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Beyond glucose and Warburg: finding the
sweet spot in cancer metabolismmodels

Check for updates

Nia G. Hammond, Robert B. Cameron & Brandon Faubert

Advances in cancer biology have highlighted metabolic reprogramming as an essential aspect of
tumorigenesis and progression. However, recent efforts to study tumor metabolism in vivo have
identified some disconnects between in vitro and in vivo biology. This is due, at least in part, to the
simplified nature of cell culture models and highlights a growing need to utilize more physiologically
relevant approaches to more accurately assess tumor metabolism. In this review, we outline the
evolution of our understanding of cancer metabolism and discuss some discrepancies between
in vitro and in vivo conditions. We describe how the development of physiological media, in
combination with advanced culturing methods, can bridge the gap between in vitro and in vivo
metabolism.

Altered metabolism is a pivotal feature of cancer cells. Cancer cells repro-
gram metabolic pathways to support dysregulated cell growth and pro-
liferation compared to non-malignant cells. Examples of altered metabolic
pathways in cancer include reprogrammed aerobic glycolysis, glutamine
catabolism, redox homeostasis, and numerous biosynthetic processes, all of
which support the energetic and biosynthetic demands of deregulated cell
growth1,2.Metabolic rewiring can support other hallmarks of cancer, such as
proliferative capacity, immune response, and metastasis3–5. Thus, under-
standingmetabolic reprogramming in cancer can lead to important insights
into the underlying pathophysiology of this disease.

The origins ofmetabolic alterations in cancer can be traced back over a
century. In 1924, Otto Warburg made a discovery that has now become
synonymous with the modern concept of metabolic reprogramming in
cancer (several excellent reviews detailing his work are available6–9). War-
burg’s seminal observation, now referred to as the “Warburg Effect”, was
that cultured tumor tissues displayedhigh rates of glucose uptake and lactate
secretion, even in thepresence of adequate oxygen.This starkly contrasts the
metabolism of the non-malignant cells studied by Warburg’s con-
temporaries Herbert Crabtree and Louis Pasteur. In non-malignant cells,
Crabtree and Pasteur observed a metabolic balance between glycolysis and
oxidative phosphorylation (OXPHOS). Increasing glucose levels could
impair OXPHOS, while inversely, high oxygen levels could impair
glycolysis10,11. Thus, an important aspect of the Warburg Effect is the dis-
proportion between glycolysis and respiration. To this day there are still
misconceptions about Warburg’s work, or more specifically, Warburg’s
interpretation of the data12. Warburg hypothesized that tumors have an
“irreversible injuring of respiration” and that this was a central cause of
cancer13. Debate over this interpretation was fierce, driven in part by
Warburg’s penchant for antagonistically criticizing those who disagreed
with him14–16. Despite his interpretation,Warburg’s own data indicated that

cancer cells indeed respire, and have been confirmed in several subsequent
works10,17,18.

Mitochondria play critical roles as an energetic and biosynthetic hub in
cancer. Pyruvate entry into the mitochondria fuels the tricarboxylic acid
(TCA) cycle, a series of enzymatic reactions that generate reduced electron
carriers that enter the electron transport chain and generate energy in the
form of ATP. Mitochondria also generate numerous biosynthetic
intermediates19 andcontribute to intracellular signaling via the generationof
reactive oxygen species20, all of which play key roles in supporting the
growth and proliferation of cancer cells. Yet, questions about the function
and necessity ofmitochondria in cancer persist. For instance, why do tumor
cells use glycolysis, a pathway that produces less ATP to support pro-
liferation? Several noteworthy investigations offer some insight. First, an
advantage of glycolyticmetabolism is its speed, estimated to be 10–100× the
rate of oxidative phosphorylation21. Second, glucose can support several
biosynthetic pathways, including the pentose phosphate pathway, produ-
cing the sugar backbones for DNA and RNA; hexosamine biosynthesis,
producing uridine diphosphate N-acetyl glucosamine, which is used for
glycosylation; or serine biosynthesis, which supports one-carbon metabo-
lism, fatty acid metabolism, and other processes7. Thus, a key advantage of
glycolytic reprogramming in cancer is increased biosynthetic capacity
(Fig. 1).

It is a testament to the importance of Warburg’s discovery that cancer
metabolism remains a key area of interest. His findings have inspired gen-
erations of scientists to investigate how and why metabolism is repro-
grammed in cancer22. It is now appreciated that cancermetabolism is highly
heterogeneous and adaptable, with distinct metabolic features between and
within cancer types23. Nutrient use, enzyme activity, and overall metabolic
pathway engagement can be significantly altered depending on the model
system and growth conditions used to investigate the cancer cells. This
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review highlights recent advances in metabolic reprogramming in cancer,
focusing on bridging the gap between in vivo and in vitro studies of cancer
metabolism.

Methods of measuring tumor metabolism
Measuring tumor metabolism generally relies on two broad techniques:
metabolomics, which analyzes hundreds of metabolites at a given time
point, or stable isotope tracing, which provides insight into howanutrient is
metabolized in different pathways (Fig. 2). These techniques offer com-
plementary insights into metabolic phenotypes of tumors (several detailed
reviews are available24–26). In brief, the measurement of metabolites is most
commonly performed using nuclear magnetic resonance spectrometry
(NMR) or mass spectroscopy (MS), and samples from both metabolomics
and isotope tracing can be quantified on these platforms.

Metabolomics is an informative technique for profiling abroadarrayof
metabolic features. These sensitivemethods detect hundreds ofmetabolites,
reporting on absolute or relative abundances. This technique is commonly
applied in biomarker discovery and tumor characterization, which corre-
lates metabolite abundances with tumor type, mutation, size, or patient
outcome27,28. For example, mutations in metabolic enzymes such as iso-
citrate dehydrogenase (IDH), a TCA cycle enzyme, occur in cancers such as
glioma29 and acute myeloid leukemia30. This mutation produces a neo-
morphicmetaboliteR-2-hydroxyglutarate,which canbedistinguished from
the non-mutated IDH product α-ketoglutarate, providing a diagnostic
characteristic to identify this mutation and highlights the utility of meta-
bolomics as an investigational and clinical tool.

While metabolomics identifies differences in metabolite abundance, it
is difficult to resolve pathway activity or the flow of metabolites through a
system using this method alone. Stable isotope tracing is a complementary
approach to address these gaps. Stable isotopes (e.g., non-radioactive) are
elements that contain an extra neutron and can be distinguished from
endogenous isotopes by nuclear magnetic resonance or mass spectrometry.
A nutrient labeled with a stable isotope (e.g., [U-13C]glucose) is added to a
biological system (cultured cells, animal models, or patients). As the labeled
nutrient is metabolized to downstream products, the 13C label is transferred
and the position and extent of labeling provide information on enzymatic
activity. The choice of labeled nutrient and label location allow for investi-
gations into nutrient utilization, metabolic fate, and potential enzymatic

activitywithin a system.Byemployingmultiple tracers across a series of time
points, metabolic flux analysis can be performed to provide quantitative
evidence of how metabolic pathways operate within a given biological
system31.

Analyzing metabolism in vivo: lessons from stable iso-
tope tracing studies
Our understanding of metabolic reprogramming in cancer has accelerated
over the past decade. The use of metabolomics, stable isotope tracing, and
metabolic flux analyses on tumors in vivo24, including directly measuring
tumor metabolism in patients with cancer32, provides important informa-
tion on nutrient supply and relativemetabolic activity within tumors. Stable
isotope infusions into patients at the time of a biopsy or resection generate
important insights into bona fide human tumor metabolism, from which
further studies could be based.

An early goal of these tracing studies was to identify which nutrients
contribute to tumor metabolism in vivo and how tumor metabolism
compares to adjacent benign tissue. Collectively, the largest cohort to date is
patients with non-small lung cancer (NSCLC) who were infused with [13C]
glucose. These studies demonstrated that 13C enrichment in central carbon
metabolites (e.g., glycolysis and the TCA cycle) was very heterogeneous, but
overall enrichment was far higher in tumors than adjacent lung33–36. In fact,
nearly all tumor types studied have had significant 13C incorporation into
glucose and TCA cycle metabolites, including glioma and brain
metastases37, pediatric tumors of multiple histologies38, and breast cancer39.
The lone outlier (to date) of this phenotype is clear cell renal cell carcinoma
(ccRCC), which displays minimal contribution of glucose to the TCA
cycle40. This lack of glucose contribution to the TCA cycle may be due to
genetic perturbations in ccRCC, as approximately 90% have inactivation of
the von Hippel Lindau (VHL) ubiquitination complex, leading to stabili-
zation of HIFα subunits that enhance glycolysis and decrease pyruvate
metabolism in the mitochondria41. A non-mutually exclusive possibility is

Fig. 1 | Central carbon metabolism fuels energy and biosynthesis. Glucose
metabolism fuels several biosynthetic and energy-generating pathways (red). Gly-
colytic intermediates can be re-directed from glycolysis to other biosynthetic
pathways, supporting DNA and RNA synthesis (pentose phosphate pathway),
glycan generation (hexosamine biosynthesis), or one-carbon metabolism (serine
biosynthesis). Pyruvate entry to the TCA cycle results in both high levels of ATP
generation and biosynthesis pathways such as fatty acid synthesis. OAA oxaloace-
tate, α-KG alpha-ketoglutarate.

Fig. 2 | Utility and readouts of metabolomics and stable isotope tracing. A In
metabolomics, samples are obtained and processed using mass spectrometry to
identify the abundance of various metabolites. As such, individual metabolites are
readily identified, and differences in the sizes of different metabolite pools can be
identified (shown here by the size of various circles). While more sophisticated
analyses can be used to model the activity of various metabolic pathways, metabo-
lomic studies cannot directly assess pathway activity. B Stable isotope tracing
requires the addition of amass-labeledmetabolite (e.g., 13C-glucose,15-N-glutamine)
to the system (represented here by blue overlays of various models). After a set
incubation period, samples are obtained and processed for mass spectrometry. This
technique provides a greater depth of information regarding the utilization of dif-
ferent nutrients and metabolites by incorporating labeled atoms into different
metabolites (represented here by blue shading of circles). Thus, pathway activity is
directly assessed.

https://doi.org/10.1038/s44324-024-00017-2 Review

npj Metabolic Health and Disease |            (2024) 2:11 2



the hypoxic nature of the kidney, as ccRCCmetastases in the lung increase
glucose contribution to theTCAcycle42.Animalmodels also offer important
insights into tumor metabolism. An added advantage of these model sys-
tems is the capacity to measure 13C tissue enrichment at multiple time
points, providing for a more detailed analysis of metabolic flux. One intri-
guing evaluation of TCA cycle metabolism in a series of cancer types found
that flux depends on both tumor type and location. Solid Kras-driven
tumors exhibited lower TCA flux than healthy tissues, whereas flux was
higher in hematogenous cancers43. Interestingly, metastatic breast cancers
displayed increasedTCA cycle flux relative to primary tumors43, supporting
the notion that tumor metabolism is altered during metastatic progression
and is influenced by the metastatic site44,45.

Studies of tumor metabolism in vivo have revealed some disconnects
with the metabolic phenotypes of cultured cells. For example, in mouse
models of Kras-driven NSCLC, cultured cells catabolize glutamine to sup-
port the TCA cycle, whereas this contribution is negligible for NSCLC
in vivo46. Importantly, these metabolic differences also affect gene essenti-
ality for cancer cell growth. Genetic deletion of glutaminase (GLS) results in
cell death of cultured NSCLC, but these same cells are agnostic to GLS loss
in vivo46. Later studies revealed that the reliance on glutamine catabolism in
cultured cells is at least partially due to the media composition, which
contains artificially high levels of cystine. Depleting cystine levels in vitro
reduces the overall contribution of glutamine to the TCA cycle in cultured
cells47. Similar discordance between cultured and in vivo systems has been
observed in models of pancreatic cancer. Knockout of the mitochondrial
isoform of glutamate-oxalate transaminase (GOT2) impairs pancreatic
cancer growth in vitro, but growth is unaffected in vivo48. In separate studies
of pancreatic cancer, knockout ofN-acetylglucosamine kinase (NAGK) had
no appreciable effect on cell growth under nutrient-replete culture condi-
tions, but renders these cells unable to grow in a mouse model49,50. Overall,
these studies demonstrate potential disconnects between model systems
that can have important implications for our understanding of tumor
metabolism, and highlight the need to consider how we investigate meta-
bolism in these systems carefully.

Modeling tumor metabolism in cultured cells with 2D
and 3D systems
Tumor metabolism is affected by both intrinsic factors (e.g., genetic
mutations) and extrinsic factors within the tumor microenvironment
(TME).While the cancer cells themselvesmaybehighlyheterogeneousboth
genetically andmetabolically, the TME is a complexmixture of different cell
types, including stromal, immune, and non-malignant epithelial cells.
Further adding to this complexity, tumors can be influenced by variations in
vasculature andmechanical forces51. Thus, while tumormetabolism in vivo
is impacted by a complex combination of intrinsic and extrinsic factors,
standard culturing methods can only partially replicate these conditions52.

Two-dimensional (2D) tissue culture is the conventional approach to
studying many cancer cell types. Cells are typically grown in a monolayer
and generally only include a homogeneous population of cancer cells. First,
despite this relative simplicity and lack of extrinsic factors, 2D culture
methods can provide good fidelity to in vivo models. Metabolic CRISPR
screens demonstrated that 2D culture recapitulates the majority (~85%) of
dependencies of pancreatic cancer cells identified in vivo53,54. Yet, differences
of gene essentiality between these model systems were still present; for
instance, cultured cells failed to predict the in vivo dependency on heme
metabolism. In the cultured version of the CRISPR screen, cells that were
capable of synthesizing heme could export a biosynthetic precursor thatwas
metabolized by neighboring cells to compensate for Hmbs loss53,54. These
studies revealed an important, cancer-type-specific aspect of gene essenti-
ality. When the top-performing sgRNA for both in vitro and in vivo Kras-
PDAC models were applied to Kras-driven NSCLC, only a few shared
metabolic essentialities were observed54.

Cellular complexity can be increased with spheroid culture systems,
wherein cells form 3-dimensional aggregates in suspension. More recently,
organoid models, in which cells are suspended in an extracellular matrix

such asMatrigel, have beendeveloped tomodel the interactions between the
tumor and its surrounding matrix as discussed in depth in the following
review55. Different groups have attempted to identify metabolic similarities
and differences across 2D culture, 3D culture, and in vivo systems. In the
above studies of metabolic CRISPR screens in PDAC, the authors observed
metabolic differences between 2D and 3D culture models, with the 3D
culture models providing greater fidelity to in vivo tumor growth53,54. In
some cases, these metabolic differences can better model patient outcomes.
In a study of patient-derived PDAC organoids, metabolic profiling was able
to stratify patients into two subtypes that were associatedwithworse patient
outcomes56. More aggressive tumors were associated with reprogrammed
glucose metabolism through the GLUT1/ALDOB/G6PD axis, leading to
increased glucose utilization via glycolysis and the pentose phosphate
pathway. Ultimately, this promoted chemoresistance by increasing pyr-
imidine synthesis56. Targeting this axis sensitized tumors to cytotoxic che-
motherapy, suggesting that this pathwaymay represent a therapeutic target
for PDAC. Three-dimensional cultures also improve fidelity to in vivo
models of breast cancer. Here, 3D culture led to a higher expression of
proline dehydrogenase than in 2Dculture, providing a better representation
of patient data, where metastases have increased proline dehydrogenase
expression57. This difference in expression leads to increased proline cata-
bolism to supportATPproduction, and inhibitionofprolinedehydrogenase
decreased metastases in mouse models57.

Advances in 2D and 3D culture models provide a greater capacity to
discover metabolic features that are key to tumor biology in vivo. For
instance, 3D systems are being used to model regional differences in
metabolism including drug sensitivity58, and advances in bio-printing and
co-culture systems can be used to model tumor and immune cell
interactions59. Ultimately, the choice of culture system depends on the
experimental question being posed. Interrogating metabolism with 2D
culture can be sufficient from an experimental perspective in many aspects,
but can be difficult to extrapolate to more complicated systems in others.
Pushing the capacity of these models to mirror in vivo biology requires
multiple investigational approaches, and one important consideration is
using culture media that more accurately represents the in vivo nutrient
environment of the tumor.

Mimicking the in vivo nutrient environment with
physiological media
Standard media such as DMEM and RPMI-1640 (RPMI) were developed in
the mid-20th century to maximize cellular proliferation with the minimum
number of nutrients, while minimizing the need to change media60–63. As
such, these media contain supra-physiological levels of nutrients such as
glucose and glutamine, while multiple nutrients deemed unimportant or
unnecessary for proliferation are absent. In contrast, physiological media
have been developed over the last decade to contain physiological con-
centrations of metabolites found in various in vivo environments such as
serum or tumors, to varying degrees of complexity. For in-depth reviews of
thehistoryofmedia and the recent development of physiologicmedia, see the
following reviews64–66 (Fig. 3). We briefly describe their formulations here.

Serum-like tissue culture medium (SMEM) was one of the early phy-
siological media developed67,68. It was designed by modifying DMEM to
contain amino acids, glucose, and pyruvate at concentrations found within
healthy human serum. More systematic approaches have been used in the
design of recent physiological media. For example, human plasma-like
medium (HPLM) was generated to contain a series of amino acids, polar
metabolites, and small ions at concentrations found in healthy human
plasma, according to theHumanMetabolomeDatabase69. Thedevelopment
of Plasmax involved a similar approach, with the additional inclusion of
amino acid derivatives and other trace elements70. Additionally, the amount
and type (e.g., unmodified vs. dialyzed) of fetal bovine serum (FBS) are also
important considerations and differ across these formulations, with HPLM
utilizing 10% dialyzed FBS and Plasmax requiring 2.5% FBS.

While these media provide a more accurate approximation of the
serum or plasma nutrient environment, the TME can be metabolically
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distinct from serum71,72. In vivo, cancer cells are surrounded by interstitial
fluid (tumor interstitial fluid, or TIF), representing the closest approxima-
tion of the nutrients available to cancer cells73. By quantifying themetabolite
concentration of isolated tumor interstitial fluid, Tumor Interstitial Fluid
Medium (TIFM) was developed to contain 115 polar metabolites at con-
centrations measured in the interstitial fluid of murine pancreatic ductal
adenocarcinoma (PDAC) tumors74,75. As with previously developed media,
the metabolites included in this formulation were based on commercial
availability and stability.Defining theTIFnutrient concentrations in specific
tumor types, or the interstitial nutrient metabolome of healthy tissues, are
active areas of investigation.

Biological insights from growing cancer cells in
physiological media
Using a media that mimics both the concentration and availability of
metabolites in vivo can significantly alter themetabolism of cultured cancer
cells. Several studies have demonstrated that culturing cancer cells in phy-
siological media can better recapitulate the metabolic phenotype of tumors
in vivo, and have observed changes in glutamine, arginine, nucleotide, and
mitochondrial metabolism.

Recent work has documented alterations in glutamine metabolism
when culturing cells in physiological media. As discussed above, glutamine
anaplerosis can be influenced by the media formulation47, and similar
metabolic changes were observed in glioblastoma cells cultured in SMEM.
Here, glutamine did not enter the TCA cycle, but instead, these cells re-
directed glutamine towards purine synthesis, mimicking the phenotypes in
both patients with glioblastoma and in xenograft models68. Similarly, cul-
turing human blood cancer cell lines in HPLM reduced the essentiality of
glutaminase compared to RPMI in CRISPR screens. The difference in gene
essentiality was partially due to the absence of pyruvate in RPMI, but its
presence in HPLM76. Similar results were also observed in glioma cells
cultured in Plasmax77.

Argininemetabolism is also significantly impacted by nutrient levels in
the media. Culturing PDAC cells in TIFM causes arginine synthesis via
argininosuccinate synthase 1 (ASS1), consistent with in vivo studies, yet is

not observed in PDAC cells cultured in RPMI. This disparity is due to the
low levels of arginine present within PDAC TIF, approximately 2–5 μM
compared to the 125 μM found in plasma and 1.15mM in RPMI74. Similar
effects have been observed in breast cancer cells, where the artificially high
arginine levels in DMEM F-12 result in the enzymatic reversal of argini-
nosuccinate lyase (ASL), which canonically catalyzes the conversion of
argininosuccinate to arginine and fumarate. However, this directionality
was restored in cells cultured in Plasmax70. Furthermore, the reduced levels
of arginine present in Plasmax induced de novo serine synthesis and ele-
vated ATF4 expression in Plasmax-cultured cancer cell lines, suggesting
broader metabolic rewiring beyond arginine synthesis78.

Physiological media has also provided novel insights into nucleotide
metabolism that would have been missed using standard media formula-
tions. Culturing hematological cancer cell lines in HPLM impairs pyr-
imidine synthesis69. This effect is mediated by uric acid, which is present in
human plasma but is largely absent from RPMI. Uric acid directly inhibits
the OMP decarboxylase (ODC) domain of UMP synthase (UMPS), and a
consequence of this inhibition is a reduced sensitivity to the antimetabolite
chemotherapeutic 5-fluorouracil (5-FU). Physiologicalmediamay also alter
the choice of carbon source for nucleotide synthesis. Plasmax cultured
cancer cell lines have an elevated contribution of hypoxanthine salvage and
de novo serine synthesis-derived carbons to fuel purine synthesis compared
to DMEM cultured cells78. In DMEM cultured cells, exogenous hypox-
anthine is absent, and extracellular serine import, instead of de novo serine
synthesis, contributes to purine metabolism. Because of this, combined
inhibition of both pathways had an additive effect in reducing proliferation
in Plasmax cultured cells andmay provide a potential therapeutic strategy78.

Lastly, several groups have investigated the impact of physiological
media on mitochondrial metabolism. In one example, the supraphysiolo-
gical levels of pyruvate inDMEM-F12 induced a hypoxic signature through
the stabilization of HIF1α in breast cancer cells, which was reversed when
cellswere cultured inPlasmax70. Investigations into the influenceofmedium
choice on mitochondria reveal that physiological media alterations in
mitochondrial respiration andmorphology characteristics have been largely
cell-line specific, as no consistent trends have emerged69,79–81.

Important considerations for media, models, and
metabolism
While physiological nutrient conditions can better mimic some aspects of
metabolism, the reduced concentrations of many nutrients make these
experiments more prone to depletion and nutrient stress. Notably, even
when cancer cells are cultured with excess media, 48 h without media
change severely depleted glucose and the majority of amino acids in
Plasmax82. This leads to an enrichment in nutrient stress response pathway
signatures by RNA-sequencing. Media changes every 24 h mitigate this
nutrient depletion and stress response signature; however, 24 h of culture
still depleted glucose and a handful of amino acids below the healthy human
plasma range. Thus, efforts should be made to avoid dropping nutrient
levels below normal physiological concentrations by performing frequent
media changes or using continuous flow culture systems83. Secondly, the
type of FBS added tomedia should be considered. The inclusion of dialyzed
or unmodified FBS significantly impacts gene essentiality in CRISPR
screens76. Dialyzed FBS versus unmodified FBS impacted the hits identified
in RPMI and DMEM cultured cells. This is because FBS contains a mix of
unknown metabolites and lipids that can vary65. Therefore, thoughtful
consideration of the FBS supplement and percentage should be included in
the experimental design.

Not all metabolic phenotypes require the use of physiological condi-
tions to match in vivo observations, as highlighted by metabolic CRISPR
screens for gene essentially53,54. Furthermore, simply altering the levels of
specificmetabolites can provide useful insights into biological responses. To
determine how PDAC cells might behave inmedia conditionsmore similar
to the in vivo environment, reducednutrient levelsweremodeled by altering
standardDMEM to contain 2.5 mmol/L glucose, 0.5% FBS, and one-fifth of
the standard amino acid concentration. Here, PDAC cells were found to

Fig. 3 | Timeline of tissue culture media development and formulation. In the
early 1900s, biological fluids such as plasma were common practice for culturing
cells. This natural media period continued until the development of BME in 1955.
This was shortly followed by the rapid generation of other synthetic media designed
for different cell types that have now become standard for in vitro work today.
However, a recent physiologic media revolution initiated in 2015 with SMEM has
ushered in a new wave of media development modeling in vivo environments.
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mimic the poorly perfused regions of pancreatic tumors more accurately84.
Relatedly, glucose concentrations within multiple tumors are commonly
several-fold lower than in non-transformed tissue85,86. By culturing cells at a
lower but constantly maintained glucose level, Birsoy et al. observed sig-
nificant metabolic diversity and sensitivity to OXPHOS inhibition across
cell lines that were otherwise masked in standard cell culture conditions83.

All model systems come with significant limitations. Cultured cells are
a population of highly homogeneous cells, in contrast to tumors in vivo,
wherein cancer cells interactwithfibroblasts, endothelial cells, immunecells,
and contain various cancer cell subclones within a tumor. Metabolic
interactions with these different cell populations plays an important role in
the tumor metabolic phenotype. Isotope tracing studies in mice bearing
PDAC tumors identified that some tumor metabolic patterns were only
induced by the presence of cancer-associated fibroblasts, both in vivo and
co-culture systems in vitro87. The concentration ofmost keymetabolites can
be tightly regulated in vivo, even with significant fluctuations in metabolite
availability from dietary intake75. In contrast, in vitro systems lack these
homeostatic mechanisms and can be subject to substantial temporal
changes in nutrients. The use of bioreactor systems where the media can be
constantly replenished83, may offer unique insights into the homeostatic
mechanisms of cultured cancer cells. One key limitation of measuring
metabolism in vivo is the difficulty in resolving cell-type specificmetabolism
with current technological methods. Standard sample processing for
metabolomics and stable isotope tracing involves homogenizing tissue
samples before analysis, resulting in the mixture of metabolites from mul-
tiple cell types. The application of spatial metabolomics can be used to
identify metabolites in situ, allowing for the resolution of metabolic differ-
ences between cell types or areas88. While the use and advances in these
platforms are rapidly accelerating, several technical hurdles (image resolu-
tion, sensitivity, imaging and processing speeds, etc.) are still being
improved.Nevertheless, these techniques offer exciting future opportunities
to investigate metabolic differences in situ.

Conclusions and future directions
Tumor metabolism is a dynamic hallmark impacted by intrinsic and
extrinsic factors, therefore, it is important to consider the influence of any
model system on the metabolic phenotype. As reviewed here, one way to
yield meaningful data is to alter cell culture conditions to mimic the phy-
siology of the tumor ecosystem. Recent advances in culturemedia formulae,
detection techniques, and interrogating metabolism in vivo, have allowed
for more granularity in understanding cancer metabolism. As further
improvements are implemented (Box 1), scientists and clinicians can better
leverage tumor-specific metabolic derangements for patient benefit.
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