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The two-dimensional Gross-Neveu model is anticipated to undergo a crystalline phase transition at high
baryon charge densities. This conclusion is drawn from the mean-field approximation, which closely
resembles models of Peierls instability. We demonstrate that this transition indeed occurs when both the
rank of the symmetry group and the dimension of the particle representation contributing to the baryon
density are large (the large N limit). We derive this result through the exact solution of the model,
developing the large N limit of the Bethe ansatz. Our analytical construction of the large-N solution of the
Bethe ansatz equations aligns perfectly with the periodic (finite-gap) solution of the Korteweg–de Vries
(KdV) of the mean-field analysis.

DOI: 10.1103/PhysRevLett.133.101601

The Gross-Neveu (GN) model is a (1þ 1)-dimensional
theory of N interacting Dirac fermions:

L ¼ ψ̄ iðiγμ∂μ þ μγ0 − σÞψ i −
N
2λ

σ2: ð1Þ

The Hubbard-Stratonovich field σ mediates local four-
fermion interaction ðλ=NÞðψ̄ψÞ2 (on shell σ¼−ðλ=NÞψ̄ψ).
At zero chemical potential μ, the model features asymptotic
freedom, spontaneous breaking of chiral symmetry, and
dynamical mass generation: m ¼ Λλ1=2ðN−1Þe−πN=λðN−1Þ
[1]. This makes it a compelling case study for nonpertur-
bative effects in quantum field theory. Furthermore, the
model is integrable, with a precisely known particle
content, spectrum, and scattering S matrix [2,3].
The model possesses the global Oð2NÞ × Z2 symmetry,

where Oð2NÞ acts on a multiplet formed by real and
imaginary components of ψ i, and Z2 is the chiral sym-
metry: ψ i → γ3ψ i, σ → −σ. When the fermions are inte-
grated out (at zero μ) the effective potential for σ has two
minima at hσi ¼ �m leading to spontaneous breaking of
chiral symmetry and fermion mass generation.
The phase diagram of the model at nonzero chemical

potential is quite rich. Chiral symmetry is restored at high
temperatures, whereas at lower temperatures and higher
density, the system transitions into a crystalline phase

[4–9]. These conclusions are drawn from the large-N
approximation, which justifies the mean-field approach.
The motivation for our study is twofold: first, to elucidate

the crystalline phase through a complete quantum solution
using the Bethe-ansatz technique, and second, to establish a
framework for a fully nonperturbative exploration of dense
states that is valid a priori for finite N going beyond the
mean field. Furthermore, the large N limit of the GN model
provides insight into the intricate (or rather singular)
relationship between quantum and classical integrable
systems.
A spontaneous crystalline structure of the ground state

of, otherwise a translational-invariant fermionic system, is a
consequence of the Peierls instability [10,11], a celebrated
phenomenon extensively studied in the condensed matter
literature (see [12–15] and references therein). In the
traditional condensed-matter setting the instability of elec-
tronic band structure is caused by an adibatic interaction
between lattice phonons and electrons. The self-interaction
in the GNmodel (1) mediated by the field σ yields the same
effect. The large N plays a role of the adibatic parameter of
the Peierles model. Furthermore, the real symmetry group
Oð2NÞ gives rise to the commensurate Peierls transition.
When an increase in the chemical potential pushes the
Fermi energy into the conduction zone, the field σ which
minimizes the fermionic energy becomes a spatial-periodic
potential with a half-period completely determined by the
chemical potential. The energy gain from rearranging
the fermion spectrum (thankfully to the large N) exceeds
the energy cost of distorting the environment described by
σ. In the GN model the instability manifests itself as a
complex pole in the σ propagator within a small range of
momenta around p ∼ 2μ [16], pointing towards transition
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to a periodically modulated chiral condensate hσi. From a
semiclassical perspective the spacially modulated chiral
condensate becomes a dominant saddle point of the large-N
path integral [7] above the critical chemical potential
μ > 2m=π [4].
The mean-field value of σ appears to be the cnoidal

wave, an exact periodic wave solution of the Korteweg–de
Vries equation described by the Jacobi elliptic function
hσðxÞi ¼ mk1=2 snðx; kÞ. The cnoidal wave is the simplest
and the best studied instance of a special class of potentials
known as finite-gap potential [17]. The spectrum of
particles in such potentials possesses only a finite number
of gaps. The E → −E symmetric spectrum of the Dirac
equation in a cnoidal potential possesses the minimal
number, two, symmetrically situated band gaps with ends
at ð−εþ;−ε−Þ and ðε−; εþÞ. The ends of the spectrum are
determined solely by the chemical potential in such manner
that the Fermi level is located inside one of the gaps.
Furthermore, the density of states in the finite gap potential,
referred to as a spectral curve and the wave functions of
the states are also completely determined by the ends of the
spectrum. In this Letter we will show how to obtain the
spectral curve as a large N-limit of the Bethe ansatz
solution of the full-fledged quantum GN model.
The fate of the fermionic crystal beyond the semi-

classical approximation is an open question. One expects
on general grounds that quantum corrections melt the
crystal and the long-range order slowly decays at very
large distances [18]:

hσðxÞσð0Þi ∼ cos πνx
jxjαN ; ð2Þ

due to coupling to the Goldstone mode [19,20]. Here α is a
parameter of order one. As detailed later, ν is the density of
kinks in the ground state. This behavior occurs in the UðNÞ
version of the GN model, solvable exactly by bosonization
[8]. The decay of the long-range order is invisible in the
strict large-N limit, and the Bethe ansatz framework
developed here may help to clarify the precise nature of
the high-density phase.
The spectrum of the GN model consists of the elemen-

tary fermion, its bound states, and solitons. The solitons
transform in the spinor representations of the DN algebra
because kinks of the σ field that interpolate between the two
vacua harborN topologically protected zero modes, one for
each fermion flavor, that can be in 2N internal states [21].
The mass spectrum of all particles is known exactly from
the factorized scattering matrix [2]

ma ¼ m
sin πa

2N−2
sin π

2N−2
; ms ¼ ms̄ ¼

m
2 sin π

2N−2
; ð3Þ

with a ¼ 1;…; N − 2 enumerate the fundamental repre-
sentation of Oð2NÞ labeled by nodes of the DN Dynkin
diagram. Owing to zero modes, kinks carry N=2 units of
the baryon charge [22]. The baryon charge of the

antisymmetric tensor of rank a is equal to a as it is a
bound state of a vector particles:

Ba ¼ a; Bs ¼
N
2
: ð4Þ

Imagine now dispersing some amount B ¼ P
a naBa þ

Bsns of baryon charge with occupation numbers na in an
otherwise empty system. The ground state energy of such
state is just the activation energy

P
a nama þ nsms. The

smallest energy could be achieved by dispersing particles
with the smallest mass-to-charge ratio. A simple inspection
of (3), (4) shows that the optimal choice is kinks. In spite of
their large mass kinks are most energy-efficient because
they can store a large amount of baryon charge in their
fermion zero modes. Kinks start to be created as soon as
their chemical potential exceeds the mass: μs > ms. In
terms of the chemical potential of baryons entered in (1),
μs ¼ μBs ¼ μN=2. Therefore, the kinks start to form a
crystalline phase at μ > μc, where

μc ¼
μs
Bs

¼ m
N sin π

2N−2
≃N→∞ 2m

π
: ð5Þ

These arguments are in agreement with the mean-field
analysis [4–7].
The exact structure of the ground state is described by

Bethe ansatz, which we consider here in its thermodynamic
form (albeit at zero temperature) focusing on the ground
state. As we already explained the ground state is formed
by spinors, the kinks. Owing to integrability we are able to
characterize these particles by their dispersion εðpÞ and to
uniformize the dispersion by the rapidity ½εðθÞ; pðθÞ�, a
variable in which the scattering matrix is of the difference
form Sðθ − θ0Þ. Furthermore, since the system is relativistic
the dispersion is ðms cosh θ; ms sinh θÞ. Then the density of
rapidities ρðθÞdθ ¼ dp of particles forming the ground
states (kinks, in this case) satisfies a closed equation:

ρðθÞ −
ZB

−B

Kðθ − ηÞρðηÞdη ¼ ms cosh θ: ð6Þ

All states within the Fermi interval of rapidity ð−B;BÞ are
occupied by the kinks. The value of B is fixed by the condi-
tion that the integral of ρðθÞ over the Fermi interval deter-
mines the total baryon density B=L ¼ N=2

R
B
−B ρdθρðθÞ.

The value of ρðθÞ outside the Fermi interval (jθj > B)
defines the momentum of an excited state. The kernel in
the integral equation originates from the scattering phase
shift 2πiKðθÞ ¼ d ln SðθÞ=dθ, where SðθÞ is the kink-to-
kink S matrix restricted to the highest weight state, whose
explicit form is presented below.
The energy of the kink, in turn, is given by the equation

εðθÞ −
ZB

−B

Kðθ − ηÞεðηÞdη ¼ ms cosh θ − μs; ð7Þ
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conditioned that the energy εðθÞ is negative within the
Fermi interval and positive outside. At the end points the
energy vanishes: εð�BÞ ¼ 0, and this condition self-con-
sistently determines the Fermi rapidity. The two equa-
tions (6) and (7) thus form a closed system, referred to as
thermodynamic Bethe ansatz. Once the εðθÞ and B are
found the energy E and the Landau potential Φ ¼ E − μB
of the ground state are found by integration:

E¼ms

2π

ZB

−B

ρðθÞcoshθdθ; Φ¼ms

2π

ZB

−B

εðθÞcoshθdθ: ð8Þ

These equations are applicable to any integrable rela-
tivistic system. The model-specific data are encoded in the
S matrix, know in the case at hand from [3] that gives for
the kernel:

KðθÞ ¼
Zþ∞

−∞

dω
2π

e−iωθK̃ðωÞ;

K̃ðωÞ ¼ 1 −
e

πjωj
2N−2

�
tanh πω

2
þ tanh πω

2N−2

�

4 sinh πω
2N−2

: ð9Þ

One can check some general properties: the solution exists
for any μs > μc, with a positive density ρðθÞ and the energy
εðθÞ crossing zero linearly at the end points of the Fermi
interval. The Landau potential behaves as Φ ∼ −δ3=2 at the
activation threshold: δ ¼ μ=μc − 1. From this we conclude
that kinks crystallize at a second-order phase transition.
The BA equations can be easily solved numerically. At

large N they can be solved analytically. Similar problems
have been studied before, in particular for the GN model
with the ground state formed by elementary fermions rather
than kinks [23–26]. The interaction kernel is then Oð1=NÞ
and the equations are simply solved by iteration which
starts from free particles. A very different situation occurs
when the ground state is formed by kinks. In this case, the
interaction is a dominant effect and the solution is non-
trivial already at the leading order in 1=N. This aspect
appears similar to the solution of the large-N principal
chiral field [27–29], even if an underlying physics is very
different.
The BA equations for GN kinks at a small N were

studied using perturbative techniques: for N ¼ 2 [26] and
forN ¼ 4. The latter case, theOð8Þmodel, is special due to
the external automorphisms, a “triality,” making the vector
and the spinor particles equivalent. The analysis of the BA
equations of Refs. [25,30] then also applies to kinks upon
substitution μ → μs ¼ 2μ.
We will be able to solve the BA equations because at

large N the scattering phase becomes singular and is of the
order of OðNÞ:

K̃ðωÞ ≃N→∞ − N
tanh πω

2

2πω
: ð10Þ

The first term in the lhs of (7), representing the energy of
spinors outside of the Fermi interval ð−B;BÞ is then
negligible, being much smaller than the scattering phase.
Converting (10) to the θ representation we obtain a singular
integral equation

1

4π2

ZB

−B

dηεðηÞ ln coth2 θ − η

2
¼ m

π
cosh θ −

μ

2
: ð11Þ

Upon differentiation in θ it takes the standard form with the
1= sinh kernel and can be solved by standard techniques
[31]. The solution that goes to zero at the end points is

εðθÞ ¼ −2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2B − sinh2θ

p
: ð12Þ

This cannot be the end of the story because the BA
equation and the condition εðBÞ ¼ 0 should also fix B. This
extra condition was lost upon differentiation. Going back to
the original equation with the logarithmic kernel gives one
extra constraint:

πμ

2m
¼ E

k
; k ¼ 1

coshB
; ð13Þ

where E≡EðkÞ is the complete elliptic integral of the
second kind (in the notations of [32]). This condition
determines the Fermi rapidity B as a function of the
chemical potential. Integrating (8) we get the free energy:

Φ ¼ −
Nm2sinh2B

2π
; ð14Þ

or, equivalently,

E − μsν ¼ −
Nm2k02

πk2
; ð15Þ

where ν is the density of kinks and k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2

p
¼ tanhB

is the complementary modulus of the elliptic integral.
At large densities, μ ≫ m, the Fermi rapidity grows

logarithmically: B ≃ lnð2μ=mÞ, and Φ ≃ −Nμ2=2π as
expected for a gas of N species free fermions. This can
be made more precise. Following [28] we identify B
with the inverse of the running coupling: λðμÞ≡ π=B.
Indeed, the β function obtained by differentiating (13) in
ln μ then coincides with the one-loop exact large-N
expression up to (scheme-dependent) nonperturbative
terms: β ¼ −ðλ2=πÞð1þ series in e−4π=λÞ. This makes B a
useful measure of the interaction strength: the system is
weakly coupled at asymptotically large densities and
becomes strong when the Fermi interval shrinks to zero
size: B ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4δ=j ln δjp

, implying Φ ∼ −δ=j ln δj. This seems
to contradict our earlier conclusion that Φ ∼ −δ3=2. But the
large-N approximation breaks down at δ ∼ 1=N (all three
terms in the BA equations are then of the same order).
There are thus two regimes at large-N: the logarithmic
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scaling δ=j ln δj further away from the critical point gives
way to a milder δ3=2 behavior parametrically close to it.
The solution (12) defines the energy of holes. To find

their dispersion we need to compute the density and then
the momentum. In the large-N approximation,

1

4π2

ZB

−B

dη ρðηÞ ln coth2 θ − η

2
¼ m

π
cosh θ; ð16Þ

which again is solved by differentiating in θ. To maintain
positivity of the density we need to allow for an inverse
square root, a zero mode of the 1= sinh kernel:

ρðθÞ¼ msinh2B

cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2B− sinh2θ

p −2m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2B− sinh2θ

p
: ð17Þ

At finite N the density of particles and the density of exited
states are smoothly glued at the edge of the interval
ð−B;BÞ. The singular behavior we found here is an artifact
of the large N limit.
The coefficient cs is fixed by substituting the solution

back into the equation with the log kernel:

cs ¼
k0K
E

; ð18Þ

where K is the complete elliptic integral of the first kind
with the same 1= coshB modulus.
For the density of kinks we thus get

ν≡
ZB

−B

dθ
2π

ρðθÞ ¼ m
kK

¼ 2εþε−
πcsμ

; ð19Þ

where we used (13),(18) to get rid of ellipticae and
introduced the notations

εþ ¼ m coshB; ε− ¼ m sinhB: ð20Þ
As we shall see these parameters characterize the gap in the
fermion spectrum.
The parameter ν plays a dual role. On the one hand, it

defines the number density of kinks, how many of them fit
in a unit of length, on the other hand, it also defines the
largest momentum of a hole: because dp=dθ ¼ ρ, the latter
varies between −πν and πν.
We can find the dispersion relation of a hole by

combining (12) with (17):

csdp ¼ 4εþε− − csε2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4ε2þ − ε2Þð4ε2− − ε2Þ

p dε: ð21Þ

The curve εðpÞ is depicted in Fig. 1(a). The dispersion is
approximately linear at small momenta:

ε ≃
p→0

csjpj; ð22Þ

as expected of the sound mode. All this suggests to identify
a hole in the distribution of kinks with a phonon, the
vibrational mode of the chiral crystal. The ground state can
be pictured as a collection of kinks placed equidistantly as
illustrated in Fig. 2. Removing one kink is equivalent to
sending an acoustic wave across the lattice. Since the
soliton centers are separated by 1=ν, the lattice vibrations
naturally fit into a Brillouin zone −πν < p < πν, and so do
the holes in the BA.
The sonic nature of the holes becomes particularly lucid

at small B when εþ ≫ ε−; ε, and the dispersion curve
simplifies

csdp ≃
μ→μc 2ε−dεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ε2− − ε2
p : ð23Þ

Taking into account that εþ ≃m ≃ πμ=2 and expressing ε−
from (19), we find

ε ≃
μ→μc

2csν

���� sin
p
2ν

����; ð24Þ

the dispersion of a phonon in a harmonic lattice with
spacing 1=ν. The energy is a periodic function of momen-
tum with a period 2πν not only in this approximation but
actually for any B. The speed of sound experiences a critical
slowdown at small B: cs ≃ B lnð4=BÞ ∼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

δj ln δjp
, grows

FIG. 1. The dispersion curves: (a) for the phonon; (b) the two
branches of the spectral curve: The upper branch is the spectrum
of vector particles (elementary fermions), the lower branch is the
spectrum of holes described by kinks of opposite chirality.
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with μ, and approaches the speed of light in the perturbative
regime.
Since the soliton lattice contains two particles per unit

cell (Fig. 2), the fermion Brillouin zone is half that of
phonons: −πν=2 < p < πν=2. This fits well with the
mechanics of Peierls instability [10], indeed at weak
coupling (large μ) πν ≃ 2μ and the band gap opens exactly
at the Fermi level. Once interactions become stronger the
density of kinks ν and with it the size of the Brillouin zone
diminishes faster than μ. At the critical point (μ → μc) the
density vanishes as ν ∼ 1=j ln δj.
Now we turn to the part of the spectrum that corresponds

to vector particles, the quanta of the fermion field in the
Lagrangian (1). They do form a Fermi interval of their own,
their exact energy is overall positive and is determined by
the following BA equation:

εfðθÞ −
ZB

−B

dηKfðθ − ηÞεðηÞ ¼ m cosh θ − μ: ð25Þ

There is a similar equation for dpf=dθ. In both of these
equations the kernel is the derivative of the fermion-kink
scattering phase [3]:

K̃fðωÞ ¼ −
e

πjωj
2N−2

2 cosh πω
2

; KfðθÞ ≃N→∞ −
1

2π cosh θ
: ð26Þ

Solving the equation at largeN we find the spectral curve of
an elementary fermion:

εf ¼m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2Bþ cosh2θ

p
−μ;

dpf

dθ
¼m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2Bþ cosh2θ

p
−

msinh2B

2cs
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh2Bþ cosh2θ

p : ð27Þ

Excluding θ gives a differential equation:

csdp ¼ csϵ2 − εþε−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ2 − ε2þÞðϵ2 − ε2−Þ

p dϵ; ϵ ¼ εf þ μ: ð28Þ

Apart from fermions, we also expect to find hole-type
excitations obtained by removing one fermion from the
ground state. This leaves one kink with N − 1 out of N
levels filled, changing the chirality of its Oð2NÞ spinor

representation. By some abuse of terminology we call kinks
with one empty level antikinks. The kernel of their BA
equation is determined by the scattering phase for Oð2NÞ
spinor representations of opposite chirality [3]:

K f̄ðωÞ¼KðωÞ− 1

e
πjωj
N−1þ1

; K f̄ðθÞ ≃N→∞
KðθÞ−δðθÞ

2
: ð29Þ

Using the BA equation for the background (7) and taking
into account that μf̄ ¼ μs − μ we find

εf̄ðθÞ ¼ μþ 1

2
εðθÞ; pf̄ðθÞ ¼

1

2
pðθÞ; ð30Þ

for jθj < B. The energy of kinks (12) is negative inside this
rapidity interval but the upward shift by μmakes the energy
of antikinks overall positive.
Their spectral curve follows from (21) which, as can be

easily seen, implies that the energy of antikinks satisfies the
same equation (28) as the energy of fermions if we now set
ϵ ¼ μ − εf̄ and choose the different branch of the square
root. The two branches are shown in Fig. 1(b) and together
form the expected spectral curve of a Dirac fermion on the
background of the periodic soliton.
It is quite remarkable that in the large N limit the fermion

and antikink energies are different branches of the same
elliptic spectral curve. This fact is the main aspect of the
Peierls phenomenon and solely relies on the theory of
periodic solutions of classical soliton equations [17].
Moreover it can be identified with the spectral curve of
the mKdV equation [12] whose periodic soliton solution
describes the background chiral crystal hσðxÞi [12,15], thus
establishing direct contact between the BA and the equa-
tions of the mean-field theory. The elliptic integrals we
encountered before are defined on the same elliptic curve,
and one can check that the free energy (14) and the
chemical potential (13) agree precisely with the predictions
of the mean-field theory [15].
The common dispersion relation for fermions and

holes starts linearly at small p and has a band gap at
the boundary of the Brillouin zone p ¼ πν=2. Indeed, the
smallest fermion energy is εfðθ ¼ 0Þ ¼ εþ − μ, while the
smallest hole energy is εf̄ðθ ¼ 0Þ ¼ μ − ε−. The gap equals
their sum:

Δ ¼ εþ − ε− ¼ me−B: ð31Þ

The gap is finite at the critical point: ΔðμcÞ ¼ m, dimin-
ishes with μ, and becomes very small at weak coupling:
Δ ≃m2=ð2μÞ ∼ μe−2π=λ. This is fully nonperturbative and
cannot be detected at any order of the weak-coupling
expansion.
We have also solved the BA equations numerically at

finite N. One conclusion we can draw from these prelimi-
nary studies is that the mean-field predictions are strikingly

FIG. 2. The ground state as a periodic soliton.
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robust. We can confirm that (i) the GN model undergoes a
second-order Peierls transition at any N ⩾ 2. Once the
transition is identified with the creation threshold of kinks,
the critical chemical potential (5) follows from the exact
mass formula. This is an exact result that does not rely on
the large-N approximation. (ii) The high-density phase is
characterized by a quasi-long-range crystalline order (2).
Since the Bethe wave function of the ground state is
translationally invariant by construction, translational sym-
metry is not broken. (iii) The spectrum contains a gapless
phonon (also at finite N) described nonperturbatively as a
hole in the Fermi sea of kinks; (iv) the fermion spectrum
remains gapped at any N and any coupling strength. Our
preliminary numerical studies show that 1=N corrections
are significant and reach up to 10% even at N ¼ Oð100Þ.
More details on the full quantum solution of the model will
be given in a separate publication.
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