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ABSTRACT: An enzymatically cross-linked polyethylene glycol (PEG)-based hydrogel was
engineered to promote and align nerve cells in a three-dimensional manner. To render the
injectable, otherwise bioinert, PEG-based material supportive for cell growth, its mechanical
and biochemical properties were optimized. A recombinant fibronectin fragment (FNIII9*-10/
12-14) was coupled to the PEG backbone during gelation to provide cell adhesive and growth
factor binding domains in close vicinity. Compared to full-length fibronectin, FNIII9*-10/12-
14 supports nerve growth at similar concentrations. In a 3D environment, only the ultrasoft 1
w/v% PEG hydrogels with a storage modulus of ∼10 Pa promoted neuronal growth. This gel
was used to establish the first fully synthetic, injectable Anisogel by the addition of magnetically
aligned microelements, such as rod-shaped microgels or short fibers. The Anisogel led to linear
neurite extension and represents a large step in the direction of clinical translation with the
opportunity to treat acute spinal cord injuries.

1. INTRODUCTION

Hydrogels have been widely used as biomaterials for 3D tissue
regeneration.1−3 They are formed by cross-linking natural and/
or synthetic glycosaminoglycans, proteins, and/or polymers
and can take up water up to 400 times of their dry weight.4 In
the case of synthetic polymers, the network can be established
via different cross-linking chemistries, inducing physical or
covalent bonds. To grow tissues inside these 3D synthetic
matrices, hydrogels are often modified with biological domains
to mimic different molecules of the extracellular matrix
(ECM), depending on the application.5 These biochemical
functionalities can contain cell adhesive or signaling domains,
degradable sequences, and growth factor- or cytokine-
interacting molecules.6−9 Synthetic polymeric hydrogels have
the advantage that their mechanical and physical properties can
be fine-tuned by altering the concentration, structure, and
molecular weight of the polymers used to form the backbone
of the hydrogels.10,11 Cell behavior has been demonstrated to
be strongly affected by the stiffness, viscoelasticity, mesh size,
and degradation rate of the hydrogel, in addition to the cell
type, and whether the cells are grown in 2D on top of a
hydrogel or in 3D inside a hydrogel.12−15 For example, on a
2D elastic hydrogel, most cells grow better on stiff
substrates,16−18 while in a 3D hydrogel, their migration and
proliferation is optimal in softer hydrogels (G′ ∼ 100 Pa).19,20

Providing a soft, open network is even more critical in the case
of sensitive nerve cells, as this better replicates the mechanical
properties of native nerve tissue.21−27 In addition, in contrast
to fast proliferating cells, lower levels of MMPs may be
produced to degrade the hydrogel network, requiring a more
open structure from the onset.
One of the most common synthetic polymers employed to

produce tissue regenerative constructs is poly(ethylene glycol)
(PEG), as it is biocompatible and approved for clinical
use.28−30 To obtain homogeneous PEG hydrogels, star-PEG
molecules (sPEG) have been end-modified with functional
groups that can cross-link via a step-growth mechanism.5,31−33

The advantage of star-shaped polymers is that not all arms
have to react to form a network, leaving multiple arms for
further modifications. In addition, the degradation products
have a smaller radius of gyration compared to linear polymers,
enabling easier clearance by the kidneys.34 To achieve mild
enzymatic gelation under physiological conditions and a
versatile method to add biofunctional domains during cross-
linking, sPEG-vinylsulfone (sPEG-VS) has been modified with
complementary peptide sequences to mimic the trans-
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glutaminase-induced cross-linking mechanism of fibrin.35 As
most synthetic hydrogels are cross-linked via covalent bonds
and contain nanometer-scale mesh sizes, they have to degrade
over time to enable cell migration and proliferation. This can
be achieved via ester bonds to allow hydrolysis20,36 or specific
matrix metalloprotease (MMP)-sensitive peptide domains,
which induce on cell demand degradation.37−39

To support nerve growth inside hydrogels, biofunctional
proteins, such as fibronectin,13,23 laminin,40,41 or Matrigel,42,43

and combinations of shorter peptides6,44,45 have been mixed or
covalently linked to tailor a multitude of hydrogels. In the
synthetic fibrin-mimetic, PEG-based hydrogel, one of the
peptide sequences contains an MMP sensitive domain for
degradation, while peptides35 and ECM fragments8,46 can be
engineered and produced, bearing the transglutaminase
substrate, to covalently link into the matrix. Synthetically
produced proteins have the advantage of avoiding cross-species
reactions or potential pathogen transmission, which are
possible risks when biofunctionalizing a material using native
proteins (e.g., fibronectin) obtained from either animal or
human sources. The fibronectin fragment FN9*-10/12-14 is
an example of an engineered ECM fragment, which contains
multiple integrin-binding domains for cell adhesion (FN9*-10)
and a heparin-binding domain (FN12-14) that interacts with a
wide library of growth factors and cytokines, including brain-
derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-
3).47 By substituting Leu1408 with Pro (FN9 → FN9*), the
conformational stability of the FN9 module is increased 2−3-
fold, resulting in enhanced biological activity.48 Fibrin
hydrogels modified with this fragment have been demonstrated
to promote wound healing in diabetic mice in the presence of
vascular growth factor (VEGF-A165) and platelet-derived
growth factor (PDGF-BB), and bone formation in rats in the
presence of bone morphogenic protein (BMP-2) and PDGF-
BB.46

In the case of sensitive nervous tissue, such as the spinal
cord, minimally invasive therapies for tissue repair are
required.49 Therefore, injectable PEG solutions or hydrogel
precursors have been applied in an attempt to regenerate the
spinal cord after injury, while avoiding further damage caused
by additional surgery.22,50−54 One remaining limitation,
however, is the isotropic architecture of the formed hydrogel
networks after injection, which does not provide unidirectional
guidance for the regenerating nerves in this highly oriented
tissue. Therefore, magnetic particles have been mixed inside
hydrogel precursors to form strings in the presence of a
magnetic field and provide anisotropic structures for cell
guidance.55,56 To significantly reduce the amount of iron oxide
and provide more control over the dimensions and properties
of the guiding elements, we recently developed a novel
injectable hybrid hydrogel system that has been reported as the
material Anisogel. It contains magneto-responsive, rod-shaped
microgels57,58 or short fibers,59 and a surrounding fibrin
precursor solution. After injection, the microgels or fibers align
in a low external magnetic field in the milli Tesla range, during
which the fibrin gel is cross-linked to fix the anisotropy of the
material after removal of the magnetic field. These types of
Anisogels have been demonstrated to induce linear growth of
functional nerves with a minimal amount of guidance required
but used fibrin as the surrounding gel, which is known to
degrade too rapidly in vivo.60

In this report, we demonstrate the functionality of the first
fully synthetic PEG-based Anisogel for oriented cell and nerve

growth, which provides complete control over the properties
and facilitates clinical translation. The surrounding synthetic
hydrogel backbone cross-links and degrades enzymatically and
is modified with the fibronectin fragment FN9*-10/12-14.
First, a synergistic effect of this fragment to stimulate neurite
extensions is demonstrated. Then, the mechanical and
biochemical properties of the master hydrogel are fine-tuned
to achieve optimal 3D fibroblast and nerve growth. Finally,
magneto-responsive, nonadhesive rod-shaped microgels or
short, cell-adhesive fibers are incorporated and aligned inside
the hydrogel in the presence of a magnetic field to form the
Anisogels. Both types of Anisogels are compared in their ability
to induce linear nerve growth along the anisotropic axis of the
gel.

2. EXPERIMENTAL SECTION
2.1. Synthesis of Star-PEG Precursor. Star PEG-conjugates are

prepared via Michael-type addition as described elsewhere.35 Briefly,
either NQEQVSPLERCG-NH2 or Ac-FKGGGPQG↓IWGQERCG-
NH2 are added to an eight-arm sPEG-VS in a 1.2-fold molar excess
over the VS groups and dissolved in 0.3 M triethanolamine
(N(EtOH)3, pH 8.0), resulting in sPEG-Q and sPEG-K, respectively.
The K-peptide contains a matrix metalloproteinase (MMP) sensitive
domain GPQG↓IWGQ, which can be cleaved by the MMPs
produced by the cells. The reaction takes place at 37 °C for 2 h.
The products are subsequently dialyzed against double distilled water
(ddH2O) for at least 4 days at 4 °C using Slide-A-Lyzer dialysis
cassettes (ThermoFisher, MWCO 3.5K). After dialysis and
lyophilization, both products (PEG-Q and PEG-K) are obtained as
a white powder. Successful binding of each peptide to the sPEG-VS
backbone is confirmed via 1H NMR spectroscopy (Figure S1).

2.2. Hydrogel Formation. A PEG-based hydrogel is formed via
enzymatic cross-linking between PEG-Q and PEG-K at a molar ratio
of 1:1. The enzyme, Factor XIII (CSL Behring GmbH, 1250 U FXIII)
is activated by diluting 200 U/mL thrombin in an optimized buffer
(25 mM CaCl2, 10 mM TRIS, 150 mM NaCl) at a volume ratio of
1:9 and letting it react for 30 min at 37 °C while vortexing gently
every 5 min. The sPEG solution is buffered using a 10× buffer (0.1 M
CaCl2, 0.5 M Tris, 1.1 M NaCl) and 10 U/mL FXIIIa is added for
cross-linking. The gelation rate can be fine-tuned by varying the
FXIIIa concentration. The spare volume can be used to add cells, cell-
adhesive peptides or proteins, or μ-elements. If not stated, ddH2O is
added. After 5 min at room temperature, the gelation is continued for
20 min at 37 °C in the incubator.

2.3. Production of Fibronectin Fragments. The fibronectin
fragments are produced in BL21 Gold (DE3) E. coli and purified by
Glutathione S-transferase (GST) affinity, in a method adapted from
previous reports.8 BL21 Gold (DE3) E. coli are cultured in 3 mL
2XYT media (16 g Tryptone, 10 g yeast extract, 5 g NaCl) overnight
at 37 °C. One milliliter of the culture is used to inoculate another 200
mL medium and the expression is initiated at an optical density of
0.6−0.8 by the addition of 1 mM Isopropyl β-D-thiogalactopyranosid
(IPDI). After overnight expression at 20 °C, the culture is spun down
and cell pellets are lysed using 100 mL lysis buffer (100 mg lysozyme
and 100 μL phenyl methyl sulfonyl fluoride in PBS) for resuspension
and ultrasonication (65%, 4 × 15 s/15 s on/off cycles). Afterwards,
MgCl2 is added to a final concentration of 20 mM, Triton-X 100 to
1%, and 6 μL/mL DNase and RNase, after which the lysates are
shaken at 4 °C for 30 min. Lysates are then spun down, aliquoted, and
stored at −20 °C until purification. FNIII9*-10/12-14 purification is
carried out with an Äkta Prime (GE Healthcare Life Sciences) via
GST affinity chromatography. The GST-tag is cleaved from the
protein by 4 U/mL PreScission protease (GE Healthcare Life
Sciences) during dialysis (Slide A Lyzer, MWCO 3.5K) in 10 mM
Imidazole (AppliChem) at 4 °C. After 24 h, the GST-tag is separated
from the pure protein by a second GST affinity chromatography step.
The cleaved products and the final purified protein are detected by
means of sodium dodecyl sulfate polyacrylamide gel electrophoresis
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(SDS-Page) with a PageRuler Prestained Protein Ladder 13 (Thermo
Fisher) (Figure S5). The pure protein is sterile filtered (0.22 μM),
aliquoted, and stored at −80 °C.
2.4. Robotic Spotter. A robotic spotter technique using a Q-array

mini robotic spotter (Genetix) is utilized to analyze the fibronectin
fragments for neurite extension. Per experiment, four hydrogel
substrates are tested, each one containing the same cell suspension
but different media. Each gel (25 × 75 mm) consists of 7 fields, with
each field containing 288 spots with 36 spots per fragment. Therefore,
8 proteins can be tested in parallel on 1 hydrogel substrate, but here, 7
different protein solutions are investigated. The positions of the
fragments are scrambled for each field to allow for randomization.
The method is adapted from a previous report to enable enzymatically
induced binding of the fragments.67 Briefly, a 384 μL plate is filled
with 100 μL of the spotting solutions, containing 13 μL enzymatic
cross-linking solution (18.75 U/mL FXIIIa) and 30 μL glycerol.
Therefore, 57 μL volume is left for the different fibronectin fragments
and full-length fibronectin. As the stock concentration of full-length
fibronectin (220 kDa) solution was 1 μg/μL, only a final
concentration of 0.2 nM is added, whereas the smaller fragments,
ranging from 21 to 51 kDa, are added at a final concentration of 1 nM.
A microfabricated stamp, containing micropillar features, then dips
into the solutions to sequentially deposit the proteins on a two-
dimensional PEG hydrogel, cross-linked via Michael-type addition
and modified with the lysine containing peptide (Ac-FKGGERCG-
NH2). All fragments and full-length fibronectin contain the trans-
glutaminase substrate NQEQVSPL to enable covalent binding of the
fragments with the free amines present in the gel via FXIIIa. The
stamps are pressed onto the hydrogel substrate for 2 h to create
fragment-containing spots with a diameter of 450 μm. Subsequent
washing with PBS (pH 7.4) and UV light sterilization are performed
to prepare the arrays for cell experiments. To visualize the binding
efficiency of the fragments to the spot, FN9-10 is pre-coupled to
Rhodamine.
2.5. Production of Anisometric Microgels. Rod-shaped

microgels (μ-gels) are produced with a mold-based soft lithography
approach as previously described.57 Briefly, 3 kDa six-armed star-
shaped poly(ethylene oxide-stat-propylene oxide) with acrylate end
groups (sPEG-A) are cast into a highly repelling perfluoropolyether
(PFPE) mold in the presence of a photoinitiator and fluorescein ο-
acrylate. After 1 h UV-curing of the solution-filled features, fluorescent
microgels with precise mold replication are received. To avoid
incomplete filling of the molds due to water evaporation, sPEG-A is
blended with another nonvolatile, nonreactive 200 Da linear PEG.
The individual microgel objects are removed from the mold by
putting them in contact with a sticky polyvinylpyrrolidone layer that
can be dissolved in water afterward. The nonreactive PEG filler is
easily washed out in water, and after several washing steps in water,
microgels of a typical size of 50 × 5 × 5 μm3 are obtained at a sPEG-A
concentration of 20 w/v%.
2.6. Production of Short Fibers. Short fibers are produced based

on previously published reports.59,61 Briefly, polymer solution is
prepared by dissolving polycaprolactone (PCL) with an average
molecular weight of 80 kDa (Sigma-Aldrich, Germany) in 50:50 v/v
chloroform:acetic acid (Sigma−Aldrich, Germany) at a concentration
of 17 w/v%. A precise amount of synthesized SPIONs (1 wt % of
polymer weight) is dispersed into the polymer solution using 10 min
of ultrasonication (Sonifier W-250D Brandson) prior to the spinning
process.
Uniform aligned fibers with ∼5 μm diameter are collected using the

solvent assisted spinning (SAS) technique. In SAS, syringes (1 mL)
are filled with the prepared solution and the feed rate (Q = 60 μL/h)
is controlled by a programmable syringe pump (Aladdin, WPI). As
the solution is pushed through the needle (21G), it forms a
hemispherical shape at the tip, which is manually drawn toward the
rotating cylindrical drum (radius = 2.5 cm) that is located at 10 cm
vertical distance under the needle. Aligned microfibers are harvested
from the drum and placed in a custom-designed polyethylene
cryomold. Optimal cutting temperature (OCT) gel (Sakura Finetec)
is added and the aligned fibers are frozen inside the mold using dry

ice. The resulting block of solidified gel with the aligned fiber stack
embedded therein is sectioned perpendicular to the direction of fibers,
using a cryostat microtome (Leica CM3000 Cryosat) maintained at
−20 °C. Magneto responsive short fibers are obtained by dissolution
of the OCT gel and repeating washing steps with distilled water.

2.7. Preparation of Anisogel. A fully synthetic Anisogel is
prepared either with μ-gels or with short fibers. In general, the μ-
elements are dispersed in cell medium replacing part of the spare
volume to produce the hydrogel. Two stock solutions are prepared:
stock A consists of buffer, the sPEG-mix, and potential peptides or
proteins, whereas stock B contains the μ-element solution and FXIIIa.
Stock B is divided into aliquot portions of the required amount for
one gel, and the corresponding amount of stock A is added and
subsequently pipetted in between magnets, generating a magnetic
field of ∼100 mT. After 20 min gelation time, medium is added. In
the case of μ-gels, the FXIIIa concentration is increased to 20 U/mL
to prevent sedimentation of the elements. Due to the higher weight of
the fibers, consisting of 100% polymer, a concentration of 100 U/mL
FXIIIa is used to ensure a homogeneous distribution of fibers
throughout the gel. In both cases, the μ-elements are added to obtain
a final concentration of 1 v/v%.

2.8. Analysis of Neurite Outgrowth. To analyze neurite
extension on the 2D hydrogels prepared with the robotic spotter,
12 random spots (out of 36) per field, per protein, and per media
condition are selected for quantification with Neuron J using a
random number generator. The entire neurite length is traced per
spot. Therefore, for each combination of protein and medium, the
neurite growth of 84 spots is added and normalized to the sum of
neurite length for all conditions (84 spots × 7 protein conditions × 4
media conditions). The experiment was performed twice and the
standard deviation is calculated for both experiments.

To quantify neurite outgrowth from DRGs inside the 3D
hydrogels, the region of the explant of the DRG is cut out. The
images are rendered binary by using a threshold via the Otsu method
and analyzed by a self-developed MatLab method, which determines
the amount of nonzero valid image pixels at a specific distance
(radius) from the edge of the explant. The density of pixels is
determined by dividing the number of the pixels by the circumference
in which they are counted. The distance at which the level drops to
half of the maximum density is defined as “neurite outgrowth”.

The alignment of the μ-elements and neurite extensions are
quantified using an orientation analysis on the images using an
elliptical Mexican hat filter (a Laplace operator applied on an elliptic
two-dimensional Gaussian function).62,63 The images are first
background-corrected using a rolling ball filter when required. DRG
images are smoothed with a Gaussian filter. The size of the filters is
tuned to the actual data stack, which is a rolling ball radius of 8−16
pixels and a smoothening Gaussian standard deviation of 0.75−1.0
pixels. For images with features broader than a few pixels, an edge
detector is applied based on the absolute magnitude of the gradient
using the first derivative of the smoothening Gaussian function. The
Mexican hat kernel (standard deviation is typically 1.0 and 20.0 pixels
in the X- and Y-directions, respectively) is applied at various
orientations in 20 steps in the [−90°, 90°] half-opened interval.
The kernels are convolved to the filtered images, and the orientation
with maximal intensity is selected for each pixel. The maximum
intensity data is filtered using a threshold generated by Otsu’s
method. Pixels below this threshold are deleted. The angle data of the
remaining pixels are summarized in a histogram. For comparison, this
histogram is rotated, setting its maximum as the zero angle. The full
width at half-maximum (FWHM) is determined using linear
interpolation between the data points.

2.9. Statistics. Statistical analysis is performed in Origin 2016 for
Windows. A one-way ANOVA is applied with p-values below 0.05
being considered significant and a correction of the p-value for
multiple hypotheses according to the Bonferroni correction.
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3. RESULTS AND DISCUSSION

3.1. Conjugate Synthesis and Hydrogel Formation.
Synthetic PEG-based hydrogels, prepared via enzymatic cross-
linking, are used as described before.35 Two batches of eight-
arm star-PEG-vinylsulfone (sPEG-VS) were functionalized via
a biocompatible Michael-type addition using two different
cysteine-containing peptides, which can be performed at
physiological pH. One peptide consists of a transglutaminase
substrate providing glutamine (H-NQEQVSPLERCG-NH2 =
Q), which forms a γ-glutamythiolester with FXIIIa. The other
peptide has a lysine to deliver a free amine as counterpart (Ac-
FKGGGPQGIWGQERCG-NH2 = K).64 Besides lysine, the K
peptide contains an MMP degradable sequence (GPQG↓
IWGQ) to foster on cellular demand degradation, so that the
gel remains as long as required to support nerve growth. The
peptide modification of the sPEG-VS was confirmed by 1H
NMR with full conversion of the VS-groups (Figure S1). In the
presence of activated transglutaminase Factor XIII (FXIIIa), an
isopeptide bond is formed between the amino acids Q and K,
mimicking the cross-linking mechanism of fibrin (Figure 1a).
Mixing both sPEGs conjugated with the peptides in a 1:1
molar ratio at a concentration of 1 w/v% and a minimum
concentration of 10 U/mL FXIIIa resulted in the formation of
a hydrogel within 10 min.
3.2. Mechanical and Structural Properties of the

Hydrogels. Both the gelation rate and mechanical properties
were analyzed for sPEG concentrations, ranging from 1 to 5 w/
v% in the presence of 10 U/mL FXIIIa. To mimic the natural

ECM surrounding nerve cells, a stiffness of 0.1−1 kPa is
desirable.52,65 Depending on the sPEG concentration, the
storage modulus of the hydrogels ranged from 10 Pa (1 w/v%)
to 3800 Pa (5 w/v%) (Figure 1b), with its highest increase in
stiffness between 2.5 and 5 w/v% (∼7-fold). These results are
in accordance with previously reported observations.19

Importantly, the use of injectable materials in preclinical and
clinical settings requires sufficient stability, and thus rapid
cross-linking, to avoid leakage from an injury site. However,
enough time is needed to allow for proper injection and
orientation of the magneto-responsive, anisometric elements
(∼1 min) in the case of the Anisogel. After orientation, the
hydrogel fixes the aligned micron-scale elements. Therefore,
the range of gelation rates of this PEG system was investigated
by determining the gelation point as the first value at which the
tan (δ) (defined as the loss modulus (G″) divided by the
storage modulus (G′)) drops below 0.1 (Figure S2a). The
extremely soft gels (G′ ∼ 10 Pa) were formed with a gelation
time of approximately 10 min, while increasing the sPEG
concentration to 1.5 w/v% doubled the gelation rate and 5 w/v
% sPEG further reduced the gelation time to approximately 2
min. Furthermore, the effect of different FXIIIa concentrations
(10−50 U/mL) on the gelation rate and stiffness of the gels
was tested at a fixed amount of sPEG (2 w/v%) (Figure 1c). In
the case of 10 U/mL FXIIIa, the gelation point occurred after
approximately 4 min, while doubling the amount of FXIIIa
reduced this time by a factor 2. In the case of 50 U/mL FXIIIa,
gelation took place in less than 1 min. Despite the effect on the

Figure 1. (a) Schematic of peptide binding to sPEG-VS and the following cross-linking via FXIIIa to form a hydrogel. (b) Resulting mechanical
properties and gelation times of hydrogels containing different sPEG concentrations. (c) Effect of the FXIIIa concentration on the gelation time.
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gelation time, the enzyme concentration did not significantly
change the final stiffness of the gels (Figure S2b). When
replacing water with media, the gels required an additional
∼30 s to cross-link, but the stiffness remained unchanged
(Figure S2c). The incorporation of different biomolecules into
the hydrogel at their relevant concentrations also did not
change the mechanical behavior of the hydrogels (Figure S2d).
Therefore, results obtained from samples containing different
biological domains can be attributed exclusively to the
bioactivity of the protein.
The internal structure of the hydrogel affects diffusion of

nutrients and growth factors, while it can also influence how

fast the cells can degrade the structure to enable cell migration.
To estimate the internal structure of the hydrogels, the critical
concentration (cc) was calculated. When the concentration
drops below the critical concentration (cc), not all sPEG
molecules touch each other, which would lead to a
heterogeneous network.66 To determine the cc, initially, two
approaches were performed. In the first one, the hydrodynamic
radius (rH) of the sPEG-Q was estimated to be 3.1 nm via
dynamic light scattering (DLS) (Figure S3a). Based on this
value, cc was calculated to be 21.5 w/v% according to eq 1 with
a total volume (VT) of 50 μL, the Avogadro constant NA, and
the width (a) of the sPEG-Q molecule (Mw: 30 684 g/mol,

Figure 2. (a) Cell proliferation after 7 days for different concentrations of RGD, FNIII9*-10/12-14, and full-length fibronectin in a 2 w/v% sPEG
gel. (b) Cell proliferation after 7 days in unmodified gels, gels modified with 2 μM FNIII9*-10/12-14, or 1 μM full-length fibronectin gels for
hydrogels with a stiffness ranging from 10 to 3500 Pa. (c) Morphological differences of fibroblasts mixed and grown inside a 1 w/v% synthetic
sPEG hydrogels, unmodified or modified with 2 μM FNIII9*-10/12-14 or 1 μM fibronectin. Data presented as average ± s.d. and statistical
significance performed using two-way/one-way ANOVA with Bonferroni comparison (*p < 0.05). Scale bars are 100 μm (top images) and 20 μm
(bottom images).
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diameter ∼6.2 nm), assuming a similar size for sPEG-K (Mw:
33 736 g/mol).

a
V

n N
c

M
a N

T

A
c

w
3

A
3=

×
⇒ =

(1)

In a second approach, cc was calculated based on the bond
length for the longest possible chain between two cross-links.
After consideration of the sPEG core (tripentaerythritol), the
vinylsulfone groups, and the peptide sequence for sPEG-Q and
sPEG-K, a cc of 0.025 w/v% was obtained. In reality, gels can
be formed for concentrations as low as 1 w/v%. The
discrepancy of those two theoretical values can be explained
by both the measurement error from the DLS (e.g., internal
interactions, shrinking) leading to an underestimation of rH
and the fact that, in the theoretical model, a full stretch of the
molecules is used to calculate the bond length, which results in
an overestimation of rH. As both of these approaches to
determine cc depend on rH, a third approach to estimate cc was
performed based on the specific viscosity of the precursor
solution at different concentrations inside the solvent.67 When
log ηSp was plotted against logc(PEG), the initial slope (dilute
regime) changes in the regime of the overlap concentration.
The critical concentration can be assigned to the intersection
of the two lines representing both regimes, which is 4.27 w/v%
for the sPEG system presented here (Figure S3b). This value
matches the sudden increase in stiffness observed between 2.5
and 5 w/v% and is therefore the most reliable approach to
determine the cc in our system. This means that (1−2.5) w/v%

sPEG gels are most likely made below the cc, resulting in
heterogeneous internal structures and pores. However, analysis
of the internal gel structure via field emission scanning electron
microscopy (FE-SEM) still shows a homogeneous and
continuous network throughout the gel, even in the case of
extremely soft and liquid-like 1 w/v% sPEG hydrogels, which
may be due to artifacts inherent to the FE-SEM technology
(Figure S4).

3.3. Influence of FNIII9*-10/12-14 on Fibroblast
Growth. In order to render our synthetic sPEG hydrogel
biofunctional, a previously designed fibronectin fragment,
FNIII9*-10/12-14, was produced and coupled into the
network. The fragment has been reported to possess signaling
synergy via binding domains for both cell integrins and growth
factors.8 It was cloned and engineered with a transglutaminase
substrate NQEQVSPL at the N-terminus to bind to the free
amines on the sPEG-K in the presence of FXIIIa and produced
in E. coli. Successful production of the fragment was confirmed
by sodium dodecyl sulfate polyacrylamide gel electrophoresis
SDS-page (Figure S5). To induce cell spreading and
proliferation inside the sPEG-based hydrogels, the hydrogel
backbone was modified with different FNIII9*-10/12-14
concentrations (0.1−5 μM) and compared to the commonly
u s e d s h o r t c e l l - a d h e s i v e p e p t i d e RGD (H -
NQEQVSPLRGDSPG-NH2) (5−100 μM) and full-length
fibronectin (1 μM). For all conditions, a low cell density of
400 fibroblasts/μL was directly mixed within the hydrogel
precursor solution (2.5 w/v% sPEG) to avoid immediate cell−

Figure 3. (a) Schematic of binding the fibronectin fragments to the spots on a 2D sPEG gel. (b) Fluorescently labeled FN9-10 fragment coupled to
a spot in a homogeneous manner. (c) TuJ1 staining of 2D nerve growth inside an exemplary spot. (d) Normalized nerve growth to the total growth
on all gels for different fibronectin fragments, full-length fibronectin, and unmodified surfaces and different media conditions.
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cell contact and investigate the cell−material interaction. After
6 days, the fibroblast proliferation demonstrated enhanced
growth in the case of hydrogels equipped with the fibronectin
fragment. Fibroblast growth is already significantly increased
for 0.5 μM FNIII9*-10/12-14 compared to 5 μM RGD, with
even higher levels of proliferation for 2 and 5 μM FNIII9*-10/
12-14, respectively (Figure 2a). Furthermore, increasing the
RGD concentration from 30 to 100 μM did not significantly
enhance cell proliferation, while 2 and 5 μM FNIII9*-10/12-
14 led to similar cell growth compared to full-length
fibronectin. After optimizing the concentration of FNIII9*-
10/12-14, the effect of the gel stiffness (G′ ∼ 10−3800 Pa for
1−5 w/v% sPEG, respectively) was analyzed for 2 μM
fragment, 1 μM full-length fibronectin, and unmodified

(blank) hydrogels (Figure 2b). In accordance with previous
reports, cell proliferation increased for softer hydrogels,19,68−70

even for unmodified hydrogels, to which cells are less likely to
attach. This suggests that cells can rapidly create sufficient
space in the hydrogel by degrading the sparse network and
produce their own ECM as a rescue mechanism to further
support adhesion and subsequent proliferation. However,
observations of cell morphology clearly showed that the
reduced stiffness was not sufficient to support cell spreading
when no biofunctional domains were added (Figure 2c). In the
case of full-length fibronectin, a higher cell proliferation was
observed compared to unmodified gels for all sPEG
concentrations, except for 5 w/v%, demonstrating that the
stiffest gel did not support 3D cell growth. For hydrogels,

Figure 4. (a) Neurite outgrowth from a DRG in sPEG gels containing 5 μM FNIII9*-10/12-14 for different polymer concentrations (1 to 1.5 to 2
w/v% sPEG, from left to right). (b) Variable concentrations of biomolecules: 2 and 5 μM FNIII9*-10/12-14 and 1 μM fibronectin, from left to
right. (c) Neurite outgrowth is significantly increased in 1 w/v% hydrogels compared to 1.5 and 2 w/v% sPEG. (d) Neurite outgrowth enhances
with increasing FNIII9*-10/12-14 concentration with 5 and 10 μM fragment being comparable to 1 μM fibronectin. Scale bar is 500 μm. Data
presented as average + s.d. and statistical significance performed using one-way ANOVA with Bonferroni comparison (*p < 0.05; **p < 0.01; ***p
< 0.001).
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modified with FNIII9*-10/12-14, cell growth was improved
over unmodified gels when the storage modulus was in the
range of 10−100 Pa. The softest hydrogel with FNIII9*-10/
12-14 resulted in even higher levels of proliferation compared
to full-length fibronectin (Figure 2b). Due to its smaller size
(51 kDa), compared to fibronectin (∼220 kDa), the ECM
fragment can easily be incorporated into the hydrogel at higher
concentrations without significantly affecting the mechanical
properties of the hydrogel (Figure S2d). In addition to cell
division, cell spreading improved for softer gels with larger
mesh sizes (Figure 2c), confirming that cells in a 3D
environment need sufficient space to adhere to biomolecules
and spread. However, based on the FE-SEM images, the mesh
size of the ultrasoft 1 w/v% sPEG gel was still estimated to be
in the range of 0.25−1 μm2, which is below the cells’
deformability.71 Therefore, it remains crucial that the
covalently cross-linked network can degrade to create more
space for cell spreading, migration, and proliferation.
3.4. Fibronectin Fragments to Support Nerve

Growth. To induce nerve growth, the effect of FNIII9*-10/
12-14 was initially tested on 2D sPEG hydrogels using a high
throughput robotic spotter technique adapted for this study
(Figure 3a).72 An 8-arm sPEG-VS was cross-linked with a 4-
arm sPEG-SH via Michael-type addition and modified with the
K peptide via a free cysteine to prepare a flat, thin hydrogel
film (length, 75 mm; width, 25 mm; height, 170 μm). The
fragments were then bound to the gel in an array of spots with
a diameter of 450 μm using activated FXIIIa in a scrambled
manner. Besides the combinatorial fragment, the individual
parts were tested to investigate the synergistic function of
FNIII9*-10/12-14. The FN-fragments, FNIII9-10 (21 kDa),
Leu1408Pro modified FNIII9*-10 (21 kDa), FNIII12-14 (31
kDa), FNIII9-10/12-14 (51 kDa), and Leu1408Pro modified
FNIII9*-10/12-14 (51 kDa) were separately produced and
coupled at a concentration of 1 nM, while full-length
fibronectin was applied as a positive control at a concentration
of 0.2 nM due to its higher MW. To visualize the spotted
fragment, FNIII9-10 was fluorescently labeled, revealing a
homogeneous distribution inside the spot (Figure 3b).
Dissociated cells from chick embryonic dorsal root ganglia
(DRGs) were cultured on top of the gel for 4 days containing
this library of FN-fragments in combination with four different
media conditions (no growth factors or 2 ng/mL of the
neurotrophic factor BDNF alone, or in combination with
blocking antibodies against α5β1 or αvβ3 to assess the role of
integrin binding). Brain derived neurotrophic factor (BDNF)
has been shown to bind to FNIII12-14 in a previous report47

and is known to support DRG extension.73 Alternatively, NT-3
could have been used. Neurons were fixed and immune
stained, after which a random selection of spots per protein
condition was selected to quantify neurite extension with
NeuronJ, an ImageJ plugin (Figure 3c). Nerve cells only
attached and extended into spots modified with a cell adhesive
protein. A synergistic effect of FNIII9*-10 and FNIII12-14 was
observed, which has already been reported for bone tissue
healing.8 The combinatorial fragment FNIII9*-10/12-14,
containing both the cell adhesive and the growth factor
domain in the same protein fragment, promoted nerve growth
to a greater extent compared to any of the other fragments
containing the individual domains (Figure 3d). In addition, it
was confirmed that the Leu1408Pro modified FNIII9*-10/12-
14 significantly enhanced cell attachment compared to the
nonmutated version. Interestingly, FNIII9*-10/12-14 also led

to much more neurite extension compared to full-length
fibronectin, which may be explained by the 5-fold lower
concentration of fibronectin added to the spots of the sPEG
film. If there was no protein spotted on the gel, only a low
amount of neurite growth was observed if BDNF was added to
the sample. To further prove the functional effect of FNIII9*-
10/12-14, antibodies against α5β1 or αvβ3 were added to block
these integrins present on the cells, or BDNF was excluded
from the media. In all cases, the positive effect on neurite
extension was significantly reduced. In the case of full-length
fibronectin, the changes in media composition did not affect
nerve growth, indicating that other integrin binding domains
present in fibronectin still support neurite extension. The
results here demonstrate that the integrins α5β1 and αvβ3 play
an important role in inducing neurite extension, directly or via
promoting adhesion of supporting cells, such as Schwann cells,
fibroblasts, etc., which were present in the DRG. Furthermore,
the addition of anti-αV antibodies, reduced nerve growth more
strongly compared to anti-α5 antibodies, which is in agreement
with previous reports demonstrating a larger reduction in nerve
growth after blocking the vitronectin receptor αvβ3, compared
to inhibiting integrin α5β1.

74 With the use of the robotic
spotter, it was shown for the first time that FNIII9*-10/12-14
is a powerful biomolecule to support nerve regeneration.
Therefore, this fragment was selected for the continuation of
this study to modify sPEG-based hydrogels and investigate
nerve growth in a 3D environment.

3.5. 3D Neurite Outgrowth Inside Tailored sPEG
Hydrogels. To investigate the neurite outgrowth of primary
nerve cells inside 3D hydrogels, whole DRGs were embedded
within the precursor solution before cross-linking.50,75 First, to
determine the optimal stiffness for nerve growth, different
sPEG concentrations ranging from 1 to 2 w/v% were
investigated (Figure 4a). A fixed concentration of 5 μM
FNIII9*-10/12-14 was coupled to the gel, based on the results
of the 3D experiment with fibroblasts. After optimizing the
sPEG concentration, different concentrations of FNIII9*-10/
12-14 were screened, varying from 1 to 10 μM (Figure 4b,
Figure S6a−c).
DRG outgrowth was quantified via image-based analysis of

βIII tubulin immunostaining, using MatLab and ImageJ as
previously described.58 In brief, after cutting out the explant,
the images were rendered binary using Otsu’s method and a
MatLab code determined the number of nonzero valid image
pixels dependent of the radial distance to the edge of the
explant (Figure S6d−f). The density of samples was compared
by determining the distance from the periphery of the DRG, at
which the maximum signal dropped by half, which is here
defined as “neurite outgrowth” (Figure S6g). Whereas no
appreciable neurite outgrowth was observed for both 2 and 1.5
w/v% sPEG, a significant increase of neurite extension is
observed for 1 w/v% sPEG gels with a storage modulus of 10
Pa (Figure 4c). In addition, no swelling is observed for 1 w/v%
PEG gels, which avoids creating detrimental pressure to
sensitive tissues like the spinal cord. The lack of swelling at this
minimum concentration, at which gels can be formed, is likely
due to the fact that the gel has no more capacity to take up
more liquid. Interestingly, a storage modulus of 10 Pa is lower
than the optimal stiffness for neurite growth reported for other
hydrogel systems. For instance, in the case of fibrous fibrin
gels, a storage modulus of approximately 425 Pa59 results in
efficient nerve growth, while in the case of silk hydrogels, the
optimal Young’s modulus ranges from 7 to 22 kPa.23 In a
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hyaluronic acid based hydrogel, a storage modulus of ∼100 Pa
was shown to successfully support neurite outgrowth,76 while
interestingly, even non-cross-linked PEG (600 Da) demon-
strates axon regeneration through the material after spinal cord
injury.22 This emphasizes the importance of the degradation
rate, internal structure, and viscoelasticity as well.
In the case of different FNIII9*-10/12-14 concentrations,

neurite outgrowth was enhanced with an increasing amount of
FN-fragment, whereas no growth was observed inside
unmodified hydrogels (Figure 4d). A minimal threshold of
biofunctionality was seen, as concentrations above 2 μM
FNIII9*-10/12-14 were necessary to obtain efficient radial
nerve growth, with enhanced growth in the case of 5 and 10
μM FNIII9*-10/12-14, as well as 1 μM full-length FN (Figure
4b). Based on these results, 5 μM was selected as the optimal
FNIII9*-10/12-14 concentration to support nerve growth in
3D sPEG hydrogels since 10 μM of the fragment did not

further increase neurite outgrowth significantly. The results of
this report thus demonstrate that the presence of the
engineered FNIII9*-10/12-14 inside synthetic sPEG hydrogels
is a powerful method to render the matrix cell adhesive,
comparable to or even better than large ECM molecules, and is
superior compared to small RGD peptides.

3.6. Directed Nerve Growth in sPEG Anisogel. To
induce linear guidance of nerve growth in our injectable
hydrogels, small, anisometric micron-scale (μ-) elements were
loaded with superparamagnetic iron oxide nanoparticles
(SPIONs) and incorporated inside the sPEG precursor
solution to create an Anisogel. Our group previously reported
the concept of the Anisogel, which contains these magneto-
responsive, rod-shaped μ-elements that orient in the presence
of an external magnetic field, after which a surrounding gel
cross-links to fix the aligned elements. The Anisogel has been
demonstrated to direct growth of fibroblasts and functional

Figure 5. (a) Histogram comparing both DRG and microelement alignment (n = 3). (b) DRG in a 1 w/v% PEG hydrogel without microelements
and its associated angular dependent outgrowth. (c) Anisogel showing aligned DRG outgrowth and microgels, including an overlay of both and its
corresponding angular dependent outgrowth (from left to right). (d) Anisogel showing aligned DRG outgrowth and fibers, including an overlay of
both and its corresponding angular dependent outgrowth (from left to right). Scale bars are 200 μm. Data presented as average + s.d. and statistical
significance performed using one-way ANOVA with Bonferroni comparison (**p < 0.01).
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nerves inside fibrin-based Anisogels with a minimal amount of
guiding elements (1 v/v% of the entire gel).57,59 However, as
natural fibrin gels bear a risk of pathogen transmission and
degrade rapidly in vivo within a few weeks,60 the Anisogel
concept is here translated to the sPEG-hydrogel combined
with FNIII9*-10/12-14. The main advantage of using
synthetic hydrogels for clinical use is their easier control of
mechanical and physical properties over time (e.g., gelation
time, degradation), and specific biofunctionalization, which is
demonstrated in this report. To achieve successful nerve repair,
it is crucial that the kinetics of scaffold degradation and cell
infiltration match, as the cells will produce their own natural
ECM to replace the synthetic matrix. In addition, we
previously demonstrated that the ECM produced by aligned
cells inside an Anisogel is also aligned, which provides a
positive feedback cycle, creating natural guidance as the
Anisogel degrades.58 Although in vitro, degradation of fibrin
can be inhibited by the addition of aprotinin in the media, this
remains a limitation for the use of fibrin as a long-term
supporting matrix in vivo.77 Two types of guiding elements
with similar dimensions are compared: rod-shaped PEG-based
microgels (5 × 5 × 50 μm3) and short polycaprolactone
(PCL) fibers (diameter of ∼5 μm and length of ∼50 μm).
Both are incorporated at a concentration of 1 v/v% and aligned
in the presence of a low external magnetic field (100 mT).
Their position is fixed during gelation of the surrounding sPEG
precursor solution, after which the magnetic field can be
removed. To successfully align the μ-elements, the gelation
kinetics of the sPEG hydrogels were optimized by altering the
FXIIIa concentration. In the case of rod-shaped microgels,
which consist of 20 w/v% PEG-based polymer and orient
within 35 s,57 doubling the FXIIIa concentration from 10 to 20
U/mL is sufficient to avoid settling of the microgels due to
gravity and obtain an anisotropic hybrid hydrogel comparable
to the fibrin-based Anisogel (Figure S7). In the case of short
fibers, which are heavier than the microgels as they consist of
100% PCL polymer, well distributed, oriented fibers were
obtained inside the gel when increasing the enzyme
concentration up to 100 U/mL. After injection, both microgels
and short fibers aligned efficiently with a full width at half-
maximum (FWHM) of 46° and 37°, respectively (Figure 5a−
d). The slightly better alignment of the fibers may be due to
the higher concentration of SPIONs or their difference in
stiffness. In both cases, nerves extended in the direction of the
aligned μ-elements, compared to random growth in a sPEG gel
without elements. In a PEG-based Anisogel containing fibers,
the level of nerve alignment (FWHM: 67°) was not
significantly different from the level of fiber alignment. In
contrast, nerves surrounded by the aligned microgels showed a
reduced level of alignment (FWHM: 127°). This can most
likely be explained by their difference in stiffness and cell-
adhesiveness as the fibers consist of 100% PCL and the
microgels contain 20% bioinert sPEG. In future studies, the
microgels will be varied in stiffness and coupled with cell
adhesive peptides58 to investigate how this will affect the
function of a fully synthetic Anisogel.

4. CONCLUSIONS
A fully synthetic PEG-based Anisogel was developed to induce
aligned growth of nerve cells. The surrounding sPEG hydrogel
cross-links enzymatically with activated factor XIII, similar to
fibrin, and contains MMP sensitive domains to enable
degradation on cell demand. The rheological properties of

the sPEG hydrogel depend on both the polymer and enzyme
concentration with storage moduli ranging from 10 to 3800 Pa
and gelation times between 10 and 2 min. The initially bioinert
hydrogel is modified with a recombinant fibronectin fragment,
FNIII9*-10/12-14, resulting in similar neurite outgrowth
compared to full-length fibronectin and better than short
RGD peptides. A first systematic study demonstrated optimal
fibroblast spreading and proliferation in very soft 1 w/v% sPEG
hydrogels of only 10 Pa. For nerve cells, the initial stiffness is
even more critical. At stiffnesses equal to or above 100 Pa, no
neuronal outgrowth could be observed. The recombinant
FNIII9*-10/12-14 fragment promotes nerve growth with a
synergistic effect between the FNIII9*-10 and FNIII12-14
domains, demonstrating the importance of both the integrin
and growth factor binding domain. In 3D sPEG hydrogels, a
FNIII9*-10/12-14 concentration of 5 μM is optimal to
promote neurite extension, with no significant difference
from full-length fibronectin. Combining the 10 Pa soft
synthetic hydrogel with 5 μM of the recombinant fibronectin
fragment and 1 v/v% of homogeneously distributed magneti-
cally aligned μ-elements (50 × 50 × 5 μm3) demonstrated for
the first time that a fully synthetic, injectable Anisogel is able to
induce nerve growth in an oriented manner parallel to the
elements. This concept is an important step toward clinical
translation of a regenerative treatment of hierarchically
structured tissue.
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