000013412 001__ 13412
000013412 005__ 20250218124812.0
000013412 02470 $$ahttps://doi.org/10.1021/acs.jctc.1c00960$$2doi
000013412 037__ $$aTEXTUAL
000013412 037__ $$bArticle
000013412 041__ $$aeng
000013412 245__ $$aPrediction and Validation of a Protein’s Free Energy Surface Using Hydrogen Exchange and (Importantly) Its Denaturant Dependence
000013412 269__ $$a2021-12-22
000013412 336__ $$aArticle
000013412 520__ $$aThe denaturant dependence of hydrogen–deuterium exchange (HDX) is a powerful measurement to identify the breaking of individual H-bonds and map the free energy surface (FES) of a protein including the very rare states. Molecular dynamics (MD) can identify each partial unfolding event with atomic-level resolution. Hence, their combination provides a great opportunity to test the accuracy of simulations and to verify the interpretation of HDX data. For this comparison, we use Upside, our new and extremely fast MD package that is capable of folding proteins with an accuracy comparable to that of all-atom methods. The FESs of two naturally occurring and two designed proteins are so generated and compared to our NMR/HDX data. We find that Upside’s accuracy is considerably improved upon modifying the energy function using a new machine-learning procedure that trains for proper protein behavior including realistic denatured states in addition to stable native states. The resulting increase in cooperativity is critical for replicating the HDX data and protein stability, indicating that we have properly encoded the underlying physiochemical interactions into an MD package. We did observe some mismatch, however, underscoring the ongoing challenges faced by simulations in calculating accurate FESs. Nevertheless, our ensembles can identify the properties of the fluctuations that lead to HDX, whether they be small-, medium-, or large-scale openings, and can speak to the breadth of the native ensemble that has been a matter of debate.
000013412 536__ $$oNational Institute of General Medical Sciences$$cGM55694
000013412 536__ $$oNational Institute of General Medical Sciences$$cR01 GM130122
000013412 536__ $$oNational Science Foundation$$cMCB-1517221
000013412 536__ $$oNational Science Foundation$$cMCB-2023077
000013412 536__ $$oBayer AG
000013412 536__ $$oBoehringer Ingelheim
000013412 536__ $$oBristol Myers Squibb
000013412 536__ $$oGenentech
000013412 536__ $$oOntario Genomics Institute
000013412 536__ $$oEUbOPEN$$c875510
000013412 536__ $$oJanssen
000013412 536__ $$oMerck KGaA
000013412 536__ $$oPfizer
000013412 536__ $$oTakeda
000013412 540__ $$a<p>© 2021 The Authors.</p> <p>This publication is licensed under <a href="https://creativecommons.org/licenses/by/4.0/">CC-BY 4.0</a>.</p>
000013412 542__ $$fCC BY
000013412 690__ $$aBiological Sciences Division
000013412 690__ $$aPhysical Sciences Division
000013412 690__ $$aThe College
000013412 691__ $$aBiochemistry and Molecular Biology
000013412 691__ $$aBiological Sciences
000013412 691__ $$aBiophysical Sciences
000013412 691__ $$aChemistry
000013412 7001_ $$aPeng, Xiangda$$uUniversity of Chicago
000013412 7001_ $$aBaxa, Michael$$uUniversity of Chicago
000013412 7001_ $$aFaruk, Nabil$$uUniversity of Chicago
000013412 7001_ $$aSachleben, Joseph R.$$uUniversity of Chicago
000013412 7001_ $$1https://orcid.org/0000-0001-6356-2607$$2ORCID$$aPintscher, Sebastian$$uUniversity of Chicago
000013412 7001_ $$aGagnon, Isabelle A.$$uUniversity of Chicago
000013412 7001_ $$aHouliston, Scott$$uUniversity of Toronto
000013412 7001_ $$1https://orcid.org/0000-0002-4971-3250$$2ORCID$$aArrowsmith, Cheryl H.$$uUniversity of Toronto
000013412 7001_ $$1https://orcid.org/0000-0001-6240-2599$$2ORCID$$aFreed, Karl F.$$uUniversity of Chicago
000013412 7001_ $$1https://orcid.org/0000-0003-2253-5631$$2ORCID$$aRocklin, Gabriel J.$$uNorthwestern University
000013412 7001_ $$1https://orcid.org/0000-0002-2871-7244$$2ORCID$$aSosnick, Tobin R.$$uUniversity of Chicago
000013412 773__ $$tJournal of Chemical Theory and Computation
000013412 8564_ $$yArticle$$9a9ce6aa6-01ce-4753-929e-f8d0dd47b166$$s10959534$$uhttps://knowledge.uchicago.edu/record/13412/files/peng-et-al-2021-prediction-and-validation-of-a-protein-s-free-energy-surface-using-hydrogen-exchange-and-%28importantly%29.pdf$$ePublic
000013412 8564_ $$ySupporting information$$9e902f558-6502-4ccf-8d5e-381d271c5bd1$$s4151318$$uhttps://knowledge.uchicago.edu/record/13412/files/ct1c00960_si_001.pdf$$ePublic
000013412 908__ $$aI agree
000013412 909CO $$ooai:uchicago.tind.io:13412$$pGLOBAL_SET
000013412 983__ $$aArticle