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We explore generalized global symmetries in theories of physics beyond the standard model. Theories
of Z0 bosons generically contain “noninvertible” chiral symmetries, whose presence indicates a natural
paradigm to break this symmetry by an exponentially small amount in an ultraviolet completion. For
example, in models of gauged lepton family difference such as the phenomenologically well motivated
Uð1ÞLμ−Lτ

, there is a noninvertible lepton number symmetry which protects neutrino masses. We embed

these theories in gauged non-Abelian horizontal lepton symmetries, e.g., Uð1ÞLμ−Lτ
⊂ SUð3ÞH , where the

generalized symmetries are broken nonperturbatively by the existence of lepton family magnetic
monopoles. In such theories, either Majorana or Dirac neutrino masses may be generated through
quantum gauge theory effects from the charged lepton Yukawas, e.g., yν ∼ yτ expð−SinstÞ. These theories
require no bevy of new fields nor ad hoc additional global symmetries but are instead simple, natural, and
predictive: The discovery of a lepton family Z0 at low energies will reveal the scale at which Lμ − Lτ

emerges from a larger gauge symmetry.
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I. INTRODUCTION

With 50 years of the standard model (SM) behind us, it is
clear that we must look in as many directions as possible for
new physics—from building ever-more-inventive experi-
mental probes to understanding how subtle effects in
quantum field theory might be connected to the real world.
Perhaps the surest sign that there is something else

experimentally accessible is that we have already discov-
ered physics beyond the standard model which interacts
with the visible sector. Neutrino masses are not present
in the standard model, and new dynamics must exist to
provide them. This new physics could be light, weakly
coupled partners permitting Dirac masses, or it could be
any variety of interactions inducing an effective dimension-
five Majorana masses. Regardless, new degrees of freedom
are certainly out there to be discovered.

In this paper, we explore generation of neutrino masses
from the viewpoint of novel generalized global sym-
metries [1,2]. In particular, a prominent role is played by
so-called noninvertible symmetries which have recently
been extensively investigated [6–35] (see Ref. [36] for
more complete review of these developments). We use
this perspective to build models of neutrino masses which
are minimally generated by instantons and, hence, nat-
urally small. In particular, this constitutes a first example
of generalized global symmetries having important impli-
cations for realistic theories of physics beyond the
standard model [37].

A. Neutrino masses

Building on the successful discovery of neutrino oscil-
lations by Super-Kamiokande [64] and the Sudbury
Neutrino Observatory [65] around the turn of the millen-
nium, the parameters of the neutrino sector are the subject
of intensive experimental efforts. We here briefly recall
their coarse properties.
Precision measurements of the width of the Z boson

[66,67] and the damping of large multipole anisotropies
in the cosmic microwave background (CMB) [68–70]
unambiguously dictate the existence of three “active”
(by convention, “left-handed”) neutrinos. Observations
of oscillations of flavor eigenstates on different length
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scales have pinned down two of the differences of mass
eigenvalues as

m2
2 −m2

1 ≃ ð9 meVÞ2; jm2
3 −m2

i j ≃ ð50 meVÞ2; ð1Þ

where the index i ¼ 1, 2 above indicates that we do not
know the full ordering, with either a “normal” m1 < m2 <
m3 (i ¼ 2) or “inverted” m3 < m1 < m2 (i ¼ 1) hierarchy
allowed.
The overall scale of neutrino masses has not been

measured, but cosmological observations impose an upper
bound on the sum of neutrino masses [71–74], from the
modification to the Universe’s evolution when cosmic
background neutrinos become nonrelativistic:X

mν ≲ 150 meV: ð2Þ

The prospect of measuring the mass scale with CMB stage
4 (or, alternatively, by precise measurements of beta decay
kinematics [75,76]) this next decade remains enticing. But
for now, the data remain consistent with scenarios ranging
from one exactly massless neutrino to all three neutrino
masses at the same rough scale.
Precise measurements of appearances and disappearan-

ces have also revealed that, while the m1, m2, and m3 mass
eigenstates are primarily composed of the electron, muon,
and tau neutrino, respectively, their mixing is far larger than
in the quark sector. In particular, the second and third
generations are near “maximally mixed” (θ23 ∼ π=4).

B. Hierarchies and symmetries

Even before asking the theoretical origin of the mixing
structure, there is a question posed merely by the overall
neutrino mass scale being parametrically below that of the
electromagnetically charged standard model fermions.
If neutrino masses have the same origin as the rest of
the fermions, i.e., Yukawa couplings to the Higgs field
which generates mass by electroweak symmetry breaking,
then this requires the introduction of minuscule coupling
constants:

yν
yτ

∼ 10−11; ð3Þ

comparing the largest Yukawa among neutral leptons to
that in the charged lepton sector. If neutrinos instead have
Majorana masses through the irrelevant “Weinberg oper-
ator,” this directly requires new physics which violates an
exact global symmetry of the standard model at a large
scale Λ ∼ 1014 GeV.
Consequently, building theories of neutrino masses

and studying their phenomenological implications has
been an active field over decades. The original seesaw
model [77,78] for Majorana masses, with its inverse
dependence on an ultraviolet scale, has remained most

popular and has seen many variations. In contrast, Dirac
neutrinos would attain masses through the same relevant
operators as the rest of the SM fermions, and so it is more
difficult to explain their tiny relative sizes. This has been
achieved in theories introducing many new degrees of
freedom from extra-dimensional realizations [79–90] to
clockwork theory [91]. Also of note is the “Dirac seesaw”;
see, e.g., Refs. [92–97].
The problem of addressing hierarchies in effective

field theory is closely related to an analysis of global
symmetries [98,99]. Indeed, one way for a small parameter
to manifestly be stable to radiative corrections is if, when
the parameter exactly vanishes, a symmetry is restored.
This feature is known as technical naturalness. In the case
of neutrino masses, as with the rest of the Yukawa structure,
technical naturalness ensures that Yukawa couplings which
are small at some large scale will remain small upon
evolving to the infrared. Then, a fully satisfying explan-
ation for their size may be postponed until high energies for
our academic descendants to discover. Thus, in a sense, the
problem of the overall neutrino mass scale is ultimately
reduced to explaining the ultraviolet origin of small
parameters. In broad strokes, our goal in the following is
to evince that noninvertible such protective symmetries
motivate particularly minimal symmetry-breaking mecha-
nisms which generate exponentially small neutrino masses.

C. This work

We begin our analysis in Sec. II with a review of recent
developments in generalized symmetry with a focus on
noninvertible chiral symmetries [17,18]. In particular, we
discuss natural symmetry-breaking mechanisms described
in Ref. [18] arising from loops of monopoles.
We then apply these ideas to phenomenological models

working up in scale starting from the standard model in the
infrared. While the standard model itself does not enjoy any
noninvertible symmetries, [100] we show that such gener-
alized global symmetries may play a role in understanding
the phenomenology of well-motivated theories beyond the
standard model. In particular, a careful analysis of the
standard model symmetries in Sec. III leads us to consider
theories of gauged lepton family differences Uð1ÞLi−Lj

,
and, in Sec. IV, we show that gauging this standard model
global symmetry results in noninvertible symmetries which
protect neutrino masses. This suggests that such models
have a natural ultraviolet completion in which small
neutrino masses arise from the breaking of a one-form
global symmetry by dynamical lepton family monopoles.
Indeed, we exhibit ultraviolet completions of these

theories where either Majorana or Dirac neutrino masses
arise originally from instantons of a gauged non-Abelian
“horizontal” lepton symmetry [101]. These models are
remarkably predictive: For example, in our Dirac model
below, the instantonic origin of neutrino masses can be
discovered at the IR scale of the Z0 boson. In this case,
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the UV scale vΦ at which instantons are generated is
determined by the neutrino mass scale and the measure-
ments of MZ0 and the coupling strength αμτðM2

Z0 Þ:

v2Φ ∼M2
Z0

�
mν

mτ

�
3=2

exp
3π

4αμτðM2
Z0 Þ : ð4Þ

In the Dirac case, we find that, after adding right-handed
neutrinos, their Yukawa interactions with the Higgs are
protected by a noninvertible symmetry. In Sec. VI, we give
an embedding of this theory in a gauged horizontal lepton
symmetry SUð3ÞH which breaks the noninvertible sym-
metry only in the quantum theory via instantons, providing
Dirac masses which are exponentially suppressed com-
pared to those for charged leptons. In the Majorana theory
with solely the standard model light fermion content, there
is a noninvertible lepton number symmetry whose breaking
may arise from an embedding of Uð1ÞLμ−Lτ

in a gauged
SUð2ÞH × Uð1ÞZ, as we show in Sec. V.
Thus, in both these theories, the hierarchically low scale

of neutrino masses is explained by a global symmetry
which is classically respected but broken quantum mechan-
ically. Rather than requiring complicated model building
to explain why either explicit or spontaneous breaking of
ad hoc symmetries in the neutrino sector are surprisingly
small, here, the ultraviolet gauge theory automatically
provides a small breaking through the instanton action.
These effects can also be intuitively understood as loops
of monopole states which correct the neutrino propagator
(see Fig. 1). This correspondence between monopole
or dyon loops and quantum corrections due to instantons
was described quantitatively in the context of axions in
Ref. [47]. In summary, in our models, neutrinos become
massive because they interact with the Higgs boson through
the exchange of virtual monopoles.
Hence, the presence of a noninvertible symmetry in the

theory portends the existence of this mechanism for
neutrino masses satisfying Dirac’s criteria for naturalness:
order one numbers in the ultraviolet Lagrangian.
Our work suggests a number of threads for future

investigation. While we focus on the natural origin of
the hierarchically small overall neutrino mass scale, we
make brief comments below about generating also the full
mixing matrix while flowing down from the UV scale.

However, a full exploration of integrating this mechanism
into the large body of results on neutrino sector “textures”
and related Lμ − Lτ phenomenology is one interesting
direction for future work.
A further direction is to consider the physics of the lepton

family monopoles, which to our knowledge have received
quite little attention in the literature [108–110]. In the early
Universe, these particles may arise as interesting dynamical
objects which may have unitarity-limited inelastic inter-
actions with standard model leptons yet which safely decay
away after further symmetry breaking. Such monopoles at
the large gauge couplings that our models require may also
see appreciable production at a lepton collider, and it would
be prudent to understand their signatures.

II. GENERALIZED SYMMETRY

In this section, we review recent developments regarding
symmetry in quantum field theory. We focus on the
particular topic of noninvertible chiral symmetry [17,18]
relevant for our phenomenological applications.

A. Symmetry defect operators

The conceptual basis of recent progress is a broad
interpretation of Noether’s theorem which links topological
operators to symmetries [1]. To set the stage, recall that
Noether’s theorem connects a continuous global symmetry
with a current operator Jμ with vanishing divergence:

∂μJμ ¼ 0: ð5Þ

The Noether charge at time t is constructed as an integral
over all space:

QðtÞ ¼
Z
R3

J0ðt; xÞd3x; d
dt
QðtÞ ¼ 0; ð6Þ

where conservation of the charge follows from Eq. (5).
The idea of a topological operator is to consider a more

general three-dimensional surface Σ in spacetime (rather
than just R3). This generalizes the Noether charge to an
extended operator Q with support on Σ:

Q½Σ�≡
Z
Σ
Jμd3Sμ; ð7Þ

where above d3Sμ is the vector volume element pointing in
the normal direction to Σ [111].
What does the local conservation law (5) tells us about

the charge Q½Σ�? When we have a smooth deformation Σ0
of Σ, the difference of the charges measured on Σ0 and Σ can
be computed by Stokes’ theorem:

Q½Σ0� −Q½Σ� ¼
Z
V
∂μJμdv; ð8Þ

FIG. 1. An intuitive illustration of Majorana neutrino masses
generated by monopole and dyon loops in our models. From an
ultraviolet perspective, the sum over monopole loops is identified
with an instanton process.
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where V is the four-volume between Σ0 and Σ:
∂V ¼ Σ0 − Σ, and dv is the scalar volume element. Thus,
the local conservation law (5) tells us that Q½Σ� is invariant
under smooth deformations of Σ. In this case, we say that
the extended operator Q½Σ� is topological.
The smooth changes of the manifold Σ do not extend to

deformations which cause Σ to cross local operators. In this
case, the correlation functions of Q½Σ�, in general, change.
More specifically, when the three-surface Σ surrounds a
local operator O in spacetime, it measures the charge
carried by the local operator. (See Fig. 2.) This follows from
the Ward-Takahashi identity:

h∂μJμðxÞOðyÞ � � �i ¼ qδ4ðx − yÞhOðyÞ � � �i; ð9Þ

where q is the charge of O and � � � represents other
insertions away from x.
The charge operator Q½Σ� can be viewed as generating

the infinitesimal (algebra) action of the symmetry. The
symmetry defect operator Uφ½Σ� is simply the exponentia-
tion of Q½Σ� and, hence, corresponds to a finite (group)
action of the symmetry:

Uφ½Σ� ¼ eiφQ½Σ�: ð10Þ

Note that such operators are now also labeled by a phase eiφ

in U(1) indicating the angle of charge rotation.
One advantage of symmetry defect operators (as

opposed to charges) is that the symmetry defect operators
also exist for discrete symmetries where there is no
corresponding conserved current. In general, for each
element g∈G of the symmetry group G, we have corre-
sponding operator Ug½Σ�:

g∈G ⇝ Ug½Σ�: ð11Þ

Intuitively, one may understand the extended operator
Ug½Σ� as prescribing discontinuous field configurations
along Σ, where the field values on the two sides of Σ
differ by the action of g. Alternatively, one may consider
the defects in a phase where the associated symmetry is
spontaneously broken. In that case, Ug½Σ� is a domain wall
connecting distinct vacua. The topological property of
Ug½Σ� is a manifestation of conservation of the symmetry
and generalizes Noether’s theorem to the discrete setting.

B. One-form symmetry and monopoles

We have seen that Noether’s theorem can be recast as the
existence of topological operators corresponding to sym-
metry operations. Adopting this point of view broadly then
suggests that any operator which has topological correla-
tion functions (except when crossing other operators) can
be viewed as defining a kind of symmetry. In general, for
instance, a topological operator may have support which is
lower dimensional and gives rise to a so-called higher-form
global symmetry [1].
In this, a key role is played by one-form global symmetry

which naturally arises in gauge theory. These are sym-
metries where the symmetry defect operators are topologi-
cal surface operators that act on line defects (physically, the
worldlines of heavy charged particles). The most prominent
example occurs in the familiar context of free Maxwell
theory, i.e., U(1) gauge theory with gauge field A without
charged matter where the equation of motion and the
Bianchi identity can be recast as conservation of two
distinct currents, each with two vector indices:

∂
μJEμν ¼ 0; ∂

μJMμν ¼ 0; ð12Þ

where

JEμν ¼
1

4πe2
Fμν; JMμν ¼

1

32π2
εμνρσFρσ: ð13Þ

As is the case of ordinary symmetry, we can define the
corresponding symmetry defect operator by

UE
φ½Σ2� ¼ e

iφ
R
Σ2

JEμνdSμν ; UM
φ ½Σ2� ¼ e

iφ
R
Σ2

JMμνdSμν ; ð14Þ

where now these operators are supported on the two-
dimensional manifold Σ2 and electromagnetic action is
SEM ¼ ð1=4e2Þ R FμνFμνd4x. The surface element tensor
dSμν is defined by nμ1n

ν
2dS, where n1 and n2 are the

orthogonal normal vectors on Σ2 and dS is the scalar
surface element. For example, when the surface Σ2 is
contained in a time slice t ¼ t0, we can take nμ1 ¼ δμ0,
and we have

UE
φ½Σ2� ¼ e

iðφ=4πe2Þ
R
Σ2

E·dS
; UM

φ ½Σ2� ¼ e
iðφ=16π2Þ

R
Σ2

B·dS
;

ð15Þ

in the vector analysis notation. These electric and magnetic
one-form symmetry operators act on Wilson or ’t Hooft
lines by linking. See Fig. 3.
The fact that the charged objects for one-form sym-

metries are worldlines of infinitely massive source particles
also underlies the natural symmetry-breaking method for
these currents. By introducing dynamical, i.e., finite mass,
electric (magnetic) charges, sources can be screened by
vacuum polarization, and the underlying symmetries are

FIG. 2. The charge operator Q½Σ� wraps a local operator OðxÞ
in spacetime. Using the topological property, Q½Σ� can be shrunk
and results in a factor of the charge q of OðxÞ.
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broken. At the more mechanical level, the divergences
of the one-form symmetry currents (12) are then nonzero
operators.
The simple physical picture of screening described

above belies a subtle conclusion. In effective field theory,
one cannot break higher-form global symmetries without
changing the degrees of freedom. For example, modifying
the free Maxwell Lagrangian by higher-derivative terms,

L ⊃
1

Λ4
ðFμνFμνÞ2 þ � � � ; ð16Þ

merely deforms the electric one-form symmetry current:

Fμν → Fμν þ
1

Λ4
FμνðFÞ2 þ � � � ð17Þ

but leaves the rank of the symmetry unchanged, since the
right-hand side is conserved as a consequence of the
equation of motion. This should be contrasted with
standard symmetry breaking of ordinary (zero-form) sym-
metries, where a charged local operator in the action
violates conservation. Instead, in the higher-form case,
to any finite derivative order in effective field theory, the
symmetry is unbroken. That is, there are no local operators
charged under this symmetry.
For the magnetic one-form global symmetry, this con-

clusion is particularly dramatic: Breaking this symmetry
requires finite action field configurations carrying magnetic
charge. In the simplest case, these are monopoles. Within
weakly coupled effective field theory with coupling g, one
may estimate the size of such symmetry-breaking effects by
modeling the monopole as arising from a Higgsing process
at a scale vΦ. Then, the mass of the monopole and cutoff Λ
are parametrically given by, respectively,

mmon ∼
vΦ
g
; Λ ∼ gvΦ: ð18Þ

The quantum vacuum contains such monopoles which
propagate for a short proper time δt ∼ 1=Λ and, hence,

gives rise to terms in the effective action which scale
exponentially:

δL ∼ exp ð−SmonÞ ∼ exp ð−mmonδtÞ ∼ exp ð−#=g2Þ; ð19Þ

where Smon is the one-particle action of the monopole
and we use the Schwinger representation of the monopole
propagator. Note that the scaling with coupling is the same
as that of instanton corrections from a non-Abelian group.
Indeed, the first quantized picture of loops of monopoles
can often be traded for a sum over instanton sectors in an
ultraviolet non-Abelian group [47]. This is plausible, since
a dyon has nontrivial E⃗ · B⃗ and, hence, can activate the
instanton density.
In summary, violations of magnetic one-form symmetry

are naturally related to exponentially suppressed instanton-
like corrections to the effective action. For instance, this
analysis applies to the Uð1ÞY hypercharge gauge group
in the standard model, which has an associated magnetic
one-form global symmetry.

C. Noninvertible chiral symmetry

Our discussion has linked exponentially small correc-
tions in an effective action to ultraviolet violations of
magnetic one-form symmetry. However, the pattern of
these corrections is so far unclear: Are these tiny correc-
tions merely extra contributions to process which are
already present in the low-energy effective field theory,
or are they the leading terms governing some processes?
Noninvertible symmetry provides a key tool to under-

stand this essential question. For the purposes of this work,
we confine our attention to those noninvertible symmetries
which semiclassically appear as ordinary symmetries
which are violated only by Abelian instanton configura-
tions. The paradigmatic example is a classical symmetry
encoded by a current Jμ which is violated by an Abelian
Adler-Bell-Jackiw (ABJ) anomaly:

∂
μJμ ¼

k
32π2

FαβFγδε
αβγδ; k∈Z; ð20Þ

where F is an Abelian gauge field strength and k is an
integral anomaly coefficient. There are several immediate
pragmatic conclusions from this equation.

(i) A Zk subgroup of the symmetry generated by J is
unaffected by the anomaly and remains as a standard
(invertible) symmetry.

(ii) Despite the presence of the nontrivial anomaly,
the symmetry generated by J is still preserved at
the level of local operator correlation functions (and,
hence, S-matrix elements). This follows from the
fact that, when the gauge group is Abelian, the
instanton processes needed to generate a net
violation of the charge do not exist in simple
configurations with only local operator insertions.

FIG. 3. The action of magnetic one-form symmetry operator
UM

φ on a ’t Hooft line T (the worldline of a heavy probe
monopole). The symmetry operator is spatially placed so that
it wraps the heavy monopole in a time slice. Since UM

φ is
topological, it can be shrunk toward the monopole worldline,
giving the phase eiφ. This is the magnetic version of Gauss’ law
and generalizes the action in Fig. 2.
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Their absence follows straightforwardly from
π3ðUð1ÞÞ ¼ 0, so that gauge transformations cannot
nontrivially wrap the boundary of 4D Euclidean
spacetime.

In spite of these points, the Abelian anomaly (20) is not
innocuous. The most significant question is how to con-
struct symmetry defects, the dimension-three operators
which perform finite chiral symmetry transformations
defined in Sec. II A. Ordinarily, one would merely integrate
the current as in Eq. (7), but the nonzero divergence in
Eq. (20) obstructs this naive prescription.
As recently discussed in Refs. [17,18], the correct

construction of symmetry defects for symmetries suffering
from Abelian ABJ anomalies involves coupling the
bulk degrees of freedom to a nontrivial three-dimensional
topological field theory supported along the defect world
volume Σ. These degrees of freedom are anyonic particles
with fractional spin and Abelian statistics. They couple to
the bulk via their one-form magnetic symmetry, which is
gauged by F.
In somewhat more detail, consider a finite symmetry

rotation by angle 2π=kN where N ∈Z. This is one Nth of
the angle 2π=k whose corresponding symmetry defect is
unaffected by the anomaly. Then, the world volume degrees
of freedom on the symmetry defect are an Abelian gauge
field C with Chern-Simons level N and action:

L ¼ iN
4π

Z
Σ
Cμ∂νCσε

μνσd3xþ i
2π

Z
Σ
Cμ∂νAσε

μνσd3x: ð21Þ

More generally, the construction above may be carried
out for any finite rotation by a rational angle. Below, we
sometimes abuse notation and still refer to such a
symmetry for all rational angles as a U(1), since it
enforces the same selection rules on correlation functions
of local operators.
The fact that the defect now supports a nontrivial

quantum field theory means, in modern terminology, that
the symmetry with an Abelian ABJ anomaly has become
noninvertible. This has two closely related effects.
First, when acting on ’t Hooft lines (worldlines of heavy

magnetic monopoles), the symmetry defect acts to give
them a fractional electric charge (via the Witten effect) and,
hence, converts such line operators to open surface oper-
ators where the surface supports an integral of the magnetic
one-form symmetry current Fμν. (See Fig. 4.) This is a
consequence of the fact that magnetic charges can activate
the divergence in Eq. (20).
Second, a finite rotation, followed by a rotation by an

inverse angle, does not result in the identity operator.
Instead, this composition leaves behind a “condensate” of
one-form symmetry operators. In equations, let DkNðMÞ be
a symmetry defect associated to the angle 2π=kN, whereM
is the three-manifold (spatial slice) which supports the
defect, and let D̄ be the operator generating a rotation by the

opposite angle. Upon colliding these operators, we find
the result: [112]

DkNðMÞ × D̄kNðMÞ ∼
X

two-cycles S

exp

�
2πi
N

Z
S
JMμνdSμν

�

∼
X

two-cycles S

UM
2π=N½S�; ð22Þ

where JMμν is the magnetic one-form symmetry current
introduced in Eq. (13). The right-hand side is a sum over
insertions of magnetic one-form symmetry defects wrap-
ping two-dimensional cycles S ⊂ M [113].
Hence, the symmetry operator DkNðMÞ, in general, does

not admit an inverse. We will presently see the conse-
quences of Eq. (22) in our models below.

D. Chiral symmetry breaking by monopoles

The utility of the preceding discussion is that it provides
a natural link between symmetries which enjoy Abelian
ABJ anomalies (and are, hence, noninvertible) and mag-
netic one-form symmetry-breaking effects. To illustrate
this, let us discuss possible mechanisms for breaking a
noninvertible chiral symmetry in effective field theory. We
imagine that, at long distances, the noninvertible symmetry
is approximately respected by the physics, while at shorter
distance scales there are symmetry-violating effects. We
may then contemplate two broad possibilities.

(i) One may directly add a chiral symmetry-violating
local operator OðxÞ to the Lagrangian:

L ⊃
Z

d4x
1

ΛnOðxÞ: ð23Þ

Then, as in the violation of any ordinary global
symmetry, the current Jμ acquires a classical con-
tribution to its divergence breaking the symmetry.

(ii) One may violate the magnetic one-form symmetry.
In this case, as remarked in Sec. II B, one expects
exponentially small corrections to the effective action
scaling as instanton contributions expð−#=g2Þ. The
algebra (22) links the noninvertible symmetry to the

FIG. 4. When the noninvertible symmetry defect DkN for the
chiral symmetry wraps a loop of ’t Hooft line, it induces a fractional
1=kN electric charge on the ’t Hooft line. Such a dyon with
fractional charge has to be attached to the electromagnetic dual of a
Dirac string whose world volume is identified with UM

2π=kN . This
indicates that dynamical monopoles break the chiral symmetry.
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magnetic one-form symmetry and, hence, implies that
these terms will lead to exponentially small violations
of the noninvertible chiral symmetry.

It is the second of these mechanisms that is particular to
a noninvertible symmetry. At a pragmatic level, it implies
that a theory with a noninvertible symmetry comes natu-
rally equipped with a mechanism to violate the symmetry
by exponentially small effects: the propagation of magnetic
monopoles. This is to be contrasted with standard sym-
metry violation by higher-dimensional charged operators
whose size depends on the details of the ultraviolet. Instead,
in the case where the noninvertible symmetry violation is
communicated by violating the magnetic one-form sym-
metry, the physics is universal.

III. SYMMETRY OF THE STANDARD MODEL

We now begin our construction of neutrino mass models
protected by noninvertible symmetries. We start in the
infrared with the standard model and subsequently increase
the energy scale. Thus, our first task is to review the global
symmetries of the standard model. As emphasized above, we
are particularly interested in understanding classical sym-
metries which are broken by quantum effects [114,115].
The standard model is a gauge theory with gauge

group [116]

GSM ¼ SUð3ÞC × SUð2ÞL × Uð1ÞY; ð24Þ
with the familiar Weyl fermion representations shown in
Table I. Here, the index i ¼ 1;…; Ng labels the number
of generations (or families) of each type of matter field.
(In practice, we often leave Ng as a variable in formulas
to follow, though nature has chosen Ng ¼ 3.) A systematic
way to understand the global symmetries is to first consider
only the effect of the kinetic terms Ψ̄i=DΨi for the matter
fields and then sequentially take into account interactions
and quantum effects.
With only kinetic terms, we can rotate the families

among each other:

Ψi ⟶ UijΨi; ð25Þ

where Uij ∈UðNgÞ is a unitary matrix. This results in a
UðNgÞ5 classical global symmetry of the fermion gauge
covariant kinetic terms.
The Higgs field H and associated mass-generating

Yukawa couplings drastically reduce the symmetry of
the standard model. Given some assignment of charges
under a global symmetry, we can always use our freedom to
add Uð1ÞY charges to set the Higgs charge to zero. We use
this convention in the following. The structure of these
interactions is

L ⊃ yuijH̃Qiūj þ ydijHQid̄j þ yeijHLiēj; ð26Þ

where H̃ ≡ iσ2H⋆. The observed Yukawa matrices y
(equivalently, the fermion masses and flavor-changing
processes) explicitly break all of the non-Abelian continu-
ous global symmetries, as they provide different masses for
the generations.
To elucidate the classical symmetry preserved by the

interactions (26), we must take into account field redefi-
nitions that we may use to simplify the couplings. In the
lepton sector, independent rotations of Li and ēi enable us
to diagonalize the Yukawa matrix:

yeijHLiēj ⟶ yeiHLiēi: ð27Þ

So the lepton Yukawa interaction links together the trans-
formations of the left- and right-handed leptons, but the
so-called “lepton family symmetries” remain good classical
symmetries. We, therefore, have separate phase rotations
for each generation:

Uð1ÞLe
× Uð1ÞLμ

× Uð1ÞLτ
; ð28Þ

under which Li and ēi transform oppositely. In particular,
the conventional lepton number Uð1ÞL is the minimal linear
combination of symmetries above which acts identically on
each family.
In the quark sector, the standard model has right-handed

partners for both the up and down quarks. This means we
cannot simultaneously diagonalize both yu and yd while
preserving SUð2ÞL. Hence, the would-be “quark family
symmetries” are explicitly broken. The only remaining
global symmetry in the quark sector is, therefore, an overall
Uð1ÞB quark number called “baryon number.” Note that,
with the charge assignments in Table I, a Uð1ÞB rotation by
an Ncth root of unity can be compensated for by a
transformation in the center of the color gauge group:

exp

�
2πiB
3

�
∈SUð3ÞC: ð29Þ

Therefore, the classical global symmetry of the quark sector
is, in fact, Uð1ÞB=ZNc

.

TABLE I. Representations of the standard model Weyl fer-
mions under the classical gauge and global symmetries. We
normalize each U(1) so the least-charged particle has unit charge.
We list also the charges of the right-handed neutrino N and the
Higgs boson H.

Qi ūi d̄i Li ēi Ni H

SUð3ÞC 3 3̄ 3̄ � � � � � � � � � � � �
SUð2ÞL 2 � � � � � � 2 � � � � � � 2
Uð1ÞY þ1 −4 þ2 −3 þ6 � � � −3
Uð1ÞB þ1 −1 −1 � � � � � � � � � � � �
Uð1ÞL � � � � � � � � � þ1 −1 −1 � � �
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In summary, then, the Yukawas leave an Abelian
classical symmetry group:

classical symmetry ≅ Uð1ÞLe
× Uð1ÞLμ

× Uð1ÞLτ
×
Uð1ÞB
Z3

;

ð30Þ

and we must now investigate which of these classical
symmetries survive quantum effects. The relevant triangle
diagrams are illustrated schematically in Fig. 5. As we are
interested in terms that break the classical symmetry, we
focus here on those terms which give a nontrivial operator-
valued divergence to the classically conserved currents:

∂
μJμ ¼

cL
32π2

TrðWμνWρσÞεμνρσ þ
cY
32π2

BμνBρσε
μνρσ; ð31Þ

where above Jμ indicates any of the currents of Eq. (30),
Wμν is the field strength of the SUð2ÞL weak gauge group,
and Bμν is the field strength of the Uð1ÞY hypercharge
gauge group. Table II summarizes the resulting anomaly
coefficients. Each of these anomaly terms leads to distinct
consequences.

(i) Nonzero cL.—The selection rules for Jμ are violated
by instantons in the weak sector. This means that the
symmetry is broken from a U(1) factor to a discrete
group ZcL controlled by the anomaly coefficient.

(ii) Nonzero cY .—The selection rules for Jμ are not
violated, since there are no Abelian instantons in
trivial spacetime topology. As discussed in Sec. II C,
such an anomaly with Uð1ÞY alone leads to non-
invertible chiral symmetries.

The dynamical violation of selection rules in the case of
nonzero cL is seen explicitly via the appearance of ’t Hooft
vertices in the effective action. These are multifermion

operators generated by instantons that explicitly violate
the anomalous symmetry. The appearance of fermions in
the ’t Hooft vertex arises because SUð2ÞL charged fermions
necessarily have zero modes in the presence of an SUð2ÞL
instanton. Grassmann statistics then force the instanton
contribution to the correlator to vanish unless fermion fields
are inserted to saturate all of the zero modes (see, e.g.,
Refs. [117,118] for further pheno discussion). The overall
scale of these corrections is controlled by the action of
the instantons expð−SÞ ≃ expð−8π2=g2LÞ and is, therefore,
highly suppressed.
For later applications, we emphasize that ’t Hooft

vertices are a feature of non-Abelian gauge dynamics
and instantons. By contrast, for Abelian gauge fields no
corresponding instanton process exists.
In our context, a given U(1) global symmetry will have

mixed anomalies with both SUð2ÞL and Uð1ÞY . In this
situation, noninvertible symmetry can arise only when there
are transformations (continuous or discrete) that are unaf-
fected by SUð2ÞL instantons but which have nonvanishing
Uð1Þ2Y anomalies. It is straightforward to check that for the
standard model matter content this scenario does not occur.
Indeed, the anomaly coefficient of any global U(1) with
Uð1Þ2Y is always an integer multiple of that with SUð2Þ2L.
This means that any global U(1) rotations not violated by
SUð2ÞL instanton effects are necessarily free of Uð1ÞY
anomaly. Thus, while Uð1ÞY does have a magnetic one-
form symmetry, the standard model does not have any
noninvertible symmetries—their would-be effects are
always swamped by those of SUð2ÞL [119].
Examining the anomaly coefficients in Table II, we

can now deduce the true global symmetry of the standard
model. The condition of vanishing SUð2Þ2L anomaly
implies a single linear relation on the charges, leaving
three continuous U(1) factors of Eq. (30) preserved. These
may be taken to be the difference of lepton family
symmetries as well as a nonanomalous combination of
lepton and baryon number. In total, then the standard model
has symmetry:

Uð1ÞLe−Lμ
× Uð1ÞLμ−Lτ

×
Uð1ÞB−NcL

ZNc

: ð32Þ

With an eye toward later developments, we also note that
there is a discreteZL

Ng
subgroup of Uð1ÞL which survives as

a global symmetry. This is contained in Eq. (32), since on
all fields

exp

�
2πi
3

L

�
¼ exp

�
2πi
3

ððLe−LμÞ−ðLμ−LτÞÞ
�
: ð33Þ

The standard model field content and global symmetries
described in this section imply that neutrinos are exactly
massless. In particular, the symmetry (32) prevents

FIG. 5. A triangle diagram which breaks current conservation
of the classical symmetries of the standard model.

TABLE II. Anomaly coefficients of classical global symmetries
in the standard model. L ¼ Le þ Lμ þ Lτ.

SUð2Þ2L Uð1Þ2Y SUð3Þ2c
Uð1ÞB NgNc −18NgNc 0
Uð1ÞLk

1 −18 0
Uð1ÞL Ng −18Ng 0
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Majorana neutrino masses from being generated by the
effective dimension-five Weinberg operator:

L ⊃
yNij
Λ

ðH̃LiÞðH̃LjÞ; ð34Þ

even though this operator is gauge invariant. In particular,
Uð1ÞB−NcL disallows the Weinberg operator entirely, while
the lepton flavor symmetries just set some of the entries to
vanish. Alternatively, if we add right-handed neutrinos Ni,
then we may directly include Yukawa couplings to generate
Dirac neutrino masses:

L ⊃ yNijH̃LiNj: ð35Þ

In this case, the masses respect the factors in Eq. (32) that
involve the overall lepton number, but for generic couplings
yNij violate the family difference symmetries Li − Lj in the
same manner as the quark Yukawas yu and yd.
Thus, neutrino masses—whether Majorana or Dirac—

imply that some portion of the global symmetry (32) is
approximate and, hence, that our understanding of their
ultraviolet fate is incomplete.

IV. SYMMETRY OF LEPTOPHILIC Z0 MODELS

We now describe the implications of gauging an addi-
tional U(1) factor or, in particle physics terminology,
the existence of a Z0. We denote the gauge field by A0

μ

with field strength F0
μν. We will see that such models lead to

noninvertible symmetry and provide natural mechanisms
constraining neutrino physics.
The simplest possible scenario explored here is to gauge

a U(1) subgroup of the symmetry (32) of the standard
model. In order for such a gauging to be consistent, we
must still take care that the cubic ’t Hooft anomaly vanishes
for the new dynamical U(1). With the strict standard model
field content, this singles out the lepton family difference
symmetries Li − Lj as those to potentially gauge. With
only slightly more complexity, we may also add right-
handed neutrinos and then gauge B − NcL [121].
Below, we describe features of gauged lepton family

models generally without reference to an ultraviolet embed-
ding. In later sections, we realize such models from non-
Abelian gauge theory.

A. Gauged Lμ −Lτ

Consider gauging a single combination of lepton family
difference Li − Lj. Note that, while mathematically any
choice of i and j is allowed, gauging Lμ − Lτ is both least
constrained and most well motivated. To the former point,
effects of new interactions with first-generation charged
matter are far more easily probed and have a correspond-
ingly larger set of constraints (see, e.g., Refs. [123–127]).
In particular, in the regime of large gauge coupling which

will be picked out by our models, for a representative
gμτ ∼ 1, the Z0 mass must be above MZ0 ≳ 1 TeV
[128,129]. To the latter point, models with gauged
Lμ − Lτ have seen much study the past two decades as a
potential explanation for experimental anomalies seen in
precise measurements of ðg − 2Þμ (e.g., Refs. [130–136])
and in B meson branching ratios (e.g., Refs. [137–142]),
as well as for the structure of neutrino mass matrices.
In general, gauged lepton family symmetries are a well-
motivated extension which tie together signatures in a
wide variety of frontiers, from colliders [143–147], to
cosmology [148–150], to direct detection [151], to astro-
physics [152–154], to the intensity [155–158] and precision
[159,160] frontiers.
When we promote Uð1ÞLμ−Lτ

to a gauge symmetry,
we must revisit the fate of the global symmetries of the
standard model. Here, we consider models with no addi-
tional light fields beyond those of the standard model which
contribute to the anomaly analysis.
Each of the classical global symmetries now has a new

anomaly coefficient written in Table III. Taking into
account the SUð2Þ2L anomalies leading to Eq. (32), we
find that one linear combination of currents is gauged,
another is fully anomaly-free and remains as a standard
(invertible) global symmetry, while the final linear combi-
nation has trivial SUð2Þ2L anomaly but nontrivial Uð1Þ2Lμ−Lτ

anomaly coefficient: Hence, it becomes a noninvertible
symmetry of this class of models. We enumerate each of
these linear combinations in Table IV.
Let us emphasize two essential points.
(i) While the anomaly-free combination which remains

a standard invertible global symmetry is uniquely
fixed, any linearly independent combination gener-
ates a noninvertible symmetry, and Table IV indi-
cates one possible choice which saturates the
minimal Uð1ÞLμ−Lτ

anomaly coefficient.
(ii) The symmetries enumerated in Table IV represent

the largest possible symmetry group of this class

TABLE III. Mixed anomalies of classical global symmetries of
the standard model extended with a gauged Uð1ÞLμ−Lτ

.

Uð1ÞB Uð1ÞLe
Uð1ÞLμ

Uð1ÞLτ

Uð1Þ2Lμ−Lτ
0 0 1 1

TABLE IV. Fate of the symmetries of the standard model after
gauging a lepton family difference symmetry.

Gauged Uð1ÞLμ−Lτ

Invertible Uð1ÞB−NgNcLe
=ZNc

Noninvertible Uð1ÞLe−Lμ
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of models. A given effective field theory may break
some of these symmetries.

The fact that ZL
Ng

is a noninvertible symmetry can be

made more tangible by considering the associated sym-
metry defect. Physically, this is the topological domain
wall which implements the symmetry action on operators.
This action depends dramatically on the kind of operator
in question. On local operators, we simply see a third root
of unity lepton number rotation.
However, when acting on extended objects, the behavior

of the domain wall is richer. Indeed, as compared to a
standard (invertible) global symmetry, this defect hosts
nontrivial topological field theory, in this case the 3d
Chern-Simons theory at level Ng, Uð1ÞNg

. The anyonic
degrees of freedom of the defect are then coupled to the
bulk 4d physics as in the physics of the fractional Hall
effect: The one-form symmetry on the defect world volume
is gauged in the bulk. More concretely, letting A0 denote the
dynamical gauge field for Lμ − Lτ and C the dynamical
Chern-Simons gauge field supported along the defect world
volume, we have the following defect Lagrangian:

L¼ iNg

4π

Z
Σ
Cμ∂νCσε

μνσd3xþ i
2π

Z
Σ
Cμ∂νA0

σε
μνσd3x: ð36Þ

In particular, this means that a ’t Hooft line of the Z0 gauge
group, physically the worldline of a heavy magnetic
monopole of Lμ − Lτ, excites the anyons when placed in
the ZL

3 symmetry defect. See Fig. 6. Such anyons have
Abelian statistics with fractional spin

spin ¼ 1

2Ng
: ð37Þ

Here, the spin s of an anyon is defined by the phase of the
wave function obtained after a rotation by angle 2π:

R2πjanyoni ¼ e2πisjanyoni: ð38Þ

The definition is the same as for a familiar boson or
fermion, but for anyons the spin can take values other than a
half integer. If we move the symmetry defect through the
’t Hooft line, it acquires a fractional Lμ − Lτ charge of
1=Ng by the Witten effect and, hence, is attached to a
topological surface operator. See Fig. 4.
Finally, let us reconsider the possibility of Majorana

neutrino masses in this class of models. The Uð1ÞLμ−Lτ

gauge symmetry allows only two entries in the mass
matrix: ðH̃LeÞ2 and ðH̃LμÞðH̃LμÞ. The first is forbidden
by the invertible global symmetry Uð1ÞB−NgNcLe

, while the
noninvertible symmetry Uð1ÞLe−Lμ

protects both terms.
Thus, we see that in our theory noninvertible symmetries
play the essential role in controlling the neutrino mass
operator. But the invertible Uð1ÞB−NgNcLe

needs to be
broken at least to a Z2NgNc

subgroup, which acts on the
leptons as ZF

2 fermion parity.
Generically, such breaking is expected to occur pertur-

batively. From a top-down perspective, a theory embedding
Uð1ÞLμ−Lτ

in a group G may explicitly violate additional
infrared global symmetries which do not commute with the
larger gauge group G. Indeed, this is a feature of the UV
completion in Sec. V. Alternatively, a given theory may
spontaneously break the extraneous symmetry factors at the
scale where G is broken. From the bottom up, we may
explicitly realize such breaking by including in the
Lagrangian higher-dimensional operators. For instance, a
four-fermion operator of the form

L ⊃
1

Λ4
HLeHLeēμēτ ð39Þ

is consistent with Lμ − Lτ gauge invariance and
preserves ZL

Ng
but violates the larger possible symmetry

of this class of models. In particular, it respects only
Z2NgNc

⊂ Uð1ÞB−NgNcLe
. Similarly, we may also contem-

plate six fermion operators of the schematic form

L ⊃
1

Λ11
ðH̃LμÞ3ðH̃LτÞ3; ð40Þ

which have similar effects on the pattern of symmetry
realization in this range of scales.
Let us summarize the situation in these models. An

effective field theory analysis making use of only the
invertible symmetry to forbid operators from the effec-
tive action would not have a satisfying explanation for
the smallness of all the neutrino masses. If, instead, the
noninvertible symmetry ZL

Ng
is remembered, the situa-

tion is qualitatively different: All entries of the Weinberg
operator are charged under the noninvertible symmetry
and excluded from the effective action. Therefore, in
this class of models, neutrino masses will be naturally

FIG. 6. A time slice where the noninvertible symmetry defect
DkN (orange) wraps the ’t Hooft line, or monopole, T (green).
The particle T emits a magnetic flux

R
FμνdSμν indicated by the

arrows. From the defect Lagrangian (36), we see that this flux
effectively induces a Wilson line expði R C0dtÞ of the defect
gauge field Cμ stretching along time. This Wilson line is the
worldline of an anyon.
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small provided that ZL
Ng

remains an approximate non-
invertible symmetry.

B. Inclusion of right-handed neutrinos

For a model of Dirac neutrino masses, we add three
right-handed neutrinos Ni to the standard model, and we
remind that, as above in Table I, the right-handed neutrinos
carry lepton number Li. With these additional light, charged
fields in our theory, the symmetry analysis in Sec. III is then
incomplete. These neutrinos begin with the global flavor
symmetry UðNgÞN, and since they are “sterile” this sym-
metry is not broken by instanton effects of the standard
model gauge group. If we add no more explicit global
symmetry violation, we have left-handed and right-handed
neutrinos which are massless and have nothing to do with
each other.
When we now gauge Lμ − Lτ to repeat the analysis in

Sec. IVA, this explicitly breaks the non-Abelian parts of
the neutrino flavor symmetry, as each now has different
quantum numbers. Classically, we should then discuss
instead Uð1ÞNe

× Uð1ÞNμ
× Uð1ÞNτ

. These, of course,
have no mixed anomalies with the SM gauge group, but
they do have nontrivial ABJ anomalies with Uð1ÞLμ−Lτ

,
as seen in Table V.
Clearly, Uð1ÞNe

should be anomaly-free, as is Uð1ÞNμ−Nτ
,

as now is Uð1ÞLe−Lμ
with the inclusion of the right-handed

neutrinos. However, since we have not introduced any
interactions between the right-handed neutrinos and the
standard model fermions, the global rotations of the
previous section—that is, rotations acting on Li and ēi
but not Ni—still remain good classical symmetries. But
note that these rotations in Table III are no longer proper
lepton number symmetries now that we have additional
leptons. We introduce the charge L̃i for these symmetries to
consistently continue using Li as a lepton number charge,
noting, for example, that now the electron family number
is Le ¼ L̃e − Ne.
Now that we have Lμ − Lτ anomalies both for Uð1ÞNe−Nμ

and for Uð1ÞL̃e−L̃μ
, we find that the linear combination

which is the normal lepton family difference symmetry
Uð1ÞLe−Lμ

is now an invertible symmetry. But the orthogo-

nal combination L̃e − L̃μ þ Ne − Nμ has become nonin-
vertible, as laid out in Table VI.

As commented above, the symmetries shown in Table VI
are the largest which may be realized given this spectrum
of fermions. To realize a realistic neutrino Yukawa matrix,
our UV completion must result in much of this being
broken. In particular, in the UV completion in Sec. VI, it is
only the overall Uð1ÞL̃þN which is violated solely by
instantons, and the rest of the invertible symmetries are
explicitly broken by the embedding in the UV gauge group.

C. One-loop renormalization group equations

We comment on two qualitatively interesting effects
arising perturbatively in these gauged Lμ − Lτ models. The
first is the Lμ − Lτ beta function, which depends on the
existence of the right-handed neutrinos:

βðgμτÞ ¼
g3μτ
24π2

XNWeyl

i¼1

q2i ⇒ βM ¼ g3μτ
4π2

; βD ¼ g3μτ
3π2

; ð41Þ

where above the subscript M (D) indicates the value in the
Majorana (Dirac) case.
Our neutrino masses will ultimately be generated by a

gauge theory effect, the size of which will depend on the
size of the gauge coupling at a higher scale. So we
emphasize that the discovery of the Lμ − Lτ gauge boson
and measurement of the “range” of this force MZ0 along
with its strength g2μτðM2

Z0 Þ≡ g20 allows us to evolve the
gauge theory up to higher scales, defining as usual
αμτðμ2Þ≡ ½g2μτðμ2Þ=4π�:

αμτðμ2Þ−1 ¼ α−10 −
ci
π
log

μ2

M2
Z0
; ð42Þ

with cM ¼ 1 and cD ¼ 4=3, revealing the presence of a
Landau pole for μ2 ∼M2

Z0 expð4π2=cig20Þ. For g0 ≳ 1, as is
relevant for us below, the Landau pole is far closer than the
familiar one in the hypercharge coupling, so embedding
Lμ − Lτ in a non-Abelian gauge group is quite well
motivated on general grounds.
Finally, there is one more marginal gauge-invariant

operator in this theory, which is kinetic mixing ϵBμνF0
μν.

TABLE V. Mixed anomalies of classical global symmetries of
the standard model and right-handed neutrinos with a gauged
Uð1ÞLμ−Lτ

.

Uð1ÞLe−Lμ
Uð1ÞNe

Uð1ÞNμ
Uð1ÞNτ

Uð1Þ2Lμ−Lτ
0 0 1 1

TABLE VI. Fate of the symmetries of the standard model þ
right-handed neutrinos after gauging a lepton family difference
symmetry.

Gauged Uð1ÞLμ−Lτ

Invertible Uð1ÞB−NgNcL̃e
=ZNc

×Uð1ÞNμ−Nτ

×Uð1ÞLe−Lμ

×Uð1ÞNe

Noninvertible Uð1ÞL̃eþNe−L̃μ−Nμ
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The presence of matter charged under both Uð1ÞY and
Uð1ÞLμ−Lτ

generically generates such kinetic mixing at one
loop. However, since the second and third generations have
the same hypercharges and opposite Lμ − Lτ, the divergent
parts of the one-loop diagrams cancel. Then, without any
new light charged fields, kinetic mixing will not be induced
until after electroweak symmetry breaking and below the
mass of the tau lepton, where there will be mixing of the Z0
with the photon of size

ϵ ∼
egμτ
32π2

ln
m2

τ

m2
μ
: ð43Þ

So we need not worry about kinetic mixing if we stick
to massive Z0s above the scales which have been
probed already at colliders, but in a broader investigation
including lighter Lμ − Lτ gauge bosons, for example, to
address ðg − 2Þμ, this would impact the phenomenology
(see Ref. [161]).

V. MAJORANA MASS MODEL

Having shown that the standard model extended by
Uð1ÞLμ−Lτ

has an exact noninvertible global symmetry
which forbids neutrino masses, we now set about evincing
a UV completion to break this symmetry and provide the
observed small neutrino masses.
Superficially, thus far, our work echoes much of the

broad literature on models in which a symmetry protects
neutrino masses. However, we need not introduce any
separate spontaneous symmetry-breaking sector nor any
explicit breaking communicated via mediators with pre-
scribed charges under some new global symmetries.
Instead, the fact that it is a noninvertible symmetry

protecting neutrino masses here means that this symmetry
can be broken in the gauge sector itself by purely quantum
effects and so naturally be broken an exponentially
small amount. To provide such a Majorana mass, we
consider a UV model in which the lepton family difference
is embedded into a horizontal symmetry SUð2ÞH × Uð1ÞZ
[162]. At the group level, this mirrors the emersion of QED
out of the electroweak sector and to our knowledge has not
been studied before. In particular, it is different from the
oft-studied SUð2ÞH UV completion with lepton species in
adjoint irreducible representations [163] and instead
embeds each lepton species into the reducible 2 ⊕ 2 of
SUð2ÞH. We may easily lift the one extra generation of each
species by including a conjugate SUð2ÞH singlet such that
the total addition of matter is vectorlike under the SM
gauge groups, resulting in a theory that bears some
resemblance to SUð2ÞH theories putting the leptons in a
2 ⊕ 1 where the electron is a singlet [123,164].
In this case, our UV theory contains the fields in

Table VII which interact as follows: [165]

L ⊃ yμHLμeēμe þ yτHLEτēEτ þ λL1
ΦLμeψL

þ λL2
Φ̃LEτψL þ λe1Φ̃ēμeψ ē þ λe2ΦēEτψ ē: ð44Þ

That Uð1ÞL is the only global symmetry of the lepton sector
can be checked by using Uð1ÞY and Uð1ÞZ to set the H and
Φ charges to zero and then solving the constraints from the
Yukawa operators. We can parametrize the classical global
symmetry of the UV theory as

Uð1ÞL ×
Uð1ÞB−NcL

ZNc

; ð45Þ

which will be useful to make contact with our analysis of
the infrared symmetries. As mentioned above, it is a ZNg

noninvertible symmetry which plays a key role in forbid-
ding Majorana masses in the Uð1ÞLμ−Lτ

phase, and in
the UV this is recognized as a subgroup of Uð1ÞL and
classically respected. On the other hand, the global
Uð1ÞB−NgNcLe

symmetry, which from the infrared could
provide some additional protection for the electron neutrino
masses, is simply violated classically by the multiplet
structure of the SUð2ÞH theory. Restricting to the leptons,
it is only aZ2 subgroup of this which is respected in the UV
theory. In particular, this means that, in the UV completion
of the Lμ − Lτ theory, it is the quantum mechanical
violation of the ZNg

noninvertible symmetry which will
set the size of the neutrino masses.
In the SUð2ÞH × Uð1ÞZ breaking whenΦ gets a vacuum

expectation value hΦi ¼ ðvΦ; 0Þ⊺, one linear combination
of each of the left-handed and right-handed electrons is
lifted by the SUð2ÞH singlets. Defining two rotation angles
tan θL ¼ −λL1

=λL2
and tan θe ¼ −λe1=λe2 , the rotation to

the mass basis is

TABLE VII. Fields and their representations under the relevant
symmetry groups. ψL and ψ ē are in conjugate representations of
the SM gauge group with respect to L and ē, respectively, so that
the extra fields are overall vectorlike with respect to GSM.

SUð2ÞH Uð1ÞZ Lμ − Lτ Uð1ÞL
Φ 2 −1

�
Φe

Φτ

�
¼
�

0

−1
�

0

Lμe 2 þ1
�

Lμ

Le1

�
¼
�þ1

0

� þ1

LEτ 2 −1
�
Le2
Lτ

�
¼
�

0

−1
� þ1

ψL � � � 0 0 −1
ēμe 2 −1

�
ē1
μ̄

�
¼
�

0

−1
�

−1

ēEτ 2 þ1
�

τ̄
ē2

�
¼
�þ1

0

�
−1

ψ ē � � � 0 0 þ1
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�
Le

LE

�
¼
�
cos θL − sin θL
sin θL cos θL

��
Le1

Le2

�
; ð46Þ

�
ē

Ē

�
¼
�
cos θe − sin θe
sin θe cos θe

��
ē1
ē2

�
; ð47Þ

where LE and Ē pair up with ψL and ψ ē to get large Dirac

masses ML ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2L1

þ λ2L2

q
vΦ and Me ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2e1 þ λ2e2

q
vΦ.

The other linear combination remains as the light electron,
and in the infrared, at lowest order (in v=vΦ), we have

L ⊃ yμHLμμ̄ − yτHLττ̄

þ ðyτ sin θL sin θe − yμ cos θL cos θeÞHLeē; ð48Þ

with more than enough freedom to match the electron mass,
though with some fine-tuning required. We neglect to write
down the additional Yukawa couplings of the Higgs with
the extra vectorlike fermions but mention that the sublead-
ing, off-diagonal Yukawas are also constrained through
standard model effective field theory by low-energy and
precision data [166,167].
The Uð1ÞL × SUð2Þ2H anomaly coefficient in Table VIII

shows that Uð1ÞL is broken down to ZL
2 ⊂ Uð1ÞL by

SUð2ÞH instantons, which allows Majorana mass terms.
Recalling that the exact noninvertible symmetry at inter-
mediate scales is the subset ZL

Ng
⊂ Uð1ÞL protecting

neutrino masses in the Uð1ÞLμ−Lτ
gauge theory, we see

that in the UV theory Uð1ÞL is then entirely broken by
quantum effects. Operationally, the breaking by SUð2ÞH
suffices to produce the effect of interest, since SUð2Þ2H
instantons generate ’t Hooft vertices as

L ∼
e−2π=αH

v5Φ
LμeLμeLEτLEτēμeēEτ; ð49Þ

where the exponential suppression is the action of the
instanton as discussed above. For a detailed introduction to
the generation of such ’t Hooft vertices, we refer the reader
to, for example, Ref. [168]. From this operator, we may
immediately use the charged lepton Yukawa couplings to

contract two pairs of charged fermion legs into Higgses as
in Fig. 7 and have

L ∼
yμyτ
vΦ

e−2π=αHH̃LμeH̃LEτ: ð50Þ

While the IR dominance of the instantons means that
the largest contributions come from the energy at which
SUð2ÞH × Uð1ÞZ is broken, the instantons themselves are
an effect of SUð2ÞH gauge theory and so respect this UV
gauge symmetry.
To lowest order, the neutrino masses generated at vΦ see

their breaking only through the lifting of the vectorlike
partners, as

L ∼
yμyτ
vΦ

e−2π=αH ½H̃LμH̃Lτ − H̃Le1H̃Le2 �

þ vΦðλL1
Le1 − λL2

Le2ÞψL; ð51Þ

where the second` line contains Dirac masses both for the
charged lepton above and for one neutrino. Again to lowest
order, this just removes the corresponding νE from the
spectrum, and we have

L ∼ yμyτ
v2

vΦ
e−2π=αH

�
νμντ −

1

2
sin 2θLνeνe

�
: ð52Þ

We see explicitly now that our UV completion of the
Uð1ÞLμ−Lτ

theory does not respect the Uð1ÞB−NgNcLe
global

symmetry we observed above that the Uð1ÞLμ−Lτ
extension

of the standard model could enjoy. In particular, Higgsing
of our ultraviolet gauge theory generates four fermion
operators such as Eq. (39), while in the neutrino mass
matrix it generates Le violating entries in conjunction with
the ’t Hooft vertex (49). This is desirable, as, while the SM
proper respects this symmetry, the observed neutrino
phenomenology does not.
When the ψL couplings are near-universal λL1

≃ λL2
, we

have sinð2θLÞ ≃ 1 and are well set up for a quasidegenerate
neutrino spectrum with large 2–3 mixing. This successful
prediction of the large mixing angle for “atmospheric”

TABLE VIII. Mixed anomalies of Uð1ÞL in the Majorana mass
scenario in the IR (above) and UV (below).

SUð2Þ2L Uð1Þ2Y Uð1Þ2Lμ−Lτ

Uð1ÞL Ng −18Ng ðNg − 1Þ

SUð2Þ2H Uð1Þ2Z
Uð1ÞL ðNg − 1Þ 2ðNg − 1Þ

FIG. 7. The ’t Hooft vertex generated by SUð2ÞH instantons.
Two pairs of fermion legs are contracted with the charged
lepton Yukawa coupling to the Higgs, which generates a
Majorana neutrino mass.
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neutrinos has long made Lμ − Lτ symmetries particularly
interesting for neutrino theorists [163,169–171].
So far, we have taken into account only the physics

above vΦ, which provides the violation of the noninvertible
ZL
Ng

symmetry by SUð2ÞH instantons. The Higgsing leaves
unbroken a remnant Uð1ÞLμ−Lτ

subgroup, which prevents
us from populating the other entries of the Majorana mass
matrix. Since this is manifestly not gauged in the far IR, we
must have further spontaneous breaking with a scalar ϕ
effecting

hϕi ≠ 0 ⇒ Uð1ÞLμ−Lτ
→ ∅: ð53Þ

This is the same scalar providing mass for the massive Z0
boson whose discovery would be the harbinger of this
mechanism. Given the mass M2

Z0 and the coupling
gμτðM2

Z0 Þ, we can express the neutrino mass scale mν using
Eq. (52) and the beta function:

mν ∼
mμmτ

vΦ

�
vΦ
MZ0

�
4s2H

exp
−2πs2H
αμτðM2

Z0 Þ ; ð54Þ

where we plug in yμv ¼ mμ and yτv ¼ mτ and we also
introduce the “horizontal mixing angle” s2H ≡ sin2 θH,
where gμτðvΦÞ≡ gHðvΦÞ sin θH in analogy to the electro-
weak sector. In terms of the microscopic gauge couplings,
sH ¼ 2gZ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2H þ 4g2Z

p
, where the factor of 2 difference

from the SM case is due toΦ having unit charge. Then, we
can easily invert Eq. (54) to find the needed UV scale as

v
4s2H−1
Φ ∼M

4s2H−1
Z0

�
MZ0mν

mμmτ

�
exp

2πs2H
αμτðM2

Z0 Þ : ð55Þ

The sH dependence reflects that the contribution of the
SUð2ÞH instantons to violating the noninvertible symmetry
depends upon how Uð1ÞLμ−Lτ

emerges from SUð2ÞH ×
Uð1ÞZ upon Higgsing.
In contrast to the Dirac case below, here the scale of the

UV completion is not uniquely predicted by the low-energy
data but is instead partially degenerate with the mixing
angle. In Fig. 8, we plot the UV scale as a function of
the inverse coupling strength over the full range of
0 < sin θH < 1, which displays several interesting features.
It is useful to massage Eq. (55) into the form

log
�
vΦ
MZ0

�
∼

2πs2H
4s2H − 1

α−1μτ ðMZ0 Þ þ 1

4s2H − 1
log
�
mνMZ0

mμmτ

�
:

ð56Þ
Here, one may see clearly that for a given sH there will
be a line with slope 2πs2H=ð4s2H − 1Þ, and the value
of MZ0 just translates the line vertically. The limiting
value s2H → 0 is reached at a fixed α−1μτ ðMZ0 Þ by sending
αH → ∞. The disappearance of the exponential

suppression means that this gives uniformly log vΦ ∼
logmμmτ=mν, but of course our picture of ’t Hooft
vertices has properly broken down.
At the special value θH ¼ π=6 (sH ¼ 1=2), the UV scale

drops out of Eq. (54), and this model predicts uniquely
a coupling 2πα−1μτ ∼ 4 logMZ0mν=ðmμmτÞ. Plugging the
equation for the Landau pole into Eq. (55), one finds that
the sH dependence drops out of the relation to leave also
this same coupling, so all lines of fixed sH meet the Landau
pole at this same point.
Intriguingly, this is precisely the mixing angle demanded

by the unification SUð2Þ × Uð1Þ ⊂ SUð3Þ [172,173],
meaning that a Uð1ÞLμ−Lτ

gauge boson satisfying this

relationship between MZ0 and α−1μτ would be a smoking
gun for this model.
Renormalization group flow from vΦ to a lower scale

generically generates higher-dimensional operators involv-
ing ϕ which respect the infrared symmetries. Since the
theory below vΦ contains the noninvertible ZL

3 symmetry,
any further generation of Majorana masses must come from
an insertion of the ZL

3 -violating operators already present at
the scale vΦ. For ϕ with charge 1 under the gauged Lμ − Lτ

but uncharged under the global total lepton number, our
infrared Lagrangian should then include

L ⊃ yμyτ
v2

vΦ
e−2π=αH

�
νeντ

ϕ

vΦ
þ νeνμ

ϕ†

vΦ

þ ντ
ϕ

vΦ
ντ

ϕ

vΦ
þ νμ

ϕ†

vΦ
νμ

ϕ†

vΦ

�
; ð57Þ

where we leave off additional Oð1Þ factors in front of
these operators. We give this merely as a schematic for
how Lμ − Lτ symmetry-breaking effects are generated;
fully realistic models require additional sources of

FIG. 8. The UV scale vΦ predicted upon discovery of a
Uð1ÞLμ−Lτ

Z0 boson at MZ0 ¼ 1 TeV over a range of coupling

strengths α−1μτ ðMZ0 Þ≡ 4π=g2μτðMZ0 Þ. A different value of MZ0

merely shifts the plot vertically. The purple line denotes the scale
at which the Landau pole in Uð1ÞLμ−Lτ

is reached.
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symmetry breaking for the invertible symmetry factors
which also control the Yukawa texture.
There is a large body of work on how to achieve realistic

neutrino masses and mixing in the context of gauged
Lμ − Lτ symmetry, possibly with a stage of μ − τ reflection
symmetry. As our point here is to evince the generation of
the neutrino mass scale from nonperturbative, inherently
quantum-mechanical violation of noninvertible ZL

3 , we
leave the detailed study of this further soft breaking to
future work and for now refer to Refs. [123,130,174–192],
among many others, for discussions in this direction.

VI. DIRAC MASS MODEL

To break the noninvertible symmetry in the Dirac
case, we embed Uð1ÞLμ−Lτ

into a non-Abelian horizontal
SUð3ÞH under which the leptons are fundamentals. No
extra fermions are needed, and this completion of lepton
family difference symmetries has recently been studied in
Ref. [193]. We emphasize, in particular, that we consider
gauging only the horizontal lepton flavor as opposed to the
horizontal symmetry of simple grand unified theories
which includes both quarks and leptons [194].
The matter content in the lepton sector is given in

Table IX, and the Lagrangian of the UV theory is simply

L ¼ yτHLē: ð58Þ

The matter fields at the level of the gauge theory enjoy
the global symmetry Uð1ÞL × Uð1Þē × Uð1ÞN, and the
charged lepton Yukawa coupling breaks one combination
explicitly Uð1ÞL × Uð1Þē → Uð1ÞL̃ as in the theory at
intermediate scales.
As a theory of just three species of gauge fundamentals,

it is easy to compute the anomalies in Table X. One finds
that the anomaly-free linear combination of the remaining
global symmetries is Uð1ÞL, i.e., the normal lepton number
symmetry, which prevents the production of Majorana
masses for the right-handed neutrinos. The other direction,
L̃þ N, is anomalous, and the associated ’t Hooft vertex

in Fig. 9 clearly violates both Uð1ÞL̃ and Uð1ÞN by one
unit each:

L ∼
e−2π=αH

v2Φ
LēLN: ð59Þ

A single insertion of the charged lepton Yukawa turns this
into a Dirac neutrino mass of size

L ∼ yτe−2π=αHH̃LN: ð60Þ

We must still address the generation of the neutrino texture,
but we already have the information we need to link
low-energy observables to the scale of SUð3ÞH breaking.
The matching of gauge couplings at vΦ is now 4g2μτ ¼ g2H,
so we may write the neutrino mass scale as

mν ∼mτ

�
vΦ
MZ0

�
4=3

exp
−π

2αμτðM2
Z0 Þ : ð61Þ

Then, we can again invert this to find the UV scale vΦ given
the neutrino mass scale and the measurements of MZ0

and αμτðM2
Z0 Þ:

v2Φ ∼M2
Z0

�
mν

mτ

�
3=2

exp
3π

4αμτðM2
Z0 Þ ; ð62Þ

where we recall mν=mτ ∼ 10−11. By requiring that
MZ0 ≲ vΦ ≲Mpl, we get two-sided limits on the coupling
strengths for which this mechanism may work:

TABLE IX. Fields and their representations under the relevant
symmetry groups.

SUð3ÞH Uð1Þμ−τ Uð1ÞL̃ Uð1ÞN
L 3  Le

Lμ

Lτ

!
¼
 

0

þ1

−1

! þ1 0

ē 3̄
 ē
μ̄
τ̄

!
¼
 

0

−1
þ1

! −1 0

N 3̄
 Ne

Nμ

Nτ

!
¼
 

0

−1
þ1

! 0 þ1

TABLE X. Mixed anomalies of flavor symmetries in the Dirac
mass scenario in the IR (above) and UV (below).

SUð2Þ2L Uð1Þ2Y Uð1Þ2Lμ−Lτ

Uð1ÞL̃e−L̃μ
0 0 −1

Uð1ÞNe−Nμ
0 0 −1

SUð3Þ2H
Uð1ÞL̃ þ1
Uð1ÞN þ1

FIG. 9. The ’t Hooft vertex generated by SUð3ÞH instantons.
Two fermion legs are contracted with the charged lepton Yukawa
coupling, yielding a Dirac neutrino mass.
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3π

4

�
ln

�
M2

pl

M2
Z0

m3=2
τ

m3=2
ν

��−1
< αμτðM2

Z0 Þ < π

2

�
ln
mτ

mν

�
−1
: ð63Þ

The lower limit depends on the scale at which the Z0
is discovered, but for around the TeV scale this limits
roughly 1=45≲ αμτðM2

Z0 Þ≲ 1=16. The Dirac theory is then
far more predictive by virtue of involving no unknown
mixing angles.
Now having discovered a hierarchically small neutrino

mass scale from the charged leptons and gauge theory
dynamics, at lower energies we must generate the observed
neutrino texture. This should originate from the scalar
sector responsible for spontaneous symmetry breaking
SUð3ÞH → Uð1ÞLμ−Lτ

and later Uð1ÞLμ−Lτ
→ ∅, similarly

to the recent analysis in Ref. [193].
As we now have a multitude of global symmetries

shaping the structure of the Yukawa matrix, there are many
more options for combinations of charges to assign to
spurions. For a rough analysis of the expected sizes of
Yukawa entries, we just display which charges are violated
by each operator in Table XI.
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