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ABSTRACT: The performance of photodynamic therapy (PDT) depends on the solubility, pharmacokinetic behaviors, and
photophysical properties of photosensitizers (PSs). However, highly conjugated PSs with strong reactive oxygen species (ROS)
generation efficiency tend to have poor solubility and aggregate in aqueous environments, leading to suboptimal PDT performance.
Here, we report a new strategy to load highly conjugated but poorly soluble zinc-phthalocyanine (ZnP) PSs in the pores of a Hf12-
QC (QC = 2″,3′-dinitro-[1,1’:4′,1”;4″,1’”-quaterphenyl]-4,4’”-dicarboxylate) nanoscale metal−organic framework to afford ZnP@
Hf-QC with spatially confined ZnP PSs. ZnP@Hf-QC avoids aggregation-induced quenching of ZnP excited states to significantly
enhance ROS generation upon light irradiation. With higher cellular uptake, enhanced ROS generation, and better biocompatibility,
ZnP@Hf-QC mediated PDT exhibited an IC50 of 0.14 μM and achieved exceptional antitumor efficacy with >99% tumor growth
inhibition and 80% cure rates on two murine colon cancer models.

Photodynamic therapy (PDT) destroys a malignant tumor
while sparing surrounding normal tissues by localizing a

photosensitizer (PS) in the tumor and irradiating the tumor
with visible or near-infrared light to produce cytotoxic reactive
oxygen species (ROS).1−4 The clinical utility of PDT is limited
by tissue penetration of light, localization of the PS in the
tumor, and the solubility and photophysical properties of the
PS.5,6 For example, clinically used porphyrin-based PSs often
cause phototoxicity side effects due to their strong absorption
in the visible spectrum and retention in the skin.7

Phthalocyanine (Pc) PSs present a promising alternative due
to their very strong absorption in 650−800 nm and weak
absorption in 400−600 nm, allowing for effective treatment of
tumors with low PS doses and reduced phototoxicity.8

Metalation of Pcs with diamagnetic ions (e.g., Zn2+, Si4+,
Al3+) increases triplet state yields and lifetimes to enhance the
generation of cytotoxic singlet oxygen (1O2).

9−11

Despite their improved photophysical properties, Pcs have
not been widely used for PDT due to their limited synthetic
accessibility and their strong tendency to aggregate in
biological media.11 Pcs have been functionalized with ionic
or hydrophilic groups in their peripheral positions to increase
aqueous solubility or coordinate with bulky metal complexes
(axial functionalization) to prevent π−π stacking.12 However,
the introduction of ionic or hydrophilic groups to Pcs can
adversely impact their cellular uptake while axial functionaliza-
tion of Pcs is limited to a few nontoxic high-valent metals such
as Si4+.13,14

An alternative strategy to address the solubility and
aggregation issues of Pcs is through their encapsulation in or
conjugation to liposomes, micelles, or other nanoparticles
(NPs).15−19 In particular, micelles have been widely
investigated as a delivery vehicle for lipophilic conjugated
Pcs with superb photophysical properties.20,21 Nanoscale
metal−organic frameworks (nMOFs) have recently provided

an excellent strategy to deliver porphyrin, chlorin, and
bacteriochlorin PSs for PDT.22−28 With structural tunability,
rigidity, and porosity, nMOFs can efficiently load PSs via direct
incorporation as bridging ligands, postsynthetic ligand
exchange, postsynthetic surface modification, and physical
loading into pores.29−35 These strategies allow isolation or
confinement of lipophilic PSs in rigid nMOF structures to
reduce aggregation, improve cellular uptake, and reduce
photodegradation.36−41 We hypothesized that nMOFs could
also be used to encapsulate Pcs to enhance their PDT efficacy.
Herein, we report the design of a Hf-QC nMOF based on

Hf12 secondary building units (SBUs) and QC bridging ligands
(QC = 2″,3′-dinitro-[1,1’:4′,1”;4″,1’”-quaterphenyl]-4,4’”-di-
carboxylate) for the delivery of zinc(II)-2,3,9,10,16,17,23,24-
octa(4-carboxyphenyl)-phthalocyanine (ZnP) PSs for highly
efficient type II PDT (Figure 1).42 Postsynthetic loading of
ZnP into the pores of the rigid Hf-QC framework afforded
ZnP@Hf-QC. The confined PSs in ZnP@Hf-QC efficiently
absorbed light and avoided aggregation-induced quenching to
significantly enhance 1O2 generation and effectively eradi-
cated/regressed colorectal cancer in mouse models.
Hf-QC was synthesized through a solvothermal reaction

between HfCl4 and H2QC in a mixture of N,N-dimethylfor-
mamide (DMF), acetic acid, and water at 80 °C (Figure 2a).
Transmission electron microscopy (TEM) imaging of Hf-QC
revealed a hexagonal nanoplate morphology with a diameter of
∼150 nm while atomic force microscopy (AFM) showed a
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plate thickness of ∼64 nm (Figure 2b,d). Dynamic light
scattering (DLS) measurements of Hf-QC gave a number-
averaged size of 167.1 ± 2.9 nm (Figure 3c). Powder X-ray
diffraction (PXRD) studies (Figure 3b) showed that Hf-QC

adopted the same hcp topology as previously reported Zr12-
QPDC (QPDC = para-quaterphenyldicarboxylate).43 High
resolution TEM (HRTEM) imaging and fast Fourier transform
(FFT) pattern of Hf-QC revealed a lattice point distance of 2.3
nm and displayed a 6-fold symmetry (Figure 2c, Figure S15),
which matched well with the modeled structure for Zr12-
QPDC. 1H nuclear magnetic resonance (NMR) analysis of
digested Hf-QC showed an acetate (OAc) modulator to QC
linker ratio of 0.11:1, corresponding to approximately 0.5
missing linkers per SBU (Figure S11). Thermogravimetric
analysis (TGA) of Hf-QC showed a weight loss of 39.4% in the
300−800 °C region, matching the expected value of 37.9% for
the Hf-QC with a 0.5 linker defect per SBU (Figure S14). On
the basis of these results, Hf-QC was formulated as Hf12(μ3-
O)8(μ3−OH)8(μ2−OH)6(QC)8.5(OAc).
ZnP@Hf-QC was synthesized by heating a mixture of ZnP

and Hf-QC in DMF at 70 °C for 24 h. Loading of ZnP in
ZnP@Hf-QC was confirmed by the presence of characteristic
Ultraviolet−visible (UV−vis) and infrared (IR) peaks for ZnP
(Figure 3a, Figure S18). UV−vis spectroscopy and inductively
coupled plasma-mass spectrometry (ICP-MS) showed the
loading of 13.6 wt % ZnP in ZnP@Hf-QC, corresponding to a
ZnP to Hf12 SBU ratio of 0.68:1. 1H NMR analysis of digested
ZnP@Hf-QC showed that the OAc modulator to QC linker
ratio was maintained after ZnP loading (Figure S19). TGA of
ZnP@Hf-QC showed a weight loss of 36.3% in the 300−800
°C region, which matched well with the expected value of
34.1% for physical loading of ZnP in the nMOF pores and
confirmed the ratio of ZnP to Hf (Figure S14). On the basis of
these results, ZnP@Hf-QC was formulated as (ZnP)0.68@
Hf12(μ3-O)8(μ3−OH)8(μ2−OH)6(QC)8.5(OAc).
TEM and DLS showed that ZnP@Hf-QC retained the

hexagonal nanoplate morphology and size (175.8 ± 5.6 nm) of

Figure 1. Scheme showing the structure of ZnP@Hf-QC consisting of
a 3D framework of Hf12 SBUs and QC bridging ligands and ZnP PSs
confined in the pores. ZnP@Hf-QC efficiently generates 1O2 upon
700 nm light irradiation.

Figure 2. (a) Synthetic scheme of ZnP@Hf-QC. (b) TEM image and
(c) HRTEM image and its FFT pattern (inset) of Hf-QC. (d) AFM
topography and height profile (inset) of Hf-QC. (e) TEM image of
ZnP@Hf-QC.

Figure 3. (a) UV−vis spectra of ZnP, H2QC, Hf-QC, and ZnP@Hf-
QC in DMSO. (b) PXRD patterns of Hf-QC, ZnP@Hf-QC (as
synthesized and after soaking in PBS or DMEM for 24 h), and the
simulated pattern for Zr12-QPDC. (c) Number-averaged diameters of
Hf-QC and ZnP@Hf-QC (as synthesized and after soaking in PBS or
DMEM for 24 h) in ethanol. (d) 1O2 generation of ZnP, H2QC, Hf-
QC, and ZnP@Hf-QC detected by SOSG assay (n = 3).
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Hf-QC (Figures 2e and 3c, Figure S15). HRTEM images
(Figure S15) and PXRD patterns (Figure 3b) of ZnP@Hf-QC
supported the maintenance of Hf-QC structure after ZnP
loading. ZnP@Hf-QC displayed a slightly more negative ζ
potential of −24.0 ± 1.5 mV compared to Hf-QC at −22.1 ±
0.7 mV (Figure S16), consistent with loading negatively
charged ZnP into the pores of Hf-QC. The presence of QC
and ZnP was confirmed by its characteristic UV−vis and 1H
NMR signals in digested ZnP@Hf-QC (Figures S11, S19).
The stability of ZnP@Hf-QC was demonstrated by PXRD and
DLS after incubation in phosphate-buffered saline (PBS) or
Dulbecco’s Modified Eagle Medium (DMEM) at 37 °C for 24
h (Figure 3b,c).
ZnP@Hf-QC showed a much higher cellular uptake than

free ZnP and accumulated in endo/lysosomes. Confocal laser
scanning microscopy (CLSM) revealed that fluorescence
signals of ZnP@Hf-QC started to overlap with endo/
lysosomes in CT26 cells after incubation for 12 h (Figure
4b−f, Figure S23).44 However, fluorescence signals were barely
observed for CT26 cells incubated with free ZnP (Figure 4a,
Figure S22). Quantification of cellular uptake by UV−vis
spectroscopy showed that ZnP@Hf-QC delivered up to15-fold
more ZnP than free ZnP in vitro (Figure 5d).

1O2 generation by ZnP and ZnP@Hf-QC was determined
by singlet oxygen sensor green (SOSG) assay. ZnP@Hf-QC

generated 3.4-fold as much 1O2 as free ZnP (Figure 3d),
indicating that the entrapment of ZnP PSs in MOF pores
prevented aggregation-induced quenching of ZnP excited
states and enhanced 1O2 generation in a type II PDT process.
CLSM imaging (Figure 5a, Figure S29) and flow cytometry
analysis (Figure S28) showed a ROS burst in CT26 cells
incubated with ZnP@Hf-QC after light irradiation (denoted as
“+”, 100 mW/cm2, 10 min, “-” denotes no light treatment) by
2′,7′-dichlorodihydrofluorescein diacetate (DCF-DA) assay,
confirming the enhanced ROS generation by ZnP@Hf-QC in
vitro. MTS assays showed that ZnP(+) exhibited minimal
toxicity at concentrations up to 2 μM, while ZnP@Hf-QC(+)
was highly cytotoxic with an IC50 of 0.14 μM (Figure 5e,
Figure S24). No obvious toxicity or morphological changes
were observed for CT26 cells treated with Hf-QC(−), Hf-
QC(+), or ZnP@Hf-QC(−). Live cell imaging confirmed
significant growth inhibition of CT26 cells by ZnP@Hf-
QC(+) (Figure S25, Movies S1, S2).
We then examined apoptosis and immunogenic cell death of

CT26 cells after PDT by CLSM and flow cytometry. CT26
cells treated with ZnP@Hf-QC(+) showed upregulation of
phosphatidylserine by Annexin V staining on cell membranes
and colocalization of propidium iodine (PI) and Hoechst
33342 (Figure 5b, Figures S26, S27). These results indicated
apoptosis and compromised membrane functions for ZnP@

Figure 4. CLSM images showing colocalization of ZnP (a) and ZnP@
Hf-QC (b, c) with endo/lysosomes after incubation with CT26 cells
for 0.5, 12, and 24 h (yellow = green + red, scale bars are 20 μm). (d−
f) Colocalization analysis between endo/lysosomes (green) and ZnP
(red) in different ROIs (white dashed lines in Figure 4c).

Figure 5. (a) Total ROS generation by DCF-DA assay (green). (b)
Cell apoptosis stained by Alexa Fluor 488 Annexin V (green) and PI
(red) (pink = red + blue). (c) CRT translocation stained by Alexa
Fluor 488 CRT antibody (green) (d) Cellular uptake measured by
UV−vis spectroscopy, n = 3. (e) Viability of cells treated with
ZnP(+), Hf-QC(+), and ZnP@Hf-QC(+) by MTS assay. Cell nuclei
were stained by Hoechst 33342 (blue) in (a-c). CT26 cells were used
for all in vitro experiments and a total light dose of 60 J/cm2 was
given. All scale bars equal 20 μm.
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Hf-QC(+) treated CT26 cells, which were absent in control
groups. Calreticulin (CRT) staining revealed enhanced
immunogenic cell death and surface translocation of CRT
signals in ZnP@Hf-QC(+) group (Figure 5c, Figures S30,
S31). Taken together, ZnP@Hf-QC(+) not only killed cancer
cells more effectively but also induced immunogenic cell death
to expose tumor antigens and danger signals for immune
activation.45,46

We evaluated antitumor efficacy of ZnP@Hf-QC(+) on two
subcutaneous murine colon cancer models with CT26 tumors
on BALB/c mice and MC38 tumors on C57BL/6 mice. Hf-
QC and ZnP@Hf-QC were pegylated before intravenous
administration. The mice were injected with PBS, ZnP, Hf-
QC, or ZnP@Hf-QC via tail veins at an equivalent ZnP dose
of 50 nmol (equivalent Hf dose of 0.88 μmol). Twelve hours
post injection, the mice were anesthetized, and tumor areas
were irradiated with 700 nm LED with a total light flux of 60 J/
cm2 (100 mW/cm2).
Compared to PBS(+), Hf-QC(+) had little effect on tumor

growth with minimal tumor growth inhibition indices (TGIs)
of 17.8% and 7.4% for CT26 and MC38 tumors, respectively.
ZnP(+) moderately slowed tumor growth with TGI values of
41.3% and 41.4% for CT26 and MC38 tumors, respectively.
ZnP@Hf-QC(+) treatment showed excellent antitumor
efficacy with >99% TGIs and 80% cure rates for both CT26
and MC38 tumors (Figure 6a,b, Figures S32, S33, S38, S39).
H&E and TUNEL staining revealed severe apoptosis/necrosis
and infiltration of inflammatory cells in tumor regions in the

ZnP@Hf-QC(+) group (Figure 6c, Figure S43). Several mice
in the ZnP(+) and ZnP(−) groups showed weight loss,
pulmonary edema, and local liver inflammation (Figures S35,
S36), likely caused by aggregation of ZnP into large particles in
vivo. In comparison, although ZnP@Hf-QC were observed to
accumulate in spleens and livers similar to other nano-
particles47,48 (Figures S36, S37) by tumor tissue sections, mice
treated with ZnP@Hf-QC with or without light irradiation
showed steady body weights (Figures S41, S42). ZnP@Hf-QC
and its aggregate were not observed in lungs and minimal
abnormities were observed in the major organs of ZnP@Hf-
QC treated mice compared to PBS control (Figures S34, S40).
The different in vivo behaviors between ZnP and ZnP@Hf-QC
showed that the nMOF pore loading strategy provides an
efficient, safe, and biocompatible approach to deliver PSs with
unfavorable solubility and pharmacokinetic properties.
In summary, we developed an nMOF confinement strategy

to isolate ZnP PSs and prevent their aggregation and excited
state quenching. As a result, the isolated PSs in ZnP@Hf-QC
efficiently absorbed light to significantly enhance 1O2
generation and efficiently kill cancer cells. ZnP@Hf-QC
mediated PDT effectively eradicated/regressed colorectal
cancers in two mouse models. The confinement of photo-
sensitizers in nMOF pores provides a new strategy to unleash
the potential of poorly soluble, highly conjugated PSs in PDT.
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