss
function that makes it possible to integrate qualitative and
quantitative binding measurements without the loss of
information during model training. We couple this loss
function with a new training regimen that successively
optimizes KinCo structures by using an iterative model
building scheme. Compared to models trained exclusively on
crystal structures, KinCo-trained models have an expanded
scope of prediction, modeling kinases currently inaccessible to
other methods. Through a rigorous training/test set partition-
ing scheme, we demonstrate that our new models outperform
existing ones in predicting binary kinase-compound inter-
actions and binding affinity values as well as better recapitulate
expected biochemical behavior. We also show that our
structure-based models generalize better to distant kinase
sequences and compound scaffolds when compared with
existing structure-free models. These advances set the stage for
the further development of ML-based methods to predict
kinase inhibitor selectivity. All the code for data set generation
and model training is available on https://github.com/
labsyspharm/KinCo.

■ RESULTS
KinCo: A Structure-Affinity Data Set for Kinase-

Compound Interactions. As a first step in creating a data
set that pairs experimental and predicted protein structures
with kinase-compound binding affinities, we searched the
PDBBIND2018 database,37 which combines affinity measure-
ments with cocrystal structures for 170 human proteins having
a Protein Kinase Like (PKL) domain. This yielded ∼2,000
kinase-ligand pairs that we will refer to as the “PDBBIND-
kinase” data set. Since PDBBIND-kinase covers only 31% of all
PKL kinases, we also mined Drug Target Commons (a crowd-
sourcing platform for sharing data on drug-target interactions;
DTC)38 which includes quantitative and qualitative activities
of drug compounds on human kinases along with bioactivity
measurements. These are typically formatted as a percent
inhibition value (of kinase activity) or binding constant. We
collected 130,000 unique kinase-compound pairs from DTC
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with measured binding constants (either Ki values measured by
kinase activity or Kd values measured using a competition
binding assay) (Figure 1A). We refer to kinase-compound
pairs with binding constants derived from DTC as the DTC-
kinase set (see GlossaryTable). The DTC-derived data set
exceeded PDBBIND-kinase in size by 2 orders of magnitude
and covers more than twice as many kinases (378 kinases, 70%
of all PKL kinases) but, to the best of our knowledge, has not
yet been used for structure-based modeling, likely due to the
absence of corresponding structural data.

To enable use of DTC-kinase data in structure-based
modeling, we generated homology models for all kinases in the
data set with the Ensembler pipeline.39 This homology
modeling pipeline generates many putative conformations for
every kinase in our data set, enabling downstream models to
consider an ensemble of thousands of kinase-compound
conformations, including ones reflective of binding-induced
fit. In future work, it might be possible to extend the approach
by using molecular dynamics to generate additional con-
formations and to exploit AlphaFold2 structures followed by a
repeat of the docking approach described here.

After in silico structures were generated, we docked every
compound in our data set into every homology model using
QVina, a fast variant of AutoDock Vina,40,41 thereby generating
an ensemble of docked poses (Figure 1B). The resulting
KinCo data set includes >137,000 unique kinase-compound
pairs with >10,000 docked poses per pair, each with a different
conformation of a kinase-compound complex. For example, the
docked poses of CDK2-staurosporine included both the
monomeric and active CDK2 cocomplexes (i.e., kinase
bound to Cyclin A). We retained those poses in which a
compound was bound to a known inhibitory site (e.g., the ATP
binding site) and those in which a compound was bound to a
previously unknown or peripheral sites, delegating to down-
stream modeling the task of determining real versus spurious
binding pockets and their relative affinities (we use an iterative
training regimen to identify relevant poses, as described
below). All KinCo homology models are publicly available at
https://lsp.connect.hms.harvard.edu/ikinco/ to facilitate fu-
ture structure-based modeling efforts.

To enable the use of KinCo in machine learning, we
partitioned the data into training, validation, and test sets

Figure 1. Composition of the data set and generation of KinCo. (A) Composition of the data set. DTC contains over 130,000 kinase-compound
pairs with a binding constant but without a corresponding crystal structure (green), and PDBBind2018-kinase contains 2244 kinase-compound
pairs with binding affinities matched with a crystal structure (orange). To mobilize the kinome-wide binding constants in DTC, we applied docking
and iterative training to train structure-based affinity prediction models. (B) Docking workflow. Homology models were created for each target
kinase, starting from its sequence using all mammalian kinase structures as templates. Homology models whose template kinase shares over 40%
sequence identity with the target kinase were selected, and the compound was docked into each of the selected homology models. This docking
workflow resulted in over 11,000 docked poses in various conformations of the kinases for each kinase-compound pair. KinCo consists of over
137,000 kinase-compound pairs with such docked poses and the corresponding experimental binding constant for the pairs. (C) Iterative training.
The scoring function in Autodock Vina was used to select the pose with the highest predicted binding affinity as the representative structure for
each kinase-compound pair, and the docked pose was matched with the corresponding experimental binding affinity to train the first iteration
model KinCoNet-M1. KinCoNet-M1 was used to predict the poses with the highest binding affinity, which were used to train the second iteration
model KinCoNet-M2. This iterative training process could be repeated n times to train model KinCoNet-Mn.
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based on sequence and chemical similarity. Existing structure-
based models typically assess generalized performance (relative
to the training set) on either chemically distant compounds or
sequence-dissimilar proteins. We evaluated these forms of
generalization individually and in combination. Adapting a
procedure outlined previously,42 we first generated three test
sets (validation sets were treated identically) in which kinases
in the test set had decreasing sequence identity to those in the
training set: an easy kinase set (one in which the training and
test sets consisted of identical kinases), a medium difficulty set
(a training set in which the kinases in the two sets were
nonidentical and had <95% sequence identity with the test
set), and a hard kinase set (<87% sequence identity with test

set). We then subdivided each of these test sets into three
subsets (for a total of nine test sets overall) by ranking the
small molecules by chemical similarity, as measured using
Tanimoto scores. This generated an easy compound set
(training compounds with ≤ 0.8 Tanimoto similarity to test
set), a medium difficulty compound set (training compounds
with ≤ 0.6 Tanimoto similarity to test set), and a hard
compound set (training compounds with ≤ 0.4 Tanimoto
similarity to test set) (Figure 2A). Some chemical scaffolds had
many more derivatives in the set of known kinases inhibitors
resulting in nonuniform sampling of chemical space. We
therefore clustered compounds based on Morgan fingerprint
and then sampled one representative from each cluster to

Figure 2. Partition of validation and test sets and expanding of the prediction scope for kinases. (A) Partition of validation and test sets. Nine
validation and test sets were constructed with increasing kinase difficulty (indicated by color) and compound difficulty (indicated by opacity) as
approximated by sequence identity and Tanimoto similarity, respectively. Five independent partitions were performed, and model performance on
the test set from each partition was reported. (B) Including KinCo for training expands prediction scope for kinases. Kinases in the data set in the
easy, medium, and hard categories were identified based on their similarity to the kinases from PDBBind2018-kinase (left) or in KinCo and
PDBBind2018-kinase (right). Kinases with a different protein fold from protein kinases are colored in gray and not included in the data set.
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ensure that the test set more evenly captured data across
chemical space. Table S1 shows the sizes and compositions of
the training, validation, and test sets. This process is illustrated
in Figure S1.

To visualize the impact of including kinase-compound pairs
lacking experimental structures on the breadth of kinases that
can be modeled, we computed the sequence identities of all
known kinases to those in PDBBIND-kinase and KinCo. We
colored kinases by their sequence similarity and projected
them onto the kinome tree (Figure 2B). Compared to training
on crystal structures alone, KinCo substantially increased the
number of kinases considered to be easier to predict, thereby
expanding the number of kinases for which modeling can make
reliable binding inferences (Figure S2). Exemplar kinases and
compounds in the training set along with their nearest
neighbors in the test set as well as the distributions of kinase
and compound similarity are shown in Figure S3.

Two-Sided Loss Function. Supervised machine learning
models are trained by minimizing a loss function that
computes the deviation between the ground truth measure-
ments and model predictions. Designing suitable loss functions
is key to building models that fully utilize available data. As
previously noted, binding affinity data for kinase-compound
pairs are derived from a diverse set of biochemical assays and
include both quantitative estimates of Kd (e.g., imatinib binds
ABL1 with a Kd of 0.0015 μM) as well as qualitative labels (e.g.,
imatinib does not bind ULK3 or Kd > 10 μM). For quantitative
measurements, the mean squared error (MSE) is a suitable loss
function that directly captures how much predicted affinities
deviate from experimental ones. For qualitative labels, the
situation is more complicated, as these labels can best be
understood as inequality relationships (e.g., Kd ≥ 10 μM for
negative labels) that cannot be evaluated using the MSE. To
leverage binary labels in conjunction with quantitative
affinities, we devised a two-sided loss function (see Methods,
eq 1) in which quantitative values were scored using the MSE
and binary labels were handled as follows: if the label was
negative (Kd ≥ 10 μM) and the model predicted Kd to be
greater than 10 μM, then the loss function was set to zero, i.e.,
no penalty was incurred; on the other hand, if the model

predicted Kd to be lower than 10 μM, the loss function
computed the MSE between the predicted Kd and preset
threshold value (10 μM in the current work, a value that
corresponds to the most commonly used threshold between
binding and nonbinding). The reasoning behind this approach
is that, given a negative label and the way in which assays are
commonly performed, the highest Kd expected is 10 μM, and
so model predictions of tighter binding (Kd < 10 μM) is
penalized in proportion to the deviation from the threshold
value. We applied the same logic to positive labels but in the
reverse direction. As a result, our two-sided loss function
enables downstream models to utilize both qualitative and
quantitative data for training.

Iterative Training Regimen. In KinCo, each kinase-
compound pair is associated with a large number of putative
docked poses. To train machine learning models that predict
kinase-compound affinities, a mechanism is needed to select
one or more poses per kinase-compound pair for training
purposes. To do this, we introduced an iterative training
strategy that alternates between (i) using (ranked) poses to
train kinase-compound affinity models and (ii) using the
trained affinity models to rerank poses for subsequent training
iterations, in a process akin to expectation-maximization
algorithms.43 Our approach was inspired by student self-
distillation in image recognition, in which data sets are
augmented by applying predicted labels to images lacking
ground truth labels.44 A similar idea was successfully used by
AlphaFold245 to build a more performant protein structure
prediction model by training it on predictions made by an
earlier model. In our case, poses were first ranked using
Autodock Vina energies, and the lowest energy pose was
selected for each kinase-compound pair. An initial model,
which we termed M1, was then trained on these poses. For this,
we used a model architecture based on 3D convolutional
neural networks that was previously applied to protein-drug
binding,46 but our iterative approach is broadly applicable to
any machine learning model. Since M1 was capable of
predicting kinase-compound affinities, we used it to rerank
the full set of poses in KinCo and thereby infer new lowest
energy poses. These poses were then used to train a new model

Figure 3. Adapted model architecture. The 3D convolutional neural network is adapted from Pafnucy:46 we applied 3 layers of 3D convolution
with 64, 128, and 256 filters with a filter size of 5 Å * 5 Å * 5 Å. Each convolution layer is followed by a max pool layer with a 2 Å * 2 Å * 2 Å
patch. The output of the last convolution layer is concatenated and passed through a fully connected neural network with 1000, 500, and 200
neurons to predict the binding affinity. We also customized Pafnucy with the following modifications (highlighted in gray rectangles): the
convolutional filters were initialized with parameters pretrained using crystal structures across all protein families in PDBBind2018. The MSE-based
customized loss function between the prediction and experimental values was adopted to include qualitative data.
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M2, and the process continued until a final model Mk is trained
(Figure 1C). In our experiments, we set k = 2. This approach
was enriched for true binding poses by repeatedly using trained
models to rank and select the highest ranked poses. This was
helpful for positively labeled data but did not address negative
data in which poses ought to correspond to the ensemble of
unbound states. To tackle this, we augmented negatively
labeled kinase-compound pairs with poses in which com-
pounds were bound to sites far away from the active site; such

pairs are presumed to be low affinity (allosteric inhibition is
not covered by our model, largely because the necessary
metadata are missing).

Training on KinCo Structures Improves Kinase-
Compound Interaction Prediction. We combined the
iterative training approach described above with our two-
sided loss function to train a 3D convolutional neural network
on KinCo. As a proof of concept, we adapted the Pafnucy46

architecture to KinCo (Figure 3), although KinCo is agnostic

Table 1. Comparison of AUROC between modelsa

Overall AUROC

Difficulty ExperimentalNet Vina KinCoNet-M1 KinCoNet-M2

0.74 ± 0.02 0.68 ± 0.01 0.81 ± 0.02 0.79 ± 0.02
AUROC by kinase difficulty

Kinase difficulty ExperimentalNet Vina KinCoNet-M1 KinCoNet-M2

easy 0.79 ± 0.05 0.65 ± 0.03 0.87 ± 0.02 0.87 ± 0.04
medium 0.78 ± 0.06 0.64 ± 0.08 0.81 ± 0.04 0.80 ± 0.03
hard 0.75 ± 0.06 0.71 ± 0.07 0.71 ± 0.04 0.72 ± 0.06

AUROC by compound difficulty

Compound difficulty ExperimentalNet Vina KinCoNet-M1 KinCoNet-M2

easy 0.77 ± 0.03 0.64 ± 0.02 0.81 ± 0.04 0.82 ± 0.04
medium 0.74 ± 0.04 0.73 ± 0.04 0.78 ± 0.04 0.80 ± 0.02
hard 0.72 ± 0.08 0.65 ± 0.03 0.79 ± 0.02 0.79 ± 0.02

aMedian of five CV splits ± half of the interquantile range.

Figure 4. Predictions from models trained on correlations better with experimental affinities. Correlation between the experimental affinities and
the predictions on (A) the overall test set across all kinase and compound difficulties, (B) the test sets with increasing kinase difficulties, and (C)
the test sets with increasing compound difficulties. ExperimentalNet − models trained on pairs with crystal structures in PDBBind2018; Vina −
scoring function from Autodock Vina; KinCoNet-M1 − models trained on KinCo (docked structures were selected by Autodock Vina and
combined with PDBBind-kinase); KinCoNet-M2 − models trained on KinCo (docked structures were selected by KinCoNet-M1 and combined
with PDBBind-kinase). Each gray dot represents the correlation on a test set from one of the five independent partitions of the data set. Black
dotted lines represent the mean. (D) Correlation between the experimental affinities and the affinities on test sets with various kinase-compound
difficulty combinations. Median correlations from the performance on the 5 independent partitions are shown.
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to any specific structure-based model architectures. The
resulting KinCoNet model is focused on predicting kinase-
compound affinities, but we first pretrained it on all protein−
ligand complexes in PDBBIND2018 so that it learned a general
understanding of the biophysics of protein-compound
interaction. We have previously found that this type of
pretraining on general features of protein biophysics improves
model performance. We then created five validation and test
sets by applying the partitioning scheme described above. We
used the validation sets to identify the optimal hyper-
parameters (Table S2) and then determine the performance
of the model on the test sets.

First, we assessed whether training on homology structures
in KinCo improved the performance relative to training on
experimental structures alone. We compared the Area Under
the Receiver Operating Characteristics Curve (AUC) of
KinCoNet (using one and two training iterations, resulting
in KinCoNet-M1 and KinCoNet-M2, respectively) with two
baseline models: (i) ExperimentalNet, an adapted version of
the KinCoNet architecture trained exclusively on 16,000
experimentally determined protein−ligand complexes in
PDBBIND2018, and (ii) Vina, the scoring function used by
AutoDock Vina. KinCoNet-M1 and KinCoNet-M2 achieved
overall AUC values of 0.81 and 0.79, respectively, when
considering all kinase-compound pairs in all test sets. Both
models outperformed ExperimentalNet (AUC = 0.74) and
Vina (AUC = 0.68) by substantial margins, demonstrating the
utility of including KinCo structures in model training (Table
1). Training on KinCo resulted in the biggest performance
improvement for kinases in the easy category (AUC of 0.87 for
KinCoNet-M1 and KinCoNet-M2 as opposed to 0.79 for
ExperimentalNet) and for compounds in the easy and medium
categories, which showed an improvement in AUC of about

0.06 in both cases relative to ExperimentalNet. We conclude
that KinCo-trained models work better by expanding the set of
kinases that meet the definition of the easy category; this
includes kinases lacking experimental structures.

Training on KinCo Structures Improves Binding
Affinity Prediction. Next we assessed KinCoNet on the
quantitative prediction of binding affinities by computing the
Pearson correlation between predicted and experimental
values. KinCoNet outperformed ExperimentalNet and Vina
on the overall data set (Figure 4A-C). KinCoNet achieved a
median Pearson correlation of 0.43, compared to 0.35 for
ExperimentalNet. In the easy compound category, the
improvement was more substantial, with a median Pearson
correlation of 0.5 for KinCoNet-M2 compared to 0.27 for
ExperimentalNet. Furthermore, KinCoNet performed best on
the easy kinase/easy compound combination, where it
achieved a Pearson correlation of around 0.6 (Figure 4D,
Figure S4). These results suggest that KinCo structures aid in
both qualitative and quantitative prediction of binding affinity,
with much of the improvement deriving from easy kinases and
compounds. As the kinase or compound prediction task
became more difficult (more distant from the training set), the
performance of all models decreased, highlighting the
challenge of out-of-domain generalization. At all difficulty
levels, KinCoNet-M1 and KinCoNet-M2 achieved similar
performance, showing that additional iterations of training
do not generally lead to accuracy improvements beyond the
first self-distillation phase.

Kinome-Wide Affinity Data Help KinCoNet Recapit-
ulate the Biophysics of Binding. Experimental structures of
kinase-compound complexes provide rich and accurate
structural information for guiding the development of
energy-based modeling methods.47 While computationally

Figure 5. Predictions from models trained on KinCo better recapitulate the biophysics of binding. (A) Distribution of Spearman’s rank correlation
between model predictions and pose deviations from the crystal structure (RMSD) for all kinase-compound pairs with a crystal structure in the test
set. Spearman’s rank correlation (Rho) was calculated between model predictions and poses within a 10-Å root-mean-squared-deviation (RMSD)
from the crystal structure. (B) Model predictions on poses deviating from the crystal structure. Predictions on the docked poses of a representative
kinase-compound complex with high affinity (PDBID: 5DIA).
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docked structures of the type found in KinCo attempt to
recapitulate the lowest energy state, this type of docking is
subject to both systematic and random error. As a result,
KinCo-derived models risk associating spurious structural
features with the determinants of binding affinity. To assess
the extent of this problem, we analyzed the lowest energy poses
found in KinCo-derived models. For all kinase-compound pairs
in the test set having a corresponding experimental structure,
we computed the Pearson correlation coefficient between the
predicted binding energy of the docked poses and the
deviation (measured using the root-mean-square deviation in
Å; RMSD) of the docked compound from its counterpart in
the experimental structure. Using KinCoNet, ExperimentalNet,
and Vina as energy models, we found that KinCoNet-derived
energies correlated better with docked compound RMSD than
energies derived from ExperimentalNet and Vina (Figure 5A).
This was unexpected since ExperimentalNet was derived
exclusively from experimental structures, while KinCoNet
contained noisier, computationally docked poses. We propose
that the greater quantity of structures utilized by KinCoNet, as
well as the modeling “funnel” it created by forced concordance
between computational poses and experimentally derived
binding affinities, resulted in a model that appears to better
capture the underlying biophysics of kinase-compound
interaction than ExperimentalNet.

To examine model behavior on specific compounds and
kinases having a range of binding affinities, we analyzed a high
affinity complex involving PIM1 and its diamine inhibitor
(PDBID: 5DIA). Binding energy predictions made by
ExperimentalNet, Vina, and KinCoNet all positively correlated
with RMSD values (Figure 5B), confirming that, for a high-
affinity interactions, lower predicted energies corresponded to
poses that were structurally closer to the experimentally

determined complex (which we assumed to represent the
ground truth). On the other hand, for a small molecule
fragment with low affinity for target binding (IC50 ∼ 300 μM),
we do not expect a further decrease in affinity for poses in
which the fragment is found to sites outside of the active site
(with an optimized competitive inhibitor interaction with the
active site is expected to have a much higher affinity than to
any peripheral site). Consistent with this expectation,
KinCoNet-derived binding energies correlated poorly with
the pose’s RMSD (Spearman’s rank correlation of −0.15 and
0.37 for KinCoNet-M1 and -M2, respectively; Figure S5).
ExperimentalNet performed similarly to KinCoNet, exhibiting
low correlation between deviation from the experimental pose
and the predicted binding affinity. We conclude that KinCoNet
captures key biophysical features of active site binding.

Structure-Based Models Generalize Better than
Structure-Free Models. As an alternative to structure-
based modeling, we explored a structure-free approach
involving sequence-based representations of proteins and 2D
textual notation for compounds (SMILES).48 Structure-free
methods can use a larger set of binding affinity data for training
but cannot discriminate between different poses of the same
kinase-compound pair. We compared our structure-based
models to the structure-free Deep Drug Target Affinity
(DTA) method, which has achieved leading performance on
protein-compound affinity prediction tasks.21 To make the
comparison relevant and kinase-specific, we retrained DTA on
the binding affinity data in KinCo. We found that DTA
achieved an overall AUC score of <0.7 as compared to ∼0.8 for
KinCoNet (Figure 6A). KinCoNet outperformed DTA across
all kinase and compound difficulty levels (Figure 6B), with an
AUC of 0.88 vs 0.72 for easy kinase-compound pairs, 0.8 vs
0.68 for moderate difficulty pairs, and 0.78 vs 0.66 for high

Figure 6. Structure-based methods outperform structure-free methods for predicting whether a kinase-compound pair interacts. Comparison of the
AUROC of DTC, KinCoNet-M1, and KinCoNet-M2 (A) on the overall test set across all kinase and compound difficulty levels, (B) on test sets
with increasing kinase difficulty (left), and on test sets with increasing compound difficulty (right). Comparison of the correlation between
experimental affinities and predictions from the three models. Each gray dot represents the AUC from a CV split. Black dotted lines represent the
mean. DTA − structure-free models trained with the DTA architecture on DTC and PDBBind-kinase; KinCoNet-M1 − models trained on KinCo
with docked structures selected by Autodock Vina combined with PDBBind-kinase; KinCoNet-M2 − models trained on KinCo with docked
structures selected by M1 combined with PDBBind-kinase.
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difficulty pairs. We also assessed model performance on kinase-
compound pairs lacking experimental structures versus ones
with available structures. For pairs without experimental
structures, KinCoNet exhibited a slightly better performance
on the hard kinase test set (Figure 7A). On pairs with
experimental structures, KinCoNet exhibited substantial
improvements over DTA for medium difficulty and hard
kinases (Pearson correlation of 0.4 vs 0.18 for the former and
0.3 vs 0.1 for the latter) (Figure 7A). This distinction was less
pronounced when the assessment was broken down by
compound difficulty, where KinCoNet outperformed DTA
on hard compounds in instances where experimental structures
were available (Figure 7B). We conclude that KinCoNet
outperforms a leading structure-free method for kinase-
compound affinity prediction.

■ DISCUSSION
In this work, we described the development and evaluation of a
kinase-inhibitor complex data set (KinCo) and models
(KinCoNet) that use this data to predict kinase small molecule
binding. KinCo includes over 10,000 small molecules bound to
393 human kinases, resulting in a total of 139,637 kinase-
compound pairs (including crystal structures). For each such
pair, KinCo contains a library of computationally predicted
structural complexes capturing the conformational diversity of
kinases and the poses of their bound small molecule ligands.
This structural information is coupled with qualitative and

quantitative experimental binding affinity data, facilitating the
development of structure-based models that leverage the full
ensemble of bound conformations. As a demonstration of the
utility of this new resource, we showed that the machine
learning model KinCoNet can perform kinase-compound
affinity prediction by using a novel loss function. The training
regimen for KinCoNet exploits the combination of quantitative
and qualitative binding data in KinCo as well as its
conformational diversity in the set of docked structures. This
was achieved using predictions from Ensembler,39 but it is
likely that even better performance could be achieved in the
future by combining predictions from AlphaFold245 with
molecular dynamics methods for generating conformational
diversity. However, even in its current iteration, we found that
KinCoNet outperformed similar models trained on exper-
imental structures alone and that it behaves in a more
biophysically consistent manner. Compared with structure-free
methods, KinCoNet also exhibited greater gains in accuracy
and generalizability.

The use of computationally docked structures to train
machine learning models was explored previously. Francoeur et
al.34 generated computational complexes by docking small
molecules observed in experimental cocomplex structures into
proteins with similar binding pockets, a method known as
“cross-docking”. KinCo builds on this approach while
addressing some of its key limitations. First, as previously
noted, experimentally solved protein-compounds pairs occupy

Figure 7. Structure-based methods generalize better in binding affinity predictions compared with structure-free methods. (A) Correlation on test
sets with increasing kinase difficulty on the subset of kinase-compound pairs without a crystal structure (left) and on the subset with crystal
structures (right). (B) Correlation on test sets with increasing compound difficulty on the subset of kinase-compound pairs without a crystal
structure (left) and on the subset with crystal structures (right). Each gray dot represents the AUC from a CV split. Black dotted lines represent the
mean. DTA − structure-free models trained with the DTA architecture on DTC and PDBBind-kinase; KinCoNet-M1 − models trained on KinCo
with docked structures selected by Autodock Vina combined with PDBBind-kinase; KinCoNet-M2 − models trained on KinCo with docked
structures selected by M1 combined with PDBBind-kinase.
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a much smaller chemical space as compared to pairs lacking
structural data.49 Thus, the focus on cross-docking from
experimental structures can lead to biases that limit the
generalizability of downstream models. Second, Francoeur et
al. treated the binding affinity of all cross-docked structures as
equal to the original experimental cognate structure, an
assumption unlikely to hold in many circumstances. KinCo
does away with this assumption by using known binding
affinities for experimentally characterized kinase-compound
pairs and then computationally docks all known pairs using a
large ensemble of kinase conformations, generating structural
diversity in the process.

It should be noted that our model focuses on predicting the
affinity between ATP competitive inhibitors and kinases. As
such, during docking, the model assumes the compound will
bind to the ATP binding site and, during model training, that
the direct binding affinity correlates with the strength of
inhibition. Therefore, our model should not be used to predict
the binding affinity of allosteric inhibitors.

The ability of KinCo and KinCoNet to use a mixture of
experimental and computationally docked structures to
increase prediction accuracy is notable since most structure-
based models to date have been trained exclusively on
experimental structures from PDBBIND.37 Chen et al.50 have
shown that models trained on PDBBIND perform at most
comparably to docking algorithms in predicting computation-
ally docked protein-compound pairs outside of the training set.
This is a serious limitation since, in most drug discovery
campaigns, proteins and compounds dissimilar to those in
PDBBIND and lacking experimental structures often become
an important part of the discovery effort. KinCoNet overcomes
this limitation by directly training on computationally docked
poses coupled to experimental binding affinities. By doing so, it
surpasses the accuracy of a similar model (ExperimentalNet)
trained exclusively on experimental structures while also
expanding the diversity of kinases and compounds that can
be modeled. It should also be noted that when predicting
whether a kinase-compound pair interacts, KinCoNet loses its
advantage to ExperimentalNet as the test kinase becomes more
dissimilar to those in the training set. We surmised that this is
because ExperimentalNet was trained on all 16,000 protein−
ligand crystal structures in PDBBIND2018, and it might infer
more general structural motifs that allowed it to extrapolate to
foreign kinases. On the other hand, KinCoNet was fine-tuned
on a mixture of high-quality structure and docked structures so
it can focus on inferring kinase family specific binding
interactions from both structural motifs as well as sequences
(especially when structural input is noisy). When the kinases
become more distant in sequence, the family specific rules
might be harder to generalize, so KinCoNet might lose some
of its predictive power, while ExperimentalNet can still extract
general structural motifs that can be broadly applied.

KinCoNet also outperforms structure-free methods trained
on identical binding affinity data but lacking structural
information; to ensure a fair comparison of performance, we
undertook an extensive hyperparameter search using the
structure-free DTA method. Nonetheless, technical differences
in the architecture of KinCoNet and DTA cannot be ruled out
as contributors to differences in performance. KinCoNet
exhibits the greatest improvements relative to structure-free
methods when predicting hard kinases bound to hard
compounds, and this is likely due to the use of 3D structural
data. KinCoNet learns not only from docked poses predicted

to best capture the binding geometry but also from nonbound
poses far from the active site (corresponding to negative
binding pairs), which may facilitate learning of physical
interaction features inaccessible to structure-free models.
KinCoNet’s performance edge applies both to binary
classification as well as quantitative affinity prediction (Figure
7), suggesting it is capable, by virtue of accessing the
underlying bound structural complex, of discerning geometric
features that differentiate between degrees of binding and
doing so in a more generalizable fashion.

Future Prospects. While KinCoNet can use structural data
to its advantage, it is most performant when the input features
are derived from high-quality experimental structures instead
of computationally docked ones (Figure 7). In effect,
KinCoNet leverages structural information when it is of high
quality but degrades gracefully to behave more similarly to
structure-free methods when it is not. With the advent of
better structure prediction methods,45,51,52 the accuracy of
KinCoNet-like models will continue to improve. KinCoNet
implements a specific neural network architecture (3D
convolutions) to learn kinase-compound affinities, but rapid
progress in deep learning has resulted in many new
architectures potentially better suited to structure-based
learning. For example, MONN is a graph neural network53

that uses pairwise protein-compound interaction features to
predict interaction affinity, while a method from Feinberg et
al.28 learns directly from protein-compound structures by
incorporating spatial information into the graph representa-
tion. In general, graph neural networks have the advantage of
representing molecular data in a rotationally and translationally
invariant way, unlike 3D convolutional networks. These and
future models can be trained and evaluated on KinCo, which
provides ready training/validation/test splits that benchmark
new models across a range of kinase and compound difficulty
levels.

As currently constituted, KinCo contains data only for
human proteins with a Protein Kinase Like (PKL) fold.
However, kinases unrelated to protein kinases (uPKs) can
interact with inhibitors of PKL kinases3 with potential off-
target effects. One natural extension of KinCo is to include
uPKs and to test the generalizability of KinCoNet on uPK
kinases. Another possible extension is to include multidomain
kinases; we currently exclude data from these 14 human
kinases due to the difficulty of associating binding activity with
a specific domain. Nonetheless, multidomain kinases such as
JAK kinases are important drug targets, and domain-specific
target information is sometimes available in the original source
publications or could be acquired denovo. A third extension
would include using binding affinity data other than
biochemical equilibrium dissociation constants (Kd) such as
cell-based half-maximal inhibitory concentration values (IC50).
For instance, DTC contains over 100,000 IC50 measurements,
the inclusion of which would effectively double the size of
KinCo. One challenge in the use of these data is the
dependence of IC50 values on assay conditions such as kinase
substrate concentration and Km, which in many instances are
not recorded in DTC making it difficult to convert IC50
measurements to Ki constants. Nonetheless, more advanced
machine learning techniques may be able to infer assay
conditions using meta learning procedures.54 A fourth
extension involves the use of negative binding data
(experimental evidence of no high affinity interaction), which
we found to form the bulk of the proprietary affinity data
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available in a major pharmaceutical company. Although
negative data remains underrepresented in the public domain,
an untapped reservoir of nonbinding information resides in
chemoproteomics assays, which profiles the binding of a
compound to native proteins without relying on recombinant
protein panel. Such assays can provide unbiased nonbinding
data when correctly filtered for technical error and biases, such
as protein detection.

On the structural side, KinCo relies on docking and
homology modeling to create a conformationally diverse
kinase-compound data set. Complementary methods can
augment this approach and potentially reduce its systematic
biases. These include molecular dynamics (MD) simulations
and free energy perturbation (FEP) methods. MD simulations
have been performed to reconstruct the dynamics of
compound-kinase interactions55−57 and can yield ensembles
of structures that additionally increase the conformational
diversity in KinCo. FEP methods are particularly adept at
capturing small changes in binding pockets induced by related
compounds and computing the resulting changes in free
energy. FEP can thus be potentially used to augment KinCo by
using synthetically generated structural and binding affinity
data, particularly for compounds near the chemical space
already spanned by KinCo.

Kinases are targets of many drug discovery programs that
explore unchartered chemical space for well-studied and
understudied kinases. Although computer-aided drug discovery
programs have enabled a number of new kinase targets,
significant challenges remain in prioritizing hits in such
unfamiliar chemical spaces and in providing actionable
mechanistic insights to medicinal chemists.58 We envision
KinCoNet to be used in early drug discovery to help prioritize
small molecules targeting kinases of interest for experimental
follow-ups as well as to identify potential kinase targets for a
small molecule. In addition to providing an immediately usable
model, KinCoNet suggests a strategy for unlocking unexplored
chemical spaces by combining targeted measurements of the
binding affinities of compounds in high priority regions of
chemical space with predicted structures of kinase-compound
complexes. Combined with KinCo as a starting data set, future
models could tackle more challenging chemical modalities. In
addition, the approaches outlined here can potentially be
applied to proteins other than kinases. Our docking strategy
and model training regime could also help to improve model
performance for other target classes such as nuclear receptors;
currently, this target class has rich profiling data available, but
structural data is limited. Finally, we expect that KinCo and
KinCoNet will serve as building blocks for efforts focused on
intentional drugging of multiple kinases with a single molecule,
which remains an important goal of many programs in
oncology and inflammatory diseases.

■ METHODS
PDBBind2018 Preparation. The expansive “general”

PDBBind2018 data set containing 11,663 crystal structures
with matched binding affinities was used for training. From the
PDBBind2018 general set, kinase-ligand pairs involving a
kinase as enumerated in the “curated kinome” (kinase with a
Protein Kinase Like fold plus STK19)3 were identified to
create the PDBBind2018-kinase data set.

The cocrystal structures of these kinase-ligand pairs were
processed as described in Pafnucy46 with the following
modifications. The protein chain interacting with the ligand

was identified, and the full-length protein rather than the
“pockets” as identified in PDBBind2018 was fed into the
processing pipeline to generate a 20 Å 3D box around the
ligand. To minimize the systemic difference from the docked
structures, all hydrogens were removed from the protein crystal
structures. The partial charge was calculated for the protein
and the ligand separately by using the prepare_receptor_v4.py
and prepare_ligand_v4.py scripts in the AutoDock software
package. All binding affinities were converted into log scale
using log(affinity [μM]).

Extracting Kinase-Compound Pairs with Binding
Constant Measurements from DTC. All pairs with a
binding constant measurement (Ki or Kd) involving a kinase in
the curated kinome were extracted from DTC. Binding
constants denoted as Ki were usually determined in an
enzymatic assay,9 while those denoted as Kd were usually
produced in assays measuring direct binding.12,13,35 To
account for systemic biases in these assays, kinase-compound
pairs with a Ki or Kd were identified separately and converted
into log scale via log(affinity [μM]). If a pair has multiple
measurements for Ki or Kd, the highest affinity (lowest value)
was used as the binding affinity. If both Ki and Kd
measurements exist for a pair, then both were included in
training. To reduce noise in the data set, kinases with multiple
kinase domains were excluded from the data set due to lack of
metadata denoting the interacting kinase domain.

Training/Validation/Test Partitioning. DTC and
PDBBind2018 were combined to form the data set for
partitioning. The training/validation/test set splits was
performed following a similar procedure outlined in AlQuraishi
et al.42 using the script cluster_v6-ordered_script.py. The
kinases were first aligned using jackhmmer, and the sequence
identity was calculated from the multiple sequence alignment
profiles.59 The similarity among nonkinases (from
PDBBind2018) and between nonkinases and kinases was
assigned to be 0%. The similarity between compounds was the
Tanimoto similarity based on their 1024-bit Morgan finger-
prints.60

Proteins were first clustered using hierarchical clustering,
and clusters were generated by applying a threshold cutoff at
90% similarity such that proteins from any two clusters shared
at most 90% sequence identity (corresponding to the “hard
kinase” category). Compounds were also clustered using
hierarchical clustering, and clusters were generated by applying
a threshold cutoff at 0.4 Tanimoto similarity such that
compounds have a Tanimoto similarity of at most 0.4
(corresponding to the “hard compound” category).

To create the validation and test sets, we sampled 10% of the
protein clusters and, from these clusters, sampled 50
compound clusters. Only one compound from each of the
sampled clusters was kept in the test set.

The remaining protein-compound pairs were sequentially
clustered at 95% sequence identity and random sampling for
proteins and 0.6, 0.8 Tanimoto similarity for compounds.

After a validation set was created, a test set was partitioned
from the data set with the remaining data points following the
same procedure. Each validation or test set with a different
kinase-compound difficulty combination (a “grid” in Figure 1)
therefore contains 50 unique kinase-compound pairs represent-
ing diverse chemical scaffolds. Overall each validation or test
set contains about 450 kinase-compound pairs. Validation and
test sets involving nonkinase pairs and kinase pairs were
created sequentially.
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The partitioning scheme was repeated 5 times to obtain 5
independent training/validation/test set splits.

A workflow schematic is illustrated in Figure S1 and detailed
in the Supporting Information.

Homology Modeling. Homology models were generated
for all kinases in the data set using the Ensembler python
module.39 Specifically, the sequences of all human kinase
domains were extracted from UniProt. The crystal structures of
all mammalian kinase domains and their sequences (assessed
in 2017) were curated as templates. For each human kinase of
interest, comparative structural modeling was performed with
Modeler61 using the crystal structures of all mammalian kinases
as templates. The resulting homology models were clustered
by their structural similarity. To ensure the quality of the
homology models, homology models whose templates share
more than 40% sequence identity with the target kinase were
collected for docking. The script pipeline_nocutoff.py was
used to run the Ensembler pipeline.

Ensembler performs homology modeling using all available
structures of mammalian kinases as templates, including ones
of the same kinases in different conformations (corresponding,
in some instances, to substantial movements of the kinase
domain). Ensembler predates structure prediction using
AlphaFold2,45 which is generally regarded as the best method
for ab initio prediction of protein structure. However,
homology modeling using Ensembler has the key advantage
of sampling many different conformations for each structure. It
is known that many kinases have multiple conformations, and
this can influence inhibitor affinity.6

Generating in Silico Structures in KinCo. For each of
the 137,000 kinase-compound pairs identified from DTC, the
compound was docked into the qualified homology models as
described above. The docking workflow for each pair was
conducted using the scripts dockpipe_qvina_v4.py and
run_dockpipe_qvina_v4.py. Using QVina, a fast variant of
Autodock Vina,40 docking was performed in 560 runs for each
pair: for kinases with over 560 homology models, 560 unique
models were randomly sampled, and docking was performed
on each once. For kinases with fewer than 560 models, the
compound was docked into the qualified homology models
multiple times. The search space was defined as a box centered
around the ATP binding site and enclosing the kinase. The box
was intentionally kept large to generate nonbinding poses for
training. About 20 docked poses were generated from each
docking run, and all docked poses were kept.40,41,62−64 This
resulted in over 11,000 docked poses in various conformations
of the kinase for each kinase-compound pair. The docked
poses and paired experimental binding constants were
organized to form KinCo.

These in silico structures were processed into a 3D grid as
described in Pafnucy,46 with the exception that the partial
charge on the protein and compound was calculated using the
prepare_receptor_v4.py and prepare_ligand_v4.py scripts in
the AutoDock software package.

To compare the performance of Vina and our models, we
rescored the docked poses with Autodock Vina.41 As Autodock
Vina outputs “Affinity” in kcal/mol, we converted the “Affinity”
value into Kd in μM. The predicted affinities from Vina are
then compared to those from KinCoNet (also in μM) via
AUROC (experimental values binarized at 10 μM) and
Pearson correlation.

Model Architecture and Customized Loss Function.
The model architecture is as described in Pafnucy.46 We

applied 3 layers of 3D convolutions with increasingly more
filters (64, 128, and 256 filters each with 5 Å * 5 Å * 5 Å
dimension). Each convolution layer is followed by a max
pooling layer with 2 Å * 2 Å * 2 Å patch. After the convolution
operation, the filters are concatenated and passed through a
series of fully connected neural networks (1000, 500, and 200
neurons) to predict the binding affinity. Hyperparameters used
were listed in Table S2. We also customized the Pafnucy
architecture with the following modifications: (i) The initial set
of general models was trained on all crystal structures in
PDBBind2018 with the mean-squared-error (MSE) as the loss
function. These models were referred to as ExperimentalNet.
(ii) Kinase-specific models were then trained on DTC and
PDBBind2018-kinase pairs with weights in the convolutional
layers initialized with the pretrained parameters from
ExperimentalNet. Weights in the fully connected layers were
randomly initialized. (iii) Instead of using the MSE as the loss
function, these kinase-specific models adopted a customized
MSE-based loss function
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where ỹn is the model prediction, and yn is the experimental
binding constant for the nth pair. Specifically, for pairs with a
binding constant < 10 μM, the MSE was used; for nonbinding
pairs with a binding constant ≥ 10 μM, the model was
penalized with the MSE if the prediction was < 10 μM, but no
loss was accrued if the prediction was ≥ 10 μM.

Iterative Training. To begin iterative training, the docked
pose predicted to have the highest binding affinity by
Autodock Vina was selected for each kinase-compound pair.
The selected docked poses were used as the structure inputs
for the kinase-compound pairs without a corresponding crystal
structure. For each pair in the DTC, a negative nonbinding
pose (a pose with a centroid over 10 Å from the kinase active
site) was randomly selected and given a nonbinding label (e.g.,
affinity = 15 μM). These nonbinding pairs were combined with
the pairs with predicted docked poses as well as pairs with
crystal structures to train the first iteration model KinCoNet-
M1. KinCoNet-M1 was used to make predictions on docked
poses for all kinase-compound pairs and select the docked pose
with the highest binding affinity for each pair to represent the
in silico structure. These docked poses selected by KinCoNet-
M2 as well as newly sampled nonbinding poses were combined
with crystal structures to be the structure input to train the
second iteration model KinCoNet-M2.

To assess the performance of the models, KinCoNet-M1 was
applied to predict the affinities for poses selected by Autodock
Vina, and KinCoNet-M2 was used to predict the affinities for
poses selected by KinCoNet-M1. Models with the highest
correlation between the predictions and the experimental
affinities on the overall validation set were selected, and their
performance on the test set is reported.

Biochemical Behavior Analysis. For about 130 kinase-
compound pairs in the test sets with a crystal structure, the
compound was docked into the homology models of the
cognate kinase following the docking protocol outlined in
“Generating in Silico Structures in KinCo”. Each in silico
complex was aligned with the reference crystal structure using
TMAlign.65 The root-mean-square deviation (RMSD, in Å)
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between the homology model and the cognate protein was
reported from the software, and the RMSD between the
docked pose and the reference crystal structure ligand was
calculated based on the Euclidean distance between the aligned
pose and the crystal structure pose. The kinase RMSD and the
compound RMSD were summed to give the final RMSD of the
complex. The distance between the in silico structure and the
crystal structure was divided into 1 Å bins (e.g., 2−3 Å, 3−4 Å,
..., 19−20 Å) and 20 in silico structures from each distance bin
were sampled. Predictions were made for these in silico
structures using ExperimentalNet, Autodock Vina, KinCoNet-
M1, and KinCoNet-M2, and their Spearman’s rank correlation
with the RMSD was calculated.

Retraining DTA. The DTA architecture was applied
directly to KinCo and PDBBind-kinase. The models were
trained and tested with the same cluster-based training,
validation, and test partitioning scheme described above.

■ ASSOCIATED CONTENT
Data Availability Statement
The code required to generate the docked structures and to
train the models is deposited in https://github.com/
labsyspharm/KinCo [DOI: 10.5281/zenodo.7703409]. The
kinase-compound affinities used for training are available under
https://github.com/labsyspharm/KinCo/tree/main/
resources. Selected docked poses of all kinase-compound pairs
in KinCo are available for interactive viewing on the Rshiny
app https://lsp.connect.hms.harvard.edu/ikinco/. Due to the
size of the files (∼2TB), all docked structures and homology
models in KinCo are available for download via Globus.
Instructions for accessing the data can be found on https://lsp.
connect.hms.harvard.edu/ikinco/ and at https://github.com/
labsyspharm/KinCo [DOI: 10.5281/zenodo.7703409].
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.3c00347.

Figure S1. Workflow to create the training, validation,
and test sets. Similarity between each kinase-ATP
competitive inhibitor pair was calculated based on
both kinases (sequence similarity) and compounds
(1024 Morgan Fingerprint-based Tanimoto Similarity).
The validation set and test set were created by sampling
sequentially the kinase and compound-based clusters
and removing similar pairs from the training set. See
Methods − “Training/validation/test partitioning” for
more details. Gray color indicates the potential training
set. The colored box indicates the sample selected to be
in the validation or test set from that cluster, and
transparent samples from that cluster indicate samples
not selected and will be removed from both the training
and validation/test set. The crossed gray box indicates
clusters removed from the training set due to similarity
to the compounds in the validation/test set. Orange,
yellow, and green indicate “hard”, “medium”, and “easy”
compound sets, respectively. Figure S2. In silico
structures for training make it easier to predict more
kinases. Training on KinCo allowed the models to
include more kinases during training. This nearly tripled
the number of kinases in the easy category (left) and
substantially increased the number of kinase-compound
pairs involving an easy kinase (right). Figure S3. (A)
Example kinases and compounds in the training set and

their nearest neighbors in the test set. (Top) Three
kinases in the training set, their closest kinase neighbors
in the test set, and the kinase difficulty of the test sets
where the kinase neighbors belong. Numbers in the
parentheses represent the sequence identity between the
training-test set kinase neighbor pair. (Bottom) Three
compounds in the training set, their closest compound
neighbors in the test set, and the compound difficulty of
the test sets where the compound neighbors belong.
Numbers in the parentheses represent the Tanimoto
similarity between the training-test set compound
neighbor pair. Colored circles highlight the different
chemical moieties between the training and test set
compounds. (B) Left: Distribution of the kinase
sequence similarity of all kinases in the data set. Yellow
and red vertical lines indicate the cutoff at 95% and 90%
sequence similarity for medium and hard kinase
validation/test set, respectively. Right: Distribution of
the similarity between training set kinase and test set
kinases in CV1. (C) Left: Distribution of the Tanimoto
similarity of all compounds in the data set. Green,
yellow, and red lines indicate the cutoff at 0.8, 0.6, and
0.4 Tanimoto similarity for easy, medium, and hard
compound validation/test set, respectively. Right:
Distribution of the similarity between training set and
test set compounds in CV1. Figure S4. Correlation
between the experimental affinities and the affinities on
test sets with various kinase-compound difficulty
combinations. (A) Median correlations from the
performance on the 5 independent partitions were
shown. Half of the interquantile range is shown in
parentheses. (B) The correlation between a model
trained on different CV splits and experimental values
was shown. Each dot represents a model trained on one
of the 5 CV splits. Black line: mean; white line: median;
lower and upper bounds of the box: 25% and 75%
quantile. Figure S5. Model predictions on poses
deviating from the crystal structure. Predictions on the
docked poses of a representative kinase-compound
complex with low affinity (PDBID: 3ZLY). Table S1.
Composition of training, validation, and test sets. Table
S2. Hyperparameter screened during hyperparameter
optimization. GlossaryTable. Definition of key terms in
the paper. Detailed methods for validation/test set
generation (PDF)
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