
THE UNIVERSITY OF CHICAGO

MULTISCALE METHODS FOR SEMIDEFINITE PROGRAMMING

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF STATISTICS

BY

YI WANG

CHICAGO, ILLINOIS

DECEMBER 2024

Copyright © 2024 by Yi Wang

All Rights Reserved

TABLE OF CONTENTS

LIST OF FIGURES . v

LIST OF TABLES . vi

ACKNOWLEDGMENTS . vii

ABSTRACT . ix

1 INTRODUCTION . 1

2 A CONVEX EMBEDDING METHOD FOR CLASSICAL ISING MODEL 3
2.1 Notations . 4
2.2 Problem formulation . 5
2.3 Convex relaxation for the Ferromagnetic Ising problem with localized corruption 8
2.4 The alternating direction method of multipliers algorithm for the problem

with embedding . 12
2.4.1 Solving the local problem . 13
2.4.2 Solving the global problem . 14

2.5 The primal method with low-rank positive semidefinite variable 15
2.5.1 Complexity analysis . 16
2.5.2 Stopping criteria . 18

2.6 The dual method with low-rank positive semidefinite variable 20
2.6.1 Stopping criteria . 24

2.7 Numerical experiments . 26
2.7.1 Tightness of the proposed relaxation 27
2.7.2 Computational speed of the algorithm with low-rank formulation of

the matrix variable . 29
2.7.3 The issue of multiple solutions for the proposed relaxation 31

2.8 Summary . 33

3 CONVEX RELAXATION FOR QUANTUM SPIN PROBLEM 34
3.1 Problem formulation . 37

3.1.1 Notations . 38
3.2 Preliminaries . 39
3.3 Convex relaxation for the quantum spin problem 42

3.3.1 Local linear constraints on the primal variable 43
3.3.2 Global positive semidefinite constraint on the primal variable 44

3.4 Standard augmented Lagrangian method . 45
3.4.1 Solving the joint optimization problem 46

3.5 Hierarchical dual positive semidefinite variable 48
3.5.1 Approximating the dual positive semidefinite variable with a hierar-

chical matrix . 48

iii

3.5.2 Existence of a data-sparse hierarchical matrix representation for the
dual positive semidefinite variable . 51

3.5.3 Update rule with a hierarchically structured matrix variable 52
3.6 Hierarchical primal positive semidefinite variable 57

3.6.1 Complexity analysis . 59
3.6.2 Existence of a data-sparse hierarchical matrix representation for the

primal positive semidefinite variable 60
3.7 Numerical experiments . 61
3.8 Summary . 66

4 CONCLUSION . 67

APPENDICES . 68

A DETAILS OF THE DERIVATION FOR FORMULA (3.27) 68
A.1 Detailed breakdown of the linear constraint A(M) = b 68
A.2 Proof that AA∗ is the identity operator . 69
A.3 Equivalence of the loss functions (3.26) and (3.27) 70

REFERENCES . 75

iv

LIST OF FIGURES

2.1 An example of the 2-D Ferromagnetic Ising model with localized corruption.
Corrupted regions are 2× 2 squares on the lattice. 7

2.2 Lower and upper bounds of the ground-state energy. The smaller of the two upper
bounds is colored red, while the largest of the three lower bounds is colored blue.
A lower bound value is marked with an asterisk (∗) if the relaxation is tight
(solution is rank one). 30

2.3 Corrupted pairs model on a 2-D lattice. 33

3.1 Heatmap of the dual PSD variable, system size N = 128. 48
3.2 Convergence metrics for Algorithm 7. The primal feasibility measure (ηP), dual

feasibility measure (ηD), duality gap (ηg) and per-site energy change in equation
(3.42) are all transformed using the log10 function. 64

3.3 Convergence metrics for Algorithm 8. The primal feasibility measure (ηP), dual
feasibility measure (ηD), duality gap (ηg) and per-site energy change in equation
(3.42) are all transformed using the log10 function. 65

v

LIST OF TABLES

2.1 Total computation time of Algorithm 2 (in seconds). 31
2.2 L-BFGS step computation time of Algorithm 2 (in seconds). 31

3.1 Details of the local linear constraints on M . 43
3.2 Relative errors of the fitted dual PSD variables. 52
3.3 Relative errors of the fitted primal PSD variables. 61
3.4 Relative errors of the recovered energy from Algorithm 7. 63
3.5 Relative errors of the recovered energy from Algorithm 8. 66

vi

ACKNOWLEDGMENTS

During my PhD studies, I received tremendous support from many people I’ve met at

UChicago. Without them the completion of this thesis would not have been possible. First

and foremost, I am deeply grateful to my thesis advisor, Professor Yuehaw Khoo, for all his

invaluable advice and insights throughout my PhD journey. I began working with him in

the middle of my third year, initially lacking substantial training in applied mathematics

and facing a rather tight timeline. I am thankful that Yuehaw accepted me as his student

and was always available to provide the essential resources I needed for my project and to

guide me through the challenges I faced. Without his assistance, this thesis would not have

been possible.

I would also like to thank my thesis committee members, Professor Rina Foygel Barber

and Professor Jeremy G. Hoskins, for their invaluable support during my PhD studies. I am

grateful for their numerous and insightful recommendations in the preparation of this thesis,

as well as for their guidance during my proposal and defense. In addition, I admire them

both as outstanding scholars, and their warmth of character has always reassured me that I

had more than one person to rely on throughout my studies.

I would like to extend my gratitude to all the faculty members and administrative staff in

the department for their support and assistance during this process. Among them, Professor

Lek-Heng Lim deserves special mention. Professor Lim is a great teacher. His course on

matrix computation provided me with the solid knowledge I needed for my project. Mas-

tering his class gave me the much-needed confidence to tackle the matrix-related projects in

my thesis, especially after experiencing several setbacks in research that were particularly

challenging. Additionally, I would like to thank John Zekos for his invaluable assistance. His

knowledge of computer systems is astonishing, and whenever I encountered problems with

running code on the server or software installation, I always knew I could rely on John for

help.

vii

I would like to thank all my friends and peers I met at UChicago, particularly in the

Statistics and CAM departments, for their support, numerous thoughtful discussions, and

many many many enjoyable conversations: Lijia Zhou, Zhen Dai, Yanqing Gui, Hongli Zhao,

Yi Wei, Qi Zhu, Haochen Wang, Dongyue Xie, Wanrong Zhu, Yunqi Yang, Zehao Niu, Hai

Tran Bach, Chih-hsuan Wu, Yuguan Wang, Yian Chen, Yifan Peng, Huanlin Zhou, Daniel

Xiang, Soumyabrata Kundu and many many others. I am also thankful for all the support

I got from my high school friends: Shiliang Zuo, Yang Guo and Jialin Ouyang.

Finally, I am grateful to have met Rui Wang, who has been my girlfriend for over six years

now, at UChicago. Rui has been a constant source of love and support, and she never fails to

surprise me with her spontaneity, her talent in many many areas, and her persistence when

facing difficult situations. Without her support and optimism, I wouldn’t have been able

to persist through all the challenges in my PhD studies. I also wish to express my deepest

gratitude to my parents, Chunmei Cui and Jingwen Wang, as well as all of my grandparents.

I thank them for their unconditional love and support and for all their advice and guidance,

which have shaped me into who I am today.

viii

ABSTRACT

In this thesis, we examine two problems of convex relaxation. The first problem involves

the recovery of the ground-state energy in the Ferromagnetic Ising model with localized cor-

ruption patterns in the interaction matrix. The second problem focuses on the recovery of

the ground-state energy for the quantum many-body problem. For both cases, we propose

relaxations that result in semidefinite programming (SDP) problems, which can be solved

in polynomial time. Additionally, we explore the inherent properties of the matrix variables

from the SDP problems, and impose further structures on them to reduce the computation

time for the problems. Furthermore, we conducted numerical experiments in various sce-

narios to compare the objective values from our relaxed problems to the true ground-state

energy, to assess the exactness of our relaxations.

ix

CHAPTER 1

INTRODUCTION

Determining the lowest energy state of a many-body system is one of the most fundamental

problems in science and engineering. This problem arises in various fields, including the

study of the Ising model [18], graphical modeling [58], sensor network localization [39], and

the structure from motion problem [48], among others. In this thesis, we investigate two

model problems in this category: the spin problem in the classical and quantum settings.

We propose novel relaxations for the original problems, which are generally NP-hard to

solve, and develop accelerated algorithms to solve these relaxed problems by exploiting their

inherent structures.

For the spin problem in the classical setting, we leverage the fact that the ground-state

configuration yields a low-rank moment matrix. We begin by reformulating the original

ground-state energy problem as a standard SDP problem with an additional rank constraint.

We then propose a relaxation based on this rank constraint, incorporating aspects of the em-

bedding method, which combines an expensive local constraint with a relatively cheap global

positive semidefinite (PSD) constraint. The local constraint is designed using techniques

from the sum-of-squares relaxation. To solve the resulting relaxed problem, we employ an

ADMM-type (Alternating Direction Method of Multipliers) method. By exploiting the low-

rank structure of the primal PSD variable, we further reduce the computation time for the

most computationally intensive step in the ADMM algorithm. We demonstrate the effec-

tiveness of this modified ADMM algorithm by testing it on systems with as many as 10000

variables. We also examine the tightness of our relaxation by applying the algorithm to a

2-D lattice system. Furthermore, we address the issue of multiple solutions arising from our

relaxation and demonstrate that this issue exists in the "corrupted pairs" model.

For the spin problem in the quantum setting, however, exploiting the low-rank structure

alone is not sufficient to achieve a significant reduction in computation time. The natural

1

correlations present in the PSD matrix of the dual problem dictate that the matrix’s rank

increases linearly with the matrix size. Therefore, we develop a hierarchical matrix represen-

tation, another type of data-sparse representation, for the PSD matrix of the dual problem.

We begin by reformulating the original ground-state energy problem in the quantum setting

as a linear problem over the "moments" of the density matrix. Inspired by the 2-RDM (2-

electron reduced density matrix) method, we replace the constraint that these "moments"

must originate from a true density matrix with several necessary conditions, resulting in

an SDP problem. By utilizing the hierarchical structure in the PSD variable for the dual

problem, we successfully accelerate the most computationally expensive step of the ALM

(Augmented Lagrangian Method), reducing the per-iteration time complexity from cubic to

quadratic. Furthermore, if the primal PSD variable is also assumed to possess a hierarchical

structure, the per-iteration time complexity can be further reduced to approximately linear.

We test our algorithm on the 1-D transverse field Ising model, demonstrating its effective-

ness for systems of sizes up to approximately 4000, with a relatively accurate recovery of the

ground-state energy.

2

CHAPTER 2

A CONVEX EMBEDDING METHOD FOR CLASSICAL ISING

MODEL

In this chapter, we introduce a novel method for determining the ground-state of the Ising

model on a lattice, particularly in cases where some local regions are corrupted. The Ising

model, originally proposed by Wilhelm Lenz and Ernst Ising to study phase transitions, has

since been widely used in various areas of science. One of the most fundamental questions

in the study of the Ising model is finding its ground-state, which corresponds to the config-

uration of particles in the system with the least energy. Mathematically, determining the

ground-state on an Ising lattice of size n involves solving the following optimization problem:

minimize
x∈{−1,+1}n

H(x) :=
∑
i∼j

Jijxixj . (2.1)

Here, the vertices of the lattice are indexed by {1, 2, · · · , n}, where {Jij}ij represents known

data. The notation i ∼ j denotes the adjacency relationship between site i and site j on the

lattice, and H is the Hamiltonian function that describes the energy for any configuration

x ∈ {−1,+1}n. The ground-state xgs ∈ {−1,+1}n is defined to be the solution to the above

optimization problem, and the ground-state energy is defined to be H(xgs). Without loss of

generality, we can set Jij = 0 for any pair (i, j) not adjacent on the lattice, and require that

Jij = Jji for all sites i and j. Thus, we can identify the optimization problem in (2.1) by a

known symmetric matrix J ∈ Rn×n, which we also refer to as the interaction matrix.

The ground-state problem described by equation (2.1) is generally NP-hard without ad-

ditional assumptions on the structure of the lattice or the interaction matrix J [4]. There

are only a few known solutions for particular special cases documented in the literature

[20, 21, 22, 57, 29, 23].

Recently, embedding theories [56] have emerged and have been successfully applied in
3

various areas of quantum physics. These theories combine high-fidelity yet computationally

expensive models for local regions of interest with low-fidelity and cost-effective models that

approximate the interactions between these regions of interest and their environment.

In this work, we leverage this intuition to solve (2.1) for a specific type of interaction

matrix J . We assume J consists of two parts: J = Jclean + Jnoise, where Jclean is −1 for

all edges on the lattice, leading to a ground-state of all +1 or −1, and Jnoise is zero almost

everywhere except for on some "local regions" of the lattice where it introduces corruption

patterns.

2.1 Notations

We use Sn to denote the set of real symmetric matrices of size n× n, and Sn+ to denote the

set of PSD matrices in Sn. For any matrix X in Sn, we may also use X ⪰ 0 to indicate

that X is PSD. When discussing a matrix X ∈ Rn×n and two sets I1, I2 ⊆ {1, · · · , n}, we

use X(I1, I2) ∈ R|I1|×|I2| to denote the sub-matrix in X whose row numbers are in I1 and

column numbers are in I2. We use vec(X) to denote the vectorization of a matrix X. We

use diag(X) for a square matrix X to denote a vector of its diagonal terms, and we also

use diag(y) for a vector y to denote a diagonal matrix whose main diagonal is y. For any

linear operator A on matrices or vectors, we denote its adjoint by A∗. At last, we use ΠP

to denote the projection operator onto the space P .

4

2.2 Problem formulation

Firstly, the optimization problem described by equation (2.1) can be equivalently reformu-

lated as follows:

minimize
X∈Sn+

⟨J,X⟩,

subject to diag(X) = 1n, rank(X) = 1.

(2.2)

Here, 1n denotes a vector of ones with dimension equal to n × 1. Note that (2.2) is an

equivalent formulation of (2.1), as any X ∈ Sn+ of rank one can be written as X = xxT

for some vector x ∈ Rn. Moreover, the constraint diag(X) = 1 implies that x must be

a vector of −1 and 1. The alternative formulation presented in equation (2.2) is equally

challenging to solve as the original problem (2.1), and the main difficulty arises from the

rank constraint imposed on the PSD variable X. We will conduct experiments applying

the embedding theories to (2.2), by replacing the rank constraint with a set of necessary

constraints that is computational tractable, and solving a relaxed optimization problem of

the following formulation:

minimize
X∈Sn+

⟨J,X⟩, (2.3)

subject to diag(X) = 1n, (2.4)

X(Ik, Ik) satisfies some constraints for k = 1, · · ·K. (2.5)

Here, each Ik ⊆ {1, · · · , n}, and X(Ik, Ik) denotes the block matrix within X whose row

and column numbers are in Ik, for k = 1, · · · , K. In addition to the global PSD constraint

and linear constraint on X in (2.4), we also apply constraints on local regions of X in (2.5).

These local constraints are necessary constraints implied by the rank constraint in (2.2),

and thus the problem described in (2.3)-(2.5) is a relaxed version of (2.2), and will always

5

provide a lower bound of the true objective value. The selection of the PSD constraint

and linear constraint is based on the observation that in many problem scenarios, these

constraints provide reasonable approximations to the true solutions. Additionally, there

exist well-tested and highly efficient solvers specifically designed for addressing problems

with PSD and linear constraints on matrices.

Consider a lattice on an undirected graph G = (V,E), where V = {1, 2, · · · , n} represents

the set of vertices and E ⊆ {{i, j} : i, j ∈ V, i ̸= j} represents the set of edges of the graph.

Each vertex i ∈ V has an associated binary variable xi ∈ {+1,−1}. Additionally, for each

edge {i, j} ∈ E (which was previously denoted by i ∼ j), there is an associated interaction

term Jij = Jji ∈ R. We form a symmetric matrix J ∈ Rn×n from the set {Jij}ij , and our

goal is to solve the optimization problem in (2.2) and find the corresponding objective value

⟨J,X⟩ of the solution.

Example 1. Consider the Ferromagnetic Ising model on a lattice G = (V,E) with |V | = n.

The Hamiltonian function is given by

H(x) := −
∑
{i,j}∈E

xixj . (2.6)

The interaction matrix JF ∈ Rn×n corresponds to this Hamiltonian on the graph G is given

by

JF(i, j) =


−1, {i, j} ∈ E,

0, {i, j} /∈ E.

(2.7)

Assuming the graph G is connected, the ground-state is ±1n.

In this work, we consider the Ferromagnetic Ising model with localized corruption. To

define this model, we first let N1, N2, · · · , Nm be a collection of disjoint subsets of the vertex

6

set V . Then, define:

Jnoise(i, j) =


aij , i, j ∈ Nk for some k = 1, · · · ,m,

0, otherwise,
(2.8)

where aij ∈ R is generated from some noise distribution. Without loss of generality we can

assume aij = aji for all i and j. Let J := JF + Jnoise. In other words, the interaction

matrix JF for the Ferromagnetic Ising model is randomly corrupted in a few subsets (also

referred to as clusters) of V . We assume that the size of the corrupted clusters and the

number of corrupted local clusters are constants and do not scale with the size of the lattice

n. Additionally, each vertex is connected to a constant number of vertices, leading to a total

number of edges that grows linearly with n.

As an example, a 2-D Ferromagnetic Ising model with localized corruption is shown in

Figure 2.1. In the 2-D lattice, two vertices are connected by a solid line if their interaction

is −1, by a dashed line if their interaction is sampled from a random distribution, and are

not connected if their interaction is zero.

Figure 2.1: An example of the 2-D Ferromagnetic Ising model with localized corruption.
Corrupted regions are 2× 2 squares on the lattice.

7

2.3 Convex relaxation for the Ferromagnetic Ising problem with

localized corruption

First, note that the problem described in (2.2) is difficult to solve due to the rank constraint

imposed on the PSD matrix X. To address this issue, one could drop the rank constraint

and solve a relaxed version of problem (2.2), which has the following formulation:

minimize
X∈Sn+

⟨J,X⟩ subject to diag(X) = 1n. (2.9)

This type of relaxation is known as the Max-Cut SDP relaxation [25].

The Max-Cut SDP relaxation described by equation (2.9) for a moderately large problem

size n can be readily solved using the interior point method [44]. This approach offers

a relatively accurate approximation to the solution of the problem defined in (2.2) [25].

However, the Max-Cut SDP relaxation is not tight enough, and almost always returns non-

integer solutions. To address this issue, we propose a tighter relaxation for our model problem

by coupling the global PSD and linear constraint on the matrix X with local, more expensive

constraints on a collection of regions of interest in X.

We use {Ik}Kk=1 to denote the indices of vertices where we want to impose the more

expensive constraints, with |Ik| = nk and Ik ⊆ {1, · · · , n} for k = 1, . . . , K. One way to

choose these indices is to set K = m, where m is the number of corrupted regions, and

Ik = Nk for k = 1, · · · , K. In other words, we only apply the more expensive constraints

on the corrupted regions of the interaction matrix J . There are other ways to choose these

indices as well. For instance, we can let Ik be the union of a corrupted region Nk and its

one-hop or two-hop neighbors on the graph G, for k = 1, · · · , K. One an undirected graph

G = (V,E) where the vertex set E is identified with {1, · · · , n} for some positive integer n,

8

the one-hop and two-hop neighbors of a set S ⊆ {1, · · · , n} are defined by

one-hop(S) := {t|{t, s} ∈ E for some s ∈ S},

two-hop(S) := {t|{t, s} ∈ E for some s ∈ one-hop(S)}.
(2.10)

After we have fixed a collection of sets {Ik}Kk=1 based on the structure of J , our proposal

is to solve the following optimization problem as a tighter relaxation for the optimization

problem (2.2):

minimize
X∈Sn+

⟨J,X⟩,

subject to diag(X) = 1n,

X(Ik, Ik) = Ak(Mk) for some Mk ∈ Ck, k = 1, · · · , K,

(2.11)

for some sets {Ck}k and functions {Ak}k to be specified below. In other words, in addition

to the constraints inherited from the Max-Cut SDP relaxation (2.9), we impose extra local

constraints on blocks of X. These local constraints are necessary conditions implied by the

rank constraint in (2.2), ensuring that the resulting relaxed problem provides a valid lower

bound for the original problem. We will discuss two types of local constraints implied by

the rank constraint in this work.

The first type of local constraint, which we refer to as the exact local constraint in the

following sections, requires that each block X(Ik, Ik) for k = 1, · · · , K must come from the

product of a vector of −1 and 1 with its transpose, i.e.,

Ck := {vvT , v ∈ {−1, 1}nk}, (2.12)

and Ak : Snk → Snk is the identity operator for 1 ≤ k ≤ K. Locally on X(Ik, Ik) for

k = 1, · · · , K, the exact local constraint is equivalent to the rank constraint. However, the

9

optimization problem (2.11) with the exact local constraint constraint is non-convex. To

address this issue, we also propose a second type of local constraint.

The second type of local constraint, which we refer to as the inexact local constraint in

the following sections, is constructed using techniques from sum-of-squares optimization [35].

Suppose that X is a feasible solution for problem (2.2). Because of the constraint imposed

on X, for every k = 1, · · · , K, X(Ik, Ik) is also a rank-one matrix whose diagonal elements

are all ones. Thus, we must have X(Ik, Ik) = xkx
T
k for some xk ∈ {−1,+1}nk . Consider

the matrix Mk defined by:

Mk := yky
T
k ∈ S1+n2k , yk := (1; vec(X(Ik, Ik))) ∈ Rn2k+1. (2.13)

One can observe that the matrix Mk is symmetric and PSD. Besides, the identities x2k(i) = 1

for all 1 ≤ i ≤ nk give rise to several equality constraints on the entries of Mk, which can

be described by a linear equality:

Gk(Mk) = gk, Gk : Sn
2
k+1

+ → Rpk . (2.14)

The constant vector gk and the dimension pk depend on nk and will be specified later. The

above describes a closed convex set Ck ⊆ Sn
2
k+1

+ :

Ck := {Mk ∈ Sn
2
k+1

+ : Gk(Mk) = gk}. (2.15)

Additionally, from the construction of Mk in (2.13), we can see that X(Ik, Ik) can be ex-

tracted from Mk, by reshaping the last n2k entries of its first column into a square matrix,

and the equality

Ak(Mk) = X(Ik, Ik), Ak : Sn
2
k+1

+ → Rnk×nk (2.16)

10

uniquely defines the linear operator Ak for k = 1, · · · , K.

Example 2. Let X be any feasible PSD matrix for (2.2). Consider a simple example

with |Ik| = 3. From the discussion above, we know X(Ik, Ik) = xkx
T
k for a vector xk =

(xk(1), xk(2), xk(3)) ∈ {−1,+1}3. To simplify notation, we will drop the dependence of xk

on k, and rewrite xk as (x1, x2, x3) ∈ {−1,+1}3. In this case, we have

yk = (1; vec(X(Ik, Ik))) =
(
1, x21, x1x2, x1x3, x1x2, x

2
2, x2x3, x1x3, x2x3, x

2
3

)T
∈ R10,

and

Mk = yky
T
k =



1 x21 x1x2 · · · x23

x21 x41 x31x2 · · · x21x
2
3

...
...

...
...

...

x2x3 x21x2x3 x1x
2
2x3 · · · x2x

3
3

x23 x21x
2
3 x1x2x

2
3 · · · x43


∈ S10+ .

Since xi ∈ {−1, 1} for i = 1, 2, 3, x2i is always one, and we can simplify Mk as

Mk =



1 1 x1x2 · · · 1

1 1 x1x2 · · · 1

...
...

...
...

...

x2x3 x2x3 x1x3 · · · x2x3

1 1 x1x2 · · · 1


.

From the above detailed description of the matrix Mk, we see that all entries of Mk can be

partitioned into four groups, each of which shares the same value in {1, x1x2, x1x3, x2x3}.

Similarly, for nk = 3, all entries in Mk take values from one of the two sets: {1} and

{x1x2, x1x3, x2x3}, and for a general nk ≥ 4, all entries in Mk take values from one of

the three sets: {1}, {xixj}1≤i<j≤nk and {xixjxkxl}1≤i<j<k<l≤nk . These sets collectively

11

include 1 +
(nk
2

)
+
(nk
4

)
many unique values. Given that Mk has (n2k + 1)2 many entries, it

follows that there are (n2k+1)2−
(nk
2

)
−
(nk
4

)
equality constraints on the entries of Mk, which

are summarized by the linear equality constraint in (2.14). Consequently, the dimension pk

is given by (n2k + 1)2 −
(nk
2

)
−
(nk
4

)
and gk = (1, 0, · · · , 0)T ∈ Rpk .

It is straightforward to verify that for any feasible X in the original problem (2.2) with

the rank constraint, the local blocks of X also satisfy the inexact local constraint. Therefore,

(2.11) with the inexact local constraint is indeed a convex relaxation of the original problem.

In the following sections in Chapter 2, we will primarily focus on solving (2.11), with either

the exact or the inexact local constraint. We will use the term "the relaxed problem with

the exact/inexact local constraint" to refer to (2.11) with the exact/inexact local constraint.

2.4 The alternating direction method of multipliers algorithm for

the problem with embedding

In the following section, we will discuss how to solve the relaxed problem with the ex-

act/inexact local constraint. If the problem’s scale is relatively small and the local constraints

defined by the sets {Ck}k and functions {Ak}k consist of PSD and linear constraints, the

relaxed problem is convex and can be solved using the interior point method available in

many software packages. However, if the local constraint is non-convex or the problem size is

too large to manage directly, we need to solve either the primal or the dual problem using the

alternating direction method of multipliers (ADMM). In case of the primal problem, we first

form the augmented Lagrangian function Lσ(X, {Mk}; y, {vk}) for primal variables X ∈ Sn+

and Mk ∈ Ck for k = 1, · · · , K, dual variables y ∈ Rn and vk ∈ Snk for k = 1, · · · , K, and

12

penalty parameter σ > 0:

Lσ(X, {Mk}k; y, {vk}k) =


⟨J,X⟩+ σ

2

∑K
k=1 ∥X(Ik, Ik)−Ak(Mk) +

1
σvk∥

2
F

− 1
2σ

∑K
k=1 ∥vk∥2F + σ

2∥diag(X)− 1n + 1
σy∥

2
F −

1
2σ∥y∥

2
F .

(2.17)

Then, we iterate Algorithm 1 until convergence.

Algorithm 1 ADMM for the primal problem
Require: X, y, {vk}k, {Mk}k, and penalty parameter σ > 0
1: while not converged do
2: X ← argminX⪰0 Lσ(X, {Mk}k; y, {vk}k)
3: for k = 1, · · · , K do
4: Mk ← argminMk∈Ck∥X(Ik, Ik)−Ak(Mk) +

1
σvk∥

2
F

5: vk ← vk + σ(X(Ik, Ik)−A(Mk))
6: end for
7: y ← y + σ(diag(X)− 1n)
8: end while

2.4.1 Solving the local problem

In Algorithm 1, we minimize the augmented Lagrangian function Lσ(X, {Mk}k; y, {vk}k)

with respect to X while keeping {Mk}k fixed, and then minimize the augmented Lagrangian

function with respect to each Mk for k = 1, · · · , K while keeping X fixed. For the M -

subproblem in line 4 of Algorithm 1, we need to solve the following problem with two types

of local constraints:

Mk = argminMk∈Ck∥Ak(Mk)− bk∥2F , k = 1, · · · , K.

Here, the constant vector bk is given by

bk := X(Ik, Ik) +
1

σ
vk, k = 1, · · · , K.

13

If we use the exact local constraint, we can afford to perform a brute force search among

all feasible solutions, provided that the sizes of the local clusters {nk}Nk=1 are small constants

that do not grow with the size of the matrix, n.

If instead, we use the inexact local constraint, we need to solve the following convex

constrained optimization problem:

Mk = argmin
Mk∈S

n2
k
+1

+

∥Ak(Mk)− bk∥2F s.t. Gk(Mk) = gk. (2.18)

The above problem can be solved using the interior point method implemented in the Mosek

package. Additionally, once a Mosek model for the problem has been generated, it can be

reused without regenerating the data. The only requirement is to modify the vector bk as

needed, which enables fast solving of the M -subproblem.

2.4.2 Solving the global problem

If the problem size is large, the main computational burden in Algorithm 1 arises from line 2.

Suppose we intend to address a lattice system with thousands of sites. In the current form of

our optimization algorithm (2.11), we would be working with a large PSD matrix variable X.

While we can solve the sub-minimization problem by introducing another matrix variable

X̃, applying the PSD constraint on X̃, requiring X = X̃, and forming a new augmented

Lagrangian function, this method still requires calculating the projection of a large matrix

onto the PSD cone. The complexity of this projection is cubic, making it unfeasible for large

systems.

Due to the complexity of this projection, we propose solving (2.11) using a low-rank

factorization of the primal variable X. Following the approach introduced in [12], we perform

a low-rank factorization of the PSD variable in the form X = xxT where x ∈ Rn×r is a tall

matrix with r < n. This low-rank factorization eliminates the difficult PSD constraint,

14

converting the optimization problem into an unconstrained one, which can subsequently be

solved using the limited-memory BFGS algorithm (L-BFGS) [38]. Additionally, r is chosen

minimally and adapted throughout the ADMM updates, enabling the development of a fast

algorithm. In the following, we will adopt this strategy and develop an algorithm based on

the low-rank factorization of the primal PSD variable.

2.5 The primal method with low-rank positive semidefinite

variable

In this section, we propose a variable substitution for the PSD variable X in algorithm 1,

expressed as X = xxT . Previous work [5, 50, 36] has shown that for every feasible SDP

problem with m linear constraints, there exists an optimal solution X with rank(X) = r

such that r(r + 1)/2 ≤ m. Consequently, when addressing large SDP problems where the

number of linear constraints is relatively small, we can opt to solve the SDP problem via the

low-rank formulation in order to save computation time. Given that we assume the number

and the size of the corrupted clusters on the lattice do not grow with the size of the lattice

n, we have reason to believe that a low-rank solution to (2.11) also exists. Therefore, we

propose solving the following optimization problem instead of (2.11):

minimize
x∈Rn×r

⟨J, xxT ⟩,

subject to diag(xxT) = 1,

(xxT)(Ik, Ik) = Ak(Mk) for some Mk ∈ Ck, k = 1, · · · , K,

(2.19)

with either the exact or inexact local constraint. We now present Algorithm 2, which uses a

low-rank formulation of the primal PSD variable.

According to the theoretical and experimental results presented in [12, 9], the rank pa-

rameter r should be updated dynamically so that x remains rank-deficient throughout the

15

Algorithm 2 ADMM for the primal problem with low-rank PSD variable
Require: x, y, {vk}k, {Mk}k and penalty parameter σ > 0
1: while not converged do
2: x← argminx Lσ(xx

T , {Mk}k; y, {vk}k)
3: for k = 1, · · · , K do
4: Mk ← argminMk∈Ck∥(xx

T)(Ik, Ik)−Ak(Mk) +
1
σvk∥

2
F

5: vk ← vk + σ
(
(xxT)(Ik, Ik)−Ak(Mk)

)
6: end for
7: y ← y + σ(diag(xxT)− 1n)
8: end while

execution of Algorithm 2. For our problem however, fixing r = 10 appears to generate good

results. Additionally, it is important to note that we never need to form the full matrix

xxT for Algorithm 2. Instead, we only need to compute the entries used in (xxT)(Ik, Ik) for

k = 1, · · · , K and diag(xxT).

2.5.1 Complexity analysis

In this section, we conduct a complexity analysis of Algorithm 2. Throughout this section,

x has a fixed dimension with x ∈ Rn×r. We assume the number of columns r, the number of

local clusters K, and the size of each local cluster nk for k = 1, · · · , K are all constants with

respect to n. Additionally, the interaction matrix J is assumed to be a sparse matrix with

O(n) many non-zero entries. As a result, the main computational burden for Algorithm 2 is

in line 2.

With the variables {Mk}k fixed, we seek to minimize the augmented Lagrangian function

with respect to the variable x:

minimize
x∈Rn×r

f(x) := ⟨J, xxT ⟩+ σ

2

K∑
k=1

∥(xxT)(Ik, Ik)− ak∥2F +
σ

2
∥diag(xxT)− c∥2F (2.20)

16

for constant vectors {ak}Kk=1 and c defined by:

ak := Ak(Mk)−
1

σ
vk, k = 1, · · · , K,

c := 1n − σ−1y.

We propose solving (2.20) by running the L-BFGS algorithm. The main computational

costs in the L-BFGS algorithm lie in the evaluation of the function value and the calculation

of its gradient. We claim both of these can be computed efficiently for our problem. To see

this, we analyse the complexity of the function value evaluation, and the complexity of the

gradient calculation can be analyzed in a similar way.

To start with, the first part of f(x) in (2.20) is

⟨J, xxT ⟩ =
∑
i,j

Jij(xx
T)ij =

∑
Jij ̸=0

Jij

r∑
k=1

xikxjk.

Let ∥J∥0 denote the number of non-zero elements in J . The total computation time for the

first part of f(x) is apparently O(∥J∥0r).

In the second component in (2.20), we must compute expressions of the type

∥(xxT)(Ik, Ik)− ak∥2F

for k = 1, · · · , K. For each k, we are required to calculate n2k many entries in the matrix

xxT , and the total computation time is O(n2kr).

In the third component in (2.20), we must evaluate

∥diag(xxT)− c∥2F ,

and using similar reasoning as with the first two components, the computational complexity

17

for this part is O(nr).

In conclusion, the overall time complexity for the loss function evaluation is O((n +∑K
k=1 n

2
k+∥J∥0)r). A similar analysis for the gradient evaluation of the loss function shows

that its total computational complexity is also O((n +
∑K

k=1 n
2
k + ∥J∥0)r). Thus, both the

cost function evaluation and gradient computation require O((n+
∑K

k=1 n
2
k + ∥J∥0)r) time.

For the Ising model with localized corruption under consideration, each site on the lattice

is assumed to be connected to only a constant number of sites, making the matrix J sparse

with O(n) many non-zero entries. Additionally, the cluster size nk for k = 1, · · · , K and the

number of clusters K are constant values with respect to n. Therefore, the total per-iteration

cost for Algorithm 2 scales linearly with the lattice size n.

2.5.2 Stopping criteria

For k = 1, · · · , K, define a linear function Dk : Sn → Snk by:

Dk(X) = X(Ik, Ik). (2.21)

The dual problem to (2.19) is:

minimize
y,{vk}k

[
⟨−1, y⟩+

∑
k

max
Mk∈Ck

⟨−vk,Ak(Mk)⟩
]
,

subject to J − diag(y)−
K∑
k=1

D∗k(vk) ⪰ 0,

(2.22)

with y ∈ Rn and vk ∈ Snk for k = 1, · · · , K.

Throughout the execution of Algorithm 2, we measure the accuracy of an approximate

solution (x, {Mk}Kk=1, y, {vk}
N
k=1) for the primal and dual problems (2.19) and (2.22) by

monitoring the relative primal feasibility ηP , the relative dual feasibility ηD and the relative

18

duality gap ηg. Let X = xxT . For the primal feasibility measure, we define

Px =
[
diag(X); vec(D1(X)) · · · vec(Dk(X))

]
,

PM =
[
1n; vec(A1(M1)) · · · vec(Ak(Mk))

]
,

and

ηP =
∥Px − PM∥F

1 + ∥Px∥F + ∥PM∥F
.

For the dual feasibility, let λmin and λmax be the smallest and largest eigenvalues of the

matrix J − diag(y)−
∑K

k=1D∗k(vk), and we define

ηD =
max(0,−λmin)

1 + max(0, λmax)
.

For the duality gap, we compute

ηg =
|primal objective− dual objective|

1 + |primal objective|+ |dual objective|
,

where primal objective and dual objective are the objective values of (2.19) and (2.22) with

the variables (x, {Mk}Kk=1) and (y, {vk}Kk=1).

If we use the inexact local constraint described in (2.15), we terminate our algorithm when

η = min{ηP , ηD, ηg} ≤ 10−4. If we use the exact local constraint described in (2.12), the

optimization problem is non-convex, and the relative duality gap usually does not converge

to 0, and we terminate our algorithm when η = min{ηP , ηD} ≤ 10−4.

19

2.6 The dual method with low-rank positive semidefinite variable

Alternatively, we can solve the dual problem of (2.11) with the inexact local constraint in

(2.15):

minimize
y,{vk}k,S

[
⟨−1, y⟩+

K∑
k=1

δ∗Ck(−A
∗
k(vk))

]
,

subject to S + diag(y) +
K∑
k=1

D∗k(vk) = J,

(2.23)

with y ∈ Rn, vk ∈ Snk for k = 1, · · · , K and S ∈ Sn+. The function δ∗Ck(−wk) for k =

1, · · · , K is defined by:

δ∗Ck(−wk) = sup{⟨−wk, pk⟩ | pk ∈ Ck}.

To apply the ADMM algorithm for (2.23), we write down its associated augmented

Lagrangian function Lσ(S, y, {vk};X) with S ∈ Sn+, vk ∈ Snk for k = 1, · · · , K, y ∈ Rn,

X ∈ Sn and penalty parameter σ > 0 as follows:

Lσ(S, y, {vk};X) =


⟨−1, y⟩+

∑K
k=1 δ

∗
Ck(−A

∗
k(vk))

+σ
2∥S + diag(y) +

∑K
k=1D∗k(vk)− J + 1

σX∥
2
F −

1
2σ∥X∥

2
F .

(2.24)

We then iterate Algorithm 3 until convergence. It is important to note that, for the dual

problem, we assume that the set {Ik}Kk=1 is pairwise disjoint, allowing the local problems to

be solved in parallel.

Step 2 in Algorithm 3 involves a least square problem which can be solved in O(n) time.

In step 4, for k = 1, · · · , K, define

C̃k := {M̃k ∈ Snk : M̃k = Ak(Mk) for some Mk ∈ Ck},

20

Algorithm 3 ADMM for the dual problem
Require: S, y, {vk}k, X, and penalty parameter σ > 0
1: while not converged do
2: y ← argminyLσ(S, y, {vk}k;X)
3: for k = 1, · · · , K do
4: vk ← argminvk

[
δ∗Ck(−A

∗
k(vk)) +

σ
2∥S + diag(y) +D∗k(vk)− J + 1

σX∥
2
F

]
5: end for
6: S ← argminS⪰0Lσ(S, y, {vk};X)

7: X ← X + σ(S + diag(y) +
∑K

k=1D∗k(vk))
8: end while

and

Rk := Dk(S + diag(y)− J +
1

σ
X).

Step 4 involves solving the following problem:

vk = argminvk
[
δ∗Ck(−A

∗
k(vk)) +

σ

2
∥vk −Rk∥2F

]
= argminvk

[
δ∗C̃k

(−vk) +
σ

2
∥vk −Rk∥2F

]
= σ−1ΠC̃k

(−σRk) +Rk,

(2.25)

and the last equality holds due to the Moreau decomposition of proximal operators and

several basic properties of proximal operators [6]. Thus, the minimization problem in (2.25)

can be solved via the interior point method implemented in the Mosek package.

The most computationally demanding task continues to be the projection of a large

matrix onto the PSD cone in step 6. To address this concern, we modify Algorithm 3 for

the dual problem, taking advantage of the low-rank characteristic of X. Interested readers

can consult [28] for a reference of this method.

To start with, from the update rule of X in Algorithm 3 step 7, we can rewrite the update

rule of S in the following form:

St+1 = (Xt+1 −Xt)/σ + J − diag(yt+1)−
K∑
k=1

D∗k(v
t+1
k). (2.26)

21

Here, we use superscripts on variables to indicate the iteration number within the ADMM

algorithm. We notice that we can combine steps 6 and 7 of Algorithm 3 to amend the update

rule of the primal variable X:

Xt+1 = Xt + σ
(
St+1 + diag(yt+1) +

K∑
k=1

D∗k(v
t+1
k)− J

)
=
(
Xt + σ(diag(yt+1) +

K∑
k=1

D∗k(v
t+1
k)− J))

+ ΠS+n
(
−Xt − σ(diag(yt+1) +

K∑
k=1

D∗k(v
t+1
k)− J))

= ΠS+n
(
Xt + σ(diag(yt+1) +

K∑
k=1

D∗k(v
t+1
k)− J)).

(2.27)

The last step is true because for any symmetric matrix M ∈ Sn, we have

M +ΠS+n (−M) = ΠS+n (M).

Given this updated insight, we can replace every instance of St+1 as a function of

Xt+1, Xt, yt+1 and {vt+1
k }Kk=1 using (2.26) throughout the updates of Algorithm 3. The

primary challenge now lies in efficiently computing the update of the primal variable Xt to

Xt+1 in (2.27). To this end, we propose working again with a low-rank representation of X

in the form of Xt = xt(xt)T with xt ∈ Rn×r for some r < n. This modification will enable

us to reduce the overall computation time and memory used regarding the update of Xt.

However, in each ADMM update of this revised formulation of the primal variable, we still

need to compute the projection on the PSD cone of the matrix

X̃t+1 := xt(xt)T + σ

diag(yt+1) +
K∑
k=1

D∗k(v
t+1
k)− J

 . (2.28)

22

To this end, we seek an approximate solution by computing only the top eigenvalues and

eigenvectors of X̃t+1. This can be achieved efficiently using the Lanczos process, whose

computational complexity is determined by the complexity of the matrix-vector product

between X̃t+1 and vectors in Rn. Given that xt(xt)T is a low-rank matrix and diag(yt+1)+∑K
k=1D∗k(v

t+1
k) − J is sparse, the complexity of this matrix-vector product is linear with

respect to the lattice size n. Therefore, this approximate projection onto the PSD cone

operation can be performed efficiently. We now give a step-by-step modified version of

Algorithm 3.

Step 1. Compute

yt+1 = yt − σ−1diag
(
2xt(xt)T − xt−1(xt−1)T

)
+ σ−11n.

Step 2. For k = 1, · · · , K, define

Rt+1
k = vtk +Dk

(
diag(yt)− diag(yt+1)− σ−1(2xt(xt)T − xt−1(xt−1)T)

)
,

and compute

vt+1
k = argminvk

{
δ∗Ck

(−A∗k(vk)) +
σ

2
∥vk −Rt+1

k ∥2F
}
,

via the interior point method in the Mosek package.

Step 3. Compute the top r eigenvectors and eigenvalues of the matrix

X̃t+1 = xt(xt)T + σ

diag(yt+1) +
K∑
k=1

D∗k(v
t+1
k)− J

 (2.29)

via the Lanczos process and denote them by U t+1 = (ut+1
1 , · · · , ut+1

r) ∈ Rn×r and Σt+1 =

23

Diag(σt+1
1 , · · · , σt+1

r) ∈ Rr×r. Let

xt+1 = U t+1sqrt(Σt+1
+), (2.30)

where Σt+1
+ is constructed by setting negative entries in Σt+1 to zeroes.

We are now ready to present Algorithm 4, which summarises the above modifications to

Algorithm 3.

Algorithm 4 ADMM for the dual problem with low-rank X

Require: t = 0, y0, {v0k}k, x
0, x−1, and penalty parameter σ > 0

1: while not converged do
2: yt+1 ← yt − σ−1diag(2xt(xt)T − xt−1(xt−1)T) + σ−11n
3: for k = 1, · · · , K do
4: Rt+1

k ← vtk +Dk

(
diag(yt)− diag(yt+1)− σ−1(2xt(xt)T − xt−1(xt−1)T)

)
5: vt+1

k ← argminvk{δ
∗
Ck

(−A∗k(vk)) +
σ
2∥vk −Rt+1

k ∥2F }
6: end for
7: Compute xt+1 according to (2.29)-(2.30)
8: t← t+ 1
9: end while

2.6.1 Stopping criteria

When applying the dual method to for a large-scale system, we suggest replacing the update

of S with the update of a low-rank variable x. This adjustment aims to mitigate the chal-

lenges related to computation and storage, and the dual constraint S ⪰ 0 is automatically

satisfied with our new method. So the only dual constraint remaining is the linear constraint

diag(yt) + St +
K∑
k=1

D∗k(v
t
k) = J.

24

Substituting St with

σ−1
(
xt(xt)T − xt−1(xt−1)T

)
+ J − diag(yt)−

K∑
k=1

D∗k(v
t
k),

we can rewrite the dual equality constraint as

diag(yt) +
K∑
k=1

D∗k(v
t
k) + σ−1

(
xt(xt)T − xt−1(xt−1)T

)
+ J − diag(yt)−

K∑
k=1

D∗k(v
t
k) = J,

or equivalently

σ−1
(
xt(xt)T − xt−1(xt−1)T

)
= 0.

So, to monitor the dual feasibility measure, we track

ηD :=
∥xt(xt)T − xt−1(xt−1)T ∥F

σ(1 + ∥J∥F)
.

For the primal feasibility constraint, as our primal matrix variable X is represented via

a low-rank decomposition X = xxT , the PSD constraint is also automatically satisfied. As

we do not keep a set of primal variables {Mk}Kk=1 for the dual method to test if X satisfies

the local constraints, for k = 1, · · · , K, we first compute

Mk = argminMk∈Ck∥Dk(X)−Ak(Mk)∥2F ,

and then we repeat the steps applied in the primal method, i.e., we define:

Px :=
[
diag(X); vec(D1(X)) · · · vec(Dk(X))

]
,

PM :=
[
1n; vec(A1(M1)) · · · vec(Ak(Mk))

]
,

25

and

ηP :=
∥Px − PM∥F

1 + ∥Px∥F + ∥PM∥F
.

We also track the relative duality gap defined by

ηg =
|primal objective− dual objective|

1 + |primal objective|+ |dual objective|
,

and terminate our algorithm when η := min{ηP , ηD, ηg} is below a pre-specified threshold.

2.7 Numerical experiments

In this section, we present several experiment results for the recovery of the ground-state

and ground-state energy of the Ising model with localized corruption on a square 2-D lattice,

as illustrated in Figure 2.1. We identify a square 2-D lattice with an undirected graph

G = (V,E), with

V = {(x, y) : x, y ∈ N, 1 ≤ x, y ≤ n},

E = {{v1, v2} : v1, v2 ∈ V, dist(v1, v2) = 1}
(2.31)

for varying sizes of n. The distance on the 2-D lattice is defined by

dist(v, w) := ∥v − w∥1, v, w ∈ V.

Notice that the distance between v and w is also the number of edges needed to travel from

v to w on the 2-D lattice. Additionally, we randomly sample m clusters {N1, N2, · · ·Nm}

of size 2 × 2 on the 2-D lattice, assuming these clusters are not on the edge of the lattice.

Furthermore, we assume these clusters are "well-separated," i.e., for any two clusters Ni, Nj ,

we have

dist(Ni, Nj) := min
{
dist(vi, vj), vi ∈ Ni, vj ∈ Nj

}
≥ 2.

26

We define an interaction matrix J : V × V → R on the graph G such that

J(v, w) :=


ϵ av,w, v, w ∈ Ni for some Ni,

−1, dist(v, w) = 1, v, w /∈ Ni for any Ni,

0, othewise.

(2.32)

Here, ϵ > 0 is a parameter that controls the strength of the corruption, and av,w is sampled

from the standard normal distribution.

2.7.1 Tightness of the proposed relaxation

We first examine the tightness of the relaxation in equation (2.11) for the original problem

(2.2). To achieve this, we solve the relaxed problem (2.11) with several types of convex

relaxation using the Mosek package. This approach provides valid lower bounds for the

ground-state energy in (2.2). Additionally, we propose two methods to construct feasible

primal variables for the original problem, yielding valid upper bounds for the ground-state

energy. This allows us to establish a "confidence interval" for the ground-state energy. If the

solution for (2.11) returned by Mosek is also feasible for the original unrelaxed problem, or

if the width of the confidence interval is zero, we can conclude that the relaxation is tight.

We consider an Ising model with localized corruption on a 10 × 10 lattice with three

local clusters N1, N2, N3, each of size 2 × 2, and the noise level ϵ = 2. Note that we

can choose between two types of relaxation, with the exact or the inexact local constraint,

specified in (2.12) or in (2.15) respectively. Additionally, we have multiple ways to select

indices I1, · · · , IK where we apply the local constraints. For each instance of the randomly

generated interaction matrix J , we test the relaxation with the following three types of

relaxation:

• with the exact local constraint described in (2.12), and Ik = one-hop(Nk) for k = 1, 2, 3.

27

• with the inexact local constraint described in (2.15), and Iv = one-hop({v}) for all

v ∈ E.

• with the inexact local constraint described in (2.15), and Ik = one-hop(Nk) for k =

1, 2, 3.

Here, the function one-hop is defined in (2.10). The relaxed problem (2.11) with the first

type of relaxation is non-convex, and we solve it by running Algorithm 2 until both the

relative primal and dual feasibility measures, as defined in section 2.5.2, are below 10−4. In

contrast, the relaxed problem (2.11) with the second or third type of constraint is convex,

and we solve it using the Mosek package.

For the first type of relaxation, the duality gap remains non-zero until the algorithm

converges, meaning we do not have a certificate of accuracy for the solution. Instead, we

check if the resulting x is of rank one by calculating the ratio of its largest and second-largest

singular values. If this ratio is greater than 106, we consider x to have rank one, and if x is

of rank one, xxT is a feasible solution for (2.2). Consequently, we obtain an upper bound

for the ground-state energy by substituting xxT into (2.2).

For the second and third type of relaxation, the Mosek package can solve the relaxed

problems to high precision, and the objective values from these two problems serve as lower

bounds for the ground-state energy. Additionally, if the ratio between the largest and second-

largest eigenvalues of the solution X is greater than 1012, we consider X to have rank one,

indicating that the relaxation is tight.

In addition to solving the relaxed problem with the above three types of relaxation to

approximate the ground-state energy, we employ two additional methods for approximation.

The first method is coordinate descent, detailed in Algorithm 5. The resulting x from this

method is always feasible, and thus H(x) in (2.1) provides an upper bound for the ground-

state energy. Furthermore, we solve the Max-Cut relaxation in (2.9) using the Mosek package,

with the objective value serving as an additional lower bound for the ground-state energy.
28

Algorithm 5 Coordinate descent for (2.1)
Require: x ∈ {−1,+1}n
1: while not converged do
2: for i = 1, · · · , n do
3: Let x̃ = x, and then let x̃(i) = −x̃(i)
4: Set x = x̃ if H(x) > H(x̃)
5: end for
6: end while

We repeated the experiment for 20 times. In all 20 trials, the problem with the first type

of relaxation always generated rank one solutions. Thus, the objective values obtained from

these experiments serve as valid upper bounds for the ground-state energy.

We verify the tightness of the relaxation by checking the rank of the solutions from the

convex relaxation of the problem (relaxation types 2 and 3, and Max-Cut relaxation) or

by comparing the lower and upper bounds of the ground-state energy. We observe that

among all 20 experiments, only experiments 1 and 6 are not tight. Thus, in 18 out of 20

trials, the convex relaxation returns the exact ground-state energy of the original problem.

Furthermore, in all cases, our relaxation problems provides much tighter upper and lower

bounds for the ground-state energy than the coordinate descent and Max-Cut relaxation

methods.

2.7.2 Computational speed of the algorithm with low-rank formulation of the

matrix variable

In this section, we examine the efficiency of Algorithm 2 with two types of relaxation specified

in (2.12) and (2.15), on 2-D lattices of size 10 × 10, 20 × 20, 40 × 40, 60 × 60, 80 × 80 and

100× 100. We assume there are two well-separated local clusters N1, N2, each of size 2× 2

on the lattice, and the strength of the corruption is ϵ = 2. The corresponding interaction

matrix is described in (2.32). We impose the local exact/inexact constraint on the one-hop

neighbors (defined in (2.10)) of N1 and N2.

29

Figure 2.2: Lower and upper bounds of the ground-state energy. The smaller of the two
upper bounds is colored red, while the largest of the three lower bounds is colored blue. A
lower bound value is marked with an asterisk (∗) if the relaxation is tight (solution is rank
one).

30

For the relaxation problem with the inexact local constraint, we run Algorithm 2 until the

relative primal feasibility, relative dual feasibility and relative duality gap defined in section

2.5.2 are all below 10−4. For the relaxation problem with the exact local constraint, we run

Algorithm 2 until the relative primal feasibility and relative dual feasibility are below 10−4.

We present the total computation time needed, as well as the computation time needed

in step 2 of Algorithm 2 (the L-BFGS step) for each lattice size, averaged over 12 trials.

As shown in Table 2.2, the computation time for the L-BFGS step scales approximately

linearly with the size of the lattice. However, due to the large amount of time needed for

the Mosek package to solve the M -subproblem for local constraints described in (2.15), the

total computation time remains substantial.

size of lattice 10× 10 20× 20 40× 40 60× 60 80× 80 100× 100

Exact local constraint 11.78 7.89 15.6 28.42 40.29 64.99

Inexact local constraint 2549.8 2882.9 2240.2 3052.6 3081.3 2332.4

Table 2.1: Total computation time of Algorithm 2 (in seconds).

size of lattice 10× 10 20× 20 40× 40 60× 60 80× 80 100× 100

Exact local constraint 3.06 3.58 8.13 19.12 31.07 51.3

Inexact local constraint 14.35 35.64 47.54 90.96 186.54 200.39

Table 2.2: L-BFGS step computation time of Algorithm 2 (in seconds).

2.7.3 The issue of multiple solutions for the proposed relaxation

We have observed from Figure 2.2 that when using a relaxation with the inexact local

constraint, the resulting solution might not be of rank one. One reason for this phenomena

is the potential existence of multiple solutions to the original problem (2.2).

To illustrate this, suppose X1, X2 ∈ Sn+ are two solutions to the original problem (2.2).

Since (2.11) is a relaxed problem for (2.2), there exist two sets of variables {M1
k}

K
k=1 and

31

{M2
k}

K
k=1 such that both (X1, {M1

k}
K
k=1) and (X2, {M2

k}
K
k=1) are feasible for the relaxed

problem (2.11). It is easy to check that any weighted average of these two solutions, i.e.,

(
wX1 + (1− w)X2,

{
wM1

k + (1− w)M2
k

}K
k=1

)
, ∀w ∈ [0, 1] (2.33)

is feasible for the relaxed problem (2.11) as well. Thus, it is possible that Algorithm 2 can

return a PSD variable that is not of rank one, even though the objective value from the PSD

variable is the ground-state energy. This has occurred in experiments 4, 12, 14, 19 and 20 as

illustrated in Figure 2.2.

However, the problem of obtaining a single solution from a linear combination of solutions

remains an open question in the field of convex relaxation. Consequently, we have yet

to develop an extraction algorithm for our relaxed problem. However, we conducted the

following experiment to verify that the issue of multiple solutions does exist for the model

under consideration.

We tested our relaxation on the "corrupted pairs model", as shown in Figure 2.3. Unlike

the model used in section 2.7.1, the local clusters N1, · · · , Nm in the corrupted pairs model

have sizes equal to 1 × 2 or 2 × 1. The primary reason for testing our algorithm on this

model is that the analytic solution of its ground-state is known. Specifically, if Jv,w > 3 for

any v, w in a cluster, then multiple solutions for (2.2) exist.

We conducted an experiment on a 10× 10 lattice with two local clusters N1, N2, each of

size 2×1 or 1×2. We set ϵ = 3 and ran Algorithm 2 with the inexact local constraint for 20

times. We discovered that all the resulting PSD variables lay in the linear space spanned by

the true ground-states. Thus, the issue of multiple solutions does exist for our relaxation.

32

Figure 2.3: Corrupted pairs model on a 2-D lattice.

2.8 Summary

In this chapter, we explored a novel method to recover the ground-state energy for the

Ferromagnetic model with localized corruption. We formulated a relaxed problem that

combines a relatively inexpensive global PSD constraint with several costly local constraints

to accurately capture fluctuations in the corrupted regions. Additionally, we utilized the low-

rank decomposition of the global PSD variable to eliminate the expensive step of performing

a projection onto the PSD cone, reducing the per-iteration cost of the ADMM algorithm

from cubic to linear complexity. Our algorithm was tested on 2-D lattices of varying sizes,

demonstrating its effectiveness on lattices with up to 10000 sites. Furthermore, we evaluated

the tightness of our relaxation by examining the recovered energy and the rank of the solution

on a 10 × 19 lattice. We demonstrated that our relaxation is able to recover the exact

ground-state energy in most cases, and in the remaining cases, it provides an accurate

"confidence interval" for the ground-state energy. Lastly, we analyzed a potential reason

why the relaxation does not always yield a solution of rank one, showing that our algorithm

can return a linear combination of the ground truths. Extracting a single solution from this

linear combination will be a focus for future research.

33

CHAPTER 3

CONVEX RELAXATION FOR QUANTUM SPIN PROBLEM

In this chapter, we explore a novel method for studying the ground-state energy of the quan-

tum many-body problem, following the work in [59]. The quantum many-body problem

involves analyzing systems composed of a large number (denoted by N) of interacting quan-

tum particles. The Hamiltonian, a fundamental operator in these systems, describes their

total energy. Among the many questions posed in quantum many-body problems, determin-

ing the ground-state is crucial for various applications across physics, chemistry, material

sciences, and beyond. The ground-state problem involves identifying a configuration with

the lowest energy within a quantum system and determining the corresponding energy asso-

ciated with it. From a mathematical standpoint, this requires finding the lowest eigenvalue

and its associated eigenvector of the Hamiltonian, which is a Hermitian operator defined on

a Hilbert space. Specifically, we aim to find the wavefunction Φ that solves the following

optimization problem:

E0 := inf
Φ∈Q

{
⟨Φ, ĤΦ⟩, ⟨Φ,Φ⟩ = 1

}
, (3.1)

where Q denotes the underlying Hilbert space. As we will see soon, this problem can be

written equivalently as a standard SDP problem, similar to the ground-state energy problem

we considered for the Ferromagnetic Ising model with localized corruption in chapter 2. The

primary challenge of the problem in chapter 2 arises from the rank constraint imposed on

the PSD variable. In this chapter, however, the main challenge arises from the exponential

growth of the dimension of the Hilbert space Q with the system’s size, i.e., the number of

interacting quantum particles N in the system, making it infeasible to solve the eigenvalue

problem (3.1) directly using standard numerical methods for large quantum systems.

Various methods have been proposed to overcome this difficulty, which can be categorized

into several classes. One such class is Quantum Monte-Carlo, which forgoes representing

34

the full wavefunction and instead maintains a set of random walkers to calculate quantum

expectation [14, 15]. Another class is wavefunction methods, which usually restrict the

search space to a small subspace of the exponentially large Hilbert space [47, 46, 16]. A

third class of methods involves reframing the minimization problem using reduced density

matrices (RDM), in a manner similar to mean-field methods [11]. To understand this class of

methods, note that the ground-state energy problem (3.1) can be equivalently reformulated

as an optimization problem over the density operators (or density matrices):

E0 := inf
ρ∈D(Q)

Tr[Ĥρ], (3.2)

where D(Q) denotes the collection of all density operators on Q, i.e., all PSD operators on

Q with unit trace. Subsequently, the loss function in (3.2) is equivalently rewritten as a

linear function of the "moments" of the density matrices. After this transformation, certain

necessary constraints that ensure these moments originate from a true density matrix are

lifted, leading to a relaxed convex optimization problem that can be solved within polynomial

time. This type of method is guaranteed to return a lower bound of the true ground-state

energy, i.e., a lower bound on the objective value obtained in (3.2). A well-known application

of this class of methods is the 2-RDM method [3, 13, 19, 40, 41, 42, 43, 61].

Another approach to addressing the quantum many-body problem is through quantum

embedding theories [56]. These theories involve partitioning the system into smaller regions

of interest, which can be effectively treated using highly accurate yet computationally inten-

sive methods. Concurrently, the local problems are glued together self-consistently through

a global, less accurate but more computationally efficient approach. Numerous techniques

fall under this category, such as dynamical mean-field theory [24, 33] and density matrix em-

bedding theory [31, 32] to name a few. Recently, the variational embedding method [37, 30]

has emerged. As an alternative to using the "moments" as the optimization variables in the

2-RDM method, the variational embedding method reformulates the loss function in (3.2)

35

in terms of the "quantum marginals" derived from a full density matrix. This approach

retains the inherent constraints on the quantum marginals, ensuring they remain accurate

local constraints. Simultaneously, the global constraint that all quantum marginals originate

from a single global quantum density matrix is replaced with a necessary PSD constraint. In

this sense, this method can be seen as a hybrid of embedding methods and RDM methods.

In this paper, we adopt a strategy similar to the variational embedding method, where

we try to determine local cluster density matrices (quantum marginals) and combine them

through a global PSD constraint. The difference is that the local cluster density matrices

are represented through their moments. In this case, the decision variable is a PSD mo-

ment matrix. The main point of this paper is to propose a method to accelerate the PSD

optimization problem therein. Typically, the most computationally expensive step in such

an optimization problem is the projection onto the PSD cone, which scales cubically. In

[30], translation invariance of the Hamiltonian is exploited in order to diagonalize the PSD

matrix in the Fourier basis with a linear time complexity. However, it is unclear how such

computational scaling can be achieved for general systems.

Contributions:

For spin systems, we propose representing the dual variable of the PSD moment matrix

with a specific type of hierarchical matrix [8]. In our experiments, such a structure of the

dual matrix seems to hold for the transverse field Ising model, even at the quantum phase

transition point. We show that with such a structure of the dual variable, updates within an

augmented Lagrangian method can be carried out with quadratic complexity. Furthermore,

if one assumes the primal moment matrix also takes the form of a hierarchical PSD matrix,

near-linear per-iteration complexity can be achieved. Our designed algorithm is able to solve

the 1-D transverse field Ising model for systems of up to 4000 sites, and recover a lower bound

of the ground-state energy with a relative error of approximately 2% compared to the true

value.

36

3.1 Problem formulation

Let’s consider a spin-12 quantum many-body problem with N sites, each having a quantum

state space Qi := C2, and the global quantum space is defined by Q := ⊗N
i=1Qi ≃ C2N . Let

Hi be any Hermitian operator Qi → Qi, and Hij be any Hermitian operator Qi ⊗ Qj →

Qi ⊗ Qj . We use Ĥi to denote the operator Q → Q obtained by tensoring Hi by the

identity operators on all sites k ̸= i, and similarly, we use Ĥij to denote the operator Q→ Q

obtained by tensoring Hij by the identity operators on all sites k /∈ {i, j}. Then, we consider

a pairwise Hamiltonian Ĥ : Q→ Q of the form

Ĥ =
∑

1≤i≤N
Ĥi +

∑
1≤i<j≤N

Ĥij , (3.3)

and Ĥ is a Hermitian matrix of size 2N . Our goal is to determine the ground-state energy

of the system as defined in (3.1). Now, let’s delve into a specific example.

Example 3. Consider the Pauli matrices, and the 2-dimensional identity matrix defined

below:

σx =

0 1

1 0

 , σy =

 0 i

−i 0

 , σz =

1 0

0 −1

 , I2 =

1 0

0 1

 . (3.4)

These matrices form a basis for the real vector space of Hermitian operators on C2. Fur-

thermore, let σx/y/zi denote the operator obtained by tensoring σx/y/z on the i-th site with

identities I2 on all other sites, i.e.

σαi := I
⊗(i−1)
2 ⊗ σα ⊗ I

⊗(N−i)
2 , α ∈ {x, y, z}, (3.5)

and let I : Q→ Q be the identity operator on Q. The 1-D transverse field Ising (TFI) model,

37

a spin-12 quantum model, is defined by its Hamiltonian:

ĤTFI = −h
N∑
i=1

σxi −
N∑
i=1

σzi σ
z
i+1, (3.6)

where the TFI model is assumed to have periodic boundary conditions, i.e., σ
x/y/z
N+1 should

be identified with σ
x/y/z
1 , and h ∈ R is a scalar parameter controlling the strength of the

external magnetic field along the x axis. To demonstrate that the Hamiltonian defined in

equation (3.6) is a special case of the Hamiltonian in equation (3.3), we can observe that

the term −hσxi in (3.6) corresponds to the Ĥi component in (3.3), while −σzi σ
z
i+1 in (3.6)

corresponds to the Ĥi,i+1 component in (3.3). For indices i and j where |i− j| ≥ 2, Ĥij is

simply the zero matrix.

3.1.1 Notations

We use In to denote the identity matrix of size n×n. Additionally, we use 0m,n to denote a

zero matrix of size m×n, and when the context is clear, we will omit m and n. Furthermore,

let Sn be the space of real symmetric matrices of size n×n, and let Sn+ be the PSD matrices

in Sn. Similarly, let Hn be the space of Hermitian matrices of size n× n, and let Hn
+ be the

PSD matrices in Hn. For any matrix X in Sn or Hn, we may also use X ⪰ 0 to denote that

X is PSD.

When discussing a matrix A, the notation A(p, q) refers to its (p, q)-th entry. Likewise,

for a vector x, x(p) denotes its p-th entry. When dealing with block matrices, we use Aij

to represent its (i, j)-th block. For a complex-valued matrix A, Re(A) and Im(A) denote its

real and imaginary parts, respectively. In addition, for a linear operator A on matrices or

vectors, we denote its adjoint by A∗.

38

3.2 Preliminaries

We first rewrite the ground-state energy problem (3.1) for a spin-12 quantum many-body

problem with N sites as an optimization problem over the density operator ρ, as shown in

(3.2):

E0 = min
ρ∈H2N

+

Tr(Ĥρ), Tr(ρ) = 1. (3.7)

Here, the space of Hermitian PSD operators on Q ≃ C2N can be identified with H2N
+ . As

we consider Hamiltonians with only pairwise interactions in (3.3), the loss function in (3.7)

is equal to ∑
1≤i≤N

Tr(Ĥiρ) +
∑

1≤i<j≤N
Tr(Ĥijρ). (3.8)

In the context of quantum spin-12 systems, without sacrificing generality, we assume that

each Ĥi and Ĥij can be decomposed according to the following formula

Ĥi =
∑

α∈{x,y,z}
aαi σ

α
i , 1 ≤ i ≤ N,

Ĥij =
∑

α,β∈{x,y,z}
a
αβ
ij σαi σ

β
j , 1 ≤ i < j ≤ N,

for real constants {aαi } and {aαβij }. Consequently the loss function in (3.8) can be reformu-

lated as:

∑
1≤i≤N

Tr(Ĥiρ) +
∑

1≤i<j≤N
Tr(Ĥijρ) =

∑
1≤i≤N

∑
α∈{x,y,z}

aαi Tr(σ
α
i ρ)

+
∑

1≤i<j≤N

∑
α,β∈{x,y,z}

a
αβ
ij Tr(σαi σ

β
j ρ),

(3.9)

which is a weighted sum of terms in {Tr(σαi ρ)}i,α and {Tr(σαi σ
β
j ρ)}i<j,α,β .

39

Let

vN :=
(
σx1 , σ

y
1 , σ

z
1 , · · · , σ

x
N , σ

y
N , σzN , I

)
(3.10)

be a vector of operators of length (3N+1). For any density operator ρ ∈ H2N
+ and Tr(ρ) = 1,

define a square matrix Mρ of size (3N + 1)× (3N + 1) by:

Mρ(i, j) := Tr(vN (i)vN (j)∗ρ), 1 ≤ i, j ≤ 3N + 1. (3.11)

As all operators in vN are Hermitian, it is apparent that the loss function in (3.9) is a linear

function of the matrix Mρ. For any Hamiltonian Ĥ with only pairwise interactions, let J ∈

S3N+1 be its corresponding real symmetric matrix such that the equality Tr(Ĥρ) = ⟨J,Mρ⟩

holds for any density operator ρ, and thus we have a new formulation of the ground-state

energy problem:

minimize
M

⟨J,M⟩,

subject to M = Mρ for some ρ ∈ D(Q),

(3.12)

with Q ≃ C2N . However, the constraint in (3.12) on the moment matrix M remains overly

restrictive and challenging to handle. Our objective is to retain a subset of the necessary

conditions implied by the constraint in (3.12), and formulate a relaxed optimization problem

that not only returns a reasonable lower bound for the exact ground-state energy, but also

has a fast algorithm to solve it, even for large systems.

Remark 1. In the analysis of a system with N sites, we frequently use Hermitian block

matrices of size (3N + 1) × (3N + 1), such as the Mρ matrix defined above. Let A be one

such matrix. We partition A into 4 parts based on the locations of its entries:

A :=

 A(2) A(1)

A(1)∗ A(0)

 , (3.13)

40

where A(2) ∈ H3N , A(1) ∈ C3N and A(0) ∈ R. Furthermore, we adopt the notation A
(2)
ij for

1 ≤ i, j ≤ N to represent the (i, j)-th 3×3 block of A(2), and A
(1)
i for 1 ≤ i ≤ N to represent

the i-th 3× 1 block of A(1). To summary this notation, consider the following representation

of A:

A =



A
(2)
11 A

(2)
12 · · · A

(2)
1N A

(1)
1

A
(2)
21 A

(2)
22 · · · A2N A

(1)
2

...
...

...

A
(2)
N1 A

(2)
N2 · · · A

(2)
NN A

(1)
N

A
(1)
1

∗
A
(1)
2

∗
· · · A

(1)
N

∗
A(0)


. (3.14)

For the ground-state energy problem (3.12), if M = M(ρ) for some ρ ∈ D(Q), and we

partition M in the form of (3.14), we can verify that for 1 ≤ i, j ≤ N :

M
(2)
ij =


Tr(σxi σ

x
j
∗ρ) Tr(σxi σ

y
j
∗
ρ) Tr(σxi σ

z
j
∗ρ)

Tr(σ
y
i σ

x
j
∗ρ) Tr(σ

y
i σ

y
j
∗
ρ) Tr(σ

y
i σ

z
j
∗ρ)

Tr(σzi σ
x
j
∗ρ) Tr(σzi σ

y
j
∗
ρ) Tr(σzi σ

z
j
∗ρ)

 , (3.15)

and for 1 ≤ i ≤ N :

M
(1)
i =


Tr(σxi ρ)

Tr(σ
y
i ρ)

Tr(σzi ρ)

 , (3.16)

and

M (0) = Tr(Iρ). (3.17)

From (3.5), we can derive for any 1 ≤ i < j ≤ N , and for any α, β ∈ {x, y, z}, the

operator σαi σ
β
j

∗
takes the following form:

σαi σ
β
j

∗
= I
⊗(i−1)
2 ⊗ σα ⊗ I

⊗(j−i−1)
2 ⊗ σβ

∗ ⊗ I
⊗(N−j)
2 , (3.18)

41

and for i = j, we have:

σαi σ
β
i

∗
= I
⊗(i−1)
2 ⊗ (σασβ

∗
)⊗ I

⊗(N−i)
2 . (3.19)

3.3 Convex relaxation for the quantum spin problem

In this section, we propose a convex relaxation of the ground-state energy problem (3.12)

based on only enforcing several necessary constraints. These necessary constraints comprise

of various linear constraints on local blocks of the moment matrix M , along with a global

PSD constraint. Our relaxed problem takes the following form:

(P) min
{
⟨J,M⟩ | A(M) = b, M ∈ H3N+1

+

}
. (3.20)

Here, A is a linear map defined from H3N+1 to S3N+1×R3N , and b = (b1, b2) ∈ S3N+1×R3N

is given data. We will discuss these constraints in more details in section 3.3.1.

The dual problem of (P) takes the form of:

(D) min
{
⟨−b,Λ⟩ | S +A∗(Λ) = J, S ∈ H3N+1

+ , Λ = (Λ1,Λ2) ∈ S3N+1 × R3N
}
,

(3.21)

where A∗ is the adjoint of A. Here, for any two elements x = (x1, x2) and y = (y1, y2) in

the product space S3N+1 × R3N , their inner product ⟨x, y⟩ is defined by:

⟨x, y⟩ := ⟨x1, y1⟩+ ⟨x2, y2⟩.

In addition, for x = (x1, x2) ∈ S3N+1×R3N , we occasionally use x/a for a scalar a to denote

(x1/a, x2/a).

42

3.3.1 Local linear constraints on the primal variable

The operators in (3.10) have some relations between them due to the properties of the Pauli

matrices and I2 in (3.4). We consider relating these operators with polynomial of operators

up to degree 2:

p({σαi }) = 0, deg(p) ≤ 2,

which results in linear constraints on the moment matrix M in (3.11). These linear con-

straints on M are derived by taking the inner product of p({σαi }) and a Hermitian PSD,

unit-trace density operator ρ, and are summarized by the equality A(M) = b in (P). The

correspondence between polynomial relations of operators and linear constraints on M is

detailed in Table 3.1, in which the linear operator odiag(A) : H3 → C3, which extracts the

off-diagonal entries of a 3× 3 matrix, is defined as follows:

odiag(A) :=


A(2, 3)

A(3, 1)

A(1, 2)

 . (3.22)

Relations between the operators Constraints on M

σαj = σαj
∗,

j ∈ [N], α ∈ {x, y, z} Im(M
(1)
j) = 0, j ∈ [N]

σαj σ
β
k

∗
=
(
σαj σ

β
k

∗)∗
,

j, k ∈ [N], j ̸= k, α, β ∈ {x, y, z}
Im(M

(2)
jk) = 0, j, k ∈ [N], j ̸= k

σαj σ
β
j

∗
= iσ

γ
j ,

(α, β, γ) = (x, y, z), (y, z, x), (z, x, y), j ∈ [N]
odiag(M (2)

jj) = iM
(1)
j , j ∈ [N]

σαj σ
α
j
∗ = I,

α, β ∈ {x, y, z}, α ̸= β, j ∈ [N]
diag(M (2)

jj) = M (0) = 1, j ∈ [N]

Table 3.1: Details of the local linear constraints on M .

As M is Hermitian, and M
(1)
j is real-valued for all j ∈ [N], the last two sets of constraints

43

imply Re(M (2)
jj) = I3 and M (0) = 1. Let B(A) : H3 → R3 be defined as:

B(A) := Im(odiag(A)). (3.23)

The linear constraints in Table 3.1 can be summarized by:

1. Im(M
(1)
j) = 0, j ∈ [N].

2. Im(M
(2)
jk) = 0, j, k ∈ [N], j ̸= k.

3. Re(M (2)
jj) = I3, j ∈ [N].

4. M (0) = 1.

5. B(M (2)
jj) = M

(1)
j , j ∈ [N].

3.3.2 Global positive semidefinite constraint on the primal variable

In addition to the local linear constraints on the moment matrix M , we can also derive a

global PSD constraint on M as follows. Let a := (ax1 , a
y
1, a

z
1, · · · , a

x
N , a

y
N , azN , a0)

∗ be any

complex-valued vector of size (3N + 1). Consider an operator Ô : Q → Q (not necessarily

Hermitian) defined by

Ô :=
N∑
i=1

∑
α∈{x,y,z}

aαi σ
α
i + a0I.

Now ÔÔ∗ ⪰ 0, so

Tr(ÔÔ∗ρ) ≥ 0.

Expanding the above, we have

0 ≤ Tr(ÔÔ∗ρ)

= Tr
[(∑

i

∑
α∈{x,y,z}

aαi σ
α
i + a0I

)(∑
j

∑
β∈{x,y,z}

a
β
j

∗
σ
β
j

∗
+ a∗0I

∗)ρ]
44

=
∑

i,j,α,β

aαi Tr(σαi σ
β
j

∗
ρ) a

β
j

∗
+
∑
i,α

aαi Tr(σαi ρ) a0
∗+

∑
j,β

a0 Tr(σ
β
j

∗
ρ)a

β
j

∗
+ a0(a0)

∗.

= a∗Ma.

The second equality holds because I∗ = I, and Tr(Iρ) = 1, as ρ has unit trace. Since the

choice of the vector a is completely arbitrary, it follows that M must be PSD.

3.4 Standard augmented Lagrangian method

A common approach to solve either the primal problem (3.20) or the dual problem (3.21) is

the Augmented Lagrangian method [7, 54, 55]. In the case of the dual problem (3.21), we

first form the augmented Lagrangian function Lσ
(
S,Λ,M

)
with a penalty parameter σ > 0,

for dual variables S ∈ H3N+1
+ , Λ ∈ S3N+1 × R3N , and primal variable M ∈ H3N+1:

Lσ(S,Λ,M) := ⟨−b,Λ⟩+ σ

2
∥S +A∗(Λ)− J +M/σ∥2F −

∥M∥2F
2σ

. (3.24)

Then, we iterate Algorithm 6 until convergence. In the following subsection, we provide a

detailed explanation of how to perform the minimization sub-problem in Algorithm 6. It

is important to note that all linear constraints in (P) are local in nature (see the linear

constraints below equation (3.23)), making it straightforward to choose an initial M that

satisfies all the linear constraints.

Algorithm 6 ALM for the dual problem
Require: S,Λ, and M satisfying linear constraints in (P), and penalty parameter σ > 0
1: while not converged do
2: S,Λ ← argminS⪰0,Λ Lσ(S,Λ,M)

3: M ←M + σ
(
S +A∗(Λ)− J

)
4: end while

45

3.4.1 Solving the joint optimization problem

In this section, we provide details on how to solve the sub-problem involving both S and Λ in

Algorithm 6. Since the sub-problem is unconstrained with respect to Λ, we first eliminate Λ

from the sub-problem using the first-order optimality condition of Λ, and express the optimal

Λ in terms of S and M . We are then left with a minimization sub-problem that involves only

one variable, S, and the optimization of this sub-problem is the topic of the next section.

For any fixed primal variable M and dual variable S, the first order condition for the loss

function (3.24) requires the optimal dual variable Λ to take the following form:

σAA∗(Λ) + σA(S − J +M/σ)− b = 0,

and consequently the optimal Λ as a function of S and M is:

Λ(S,M) :=
(
AA∗

)−1(A(J − S −M/σ) + b/σ
)
. (3.25)

By substituting the optimal Λ in (3.25) into the loss function in (3.24), we arrive at a

loss function which involves only one PSD variable S, and a fixed primal variable M :

f(S,M) = ⟨−b,Λ(S,M)⟩+ σ

2
∥S +A∗(Λ(S,M))− J +M/σ∥2F . (3.26)

For the particular dual problem (D) we have, we can show that f(S,M) takes the following

equivalent form, up to a constant independent of S:

f(S;M) = Tr(S) +
σ

2

∑
i̸=j

∥Re(S(2)
ij) + Re(M (2)

ij)/σ − J
(2)
ij ∥

2
F

+
σ

2

∑
i

∥Re
(
J
(1)
i − S

(1)
i −M

(1)
i /σ

)
+ B

(
J
(2)
ii − S

(2)
ii −M

(2)
ii /σ

)
∥2F ,

(3.27)

where the linear operator B is defined in (3.23), and the details of the calculation are de-

46

ferred to Appendix A. Thus, solving the sub-problem in Algorithm 6 amounts to solving the

following optimization problem involving one PSD variable S:

minimize
S⪰0

f(S,M). (3.28)

In Algorithm 6, it is worth noting that the primal variable M always satisfies the linear

constraint in (P) during the updates. This arises from the property that ALM always gives

dual-feasible variables [17] ((P) is the dual problem of (D)).

A significant challenge in directly solving (3.28) arises from the PSD constraint imposed

on S. While it’s feasible to solve a standard SDP problem using an ADMM-type method

[54, 55], this approach involves computing the projection onto the PSD cone, and the compu-

tational complexity of this projection is cubic, making it impractical for large-scale problems.

In [12], the authors propose a solution by introducing a change of variables for the PSD

variable in the form of S = RR∗. This strategy effectively circumvented the difficult PSD

constraint in the optimization problem, converting it into an unconstrained optimization

problem. Moreover, when low-rank solutions of the SDP problem exist, the number of

columns of R is chosen minimally, enabling the development of an efficient algorithm using

the limited-memory BFGS algorithm. However, experiments conducted using the CVX

package [26] to directly solve either the primal problem (3.20) or the dual problem (3.21) for

smaller systems indicate a linear increase in the rank in N of both the primal PSD variable

M and the dual PSD variable S. Hence, employing a vanilla low-rank decomposition of M

or S to solve either the primal or dual problem via the limited-memory BFGS algorithm is

unlikely to yield substantial reductions in the computation time.

Fortunately, the dual PSD variable S exhibits a hierarchically low-rank structure that

can be exploited to reduce the computational complexity of the ALM algorithm. Exploiting

such a structure is the focus of subsequent sections.

47

3.5 Hierarchical dual positive semidefinite variable

In this section, we propose a structure for dual variable S in Algorithm 6, that allows us

to perform the ALM updates with a reduced time complexity. For a 1-D TFI model (3.6)

with small system size N = 128 and field strength parameter h = 1, we solve (3.21) using

the CVX package. We show a heatmap of the PSD variable S in Figure 3.1. We can see

from the plot that even though S is not low-rank, it is nearly zero except on a few diagonals

near the main diagonal. This observation inspired us to represent the dual PSD variable S

using a hierarchical low-rank matrix [8], resulting in an algorithm with O(N2) scaling of the

per-iteration time complexity. In this section, for simplicity, we assume that the system size

N is a power of 2.

3.5.1 Approximating the dual positive semidefinite variable with a

hierarchical matrix

Let S denote the solution obtained from the dual problem (3.21) with N sites. We first

look at the S(2) block of the matrix S (as defined in (3.14)). While our objective is to

use a hierarchical matrix to represent S(2), we must also ensure that S(2) remains a PSD

matrix. To this end, we use m levels of hierarchies to characterize S(2). For the i-th level,

50 100 150 200 250 300 350

50

100

150

200

250

300

350 0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.1: Heatmap of the dual PSD variable, system size N = 128.

48

one defines a block diagonal matrix having ni diagonal blocks, where each block is of size

ci × ci. Furthermore, we want the block diagonal matrix to be PSD. Therefore, for the i-th

level, we form a matrix:



y
(i)
1 (y

(i)
1)∗

y
(i)
2 (y

(i)
2)∗

. . .

y
(i)
ni (y

(i)
ni)
∗


∈ H3N

+ , y
(i)
j ∈ Cci×ri , 1 ≤ j ≤ ni.

This naturally requires nici = 3N , since the size of the matrix matrix S(2) is 3N × 3N .

Then, as an approximation to S(2), we define

H(2)(y) := y(1)(y(1))∗ +

y
(2)
1 (y

(2)
1)∗ 0

0 y
(2)
2 (y

(2)
2)∗



+ · · ·+



y
(m)
1 (y

(m)
1)∗ 0 · · · 0

0 y
(m)
2 (y

(m)
2)∗ 0

...

0 · · · 0 y
(m)
nm (y

(m)
nm)∗


, (3.29)

with

y :=
{
y(1), y(2), · · · , y(m)}, and y(i) :=



y
(i)
1

y
(i)
2
...

y
(i)
ni


∈ C3N×ri .

Our proposal involves representing S(2) with H(2)(y), where the number of levels m, and

the number of columns for each level ri for 1 ≤ i ≤ m are determined based on the desired

accuracy of the algorithm.
49

To approximate the full matrix S, which has one extra row and extra column compare

to S(2), we just pad H(2)(y) with an extra row and column of zeros, plus a low-rank matrix:

H(y, z) :=

H(2)(y) 03N×1

01×3N 01×1

+ zz∗ ≈ S, (3.30)

where y :=
{
y(1), · · · , y(m)

}
is a set of matrices with y(i) ∈ C3N×ri , and z ∈ C(3N+1)×rz .

Let Z := zz∗ ∈ H3N+1
+ . We partition the low-rank matrix zz∗ into 4 blocks based on the

locations of its entries as in (3.13), and we use (zz∗)(2), (zz∗)(1),(
(zz∗)(1)

)∗ and (zz∗)(0) to denote its blocks. Additionally, we use H(2)
ij (y) and (zz∗)(2)ij for

1 ≤ i, j ≤ N to denote the (i, j)-th 3× 3 block of H(2)(y) and (zz∗)(2), and use (zz∗)(1)i for

1 ≤ i ≤ N to denote the i-th 3× 1 block of (zz∗)(1).

Remark 2. Much like the low-rank representation of PSD matrices discussed in chapter 2,

the expressive power of the hierarchical representation of PSD matrices also depends on the

parameters chosen for the representation. In chapter 2, we represent a PSD matrix X ∈ Sn+

via the low-rank factorization of the form X = xxT , with x ∈ Rn×r, and the parameter r

controls the expressive power of this representation. If r is set to be equal to n, then all PSD

matrices can be written as xxT for some x ∈ Rn×r, and as r decreases, the expressive power

of the low-rank representation also decreases.

For the hierarchical representation of PSD matrices, it is easy to see that any S ∈ H3N+1
+

can be represented by one level of hierarchy, where the number of columns r in this level is

equal to 3N , plus one low-rank matrix. This representation is essentially the same as the

low-rank representation of S with r = 3N + 1.

On the other hand, neither representations naturally offers an advantage in terms of

computational speed. If we use the number of parameters used in the representation as an

approximate measure of computational speed, the computational complexity is approximately

O(nr) for the low-rank representation. A significant improvement in computational speed
50

can only be achieved if we choose a rank r such that the representation is accurate enough,

while r ≪ n.

Similarly, for a hierarchical representation of PSD matrices with m levels, where the

number of columns in each level and in the rank-correction term are r1, r2, · · · , rm, rz, the

total number of variables needed for this hierarchical representation is (3N
∑m

i=1 ri + (3N +

1)rz). An improvement in computational speed is possible only if we can find m, r1, · · · , rm, rz

such that the hierarchical representation provides an accurate enough approximation to the

PSD matrix of interest, while
∑m

i=1 ri + rz ≪ N .

The next section presents a numerical study to investigate the existence of such a repre-

sentation. In the following sections, we assume that each ni is a power of two, specifically

ni = 2i−1.

3.5.2 Existence of a data-sparse hierarchical matrix representation for the

dual positive semidefinite variable

To investigate the existence of a data-sparse and relatively accurate hierarchical matrix

representation for the dual PSD variable S, we conducted an experiment as follows. We first

solved the dual problem (3.21) with the Hamiltonian specified in (3.6), with system sizes

N = 64, 128, 256, and a field strength parameter h = 1. For these problem sizes, we solved

for S in the full PSD cone rather easily with an accuracy of 10−4. Then, to see how well

these PSD S can be approximated by a hierarchical structure, we fitted the resulting PSD

dual variable S with the structure outlined in (3.30). Let S∗ denote the solution to the dual

problem (3.21). Besides, let y denote a set of matrices and z be a complex-valued matrix

that contain the information for a hierarchical matrix of the corresponding size, with number

of levels m = 3, 4, 5 respectively for N = 64, 128, 256. The number of columns ri in each

level and rz were fixed to be 20 for all system sizes. We solved the following optimization

51

problem for system size N = 64, 128, 256 for the variables y and z:

min
y,z

Err2S :=
∥H(y, z)− S∗∥2F

∥S∗∥2F
, (3.31)

by running the limited-memory BFGS algorithm provided in the Manopt toolbox [10] for

1000 iterations. The approximation errors are given in Table 3.2. From the table, we can

see that even with fixed ri, rz ≤ 20, we obtain a similar accuracy for different system sizes.

We therefore assume one can use a fixed rank approximation in the hierarchical matrix even

for large system sizes.

N 64 128 256
ErrS 3.0968e− 04 3.7045e− 04 4.6712e− 04

Table 3.2: Relative errors of the fitted dual PSD variables.

3.5.3 Update rule with a hierarchically structured matrix variable

By substituting the PSD variable S in (3.24) with a data-sparse hierarchical PSD repre-

sentation, it seems like we can eliminate the challenging PSD constraint on S, significantly

reducing the per-iteration computational costs. With this hierarchical representation of S,

when performing Algorithm 6 where one needs to minimize the augmented Lagrangian func-

tion Lσ(S,Λ;M) in (3.24), we now solve

minimize
y,z

Lσ(H(y, z),Λ(H(y, z),M);M) (3.32)

where the hierarchical matrix H(y, z) is defined in (3.30) and the optimal Λ(H(y, z),M) is

defined in (3.25). Here, y is a collection of matrices y :=
{
y(1), y(2), · · · , y(m)

}
for y(i) ∈

C3N×ri and z ∈ C(3N+1)×rz , with pre-specified number of levels m and number of columns

r1, · · · , rm, rz. The resulting algorithm is outlined in Algorithm 7.

52

Algorithm 7 Pseudo code for ALM for the dual problem with a hierarchical dual PSD
variable
Require: y :=

{
y(1), y(2), · · · , y(m)

}
, z, M satisfying the linear constraint in (P), and

penalty parameter σ > 0
1: while not converged do
2: y, z ← argminy,zLσ(H(y, z),Λ(H(y, z),M);M)
3: S ← H(y, z)
4: Compute Λ(S,M) according to formula (3.25)
5: M ←M + σ

(
S +A∗(Λ(S,M))− J

)
6: end while

We now conduct a complexity analysis of Algorithm 7, examining its computational

scaling step by step. Throughout this subsection, we approximate the PSD dual variable

S ∈ H3N+1
+ using a hierarchical structure constructed from y :=

{
y(1), · · · , y(m)

}
and z,

where each y(i) ∈ C3N×r and z ∈ C(3N+1)×r. We assume the number of levels m scales

logarithmically with the system size N , and the number of columns in each level r is kept a

constant.

We start by analyzing the complexity of approximately solving the sub-problem in Algo-

rithm 7 at line 2. To tackle this sub-problem, we run the limited-memory BFGS algorithm

available in the Manopt toolbox for a fixed number of steps. The main computational

burden for the limited-memory BFGS algorithm is the evaluation of the loss function, which

is equal to f(H(y, z);M) in (3.27), up to a constant independent of y and z. Therefore,

it suffices to determine the computational complexity of evaluating f(H(y, z);M) as N in-

creases. We first rewrite the objective f(H(y, z);M) in (3.32) as the sum of two parts,

f(H(y, z);M) = f1(y, z;M) + f2(y, z;M), with

f1(y, z;M) :=
σ

2
∥Re(H(2)(y)) + Re((zz∗)(2)) + Re(M (2))/σ − J(2)∥2F , (3.33)

53

and

f2(y, z;M) : = f(H(y, z);M)− f1(y, z;M)

= Tr(H(y, z))− σ

2

∑
i

∥Re(H(2)
ii (y)) + Re((zz∗)(2)ii) + Re(M (2)

ii)/σ − J
(2)
ii ∥

2
F

+
σ

2

∑
i

∥Re
(
J
(1)
i − (zz∗)(1)i −M

(1)
i /σ

)
+

B
(
J
(2)
ii −H

(2)
ii (y)− (zz∗)(2)ii −M

(2)
ii /σ

)
∥2F .

(3.34)

The second equality holds because of the definition of f(H(y, z);M) in (3.27), and the

representation of H(y) and zz∗ as block matrices is outlined in the comment that follows

(3.30).

By splitting the loss function f , we reveal that the computational bottleneck arises pri-

marily from computing inner products of matrices within f1. As for the residual portion of

the loss in f2, it is apparent from its definition that f2 depends solely on a subset of O(N)

elements within H(2)(y) and zz∗. Moreover, computing any element in H(2)(y) or zz∗ from

y and z incurs a computational cost at most O(mr), and consequently, the computational

complexity for evaluating f2 is O(Nmr), which scales approximately linearly with the system

size.

On the other hand, evaluating f1 involves three terms: ⟨Re(H(2)(y) + (zz∗)(2)), J(2)⟩,

⟨Re(H(2)(y) + (zz∗)(2)),Re(M (2))⟩ and ⟨Re(H(2)(y) + (zz∗)(2)),Re(H(2)(y) + (zz∗)(2))⟩, up

to a constant independent of y and z. For many well-known spin-12 quantum models, the J

matrix associated with its Hamiltonian typically contains only O(N) many non-zero entries,

making the computational cost for the first term scale linearly with the system size N . For

the third term, noting that the real part of a matrix A is equal to the average of A and its

54

complex conjugate Ā, we get:

Re(H(2)(y)) =
1

2

(
H(2)(y) +H(2)(y)

)
,

Re((zz∗)(2)) =
1

2

(
(zz∗)(2) + (zz∗)(2)

)
.

Using Proposition 1, the third term’s complexity is O(Nm2r2). It turns out that the most

time-consuming aspect in Algorithm 7 at line 2 arises from computing the second term.

Without additional assumptions on M , the time complexity for the inner product between

a dense matrix Re(M (2)) and a hierarchical matrix is O(N2). Moreover, if the number of

levels m in the hierarchy scales logarithmically with the system size N , and the number of

columns r within each level remains constant, the complexity of all other terms in f is at

most O(N log2N).

Additionally, lines 3-5 in Algorithm 7, which update the primal variable M , also have an

O(N2) scaling. To reduce the time complexity for each ALM iteration, our next step is to

represent the primal variable M with a hierarchical structure, aiming for an algorithm with

almost linear per-iteration scaling.

Proposition 1. Suppose we have two sets of matrices

a :=
{
a(1), a(2), · · · , a(m)}, a(i) ∈ C3N×r, 1 ≤ i ≤ m,

b :=
{
b(1), b(2), · · · , b(m)}, b(j) ∈ C3N×r, 1 ≤ j ≤ m,

and two rank correction matrices

c ∈ C(3N+1)×r, d ∈ C(3N+1)×r.

55

The complexity of evaluating the inner product

〈
H(2)(a) + (cc∗)(2),H(2)(b) + (dd∗)(2)

〉
(3.35)

is O(Nm2r2).

Proof. The inner product in (3.35) can be split into three groups: the inner product between

two hierarchical matrices, the inner product between one hierarchical matrix and one low-

rank matrix, and the inner product between two low-rank matrices. It is apparent that the

inner product between low-rank matrices of the form ⟨(cc∗)(2), (dd∗)(2)⟩ can be computed in

O(Nr2) time. For the inner product between two hierarchical matrices, it can be rewritten

using the following form from the definition of the hierarchical matrix in (3.29):

〈
H(2)(a),H(2)(b)

〉
=

m∑
i=1

m∑
j=1

⟨a block-diagonal matrix with block size equal to ci × ci,

a block-diagonal matrix with block size equal to cj × cj⟩,

(3.36)

and the inner product of block-diagonal matrices can be written as nk many inner products

of low-rank matrices of size ck × ck, whose ranks are equal to r. Here k = max(i, j).

Consequently, the complexity of the inner product of two block-diagonal matrices in (3.36)

is O(nkckr
2) = O(Nr2), and the overall complexity of (3.36) is O(Nm2r2).

The inner product between one hierarchical matrix and one low-rank matrix can be

analyzed similarly as for (3.36), and we can show that its complexity is O(Nmr2). In

conclusion, the complexity of (3.35) is O(Nm2r2).

56

3.6 Hierarchical primal positive semidefinite variable

As analyzed in section 3.5.3, Algorithm 7 requires repeatedly computing the inner product

of Re(M (2)) and hierarchical matrices in the limited-memory BFGS algorithm, which is

computationally intensive due to the lack of structure in M . We propose replacing the

direct update rule in lines 3-5 of Algorithm 7 with a projection step that compresses M ,

reducing the computational cost of this inner product. This results in an algorithm with

nearly linear per-iteration cost.

Before discussing how to form a compressed representation for the primal variable, we

will revisit the exactly updated primal variable in Algorithm 7, which is the solution to the

following problem:

argmin
M̃
∥M̃ −

(
M + σ(S +A∗(Λ(S,M))− J)

)
∥2F ,

s.t. A(M̃) = b.

(3.37)

Here, S is represented hierarchically as S = H(y, z), with the optimal Λ(S,M) defined in

(3.25). The linear constraint A(M̃) = b includes all constraints from section 3.3.1. Although

this constraint in (3.37) may seem redundant since the exactly updated primal variable is

always feasible, it becomes crucial when replacing M̃ with a compressed representation, as

the constraint won’t be naturally satisfied.

Next, we examine the linear constraint A(M̃) = b. Define the function g : H3N+1 →

H3N+1 by:

g(A) = I3N+1 + Re

(


0 A
(2)
12 · · · A

(2)
1N A

(1)
1

A
(2)
21 0 · · · A

(2)
2N A

(1)
2

...
...

...

A
(2)
N1 A

(2)
N2 · · · 0 A

(1)
N

(A
(1)
1)∗ (A

(1)
2)∗ · · · (A

(1)
N)∗ 0


)

57

+ 2



B∗(Re(A(1)
1))

. . .

B∗(Re(A(1)
N))

0


, (3.38)

where the operator B is defined in (3.23). We can show that g(A) is always primal-

feasible for any A ∈ H3N+1 by checking the constraints in section 3.3.1. Additionally, for

any primal-feasible M̃ ∈ H3N+1, there exists an A ∈ H3N+1 such that g(A) = M̃ . This

reparameterization of primal-feasible matrices allows us to rewrite (3.37) in an equivalent

form:

argminA∈H3N+1 ∥g(A)−
(
M + σ(S +A∗(Λ(S,M))− J)

)
∥2F . (3.39)

Our final step is to approximate A ∈ H3N+1 with a hierarchical matrix to reduce the

cost of the loss function evaluation:

argminx,v,A ∥g(A)−
(
M + σ(S +A∗(Λ(S,M))− J)

)
∥2F ,

s.t. A = H(x, v),
(3.40)

where x := {x(i) ∈ C3N×ri}1≤i≤m and v ∈ C(3N+1)×rv for some pre-specified number of lev-

els m, and number of columns r1, · · · , rm, rv. In other words, we propose a hierarchical rep-

resentation for the parameterization of any primal-feasible variable M . This allows efficient

evaluation of the loss function in (3.40). If M is represented as M = g(H(x0, v0)) for some x0

and v0, and S = H(y, z), then we can show that g(H(x, v)) and M+σ(S+A∗(Λ(S,M))−J)

are sums of hierarchical and sparse matrices (see Appendix A). Thus, the main computa-

tional task in evaluating the loss function (3.40) is the evaluation of inner products between

structured matrices, which can be computed efficiently as discussed in section 3.5.3.

58

We now introduce Algorithm 8, which utilizes hierarchical representation for both the

primal and the dual PSD variables.

Algorithm 8 Pseudo code for ALM for the dual problem with two hierarchical PSD variables

Require: t = 0, x0 :=
{
x
(1)
0 , · · · , x(m1)

0

}
and v0 for the primal variable M0 := g(H(x0, v0)),

y0 :=
{
y
(1)
0 , · · · , y(m2)

0

}
and z0 for the dual variable S0 = H(y0, z0), and penalty param-

eter σ > 0

1: while not converged do

2: yt+1, zt+1 ← argminy,zLσ(H(y, z),Λ(H(y, z),Mt);Mt)

3: St+1 ← H(yt+1, zt+1)

4: xt+1, vt+1, At+1 ← argminx,v,A=H(x,v)∥g(A) −
(
Mt + σ(St+1 + A∗(Λ(St+1,Mt)) −

J)
)
∥2F

5: Mt+1 ← g(At+1)

6: t← t+ 1

7: end while

We assume x
(i)
0 ∈ C3N×r1i for 1 ≤ i ≤ m1, y

(j)
0 ∈ C3N×r2j for 1 ≤ j ≤ m2, v0 ∈

C(3N+1)×rv and z0 ∈ C(3N+1)×rz . The parameters r11, · · · , r1m1
, r21, · · · , r2m2

, rv, rz are

chosen based on algorithm’s required accuracy. We highlight that it is not necessary to

explicitly form the matrices A,M or S during the execution of Algorithm 8. Instead, the

loss functions in steps 2 and 4 can be efficiently evaluated using the compressed representation

of these matrices.

3.6.1 Complexity analysis

In this section, we analyze the computational complexity of Algorithm 8, following the

approach in section 3.5.3 for Algorithm 7. We assume the hierarchical representation of the

primal and dual PSD variables has the same number of levels m, with a constant number of

columns r for each level, and the rank correction matrices z and v also have r columns.
59

The sub-problems in step 2 and step 4 of Algorithm 8 are solved approximately by running

the limited-memory BFGS algorithm in Manopt for a fixed number of steps. Step 2 in

Algorithm 8 resembles step 2 in Algorithm 7, but the expensive inner products between dense

and hierarchical matrices are replaced with inner products between hierarchical matrices.

Thus, the time complexity for step 2 is O(Nm2r2). Similarly, step 4 involves evaluating

inner products between structured matrices, making its time complexity also O(Nm2r2).

In summary, if the number of levels m in the hierarchy scales logarithmically with the

system size N , and the number of columns for each level r remains constant, the per-iteration

time complexity for Algorithm 8 is O(N log2N).

3.6.2 Existence of a data-sparse hierarchical matrix representation for the

primal positive semidefinite variable

In this section, we investigate the existence of a data-sparse and relatively accurate hierarchi-

cal representation of M , using the same method as in Section 3.5.2 for the dual PSD variable

S. Instead of fitting the dual PSD variable S, we fitted the primal PSD variable M resulting

from solving (D) with the Hamiltonian specified in (3.6), for system sizes N = 64, 128, 256,

an external magnetic field strength parameter h = 1 and an accuracy of 10−4. Let M∗ be

the approximate solution. Let x, v be complex-valued parameters that parameterize a hier-

archical matrix of the corresponding size, with the number of levels m = 3, 4, 5 respectively

for N = 64, 128, 256. The number of columns for each level was fixed at 20 for all system

sizes. We solved the following optimization problem with system sizes N = 64, 128, 256 for

the variables x and t:

min
x,v

Err2M :=
∥H(x, v)−M∗∥2F

∥M∗∥2F
, (3.41)

60

by running the limited-memory BFGS algorithm provided in the Manopt toolbox [10] for

1000 iterations. The approximation errors are presented in Table 3.3. The experiment results

indicate that as the system size increases, the relative error of the fitted primal PSD variable

also tends to increase. This likely contributes to the failure of Algorithm 8 for large system

sizes, such as N = 4096 (see Section 3.7 for further details on the experiments).

N 64 128 256
ErrM 4.8663e− 04 0.0020 0.0119

Table 3.3: Relative errors of the fitted primal PSD variables.

3.7 Numerical experiments

In this section, we present numerical experiments for the 1-D transverse field Ising (TFI)

model using Algorithms 7 and 8, with system sizes N ∈ {64, 128, 256, 512, 1024,

2048, 4096}. The penalty parameter is initialized at σ = 0.1, and is adjusted dynamically

[60] based on primal and dual feasibility to speed up the convergence of the ALM algorithm.

For both algorithms, the number of levels m in the hierarchy is set to be m = 3, 4, · · · , 9

for N = 64, 128, · · · , 4096, and the number of columns for all levels and the rank correction

matrices is set to be r = 20. In Algorithm 7, y, z and M are initialized from the standard

normal distribution, with M being primal-feasible. This is achieved by initializing Re(M (2)
ij)

for i ̸= j and Re(M (1)) randomly, with the rest of M determined by the constraint A(M) =

b. In Algorithm 8, x0, v0, y0, and z0 are randomly initialized from the standard normal

distribution.

Throughout the updates of Algorithm 7 and 8, we evaluate the accuracy of approximate

solutions by monitoring the relative primal feasibility, the relative dual feasibility, and the

relative duality gap.

To evaluate the feasibility of a candidate primal variable M , we must ensure that M

61

is PSD and satisfies the linear constraint in (P). In Algorithm 7, M is directly initialized

and updated, while in Algorithm 8, M is maintained using a compressed representation as

specified in steps 4-5. Since M is guaranteed to satisfy the linear constraint in (P), we only

monitor its relative PSD-ness using the following measure:

ηP :=
max(0,−λmin)

1 + max(0, λmax)
,

where λmin and λmax are the smallest and largest eigenvalues of M .

For the dual problem (D) and a candidate dual variable S, the PSD constraint for S is

automatically satisfied because S is maintained as a hierarchical matrix in both algorithms.

For the linear constraint involving both S and Λ, given that we only keep the information

of S in these two algorithms, we need to find its corresponding dual variable Λ(S). This is

achieved by solving for Λ from the linear equality in (D):

Λ(S) = (AA∗)−1A(J − S),

and we monitor the relative dual feasibility using the following measure:

ηD :=
∥S +A∗(Λ(S))− J∥F

1 + ∥J∥F
.

Finally, we monitor the relative duality gap by:

ηg :=
|primal objective− dual objective|

1 + |primal objective|+ |dual objective|
.

We terminate the algorithm when η := max(ηP , ηD, ηg) ≤ 10−3, or when the ALM

algorithm has run for 1500 iterations. It’s important to highlight that we exploit the hier-

archical structure present in the PSD primal and dual variables to efficiently evaluate these

convergence metrics.

62

We examine the ground-state energy recovery for the TFI model on an N × 1 lattice, for

system sizes N ∈ {64, 128, 256, 512, 1024, 2048, 4096} and external magnetic field strength

parameter h ∈ {0.1, 1, 1.5}. Let E0 denote the true ground-state energy and Ẽ0 the lower

bound of the ground-state energy obtained from (P). The ground-state energy of the 1-D

transverse field Ising model can be computed analytically [52]. The relative error is defined

as:

Errrel :=
E0 − Ẽ0

|E0|
.

The relative errors for Algorithms 7 and 8 are given in Tables 3.4 and 3.5. Additionally, we

present the evolution of our convergence metrics as a function of the ALM iteration number

in Figures 3.2 and 3.3, focusing on the 1-D TFI model with a fixed external magnetic field

strength parameter h = 1 and various system sizes. Alongside the relative primal and dual

feasibility measures and the relative duality gap, we also track the per-site primal objective

change between subsequent iterations. Let pi be value of the primal objective function at

ALM iteration number i, the per-site primal objective change at iteration i is defined as

Energy-Changei := |
pi
N
− pi+1

N
|, (3.42)

where N is the number of sites in the system.

All convergence metrics are transformed using a base-10 logarithm function. Within 1500

ALM iterations, all metrics drop below 10−3 for experiments with the external magnetic field

strength parameter h = 1.

N=64 N=128 N=256 N=512 N=1024 N=2048 N=4096
h = 0.5 1.12% 1.14% 1.17% 1.23% 1.24% 1.24% 1.22%

h = 1 2.73% 2.75% 2.76% 2.76% 2.76% 2.77% 2.79%

h = 1.5 0.69% 0.69% 0.69% 0.7% 0.7% 0.7% 0.71%

Table 3.4: Relative errors of the recovered energy from Algorithm 7.

63

0 500 1000 1500

Iteration

-8

-6

-4

-2

0

E
ne

rg
y

ch
an

ge
 (

pe
r

si
te

)

0 500 1000 1500

Iteration

-3

-2.5

-2

-1.5

-1

-0.5

0

P
rim

al
 fe

as
ib

ili
ty

 m
ea

su
re

N=64
N=128
N=256
N=512
N=1024
N=2048
N=4096

System size

0 500 1000 1500

Iteration

-4

-2

0

2

4

D
ua

l f
ea

si
bi

lit
y

m
ea

su
re

0 500 1000 1500

Iteration

-10

-8

-6

-4

-2

0

D
ua

lit
y

ga
p

Figure 3.2: Convergence metrics for Algorithm 7. The primal feasibility measure (ηP), dual
feasibility measure (ηD), duality gap (ηg) and per-site energy change in equation (3.42) are
all transformed using the log10 function.

64

0 200 400 600 800 1000 1200

Iteration

-10

-8

-6

-4

-2

0

E
ne

rg
y

ch
an

ge
 (

pe
r

si
te

)

0 200 400 600 800 1000 1200

Iteration

-4

-3

-2

-1

0

P
rim

al
 fe

as
ib

ili
ty

 m
ea

su
re

N=64
N=128
N=256
N=512
N=1024
N=2048

System size

0 200 400 600 800 1000 1200

Iteration

-4

-2

0

2

4

D
ua

l f
ea

si
bi

lit
y

m
ea

su
re

0 200 400 600 800 1000 1200

Iteration

-6

-5

-4

-3

-2

-1

0

D
ua

lit
y

ga
p

Figure 3.3: Convergence metrics for Algorithm 8. The primal feasibility measure (ηP), dual
feasibility measure (ηD), duality gap (ηg) and per-site energy change in equation (3.42) are
all transformed using the log10 function.

65

N=64 N=128 N=256 N=512 N=1024 N=2048
h = 0.5 1.08% 1.19% 1.21% 1.23% 1.24% 1.23%

h = 1 2.75% 2.75% 2.70% 2.73% 2.73% 2.72%

h = 1.5 0.69% 0.68% 0.68% 0.69% 0.65% 0.64%

Table 3.5: Relative errors of the recovered energy from Algorithm 8.

3.8 Summary

In this chapter, we explored a novel convex relaxation framework for determining the ground-

state energy of the quantum many-body problem. Mathematically, the ground-state energy

problem is an eigenvalue problem, but the matrix size increases exponentially with the size of

the physical system. By formulating the ground-state energy problem with density operators

and applying only a subset of necessary constraints derived from the properties of Pauli

matrices, we propose a relaxation of the original problem via semi-definite programming

(SDP), which can be solved in polynomial time and provides a reasonable lower bound for the

ground-state energy. Additionally, we identified a hierarchical structure in both the positive

semi-definite (PSD) primal and dual variables, allowing us to circumvent the expensive step

of performing a projection onto the PSD cone, thereby reducing the per-iteration complexity

of the ALM-type algorithm from cubic to quadratic or almost linear.

The relaxed problem provides only a lower bound for the exact ground-state energy. To

evaluate the effectiveness of our approach, we compare the recovered lower bound with the

true ground-state energy for the 1-D transverse field Ising model. Notably, for the most

challenging case of h = 1, where the system undergoes a quantum phase transition, our

algorithm still produces a reasonable lower bound. Furthermore, our algorithm can handle

systems consisting of up to 4096 qubits, whereas previous work on the variational embedding

method, such as [37, 30], which employs more accurate yet more expensive constraints, can

only manage systems of a few dozen qubits without leveraging the periodicity of the model.

66

CHAPTER 4

CONCLUSION

In this thesis, we discussed two problems in convex relaxation. For both problems, we

explored the computation of a specific SDP relaxation to determine the lowest possible energy

of a system of many interacting bodies. These SDP relaxations can be solved in polynomial

time and provide reasonable lower bounds for the lowest energy. Additionally, by analyzing

the resulting PSD variables from these relaxed problems, we identified structures in these

matrices, which we subsequently exploited to develop algorithms with reduced per-iteration

complexity.

To further evaluate our algorithms, we tested them on systems comprising 10,000 and

4,000 particles, respectively. We demonstrated that both algorithms are capable of solving

large systems and returning relatively accurate lower bounds for the true ground-state energy.

However, in most of the cases we tested, the relaxation was not exact. Furthermore, due

to the issue of multiple solutions, extracting a single solution from a linear combination of

solutions is not currently possible, which will be a direction for future studies.

67

APPENDIX A

DETAILS OF THE DERIVATION FOR FORMULA (3.27)

Firstly, we describe how to merge all the linear constraints from Table 3.1 into an equality

constraint A(M) = b for the primal problem (P). Next, we show that AA∗ is the identity

operator, simplifying the optimal Λ defined in (3.25). Finally, we substitute this simplified

Λ into (3.26) and prove that it is equal to (3.27) up to a constant independent of S.

To begin with, we explicitly write down the adjoint of the operator B defined in (3.23),

which will be used later:

B∗(


x1

x2

x3

) =
i

2


0 x3 −x2

−x3 0 x1

x2 −x1 0

 , B∗ : R3 → H3. (A.1)

It is worth noting that the real part of the output of B∗ is a zero matrix.

A.1 Detailed breakdown of the linear constraint A(M) = b

We partition all linear constraints on M from Table 3.1 into two groups. The first group is

described by the linear function A(1), defined as:

A(1)(M) :=



Re(M (2)
11) Im(M

(2)
12) · · · Im(M

(2)
1N) Im(M

(1)
1)

−Im(M
(2)
21) Re(M (2)

22) · · · Im(M
(2)
2N) Im(M

(1)
2)

...
...

...

−Im(M
(2)
N1) −Im(M

(2)
N2) · · · Re(M (2)

NN) Im(M
(1)
N)

−Im((M
(1)
1)∗) −Im((M

(1)
2)∗) · · · −Im((M

(1)
N)∗) Re(M (0))


= I3N+1,

(A.2)

68

with A(1) : H3N+1 → S3N+1. The second group is described by the linear function A(2),

defined as:

A(2)(M) :=



Re(M (1)
1)− B(M (2)

11)

Re(M (1)
2)− B(M (2)

22)

...

Re(M (1)
N)− B(M (2)

NN)


= 03N×1, (A.3)

with A(2) : H3N+1 → R3N , and B defined in (3.23). Thus, we can merge the constraints in

(A.2) and (A.3) into A(M) = b, where

A(M) := (A(1)(M),A(2)(M)), A : H3N+1 → S3N+1 × R3N , (A.4)

and b := (b1, b2) ∈ S3N+1 × R3N , with

b1 := I3N+1 and b2 := 03N×1. (A.5)

A.2 Proof that AA∗ is the identity operator

In this section, we prove that AA∗ is the identity operator on S3N+1×R3N . Let (X, Y) be

any element in this space. We partition X into blocks as in (3.14) and Y into N blocks of

size 3× 1, with Yi as its i-th block. Our goal is to show that (X, Y) = (AA∗)((X, Y)).

To this end, first let Z := A∗((X, Y)) = A∗1(X)+A∗2(Y). We can derive A∗1 and A∗2 from

69

(A.2) and (A.3), respectively, and show that Z takes the following form:

Z =



X
(2)
11 − B

∗(Y1) iX
(2)
12 · · · iX

(2)
1N Y1/2 + iX

(1)
1

−iX(2)
21 X

(2)
22 − B

∗(Y2) · · · iX
(2)
2N Y2/2 + iX

(1)
2

...
...

...

−iX(2)
N1 −iX(2)

N2 · · · X
(2)
NN − B

∗(YN) YN/2 + iX
(1)
N

Y1/2− iX
(1)
1 Y2/2− iX

(1)
2 · · · YN/2− iX

(1)
N X(0)


. (A.6)

Let

(X̃, Ỹ) := (AA∗)((X, Y)) = A(Z) = (A(1)(Z),A(2)(Z)).

Since the real part of the output of B∗ is zero, it follows from (A.2) that X̃ = A(1)(Z) = X.

Additionally, we have:

Ỹ = A(2)(Z) =



Y1/2− B(X
(2)
11 − B

∗(Y1))

Y2/2− B(X
(2)
22 − B

∗(Y2))
...

YN/2− B(X(2)
NN − B

∗(YN))


=



Y1/2 + B(B∗(Y1))

Y2/2 + B(B∗(Y2))
...

YN/2 + B(B∗(YN))


= Y. (A.7)

The second equality holds due to the definition of A(2) in (A.3), and the last two equalities

hold due to the definitions of B and B∗ in (3.23) and (A.1). Consequently, (X̃, Ỹ) = (X, Y),

and AA∗ is the identity operator on S3N+1 × R3N .

A.3 Equivalence of the loss functions (3.26) and (3.27)

In this section, we show the equivalence of (3.26) and (3.27) by substituting the optimal

Λ from (3.25) into (3.26). Since both loss functions are used to update S, we just need to

establish their equivalence up to a constant independent of S, and we will omit this condition

when the context is clear.

70

For any primal and dual variables M,S ∈ H3N+1, let

R(S,M) := J − S −M/σ ∈ H3N+1. (A.8)

Since AA∗ is the identity operator, the optimal Λ from (3.25) can be equivalently expressed

as:

Λ(S,M) = A(R(S,M)) + b/σ =
(
A(1)(R(S,M)) + b1/σ, A(2)(R(S,M)) + b2/σ

)
, (A.9)

where b = (b1, b2) is defined in (A.5).

We first prove the first components in (3.26) and (3.27), ⟨−b,Λ(S,M)⟩ and Tr(S), are

equal up to a constant independent of S. Then, we show that the remaining parts are also

equal. Let Λ(S,M) = (Λ1(S,M),Λ2(S,M)). We have:

⟨−b,Λ(S,M)⟩ = ⟨−b1,Λ1(S,M)⟩+ ⟨−b2,Λ2(S,M)⟩

= ⟨−I3N+1,Λ1(S,M)⟩

= −Tr(Λ1(S,M))

= −Tr(A(1)(R(S,M)))− Tr(b1)/σ

= −Tr(R(S,M))− Tr(b1)/σ

= Tr(S) + Tr(M)/σ − Tr(J)− Tr(b1)/σ.

(A.10)

The first and second equalities hold due to the definition of b in (A.5). The fourth equality

follows from (A.9), and the fifth and sixth equalities result from the definitions of A(1) and

R(S,M) in (A.2) and (A.8).

To show the remaining parts in (3.26) and (3.27) are equal, we rewrite the remaining

71

part in (3.26), ignoring the constant σ/2, as:

∥S +A∗(Λ(S,M))− J +M/σ∥2F = ∥A∗(Λ(S,M))−R(S,M)∥2F

= ∥(A∗A)(R(S,M)) +A∗(b/σ)−R(S,M)∥2F

= ∥(A∗A)(R(S,M))−R(S,M) + I3N+1/σ∥2F

= ∥(A(1))∗A(1)(R(S,M)) + (A(2))∗A(2)(R(S,M))

−R(S,M) + I3N+1/σ∥2F .

(A.11)

Let P (S,M) = (A(1))∗A(1)(R(S,M)) + (A(2))∗A(2)(R(S,M)). We partition P (S,M)

into blocks as in (3.14). From the definitions of A(1) and A(2) in (A.2) and (A.3), the blocks

of P (S,M) take the following form:



P
(2)
ii (S,M) = Re(R(2)

ii (S,M))− B∗
(
Re(R(1)

i)− B(R(2)
ii)
)
, 1 ≤ i ≤ N,

P
(2)
ij (S,M) = i Im(R

(2)
ij (S,M)), i ̸= j,

P
(1)
i (S,M) = 1

2(Re(R(1)
i)− B(R(2)

ii)) + i Im(R
(1)
i), 1 ≤ i ≤ N,

P (0)(S,M) = Re(R(0)(S,M)).

(A.12)

To simplify notations, the dependence of P and R on S and M is omitted in the analysis

below, and (A.11) can be reformulated as follows:

∥P −R + I3N+1/σ∥2F =
N∑
i=1

∥P (2)
ii −R

(2)
ii + I3/σ∥2F +

∑
i̸=j

∥P (2)
ij −R

(2)
ij ∥

2
F

+ 2
N∑
i=1

∥P (1)
i −R

(1)
i ∥

2
F + (P (0) −R(0) + σ−1)2,

(A.13)

and these four terms will be analyzed one by one.

72

Since the real part of the output of B∗ is a zero matrix, for 1 ≤ i ≤ N we have:

∥P (2)
ii −R

(2)
ii + I3/σ∥2F = ∥Im(R

(2)
ii) + Im

(
B∗(Re(R(1)

i)− B(R(2)
ii))

)
∥2F + ∥I3/σ∥2F

= ∥Im(R
(2)
ii)− Im(B∗B(R(2)

ii)) + Im(B∗(Re(R(1)
i)))∥2F + 3/σ2

=
1

2
∥B(R(2)

ii) + Re(R(1)
i)∥2F + 3/σ2,

(A.14)

where the last equality follows from the definitions of B and B∗ in (3.23) and (A.1). For

i ̸= j we have:

∥P (2)
ij −R

(2)
ij ∥

2
F = ∥i Im(R

(2)
ij)−R

(2)
ij ∥

2
F = ∥Re(R(2)

ij)∥2F . (A.15)

For 1 ≤ i ≤ N we have:

∥P (1)
i −R

(1)
i ∥

2
F = ∥1

2
(Re(R(1)

i)− B(R(2)
ii)) + i Im(R

(1)
i)−R

(1)
i ∥

2
F

= ∥1
2
(Re(R(1)

i)− B(R(2)
ii))− Re(R(1)

i)∥2F

=
1

4
∥B(R(2)

ii) + Re(R(1)
i)∥2F ,

(A.16)

and lastly, we have:

(P (0) −R(0) + σ−1)2 = (Re(R(0))−R(0) + σ−1)2 = 1/σ2, (A.17)

since R(0) lies on the diagonal of a Hermitian matrix and is real-valued. Combining the

results from (A.14)-(A.17), we conclude that:

∥S +A∗(Λ(S,M))− J +M/σ∥2F =
∑
i̸=j

∥Re(R(2)
ij (S,M))∥2F +

3N + 1

σ2

+
N∑
i=1

∥B(R(2)
ii (S,M)) + Re(R(1)

i (S,M))∥2F .
(A.18)

73

Given the definition of R(S,M) in (A.8), we confirm from (A.10) and (A.18) that (3.26) and

(3.27) are equal up to a constant independent of S.

74

REFERENCES

[1] A. Altland and B. D. Simons. Condensed matter field theory. Cambridge university
press, 2010.

[2] G. An. A note on the cluster variation method. Journal of Statistical Physics, 52(3-
4):727–734, 1988.

[3] J. S. M. Anderson, M. Nakata, R. Igarashi, K. Fujisawa, and M. Yamashita. The
second-order reduced density matrix method and the two-dimensional hubbard model.
Computational and Theoretical Chemistry, 1003:22–27, 2013.

[4] F. Barahona. On the computational complexity of ising spin glass models. J. Phys. A:
Math. Gen., 15:3241, 1982.

[5] A. I. Barvinok. Problems of distance geometry and convex properties of quadratic maps.
Discrete Computational Geometry, 13:189, 1995.

[6] A. Beck. First-Order Methods in Optimization. SIAM-Society for Industrial and Applied
Mathematics, 2017.

[7] D. P. Bertsekas. Constrained optimization and Lagrange multiplier methods. Academic
press, 2014.

[8] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices with
applications. Eng Anal Bound Elem, 27(5):405–422, 2003.

[9] N. Boumal. A riemannian low-rank method for optimization over semidefinite matrices
with block-diagonal constraints. arXiv:1506.00575, 2016.

[10] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a matrix toolbox for
optimization on manifolds. J. Mach. Learn. Res., 15(42):1455–1459, 2014.

[11] E. Brézin. Introduction to Statistical Field Theory. Cambridge University Press, 2014.

[12] S. Burer and R. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Math. Program., Ser. B, 95:329–357, 2003.

[13] E. Cancès, G. Stoltz, and M. Lewin. The electronic ground-state energy problem: A
new reduced density matrix approach. J. Chem. Phys., 125(6):064101, 2006.

[14] D. Ceperley. Ground state of the fermion one-component plasma: A monte carlo study
in two and three dimensions. Phys. Rev. B, 18:3126, 1978.

[15] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic
method. Phys. Rev. Lett., 45:566, 1980.

[16] Y. Chen and Y. Khoo. Combining monte-carlo and tensor-network methods for partial
differential equations via sketching. arXiv:2305.17884, 2023.

75

[17] S. Cipolla and J. Gondzio. Admm and inexact alm: the qp case. 2020.

[18] B. A. Cipra. An introduction to the ising model. The American Mathematical Monthly,
94(10):937–959, 1987.

[19] A. E. DePrince and D. A. Mazziotti. Exploiting the spatial locality of electron cor-
relation within the parametric two-electron reduced-density-matrix method. J. Chem.
Phys., 132:034110, 2010.

[20] Y. I. Dublenych. Ground states of the lattice-gas model on the triangular lattice with
nearest- and next-nearest-neighbor pairwise interactions and with three-particle inter-
action: Full-dimensional ground states. Phys. Rev. E, 84:011106, 2011.

[21] Y. I. Dublenych. Ground states of the lattice-gas model on the triangular lattice with
nearest- and next-nearest-neighbor pairwise interactions and with three-particle interac-
tion: Ground states at boundaries of full-dimensional regions. Phys. Rev. E, 84:061102,
2011.

[22] Y. I. Dublenych. Ground states of the ising model on the shastry-sutherland lattice
and the origin of the fractional magnetization plateaus in rare-earth-metal tetraborides.
Phys. Rev. Lett., 109:167202, 2012.

[23] A. Finel and F. Ducastelle. On the phase diagram of the fcc ising model with antifer-
romagnetic first-neighbour interactions. EPL, 1:135, 1986.

[24] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg. Dynamical mean-field theory
of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod.
Phys., 68:13, 1996.

[25] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maxi-
mum cut and satisfiability problems using semidefinite programming. J. ACM, 42:1115,
1995.

[26] M. Grant and S. Boyd. CVX: Matlab software for disciplined convex programming,
version 2.0 beta, 2013.

[27] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Society for Industrial and Applied Mathematics, 2008.

[28] Q. Huang, Y. Chen, and L. Guibas. Scalable semidefinite relaxation for maximum a
posterior estimation. In International Conference on Machine Learning, 2014.

[29] M. Kaburagi and J. Kanamori. Ground state structure of triangular lattice gas model
with up to 3rd neighbor interactions. J. Phys. Soc. Jpn., 44:718, 1978.

[30] Y. Khoo and M. Lindsey. Scalable semidefinite programming approach to variational
embedding for quantum many-body problems. arXiv:2106.02682, 2021.

76

[31] G. Knizia and G. Chan. Density matrix embedding: A simple alternative to dynamical
mean-field theory. Phys. Rev. Lett., 109:186404, 2012.

[32] G. Knizia and G. K.-L. Chan. Density matrix embedding: A strong-coupling quantum
embedding theory. J. Chem. Theory Comput., 9:1428–1432, 2013.

[33] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Mari-
anetti. Electronic structure calculations with dynamical mean-field theory. Rev. Mod.
Phys., 78:865, 2006.

[34] J. B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM Journal on optimization, 11(3):796–817, 2001.

[35] J. B. Lasserre. Moments, Positive Polynomials and Their Applications. Imperial College
Press, 2010.

[36] A. Lemon, A. M.-C. So, and Y. Ye. Low-Rank Semidefinite Programming: Theory and
Applications. Now Publishers, 2016.

[37] L. Lin and M. Lindsey. Variational embedding for quantum many-body problems.
Comm. Pure Appl. Math., 75:2033–2068, 2022.

[38] DC. Liu and J. Nocedal. On the limited memory bfgs method for large scale optimiza-
tion. Mathematical Programming, 45:503, 1989.

[39] G. Mao, B. Fidan, and B. DO. Anderson. Wireless sensor network localization tech-
niques. Computer networks, 51(10):2529–2553, 2007.

[40] D. Mazziotti. Realization of quantum chemistry without wave functions through first-
order semidefinite programming. Phys. Rev. Lett., 93:213001, 2004.

[41] D. Mazziotti. Structure of fermionic density matrices: Complete n-representability
conditions. Phys. Rev. Lett., 108:263002, 2012.

[42] D. A. Mazziotti. Contracted schrödinger equation: Determining quantum energies and
two-particle density matrices without wave functions. Phys. Rev. A, 57:4219, 1998.

[43] M. Nakata, H. Nakatsuji, M. Ehara, M. Fukuda, K. Nakata, and K. Fujisawa. Vari-
ational calculations of fermion second-order reduced density matrices by semidefinite
programming algorithm. J. Chem. Phys., 114:8282–8292, 2001.

[44] Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Pro-
gramming. Society for Industrial and Applied Mathematics, 1994.

[45] J. Nie. Optimality conditions and finite convergence of Lasserre’s hierarchy. Mathemat-
ical programming, 146(1-2):97–121, 2014.

[46] R. Orús. A practical introduction to tensor networks: Matrix product states and pro-
jected entangled pair states. Ann. Phys., 349:117–158, 2014.

77

[47] I. V. Oseledets and E. E. Tyrtyshnikov. Breaking the curse of dimensionality, or how
to use svd in many dimensions. SIAM J. Sci. Comput., 31:3744–3759, 2009.

[48] O. Ozyesil, V. Voroninski, R. Basri, and A. Singer. A survey of structure from motion.
arXiv preprint arXiv:1701.08493, 2017.

[49] P. A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math-
ematical programming, 96(2):293–320, 2003.

[50] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity
of optimal eigenvalues. Mathematics of Operations Research, 23:339, 1998.

[51] A. Pelizzola. Cluster variation method in statistical physics and probabilistic graphical
models. Journal of Physics A: Mathematical and General, 38(33):R309, 2005.

[52] P. Pfeuty. The one-dimensional ising model with a transverse field. Annals of Physics,
57(1):79–90, 1970.

[53] Amit Singer. Angular synchronization by eigenvectors and semidefinite programming.
Applied and computational harmonic analysis, 30(1):20–36, 2011.

[54] D. Sun, K.-C. Toh, and L. Yang. A convergent 3-block semiproximal alternating di-
rection method of multipliers for conic programming with 4-type constraints. SIAM
journal on Optimization, 25:882–915, 2015.

[55] D. Sun, K.-C. Toh, Y. Yuan, and X.-Y. Zhao. Sdpnal+: A matlab software for semidef-
inite programming with bound constraints (version 1.0). Optimization Methods and
Software, 35:87–115, 2020.

[56] Q. Sun and G. K.-L. Chan. Quantum embedding theories. Acc. Chem. Res., 49:2705–
2712, 2016.

[57] M. Teubner. Ground states of classical one-dimensional lattice models. Physica A,
169:407, 1990.

[58] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and varia-
tional inference. Now Publishers Inc, 2008.

[59] Y. Wang and Y. Khoo. Solving cluster moment relaxation with hierarchical matrix.
arXiv:2408.00235, 2024.

[60] B. Wohlberg. Admm penalty parameter selection by residual balancing.
arXiv:1704.06209, 2017.

[61] Z. Zhao, B. J. Braams, M. Fukuda, M. L. Overton, and J. K. Percus. The reduced
density matrix method for electronic structure calculations and the role of three-index
representability conditions. J. Chem. Phys., 120:2095–2104, 2004.

78

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 A convex embedding method for classical Ising model
	2.1 Notations
	2.2 Problem formulation
	2.3 Convex relaxation for the Ferromagnetic Ising problem with localized corruption
	2.4 The alternating direction method of multipliers algorithm for the problem with embedding
	2.4.1 Solving the local problem
	2.4.2 Solving the global problem

	2.5 The primal method with low-rank positive semidefinite variable
	2.5.1 Complexity analysis
	2.5.2 Stopping criteria

	2.6 The dual method with low-rank positive semidefinite variable
	2.6.1 Stopping criteria

	2.7 Numerical experiments
	2.7.1 Tightness of the proposed relaxation
	2.7.2 Computational speed of the algorithm with low-rank formulation of the matrix variable
	2.7.3 The issue of multiple solutions for the proposed relaxation

	2.8 Summary

	3 Convex relaxation for quantum spin problem
	3.1 Problem formulation
	3.1.1 Notations

	3.2 Preliminaries
	3.3 Convex relaxation for the quantum spin problem
	3.3.1 Local linear constraints on the primal variable
	3.3.2 Global positive semidefinite constraint on the primal variable

	3.4 Standard augmented Lagrangian method
	3.4.1 Solving the joint optimization problem

	3.5 Hierarchical dual positive semidefinite variable
	3.5.1 Approximating the dual positive semidefinite variable with a hierarchical matrix
	3.5.2 Existence of a data-sparse hierarchical matrix representation for the dual positive semidefinite variable
	3.5.3 Update rule with a hierarchically structured matrix variable

	3.6 Hierarchical primal positive semidefinite variable
	3.6.1 Complexity analysis
	3.6.2 Existence of a data-sparse hierarchical matrix representation for the primal positive semidefinite variable

	3.7 Numerical experiments
	3.8 Summary

	4 Conclusion
	APPENDICES
	A Details of the derivation for formula (3.27)
	A.1 Detailed breakdown of the linear constraint A(M)=b
	A.2 Proof that AA* is the identity operator
	A.3 Equivalence of the loss functions (3.26) and (3.27)

	References

