
Nature Genetics

nature genetics

https://doi.org/10.1038/s41588-024-01872-xArticle

Global impact of unproductive splicing on 
human gene expression

Benjamin Fair    1,7, Carlos F. Buen Abad Najar    1,7, Junxing Zhao2,5, 
Stephanie Lozano    1,6, Austin Reilly1, Gabriela Mossian1, Jonathan P. Staley    3, 
Jingxin Wang2,5 & Yang I. Li    1,4 

Alternative splicing (AS) in human genes is widely viewed as a mechanism 
for enhancing proteomic diversity. AS can also impact gene expression 
levels without increasing protein diversity by producing ‘unproductive’ 
transcripts that are targeted for rapid degradation by nonsense-mediated 
decay (NMD). However, the relative importance of this regulatory 
mechanism remains underexplored. To better understand the impact 
of AS–NMD relative to other regulatory mechanisms, we analyzed 
population-scale genomic data across eight molecular assays, covering 
various stages from transcription to cytoplasmic decay. We report 
threefold more unproductive splicing compared with prior estimates 
using steady-state RNA. This unproductive splicing compounds across 
multi-intronic genes, resulting in 15% of transcript molecules from 
protein-coding genes being unproductive. Leveraging genetic variation 
across cell lines, we find that GWAS trait-associated loci explained by AS are 
as often associated with NMD-induced expression level differences as with 
differences in protein isoform usage. Our findings suggest that much of the 
impact of AS is mediated by NMD-induced changes in gene expression rather 
than diversification of the proteome.

Alternative splicing (AS) has the potential to expand the number of 
functional peptides encoded in messenger RNA. Large-scale transcrip-
tomics studies have confirmed that nearly all protein-coding genes 
generate multiple—sometimes dozens—of distinct mRNA isoforms. 
This finding is often interpreted as supporting the role of AS in diversi-
fying the proteome; yet, most alternatively spliced isoforms are lowly 
expressed and lack cross-species conservation1–6. To explain these 
observations, multiple studies have suggested that the vast majority 
of isoforms are nonfunctional transcripts resulting from mis-splicing 
rather than regulated AS4–9.

Mis-splicing from aberrant activation of unconserved ‘cryptic’ 
splice sites often introduces frameshifts in the mRNA coding sequence, 

resulting in premature termination codons (PTCs). Consequently, 
downstream exon junction complexes, which would normally be dis-
placed by translating ribosomes, recruit nonsense-mediated decay 
(NMD) machinery to the mRNA for degradation. Thus, most transcripts 
with one or more aberrant splicing events are considered to be ‘unpro-
ductive’, as they are expected to undergo rapid NMD.

Unproductive transcripts can also result from regulated AS10–21. 
For example, some splicing factors control AS of their own pre-mRNA, 
relying on the coupling between AS and NMD (AS–NMD) to autoregu-
late their expression levels12–14,17,21. However, regulated AS–NMD has 
only been documented in a handful of genes. While most genes have 
annotated unproductive isoform structures22, the extent to which these 
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of maturation than 4sU sequencing labeled for 30 min (Fig. 1a). We fur-
ther verified that naRNA-seq captures RNA associated with chromatin 
and nascent pre-mRNA in several ways (Extended Data Fig. 1), showing 
that our naRNA dataset allows high resolution analysis of splicing 
outcomes before cytoplasmic degradation.

Unproductive mRNA splicing is pervasive
We used naRNA-seq data to estimate the prevalence of ‘unproductive 
splicing’, that is, splicing outcomes that are expected to induce NMD 
of the host transcript. In contrast, ‘productive splicing’ is expected to 
preserve the proper reading frame of the host transcript. Thus, exon–
exon junction reads from unproductive transcripts are expected to 
be depleted in steady-state RNA-seq, while the junction reads iden-
tified in naRNA would reflect unbiased rates of unproductive splic-
ing. We find 0.44% of all junction reads overlapping protein-coding 
genes from naRNA-seq map to splice junctions uniquely annotated in 
NMD-targeted transcripts (Gencode annotations22) compared with 
0.15% in steady-state RNA (Extended Data Fig. 2a). Moreover, we find 
that 2.4% of junction reads in naRNA are not attributable to annotated 
junctions of stable protein-coding transcripts, compared with 1.1% in 
30 min labeled 4sU RNA and 0.60% in steady-state RNA (Fig. 1b). As 
only a small fraction of these 2.4% of junction reads can be attributed 
to annotated NMD transcripts, we sought to understand whether the 
remaining represent unproductive isoforms. We find that about half 
of these remaining junctions are annotated in transcripts that are 
expected to be NMD substrates, albeit, not explicitly defined as so by 
Gencode (for example, transcripts associated with a retained intron) 
(Fig. 1b, Extended Data Fig. 2b,c and Methods). Most of these splice 
junctions are greatly depleted in steady-state RNA (Supplementary 
Fig. 3a), consistent with their rapid decay. To categorize the unanno-
tated splice junctions, we developed a method to predict their effect 
on transcript coding potential (Supplementary Methods). We find 
that these unannotated junctions are overwhelmingly expected to 
either frameshift or introduce a PTC in the coding sequence, thus, 
resulting in a transcript targeted by NMD. To confirm the quality of 
our productive/unproductive categorizations of splice junctions, we 
assessed the change in abundance of splice junctions in short hair-
pin RNA (shRNA)-induced knockdowns of core NMD components, by 
reprocessing RNA-seq data from single knockdowns of UPF1, SMG6 and 
SMG7 and a double knockdown (dKD) of SMG6 and SMG7 (ref. 24). As 
expected, annotated and unannotated splice junctions that we classify 
as productive are relatively unchanged upon NMD knockdown, while 
unproductive junctions increase in abundance (Supplementary Fig. 3b). 
Single knockdown of core NMD factors displayed much smaller abun-
dances of unproductive splice junctions compared with double SMG6 
and SMG7 knockdowns (Extended Data Fig. 3), suggesting functional 
redundancy between these NMD factors. Overall, we find a similar 

isoforms influence gene expression levels, impact phenotypes and/or 
are important for organismal fitness is unknown. Assessing these ques-
tions is complicated partly because the rapid decay of unproductive 
isoforms obscures quantitative measurements of their splicing7,23,24.

An early study of unproductive splicing estimated that up to a 
third of transcript isoforms inferred from expressed sequence tags sup-
ported unproductive rather than productive splicing and hypothesized 
that AS–NMD may be a widespread regulatory mechanism7. Since then, 
multiple studies have attempted to test this hypothesis using improved 
methods, for example, by measuring gene expression levels before and 
after knocking down core NMD factors such as UPF1 or UPF2. These 
studies revealed a modest impact on gene expression levels, noting that 
only a small fraction (<10%) of genes show appreciable change in gene 
expression levels upon knockdown25,26, providing evidence against a 
widespread role of AS–NMD27. By contrast, recent studies23,24,28–32 sup-
port partial redundancy between core NMD factors, which can obscure 
knockdowns of single NMD factors and underestimate the impact of 
AS–NMD on mRNA expression levels. Thus, the impact of AS on gene 
expression levels remains unclear10,15,33–36.

Results
High-throughput measurements of AS before mRNA decay
To assess the impact of AS on steady-state gene expression levels, we 
must jointly consider multiple stages of gene regulation that reflect 
mRNA before and after the influence of cytoplasmic decay processes. To 
do this, we leveraged a large collection of molecular assays in lympho-
blastoid cell lines (LCLs) derived primarily from 40–86 Yoruba individu-
als (Fig. 1a and Supplementary Fig. 1). These datasets37–40 have been used 
to study the impact of genetic variants on molecular phenotypes and 
consists of measurements tracking major steps of mRNA biogenesis 
including chromatin activity at enhancers (H3K4me1 and H3K27ac 
combining chromatin immunoprecipitation sequencing (ChIP-seq)) 
and promoters (H3K27ac and H3K4me3 ChIP-seq), newly transcribed 
polyA RNAs (4sU pulse-labeled for 30 or 60 min) and steady-state mRNA 
levels (RNA sequencing, RNA-seq). However, these data fail to capture 
spliced mRNA before potential cytoplasmic degradation, preventing 
us from capturing rapidly degraded mRNA transcripts.

To measure AS of pre-mRNA splicing before mRNA decay, we 
used nascent RNA-seq (naRNA-seq). We obtained a total of 22.4 billion 
naRNA-seq reads across 86 LCLs. To further increase the temporal 
resolution of our dataset, we also collected CUT&Tag data from 95 
LCLs to profile H3K36me3, a mark associated with active transcription 
elongation (Supplementary Fig. 2).

The correlation between gene expression measurements in 
steady-state RNA and gene expression measurement at previous stages 
of RNA processing reveals a clear temporal pattern, matching our 
expectation that our naRNA-seq data capture mRNA at an earlier stage 

Fig. 1 | Genomic data captured before, during, and after transcription 
reveal an abundance of NMD isoforms. a, Subset of the population-scale 
datasets we analyzed, covering stages of mRNA biogenesis, from activation  
of enhancers/promoters (that is, H3K27ac and H3K4me3 ChIP-seq) to  
steady-state RNA (polyA RNA-seq). The gene expression correlation matrix 
(using promoter peak coverage for H3K27ac and H3K4me3, gene body 
coverage for H3K36me3 and exonic read coverage for RNA-seq) relative to 
steady-state RNA samples is shown as a heat map. b, Left: fraction of splice 
junction reads in each RNA-seq sample (columns, grouped by dataset) that 
are in Gencode-annotated productive transcript structures (blue) versus 
unannotated or annotated unproductive transcript structures (gray). The 
dashed lines indicate the median for each dataset. Right: for the 2.4% of splice 
junctions in naRNA-seq data that are not in annotated productive transcript 
structures, we checked for their unique presence in annotated unproductive 
transcript structures (for example, transcripts tagged by Gencode as ‘retained_
intron’), or if unannotated, we attempted to translate sequences surrounding 
the splice sites (Supplementary Methods). The stacked bars indicate fraction 

of naRNA-seq splice junctions in each subcategory. c, Similar to b, comparing 
steady-state RNA from shRNA scramble control (n = 6) and shRNA dKD 
(n = 3) of SMG6 and SMG7 in HeLa cells24. d, Fraction of cassette exons that 
are symmetric (that is, length divisible by three) as function of their usage, 
estimated as percent spliced in PSI. The error bars represent standard error of 
values for LCL lines treated as replicates (circular markers, same dataset as b) 
and standard error across replicate shRNA knockdown experiments (triangular 
markers, same dataset as c). e, Cumulative distribution of log fold differences 
in steady-state gene expression versus gene transcription (measured by 
H3K4me3 promoter activity, naRNA, H3K36me3 or 30 m 4sU-labeled RNA), a 
proxy for degradation rate. Genes are grouped by quintiles based on percent of 
unproductive junction reads. The quintile of genes with the most unproductive 
splicing (darkest) show the strongest signature of mRNA degradation. The 
correlation between unproductive splicing and 30 min labeled 4sU RNA/
steady-state RNA is weaker than in comparisons using the other degradation 
rate proxies, consistent with rapid decay of unproductive transcripts.
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enrichment of unproductive splice junctions in the dKD experiments 
(Fig. 1c) as in our naRNA (Fig. 1b), suggesting NMD is the primary mecha-
nism explaining the abundance of unannotated junctions in naRNA. 

Thus, we estimate that ~2.3% of splicing events target transcripts for 
NMD, as measured in naRNA, compared with ~0.55% in steady-state 
RNA (Extended Data Fig. 2c).
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We further describe the abundance of unproductive splicing 
revealed by naRNA in a qualitative manner by analyzing exons whose 
length is divisible by three (‘symmetric exons’) and, thus, are frame 
preserving whether the exon is skipped or included. Previous studies 
using steady-state RNA-seq data found that highly included and con-
served alternatively spliced exons (‘cassette exons’) are biased toward 
being symmetric1–4,41, suggesting that there is selective pressure to 
maintain coding frame for highly included cassette exons (Extended 
Data Fig. 4a). Indeed, ~55% of highly included cassette exons are sym-
metric compared with only ~35% of rarely used cassette exons (percent 
spliced in (PSI) <1%). However, we find that in naRNA the fraction of 
symmetric exons is low, under 40%, even for the most highly included 
cassette exons (Fig. 1d and Extended Data Fig. 4b). We find similar 
results in steady-state RNA after knockdown of NMD factors (Fig. 1d and 
Extended Data Fig. 4b). These observations show that in the absence of 
NMD, there is no bias for alternatively spliced exons to be symmetric. 
These findings question the widely held belief that the main function 
of AS is protein diversification.

Having observed such abundant unproductive splicing, we 
wondered to what extent AS–NMD influences gene expression levels 
genome wide. We find that the genewise fraction of unproductive 
splicing correlates with multiple measures of degradation rate (Fig. 1e), 
and we conservatively estimate that AS–NMD explains at least 9% of 
post-transcriptional gene expression variance across genes (Sup-
plementary Note 1).

Despite the abundant effects of AS–NMD on gene expression 
levels, it is not clear to what extent AS–NMD is functionally regulated 
and optimized through selection versus a result of splicing mistakes, 
which nonetheless impact gene expression. To better understand 
this, we explored which classes of genes and introns are most prone to 
AS–NMD. We found that highly expressed (Extended Data Fig. 5a,b) and 
evolutionarily constrained genes (Extended Data Fig. 5c) have among 
the lowest rates of unproductive splicing. Because evolutionarily con-
strained genes are expected to be under strong selective pressure to 
be tightly and accurately regulated42, the fact that we see the least 
unproductive splicing in them suggests that unproductive splicing 
generally represents molecular noise, rather than a form of regula-
tion. However, we find exceptions—for example, the highly conserved 
SR-family proteins have among the highest rates of unproductive splic-
ing even when controlling for expression (Extended Data Fig. 5b and 
Supplementary Note 2), consistent with previous reports of conserved 
AS–NMD-based autoregulatory loops in these genes12–14,17,19,21. Still, splic-
ing regulators represent only a small fraction of genes with the highest 
rates of unproductive splicing (Supplementary Note 2). Further, we 
observe that introns with weak splice sites (Supplementary Fig. 4) 
and long introns (Fig. 2a) have higher unproductive splicing rates, 
consistent with splicing errors caused by appreciable competition 
between bona fide functional splice sites and cryptic splice sites. We 
also reasoned that if unproductive splicing is regulated and optimized, 
most unproductive splicing would be derived from a single alternative 
event that could be efficiently regulated by cis-regulatory elements, as 
is the case for SR protein autoregulatory loops. Yet, for most genes, we 
were unable to attribute a majority of unproductive splice events to a 
single splice junction (Fig. 2b and Supplementary Fig. 5).

Based on these observations, we propose a model in which every 
protein-coding intron of a gene can generate unproductive junctions 
at a specific ‘error’ rate, which depends on intron length, splice site 
strength and other genomic features. This model predicts that unpro-
ductive junctions will compound along the entire length of pre-mRNA, 
making long genes—or genes with many introns—more likely to pro-
duce unproductive transcripts than those with fewer introns (Fig. 2c). 
Under the simplest binomial model, assuming that 2.3% of splicing 
events are unproductive, we predicted that ~17% of mRNA transcripts 
would be unproductive for a typical human gene with eight introns. To 
test this prediction, we analyzed long-read RNA-seq (LRS) data from 

datasets collected using Oxford Nanopore technology23,43. We investi-
gated the number of transcripts containing one or more unproductive 
junctions, binned LRS reads by their number of junctions and calcu-
lated the fraction of reads with an unproductive junction for each bin to 
estimate the abundance of unproductive transcripts. We first analyzed 
LRS naRNA from chromatin cell fractions from K562 cells43. We found 
that ~15% of naRNA reads spanning a typical human gene contained 
one or more unproductive junctions (Fig. 2d). Importantly, we also 
investigated LRS of steady-state mRNA following shRNA knockdown 
of NMD machinery23 and found that ~15% of reads spanning a typical 
human gene had one or more unproductive junctions (Fig. 2d). We 
further corroborated these findings by analyzing the small subset 
of LRS reads that probably represent full-length mRNA transcripts, 
which we directly evaluated for adherence to known molecular rules 
governing NMD44 (Extended Data Fig. 6). Taken together, we estimate 
that for a typical multi-intronic gene, ~15% of all transcript molecules 
generated are NMD targets, though rates of unproductive splicing 
vary greatly across genes. For example, at lowly expressed genes, we 
estimate the fraction of NMD targets for transcripts with ten exons is 
25% of mRNA molecules, and for transcripts with 15 or more exons, this 
number increases to over 50% (Supplementary Fig. 6).

Artificially induced cryptic splicing widely triggers NMD
Our findings collectively suggest that a large fraction of AS events 
result in unproductive transcripts that are targeted by NMD for rapid 
degradation. To validate this finding experimentally, we measured 
the effects of a splice-switching drug on gene expression levels in 
LCLs (Fig. 3a). Risdiplam was originally identified as a small molecule 
splicing modulator that upregulates SMN2 by activating a productive 
GA|GU 5′ splice site (5′ss) at the expense of an unproductive isoform45,46. 
Recent studies47,48 find that at higher doses, risdiplam’s effects are less 
selective, extending to GA|GU 5′ss in many other genes. We predicted 
increases in these cryptic GA|GU splice sites would generally lead to 
an abundance of unproductive, NMD-targeted transcripts and, con-
sequently, decreased expression of the affected genes. To test this, 
we treated LCLs with risdiplam and sequenced steady-state RNA at 
eight increasing doses of risdiplam and naRNA at two doses (Fig. 3a). 
We observed widespread, genome-wide induction of GA|GU 5′ ss in 
a dose-dependent manner but no effect on canonical AG|GU 5′ss or 
other noncanonical splice sites (Fig. 3b and Supplementary Fig. 7). 
For example, MYB, a transcription factor protooncogene targeted by 
a number of antitumor therapies, contains a risdiplam-induced exon 
(Fig. 3c). This exon is uniquely annotated in an unproductive transcript 
isoform, and MYB is downregulated in a dose-dependent manner.

In total, we identified 316 risdiplam-induced cassette exons, 281 
(92%) of which are unannotated. We found that 257/281 (91%) of the 
unannotated risdiplam-induced exons are within the coding region 
of the transcript (not in UTRs). Of these, 214/257 (61%) result in a 
frameshift, matching the expectation that two-thirds of cryptic splic-
ing changes should produce a frameshift. An additional 56/281 (20%) of 
the unannotated exons contain an in-frame PTC and are also expected 
to induce NMD (Fig. 3d). The effects of these risdiplam-induced exons 
on expression matched our expectation that inclusion of predicted 
frame-shifting- and in-frame-PTC-containing exons generally results in 
downregulation of steady-state steady RNA but not naRNA (Fig. 3e and 
Supplementary Fig. 8). This set of 230 unproductive risdiplam-induced 
exons in 219 genes included some with robust expression effects in 
potentially disease-modifying genes (Supplementary Fig. 9). Notably, 
these 219 risdiplam-regulated genes were not limited to gene fami-
lies traditionally thought of as ‘druggable’ by protein-targeting small 
molecule drugs (for example, kinases) (Fig. 3f and Supplementary 
Fig. 10a). Consistent with our observation that unproductive junctions 
accumulate across the length of the transcript and that long introns 
and long genes are most susceptible to AS–NMD, we found that introns 
and genes hosting these risdiplam-induced exons tend to be longer 
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than matched controls (Fig. 3g and Supplementary Fig. 10). Finally, 
we identified an asymmetry in risdiplam-induced post-transcriptional 
effects (Extended Data Fig. 7) favoring downregulation. Thus, random 
splicing changes, such as those introduced by similar nonspecific 
splice-switching drugs or mutations, usually result in NMD-targeted 
transcripts and subsequent downregulation, as opposed to frame 
preserving or frame correcting (for example, SMN2) transcript changes.

Global effects of sQTLs on gene expression levels
The prevalence of unproductive splicing, along with the observation 
that unproductive splicing anti-correlates with gene expression levels 
genomewide, predicts that genetic effects on RNA splicing would often 
impact RNA expression levels. To test this prediction, we used quantita-
tive trait loci (QTL) mapping (Fig. 4a) to identify genetic variants associ-
ated with expression (eQTLs) and splicing (splice junction abundance, 
sQTLs) in naRNA-seq, 4sU sequencing and steady-state RNA-seq data. To 
better distinguish splicing-mediated expression effects from transcrip-
tional effects, we mapped histone QTLs (hQTLs), reflective of variants 
impacting promoter and enhancer activity (H3K27ac, H3K4me1 and 

H3K4me3) and transcription across gene bodies (H3K36me3). In total, 
we identified 57,981 QTLs for 620,020 tested molecular traits (Supple-
mentary Fig. 11). Consistent with previous work, we find a large fraction 
of eQTLs are explained by transcriptional regulation, as indicated by the 
high degree of sharing between eQTL and hQTL signals. For example, 
we estimate that 67% of eQTL-containing genes (eGenes, steady-state 
RNA) contain hQTL effects at the gene’s promoter (Storey’s π1 = 0.67; 
Supplementary Fig. 12a), consistent with transcriptional regulation. As 
expected, we observe a strong concordance in the direction of hQTL 
and eQTL effects, wherein hQTL alleles that increase H3K27ac signal 
at the promoter overwhelmingly have corresponding upregulating 
signals at the level of mRNA (Fig. 4b). The remaining steady-state RNA 
eQTLs that do not have hQTL signal probably function during or shortly 
after transcription, as the effects of an additional 24% of steady-state 
eQTLs are also detected in 30 min 4sU-labeled RNA (π1 = 0.91; Sup-
plementary Fig. 12a).

To better interpret molecular mechanisms of eQTLs while account-
ing for linkage disequilibrium, we performed a multitrait colocalization 
analysis to identify molecular QTLs that probably share causal variants 
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read. The vertical dashed line marks eight splice junctions, corresponding to a 
typical full-length human transcript. The total RNA were isolated from shRNA-
mediated dKD of NMD factors SMG6 and SMG7 or shRNA scramble control23 
in HeLa cells. The naRNA data were from K562 cells43. Multiple points of the 
same color indicate replicate experiments. The blue and orange shaded area 
represents the binomial expectation when assuming 1.5–2.5% and 0.2–0.7% of 
unproductive junction reads at each independent junction.
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(Fig. 4a, Supplementary Fig. 13a and Methods). For example, at the 
CCHRC1 locus, we identify an eQTL, an hQTL and an sQTL (Fig. 4a). While 
both the sQTL and hQTL are nominally significant for an eQTL associa-
tion, colocalization analysis reveals that only the hQTL and eQTL are 
probably caused by the same genetic variant (posterior probability of 
full colocalization, PPFC >0.5). This suggests that transcriptional regu-
lation explains the eQTL effect, while the sQTL constitutes a distinct 
genetic effect that does not explain the primary eQTL signal. Across 
all 3,970 steady-state RNA eQTLs, we find 831 (~20%) colocalized with 
an hQTL (PPFC >0.5) (Fig. 4c and Supplementary Fig. 13a). We do not 
interpret this to suggest that only 20% of eQTLs are caused by tran-
scriptional regulation but rather that 20% represents a lower limit of 
the degree of transcriptional regulation. Nevertheless, we reasoned 
that the abundance of eQTL colocalizations with hQTLs relative to 
their colocalizations with other molecular QTLs may be informative. 
When considering eQTLs that colocalized with any molecular QTL 
(molQTL) we tested, 62% colocalized to an hQTL, consistent with our 
previous finding that approximately two-thirds of eQTLs are driven by 
chromatin effects. Among the remaining 38%, which we hereafter refer 
to as ‘post-transcriptional eQTLs’, nearly half colocalized with an sQTL 
(Fig. 4c and Supplementary Fig. 13b), suggesting that AS may be a major 

contributor to interindividual variation in gene expression levels. By 
comparison, alternative polyadenylation QTLs (apaQTLs) colocalized 
with only ~5% of the non-hQTL colocalizations, suggesting that alterna-
tive polyadenylation plays a comparatively minor role.

The degree of sQTL–eQTL colocalization suggests that a large 
number of genetic variants may impact gene expression levels through 
AS. However, we and others have noted that alternative transcrip-
tion initiation or polyadenylation can alter splicing quantifications 
and vice versa40,49–51. Furthermore, preferential decay of specific 
mRNA isoforms may manifest as sQTL–eQTL colocalizations52, with-
out being mediated by AS. To better assess whether splicing changes 
causally drive eQTL–sQTL colocalizations, we asked which genomic 
annotations are most enriched among post-transcriptional eQTLs, 
compared with transcriptional eQTLs as controls. As expected, 
post-transcriptional eQTLs are strongly depleted in enhancers and 
promoters. In terms of enriched genomic regions, we find signifi-
cant enrichment of post-transcriptional eQTLs near polyadenyla-
tion sites and in splice donor, branch site and splice acceptor regions 
(Supplementary Fig. 13c). While polyadenylation sites and splice sites 
are similarly enriched among post-transcriptional eQTLs over tran-
scriptional eQTLs, splice sites account for a far greater fraction of 
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post-transcriptional eQTLs (Supplementary Fig. 13d). These observa-
tions indicate that changes in RNA splicing causally drive many of these 
post-transcriptional eQTLs.

As an illustrative example of a splicing-mediated eQTL, we high-
light the TTC38 gene (Fig. 4d) for which the lead eQTL variant has no 
detectable effect on promoter activity. Rather, we observed a clear 
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effect of the lead eQTL variant on splicing. The allele associated with 
decreased expression level is also associated with an increase in splic-
ing of unproductive introns. These unproductive splice junctions are 
substantially more abundant in naRNA than steady-state RNA, consist-
ent with their rapid degradation, though the sQTL effect size is similar 
in naRNA and steady-state RNA (Fig. 4d). More generally, when we 
stratify sQTLs by whether they affect an unproductive splice junction 
(henceforth ‘u-sQTLs’), versus merely switching between alternate 
productive protein-coding isoforms (henceforth ‘p-sQTLs’), we find 
that u-sQTLs are particularly enriched in eQTL signal for the host gene 
(Fig. 4e and Supplementary Fig. 14a), with even stronger eQTL signal 
than H3K27ac QTLs within 100 kb of the gene (Fig. 4e). Furthermore, 
though we identify similar numbers of p-sQTLs versus u-sQTLs, u-sQTLs 
explain 77% of sQTL colocalizations with post-transcriptional eQTLs, 
compared with 23% for p-sQTLs (P = 5.9 × 10−12, hypergeometric test; 
Supplementary Fig. 14b). These results again suggest that AS–NMD 
is a major contributor to the genetic regulation of expression levels.

To further validate that u-sQTLs affect gene expression levels 
through post-transcriptional decay, we considered the concordance 
of normalized effect sizes between u-sQTLs and eQTLs (Methods). As 
expected, p-sQTL variants are largely inert with respect to expression 
levels (Fig. 4f). In contrast, u-sQTL effects are strongly anticorrelated 
with expression, such that alleles increasing the unproductive junc-
tion are associated with decreased expression of the host gene (Fig. 4f, 
steady-state facet). These effects on expression are most apparent in 
steady-state RNA, weaker in our 4sU RNA-seq data and largely absent in 
naRNA (Fig. 4f and Supplementary Fig. 15), which is expected, as NMD 
occurs post-transcriptionally and in the cytoplasm.

While we observed an overwhelming enrichment of eQTLs among 
u-sQTL SNPs (Fig. 4e), previous studies37,50,53 have found that the lead-
ing eQTL and sQTL signals for a given gene tend to be independent. 
To reconcile these observations, we provide two mutually compat-
ible explanations: (1) an eGene’s top sQTL signal is often a p-QTL, not 
an expression-modifying u-sQTL (Supplementary Fig. 16a,b) and (2) 
many genes have multiple eQTLs53,54, and u-sQTLs may contribute to 
expression even when they are not the lead eQTL.

Given reports that lead eQTLs can sometimes change across tis-
sues53,55 and our previous observation that sQTL effects are generally 
more stable across tissues than eQTLs56, we hypothesized that the 
effects of splicing-mediated eQTLs would be more consistent across 
tissues than the effects of transcription-mediated eQTLs. Indeed, 
we find that eQTLs mediated by splicing mechanisms are eQTLs in 
a larger number of GTEx tissues than eQTLs mediated by transcrip-
tion regulation (Fig. 4g and Extended Data Fig. 8), indicating that the 
regulatory impact of variants that function through AS–NMD are more 
tissue-pervasive than those that function through transcription. Such 
variants could be relevant for interpreting genome-wide association 
study (GWAS) signals that have yet to be explained by eQTLs in known 
cell-types.

AS–NMD impacts GWAS traits
Given the pervasive effects of AS–NMD on gene expression, we won-
dered to what extent AS that affects complex phenotypes are mediated 
by NMD versus protein-diversifying stable isoforms. To answer this 
question, we compiled summary statistics from 45 GWAS for blood 
and immune-related traits and evaluated the enrichment of GWAS 
signal among various classes of molecular QTLs: eQTLs, H3K27ac QTLs, 
p-sQTLs and u-sQTLs. For example, using multiple sclerosis GWAS 
summary statistics, we find enrichment of u-sQTLs on par with that of 
p-sQTLs, hQTLs and eQTLs (Fig. 5a). Similar results are found in most 
complex traits we examined (Supplementary Fig. 17).

To better resolve the mechanisms at these GWAS loci, we used 
multitrait colocalization to identify GWAS signals that colocalize with 
hQTLs, eQTLs, sQTLs or various combinations of QTLs. Across all com-
plex traits, approximately 70% of GWAS loci could not be colocalized 

with any molecular QTL (Fig. 5b), in line with previous studies with 
similar sample sizes57,58. Approximately 18% of GWAS loci colocalize 
with either an hQTL, eQTL or some combination of molecular QTLs 
(Fig. 5b). The remaining 12% of loci colocalize with an sQTL but not an 
hQTL, consistent with splicing-mediated impacts on traits. We next 
sought to assess whether these GWAS/sQTL loci possess characteristics 
consistent with an AS–NMD mechanism versus protein diversification.

Notably, we find that these sQTLs largely affect low-usage splice 
junctions, such that 57% of these splice junctions are spliced in at 
PSI <5% (Fig. 5c). This observation is consistent with that of a recent 
study57 and naturally poses questions as to how such low-usage iso-
forms might impact traits. We found that most of these low-usage 
sQTLs are u-sQTLs that alter the balance of unproductive and produc-
tive isoforms, consistent with AS–NMD mediating these loci. We also 
found that the allelic effects of u-sQTLs that colocalize with GWAS loci, 
similar to that of u-sQTLs in general (Fig. 4f), were anticorrelated with 
their effects on gene expression levels, again consistent with NMD 
(Fig. 5d). These u-sQTLs are also enriched among the GWAS/sQTL 
loci that also colocalize with eQTL signal (Extended Data Fig. 9a). For 
example, a reticulocyte-count-associated GWAS signal colocalizes with 
a u-sQTL in NUDT14 gene, as well as NUDT14 eQTL signal (Extended Data 
Fig. 10a,b). As expected, the allele that increases usage of the unproduc-
tive splice junction is associated with NUDT14 downregulation (Fig. 5c). 
While the effect on splicing is similar in both steady-state RNA-seq and 
naRNA-seq (Extended Data Fig. 10c), the effect on NUDT14 expression 
is only apparent in steady-state RNA (Extended Data Fig. 10d), again 
consistent with AS–NMD.

More generally, u-sQTLs that colocalize with GWAS and eQTL 
signals tend to also display lower usage in steady-state RNA than 
naRNA (Extended Data Fig. 9b), with sQTL and eQTL effects that are 
also consistent with AS–NMD (Extended Data Fig. 9c). In contrast, 
the sQTLs that colocalize with GWAS but not eQTL do not share these 
characteristics and probably function by tuning the expression levels 
of alternative protein-coding isoforms. Given that there are a similar 
number of these GWAS loci that colocalize with both sQTL and eQTL 
(and not hQTL), as compared with just sQTLs (Fig. 5b), we conclude 
that AS–NMD carries similar importance as splicing-mediated protein 
diversification for complex organism-level traits.

Discussion
The molecular impact of AS has been challenging to verify experi-
mentally, as it has been difficult to study the function of individual 
isoforms at the protein level, and the rapid decay of unproductive 
isoforms obscure their quantification at the mRNA level. Through 
detailed analysis of molecular measurements that capture the major 
steps of RNA maturation, we found that aberrant splicing produces 
remarkably high levels of unproductive transcripts bearing a PTC. 
Unproductive mRNAs account for around 15% of all mRNA transcripts 
from the average human gene, even exceeding 50% for many long 
genes expressed at low levels. These estimates may be surprising, 
given earlier studies that utilized single knockdown of UPF1 or UPF2 
to identify a relatively small subset of AS–NMD-regulated genes25–27,59, 
suggesting that unproductive isoforms are produced at such low rates 
that expression levels of most genes are unaffected by AS–NMD27. 
However, we find that early estimates are consistent with incomplete 
inhibition of NMD due to partial redundancy between core NMD fac-
tors. Indeed, the levels of unproductive splicing in steady-state mRNA 
stabilized from double SMG6 and SMG7 knockdowns—but not that of 
single UPF1 knockdowns—were nearly identical with that estimated in 
our nascent mRNA dataset. Thus, previous studies using knockdowns 
of single NMD factors appear to have substantially underestimated 
the impact of AS–NMD.

Notably, we also show that an important previous observation—
that highly used AS exons are enriched for being frame-preserving—
is largely due to NMD surveillance rather than selection at the level 

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01872-x

of splicing regulation. Thus, our study suggests that the molecular 
impact of AS is largely shouldered by NMD, which regulates protein 
output by targeting unproductive transcripts for degradation. Sup-
porting this view, we identified nearly as many genetic variants that 
impact production of these unproductive transcripts as compared with 
those that tune the balance of stable mRNA isoforms. Importantly, this 
observation also holds for sQTLs that colocalize with GWAS signals to 
influence organism-level traits. These unproductive sQTLs can have 
variable effects on expression, wherein small changes in splicing are 
sometimes associated with large changes in expression or vice versa. 
While the biological basis for this variability is unknown, we speculate 
that multiple mechanisms, including transcriptional adaptation60 
and differential efficiency of NMD44, may be at play. Nonetheless, the 
general tissue-pervasive nature of these AS–NMD-mediated eQTLs 
compared with transcription-mediated eQTLs may have particular 
relevance both in enhancing the phenotypic impact of AS–NMD-based 

regulation and in mapping the regulatory mechanisms underlying 
genetic associations for complex traits.

What fraction of mRNA isoforms encode functionally diverse pep-
tides has long been under debate7,27,35,36,61. Novel isoforms continue to 
be discovered as RNA-seq experiments increase in depth, making this 
question particularly timely. Our observation that introns are often 
mis-spliced into substrates of NMD indicates that splicing is inherently 
noisy and that novel isoforms uncovered by RNA-seq generally do not 
encode functional proteins. This view is consistent with previous find-
ings that most AS events are lowly used and do not show cross-species 
conservation.

Still, we posit that future research will reveal a preponderance of 
cases where regulated AS functions by tuning protein expression levels 
rather than by creating protein diversity, as the sheer abundance of AS–
NMD events presents opportunities for evolution to co-opt AS–NMD 
as a functional regulatory mechanism. Regulated AS–NMD has been 
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Fig. 5 | Splicing-mediated NMD contributes to complex trait biology. a, QQ 
plot of multiple sclerosis GWAS signal, grouped by categories of SNPs. p-sQTLs 
that impact the balance of protein-coding isoforms and u-sQTLs that impact 
usage of unproductive splice junctions are similarly inflated for GWAS signals. 
b, Fraction of GWAS loci that colocalize with various sets of molQTLs in each of 
45 blood or immune-related traits. Number of loci for which colocalization was 
attempted is indicated at the top of each column. ‘Other combinations’ includes 
loci that colocalize with alternative polyadenylation QTLs, hQTLs and sQTLs or 
other combinations that may include sQTLs and other molQTLs and are difficult 

to interpret mechanistically. c, Histogram of usage of unique sQTL junctions 
that colocalize with a GWAS signal, grouped by sQTL type. Intronic PSI ( junction 
read count divided by most abundant junction in LeafCutter cluster) for each 
junction was summarized as the median from steady-state RNA samples which 
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u-sQTLs, have low PSI, even in samples with genotypes that favor higher usage. 
d, Effect size (β) of sQTLs and eQTLs for distinct u-sQTLs that colocalize with a 
GWAS signal. Correlation was summarized with Spearman’s rho coefficient and 
two-sided significance test.

http://www.nature.com/naturegenetics


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01872-x

identified in the past, but it has largely been found in genes encoding 
splicing regulators. While we confirmed that splicing regulators are 
enriched among genes with high levels of unproductive transcripts, 
splicing regulators represent only a small fraction of all genes with very 
high levels of unproductive transcripts. We predict that future work 
using long-read sequencing of RNA across multiple species, stages of 
maturation and biological systems will provide us with a much more 
complete understanding of the mechanisms by which AS functionally 
impacts cellular function, organismal phenotypes and evolution.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41588-024-01872-x.
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Methods
We confirm that this research complies with all relevant ethical regula-
tions. Ethical approval was not required because the Yoruba in Ibadan, 
Nigeria (population code YRI) panel of cell lines used here (derived 
from consenting individuals with publicly available genotypes62), from 
which molecular sequencing data was generated, are not considered 
human subjects research by the institutional review board at the Uni-
versity of Chicago.

Statistics and reproducibility
No statistical method was used to predetermine sample size for novel 
data (naRNA-seq, H3K36ME3 CUT&Tag, RNA-seq and naRNA-seq at 
various risdiplam doses). We note that our sample sizes are similar to 
previous QTL studies using this panel of cell lines37,38,40 and risdiplam 
transcriptomics studies45,48. For eQTL and sQTL mapping using naRNA, 
we excluded line NA18855. This was not a predetermined decision. 
Rather, principal component analysis revealed this sample as an out-
lier, and differential expression analysis against other lines identified 
differentially expressed genes clustered along large sections of chro-
mosomes, suggestive of chromosomal abnormalities. The experi-
ments were not randomized. The investigators were not blinded to 
allocation during experiments and outcome assessment, as cell lines 
(for QTL studies) and treatment were required knowledge for carry-
ing out the experiments. When data could not be assumed to follow 
assumptions for parametric tests, nonparametric tests were used. Tests  
for significance of spearman correlation were obtained using  
‘cor.test(…, method = ’s’)’ in R.

Molecular trait quantification
We aligned the Illumina short-read RNA-seq datasets from LCL and 
HeLa cells to the human genome version GRCh38 with Gencode v34 
annotation using STAR63 version 2.7.7a. For the LCL lines, we used STAR’s 
WASP mode64 to account for genetic variants. We mapped ChIP-seq 
and CUT&Tag reads to the human genome using HISAT65 version 2.2.1, 
and we used Hornet (https://github.com/TheFraserLab/Hornet, a 
reimplementation of WASP pipeline64) to find reads that overlap 
with SNPs for remapping. For the ChIP-seq datasets, we used MACS2  
(ref. 66) version 2.2.7.1 to call peaks.

We quantified gene expression and histone modification coverage 
of H3K27ac, H3K4me1 and H3K4me3 using featureCounts67 version 
2.0.3. We used ‘bedtools multicov’ to count the number of H3K36me3 
CUT&Tag reads overlapping each protein-coding gene. For each phe-
notype, we normalized the raw counts into counts per million (CPM) 
and selected the top 14,000 autosomal genes with the highest median 
CPM in standard RNA-seq data for downstream analysis.

To quantify splicing efficiency of introns, we used SPLICE-q68 
version 1.0.0 to calculate the reverse intron expression ratio in 
protein-coding genes. To quantify splicing in the RNA-seq datasets, 
we extracted junction reads by running regtools version 0.5.2 (ref. 69) 
on the filtered Binary Alignment Map (BAM) files. We obtained intron 
clusters using Leafcutter56

We developed a method to predict the effect of splice junctions on 
transcript coding potential. Our method attempts to reconcile junc-
tions identified from short-read RNA-seq with introns of annotated 
transcripts and predicts whether the junction is compatible with the 
open reading frame of the annotated protein-coding transcript. See 
the ‘Classification of unannotated splice junctions’ section in Sup-
plementary Methods for a detailed description.

See Supplementary Methods for a detailed description of our map-
ping and quantification pipeline and for a description of our analysis 
of Oxford Nanopore Technologies long-read RNA-seq data.

Molecular cis-QTL mapping
To prepare the LCL RNA-seq data for eQTL mapping, we Z-score nor-
malized the top 14,000 expressed protein-coding genes samples. 

Then, we enforced normality of the data by applying the rank-based 
inverse normal transform to each sample across all genes. We utilized 
the same procedure to normalize the gene coverage quantification 
for H3K36me3. For hQTLs from ChIP-seq data, we normalized the read 
counts quantified by featureCounts at the peaks called by MACS2.

For sQTL mapping, we used the prepare_phenotype_table.py script 
from Leafcutter. This script calculates the PSI of each junction, it applies 
Z-score normalization to each junction across all samples, and enforces 
normality by rank-normalizing each sample across all junctions.

To build a covariate matrix for QTL mapping for each data-
set, we applied principal component analysis on the standard and 
rank-normalized feature-by-sample matrix. We selected the number of 
principal components that explain more variance than in a version of 
the data matrix obtained by randomly permuting each feature across 
the samples.

For molecular cis-QTL calling, we used as input for each dataset the 
standard and rank-normalized data matrices, the principal components 
(PCs) obtained as previously described and the corresponding VCF files 
from the 1000 Genomes Project.

We ran QTLTools70 version 1.3.1 for molecular cis-QTL mapping, 
using both the permutation and nominal pass versions. For the per-
mutation pass, we used 1,000 permutations using the permute 1000 
flag. For the nominal pass, we used the nominal 1 flag to obtain the QTL 
statistics of all SNPs irrespective of their P value. For eQTLs and hQTLs, 
we used a cis-window of 100,000 bp. For sQTLs and splicing efficiency 
QTLs, we used a cis-window of 10,000 bp. For the permutation pass of 
sQTLs, we used the grp-best flag to get only the statistics of the best 
hit per intron cluster. For the permutation pass, we applied the Benja-
mini–Hochberg correction to the adjusted β distribution P values to 
account for the false discovery rate.

For analyses that require unstandardized effect size estimates, we 
considered the top QTL SNP from the QTLtools pass using standardized 
and rank-normalized data matrices and reran QTLtools using the same 
PC covariates but providing unstandardized expression matrix (that is, 
log2RPKM for expression or gene level PSI for splicing), such that the β 
estimate is in more directly interpretable units.

See ‘eQTL calling on GTEx gene expression data’ section in Sup-
plementary Methods for details on the QTLTools runs on GTEx data.

naRNA-seq experimental methods
Cell growth. LCLs were grown in Roswell Park Memorial Institute 
media (RPMI) + glutamine + penicillin–streptomycin + 20% fetal bovine 
serum. Cells were grown in four batches, with approximately 20–35 cell 
lines per batch. The day before collection, cell cultures were counted 
and normalized across cell lines to approximately 35 million live cells, 
supplemented with media to 50 ml, such that cells were in log-phase 
growth with approximately 50 million cells per culture at the time of 
collection.

Isolation of naRNA. We collected naRNA from LCLs by first isolat-
ing nuclei through a sucrose cushion followed by high-salt washes to 
dissociate nucleoplasm and weakly bound RNAs and proteins from 
chromatin with slight modifications from previous protocols for cel-
lular fractionation71, as detailed below.

Cells were collected by centrifugation (300g for 3 min) in 50 ml 
conical tubes. Cells were washed twice in cold phosphate-buffered 
saline with 1 mM EDTA. We reasoned that the inclusion of EDTA (and 
exclusion of magnesium) in buffers used during cellular fractionation 
would inhibit splicing during sample processing. However, we have 
noted that chelation of magnesium yields fragile nuclei that are more 
prone to premature bursting, and care should be taken to pipet gently 
in subsequent steps. Washed cell pellets were resuspended in 400 µl 
BufferA (10 mM pH 7.5 HEPES, 10 mM KCl, 10% (v/v) glycerol, 11.6% (w/v) 
sucrose, 1 mM dithiothreitol (DTT), 1× ROCHE complete protease inhib-
itor) and transferred to 2 ml 96-well plates for convenience. An equal 
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volume of BufferA supplemented with 0.2% TritonX was gently mixed 
to the resuspended cells, bringing the final TritonX concentration to 
0.1% for a 12 min incubation on ice with periodic inversion. Nuclei were 
isolated by centrifugation (1200g, 5 min). Supernatant was discarded, 
and the nuclei pellet was washed with 500 µl BufferA, followed by cen-
trifugation (1,200g, 5 min), removal of supernatant, and resuspension 
in 250 µl nuclear resuspension buffer (20 mM pH 7.5 HEPES, 50% (v/v) 
glycerol, 75 mM NaCl, 1 mM DTT, 0.5 mM EDTA, 1× protease inhibitor). 
An equal volume of NUN (high salt) buffer (50 mM pH 7.5 HEPES, 1 M 
urea, 300 mM NaCl, 1 mM DTT, 1× protease inhibitor) was added to 
nuclei pellets and gently mixed, following by 5 min incubation on ice 
and periodic inversion. Chromatin pellets were isolated by centrifuga-
tion (1,200g, 5 min). Nonchromatin-bound supernatant was removed. 
Chromatin pellets were washed with 500 µl BufferA supplemented with 
0.2% NP-40, followed by centrifugation and removal of supernatant. 
The usually insoluble chromatin pellet was resuspended in 100 µl 
nuclear resuspension buffer, added to 1 ml Trizol, and stored in 1.5 ml 
centrifuge tubes at −20 °C for further processing.

Trizol samples were vigorously mixed with periodic heating at 
50 °C until the pellet dissolved. After adding 200 µl chloroform, vigor-
ously mixing and centrifugation (16,000g, 15 min), the aqueous phase 
was transferred to clean tubes or 96-well plates. An equal volume of 
ethanol was mixed, and samples were bound to Zymo spin I-96-XL plate 
(Catalog no. C2010) or individual Zymo Spin ii (Catalog no. C1008-50) 
columns by centrifugation (2,000g, 2 min). Columns were washed twice 
with 500 µl wash buffer (80% ethanol, 10 mM pH 8.0 Tris buffer). Sam-
ples were treated with DNAseI (2.5 µl RQ1 Promega DNAseI, 1× DNAse 
buffer in 25 µl total volume) while bound to columns and incubated at 
room temperature for 15 min. Columns were washed with RNA binding 
buffer (2 M guanidinium, 75% isopropanol), followed by two washes 
with 80 µl wash buffer and a dry spin. RNA was eluted by incubation 
with 25 µl water for 5 min followed by centrifugation. RNA yield was 
quantified by NanoDrop, typically yielding 5–20 µg naRNA per sample.

RNA-seq library preparation. rRNA was depleted using Lexogen ribo-
cop v2 kit according to the manufacturer’s protocol. RNA was eluted 
in 8 µL water, all of which was used as input for NEB Ultra Directional 
II RNA-seq kits according to manufacturer’s protocol. Fragmentation 
time was adjusted from the recommended 15 min to 5 min to obtain 
larger insert sizes. Samples were pooled and sequenced on a single 
NovaSeq flow-cell (2 × 150 bp paired end reads) by UChicago sequenc-
ing core.

H3K36me3 CUT&Tag
Cells were grown as described above (naRNA-seq experimental meth-
ods) and 100,000 cells were frozen in 10% dimethylsulfoxide (DMSO). 
CUT&Tag was performed as previously described72 (detailed protocol 
at https://doi.org/10.17504/protocols.io.z6hf9b6) using polyclonal 
antibody (‘Reporting summary’ section), with the following modifica-
tions. Rather than 13 polymerase chain reaction (PCR) cycles, we used 
14 cycles. We determined this on the basis of a test qPCR with ~10% of 
the pre-PCR library, estimating that 14 PCR cycles with the remaining 
90% would yield fluorescent signal at about halfway to the plateau, 
ensuring we have enough DNA material to quantify and sequence.

Molecular QTL sharing
Sharing of molQTLs between datasets and colocalization. We used 
Storey’s π1 statistic73, an estimate of the fraction of non-null hypothesis 
from a distribution of P values, to get the fraction of molecular QTLs 
that are shared across multiple phenotypes (for example, ‘what fraction 
of eQTLs discovered in steady-state RNA are eQTLs in naRNA?’). See ‘π1 
sharing of eQTLs between RNA-seq datasets’ and ‘π1 sharing of eQTLs 
and hQTLs at TSS’ sections in Supplementary Methods for details.

We simultaneously assessed colocalization of molQTLs around 
each gene using hyprcoloc74. Summary statistics for a 100 kb 

cis-window surrounding the gene were obtained for each molQTL 
from QTLtools nominal pass. Only molQTLs with a permutation pass 
P < 0.01 were considered for colocalization.

Effect size concordance of sQTLs and eQTLs. For each cluster with 
a significant sQTL intron, we classified the sQTL as a u-sQTL if it con-
tains at least one sQTL intron (false discovery rate (FDR) <10%) in an 
unproductive intron. sQTLs with a nominally significant hQTL (P < 0.01, 
for any H3K4me3, H3K27ac or H3K36me3 trait) were filtered out. To 
avoid plotting nonindependent sQTLs, we selected only a single sQTL 
intron per cluster, retaining the intron with the largest absolute value 
of sQTL β. The top SNP of remaining sQTLs was used to look up the 
corresponding eQTL effect size in the host gene. Test for significance 
of correlation was performed with ‘cor.test(method=’spearman’)’ in R.

Effects of AS–NMD-mediated eQTLs and transcription-mediated 
eQTLs across tissues. We first identified a set of 359 eQTLs, which 
we were most confident are mediated by AS–NMD. Specifically, the 
steady-state eQTL must colocalize with an u-sQTL within the gene 
(‘Colocalization of molQTLs’ section in Supplementary Methods) and 
not with any hQTL. Furthermore, the lead SNP for the colocalizing 
u-sQTL junction must not be nominally significant (P > 0.01) for any 
hQTL test feature (considering all H3K34me3, H3K27ac peaks within 
100 kb of the gene and H3K36me3 for the gene body). The top colocal-
ized eQTL/u-sQTL SNP was then assessed for effect size across GTEx tis-
sues (‘eQTL calling on GTEx expression data’ section in Supplementary 
Methods). We similarly identified a set 313 eQTLs which we were most 
confident are mediated by expression effects: the steady-state eQTL 
must colocalize with an hQTL at the eQTL gene’s promoter (see ‘π1 
sharing of eQTLs and hQTLs at TSS’ section in Supplementary Methods 
for linking hQTLs to promoters; H3K4me3, H3K27ac and H3K4me1 
peaks were considered). The top colocalized eQTL/hQTL SNP was 
then assessed for effect size across GTEx tissues (‘eQTL calling on GTEx 
expression data’ section in Supplementary Methods). To assess effect 
sizes across tissues, we used the (not quantile-normalized) log2CPM 
matrix for eQTL mapping with QTLtools, enabling interpretable  
comparisons of effect sizes (β) across tissues in units of log2 fold- 
change per alt allele.

Colocalization of molQTLs with GWAS loci. Summary statistics for 
GWAS75–81 were downloaded from the GWAS Catalog or other source 
datasets. One mega-base windows centered at lead GWAS SNPs were 
determined as previously described58, using a lead SNP threshold of 
5 × 10−8 to consider locus for colocalization. Summary statistics for 
all molQTL features within each GWAS locus window were obtained 
using QTLtools nominal pass, after selecting only those with a QTLtools 
permutation pass P < 0.01. Hyprcoloc was used with default settings to 
colocalize molQTLs and GWAS signals. Loci were categorized as ‘Only 
hQTL’, ‘Only eQTL’ or ‘Only sQTL’, if the only molQTLs to colocalize with 
the GWAS signal were either hQTLs (H3K36me3, H3K27ac, H3K4me3 or 
H3K4me1), eQTLs (in naRNA, 4sU or steady-state RNA-seq) or sQTLs (in 
naRNA, 4sU or steady-state RNA-seq), respectively. If all of the molQTLs 
could be classified as eQTLs or hQTLs, or eQTLs and sQTLs, the loci was 
classified as ‘hQTL+eQTL’ or ‘sQTL+eQTL’, respectively. All other loci 
with a molQTL colocalization were classified as ‘other combinations’. 
We chose to classify these loci as ‘other combinations’ because sQTLs 
that also colocalize with both eQTL and hQTL or with apaQTL or other 
combinations are hard to interpret, and we wanted to refrain from sug-
gesting these loci may be mediated by AS–NMD or alternative protein 
isoforms caused by AS.

Risdiplam dosage series experiment
Cell growth, library preparation and RNA-seq. LCL growth, naRNA 
isolation and conversion to sequencing libraries were performed as 
described above (naRNA-seq experimental methods). Risdiplam was 
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added 24 h before cell collection. Total (‘steady-state’) RNA was con-
verted to sequencing libraries using NEB polyA capture kit (prod-
uct no.) followed by NEB Ultra directional II RNA-seq library kits. 
Steady-state RNA-seq libraries were sequenced by (2 × 150 bp paired 
end). naRNA-seq libraries were sequenced by UChicago sequencing 
core (2 × 150 bp paired end).

Identification and quantification of risdiplam-induced exons. All 
splice junctions containing GA|GU in reference genome sequence at 
the 5′ss were assessed for a significant positive dose:response cor-
relation using leafcutter’s intron excision ratio as the response. Sig-
nificance was assessed using R’s ‘cor.test(…, method=’spearman’)’ 
function, and P values were adjusted for multiple testing with  
Storey’s q-value method. All significant (q < 0.1) GA|GU introns  
with a leafcutter-clustered splice junction that has a 3′ splice site 
(3′ss) 500 bp upstream of the GA|GU splice donor were considered 
as risdiplam-induced cassette exons. Splicing at these cassette exons 
was requantified using the cassette exon PSI metric (see ‘Analysis of 
alternative splicing and symmetry of cassette exons’ in Supplemen-
tary Methods).

Prediction of transcripts effects. We utilized Gencode transcript 
structures and their predictions for coding potential (‘basic’-tagged 
transcripts being deemed as productive) to annotate cassette exons 
that use an annotated GA|GU downstream splice junction. Cassette 
exons with an unannotated downstream GA|GU splice junction were 
translated in-frame using the most-expressed ‘basic’-tagged transcript 
(transcript quantifications derived from Salmon82) as a reference, 
using custom scripts. For simplicity, we classified unannotated exons 
as unproductive if the exon-included translation is shorter than the 
exon–excluded translation. While splicing in UTRs may trigger NMD 
by 50 nt rule, all risdiplam-induced exons in UTRs are, by definition, 
already in an intron-containing UTR and, thus, we did not classify those 
as unproductive.

Quantification of expression and splicing. Gene expression was quan-
tified using featureCounts as described above. naRNA-seq samples 
were analyzed using edgeR83, with two contrasts: (1) 100 nM risdiplam 
versus DMSO and (2) 3,160 nM risdiplam versus DMSO contrast. The 
unconventional experimental design of the titration series experiment 
(a single replicate at eight doses) precluded use of many standard dif-
ferential splicing or differential gene expression analysis approaches. 
For those samples, we fit splicing quantifications (in units of cassette 
exon PSI) and gene expression quantifications (in units of log2CPM) 
to a four-parameter log-logistic curve using the drc package84 in R: 
‘drc::drm(formula = cpm ~ dose, fact=LL.4(), …)’. Effect size estimates 
and standard errors at 100 nM and 3,160 nM were extracted from the 
model fits using ‘predict(…, se.fit=T)’. FDR was estimated with Storey’s 
q-value. Genes were classified as transcriptionally regulated if they 
had an absolute log2FC between naRNA and steady-state RNA less 
than 1.5, with FDR <0.1 in both naRNA and steady-state RNA. If genes 
had FDR <0.1 in steady-state RNA but with an effect size difference 
between naRNA and steady-state greater than log2(1.5), they were 
classified as post-transcriptionally downregulated. Similarly, genes 
had FDR <0.1 in steady-state RNA but with an effect size difference 
between naRNA and steady state less than log2(1.5), they were classified 
as post-transcriptionally upregulated.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Publicly available data sequence data generated as part of this study 
(naRNA-seq and H3K36ME3 Cut&Tag) is publicly available and has 

been deposited in Gene Expression Omnibus (www.ncbi.nlm.nih.
gov/geo/) under accession GSE252006. Other publicly data utilized 
in this study included genotypes were downloaded from the 1000 
Genomes project62 (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_
collections/1000G_2504_high_coverage/). FASTQ files of short-read 
RNA-seq data of shRNA dKD of SMG6 and SMG7 in HeLa cells and shRNA 
controls from a previous study24 (SRA accession SRP083135) are avail-
able at https://www.ncbi.nlm.nih.gov/sra. Other publicly available 
short-read sequencing data are described in Supplementary Fig. 1. For 
these datasets, we obtained FASTQ files of standard short-read RNA-seq 
data from the following accession numbers: ENA project accession 
PRJEB3365 (steady-state RNA-seq produced by the GEUVADIS con-
sortium), SRA project accession PRJNA268086 (H3K4me1, H3K4me3 
and H2K27ac ChIP-seq) and SRA project accession PRJNA302818 
(4sU RNA-seq). The 3′ sequencing APA data were obtained as a sample 
by peak expression matrix from authors of a previous study40 (SRA 
accession number SRP223759). The data were aligned to GRCh38 and 
transcript release v34 annotations from Gencode (https://www.gen-
codegenes.org/human/). Some analyses (Supplementary Methods) 
also utilized v37 annotations.

Code availability
Pipelines and all original code are available at Zenodo via https://doi.
org/10.5281/zenodo.12571961 (ref. 85) and also at Github via https://
github.com/bfairkun/ChromatinSplicingQTLs/.
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Extended Data Fig. 1 | Overview of nascent RNA-seq. (a) Nascent RNA-seq 
(naRNA-seq) captures nuclear-retained, non-polyadenylated, and rapidly 
decayed RNAs (snoRNAs, lncRNAs), that are absent from labeled and steady-
state RNA-seq datasets. Each column represents an RNA-seq sample, grouped by 
the dataset type, each row a different gene. (b) naRNA-seq transcripts are only 
partially spliced. The splicing efficiency metric is based on the ratio of spliced 
and unspliced (intron:exon junction) reads, and varies between 0 and 1, with 1 
indicating all reads are spliced. The cumulative distribution of splicing efficiency 
across all introns in expressed genes, for each RNA-seq sample from naRNA, 
recently transcribed RNA (30 min 4sU), and steady-state RNA. (c) Meta-intron 
coverage plot in LCL naRNA-seq sample NA18486 confirms the expected 5′ bias 

in intronic coverage genome-wide, consistent with the nascent nature of naRNA 
transcripts. Longer introns are naturally expected to have steeper slopes than 
short introns when intron lengths are rescaled for metaplot. (d) naRNA-seq 
transcripts are only partially spliced. Example sawtooth pattern in nascent 
RNA in the gene XYLT1. The nascent nature of transcripts in naRNA creates a 5′ 
bias in coverage, and in combination with co-transcriptional splicing, creates a 
sawtooth pattern of coverage. (e) Number of exon-exon splice junction reads in 
RNA-seq samples. The median in each dataset is marked with a labeled dashed 
line. Though naRNA-seq is only partially spliced, our deeper sequencing of 
naRNA-seq results in high coverage of splice junctions, allowing measurements 
of splicing before cytoplasmic decay.

http://www.nature.com/naturegenetics
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Extended Data Fig. 2 | Classification and quantification of splice junction 
classes across datasets. (a) The percent of splice junctions in each sample that 
are uniquely attributable to transcripts tagged as ‘nonsense_mediated_decay’ 
(Gencode v37). Box and whiskers show quartiles for LCL samples (individual 
jittered points) in each RNA-seq data-type (n=86, 66, 66, and 462 for naRNA, 4sU 
30min, 4sU 60min, and steady-state RNA-seq, respectively). Median for each 
data-type is labeled. (b) Splice junctions (arcs) overlapping the NUP42 gene 
illustrate approach (Supplemental Methods) for classifying splice junctions. 
Annotated splice donors and splice acceptors are marked with vertical dashed 
lines in dark and light gray, respectively. Annotated productive junctions are 
defined by their presence in at least one transcript with the value of ‘protein_
coding’ in the Gencode transcript type tag. Unannotated productive junctions 
are not in any Gencode transcripts, and skip exons in the principal isoform such 
that the reading frame is maintained (that is, splice junction marked with 1). 

Annotated unproductive junctions are unique to Gencode transcripts not tagged 
with ‘protein coding’. Splice junction 2 is unique to NUP42-207, a ‘retained_intron’ 
tagged transcript. This splice junction uses a deep intronic 5′ss, creating a 
premature termination codon. Junctions 3 and 5 are unique to transcripts tagged 
as ‘nonsense_mediated_decay’, and junction 4 is unique to a transcript tagged 
with ‘processed_transcript’. All other junctions are classified as Unannotated 
unproductive. We attempted to translate the resulting transcripts that use these 
junctions, finding that they overwhelmingly introduce frameshift or in-frame 
stop codons (Supplemental Methods), such as the splice junction 6 which we 
predict to introduce a frameshift. (c) Similar to (b), where sample is represented 
as a column, grouped by dataset type, and the fraction of splice junction reads 
that are either productive (annotated or unannotated, classified as in (b), blue) or 
unproductive (annotated or unannotated, classified as in (b), red). The median in 
each dataset is marked with a dashed line and labeled.
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Extended Data Fig. 3 | Percentage of unproductively spliced reads upon 
knockdown of NMD factors. (a) Fraction of splice junction reads in each short 
read steady-state RNA-seq sample that are in Gencode-annotated productive 
transcript structures (blue), versus unannotated or annotated unproductive 
transcript structures (gray). Biological replicates represented by each  
column, with dashed lines to indicate median for each group. NMD factors were 

knocked-down (KD) singly or as double knockdown (dKD) with shRNA in HeLa 
cells with an shRNA scramble control24. (b) Nanopore long-read sequencing 
quantifies the percent of full-length reads that are targeted by NMD, defined as 
containing at least one unproductive junction, as a function of the number of 
splice junctions in the read. Knockdown experiments of similar design as in (a)23.
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Extended Data Fig. 4 | Enrichment of symmetric exons among alternatively-
spliced exons (AS exons) is largely the result of NMD, rather than optimized 
splicing. (a) Two opposing models to explain the observation that AS exons 
(defined as PSI ~ 50%) are enriched for symmetric exons (for example, length 
divisible by three) in steady-state RNA: (Model 1) AS exons are strongly enriched 
for symmetric exons, or (Model 2) AS exons are not more likely to be symmetric 
than random expectation or constitutive exons (~1/3 symmetric), but NMD 
efficiently eliminates frame-shifting AS exons such that they appear enriched 
for symmetric exons in steady-state RNA but not RNA that directly measures 
splicing outcomes without the influence of degradation, such as naRNA or RNA 
after knockdown of NMD factors. In both models, we expect that constitutive 
exons (PSI~100%) are not strongly enriched for symmetric exons since the 

reading frame can cross exon-boundaries without consequence if exons are 
truly constitutive. Although constitutive and AS exons cannot be experimentally 
distinguished by observations of DNA, we included the gene structures at the 
DNA level because the two models imply differing selection pressures on DNA 
sequence to maintain (Model 1), or not maintain (Model 2) accurate frame-
preserving AS patterns. (b) Fraction of exons that are symmetric as a function of 
their usage, estimated as percent spliced in (PSI). Error bars represent standard 
error across LCL lines treated as replicates, and the standard error for replicate 
shRNA knockdown experiments (triangular markers, data from24). Unlike in 
steady-state RNA, the enrichment for symmetric exons among AS exons is not 
apparent in naRNA or NMD KD.
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Extended Data Fig. 5 | Unproductive splicing is less abundant in highly 
transcribed and highly constrained genes. (a) Correlation between gene 
expression and the maximum junction PSI of any unproductive junction in the 
gene, a proxy for percent of unproductive transcripts. The PSI of a junction is the 
number of reads mapping to the junction, divided by the maximum number of 
reads mapped to any junction in the same gene. The junction with the highest 
number of reads in a given gene has a junction PSI of 100%. SRSF genes (red) 
are well-known examples12,21 of genes with high gene expression and high 
unproductive junction PSI. (b) Highly expressed genes have a lower unproductive 

splicing rate, as measured by the genewise percent of splice junction reads 
that are unproductive. Correlation summarized with spearman correlation 
coefficient and P value. Correlation visually presented as cumulative distribution 
of percent unproductive splice junctions, grouped by expression quintiles. 
(c) Similar to B, showing that genes with a higher Shet score86 (suggesting more 
selective constraint) have a lower unproductive splicing rate. Correlations in 
each panel summarized with spearman correlation coefficient and two-sided 
correlation test P value.
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Extended Data Fig. 6 | Assessing AS-NMD prevalence and diversity using  
full-length (FL) long reads. (a) Pipeline to assess NMD status of transcripts  
(See Supplemental Methods). Aligned Oxford Nanopore cDNA reads of SMG6/ 
SMG7 double knockdown (dKD) and shRNA control23 filtered for FL reads  
(anchored at annotated transcript termini). FL reads were translated from the  
first annotated start codon, classified with decision tree (steps 2-6 are previously  
established rules regarding NMD-targeting efficiency of transcripts44) into seven  
transcript categories referenced in (b-e). Categories on right are qualitatively  
considered ‘unproductive’ in (e-h); categories on the left are ‘productive’.  
Number reads in categories shown. (b) Each splice junction observed in short  
read data was classified as productive or unproductive (and annotated or  
unannotated) (Supplemental Methods, Extended Data Fig. 2). FL reads were  
used to assess accuracy of junction-level classifications by considering most  
common transcript categories of FL reads containing that junction (requiring  
>2 FL reads). Fraction unique junctions in each short-read category matching  
most common context (transcript categories) plotted as bars. Limited number  

FL reads means only n junctions in each category (% of total in category) were 
assessed, noted on x-axis. (c) Relative degradation efficiency of each category 
estimated by comparing the median relative splice junction abundance in control 
vs dKD24, and steady-state vs naRNA, short read data. Consistent with previous 
reports44, categories differ in degradation efficiency. (d) Percent FL reads in 
each category, as function of number splice junctions in read. (e) Fraction 
reads belonging in each category across genes (columns). Only genes with >20 
reads considered. The dKD sample has fewer reads, and therefore stronger 
ascertainment bias, with 143 highly expressed genes (TPM, colored rug) passing 
this filter. (f) Isoform structure and relative abundance (read count, and percent 
of each isoform among unproductive reads in control samples) of unproductive  
isoforms derived from the PRDX2, where 93.5% of unproductive transcripts  
derive from most-common PTC-inducing splice junction (blue). (g) Same as  
(f), for PSMB4, which has greater diversity of unproductive splice junctions.  
(h) Diversity of unproductive isoforms amongst all genes (columns) with at least 
20 unproductive reads in control and dKD samples, respectively.
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Extended Data Fig. 7 | Risdiplam primarily induces down-regulating-post-
transcriptional changes. (a) MA-plots of differential expression upon treatment 
with low (100 nM) or high (3160 nM) dose of risdiplam in steady-state RNA or 
naRNA. Overlapping non-significant tests are reduced to gray hexbin, while 
significant tests (FDR<1%) represented as black dots. Number of significant 
up- or down-regulated genes is labeled to emphasize that while there are similar 
numbers of up- and down-regulated genes in naRNA, in steady-state RNA there 
is a relative over abundance of down-regulated genes. (b) Genes are classified 
by their effect size and significance (See Methods) of expression changes as 
measured in naRNA or steady-state RNA-seq after being treated with 3160nM 
risdiplam. Transcription (Txn)-based gene expression changes are defined as 
having similar and significant effects as measured in naRNA and polyA RNA. 
Genes regulated post-transcriptionally have stronger effects in steady-state RNA. 

There are more post-transcriptionally down-regulated genes than up-regulated 
genes, suggesting risdiplam-induced splice sites more often destabilize than 
stabilize host transcripts. Expectedly, there is significant overlap of the 219 NMD 
targets predicted from annotation of induced cassette exons among the post-txn 
down regulated genes (Odds Ratio=14.0, P<2x10−16, hypergeometric test for 
over-representation). (c) Left: Post-txn up-regulated genes may arise by splicing 
changes (such as risdiplam-induced exons, depicted as black cassette exon) that 
relieve NMD with a frame-correcting exon at a gene that is originally spliced into 
an unproductive isoform. The open reading frame is depicted as thick regions 
of exons. Right: More commonly, risdiplam-induced splicing changes result in 
post-txn down-regulated genes, consistent with splicing changes that break the 
reading frame of genes that are originally spliced into productive isoforms.
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Extended Data Fig. 8 | Transcription-mediated eQTLs (hQTL/eQTLs) are 
more tissue-specific than splicing-mediated eQTLs (sQTL/eQTLs). (a) A set 
of transcription-mediated eQTLs (hQTL/eQTL colocalization) identified in our 
source dataset was compared to a set of splicing-mediated eQTLs (sQTL/eQTL 
colocalization without nominal hQTL signal), by estimating the SNP:gene effect 
across 38 GTEx tissues (columns) for each eGene (rows). Row-wise summary 
statistics were calculated and plotted as extra columns. (b) Row-wise summary 

statistics are plotted as cumulative distributions for visual contrast. From left 
to right, we see that (1) the absolute effect size in the Geuvadis LCL discovery 
dataset is slightly greater for hQTL/eQTLs than sQTL/eQTLs. Despite this, the 
sQTL/eQTLs have a (2) larger median effect size across GTEx tissues, and (3) have 
a smaller standard deviation of effect size across tissues. P values from two-sided 
Mann-Whitney test.
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Extended Data Fig. 9 | GWAS/sQTL colocalizations that also colocalize 
with eQTL have characteristics consistent with AS-NMD. (a) sQTLs/GWAS 
colocalizations are more likely to come from u-sQTLs than p-sQTLs if the host 
gene eQTL also colocalizes in multi-trait colocalization analysis. P value from 
hypergeometric test for over-representation. (b) PSI distribution of introns 
as cumulative distribution plot for sQTLs that colocalize with eQTL and GWAS 
(sQTL+eQTL colocs) versus those that only colocalize with GWAS (sQTL colocs). 
We estimate PSI by averaging across samples with shared genotypes, either high/
high genotypes or low/low genotypes (thus, avoiding confounding PSI estimates 
with different allele frequencies between datasets). sQTLs in unproductive 

introns that are sQTL+eQTLs have smaller PSI in steady-state RNA than naRNA, 
consistent with splicing-mediated decay at these GWAS loci transcripts. P-value 
for two-sided Mann-Whitney test. (c) Effect sizes of sQTLs that colocalize with 
GWAS, grouped by whether the GWAS signal also colocalizes with an eQTL 
(sQTL+eQTL colocs), whether it solely colocalizes with sQTL, or whether it also 
colocalizes with some other combination of traits (that is, sQTL + hQTL) in multi-
trait colocalization analysis. Each junction is plotted once, even if it colocalizes 
with multiple GWAS loci across multiple traits. Correlation of effect sizes 
summarized as spearman rho correlation coefficient and two-sided correlation 
test P-value.
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Extended Data Fig. 10 | u-sQTL regulates NUDT14 expression, likely 
contributing to reticulocyte count. NUDT14 eQTL and sQTL. (a) Gene structure 
of NUDT14-202, the protein-coding isoform marked as the principal isoform 
by Gencode. Thick exonic regions mark the open reading frame. Using that 
isoform as a reference, we predicted the u-sQTL splice junction (labeled arc) that 
colocalizes with reticulocyte-count GWAS signal to introduce a premature stop 
codon (red octagon), created a transcript with a long 3′ UTR, inducing NMD.  
(b) Pairwise scatter plots depict the association between the GWAS signal, 
NUDT14 eQTL signal, and chr14:105175987-105176534 junction sQTL signal.  
Each point is a SNP. All three traits colocalize in a single trait cluster in multi-trait 
colocalization (posterior probability of full colocalization, PPFC > 0.5,  

see Supplemental Methods). SNPs colored according to linkage disequilibrium 
relative to the top fine-mapped SNP (rs3825761). (c) NUDT14 sQTL boxplots 
showing unproductive splicing quartiles grouped by genotype show that the up-
regulating effect of the C allele on the unproductive splice junction is present in 
steady-state RNA and naRNA, while the (d) down-regulating effect of the C allele 
on NUDT14 expression is present in steady-state RNA but not naRNA, consistent 
with co-transcriptional splicing and post-transcriptional regulation by NMD. 
Box represents median and inner-quartiles. Whiskers extend from hinge to most 
extreme value no greater than 1.5 IQR from hinge. Beta and P-value from linear 
model to test association between genotype and normalized phenotype.
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