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18Boston University, Department of Physics, 590 Commonwealth Avenue, Boston, MA 02215, USA
19TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada

20Universidade de Lisboa, Faculdade de Ciências (FCUL), Departamento de Física,
Campo Grande, Edifício C8, 1749-016 Lisboa, Portugal

21Lancaster University, Physics Department, Lancaster, LA1 4YB, UK
22Queen Mary, University of London, School of Physics and Astronomy,

327 Mile End Road, London, E1 4NS, UK
23University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA

24Brookhaven National Laboratory, Chemistry Department,
Building 555, P.O. Box 5000, Upton, NY 11973-500, USA

PHYSICAL REVIEW D 109, 072002 (2024)

2470-0010=2024=109(7)=072002(7) 072002-1 Published by the American Physical Society

https://orcid.org/0000-0003-2651-4897


25Research Center for Particle Science and Technology, Institute of Frontier and Interdisciplinary Science,
Shandong University, Qingdao 266237, Shandong, China

26Key Laboratory of Particle Physics and Particle Irradiation of Ministry of Education,
Shandong University, Qingdao 266237, Shandong, China

(Received 13 September 2023; accepted 6 February 2024; published 3 April 2024)

The direction of individual 8B solar neutrinos has been reconstructed using the SNOþ liquid scintillator
detector. Prompt, directional Cherenkov light was separated from the slower, isotropic scintillation light
using time information, and a maximum likelihood method was used to reconstruct the direction of
individual scattered electrons. A clear directional signal was observed, correlated with the solar angle. The
observation was aided by a period of low primary fluor concentration that resulted in a slower scintillator
decay time. This is the first time that event-by-event direction reconstruction in high light-yield liquid
scintillator has been demonstrated in a large-scale detector.

DOI: 10.1103/PhysRevD.109.072002

I. INTRODUCTION

Organic liquid scintillator (LS) detectors play a central
role in particle physics, particularly in studies of neutrinos,
where numerous breakthrough measurements have been
made in areas such as solar neutrinos [1], reactor antineu-
trinos [2–5] and neutrinoless double beta decay [6]. Several
large scale LS detectors are currently in operation [7–9] with
more under construction [10] or being planned [11,12].
There has been much interest in recent years in

enhancing the capabilities of such detectors by separating
Cherenkov light from the scintillation signal so as to
provide directional information while maintaining the
energy resolution of high light-yield scintillators [13–25].
Several recent community-planning exercises in both the
U.S. and Europe have highlighted the importance of these
developments [26–29]. This concept is central to several
small-scale demonstrators both under construction and
in operation [30–32], as well as large-scale experiments
currently under development [11,12]. Detectors have used
Cherenkov light before in low-light yield scintillators,
such as Liquid Scintillator Neutrino Detector (LSND),
which had an isotropic to Cherenkov light ratio of 5∶1
[33] and MiniBooNE, which had a ratio of 3∶1 [34,35].
However, the Cherenkov component in high light-yield
LS detectors typically only represents a few percent of
the overall light signal, posing a considerably greater
challenge. In addition to having a different wavelength
profile, the prompt and directional nature of this light
offers potential handles to distinguish it from the slower,
isotropic scintillation signal. This can be aided by further
slowing the characteristic scintillation time either by

introducing primary fluors with longer intrinsic time
constants [13,36] or by reducing the primary fluor con-
centration to reduce the nonradiative coupling with the
solvent [15,16].
During its commissioning phase, the SNOþ experiment

operated with an initial concentration of 0.6 g/L 2,5-
diphenyloxazole (PPO) in the linear alkylbenzene (LAB)
solvent, resulting in a scintillation decay timescale of
> 10 ns. Data during this time period shows a clear direc-
tional signal from 8B solar neutrino interactions. While a
recent study by the Borexino Collaboration [37,38] found a
correlation with the solar direction for individual early
Cherenkov photons from a few percent of their solar events,
and used those integrated distributions in fits to help extract
signals, this is the first time that a large-scale experiment has
demonstrated event-by-event direction reconstruction in high
light-yield liquid scintillator.

II. THE SNO+ DETECTOR AND
DATA SELECTION

SNOþ is a multipurpose neutrino detector located 2 km
underground at SNOLAB in Ontario, Canada. Much of the
infrastructure has been repurposed from the SNO experi-
ment, including 9362 photomultiplier tubes (PMTs) and a
6 m radius acrylic vessel (AV). Significant upgrades have
been made to the detector, allowing for the AV to be filled
with LS [39]. Further details of the SNOþ detector can be
found in [9].
In order to select a pure sample of 8B solar neutrinos for

the current study, an energy region for the scattered electron
of approximately 5–15 MeV was used [40]. This removes
the vast majority of events due to Uranium and Thorium
chain (U/Th) chain backgrounds as well as events asso-
ciated with muons. The higher energy events in this sample
are expected to provide better directional information,
compared to those below 5 MeV, due to the increased
number of Cherenkov photons, reduced electron multiple
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scattering and neutrino interaction kinematics. A dead time
of 20 s was also enforced after any energy deposition
above 15 MeV in order to remove any further activity
following muon events. A fiducial radius of 5.5 m from
the center of the AV was used to select events from a
region of more uniform detector optical response. After
cuts, the only expected background events result from
atmospheric neutrinos and the decays of 208Tl and 210Tl,
which results in a total of ∼1 expected events within
the dataset.

III. DATASETS

During the period of April–October 2020 (Period 1,
exposure 23 kt d), SNOþ was partially filled with scin-
tillator that floated on a larger volume of water inside the
AV. The LS portion comprised 365 t with a PPO concen-
tration of 0.6 g/L. The interface with the water region was
∼75 cm above the AV equator. In situ measurements of
light emitted from low energy background events in the LS
region during this phase indicated a yield of ∼300 detected
photoelectrons per MeV of deposited electron energy. A
parametrization of the inherent scintillator timing profile
was derived based on a comparison of data with simu-
lations for 214Bi background events, tagged via the asso-
ciated alpha decay of 214Po, and has the following form:

PðtÞ ¼
X3

i¼1

Ai
e−t=τi − e−t=τr

τi − τr
ð1Þ

where P is the probability of photon emission, t is the time
of emission, Ai is the fraction of light in the ith component,
τi is the fall time of the ith component and τr is the common
rise time, found to be 0.8 ns. This parametrization is shown
in Fig. 1 and the derived constants are given in Table I.
For the Period 1 dataset, an extra fiducial volume

constraint was implemented in order to avoid proximity

to the scintillator-water interface, where optical effects
became nonuniform. Events were excluded which recon-
structed within the water volume, and within 25 cm above
the interface. From this dataset, 20 solar neutrino candi-
dates were extracted.
Between April and June 2021 (Period 2, exposure 15 kt d)

the detector was filled with 780 t of LS at 0.6 g/L PPO
concentration. The scintillator optical, timing and light-yield
characteristics were confirmed to be unchanged from
Period 1. Seventeen solar neutrino candidates were extracted
from this period, which were then combined with Period 1 to
create a single dataset.
The total dataset had an exposure of 38 kt d and 37 selected

events, which is statistically consistent with the expectation of
40 events, derived from the flux presented in [41].

IV. CHERENKOV SEPARATION IN SNO+

Reconstruction of event direction relies on isolating the
instantaneous Cherenkov light from the scintillation signal
using timing information. A “time residual” is defined as:

tres ¼ thit − tevent − tflight ð2Þ

where thit is the recorded hit time of the PMT, tevent is the
reconstructed event time and tflight is the estimated time of
flight of the photon, assuming a straight line light path. The
latter two terms result from a maximum likelihood fit to an
assumed pointlike vertex position based on timing infor-
mation from all hit PMTs in the event. The distribution of
tres is largely dominated by the inherent time spectrum of
scintillation/Cherenkov light, the PMT time response and
uncertainties in the reconstructed vertex position. Within
the selected energy range, the 3D vertex resolution is
24–26 cm. The anisotropy in the early light due to the
Cherenkov component can be identified by using this
timing information in conjunction with the parameter θγ,
defined as the angle between the estimated photon direction
(i.e., from the reconstructed vertex to the hit PMT) and the
initial direction of the original electron, as shown in Fig. 2a.
It is possible to clearly see this anisotropy in the cos θγ

distribution on the rising edge of the scintillator timing
profile in simulations of 6 MeV electrons using measured
scintillation characteristics, where 6 MeV was chosen to
represent a typical electron recoil energy from a 8B solar
neutrino for this dataset. A clear Cherenkov peak can be
seen in Fig. 3 at low tres near the expected emission angle of
cos θγ ¼ 0.66. There is also a slight bias in the “backwards”

0 5 10 15 20 25 30 35 40 45 50

Time (ns)

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

E
m

is
si

on
 P

ro
ba

bi
lit

y

FIG. 1. Parametrized time profile of scintillation light emission
for electrons in LAB with 0.6 g/L PPO based on comparisons of
214Bi background events in data and simulations.

TABLE I. The derived scintillation timing profile parameters of
LAB with 0.6 g/L PPO.

i 1 2 3

τi (ns) 13.5 23 98.5
Ai 0.55 0.335 0.115
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direction (towards cos θγ ¼ −1) evident in the plot. This is
due to bias in the vertex reconstruction caused by the earlier
Cherenkov photons “pulling” the best fit vertex along
the direction of motion. This effect was also noted in
Borexino’s directionality studies [37,38]. This suggests that
it might be possible to improve reconstruction by simulta-
neously fitting for both vertex and direction. While this is
currently under study, the present analysis treats these two
aspects separately.

V. DIRECTION RECONSTRUCTION

The distribution in Fig. 3 is used as a probability density
function (PDF) for a maximum likelihood reconstruction of
event direction. Results of this direction reconstruction for
electrons of different energies simulated in the SNOþ
detector are shown in Fig. 4, where α is defined as the angle
between the true direction and the reconstructed direction

as shown in Fig. 2b. Table II shows simulation predictions
for the percentage of events with cos α > 0.8 for different
electron energies.
As shown in Fig. 4, higher energy electrons yield better

direction reconstruction owing to increased photon sam-
pling as well as a reduced impact from electron multiple
scattering. Increased effective photocathode coverage
and/or slower scintillator formulations should be able
to extend the usable range of direction reconstruction to
lower energies [25].
The impact of multiple scattering and vertex

reconstruction bias on the direction fit are illustrated
in Fig. 5 for simulated 6 MeV electrons. From this
investigation, it is clear the features near cos α ¼ 0 and
cos α ¼ −1 are caused by vertex reconstruction effects.

VI. APPLICATION TO SOLAR NEUTRINOS

Direction reconstruction was applied to the solar neu-
trino dataset previously described, with 37 selected events
containing ∼1 expected background event. Due to the
kinematics of solar neutrino elastic-scattering, the scattered
electrons have additional angular spread relative to the
solar direction, as indicated in Fig. 2b. Due to the selection
of electrons with an energy greater than 5 MeV, this
smearing is confined to one bin. The results of direction

FIG. 2. Definitions of angles referenced in this paper: θγ is the
angle between the electron’s travel direction and the photon
direction; α is the angle between the true and reconstructed
direction of the electron; and θSun is the angle between the
reconstructed event direction and the solar direction (assumed
true direction of the neutrino).

FIG. 3. Distribution of photon hits in cos θγ and tres for
simulated 6 MeV electrons in LAB with a PPO concentration
of 0.6 g/L. A clear peak can be seen at low tres near the expected
Cherenkov angle, cos θγ ¼ 0.66, highlighted in blue.
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FIG. 4. Results of direction reconstruction of simulated elec-
trons of different energies, with error bars displaying statistical
uncertainties.

TABLE II. Energy dependence of direction reconstruction for
electrons simulated in the SNOþ detector, with statistical
uncertainties. The performance is quantified by the percentage
of events that reconstruct with cos α > 0.8.

Electron energy (MeV) % with cos α > 0.8

2 21.9� 0.4
6 45.6� 0.6
10 64.6� 0.7
20 83.0� 0.8
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reconstruction in data are shown in Fig. 6, along with
Monte Carlo (MC) predictions sampled from a nominal 8B
energy spectrum. A clear peak at cos θSun ¼ 1 can be seen.
A likelihood ratio test in comparison with an isotropic
distribution yields a p-value corresponding to 5.7σ.

VII. CONCLUSIONS

Data from the SNOþ experiment has been used to
demonstrate event-by-event direction reconstruction of

recoil electrons from solar neutrinos for the first time,
exploiting the time separation of the directional Cherenkov
light from the scintillation light. Remarkably, this demon-
strates the ability to achieve comparable directional infor-
mation to that of water Cherenkov detectors, which has
played a crucial role in numerous fundamental measure-
ments. This new capability opens up interesting possibil-
ities for current detectors and for the design of future
instruments. Potential applications include studies of solar
neutrinos, supernova neutrinos and background discrimi-
nation for other physics. By utilizing slower scintillators,
increased photocathode coverage and/or other developing
technologies, this approach could be extended to lower
energies, where it could also provide important background
suppression (such as from 8B solar neutrinos) in studies of
phenomena such as neutrinoless double beta decay.

For the purposes of open access, the authors have applied
a Creative Commons Attribution licence to any Author
Accepted Manuscript version arising. Representations of
the data relevant to the conclusions drawn here are provided
within this paper.
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