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Trajectory inference methods are essential for analyzing the developmental paths of
cells in single-cell sequencing datasets. It provides insights into cellular differentiation,
transitions, and lineage hierarchies, helping unravel the dynamic processes underlying
development and disease progression. However, many existing tools lack a coherent
statistical model and reliable uncertainty quantification, limiting their utility and
robustness. In this paper, we introduce VITAE (Variational Inference for Trajectory by
AutoEncoder), a statistical approach that integrates a latent hierarchical mixture model
with variational autoencoders to infer trajectories. The statistical hierarchical model
enhances the interpretability of our framework, while the posterior approximations
generated by our variational autoencoder ensure computational efficiency and provide
uncertainty quantification of cell projections along trajectories. Specifically, VITAE
enables simultaneous trajectory inference and data integration, improving the accuracy
of learning a joint trajectory structure in the presence of biological and technical
heterogeneity across datasets. We show that VITAE outperforms other state-of-
the-art trajectory inference methods on both real and synthetic data under various
trajectory topologies. Furthermore, we apply VITAE to jointly analyze three distinct
single-cell RNA sequencing datasets of the mouse neocortex, unveiling comprehensive
developmental lineages of projection neurons. VITAE effectively reduces batch effects
within and across datasets and uncovers finer structures that might be overlooked in
individual datasets. Additionally, we showcase VITAE’s efficacy in integrative analyses
of multiomic datasets with continuous cell population structures.

single-cell sequencing | pseudotime | data integration | Bayesian hierarchical models |
jacobian regularizer

Single-cell genomics has emerged as an indispensable tool for biologists seeking to unravel
cellular diversities and understand cell activities (1). Many biological processes, including
differentiation, immune response, and cancer progression, can be comprehended as
continuous dynamic changes within the space of cell types or cell states (2). Instead of
being limited to discrete cell types, cells often display a continuous spectrum of states
and actively transit between different cellular states. To tackle this complexity, trajectory
inference (TI) has been developed as a computational approach to explore the sequential
states of measured cells using single-cell genomics data (3).

While various computational tools have been developed for TI (4–7), there remains a
lack of clear definition for the terms “trajectory” and “pseudotime” that can be identified
and estimated from single-cell genomics data. Single-cell sequencing data only capture
static snapshots of single-cell omics at specific time points, which may make it challenging
to uncover the true temporal lineages sought after by biologists (8, 9). As a consequence,
it is beneficial to construct an explicit and coherent statistical model on single-cell
sequencing data that incorporates the trajectory structure. Such a model would also
allow for discussions about the efficiency and accuracy of TI methods. Moreover, with the
expansion of single-cell sequencing data (10), multiple datasets from different individuals
or labs, measuring different omics are increasingly available for the same or closely related
biological processes. However, to the best of our knowledge, no existing TI method can
simultaneously integrate multiple datasets and infer a joint underlying trajectory while
preserving true biological differences across datasets.

In this paper, we present a method VITAE (Variational Inference for Trajectory by
AutoEncoder) for performing TI. VITAE combines a graph-based hierarchical mixture
model, which incorporates the trajectory structure within a low-dimensional latent space,
with deep neural networks that nonlinearly map the latent space to the high-dimensional
observed data. We offer a clear definition of both the trajectory backbone and the
pseudotime while also providing scalable uncertainty quantification of the estimates
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through approximate Bayesian inference. To train VITAE, we
employ a modified variational autoencoder and introduce the
Jacobian regularizer, an additional penalty in the loss function
that significantly enhances the stability and accuracy of our al-
gorithm. Moreover, VITAE can reliably perform joint trajectory
analysis of multiple datasets by flexible modeling and effectively
accounting for confounding variables such as batch effects. With
VITAE, we provide comprehensive joint trajectory analyses of
three single-cell RNA sequencing (scRNA-seq) datasets on mouse
neocortex. We also performed a joint analysis integrating scRNA-
seq with the single-cell assay for transposase-accessible chromatin
by sequencing (scATAC-seq) of hematopoietic stem cells.

Results

Method Overview. We begin our approach by modeling the
trajectory backbone of cells as a subgraph of a complete graph
G = (N , E), where each of the k vertices represents a distinct
cell state, and each edge represents a potential transition between
two states. As shown in Fig. 1A, to capture the scenario where a
cell i can either belong to a specific state or be in the process of
transitioning between states, we define its position w̃i ∈ [0, 1]k
on the graph as either on a vertex if it is in a steady state or on an
edge if it is undergoing a transition. Specifically, we define

w̃i =
{
ej if i is on vertex j ∈ {1, · · · , k}
wiej1 + (1− wi)ej2 if i is on edge between j1 6= j2

,

where ej is a one-hot vector with the j-th element as 1 and all
other elements as 0. The value wi ∈ [0, 1] represents the relative
position of cell i along an edge, indicating its progress along
the transition. The goal of trajectory inference is to identify
the trajectory backbone, which is a subgraph containing cells

positioned on both edges and vertices, as well as to estimate
the cell positions w̃i ∈ [0, 1]k, representing the pseudotime
of cells along the underlying developmental process (Materials
and Methods). By quantitatively defining the developmental
trajectory and pseudotime as features of a graph, VITAE offers
enhanced interpretability and flexibility compared to other
existing methods.

To connect the observed single-cell sequencing data with the
underlying trajectory backbone graph in the latent space, we
model the observed count Yig for any cell i and gene g as negative
binomial distribution:

Yig |Z i,X i
ind
∼ NB

(
lifg(Z i,X i), �g

)
[1]

Here, li represents the library size of cell i, and �g is the dispersion
parameter of gene g. The variable Z i ∈ Rd represents the cell i
in a latent lower-dimensional space, and its values are linearly
dependent on the cell’s relative position along the trajectory
backbone:

Z i|w̃i ∼ Nd (Uw̃i, I d ),

where U ∈ Rd×k denotes the positions of the vertices on the
latent space. To integrate multiple datasets, VITAE accounts for
the effect of confounding variable X i, which could include both
discrete and continuous variables such as the dataset ID, batch
indices, and cell cycle scores. We incorporate a flexible function
fg(Z i,X i), where fg(·) is represented by a neural network. By
employing this setup, VITAE is capable of jointly performing
data integration and trajectory inference.

VITAE is trained using a modified variational autoen-
coder (VAE, Fig. 1B). Based on the training dataset DN =
{(X 1,Y 1), . . . , (XN ,Y N )}, one key idea is the incorporation of

B

C

A

Fig. 1. An overview of VITAE. (A) Model framework: A hierarchical model is used on the latent representations of cells, which are subsequently nonlinearly
mapped to the high-dimensional observed count data. (B) Model training: Neural networks are used to approximate the nonlinear mapping to the observed
data (decoder) as well as the posterior distributions of the latent space (encoder). This process also allows for adjustment for confounding covariates. (C)
Trajectory inference: By utilizing posterior approximations, VITAE infers the trajectory backbone by assigning edge scores (represented as the width of gray
lines), quantifies the uncertainty in estimated cell positions along the trajectory, and derives estimates for the pseudotime of each cell.
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Fig. 2. Evaluation results of VITAE and VITAE_Gauss compared with three other TI methods: Monocle 3, PAGA, and Slingshot, on 25 datasets using five
evaluation scores. A larger score (lighter color) indicates better performance. Each row represents one dataset (SI Appendix, Table S1). The PDT scores for
datasets with the cycle and disconnected trajectory topology are not computed as the pseudotime is ill-defined. The GED scores for the planaria_full dataset are
also not computed due to computational infeasibility. The scores for our methods are averaged over 100 runs with different random seeds.

four penalty terms in the likelihood-based loss function, defined
as follows:

L = −(1− �)
N∑
i=1

Eq(Z i|Y i ,X i) log p(Y i|Z i,X i)

+ �
N∑
i=1

DKL(q(Z i|Y i,X i)‖p(Z i)) [2]

− �
N∑
i=1

log p(Y i|Z i = 0d ,X i) [3]

+ � ΩMMD(DN ) [4]
+ 
 ΩJacobian(DN ). [5]

Compared to standard VAE, the prior p(Z i) contains the tra-
jectory structure, and the term [2] that encourages the posterior
positions of Z i to lie along the trajectory backbone. Then both
terms [3 and 4] help adjust for the confounding variables X i and
correct for batch effects. The soft penalty term [3] can effectively
preserve biologically meaningful differences across datasets (11)
and can also adjust for continuous confounding variables in X i
such as the cell cycle scores. On the other hand, the Maximum
Mean Discrepancy (MMD) loss [4] acts as a stronger penalty,
ensuring the removal of unwanted variations, and is used when
cell populations across batches (e.g., replicates) are known to be
exactly the same (12). Finally, the introduction of the Jacobian
regularizer [5] enhances stability in optimization (13, 14) and is a
novel contribution to the analysis of single-cell sequencing data,
making the estimation procedure robust to small perturbations
in the observed counts. More details on the model architecture,
the loss function, training and inference procedures, differential
gene expression analysis, and empirical evaluation of the penalty
terms are described in Materials and Methods and SI Appendix.

Systematic Benchmarking with Real and Synthetic Datasets.
We systematically evaluate the performance of VITAE on 25
real and synthetic scRNA-seq datasets (SI Appendix, Table S1),

with various trajectory topologies (SI Appendix, Fig. S1). We
examine two versions of VITAE: the original likelihood-based
VITAE and its accelerated Gaussian counterpart, VITAE_Gauss
(Materials and Methods), that make VITAE scalable to handle
large datasets. Our assessment involves a comparative analysis
against three established TI methods: PAGA (7), Monocle 3
(15), and Slingshot (6). To ensure an equitable evaluation, we
largely adhere to the evaluation framework presented in a third-
party benchmarking study (4), and the other three methods
are executed through dyno (4), a standardized interface for
benchmarking TI methods. Drawing inspiration from the bench-
marking study (4), we employ five metrics for assessment. The
graph edit distance (GED) score and Ipsen-Mikhailov distance
(IM) score measure the accuracy of trajectory backbone recovery.
Meanwhile, the adjusted rand index (ARI) and the generalized
rand index (GRI) evaluate the precision of predicted cell positions
along the trajectory, the latter being independent of clustering.
Last, the PseuDoTime (PDT) score quantifies the similarity
between reference and estimated pseudotime values for cells. All
five scores are normalized to a scale of 0 to 1, with higher scores
indicating superior performance.

The evaluation results are summarized in Fig. 2. Both VITAE
and VITAE_Gauss consistently outperform the other methods.
In particular, VITAE demonstrates enhanced accuracy in recov-
ering trajectory backbones, subsequently leading to improved
pseudotime estimations. Regarding ARI and GRI, VITAE
displays consistent enhancement across all synthetic datasets,
although the improvements in certain real datasets are subtle due
to the limited resolution of reference cell positions in real datasets.

We also assess the effectiveness of our approach in differential
gene expression analysis and compare it with two alternative
approaches, tradeSeq (16) and PseudotimeDE (17). The eval-
uation is conducted using synthetic data generated by dyntoy
from the dynverse toolbox (18) (SI Appendix, section S3.3).
Our approach achieves better control of false discovery rates,
while maintaining comparable power and exhibiting enhanced
computational efficiency when compared to the alternative
methods. (SI Appendix, Fig. S2).
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Fig. 3. Uniform Manifold Approximation and Projection (UMAP) visualizations of the mouse neocortex in Yuzwa and Ruan datasets. (A) Low-dimensional
embeddings colored by dataset sources. We compare the UMAP plots of the cells from the merged raw data, after Seurat CCA integration and by VITAE. The
cell cycle scores are adjusted for both Seurat CCA and VITAE. (B) The estimated trajectories from Seurat CCA + Slingshot (Left) compared with that from the
accelerated Gaussian version of VITAE (Right). Cells are colored by their reference cell types given in the original papers. For VITAE, the width of each edge is
proportional to its edge score. (C) The violin plots of estimated pseudotime by VITAE across different embryonic days in the subtrajectory NEC-RGC-OPC.

Joint Analysis of Two scRNA-seq Data on Developing Mouse
Neocortex. The six-layered neocortex forms the physical center
for the highest cognitive functions in mammals (19). It has
been shown that the neuroepithelial cells (NEC) transition into
the radial glial cells (RGC), while cortical projection neuron
types are generated sequentially by RGCs and intermediate
progenitor cells (IPC) (20, 21). In our study, we employ VITAE
to infer a unified trajectory framework through the integration
of two distinct scRNA-seq datasets pertaining to the developing
mouse neocortex. Specifically, we delve into Yuzwa’s dataset (22),
encompassing 6,390 cortical cells sampled from mouse embryos
at E11.5, E13.5, E15.5, and E17.5 time points. Additionally, we
incorporate Ruan’s dataset (23), which has 10, 261 cells derived
from the mouse embryo cortex at E10.5, E12.5, E14.5, E15.5,
E16.5, and E18.5 (SI Appendix, Table S2). Thus, these datasets
capture cells from disparate developmental days within the same
brain region. By jointly analyzing these datasets, we unlock
the potential to investigate the dynamic progression spanning
a comprehensive developmental timeline, from E10.5 to E18.5
in mice.

To evaluate the performance of VITAE, we conducted a
comparison between VITAE and an alternative approach, starting
with integration using Seurat CCA (24), followed by trajectory
inference using Slingshot on the integrated embeddings. While
both VITAE and Seurat CCA are effective at cell mixing
and demonstrate comparable retention of reference cell types
postintegration, VITAE excels in providing a more refined
trajectory inference on the shared structure (Fig. 3 A and B). In
particular, VITAE successfully identified the primary cell lineage,
denoted as NEC-RGC-IPC-Neurons, while excluding microglia
cells, pericytes, Pia, and interneurons from the Ruan dataset
that do not align with the main trajectory. On the contrary,
Slingshot yields disorderly and ambiguous outcomes, attributed
in part to subtle imperfections within the Seurat integration
process and its inability to recognize disconnected cell types. To
assess the stability of VITAE, we further conducted 10 repeated

trials of VITAE with random initialization and observed that
the inclusion of the Jacobian regularizer substantially reduces the
variability in our estimated hierarchical model of the trajectory
backbone (SI Appendix, Fig. S3).

Regarding uncertainty quantification, VITAE provides edge
scores for each inferred trajectory edge (Fig. 3B, displayed as the
edge widths), revealing our confidence in the existence of each
edge. Additionally, VITAE estimates mean square errors for the
projection of each cell onto the inferred trajectory structure (SI
Appendix, Fig. S4A).

Moreover, we observe robust correlations between the devel-
opmental days of cell collection and the pseudotime estima-
tion along the subtrajectory NEC-RGC-OPC (Fig. 3C and SI
Appendix, Fig. S4 B–D). Although cells collected on even days
are from the Ruan dataset, and those collected on odd days mainly
originate from the Yuzwa dataset, VITAE effectively aligns cells
along pseudotime gradually according to their developmental
days. This indicates VITAE’s ability to preserve biologically
meaningful distinctions across datasets while simultaneously
learning a shared trajectory structure.

Integration with the Mouse Cerebral Cortex Atlas. Extending
our analysis to encompass a more intricate system, we perform an
additional joint trajectory inference analysis involving the Ruan
and Yuzwa datasets in conjunction with the Di Bella dataset
(25)—a comprehensive mouse neocortex atlas with 91,648 cells
that contains daily samples from the neocortex throughout
embryonic corticogenesis and at the early stage of postnatal
development. Due to differences in sequencing technologies,
the observed Di Bella dataset exhibits significant differences
in comparison to the Ruan and Yuzwa datasets (SI Appendix,
Fig. S5). Additionally, there are substantial batch effects across
cells gathered from various embryonic days within the Di Bella
dataset, even spanning different technical replicates. We aim to
use VITAE to mitigate these batch effects within the Di Bella
dataset and project cells from the Ruan and Yuzwa datasets onto
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Fig. 4. Integrative trajectory analysis on three mouse brain datasets. (A) The estimated trajectories on the merged dataset using different methods. Cells are
colored by their reference cell types provided in the original paper. (B) Comparison of data integration efficacy across three methods measured by the replicate
mixing scores, day mixing scores, and cell type separation scores. A higher score indicates better performance. (C) Using VITAE, some APs are projected onto
the glial branch (blue) or the neural branch (yellow). All other APs are colored gray. (D) The violin plots of the selected differentially expressed gene expressions
between the APs in the glial (blue) and neuronal (orange) branches. Tests are done by combining all three datasets while gene expressions are visualized for
each dataset separately. (E) Smoothed curve for gene expression change along the estimated pseudotime. (F ) Four interneuron subtypes identified by VITAE.
VITAE automatically identifies four vertices within the interneurons though a single initial vertex is given. (G) Interneurons from the Ruan dataset positioned
within the four interneurons subtypes.

the Di Bella dataset, thereby facilitating a more comprehensive
and integrated analysis.

We compare VITAE with the alternative approach using
Seurat CCA for integration and Slingshot for trajectory inference.
Additionally, we benchmark with Monocle 3 (15), as employed
in the original paper (25), to undertake trajectory inference.
Monocle 3 facilitates data integration as its preliminary step and
we leverage this to integrate the three datasets before embarking
on trajectory inference when using Monocle 3. In alignment with
the outcomes presented in the preceding section, VITAE can
reveal a more refined joint trajectory structure when juxtaposed
against the other two methodologies (Fig. 4A), recovering the
main branches identified in the original paper (25) of Di Bella
dataset.

We also assess the efficacy of data integration across the three
methodologies, comparing them with two additional methods,
scVI (26) and Scanorama (27), which are specifically designed
for data integration. The complexity of data integration arises
from the fact that cells originating from different embryonic
days have inherent biological differences, but are also collected
in different batches. As the cells exhibit continuous cell states,
batch effects can be comparable or even stronger in magnitude to
biological differences across embryonic days. Therefore, we can
not simply treat embryonic days as batches and explicitly adjust

for the differences. Without explicitly adjusting for differences
in embryonic days, we observe that VITAE performs the best
in reducing batch effects across embryonic days while retaining
genuine biological variances (Fig. 4B). Considering the presence
of two technical replicates for Day E18 and Day P1 within Di
Bella’s dataset, VITAE has the highest median replicate mixing
scores (SI Appendix, section S4.2) in both the two replicates. In
addition, Monocle 3 exhibits the poorest performance in terms of
cell type separation, implying an excessive removal of biologically
meaningful cell-type-specific signals. While Seurat CCA, scVI,
and Scanorama achieve better or comparable cell type separation
than VITAE, they inadvertently maintain a complete separation
between cells from distinct embryonic days, indicating excessive
retention of batch effects (SI Appendix, Figs. S5 and S6).

Leveraging the inferred trajectory generated by VITAE, we
analyze branching within the apical progenitors (APs), comparing
the APs projected onto the glial branch and those projected onto
the neuronal branch (Fig. 4C ). Through differential analysis,
we identify enrichment of radial glia markers (Fabp7, Mt3, Dbi,
Aldoc, and Ptprz1) within the APs situated along the glial branch
(Fig. 4D and SI Appendix, Fig. S7A). Conversely, genes such
as Neurog2 and Hes6 have higher expression in APs projected
onto the neural branch, suggesting a potential state of primed
neurogenesis. These findings closely mirror the outcomes of
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Fig. 5. Testing for differentially expressed genes along a subtrajectory on three mouse brain datasets. (A) Highlight of the subtrajectory containing the apical
progenitors, migrating neurons, and immature neurons with cells colored by pseudotime. (B) The heatmaps of DE gene expressions for the subtrajectory along
the inferred pseudotime ordering of the cells in each dataset. The DE genes are identified by performing quadratic regression of the gene expressions on the
standardized pseudotime ordering with covariates adjusted (t test, adjusted P-value < 0.05).

the analysis conducted in the original Di Bella dataset paper.
However, the convenience of our integrated VITAE framework
significantly facilitates the execution of this analysis. Additionally,
we are able to confirm that this divergence trend within the AP
population holds consistent across all three datasets.

We also visualize the expressions of IPC marker Eomes, neu-
rogenesis marker Neurog2, migration-associated gene Neurod1,
and neuronal differentiation gene Neurod6 along the estimated
pseudotime (Fig. 4E). We observe that the expression of Neurog2
precedes that of Neurod1 and Neurod6, confirming its role as a
proneural gene within the dorsal telencephalon (23). Despite the
presence of lab-specific batch effects, these genes exhibit coherent
patterns across all three datasets.

Finally, we focus on subtype analysis of the interneurons. With
the joint analyses of all three datasets, VITAE can automatically
identify four biologically different interneuron cell subtypes (Fig.
4F and SI Appendix, Fig. S7B). What’s particularly noteworthy
is that while three of these subtypes align with those previously
identified through clustering in the original Di Bella paper that
analyzes solely its own atlas data, VITAE reveals an additional
subtype characterized by the expression of Gfra2. This subtype
potentially represents the GABAergic interneuron population,
as suggested by previous studies (28, 29). Furthermore, VITAE
reliably positions the small population of interneurons from the
Ruan dataset within these four identified subtypes (Fig. 4G).
Only a minority of interneurons from the Ruan dataset exhibit
characteristics associated with the Gfra2+, Sst+, and Meis2+
subtypes, as they predominantly emerge during the later stages
of embryonic days (SI Appendix, Fig. S7C ). Without the joint
analysis facilitated by VITAE, it would be challenging to identify
these interneurons solely from the Ruan dataset.

Differential Analysis along Estimated Trajectories. VITAE is
also designed to identify differentially expressed genes along any
estimated subtrajectory. We focus on examining gene expression
dynamics along the subtrajectory spanning RGC to IPC to

migrating neurons (Fig. 5A). Despite that cells are from three
distinct sources for this analysis, a consistent pattern emerges in
the phase transitions of these differentially expressed genes across
all three datasets (Fig. 5B). This confirms VITAE’s ability to
align cells originating from disparate datasets while preserving
their inherent biological information.

Joint Trajectory Analysis on scATAC-seq and scRNA-seq
Datasets. We further apply VITAE to conduct a combined
trajectory analysis of cells using both scRNA-seq and scATAC-
seq data obtained from the same human hematopoiesis
population of healthy donors (30). The joint analysis of the
two modalities can help to identify the cell types within the
ATAC-seq data and infer active regulators for the RNA-seq data
without requiring the two modalities to be measured on the
same individual cells (31). We use VITAE to simultaneously
integrate the two modalities and infer a developmental trajectory
for hematopoietic stem cells (HSC). VITAE successfully
achieved a uniform mixing of cells from both modalities while
preserving the distinction between different reference cell
types (Fig. 6A and SI Appendix, Fig. S8A). VITAE reveals
the two major lineages (Fig. 6A), including the B cell lineage
(HSC-CMP.LMPP-CLP-Pre.B-B) and the monocytic lineage
(HSC-CMP.LMPP-GMP-CD14.Mono.1-CD14.Mono.2). We
observed consistent patterns of continuous cell type transitions
along the pseudotime in both modalities and within these two
lineages (Fig. 6B and SI Appendix, Fig. S8B). We also compare
with an alternative approach VIA (32) and observe the superior
performance of VITAE in learning a clean and reliable shared
trajectory structure across modalities (SI Appendix, Fig. S8C ).

By joint profiling of chromatin accessibility and gene expres-
sion within the same individual cells, earlier papers suggest that
changes in chromatin accessibility may prime cells for lineage
commitment (33). By projecting cells onto the shared trajectory,
VITAE effectively aligned cells with only one of the two omics,
allowing us to visualize similar regulatory dynamics. For instance,

6 of 10 https://doi.org/10.1073/pnas.2316256121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 "
U

N
IV

E
R

SI
T

Y
 O

F 
C

H
IC

A
G

O
, T

H
E

 J
O

H
N

 C
R

E
R

A
R

 L
IB

R
A

R
Y

" 
on

 S
ep

te
m

be
r 

5,
 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

12
8.

13
5.

53
.2

3.

https://www.pnas.org/lookup/doi/10.1073/pnas.2316256121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2316256121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2316256121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2316256121#supplementary-materials
https://www.pnas.org/lookup/doi/10.1073/pnas.2316256121#supplementary-materials


A

B C

Fig. 6. Integrative trajectory inference of multiomic human hematopoiesis data. (A) UMAP visualization of VITAE’s low-dimensional embedding of cells, colored
by source, annotated cell types, and pseudotime. (B) Distribution of cells per cell type along the estimated pseudotime of the B cell lineage. (C) Lineage dynamics
of the CEBPB and GATA1 genes. The gene activity (GA) scores, TF (motif) scores, and gene expressions precede the gene expressions of their target genes, GIMP4
and RHAG respectively, along the estimated pseudotime in each lineage.

we examined the gene CEBPB, a key transcriptional factor (TF)
in monocytic development, and observed a clear progression of
its gene activity score, gene expression level, and TF activity
score, followed by the expression level of its target gene GIMP4.
Similar trends were also identified for the gene GATA1, a
pivotal TF in the erythroid lineage, and its target gene RHAG.
These findings underscore the power of VITAE in elucidating
regulatory relationships within multiomics data.

Discussion

In this paper, we propose VITAE, a hierarchical mixture model
combined with VAE, for trajectory inference. Compared with
existing TI methods, VITAE provides a coherent probabilis-
tic framework to explicitly define estimable trajectories and
pseudotime while accommodating diverse trajectory topologies
and effectively accounting for confounding covariates. VITAE
harnesses the power of variational autoencoders to approximate
posterior quantities, facilitating the inference of trajectory back-
bones and cell positions from these approximations. Moreover,
VITAE incorporates a Jacobian regularizer as a penalty to enhance
the model’s estimation robustness.

While numerous tools exist for integrating multiple scRNA-
seq datasets, they often struggle when dealing with cells exhibiting
continuous trajectory structures that do not neatly fit into distinct
cell types. Our approach, which seamlessly combines trajectory
analysis with data integration, excels at regularizing the latent
space, resulting in a cleaner joint trajectory structure while
preserving biologically meaningful distinctions in each dataset.

However, it’s essential to acknowledge the limitations of our
approach. First, the approximate variational inference employed
to infer trajectories and quantify cell position uncertainties
overlooks the estimation uncertainties inherent in our encoder
and decoder. Consequently, while our uncertainty quantification
offers valuable insights, it may not precisely reflect the true
posterior uncertainties. Additionally, though VITAE learns a
joint trajectory structure that can contain both shared and
dataset-specific subtrajectories, there is no test to distinguish
between the two. As a potential solution, we can integrate the
estimated pseudotime and trajectory from VITAE with Lamian
(34) or condiments (35), which are specifically designed to

identify condition-specific subtrajectories. Finally, our current
framework exclusively accommodates multiomics data with
identical input dimensions. Future work will focus on extending
VITAE to effectively leverage multiomics data with distinct
features for joint trajectory inference.

Materials and Methods

Definition of the Trajectory Backbone and Pseudotime. In VITAE, the
trajectory backbone, denoted as B, is defined as a subgraph of G that only
includes edges with positive proportions of cells:

E(B) =

(j1, j2) ∈ E(G) :
∑
i

1{w̃ij1 >0,w̃ij2 >0} > 0

 .

To determine the pseudotime of a cell, we first define the pseudotime for each
vertex. Given a root vertex k0, we first generate a directed trajectory backbone
−→
B (SI Appendix, section S1.1). Let each edge ` ∈ E(

−→
B ) be associated with a

duration b` (with a default value of b` = 1 for all edges). The pseudotime for
vertex j is defined as:

oj =

max

{ ∑
`∈L

b` : L ⊂ E(
−→
B ) forms a simple path from k0 to j

}
∞ if no suchL exists

,

[6]
where a simple path is a path that does not have any repeating vertices. Let
o = (o1, · · · , ok), then for a specific cell i with its position w̃i on the graph, its
pseudotime is defined as:

Ti = o>w̃i [7]

Intuitively, Ti equals the pseudotime of the vertex the cell is on or the weighted
average of the pseudotime of the two vertices of the edge to which the cell
belongs.

By our definition, any vertex that precedes another vertex on a simple path
that starts from k0 has a smaller pseudotime than the other vertex. Thus our
definition guarantees a meaningful ordering of the cells when the directed
trajectory backbone

−→
B does not contain any cycles. If

−→
B contains cycles, the

pseudotime of the cells remains well-defined under our definition but may not
be biologically meaningful.
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Hierarchical Model for the Distributions of Gene Expressions. In Eq. 1,
we model the observed counts, such as those from scRNA-seq with Unique
Molecular Identifiers (UMI), using a negative binomial (NB) distribution with
gene-specific dispersion parameters �g. This choice is suitable for capturing the
stochasticity in scRNA-seq data, accounting for both biological and technical
noise (36). However, for certain cases where the NB distribution may not be
adequate, such as scRNA-seq without UMI or single-cell ATAC sequencing data
with numerous excessive zeros, we adopt the assumption that the observed
counts follow zero-inflated negative binomial distributions, as proposed by
Eraslan et al. (37):

Yig|Zi, X i
ind
∼ �ig�0 + (1− �ig)NB

(
lifg(Zi, X i), �g

)
, [8]

where �ig = hg(Zi, X i) is the zero inflation probability with hg(·) being
unknown nonlinear functions.

To facilitate model estimation, we introduce a hierarchical prior on the
cell positions w̃i. Let the latent category variable ci take values from the set
1, 2, . . . , K, where K = k(k + 1)/2 represents the total count of potential
edges and vertices within the graph G. Then ci ∼ Multinomial(1,�) serves as
an indicator of the chosen edge or vertex by the cell, with � being empirically
estimated during the model training step. If the cell is positioned on an edge,
we assume that its relative placement along the edge has a uniform prior:
wi ∼ Uniform(0, 1). For more mathematical details, refer to SI Appendix,
section S1.1.

To reduce the computational cost, we also present an accelerated Gaussian
version of VITAE. In this version, the observed counts of theG genes are replaced
withthetopR (R = 64bydefault)principlecomponentscoresF i. Thedistribution
of F i is then approximated by Gaussian distributions. This modification allows
VITAE to scale effectively and achieve a computational efficiency comparable to
other trajectory inference methods.

Penalties in the Loss Function. As demonstrated in the main text, VITAE’s
loss function comprises four penalty terms [2–5]. While the marginal density
function p(Zi) in [2] involves a complicated hierarchical mixture model, it
possesses a tractable closed-form representation (SI Appendix, section S2),
facilitating straightforward evaluation. By default, we assign � = 0.1 to the
soft penalty [3], and incorporate the MMD loss [4] solely in scenarios involving
technical replicates or when the soft penalty [3] is insufficient and a stronger
penalty is necessary.

For the definition of MMD loss, consider two cell groups P1 and P2, each
with n1 and n2 cells, respectively. To eliminate all differences between the
two groups, the MMD loss is characterized in the latent space by the following
formulation:

LMMD(P1,P2) =−

2∑
j=1

1

n2
j

∑
i1 ,i2∈Pj

k(Zi1 , Zi2)

+
2

n1n2

∑
i1∈P1 ,i2∈P2

k(Zi1 , Zi2),

where k(·, ·) is the multiscale radial basis function kernel proposed by (38).
Consequently, the MMD penalty [4] is outlined as the cumulative MMD loss
across all such pairs of cell groups:

MMD(DN) =
∑

(s,t)∈all pairs

LMMD(Ps,Pt).

Last, the Jacobian regularizer [5] is defined to control the Frobenius norm of
the Jacobians of latent variables Zi with respect to the input Y i. Specifically, the
penalty term [5] is defined as:

Jacobian(DN) =

N∑
i=1

d∑
j=1

G∑
g=1

Eq(Zi|Y i ,X i)

( ∂Zij
∂Y ig

)2
 .

The default value for the tuning parameter 
 is set to 1.

Model Training, Estimation, and Trajectory Inference. We train VITAE with
only highly variable genes and use normalized, log-transformed, and scaled
gene expressions as input for the model. The initial parameters of VITAE are set
by pretraining with� = 0. When cell labels are unavailable, the number of states
k is determined by clustering the pretrained latent space (SI Appendix, section
S1.4). To estimate VITAE’s model parameters, we employ the minibatch stochastic
gradient descent algorithm, ensuring memory usage remains independent of
cell count.

Using the estimated model parameters, we approximate posterior distribu-
tions forwi and ci by sampling from the estimated encoder output q̂(Zi|Y i, X i).
Leveraging these posterior approximations, we infer the trajectory backbone
B̂ under the assumption that B predominantly comprises sparse edges.
Specifically, let Cj1 j2 denote the edge connecting states j1 and j2. Its edge
score is defined as follows:

s̃j1 j2 =

∣∣∣{i : c̃i = Cj1 j2

}∣∣∣
|{i : e>j1 �w̃i

> 0.5 or e>j2 �w̃i
> 0.5}|

,

where c̃i = arg maxc∈{1,2,··· ,K} p̂(ci = c|Y i, X i) and �w̃i
is the approximate

posterior mean of w̃i. An edge is included in B̂when s̃j1 j2 ≥ s0 (with s0 = 0.01
as the default threshold). Subsequently, cell positions are projected ontoB̂based
on the aforementioned posterior approximations, which also provide uncertainty
estimates for these projections.

Given the inferred trajectory B̂, the user can manually assign a root vertex.
We also provide an automatic root selection step following Tempora (39) when
cells are gathered across multiple time points. With a chosen root vertex,
the pseudotime of other vertices and all cells can be readily derived by
substituting estimates into the definitions [6–7]. For a comprehensive discussion
of our trajectory inference procedure from posterior approximations, refer to SI
Appendix, section S1.2.

Differential Gene Expression Analysis. To identify differentially expressed
genes along the estimated pseudotime, we regress gene expressions of each
gene on rank(̂Ti), the ordering of the estimated pseudotime, via a polynomial
regression, which also adjusts for confounding covariates Xi. To account for
the fact that the pseudotime T̂i is estimated, we use a heuristicP-value calibration
approach following ref. 40. For details, refer to SI Appendix, section S1.3.

Benchmarking Methods. For systematic benchmarking with real and synthetic
datasets, we run PAGA, Monocle 3, and Slingshot via the Dyno platform (4),
which converts these TI methods’ outputs into an estimated trajectory backbone
B̂, estimated cell positions ̂̃wi ’s, and estimated pseudotime T̂i ’s. For a fair
comparison, the true number of states k, clustering labels, and root are provided
as prior information to all TI methods. For Slingshot, which requires an extra
two-dimensional projection of cells as input, the UMAP (41) coordinates of cells
computed following Seurat’s (24) default steps are used.

To compare our approach with tradeSeq and pseudotimeDE in differential
gene expression analysis, we generate synthetic data with linear trajectories
using package dyntoy from dynverse toolbox. We use Slingshot or VITAE
for trajectory inference and subsequently apply our approach, tradeSeq or
pseduotimeDE, to identify differentially expressed genes.

For experiments on mouse brain datasets (22, 23), we compare the trajectory
inference result with Slingshot. To apply Slingshot, Seurat CCA is first used
to integrate both datasets and regress out cell-cycle scores. Then Slingshot is
applied to Seurat’s results to infer the trajectories.

For experiments on the integration of three mouse brain datasets (22, 23, 25),
we compare the results with Slingshot and Monocle3. For the latter, the batch
effects from the different datasets are adjusted by the function align_cds, and
then the trajectories are learned afterward. We also compare with scVI and
Scanorama for data integration, providing the data sources as batch information
to these methods.

For experiments on the integration of scRNA-seq and scATAC-seq human
hematopoiesis data, we compare with VIA v0.1.96. Following the procedure
suggested in the original paper, to apply VIA, Seurat CCA is first used to
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integrate both datasets and remove the batch effects. For details about all
the benchmarking methods, refer to SI Appendix, sections S3 and S4.

Data, Materials, and Software Availability.

• Developing mouse brain datasets. Yuzwa dataset (22) and Ruan dataset (23)
are available from the Gene Expression Omnibus (GEO) database under
accession codes GSE107122 and GSE161690, respectively. For Yuzwa’s
dataset, we only use cortically derived cells selected by the original paper. We
keep the genes that are measured in both datasets (14,707 genes) and merge
all 16,651 cells (6,390 and 10,261 cells for each). The cell cycle scores (S.Score
and G2M.Score) of the two datasets are calculated separately by Seurat v3. As
cell type labels are not provided by the Yuzwa dataset, we perform clustering
using Seurat and annotate cell types using the marker genes in the Ruan
dataset. The information on the collection days of both datasets is summarized
in SI Appendix, Table S2.

• Mouse cerebral cortex atlas. Di Bella’s preprocessed dataset (25)
following the procedure in ref. 25 are available in the https://singlecell.
broadinstitute.org/single_cell/study/SCP1290/molecular-logic-of-cellular-
diversification-in-the-mammalian-cerebral-cortex. The cell cycle scores
(S.Score and G2M.Score), cell type annotations, and collection day
information are provided in the original paper. We exclude cells labeled as
“Doublet” and “Low quality cells” and retain 91,648 cells and 19,712 genes
with 24 different cell type annotations.

• Integration of the three mouse brain datasets. The merged developing mouse
brain dataset and the atlas dataset are preprocessed separately by the standard
procedure (normalize_total, log1p, highly_variable_genes, and scale) using
scanpy v1.8.3 (42) with default parameters and exclude cells labeled as
“Doublet” and “Low quality.” Then mouse brain and atlas datasets are merged
by taking the union of highly variable genes in each dataset. Then we unified
different cell type annotations that refer to the same cell type (for example,
“Intermediate progenitors” as “IPC”). Finally, there are 108,299 cells and

13,183 genes. Empirically, we found that the subcerebal projection neurons
(SCPN) cells before and after day E16 are always projected to two different
latent space regions. So, we relabeled the SCPN cells before E16 as SCPN1 to
provide a more biologically meaningful center when initializing latent space.

• Human hematopoiesis data. We obtain the gene expression, peak matrix,
and cell types annotation of human hematopoiesis data of healthy donors
from https://github.com/GreenleafLab/MPAL-Single-Cell-2019 (30). The TF
activity scores from ref. 30 were computed using chromVAR (43). Following
the preprocessing procedure as in ref. 44, we excluded cells labeled as
“Unknown” and combined the clusters with the same cell-type annotation
into one label (for example, “CLP.1” and “CLP.2” as “CLP”). We retain only cell
types that are on the two developmental trajectories analyzed in ref. 44, and
the “cDC” and “CD16.Mono” cell types are removed because of the inadequate
number of cells. We calculate the highly variable genes for each dataset by
scanpy and retain the union of these genes. The raw count matrices containing
the selected cells and genes are then concatenated accordingly. Finally, this
results in 19,309 cells for scRNA-seq data and 22,685 cells for gene activities
of the scATAC-seq data for the analysis, with 4,094 genes measured.

After filtering genes and cells, we apply the standard preprocessing procedure
by scanpy v1.8.3 (42) before supplying the datasets to our model.

The Python package of VITAE is publicly available at https://github.com/
jaydu1/VITAE (45) with MIT license. Python and R scripts for reproducing all
results in this paper are also provided in the same repository.
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