
Sound Velocities of Stishovite at Simultaneous High Pressure
and High Temperature Suggest an Eclogite‐Rich Layer
Beneath the Hawaii Hotspot
Sibo Chen1,2 , Siheng Wang1 , Xintong Qi3, Man Xu4 , Tony Yu4 , Yanbin Wang4, and
Baosheng Li1,3

1Department of Geosciences, Stony Brook University, Stony Brook, NY, USA, 2Now at School of Earth and Space
Exploration, Arizona State University, Tempe, AZ, USA, 3Mineral Physics Institute, Stony Brook University, Stony Brook,
NY, USA, 4Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL, USA

Abstract Compressional and shear wave velocities of polycrystalline stishovite (SiO2) have been
measured at simultaneous high pressures and temperatures up to 14.5 GPa and 800°C. By fitting velocities
to the finite strain equations, the elastic moduli and density were determined to be KS0 = 306.6(46) GPa,
KS′ = 4.92(10), ∂KS/∂T = − 0.024(1) GPa/K, G0 = 229.0(34) GPa, G′ = 1.07(10), ∂G/∂T = − 0.017(1) GPa/
K, ρ0 = 4.287(2) g/cm3. Our modeling suggested that, in the eclogite, coesite‐stishovite transition can
increase P and S wave velocities by 2.4% and 3.5%, respectively. A comparison between geophysical
observations and our model shows that the coesite‐stishovite phase transition in the eclogite can potentially
be responsible for the occurrence of the X discontinuity beneath Hawaii. In addition, our current results
suggest an eclogite‐rich layer between 340 and 450 km depth beneath Hawaii. The eclogite concentration at
the top and bottom of the layer is 41–55 vol% and >77 vol%, respectively.

Plain Language Summary In this study, we investigated the elastic behavior of stishovite, a high‐
pressure mineral found in subducted oceanic crust, under simultaneous high pressure and high temperature. By
measuring compressional and shear wave velocities of polycrystalline stishovite at pressures up to 14.5 GPa and
temperatures up to 800°C, we determined elastic modulus for stishovite. Using current data, we developed a
model to predict seismic wave velocities changes in the subducted oceanic crust known as eclogite. According
to our model, the coesite‐stishovite phase transition can lead to a 2.4% and 3.5% increase in P and S wave
velocities of eclogite, respectively. In addition, we compared it with geophysical observations, particularly
focusing on the X discontinuity beneath Hawaii. Our result indicates the presence of an eclogite‐rich layer
beneath Hawaii, extending from 340 to 450 km in depth. The concentration of eclogite at the top and bottom of
this layer varies, with values ranging from 41% to 55% at approximately 336 km and exceeding 77% at around
448 km depth.

1. Introduction
Stishovite is a high‐pressure polymorph of silica (SiO2) and is stable above 9 GPa at 1,000°C, with a tetragonal
structure (space group P42/mnm). In silica‐rich mineral assemblies, such as oceanic crust, stishovite is one of the
major components at depth greater than ∼300 km (Aoki & Takahashi, 2004; Ono, 1998). Previous experiment
suggested that the velocity contrast between stishovite and coesite can be as high as ∼45%, which might be
responsible for the seismic X‐discontinuities in the Earth's upper mantle (T. Chen et al., 2015, 2017).

The X‐discontinuity at depths between 250 and 350 km has been observed by seismic studies in various
geological settings such as subduction zones, stable continents, and hot‐spots (Kemp et al., 2019; Pugh
et al., 2021; Schmerr et al., 2013; Srinu et al., 2021; Wölbern & Rümpker, 2018). Using receiver functions
analysis, Kemp et al. (2019) reported an X‐discontinuity beneath the Hawaii hot‐spot and interpreted this X‐
discontinuity as the coesite‐stishovite phase transition.

Previous studies have reported the elastic properties of stishovite at room temperature and high pressure (Jiang
et al., 2009; B. Li et al., 1996; Zhang et al., 2021). In Addition, using first‐principles simulation with local density
approximation, Yang and Wu (2014) calculated elastic constant tensor of stishovite at mantle pressure and
temperature. However, elastic properties, especially the shear properties, of stishovite at simultaneous high
pressure and temperature have not been directly constrained by experimental studies. In this study, we measured
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the compressional and shear wave velocities of poly‐crystalline stishovite at simultaneous high pressure and high
temperature. Based on our data, we calculated the velocity profile of eclogite and discussed its possible role in
interpreting the X‐discontinuity in the Hawaii hot spot.

2. Experimental Methods
The polycrystal stishovite was synthesized from fused SiO2 cylinder (3 mm in both diameter and thickness) from
Goodfellow Corporation (purity >99.9%). The fused SiO2 cylinder was enclosed in a gold capsule and hot‐
pressed at ∼14 GPa and 1,200°C for 2 hr in the USCA‐2000 multi‐anvil apparatus installed at Stony Brook
University. The recovered sample was characterized by scanning electron microscopy (Figure S1 in Supporting
Information S1) and X‐ray diffraction, which suggest that the grain size is less than 1 μm and the sample is a single
phase of stishovite with no impurity phases present. By using the Archimedes' immersion method, the bulk
density of the recovered stishovite sample was determined to be 4.269(10) g/cm3, which is 99.6% of the density
[4.287(2) g/cm3)] determined by the energy‐dispersive X‐ray diffraction (Figure S2 in Supporting
Information S1).

Simultaneous high pressure and high temperature ultrasonic experiments were conducted in the 1,000‐ton Kawaii
type (T‐25) multi‐anvil apparatus up to 14 GPa and 800°C in conjunction with synchrotron X‐ray diffraction and
imaging at GSECARS beamline 13‐ID‐D, Advanced Photon Source, Argonne National Laboratory. Figure S3 in
Supporting Information S1 illustrates the cross section of the ultrasonic cell assembly. The apparatus compresses
eight WC cubes, each with a corner truncated to the edge length of 8 mm, forming an octahedral cavity, within
which a 14 mmMgO‐MgAl2O4 octahedral pressure transmitting medium was compressed. The high temperature
was generated by a graphite heater and measured by a pair of W95Re5‐W74Re26 thermocouple. A poly-
crystalline Si3N4 cylinder (S. Wang et al., 2024) and a NaCl + BN (9: 1 by weight) disk were in contact with the
front and rear surfaces of the sample to serve as the acoustic buffer rod and backing material marker, respectively.
Two pieces of gold foils (2‐μm thickness) were placed at the bottom and top of the sample, which served as X‐ray
image markers for the boundary of the sample and mechanical coupling material between the buffer rod and
sample. The surfaces of the truncated corners of the WC cube, Si3N4 buffer rod, and sample were all polished to
1 μm finish with diamond paste. Before the ultrasonic experiment, the length of the stishovite sample was
measured with a micrometer, yielding a value of 1.536(1) mm.

By employing a dual mode LiNbO3 transducer, P (50 MHz) and S (35 MHz) wave travel times were obtained
simultaneously using a transfer function method (Li et al., 2005). Details of data acquisition and analysis can be
found in B. Li and Liebermann (2014). Figure S4 in Supporting Information S1 shows the representative P and S
wave signals at 12.1 GPa and 27°C, and the high signal‐to‐noise ratio echoes marked as “Anvil,” Buffer Rod” and
“Sample” are reflections from the back surfaces of the WC cube, buffer rod and sample, respectively. During the
ultrasonic experiment, the pressure was calculated directly using the experimental data of the sample (i.e., ab-
solute pressure scale) (B. Li et al., 2005). At high pressure and temperature, the sample density and length were
determined by X‐ray diffraction and X‐ray radiographic imaging technique, respectively (B. Li et al., 2004).
Energy dispersive X‐ray diffraction of the stishovite sample was collected at 2θ of 6.09°. The data was collected
along cooling path in each heating‐cooling cycle. The X‐ray diffraction pattern was refined by the Le Bail method
(e.g., Figure S5 in Supporting Information S1) in GSAS/EXPGUI (Larson & Von Dreele, 2000; Toby, 2001) to
obtain the cell parameter and hence density. Figure S6 in Supporting Information S1 illustrates a representative X‐
radiographic image. The sample length was determined by measuring the pixel numbers between the two gold
foils at the top and the bottom of the sample. Details of X‐ray radiographic imaging technique can be found in B.
Li et al. (2004). Using the two‐layer bond correction model (Noda et al., 2022), the P and S wave travel time were
corrected by 3.46 and 4.03 ns, respectively.

3. Results and Discussion
After the high pressure ultrasonic experiment, the length of the recovered sample measured by micrometer yield
1.536(1) mm, which is identical to its original length before the experiment. This indicates that the sample was
under near‐hydrostatic pressure conditions, and no plastic deformation had occurred within the sample.

P and S wave velocities of poly‐crystalline stishovite versus pressure were plotted and listed in Figure 1 and Table
S1 in Supporting Information S1, respectively. Within the current experimental P‐T range, the P and S wave
velocities monotonically increased with pressure and decreased with temperature. At room temperature (27°C),
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both P and S wave velocities agree with previous single‐crystal Voigt‐Reuss‐Hill (VRH) average values within
∼1% of Jiang et al. (2009) and Zhang et al. (2021) and up to 2.1% higher than those fromWeidner et al. (1982) and
Brazhkin et al. (2005). In addition, the VP and VS obtained in this study are ∼1.5–2.7% higher than previous
ultrasonic measurements (B. Li et al., 1996), which may be due to the presence of pores and/or impurity phase in
the previous study.

Combining the sound velocities with the density determined by X‐ray diffraction, the bulk and shear moduli were
derived using KS = ρVP

2 − 4 ρVS
2/3 and G = ρVS

2, respectively. Figure S7 in Supporting Information S1
illustrated the elastic moduli versus pressure. Within the 14.5 GPa pressure range, the adiabatic bulk and shear

Figure 1. (a) Compressional and (b) shear wave velocities of stishovite. Color squares: ultrasonic data in this study; color
lines: finite strain equations fitting; empty circles: previous ultrasonic data (B. Li et al., 1996); empty triangles,diamond, star
and hexagon: VRH average of previous Brillouin scattering data (Brazhkin et al., 2005; Jiang et al., 2009; Weidner
et al., 1982; Zhang et al., 2021); Color dash lines: DFT simulation data (Yang & Wu, 2014).
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moduli increase with increasing pressure. Together with thermal expansion coefficient αa = 1.26 10− 5K− 1,
αb = 1.29 10− 8K− 2 (Nishihara et al., 2005) and Grüneisen parameter γ = 1.34 (Stixrude & Lithgow‐Bertel-
loni, 2005), the current data was fitted to the third‐order Eulerian finite strain equations (Davies & Dzie-
wonski, 1975; B. Li and Zhang, 2005; S. Wang et al., 2021), the elastic bulk and shear moduli and their pressure
and temperature derivatives were calculated, yielding KS0 = 306.6(46) GPa, KS′ = 4.92(10), ∂KS/∂T = − 0.024(1)
GPa/K, G0 = 229.0(34) GPa, G′ = 1.07(10), and ∂G/∂T = − 0.017(1) GPa/K.

Table 1 compared the current result with previous sound velocity and equation of state studies. Using
Brillouin scattering, Weidner et al. (1982) reported the KS0 and G0 of 316 and 220 GPa, respectively.
Brazhkin et al. (2005) confirmed this observation with the KS0 and G0 of 316 and 222 GPa, respectively.
Jiang et al. (2009) measured the elasticity of single crystal stishovite up to 12 GPa at ambient temperature, the
KS0 and G0 of poly‐crystal stishovite were derived as 308 and 228 GPa, respectively. A later study (Zhang
et al., 2021) measured the elastic moduli of single crystal stishovite/post‐stishovite at 0− 70 GPa using
Brillouin scattering and impulsive stimulated light scattering. By re‐fitting the data (up to 14.6 GPa) to the
finite strain equations, the K0 and G0 of poly‐crystal stishovite yield 307.5 and 229.4 GPa. The current bulk
moduli (306.6 GPa) and shear moduli (229.0 GPa) are in good agreement with the previous high pressure
Brillouin studies. Using density functional theory (DFT) simulation, Yang and Wu (2014) calculated the
elastic moduli of stishovite up to 65 GPa and 2,727°C. By re‐fitting the data up to 15 GPa and 727°C, the
temperature derivatives of the bulk and shear moduli are − 0.027 and − 0.018 GPa/K, respectively, which
agree well with our current study. The VP and VS at ambient conditions, calculated from KS0 and G0 in this
study, are 11.948(60) and 7.309(37) km/s, respectively. Those values are consistent with those reported by
Brillouin scattering studies within 0.5%.

Table 1
Comparison of Elastic Moduli of Stishovite With Previous Experimental and Calculation Results (Andrault et al., 2003; Brazhkin et al., 2005; Jiang et al., 2009; Karki
et al., 1997; B. Li et al., 1996; J. Liu et al., 1999; Luo et al., 2002; Nishihara et al., 2005; F. Wang et al., 2012; Weidner et al., 1982; Yamanaka et al., 2002; Yang &
Wu, 2014; Zhang et al., 2021)

Method
KS0
(GPa) KS′

∂KS/∂T
GPa/K) KT0 (GPa) KT′

∂KT/∂T
(GPa/K)

G0
(GPa) G′

∂G/∂T
(GPa/K)

Pmax
(GPa) Tmax (°C) Reference

Ultrasound 306.6
(46)

4.92
(10)

−0.024
(1)

308.2(46)a 4.90(10)b −0.031c 229.0
(34)

1.07
(10)

−0.017
(1)

14.5 800 This study

305(5) 5.3(1) 217(4) 1.8(1) 3 Ambient Li et al. (1996)

Brillouin
scattering

308(1) 4(1) 228(1) 1.1(1) 12 Ambient Jiang et al. (2009)

307.5 4 229.4 1 Re‐fit
to 14.6

Ambient Zhang et al. (2021)

316(4) 220(3) Ambient Ambient Weidner et al. (1982)

316(4) 222(5) Ambient Ambient Brazhkin et al. (2005)

Theoretical
calculation

290.1 5.02 − 0.027 213.1 1.71 − 0.018 Re‐fit
to 15.0

Re‐fit to 727 Yang and Wu (2014)

312 226 Ambient − 273 Karki et al. (1997)

Shock wave 306(5) 5.0(2) 250 corrected to
ambient

Luo et al. (2002)

XRD 297(5) 4.3(4) − 0.046
(5)

22 800 Nishihara et al. (2005)

296(2) 294(2) 4.85(12) 54 1,427 Wang et al. (2012)

294(2) 5.3 (fixed) − 0.041
(11)

10 1,000 Liu et al. (1999)

309.9(11) 4.59(23) 53 Ambient Andrault et al. (2003)

292(13) 6 (fixed) 29.1 Ambient Yamanaka et al. (2002)

Note. Where α is thermal expansion coefficient, γ is Grüneisen parameter. aKT0 = KS/(1 + αγT ). bKT′ = [KS′ − γT/KT (∂KT/∂T )]/(1 + αγT ). c∂KT/∂T = (∂KS
/∂T )/(1 + αγT) − KS/(1 + αγT )2 [αγ + (∂α/∂T )γT].
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To compare with previous equation of state studies, we converted the adia-
batic bulk moduli and its pressure and temperature derivatives to isothermal
values using equations in Speziale and Duffy (2002). The calculated KT0

(308.2 GPa) and KT′ (4.90) are within the range (KT0: 292− 309.9 GPa, KT0′:
4.3− 6) reported in previous studies (Andrault et al., 2003; J. Liu et al., 1999;
Luo et al., 2002; Nishihara et al., 2005; F. Wang et al., 2012; Yamanaka
et al., 2002). The ∂KT/∂T (− 0.031 GPa/K) calculated from ∂KS/∂T is
∼0.01 GPa/K higher than that determined by X‐ray diffraction studies (J Liu
et al., 1999; Nishihara et al., 2005), which could be in part caused by the
tradeoff between the bulk modulus and its pressure and/or temperature de-
rivative during equation of state data analyses in different studies.

4. Implication for Detecting Eclogite in the Hawaii Hotspot
Kemp et al. (2019) identified an X‐discontinuity beneath the Hawaii hot‐spot
through receiver function analysis. Their findings indicate that to the east of
the Big Island, the X‐discontinuity is located at a depth of approximately
336 km, displaying a strong receiver function amplitude. In contrast, the
“410” discontinuity was observed at a depth of 446 km, exhibiting an
extremely weak amplitude. Previous studies used the formation of phase A
(L.‐G. Liu, 1987; Revenaugh & Jordan, 1991) [forsterite + H2O → ensta-
tite + phase A] to explain the X‐discontinuity in the upper mantle. However,
this reaction requires low temperature (up to 1,000°C at 300 km) and high
water concentration in the mantle (Komabayashi et al., 2005). Such condi-
tions cannot be met in the hot environment in the Hawaii area. A later study,
which conducted experiments up to 1,600°C and suggested that formation of
anhydrous phase B (forsterite + periclase → anhydrous phase B) can
potentially contribute to the X‐discontinuity (Ganguly & Frost, 2006).
However, this reaction require free ferropericlase to occur in subduction
zones (Ganguly & Frost, 2006). Another proposed mechanism is the
orthopyroxene‐high pressure clinopyroxene phase transition (Angel
et al., 1992; Woodland, 1998). However, more recent studies suggest that this
phase transition can only produce weak impedance contrast in mantle peri-
dotite (T. Chen et al., 2015; Schmerr, 2015; Xu et al., 2008), especially at
higher temperature, hence may not be seismically detectable. Another
possible candidate for the X‐discontinuity is coesite‐stishovite phase transi-
tion (T. Chen et al., 2015, 2017; Schmerr, 2015; Williams & Reve-
naugh, 2005). Using dynamic simulation, Ballmer et al. (2013) explored a
eclogite‐rich plume. Their results suggested that a silica‐bearing eclogite‐rich
layer can be formed at depth around 300 − 410 km. Kemp et al. (2019)

indicated the coesite‐stishovite transition in an eclogite + harzburgite layer can potentially explain the X‐
discontinuity in Hawaii area. To explore this hypothesis further, we calculated velocity profiles beneath the
Hawaii hotspot.

The preliminary reference Earth model (Dziewonski & Anderson, 1981) suggested, at depth of 336 km, the
pressure is about 11.1 GPa corresponding to a temperature of 1,637°C according to the coesite‐stishovite phase
boundary (Akaogi et al., 2011). Notably, this temperature is 170°C higher than the temperature along a recently
proposed 1,373°C (1646 K) adiabatic geotherm (Katsura, 2022) at depth of 336 km. By analyzing olivine‐liquid
equilibria and olivine phenocrysts, Putirka (2005) suggested that the mean temperature in Hawaii is 1,620(55)°
C and the derived potential temperature is 213–235°C higher than that of ambient middle ocean ridges. In
addition, a seismic study indicated that temperature of the mantle beneath Hawaii is 87–129°C higher than
ambient mantle conditions (Courtier et al., 2007). A more recent seismic study (Bao et al., 2022) confirmed this
observation with an even higher excess temperature range (121–206°C). The estimated temperature (1,637°C)
is in general agreement with the temperature range given above. Therefore, we calculated the P and S wave
velocities of coesite (T. Chen et al., 2015, 2017) and stishovite along the adiabatic temperature profile

Figure 2. (a) Compressional (P), and (b) shear (S) velocities of eclogite along
adiabatic temperature + 170°C.
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(Katsura, 2022) +170°C. The result is shown in Figure S8 in Supporting
Information S1. At 336 km depth, the VP and VS contrast (defined as

Vstv − Vcoe
0.5(Vstv+Vcoe)

) between the coesite and stishovite is 39% and 56%, respectively.
Following the same P‐T profile, together with the elastic data of garnet and
clinopyroxene (Gwanmesia et al., 2014; Hao et al., 2019, 2021), we further
calculated the one‐dimensional velocity‐depth profiles of eclogite by using
Voigt‐Reuss‐Hill averages (S. Chen et al., 2022; Hill, 1963). The mineral
proportion was referred to Aoki and Takahashi (2004) (Figure S9a in
Supporting Information S1). The results (Figure 2) suggest that at 336 km,
even with 5.6 vol% free silica (Aoki & Takahashi, 2004), the coesite‐
stishovite phase transition can produce VP and VS contrast by 2.4% and
3.5%, respectively. A broadband array observations suggested the VS

contrast of X‐discontinuity at Hawaii is 1.5%–2% (Schmerr et al., 2013).
Based on previous elastic data (Gwanmesia et al., 2006; Kung et al., 2005;
W. Liu et al., 2005, 2009) and mineralogical model of harzburgite (Figure
S9b in Supporting Information S1) (Irifune & Ringwood, 1987), we
calculated the velocities for an aggregate with eclogite + harzburgite
composition assuming that they are mechanically mixed. The result was
plotted in Figure 3. The calculated profile suggests that an aggregate with
41%–55 vol% eclogite can produce 1.5%–2% VS contrast at depth of
336 km. This result is in good agreement with that estimated using synthetic
receiver function amplitude (e.g., 40%–50% eclogite + 50%–60% harzbur-
gite) (Kemp et al., 2019). With depth increased to 448 km, due to the
olivine‐wadsleyite phase transition in the harzburgite, the VS further in-
creases and the contrast is 4.3%–5.7%, which is up to ∼4 times higher than
that of the X‐discontinuity at 336 km. This high VS contrast results in the
higher amplitude of the “410” discontinuity. However, the seismic obser-
vations suggested that, in the Hawaii area, the amplitude of the X‐
discontinuity is stronger than that of the “410” discontinuity (Kemp
et al., 2019). This discrepancy could be indicative of a higher eclogite
content (e.g., >77 vol%) at depth of 448 km.

Our calculation result tends to support the eclogite‐rich layer model in the
Hawaii area (Figure 4). At the top of the layer the eclogite concentration is
41%–55%, while the value increased to >77% at the bottom. However, the
remaining question is where eclogite comes from. Previous dynamic sim-
ulations suggest that the recycled oceanic crust can be entrained by the
mantle plume and brought back to the upper mantle (M. Li, 2021). Ballmer
et al. (2013) performed a regional modeling at Hawaii, and their result
showed that the thermochemical plumes containing an eclogite component

tended to form a layer at ∼300–410 km depth. Dannberg and Sobolev (2015) also showed that under certain
temperature and plume size, the thermochemical plumes can entrain recycled oceanic crust. In addition to that,
previous seismic study reported a mid‐mantle discontinuity at ∼1,050 km depth beneath Hawaii (Shen
et al., 2003), which can possibly be interpreted by the stishovite− post‐stishovite phase transition (Yang &
Wu, 2014; Zhang et al., 2021, 2022). This further supports the existence of recycled crust in the lower mantle,
if assuming the free silica was from the recycled crust. Hence, the eclogite can be possibly transported by the
mantle plume from lower mantle to the upper mantle. Once the plume rises through the olivine‐wadsleyite
phase transition, it becomes less buoyant and begins to accumulate and spread out, ultimately forming a
eclogite‐rich layer (Ballmer et al., 2013). At the top of the layer (∼336 km) the eclogite concentration is 41%–
55 vol%. Due to the coesite‐stishovite phase transition, the S‐wave velocity of the bulk assembly increased by
1.5–%2% and was detected as the X‐discontinuity. At the bottom of the layer (∼448 km), the eclogite con-
centration increased to >77 vol%, consequently diminishing the amplitude of the “410” discontinuity.

Figure 3. (a) Compressional and (b) shear wave velocities of
eclogite + harzburgite, assuming minerals are mechanically mixed.

Geophysical Research Letters 10.1029/2023GL107700

CHEN ET AL. 6 of 9

 19448007, 2024, 16, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
107700 by U

niversity O
f C

hicago L
ibrary, W

iley O
nline L

ibrary on [16/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



5. Conclusions
We investigated the compressional and shear velocities of polycrystalline
stishovite up to 14.5 GPa and 800°C using ultrasonic interferometry with in
situ synchrotron X‐rays. Within the P‐T range, the P and S velocities, as well
as the adiabatic bulk and shear moduli, exhibit a monotonic increase with
increasing pressure and decrease with increasing temperature. By fitting the
measured velocities to the third‐order Eulerian finite strain equations, the
elastic moduli of stishovite and their pressure and temperature derivatives
were obtained, yielding KS0 = 306.6(46) GPa, KS′ = 4.92(10), ∂KS/
∂T = − 0.024(1) GPa/K, G0 = 229.0(34) GPa, G′ = 1.07(10), and ∂G/
∂T = − 0.017(1) GPa/K. With the current data together with those from
literature for other mantle phases, we calculated the velocity profile of the
eclogite in the Hawaii area, and found that at 336 km depth the P and S wave
velocities of the eclogite exhibit first order increases with a velocity contrast
of 2.4% and 3.5%, respectively. A comparison between receiver function
observation in Hawaii and the velocity contrasts of eclogite + harzburgite
shows that the coesite‐stishovite transition in the eclogite can potentially be

responsible for the occurrence of the X discontinuity. Our results tend to support the eclogite‐rich model in
Hawaii. The eclogite concentration at the top (∼336 km) and bottom (∼448 km) of the layer is 41–55 vol.% and
>77 vol.% respectively.

Data Availability Statement
The original data collected by this study can be found in Zenodo (S. Chen, 2024). The elastic data of mantle
minerals are available in Gwanmesia et al. (2014, 2006), Hao et al. (2021, 2019), Kung et al. (2005), W. Liu
et al. (2005, 2009), and T. Chen et al. (2015, 2017). The mineral proportions data are available in Akaogi
et al. (2011) and Irifune and Ringwood (1987).
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