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Hyper-diverse antigenic variation and
resilience to transmission-reducing
intervention in falciparum malaria

Qi Zhan 1, Qixin He 2, Kathryn E. Tiedje3, Karen P. Day3 &
Mercedes Pascual 4,5,6

Intervention efforts against falciparum malaria in high-transmission regions
remain challenging, with rapid resurgence typically following their relaxation.
Such resilience co-occurs with incomplete immunity and a large transmission
reservoir fromhigh asymptomatic prevalence. Incomplete immunity relates to
the large antigenic variation of the parasite, with the major surface antigen of
the blood stage of infection encodedby themultigene and recombinant family
known as var. With a stochastic agent-based model, we investigate the exis-
tence of a sharp transition in resurgence ability with intervention intensity and
identify molecular indicators informative of its proximity. Their application to
survey data with deep sampling of var sequences from individual isolates in
northern Ghana suggests that the transmission system was brought close to
transition by interventionwith indoor residual spraying. These results indicate
that sustaining and intensifying intervention would have pushed malaria
dynamics to a slow-rebound regime with an increased probability of local
parasite extinction.

High-transmission endemic regions present an important challenge to
controlling and eliminating falciparum malaria. Although malaria
prevalence has declined considerably inmany parts of the world in the
last two decades, high-transmission regions, found primarily in sub-
SaharanAfrica, tend to be highly resilient to intervention efforts1. Here,
malaria incidence often rebounds to pre-intervention levels once
control is relaxed, and sustained efforts are limited not only by the
availability of resources but also by the spread of resistance to insec-
ticides and drug treatments2,3. Children experience clinical episodes,
eventually becoming immune to severedisease but not infection4. This
results in a large reservoir of asymptomatic infections in hosts of all
ages, which contributes to sustained disease transmission5,6. A similar
transmission reservoir is found in other vector-borne diseases in
domestic and wildlife hosts that exhibit high prevalence of infection
but incomplete immunity with no clinical symptoms7–10.

In these pathogens, a high level of asymptomatic infection at
high transmission rates and associated incomplete immunity are
enabled by high antigenic variation encoded via multigene
families11. The var multigene family in the malaria parasite Plas-
modium falciparum provides an example; it encodes for the major
variant surface antigen (VSA) during the blood stage of infection,
the protein PfEMP1 (Plasmodium falciparum erythrocyte mem-
brane protein 1)12–15. Anti-PfEMP1 immunity has been found to be
crucial to prevent severe disease manifestations and to clear
infection16–19. Each parasite carries 50-60 var genes across its
chromosomes. They are expressed largely sequentially, producing
and exporting different variants of this protein to the surface of
red blood cells12,20. Specific immune memory of a given VSA allows
the host immune system to clear parasitized red blood cells,
shortening infection and reducing the likelihood of parasite
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transmission. In contrast, when a strain expressesmany VSAs a host
has not previously encountered, long infectious periods ensue,
enhancing its chance of transmission to another host12,19. Under
high-transmission settings, local parasite populations exhibit a vast
pool of var gene variants, documented to reach in the thousands to
tens of thousands21–23 and generated mostly through mitotic and
meiotic recombination but alsomutation, as well as frommigration
of the human host and the mosquito vectors24–27. Previous studies
have shown that negative frequency-dependent selection (NFDS)
mediated by the acquisition of specific immunity by hosts con-
tributes to the limited overlap of the var genes of both individual
repertoires (individual parasite genomes) and isolates (sets of
individual parasite genomes co-infecting individual hosts), in a
pattern that is both non-random and non-neutral23,28. Given the
large number of possible var gene combinations, hosts are not
likely to have seen all or many of the VSAs encoded by the different
circulating genomes, and they therefore remain susceptible to re-
infection throughout their lifetime despite previous repeated
exposure29,30. Multi-genomic infections are common resulting from
either successive mosquito bites (i.e., superinfection) or a single
mosquito bite (i.e., co-transmission)31–34.

A recent longitudinal field study in Bongo District, located in
northern Ghana, implemented deep sampling and sequencing of var
genes from individual isolates to monitor the response of the trans-
mission system to a three-round transient intervention of indoor
residual spraying (IRS) with insecticides21,35. Sequencing specifically
concerns the DBLα tag, a small conserved ~450 bp region within var
genes which encodes for the immunogenic Duffy-binding-like alpha
domain of PfEMP121–23,29,36–38. Bioinformatic analyses of a large database
of exon 1 sequences of var genes showed a predominantly 1-to-1 DBLα-
var relationship, such that eachDBLα tag typically represents a unique
var gene39. We use DBLα and var interchangeably hereafter. This sur-
veillance through molecular epidemiology revealed persistent esti-
mates of high var diversity and low parasite strain overlap (low
repertoire similarity), characteristic features of high-transmission
regions, despite a considerable decrease in prevalence and parasite
population size21,35. The transmission system rebounded rapidly after
the IRSwas discontinued, with this transient intervention appearing to
have hadonly a limited impact21.Was this indeed the case?We examine
here whether deep sampling of sequences of var genes in a host
population can help evaluate the impact of intervention further, by
providing information on the proximity of a rapid change in resur-
gence ability with transmission intensity, so that sustaining and
intensifying control efforts would avert the rapid rebound of
prevalence.

To address these questions, we first investigate the response of
the epidemiological system to transmission-reducing interventions
with an extended stochastic agent-based model (ABM) that incorpo-
rates strain diversity from a multigene family and the interplay
between parasite evolution and malaria population dynamics28

(Methods). We show the existence in numerical simulations of the
model of a threshold behaviorwith intervention intensity, whereby the
perturbed system would lose its capacity to rebound rapidly, and
identify molecular indicators of such a transition based on deep sam-
pling of var gene sequences. The existence of such a transition is
suggested by the positive feedback between transmission intensity
and var diversity recently emphasized in another ABM40, and by the
alternative steady-states and associated tipping point arising from this
feedback in a deterministic compartmental model whose formulation
requires however a number of simplifications41. We apply the lessons
learned fromour computational model to the field data from northern
Ghana across the transient IRS intervention. Our findings should be
relevant to other pathogens of humans, wildlife, and livestock with
similar immune evasion strategies based on hyper-diverse antigenic
variation7–10.

Results
The resurgence ability of the malaria system to sustained
transmission-reducing intervention is non-linear
We investigate how different intervention schemes impact the popu-
lation genomic structure and dynamics under different transmission
regimes (Methods, see Fig. 1a–c and Supplementary Table 1 for the
numerical simulation designs and scenarios considered). We start with
sustained interventions of a decade to then consider shorter, more
realistic, transient ones (Methods, Fig. 1b). Numerical simulations of
the ABM demonstrate three qualitatively different rebound dynamics
in prevalence (Fig. 2a, Supplementary Fig. 1a) across the series of
sustained IRS interventions (Fig. 1b, c). Systems under low- or mid-
coverage vector control rebound rapidly in prevalence back to levels
similar to those pre-intervention, in what we refer to as a fast-rebound
regime. We use “rebound” hereafter synonymously with “resurgence”
from the malaria literature, both describing a return to a baseline. In
contrast, systems under high-coverage interventions remain at low
prevalence, entering what we describe as a slow-rebound regime.
Lastly, systems under interventions with levels between these two
extremes gradually settle into intermediate prevalence, exhibiting a
“transition” regime.

The prevalence level reached after the rebound (a decade
into sustained IRS, sampled at the end of the wet/high-transmission
season for seasonal transmission) is highly nonlinear along the gra-
dient of transmission intensity (Fig. 2b, Supplementary Fig. 1b).
The fast-rebound regime occurs for a broad range within the
gradient of transmission intensity, whereas the transition and slow-
rebound regimes correspond instead to narrow ranges.
Thus, the perturbed system experiences a sharp transition along the
gradient of transmission intensities, from a rapid recovery down to a
lingering low prevalence. Concomitantly, var diversity itself,
whether measured as richness or the Shannon Diversity Index42,43

(Methods), also exhibits the three general behaviors, from the
maintenance of high values, through the establishment of inter-
mediate ones, to the eventual persistence of low levels, across the
series of sustained IRS interventions (Fig. 2c, Supplementary Fig. 2a,
Supplementary Fig. 3a). Post-intervention var diversity levels (a
decade into sustained IRS) are also highly nonlinear with intervention
transmission intensity (Fig. 2d, Supplementary Fig. 2b, Supplemen-
tary Fig. 3b).

The nonlinearity of the rebound in prevalence and corre-
sponding var diversity levels along the gradient of transmission
intensity holds, regardless of whether the system is under constant
or seasonal transmission, and whether it is closed, semi-open, or
regionally-open, over wide ranges of parameters (Fig. 2, Supple-
mentary Figs. 1–3).

Although to examine long-term rebound dynamics we sustain the
vector reduction for up to a decade in the numerical simulations, we
find that the perturbed system in the slow-rebound regime can be
prone to extinction at a faster time scale. Replicate runs can go extinct
as early as in the fourth year into intervention (Fig. 3a), a period that is
more comparable to what can be realistically implemented in empiri-
cal settings.

Under low or mid-coverage vector control, transmission inten-
sity is maintained at a somewhat high level (Fig. 1b, c). Immediately
following intervention, the majority, or a high fraction, of infections
can still get transmitted, resulting in a high surviving diversity
(Fig. 2a, c, Supplementary Fig. 1-3a). Hosts’ immune profiles are
heterogeneous because they were exposed to different subsets of
the large circulating diversity before intervention. The high surviving
diversity, coupledwith hosts’ heterogeneous immune profiles, allows
for a heterogeneous distribution of infection duration (Supplemen-
tary Fig. 4). Infections with longer duration are selected due to a
reduction in transmission intensity. Thus, the distribution of infec-
tion duration immediately following intervention shifts to longer
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values compared to those before intervention (Supplementary
Fig. 4). The selection for infections of longer duration effectively
compensates for the reduction in transmission, allowing prevalence
to start rebounding. Further into intervention, the loss of immunity
due to the reduction in transmission and exposure increases indivi-
dual susceptibility and consequently infection duration. Prevalence
rebounds further, eventually reaching comparable levels to those
pre-intervention. In contrast, under high-coverage vector control,
immediately following intervention, transmission intensity and cir-
culating diversity both drop to very low levels with a low fraction of
infections getting transmitted (Fig. 1b, c, Fig. 2a, c, Supplementary
Fig. 1–3a). Few infections can survive longer than the average waiting
time between consecutive transmission events. The reduction
in transmission intensity cannot be effectively compensated for by
the shift in infection duration distribution towards longer values.
Thus, the transmission system remains at low prevalence and
diversity.

Molecular indicators based on the structure of diversity and
multiplicity of infection reveal themalaria system’s proximity to
a sharp nonlinear transition in its resurgence ability
Having documented a threshold behavior of the transmission system
in its response to intervention, we address next the existence of indi-
cators revealing its proximity to the transition regime. Because pre-
valence is a commonly tracked quantity inmalaria surveillance, wefirst
examine whether it can function as one such indicator. The short-term
rebound prevalence levels following simulated sustained IRS (two
years into intervention) show a much more linear behavior with
intervention levels than those after longer sustained control (Fig. 3b,
Supplementary Fig. 5a). The relationship between these two types of
prevalence levels is non-linear and the degree of nonlinearity varies
across different spatial configurations and parameter values (Fig. 3c,
Supplementary Fig. 5b). Overall, short-term prevalence levels are only
weakly correlated with, and are by themselves only poorly predictive
of, long-term rebound prevalence levels. Moreover, high-quality
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Fig. 1 | Diagramof thenumerical simulationdesignmimickingdifferent lengths
of the transmission-reducing intervention (the application of indoor residual
sprayingor IRS) and the studydesignoffielddata sampled fromBongoDistrict
in northernGhana. a Each simulation follows either twoor three stages depending
on intervention duration: a “pre-IRS” period during which the transmission in the
local population reaches a stable state, followed by an “IRS” intervention period of
ten or two years which reduces transmission rate (in what we call sustained vs.
transient IRS, respectively), and a “post-IRS” period when transmission rates go
back to their original levels only applicable to the transient IRS. Three different
spatial configurations are implemented: a closed systemwith nomigration, a semi-
open system in which two individual parasite populations are connected via
migration events, and a regionally-open system in which migrant genomes are
sourced from a regional pool of var genes (Methods). b Transmission intensity or

effective contact rate (Methods) varies as a functionof time, frompre-, to during, to
post-intervention (only applicable to the transient IRS) for a seasonal and closed
system, with the two panels illustrating the sustained (top) vs. transient (bottom)
implementation for the different reduction levels. cDifferent levels of intervention
coverage are considered that reduce transmission rate log-linearly along the gra-
dient of transmission intensity. We show here levels for a seasonal and closed
system under sustained interventions. The lowest and highest reductions of the
transmission rate correspond respectively to 20% and ~90%, with colors corre-
sponding to those in the top panel of b the sustained interventions. The highest
reduction for transient interventions can correspond to more than 90%, reaching
~96% for certain scenarios. d The study design of the three-round transient IRS in
Bongo District in northern Ghana. It is adapted from Argyropoulos et al.89 and
Tiedje et al.21.
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prevalence data is often unavailable in empirical settings, and efforts
to collect these data can be hindered by low testing rates and imper-
fect detective power for asymptomatic infections44. Thus, prevalence
by itself does not provide sufficient information on either the proxi-
mity of the perturbed system to the transition regime or the loss of
resilience of the epidemiological system.

As complementary information, we therefore address indicators
related to the structure of diversity from the perspective of var genes
and isolates. As we seek to apply such indicators to field data, we also
consider whether they are robust to measurement errors common in
sampling schemes (Methods). We further focus on responsive indica-
tors that rely on sampling immediately following the start of inter-
vention, specifically two years into it (at the end of wet/high-
transmission season for seasonal systems).

We first compared whether the distributions of pairwise type
sharing (PTS)38 differ between before and early into intervention. PTS,
a similarity index analogous to the Sørensen or Jaccard Index45,46,
describes the fraction of shared DBLα types between any two isolates
and hencequantifies the repertoire similarity of parasites circulating in
host population (Methods). If each isolate consisted of a monoclonal
infection by a repertoire of one var gene, sample PTS would be
equivalent to homozygosity, and the comparison of 1 - mean(PTS) (i.e.,
heterozygosity) within and between populations would be equivalent
to Wright’s fixation indices. PTS can therefore be viewed as a simple

extension of fixation indices to the case where multigene family
members of unknown allelic status have been collected38,47. A second
mode at complete overlap emerges in the PTS distribution when the
perturbed system approaches the transition regime (Fig. 3d). Con-
comitantwith the appearanceof the high overlapmode, the low endof
the PTS distribution shifts towards zero or extremely low values
(Fig. 3d, Supplementary Figs. 6, 7) due to reduced outcrossing. Out-
crossing creates relatedness and increases similarity between parental
and offspring strains. Because the frequency of outcrossing events
scales with transmission intensity, intervention results in a decrease in
outcrossing rates and an increase in clonal transmission of non-related
strains. Therefore, the PTS distribution is pulled into the two opposite
extremes of complete and no, or extremely low, overlap. The emer-
gence of this secondmode at complete overlap is however sensitive to
parameter specification and measurement error. It specifically
becomes less apparent when the circulating diversity is high among all
the simulated scenarios (Methods), effectively disappearing when we
do not completely sample all the var genes constituting infections
(Supplementary Figs. 6, 7). This happens because this incipient
appearance of clonality involves too few parasites in the population, a
result of intervening in a high-transmission endemic system where the
original diversity is high. Any subset of strains from this original
diversity which survived intervention, will likely be dissimilar from
each other. Unless transmission remains sufficiently low with
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interventions (scenario VII in Supplementary Table 1). a Rebound dynamics of
prevalence across time. The dynamics can be categorized into three regimes
described respectively as fast rebound, transition, and slow rebound, dependingon
the behavior of prevalence over time. As the name indicates, for the fast-rebound
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measured by the Shannon Diversity Index across time. d Long-term rebound
dynamics of var gene diversity against transmission rates (with values shown at the
end of the decade). Both prevalence and var gene diversity exhibit a non-linear
pattern against transmission rates. The fast-rebound regime corresponds to a wide
interval, whereas the transition and slow-rebound regimes cover a narrow interval
along the gradient of transmission rates. For the rebound dynamics of additional
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tems, see Supplementary Figs. 1 and 3. In (b) and (d), boxes represent the 25%
quantile and 75% quantile, with a central line marking the median level. The upper
and lower whiskers represent the maximum and minimum values. In (a–d), the
range and boxplots are derived based on five replicates.
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importation of var gene diversity curtailed so that clonal transmission
follows a bottleneck in strain diversity, the second mode in the PTS
distribution will be insignificant. In addition, this second mode of
complete overlap becomes more diffused under measurement error:
two identical strains will have a high but uncertain PTS value within
some range, depending on which subset of their var genes are
sequenced and typed. Thus, the appearance of the second mode
cannot be reliably used for empirical surveillance.

Instead of the population-wise PTS, we then examine the age
group differences at the low-end of the PTS distributions. A previous
study has shown age-dependent patterns of PTS in empirical data,with
infections in children (1–10 years old) exhibiting more related var
repertoires compared to adults (>20 years old), consistent with the
effect of immune selection (negative frequency-dependent
selection)29. We therefore compare these distributions in children
and adults from the simulation output across the series of sustained
transmission-reducing interventions. We find a reduced difference as
the systemmoves from the fast-rebound regime toward the transition
one. Specifically, thePTSdistributionwithin childrenmanifests amode
around zero or extremely low overlap, which was originally present in
the PTS distribution of adults. In other words, the PTS distribution
between the two age groups becomesmore similar, overlapping at the
lowest mode when the system approaches and enters the transition

regime (Fig. 4a, Supplementary Figs. 8–21a). This behavior is robust to
sampling schemes simulating the collection of field data (Methods).

A second candidate for an indicator quantity is the distribution of
the multiplicity of infection (MOI), defined as the number of geneti-
cally distinct parasite strains co-infecting a single human host33,48,49.
MOI, also referred to as complexity of infection (COI), is one of the
most frequently reported proxies for parasite transmission50,51.
Although a variety of statistical approaches have been developed that
rely on various sources of genotypic data, the estimation of MOI
remains challenging for high-transmission endemic settings where
individuals typically carry multiple co-occurring infections (i.e.,
MOI > 1)52. The low to non-existent overlap of var repertoires enables
estimation of MOI on the basis of the number of var genes sequenced
from an individual’s isolate29,35. This so-called “varcoding”method has
been shown to provide accurate estimation in numerically simulated
infections, and to perform better when transmission is high than a
previous method based on a collection of neutral single nucleotide
polymorphism loci (SNPs)52. Having extended this approach to a
Bayesian framework to account for measurement error in the
sequencing21 (Methods), we apply the approach here to derive MOI
estimates at the population level across the series of IRS interventions.
We find that the MOI distribution becomes increasingly centered at
low values around one and two, as the system approaches the
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sustained intervention are shown against the transmission rates corresponding to
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distribution during sustained intervention without measurement error. With
increased intervention intensities, and as the system approaches the transition
regime, the PTS distribution exhibits the emergence of a secondmode at complete
overlap due to clonal expansion, and a shift toward lower values (of zero) at the
lowest end due to reduction in out-crossing and hence the circulation of non-
related strains. The emergence of the secondmode is sensitive to the specification
of parameters anddisappears undermeasurement error (Supplementary Figs. 6, 7).
Thus, it is not a robust indicator of approach to the transition regime, and is
unsuitable for practical surveillance purposes. In (b) and (c), Boxes represent the
25% quantile and 75% quantile, with a central line marking the median level. The
upper and lower whiskers represent the maximum and minimum values. In (a–c),
results are obtained from five replicates. In (b–d), sampling happens at the end of
wet/high-transmission season.
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transition regime (Fig. 4b, Supplementary Figs. 8–21b). Specifically,
whereas for the fast-rebound regime themajority of infections remain
multi-genomic (MOI > 1), the fraction of multi-genomic infections
decreases significantly when the intervened system approaches the
transition regime, and themajority of infections become either mono-
clonal ormulti-genomic with two genetically distinct parasites. For the
transition and slow-rebound regime, themajority of infections become
mono-genomic (MOI = 1). This indicator is also robust under sampling
schemes simulating the collection of field data (Methods).

The application of identified molecular indicators to an
empirical dataset indicates that the local transmission system
was brought close to transition by intervention
We apply next the above indicators to an interrupted time-series study
involving three age-stratified cross-sectional surveys undertaken at the
end of the wet/high-transmission season from Bongo District in
northern Ghana, respectively before (Survey 1, October 2012), during
(Survey 2, October 2014), and immediately after (Survey 3, October
2015) the transient IRS intervention (Fig. 1d)21,35. Following IRS, the
difference in the empirical PTS distribution across the two age groups
is reduced, almost completely overlapping at the lowest mode
(Fig. 5a). To further evaluate this difference in the corresponding PTS
values of the two age groups, we considered consecutive quantiles
within the range of 0-0.40 for both the simulated output and the
Ghana surveys. We chose this range because it encompasses the lower
end of PTS, whose change reflects the rate of outcrossing. The differ-
ence for those quantiles exhibits two distinct patterns in the simulated
system. At high transmission before IRS, or under intervention

entering the fast-rebound regime during IRS, the difference is sig-
nificantly above zero for higher quantiles (Supplementary Fig. 22a, b).
In contrast, when the simulated system approaches or enters the
transition regime, the difference becomes null (Supplementary
Fig. 22a, b).When calculated for the Ghana surveys, its value goes from
significantly above zero for higher quantiles for the pre-IRS period, to
equal to zero at all quantiles during IRS (Supplementary Fig. 22c).
Concomitantly, the empirical MOI distribution shifts towards a high
proportion of mono-genomic infections or multi-genomic ones with
only two genetically distinct parasites (Fig. 5b), within the range of
proportions for simulated systems approaching the transition regime
(Supplementary Fig. 22d). Although a given threshold value cannot be
identified that indicates this approach, for all scenarios andparameters
considered this threshold is above 50%. Thus, we can consider this
value a necessary but not sufficient condition, to be considered toge-
ther with the PTS-based difference described above. Both quantitative
patterns taken together suggest that intervention had pushed the
empirical systemnear the transition regime. Similar patterns are found
for the survey immediately after the IRS intervention (termed as the
post-IRS phase, Fig. 1d, Supplementary Fig. 22c, d), suggesting the
impact of IRS persisted through the wet/high-transmission season
after it was discontinued.

Individual hosts can seek antimalarial curative treatments in
response to their symptoms or their perception of transmission risk.
Such curative drug treatments can potentially impact the infection
status of treated individuals, as well as their MOI and pairwise-type
sharing score or PTS between isolates, although the actual impact on
the indicators is difficult to disentangle from the expected changes,

0.00

0.05

0.10

0.15

0.20

0.25

1 5 9 13 17
MOI

P
ro

po
rt

io
n

Pre−IRS

0.0

0.2

0.4

0.6

1 5 9 13 17
MOI

P
ro

po
rt

io
n

I−4

0.0

0.2

0.4

0.6

0.8

1 5 9 13 17
MOI

P
ro

po
rt

io
n

I−5b

0

20

40

60

0.0 0.1 0.2 0.3 0.4
PTS

D
en

si
ty

I−4

0

20

40

0.0 0.1 0.2 0.3 0.4
PTS

D
en

si
ty

I−5

0

10

20

30

0.0 0.1 0.2 0.3 0.4
PTS

D
en

si
ty

Age

>=20

1−10

Pre−IRSa

I 4 I 5

Fig. 4 | Molecular indicators of the proximity of the perturbed local system to
the transition regime for a seasonal regionally-open system with a medium-
sizepool and abaselinemigration rate (scenarioVII inSupplementary Table 1).
For illustration purposes, we show the pre-IRS case, an example IRS under which
the system approaches the transition regime, and another example IRS under
which the system falls into the transition or slow-rebound regime. a As the system
approaches the transition regime, the difference between PTS distributions across
age groups is significantly reduced and even disappears. In particular, the two

distributions almost completely overlap at the lowest mode around 0. The x-axis
range for inset figures is 0–0.1. b MOI distribution starts to center around 1 and 2
with themajority of infections being eithermono-clonal ormulti-genomicwith two
genetically distinct parasites. These two molecular indicators are robust under
implemented sampling schemes and sampling limitations representative of those
encountered in the collection of field data (Supplementary Fig. 8). Molecular
indicators for regionally-open systems with other setups or closed and semi-open
systems can be found in Supplementary Figs. 9–21.
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given the complex biology of the parasite. We thus repeat the analysis
based on samples with treated individuals removed, whose status we
know from the field questionnaire that accompanied the surveys35

(Methods). Similar conclusions hold on the impact of the three-round
transient IRS (Supplementary Figs. 23, 24).

Effective restoration of diversity enhances resurgence ability of
the malaria system to transient transmission-reducing
intervention
Because the three-round IRS intervention was only implemented over
a two-year window, we return to the computational model to examine
a series of transient interventions of this length across the different
spatial configurations (Fig. 1a–c, Methods). Overall, the simulated
systems are highly resilient to transient interventions, especially when
embedded within a regional pool. After interventions are dis-
continued, regionally-open systems always rebound rapidly in pre-
valence back to pre-IRS levels, regardless of IRS coverage and
configuration of their regional pool (Fig. 6a, Supplementary Fig. 25).
Themajority of closed and semi-open systems rebound rapidly aswell.
However, in a few instances, prevalence remains confined to inter-
mediate or low prevalence levels requiringmore than a decade to fully
rebound (Fig. 6a, Supplementary Fig. 25). In these, IRS coverage had
been at the highest end and sufficiently strong to bring prevalence
levels and parasite population sizes close to zero (Fig. 6a, Supple-
mentary Fig. 25), with a low var diversity during IRS (Fig. 6b).

We further investigate why the regionally-open systems are highly
resilient to transient intervention. Because antigenic diversity facil-
itates immune evasion and further infection, we address the question
from the perspective of change in var diversity and associated strain
structure by examining how the diversity of migrant genomes and the
degree of novelty they introduce to the local parasite population

impact the resilience of a regionally-open system. We specifically
implement the following two scenarios: a high migration rate per se,
and one that is additionally accompanied by a highly diverse gene
compositionofmigrant genomes.Weconsider for this purpose a static
regional pool of medium size that does not update its genes, versus a
dynamic one of the same size that does so continuously (Methods).
Migrant genomes drawn from this static regional pool necessarily
import the same set of var genes repeatedly to the local parasite
population, and therefore hosts typically develop more complete
immunity against their products and the system rebounds in pre-
valence, although not rapidly. In contrast, migrant genomes drawn
from the dynamic regional pool import new var genes to which hosts
are susceptible, and the system rebounds in prevalence rapidly
(Fig. 6c, Supplementary Fig. 26). The transient intervention considered
here is among the highest-coverage ones, reducing prevalence and
parasite population size close to zero, and var diversity to very low
values. We do not repeat this analysis for regional pools of large size
because they necessarily entail migrant genomes introducing a high
degree of novelty to the local parasite population, regardless of the
rate of update of their gene composition. Regionally-open systems are
highly resilient to transient intervention because migrant genomes
effectively introduce novelty and help the recovery in var diversity
once control is discontinued.

In contrast, closed and semi-open systems can lose their resilience
under transient high-coverage intervention. We examine how the dis-
ruption of parasite genetic structure typical of high transmission
underlies this loss of resilience. For closed and semi-open systems that
exhibit a fast rebound, their parasite populations remain large and
retain var gene diversity characteristic of high-transmission regions
during transient intervention (Figs. 6a,b, 6d, Supplementary Fig. 25).
After control is discontinued, surviving parasite populations expand,
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and the degree of clonal transmission is low. Circulating genes are
plentiful and typically exhibit low frequency (Fig. 6b), and strains are
dissimilar from one another as reflected in PTS distributions. These
distributions capture the degree of overlap of isolates that are circu-
lating within the same time period as well as those in the past and
present (diagonal and off-diagonal values, respectively, in Fig. 6d).
Their four quantiles systematically remain low. Hosts’ exposure to
dissimilar strains facilitates immune evasion and further infection,
which in turn promotes the generation and maintenance of var gene
diversity.

For closed and semi-open systems that exhibit a transition or slow
rebound, their parasite populations approach zero with low var
diversity during transient intervention (Fig. 6a, b, Supplementary

Fig. 25). After control is discontinued, small surviving parasite popu-
lations expand, resulting in a high degree of clonal transmission. Cir-
culating genes are low innumberswith each at high frequency (Fig. 6b)
and strains are similar to one another (Fig. 6d). Hosts’ exposure to
highly similar strains throughout time compromises immune evasion
and further infection, which in turn reduces the generation and
maintenance of var gene diversity. In our simulations, such systems
require more than a decade to recover their prevalence fully.

Discussion
Wehavedescribed anon-linear and sharp response to the intensity of a
sustained transmission-reducing intervention, with an agent-based
model that explicitly tracks specific immune memory to strain
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variation encodedby a hyper-variablemultigene family. The perturbed
transmission system experiences a threshold behavior, losing its resi-
lience when pushed into a narrow transition region toward a regime
where prevalence rebounds only slowly with an associated extinction
risk of the parasite. By examining the relationship between the loss of
var diversity and the disruption in the strain structure of limiting
overlap, we have identified molecular indicators providing informa-
tion on the approach of the perturbed transmission system to the
transition between a fast and slow rebound to high prevalence. These
indicators rely on sampling following the intervention, effectively
complementing the monitoring of the transmission system through
epidemiological quantities over time. They can inform timely adjust-
ment of intervention efforts, to push the system into the transition
regime and beyond, into the slow-rebound behavior enhancing local
parasite extinction, to do so more rapidly than by observing the tem-
poral trajectory of prevalence itself.

The response behavior to the series of sustained transmission-
reducing interventions we have described involves a clear coupling
between the rebound dynamics in prevalence and those of var gene
diversity. In the fast-rebound regime, the heterogeneity of hosts’
immunity profiles and large surviving strain diversity underlie a het-
erogeneous distribution of infection duration. Immunity loss increases
hosts’ susceptibility to infection and contributes to further lengthen-
ing infection duration. Selection for infections with longer duration in
response to reduced transmission, effectively compensates for this
reduction. In contrast, in the slow-rebound regime, few infections can
survive for sufficiently long times to withstand the waiting time
between consecutive bite events, resulting in a low surviving diversity
and population size of the parasite. Selection for infectionswith longer
duration can no longer effectively compensate for the reduction in
transmission.

We illustrated the application of the identified indicators to field
data from Bongo District in northern Ghana21. Their patterns suggest
that the transmission system had been brought close to transition by
the two-year transient IRS intervention, and that therefore sustaining
and intensifying these efforts would have been worthwhile.

Similar patterns for the two molecular indicators of approaching
the transition phase persisted through the wet/high-transmission
season after the three-round transient IRS was discontinued. However,
prevalence and the population genetics of the var multigene family
rebounded rapidly, already returning to their pre-IRS characteristics
when surveyed 32-month after IRS was discontinued21. During the
transient intervention, despite a considerable reduction in parasite
prevalence and parasite population size (by ~50% and ~70–80%,
respectively compared to the pre-IRS level), estimates of parasite
population size were not close to zero and var population genetics
showedpersistent characteristics of high transmission regions21. These
characteristics would provide a large enough founding population to
effectively maintain a low degree of clonal transmission after IRS was
discontinued. The local parasite population was likely embedded in a
large regional pool,which enables themaintenance and rapid recovery
of var diversity. Resulting immune evasion and associated transmis-
sion would have further promoted the generation andmaintenance of
diversity, enabling a positive feedback between transmission and
diversity which has been previously described in two other malaria
models40,41.

The relationship between the responseof the transmission system
described here in a stochastic individual-based model and the tipping
point behavior identified in a deterministic compartmental population
model of malaria41 should be investigated. The latter model explicitly
incorporates the temporal dynamics of gene diversity underlying
antigenic variation, and the population structure of the host popula-
tion in both age and immune memory. It is not able however to track
parasite population structure, as it samples infections at random from
the pool of genetic diversity. Taken together, these previous models

and ours underscore that regardless of assumptions and imple-
mentations, the positive feedback between antigen-encoding genetic
diversity and transmission intensity can influence in important ways
both response and resilience to intervention in high-transmission fal-
ciparum malaria, and in other infections whose pathogens exhibit
large genetic and antigenic diversity at high transmission.

Although we relied initially on relatively long interventions (i.e., a
decade), we also examined more transient ones, which underscored
the fundamental importance of spatial context through the importa-
tion of var gene diversity. Although regionally-open systems not sur-
prisingly always exhibit a fast-rebound dynamics in prevalence
regardless of intervention coverage, semi-open and closed systems
can experience the full range of possible temporal trajectories. The
positive feedback described above should remain highly efficient for
regionally-open systems, or closed and semi-open systems with fast
resurgence once transient intervention is discontinued. In this case,
surviving parasite populations can rapidly expand, yet the degree of
clonal transmission remains low. Circulating var diversity remains high
and strains are dissimilar from one another despite a population bot-
tleneck. In contrast, the positive feedback is weak for closed and semi-
open systems which enter the transition and slow-rebound regimes.
After control is discontinued, clonal expansion dominates, resulting in
the circulation of highly similar strains. Thus, as for intervention in
other transmission settings, coordinated regional efforts and infor-
mation on sources and sinks are clearly important.Ways to infer spatial
context and the importation of var gene diversity from genomic data
should be investigated. Although the evolutionary rate of var genes
measured in vitro is high25, local innovation events (ectopic recombi-
nation and mutation) give rise to single copies of new genes, which
have a low probability of surviving the genetic drift barrier. In contrast,
migrant genes can be repeatedly imported and are therefore more
likely to rise to higher frequencies. Additionally, negative frequency-
dependent selection, as a form of balancing selection, maintains
genetic variation for longer than expected by random chance,
including genes imported either recently or a long time ago53. Thus,
the overall diversity represents a long-term malaria burden for differ-
ent regions, and genomic data for the var genes should contain sig-
natures of both local innovation events, and recent or more ancient
migration ones.

Our computational model did not consider generalized (VSA-
transcending) immunity or functional divergence between genes4,54–65.
Future work will examine the performance of the identified indicators
under further aspects of immunity and incorporate different var gene
groups. We do not expect the addition of generalized immunity to
change the qualitative and quantitative aspects of the transmission
system’s response to transient intervention. But it could potentially
change the quantitative aspects of responses to sustained interven-
tion. Given the different mechanisms underlying variant-specific and
generalized immunity, the rate at which they wane can differ.
Accordingly, the rate at which duration of infection increases due to
reduced exposure and associated immunity loss could vary, resulting
in potentially different rates of prevalence rebound under sustained
interventions. Qualitative aspects of the system’s response to sus-
tained intervention, shall remain the same. While strain-transcending
immunity from exposure to various conserved antigens reduces
parasitemia and clinical symptoms (e.g., merozoite opsonization)66, it
does not necessarily prevent re-infections29,35,67. We have focused here
onhigh-transmission endemic region,where the asymptomatic pool of
infection contributes significantly to local transmission5,6. Despite the
majority of hosts having acquired some generalized immunity, they
harbor chronic P. falciparum infections detectable as microscopic- or
PCR-positive. Therefore, we assumed in our model the duration of
infection is mainly determined by variant-specific immunity. We also
used genetic variation as a proxy for antigenic variation38 because a
genotype to phenotypemap is not available for var genes. Futurework
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should examine ways to derive aspects of the map from a variety of
perspectives, including bioinformatics, the fitting of ABMs, and pro-
tein structure prediction based on deep learning. For regionally-open
systems, our simulation considers a local parasite population embed-
ded within a regional pool providing the source of migrant genomes
and does not represent metapopulation dynamics explicitly. An
explicit simulation of multiple parasite populations in our ABM is
computationally expensive. An open population with continuous
migration from a regional pool is an alternative typical setting ofmany
assembly models in community ecology.

Our stochastic agent-based model depends on a relatively large
number of parameters. The population dynamics of the simulation are
most sensitive to a subset of key parameters, however (whose chosen
values are provided in the Methods, Supplementary Methods, and
Supplementary Data 1). These key parameters include in particular
those specifying the configuration of the regional pool for regionally-
open systems. To take into account this parameter sensitivity, we
conducted simulations with extreme sets of values, with a wide range
encompassing from a few to more than ten local parasite populations
composing a regionally-open system. Our results hold for the two
extreme scenarios considered. Transmission intensity is also key to
population dynamics. Because we focus on control efforts in high-
transmission endemic regions, we considered simulations whose pre-
intervention contact rate parameter led to an emergent force of
infection consistent with the empirical range, as determined either
from direct measurements or indirect inference for high-transmission
endemic regions in sub-Saharan Africa (Methods). The immunity loss
rate is another key parameter. Our results hold for the estimated value
based on the historical datasets of the treatment of neurosyphilis
patients with malaria infections68,69.

The application of the molecular indicators involves measuring
their relative change from pre- to during intervention periods. These
quantities could also potentially be used for calibration purposes with
the ABM. In particular, the difference in the PTS distribution across the
two age groups is associated with transmission intensity. Analysis of
empirical datasets from high-transmission regions reveals an age-
dependent pattern in the PTS distribution for the two age groups with
infections in children (1–10 years old) exhibiting more related var
repertoires compared to adults (>20 years old), consistent with
immune selection being at play29. This contrasts with low-transmission
regions where all age groups experience low exposure to infections
and are similarly susceptible to the circulating diversity70,71. Here, the
age-dependent pattern is weak, and the difference becomesmuch less
significant or does not exist. Moreover, changes in the MOI distribu-
tion, including those of the mean or the proportion of monoclonal
infections, also reflect transmission intensity. Therefore, quantitative
information, based on moments or quantiles, for the population-wise
PTS distribution, the difference in the PTS distribution across age
groups, and the MOI distribution, can potentially be used for calibra-
tion purposeswhenfitting the ABMto empirical datasets, including for
estimating transmission rates and diversity-related quantities.

The World Health Organization has recently underscored the
importance of surveillance for malaria intervention72,73. Molecular
epidemiology provides approaches to complement traditional sur-
veillance, with methods best suited for moderate- to low-transmission
intensities74–76. Deep sampling of sequences of var genes in host
population provides a basis to complement these efforts for high
transmission, with a focus on the high diversity that characterizes the
var multigene family in these regions. Our results establish a link
between the population dynamics of the disease and observations of
parasite population genomics from the perspective of hyper-variable
antigen-encoding genes. They indicate that the structure of diversity
revealed via molecular surveillance can inform intervention against
malaria in high-transmission endemic settings. These findings should
enhance our understanding of transmission dynamics where large

standing pathogen diversity represents a major challenge to control
efforts.

Methods
Stochastic agent-based model
We extend a previous computational model28 whose key assumptions
andprocesses are summarizedbelow (see the supplementaryMethods
for further description). Model parameters and symbols are listed and
explained in Supplementary Data 1. The model is an agent-based
(individual-based), discrete-event, and continuous-time stochastic
system in which all known possible future events are stored in a single
event queue along with their putative times, which may be fixed or
drawn from a probability distribution with a certain rate. We choose
values for the rates of these events based on the literature of malaria
epidemiology, related field studies, and in vitro or in vivo values (see
supplementaryMethods and SupplementaryData 1 for further details).
When an event happens, it can cause the addition or removal of future
events in the queue, or the modification of their rates, resulting in a
recalculation of putative times. This approach is implementedwith the
next-reaction method77, which optimizes the Gillespie first-reaction
method78.

Individual human hosts die and are replaced with infants with no
immunity. The age structure of the human host population follows a
truncated exponential distribution with a mean age of 30 years and a
maximum age of 80 years. Individual infections and the immune his-
tory of individual human hosts are tracked, and evolutionary
mechanisms including mitotic/ectopic recombination and mutation
are modeled explicitly. We simulate a local host population of a given
size which can assume different spatial configurations (see section
“Seasonality and spatial configuration of the local transmission sys-
tem” below). At the beginning of each simulation, a small number of
hosts are randomly selected and infected with distinct parasite gen-
omes from the randomassembly of var genes froma “regional”pool to
initialize local transmission.

Each parasite genome is represented as a specific combination of
45 (non-upsA) var genes, and each var gene is considered a linear
combination of two epitopes (alleles) based on the empirical
description of two hypervariable regions in the var tag region of the
DBLα domain57. Mosquito vectors are not explicitly represented as
agents in the model. Instead, we consider an effective contact rate
(hereafter, the transmission rate, which under some assumptions is
effectively equivalent to vectorial capacity) which determines the
times of local transmission events. Donor and recipient hosts are
selected at random, and transmission occurs if the former carries
active blood-stage infections, and the latter has not reached the car-
rying capacity of its liver-stage. We model ectopic recombination
among genes within the same genome during the asexual stage inside
the human host. We model meiotic recombination between genomes
as occurring at the time of a transmission event, as this process hap-
pens in nature during sexual replication within the mosquito vector.
See section “Meiotic recombination (or outcrossing) during the sexual
stage of infection” in the supplementary Methods for further details.
The expression of genes in the repertoire is sequential and the infec-
tion ends when the whole repertoire is depleted. Hosts acquire tran-
sitory immune memory toward the product of expressed epitopes,
and such memory precludes expression of such epitopes in future
infections. The total duration of infection of a particular repertoire is
therefore proportional to the number of unseen epitopes by the
infected host across all individualvargenes of the given repertoire. See
supplementary Methods for further details of the agent-based
model (ABM).

Extensions of the original computational model28 implemented
for this work concern the regionally-open spatial configuration, ecto-
pic recombination events, and within-host dynamics. In particular, the
regional pool for the regionally-open systemnowupdates its genes at a
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rate reflecting the substitution rate of genes in individual local parasite
populations within the region. Ectopic recombination events can now
generate truly novel alleles insteadof simply shuffling the alleles of the
two parental genes. The current formulation of the model further
allows ectopic recombination events to be associated with a load such
that there is a certain probability of generating non-functional off-
spring genes which replace functional parental genes. These non-
functional genes will not be expressed and hence reduce infection
duration of repertoires within infected hosts.

Seasonality and spatial configuration of the local transmission
system
We simulate both constant and seasonal transmission dynamics. We
implemented seasonality by multiplying a scaling constant by a tem-
poral vector of 360 days, containing the daily number of mosquitoes
over a full year. In other words, the temporal vector represents the
mosquito abundance, and the scaling constant encapsulates all other
parameters involved in vectorial capacity. The product of both gives
the effective contact rate. To obtain this temporal vector, Pilosof et al.
used79 a deterministic model80 for mosquito population dynamics.
The model80 was originally developed for Anopheles gambiae and
consists of a set of ODEs describing the dynamics of 4 mosquito
stages: eggs, larvae, pupae, and adults. Seasonality is implemented via
density dependence at the egg and larva stages as a function of
rainfall (availability of breeding sites). We adopt either constant
effective contact rates or seasonal ones, which result in EIR or FOI
values typical of high-transmission endemic regions81 (see section
“Repertoire transmission” and “Within-host dynamics” in supplemen-
tary Methods).

We simulate transmission dynamics for closed, semi-open, and
regionally-open systems. For closed systems, after the initial seedingof
local transmission from a pool of var genes,migration is discontinued.
Thus, var diversity is generated intrinsically by the dynamics of the
ABM for the local population. For semi-open systems, two individual
populations coupled via migration are explicitly simulated. They
represent empirical transmission systems which aremainly coupled to
one or a few neighboring sites. Regionally-open systems represent a
local transmission system that is connected with a few to many indi-
vidual neighboring parasite populations within a broader regional
scale. Instead of simulating those individual parasite populations
explicitly, we let the focal population receivemigration froma regional
pool of var genes of a certain size. This regional pool acts as a proxy for
regional parasite diversity, i.e., diversity of the aggregate of individual
local parasite populations in the region. Because each parasite genome
is a repertoire of a given number of var genes, migrant genomes are
assembled from random sampling of var genes from the regional pool.
Estimation of key parameters concerning the regional pool is descri-
bed in the following sections.

The temporal course of a simulation and the series of IRS
interventions
Each simulation follows either two or three stages (Fig. 1a, b): (i) a pre-
IRS period during which the local parasite community is assembled
and the transmission system reaches a (semi-) stationary state before
the intervention; (ii) an IRS period of either 10 or 2 years during which
transmission is decreased (referred to as sustained and transient IRS,
respectively); (iii) a post-IRS periodwhen transmission rates recover to
pre-IRS levels (only applicable to the transient IRS simulation, since the
sustained one extends for the full decade).

We simulate a series of IRS intervention efforts, which reduce
transmission rates to levels that are log-linear along the gradient of
transmission intensity (Fig. 1c). The lowest and highest coverage of the
sustained IRS intervention efforts correspond to a reduction of 20%
and slightly more than 90%, respectively. The highest reduction for
transient IRS interventions can reach ~96% for certain scenarios.

The IRS intervention efforts are assumed to be regional for open
systems. In empirical settings, regional intervention efforts imply
that similar efforts are applied to both the local parasite population
of interest and the neighboring parasite populations which exchange
genomes with the local population via either short-distance or long-
range dispersal of mosquitoes or human hosts. All these parasite
populations then experience a similar level of reduction in trans-
mission and consequently in their prevalence. As a result, during IRS,
the importation of migrant genomes from these neighboring loca-
tions also decreases. To implement regional interventions for
regionally-open systems, we let migration rates be proportional to
the local transmission rate and local prevalence level, both being
surrogates of transmission rates and prevalence levels of neighbor-
ing populations.

We assume the size of the regional pool remains unaffected
during and post-intervention because the aggregate of var
genes across individual parasite populations should remain
high, even when intervention is regional and of high coverage. We
do so because this work uses the simulated “regionally-open sys-
tems” to represent high-transmission endemic regions in empirical
settings, where immigration is known to represent an important
challenge to control and elimination efforts. Here, regional inter-
ventions rarely eliminate the majority of individual parasite
populations.

Estimation of the baseline migration rate for the implementa-
tion of open systems
We rely on empirical data on var genes from Bongo District, a high-
transmission region in northern Ghana to infer the rate of gene
exchange between populations, and to obtain a reasonable estimate
of migration rates to implement the open transmission systems. The
fast-evolving var genes under immune selection provide a higher
resolution than neutral loci for recent migration events. Following
the approach by He et al.82, we calculate Jost’s D83, a measure of
population divergence for highly diverse genetic markers, to quan-
tify var gene differentiation within and between two proximal
catchment areas (i.e., Vea/Gowrie and Soe) in Bongo District for
which molecular sequences were previously obtained at the end of
the wet/high-transmission season prior to the IRS intervention21,29.
Furthermore, under the finite-island model with infinite alleles, the
divergence between two populations, D, is proportional to the local
innovation (primarily ectopic recombination) rate, and inversely
proportional to the migration rate between the two populations83.
These relationships are intuitive because local innovation events
generate new genes unique to the specific local population and
hence promote genetic differentiation and isolation between popu-
lations, whereas migration events promote genetic exchange and
hence reduce divergence between populations. We estimate m, the
percentage of contacts leading to infection due to migration relative
to local transmission events, by dividing the local innovation rate,
i.e., the ectopic recombination rate of the var genes, by D. This
approach was initially proposed for single-locus genes with multiple
alleles83. Here we apply it to the var multigene family, effectively
treating it as if it were single-locus, and different variants of var as if
they were different alleles of this locus. We consider a range of
ectopic recombination rates representative of those in nature,
although values of the ectopic recombination rate have been mea-
sured only in vitro25. We consider the daily rate of ectopic recombi-
nation, and the percentage of migration rate per day relative to daily
local transmission events. The estimated baseline migration rate is
around 0.0026, which translates to a percentage of migrant contacts
relative to local ones of around 0.26%. We simulate transmission
dynamics for both semi-open and regionally-open systems with
migration rates equal to, or an order of magnitude higher than, this
estimated baseline.
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Estimation of the baseline rate at which genes are substituted in
the regional pool
We estimate a value for the rate at which genes in the regional pool are
substituted. We refer to this rate as the substitution rate hereafter. As
the regional pool represents an aggregate of diversity circulating in
individual local populations within the region, this rate can be
approximated by the substitution rate of genes in individual local
populations. Specifically, we can view a regional pool as the aggregate
of diversity of a certain number of equally sized individual parasite
populations. Note that we consider regional pools consisting of
diversity in the formof the effective numberof equifrequent genes and
we do not specify a frequency distribution of genes in these regional
pools. The collection of this effective number of equifrequent genes, in
the ideal scenario, would exploit hosts’ immune space equivalently
relative to the collection of genes at their original “true” frequency.We
use the inverse Simpson diversity index (or, one over the expected
homozygosity)84, 1P

i
xi2
, to determine the effective number of genes in

individual local parasite populations of our simulated closed and semi-
open systems, which is at the order of one to two thousand.Moreover,
connected individual local parasite populations of these simulated
semi-open systems share a significant fraction of their genes when
ranked by frequency, around 50% or more. Therefore, we let the
number of genes in the regional pool span from several thousand to
over tens of thousands, to mimic from a few to about ten to twenty
individual local parasite populations. We specifically consider two
setups for the regional pool representing roughly the two extremes,
referred to as “medium” versus “large” pool scenarios, respectively.

The substitution rate of common genes in a local population
depends on the local innovation rate, i.e., the rate at which new var-
iants are generated fromectopic recombination andmutation, and the
fixation probability, or the invasion probability, of these new
variants85,86. Fixation of a new gene variant in this context refers to a
single copy of the variant present at a given time point having des-
cendants in the population after a very large amount of time has pas-
sed, which typically entails that the frequency of the new variant
reaches a certain threshold and becomes sufficiently common so that
it is much less susceptible to genetic drift. When the system is at, or
close to, a stationary state, the fixation of a new gene variant would
imply the loss or replacement of an older common gene variant, hence
we term this process and its rate as substitution of genes and sub-
stitution rate respectively. The rate of ectopic recombination and
mutation has been measured in vitro25. The magnitude of the fixation
or invasion probability can be derived on the basis of population
genetic models and the simulation output from our ABM. From the
two together, we can obtain an expectation for the substitution rate as
follows.

We write the invasion probability of new variants, or genes, or
alleles in the system. At the stationary state, malaria transmission can
be described by birth-death processes according to a Moran model
with selection. The invasion probability of a low-frequency variant is
determined by its fitness advantage relative to that of others85.

pinv =
1� ð W

Wnew
Þn

1� ð W
Wnew

ÞN
=
1� ð 1

1 + sÞ
n

1� ð 1
1 + sÞ

N ð1Þ

where n denotes the number of copies of a new gene, N, the parasite
population size, Wnew and W, respectively the fitness of the low-
frequency gene versus that of other genes circulating in the
population. Conventionally, the fitness of other genes is normalized
to be 1, and that of the new gene is denoted as 1+s. We assume that
there is a large enough number of alleles so that any mutation or
ectopic recombination would lead to a different allele and the
probability of back mutation to the original allele would be low

enough to be negligible. Hence, new variants, generated via mutation
or ectopic recombination events, always start with a single copy and
n = 1. We consider parasite populations in high-transmission endemic
regions, hence N≫ 1. The above equation simplifies to:

pinv ≈ 1�
1

1 + s
=

s
1 + s

ð2Þ

As described by He et al.87, in the context of malaria transmission,
the fitness of a gene is essentially given by its reproductive number,
i.e., the number of offspring genes it produces, R. The reproductive
number depends on the transmission rate (b), the transmissibility of
the given gene (T), and the typical infection duration (τ) of parasites
that carry the given gene.

s =
Rnew

R
� 1 =

bnewTnewτnew
bTτ

� 1 =
τnew
τ

� 1 ð3Þ

pinv =
τnew
τ � 1
τnew
τ

ð4Þ

We consider the infection duration of a strain constituted by
“average” genes versus the infectionduration of a strain constituted by
1 new gene and g-1 average genes where g is the genome size (i.e., the
number of var genes per individual parasite or repertoire). An average
gene is a conceptual entity, and the proportion of susceptible hosts to
an average gene (�S) is the average of the proportion of susceptible
hosts to all circulating genes. Because transmission success of a new
gene depends on the total infection duration of the strain that carries
it, its invasion probability depends on the overall ensemble of genes.
We write here the expected invasion probability for a new gene across
the different genome backgrounds it may arise in, by considering that
this background consists of average genes. Let d be the duration of
expression of a gene in a naïve host. Since the proportion of suscep-
tible hosts to any new gene is 1, we have the following:

pinv =
Snewd + ðg�1Þ�Sd

g�Sd
� 1

Snewd + ðg�1Þ�Sd
g�Sd

=
1��S
g�S

1 + ðg�1Þ�S
g�S

=
1� �S

1 + ðg � 1Þ�S ð5Þ

Note that the expression of pinv derived here is slightly different
from, but more rigorous than, the one in He et al.87 The two expres-
sions are close under certain conditions, for example, when g is large.

The values for �S typical of high-transmission endemic regions are
~0.4 for the low end and around ~0.8 for the high end, based on our
ABM simulation outputs. We can use these ranges of �S to calculate the
invasion probability of a new gene in an individual local parasite
population, which together with the innovation rate (primarily
through ectopic recombination) and the number of individual local
parasite populations (a few for “medium” pools and more than ten for
“large” pools) gives the baseline rate at which common genes are
substituted in a regional pool with its specific configuration.

For details on the parameterization of the ABM, see supplemen-
tary Methods (the section “Selection of values for other parameters”)
and Supplementary Data 1.

Sampling schemes, measurement error, and curative drug
treatment information of empirical data
Empirical surveys are carried out at a specific sampling depth and
under sparse sampling schemes. When sampling individual hosts and
their var types in our simulations, we follow the sampling depth
implemented in the empirical surveys from Bongo District, namely
around 15% of the total human population size21. We further set the
sampling period to be once a year for both constant and seasonal
transmission (with the former occurring at the end of the year and the
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latter occurring at the end of the wet/high-transmission season), to
emulate the field sampling of hosts primarily at that time of the year,
although a few additional surveys were also conducted at the end of
the dry (low transmission) season as a baseline for comparison.

The collection of empirical data includes a measurement error,
specifically concerning the distribution of the number of non-upsA
DBLα sequenced and typed per monoclonal infection, accounting for
certain potential sampling errors or imperfect detection of var
genes21,52.We incorporate thismeasurement errorwhen sampling from
the simulation output by sub-sampling the number of var genes per
strain based on this empirical distribution.

Moreover, only individuals with microscopy-positive P. falci-
parum infections (i.e., isolate) were included for sequencing of var
genes in the empirical surveys from Bongo District. A subset of the
longitudinal surveys from Bongo District includes in addition the
submicroscopic infections detected by the more sensitive method of
PCR (the 18 S rRNA PCR), which resulted in a considerably higher
fraction35. Using surveys forwhichbothmicroscopy andPCRdetection
were used, we estimated a conversion factor between the proportion
of hosts that are microscopy-positive and those that are PCR-positive
of 57%. To address the robustness of our results on molecular indica-
tors to such missing data, we performed the analysis for 57% of all
infected hosts originally sampled at the 15% depth.

Individuals can also seek and get antimalarial treatment in
response to symptoms or the perception of transmission risk. Field
questionnaires were conducted along with each Ghana survey, and
participants were asked whether they had received an antimalarial
treatment in the previous two weeks (i.e., participants that reported
they were sick, sought treatment, and were provided with an anti-
malarial treatment) prior to their blood samples being collected35.
Such curative drug treatment can potentially impact the infection
status of treated individuals, as well as their MOI and pairwise-type
sharing score or PTS between isolates. The precise effects are difficult
to disentangle from the expected changes, given the complex biology
of the parasite. These treated individuals can be excluded from the
analysis when calculating the distributions for molecular indicators,
which reduces sample size. The fraction of treated individuals can be
high, reaching ~25–50% across different age groups with children
exhibiting the highest fraction for the pre-IRS phase21,35. However, our
relatively large sample size still leaves us with enough individuals pre-
IRS. During and immediately after the IRS intervention, this fraction
canbemuch lower, reaching ~5–20%acrossdifferent age groups, again
with children exhibiting the highest fraction for our site21,35.

Shannon Diversity Index
We calculate and plot var gene diversity with both richness and the
Shannon Diversity Index42,43. The Shannon Diversity Index is defined as
follows:

H0 = �
XR

i = 1

pilnðpiÞ ð6Þ

where pi is the proportion of the ith type and R is the total number of
types. Its expression takes the evenness of different gene types into
account. It increases either bymore unique gene types, or by a greater
gene type evenness. Both simulated and empirical var gene frequency
distributions demonstrate that most genes are rare with a few copies
circulating in the host population, and a small fraction of genes are
more common with more copies21. The Shannon Diversity Index con-
siders this feature when quantifying diversity levels, whereas richness
plainly counts the number of genes.

Molecular indicators
A 96% DNA sequence identity cutoff was used to define different var
gene types38. Sequence reads from either the same or different isolates

with ≤4% sequence differences were grouped into a single consensus
or a single type21. We consider the following quantities computed on
the basis of var gene types and evaluate how these relate to the
rebound dynamics of prevalence across the series of simulations for
the sustained interventions.

Pairwise type sharing (PTS). The pairwise type sharing (PTS) index
describes the degree of shared DBLα types between any two isolates,
and is analogous to the Jaccard and Sørensen indices in Ecology38,45,46.
We use a directional version of this statistic28 defined as the following:

PTSij =
nij

ni
ð7Þ

PTSji =
nij

nj
ð8Þ

where nij is the total number of types shared by isolate i and isolate j,
and ni and nj are the number of unique types in isolate i and j
respectively. This directionality in the formula means that the sharing
of a given number of types is relative to the length of the isolate under
consideration. A PTS score ranges between 0 and 1, where a score of
0 signifies no shared DBLα types, and a score of 1 indicates complete
overlap between the two isolates. We consider several representative
quantiles of the PTS distribution (0.01, 0.31, 0.6, and 0.9) to examine
the similarity of isolates that are circulating in the population at the
same time or across different times. For comparison of PTS distribu-
tions across age groups, we limit the calculation to within the same
MOI groups and then aggregate across all MOI values to obtain the
final distribution. In other words, within each age group, we compute
the PTS between individuals of MOI equal to 1, 2, and so on, and then
pool the resulting PTS values together to obtain the final PTS dis-
tribution. We do so to minimize the effect of different MOI
values on PTS.

Multiplicity of infection (MOI). Because Plasmodium parasites repro-
duce asexually as haploid stages within human hosts, signatures of
polymorphic genotypes are evidence of multiclonal infection. While
any polymorphic marker should thus be suitable in theory for esti-
mating MOI, the typically high number of multiclonal infections in
high-transmission endemic regions limits our ability to accurately do
so in practice. This is mainly because the diversity of the polymorphic
markers canbe limited,with twoparasites sharing the samemarker but
carrying distinct sets of antigen-encoding genes. The var multigene
family provides one solution. Because of the large number of different
genes in local populations and the effect of immune selection (nega-
tive frequency-dependent selection), repertoires of var genes in indi-
vidual genomes exhibit very limited overlap23,28. As a result, a constant
repertoire size or number of non-upsA DBLα types in a parasite gen-
ome can be used to convert the number of types sequenced in an
isolate to an estimate of MOI29,35. In its simplest form of considering a
typical repertoire length per parasite, the approach neglects the
measurement error introduced by targeted PCR and amplicon
sequencing of var genes in an infection. Recently, the method was
extended to a Bayesian formulation that does consider this error and
provides a posterior distribution of different MOI values for each
sampled individual21. We have previously documented themajor steps
of the Bayesian approach, compared two ways of obtaining a MOI
distribution at the population level (by either pooling the maximum a
posteriori MOI estimates or calculating a mixture distribution)21, and
examined the impact of different priors on thefinalMOI distribution at
the population level. Here, we obtain the estimatedMOI distribution at
the population level from pooling the maximum a posteriori MOI
estimates and from using a uniform prior for individuals.
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Due to the commonness of multi-genomic infections in high-
transmission regions, host prevalence levels are not a good indicator
of parasite population size. Summing MOI estimates from
this improved “varcoding” approach over sampled individuals with
infections, enables the calculation of census population size for the
parasite or the total number of infections of relevance to transmission
events21.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequences utilized in this study are publicly available in GenBank
under BioProject Number: PRJNA396962. Requests for the data on
individual age classes corresponding to P. falciparum isolates should
be made by contacting the Malaria Reservoir Study Team represented
by Prof. Karen Day (karen.day@unimelb.edu.au; Response timeframe:
~1 month), in order to discuss how these data will be utilized for aca-
demic or research purposes and, if appropriate, to identify opportu-
nities for collaboration. The individual age data are not publicly
available due to ethical reasons. All additional information associated
with this study, on theoutput of numerical simulations andparameters
of the agent-based model, is available in the main text and supple-
mentary information.

Code availability
For information on the simulation code and analysis scripts, please see
the GitHub repository at: https://github.com/qzhan321/Intervention,
digital resource identifier: https://doi.org/10.5281/zenodo.12775297,
Zhan88. R version 4.0.3 was utilized for all analyses. The base R, along
with the R packages RSQLite, dplyr, tidyverse, and stringr were used.
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