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We present a predictive and general approach to investigate near-field energy transfer processes between
localized defects in semiconductors, which couples first-principles electronic structure calculations and a nonrel-
ativistic quantum electrodynamics description of photons in the weak-coupling regime. The approach is general
and can be readily applied to investigate broad classes of defects in solids. We apply our approach to investigate
an exemplar point defect in an oxide, the F center in MgO, and we show that the energy transfer from a magnetic
source, e.g., a rare-earth impurity, to the vacancy can lead to spin nonconserving long-lived excitations that
are dominant processes in the near field, at distances relevant to the design of photonic devices and ultrahigh
dense memories. We also define a descriptor for coherent energy transfer to predict geometrical configurations
of emitters to enable long-lived excitations, that are useful to design optical memories in semiconductor and
insulators.
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I. INTRODUCTION

Energy transfer between localized emitters embedded in a
solid host material, for example point defects, is a ubiquitous
phenomenon of interest to several fields, including photonics,
microelectronics, and quantum networks. Energy transfer may
be mediated by several complex mechanisms, including direct
tunneling, photons, and phonons. Here we focus on photon
mediated transfer from source to absorber, i.e., fluorescent
resonance energy transfer (FRET) or nonradiative resonance
energy transfer (NRET) [1–5], and we consider the near-field
regime where the source-absorber distance is smaller than the
wavelength of the photons being transferred.

This regime is of interest, for example, to study quantum
emitters in close proximity of each other in semiconductors
and insulators [6], and/or emitters close to other impuri-
ties such as oxygen vacancies in oxide hosts. Understanding
NRET phenomena is critical to gain insight into the design of
solid-state rare-earth-doped quantum memories and repeaters
[7], as well as, potentially, ultrahigh density classical optical
memories. In particular, we envision to individually address,
by optical means, narrow band rare-earth (RE) emitters [8] out
of an ensemble dispersed in a solid-state host, for example an
oxide, and to transfer narrow-band excitations to a proximal
defect (see Fig. 1 and Appendix A). In such platforms, with a
realistic few ppm doping, the average separation between REs
and defects can be of the order of ∼5 to ∼10 nm—a distance
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much smaller than the wavelength of the optical/near infrared
(NIR) photons (∼500 nm to ∼1 μm). Thus, NRET processes
at the near-field regime play a critical role. We also envision
enhancing the lifetime of the excitation transferred between
the RE and a nearby defect through spin nonconserving
transitions.

In the near field [1–5,9], transitions corresponding to op-
tical absorption and emission processes have characteristics
markedly different from those of electronic transitions occur-
ring in the far-field regime and may result in violation of
spin and orbital selection rules [9–12] that are valid in the
far field. The ability to engineer spin- or orbital-forbidden
optical absorption excitations in emitters at near field provides
a pathway to significantly increase the lifetime of optical
memories (Appendix A). The material systems relevant to
such technologies span, in principle, a wide range including
native defects [13,14] (F centers, Frenkel defects), implanted
defects, and deposited dopants (rare-earth in oxides [6,7,8,15–
20], NV and SiV in diamond [21–24], donor or acceptors in
semiconductors), and quantum dots [25–27].

Investigating such a vast range of material systems de-
mands a theoretical approach that allows for an efficient way
to account for the symmetry, spread, and many-body nature
of the wave functions of the localized emitters and hence it
requires the use of first-principles electronic structure theories
such as density-functional theory (DFT) [28–30], many body
perturbation theories [31–33] or, if multireference states are
present, more sophisticated approaches such as quantum em-
bedding [34–37] theories and time-dependent DFT [38].

Historically the study of resonant energy transfer has
developed in the field of molecular quantum electrodynam-
ics (QED) to address energy transfer between molecules
and molecular complexes [39–45]. In the solid state, NRET
processes have also been explored to understand exciton diffu-
sion, transfer, and light trapping mechanisms [3,46]. In either
case, dipole-dipole approximations were often adopted, and
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FIG. 1. (a) A schematic representation of ultrahigh density opti-
cal memories proposed here (Appendix A) where each memory-cell
in a solid host contains an ensemble of rare-earth (RE) emitters
(source, red) and point-defects (absorber, blue). (b) A RE emitter-
defect complex representing the working “unit” of the memory.
Optical excitations of RE emitters that are spectrally separated can
be transferred to a suitable defect in the proximity of the emitter
to trap the excitation and increase its lifetime. The source (S) and
the absorber (A) are separated by distance R̄. The photon propaga-
tion (curly arrow) is treated within quantum electrodynamics. The
ground and excited states of S and A are labeled with GS and ES,
respectively and the photon by |1k,αS 〉, where k indicates the photon
momentum and αS represents the set {L = orbital angular momen-
tum, Jz = total angular momentum projected to a chosen direction
z, P = parity} specifying the multipole mode of the photon. The
linewidth of the transition at finite timescale is γ

(S/A)
1 = 1/T (S/A)

1 (T1

is the decay lifetime); due to the finite linewidth, energy transfer may
occur even if energy levels are mismatched by a frequency difference
�ω.

the matrix elements for photon absorption and emission de-
fined phenomenologically.

On the other hand, the approach of quantum electrody-
namical density-functional theory (QEDFT) [47–50] treats
the light matter coupling entirely from first-principles with
a full diagonalization of the electron-photon coupled system
(polaritons and exciton-polaritons). Such an approach is best
suited to describe a strong-coupling regime where the light-
matter coupling can be comparable to the energy of the photon
itself. While QEDFT enabled unique applications in polari-
tonic chemistry, for example polaritonic catalysis [49–50], the
approach is computationally rather demanding, and it typi-
cally considers a single cavity mode coupled with localized
electronic systems such as isolated molecules.

However, there are several instances of weak coupling
between light and matter, in particular quantum emitters in
solids, where a full polariton treatment is neither necessary
nor feasible, and a perturbative approach is warranted. Here
we model the light matter coupling at localized emitters in the
solid state from first-principles, where the complexity of the
solid host material and its interaction with the defect are taken
into account We use the Pauli Hamiltonian [51–54] to describe
the light-matter coupling with the photon field operators
expressed in a multipole basis [55–57]. The properties of
the multipole basis are exploited to increase the efficiency of
our calculations, paving the way to tackle large ensembles
of defects in a condensed matter environment, which would
be difficult to treat in a plane wave basis. We thus report a

general framework for the calculation of the energy transfer
between localized emitters in solids, at arbitrary separation
(near/ far field) where the electronic structure and light matter
interaction are treated with a rigorous first-principles theory,
and the propagation of the photon is treated within a quantum
electrodynamical picture valid at any arbitrary distance. The
approach is readily applicable to broader classes of localized
emitters in any semiconducting/insulator host material. As an
example, we use our approach to investigate energy transfer
in a realistic system of localized defects in a typical insulating
host, MgO with F centers, which are commonly found in
real substrates. We consider a magnetic and an electric
dipolar source emitting at near field (mimicking a rare-earth
substitutional site in the host), and we investigate NRET
processes as a function of the source-to-absorber distance
and orientation. We also discuss configurations and criteria to
obtain dominant spin-flip transitions in the near field, which
are relevant for the design of classical optical memories and
of quantum networks.

In the rest of the paper, we lay out the theoretical approach
that integrates first-principles electronic structures, and non-
relativistic QED to study NRET between arbitrary localized
emitters in solids from nanometer to macroscopic separations.
We then apply our approach to the F center in MgO and
highlight the key differences between near-field and far-field
absorption processes, and we define an effective radius for
coherent transport rates and discuss its implication to device
design.

II. THEORETICAL APPROACH

We start by presenting our theoretical approach to calcu-
late the time dependent probability amplitude for the NRET
between two emitters at an arbitrary separation and orienta-
tion in a solid host. We assume that the main transitions of
interest to NRET between quantum emitters are those between
the localized bound states of electrons within the source and
the absorber [Fig. 1(b)], and do not consider any transitions
between the bulk extended states [58]. We further assume that
the emitters are sufficiently distant from each other so that
there is no overlap between their respective electronic wave
functions, and direct Coulomb interaction can be neglected.
We write the Hamiltonian of the coupled emitter-photon sys-
tem as

H = HS + HA + HField + Hint. (1)

Here HS and HA are the Hamiltonians of the source S (for
example a rare-earth impurity in an oxide) and absorber A
(for example an oxygen vacancy in an oxide) respectively,
and HField is the Hamiltonian of the photon. We define H0 =
HS + HA + HField as the unperturbed Hamiltonian and Hint as
the light-matter interaction perturbation on H0.

In general, HS/A are many body Hamiltonians expressed
as HS/A = ∑

n εS/A
n |�(S/A)

n 〉〈�(S/A)
n |, where the many elec-

tron eigenstates, |�(S/A)〉 can be written as a sum of
Slater determinants constructed from single electronic states
{|φ(S/A)

i 〉, i = 1 : NS/A}, NS/A being the number of the sin-
gle particle electronic states in the source S or the absorber
A. These Hamiltonians include the interaction between the
source and emitter and the host matrix from first prin-

033170-2



FIRST-PRINCIPLES INVESTIGATION OF NEAR-FIELD … PHYSICAL REVIEW RESEARCH 6, 033170 (2024)

ciples. The field Hamiltonian is expressed as HField =∑
k, α h̄ωk (a†

k, α
ak, α + 1

2 ), where a†
k, α

is the creation operator
of a photon in the mode {k, α }; k is the radial wave number
and α represents the set {L, JZ , P} specifying the symme-
try and polarization— L being the photon’s orbital angular
momentum, JZ the photon’s total angular momentum (orbital
and spin) projected along a chosen direction z, and P the
parity. The state of the photon, emitted from the source S,
is represented as a linear combination of radiating multipole
modes [55–57, Appendix B] denoted by |1k,αS 〉. The subscript
S of α indicates that the multipolar mode is defined centered
around S. These modes, obtained by solving the Maxwell
equations, are standing waves, with a Bessel j function as
radial part, for a perfectly bound spherical cavity. For an open
cavity the radial functions are instead type 1 Hankel functions
[Appendix B].

We write Hint as

Hint =
∑

E=S,A

NE∑
i=1

[
−ep̄i · Ā

2m0
− e Ā · p̄i

2m0
+ e2Ā · Ā

2m0

+ eA0 + g
eh̄

2m0
σ̄ i · ∇̄ × Ā

]
. (2)

Here, p̄i and σ̄i are the momentum operator and the Pauli
spin operator of the ith electron, m0 is the rest mass of elec-
trons, e is the electron charge, h̄ is the Planck constant; g is the
Lande g factor of the electron which is equal to 2 for free elec-
trons and may take different values due to magnetic screening
[59]. The g factor, directly probed in electron paramagnetic
resonance (EPR) measurements, can be computed using DFT
[59]. The operators Ā and A0 are the magnetic vector poten-
tial and scalar potential field of the photon. Their action on
a multipole state |1k,αS 〉 with αS = {L, Jz, P} is expressed
as Ā|1k,αS 〉 = Āk,αS

(r̄, t )|0〉 and A0|1k,αS 〉 = A0; k,αS
(r̄, t )|0〉

. Here r̄ is the position in the crystal referred to the source.
At the typical ∼1 eV energy scale of the photon, the photon’s
wavelength is much larger compared to the lattice constant
of the host and thus the host material is taken as a homoge-
neous dielectric. Thus, the fields Āk,αS

(r̄, t ) and A0; k,αS
(r̄, t )

can be expressed analytically. For an electric type of mode
((−1)L = P):

Āk,αS
(r̄, t ) = 1

4π

√
k

Rnorm

[(√
L

2L + 1
gL+1(kr) ȲL, L+1, Jz (r̂) +

√
L + 1

2L + 1
gL−1(kr) ȲL, L−1, Jz (r̂)

)

+C

(
−

√
L + 1

2L + 1
gL+1(kr) ȲL, L+1, Jz (r̂) +

√
L

2L + 1
gL−1(kr) ȲL, L−1, Jz (r̂)

)]
e−iωkt (3)

and

A0; k,αS
(r̄, t ) = C

4π

√
k

Rnorm
gL(kr) YL, Jz (r̂)e−iωkt . (4)

Here gL(kr) = 4π iLzL(kr), zL(kr) are spherical Bessel
functions, YL, M and ȲJ, L, M are spherical scalar and vector
harmonics respectively, and Rnorm denotes the radius of the
normalizing sphere for the multipole mode (see Appendix B
for details). For a magnetic type of mode ((−1)L = −P), the
vector and scalar potential fields are

Āk,αS
(r̄, t )= 1

4π

√
k

Rnorm
gL(kr) ȲL, L, Jz (r̂)e−iωkt (5)

and

A0; k,αS
(r̄, t ) = 0. (6)

The constant C is an arbitrary parameter representing
gauge freedom. The choice of C does not affect the value of
the matrix elements discussed below, but the computation can
be simplified by choosing C = 0 (radiation gauge of Coulomb
gauge) for which the scalar potential vanishes [Eq. (4)]. This
results in a Coulomb gauge formalism in the minimal coupling
form [60] in the multipolar basis. We also neglect here elastic
scattering of photons represented by the e2Ā·Ā

2m0
term [54] since

it does not play a role in energy transfer process. Eq. (2),
derived from the generalized Kramers-Heisenberg or Pauli

Hamiltonian [51] reduces to eĒ · r̄ only under specific con-
ditions [54]: (1) resonant conditions, i.e., when the frequency
of the photon matches the energy gap of the electronic states
and when (2) the electronic states are eigenfunctions of a
local Hamiltonian. The first criterion does not apply for NRET
where significant energy transfer may occur under nonreso-
nant conditions. In addition, in DFT calculations with hybrid
functionals, nonlocal terms are introduced in the Hamiltonian,
in addition to nonlocal terms present in the pseudopotentials,
such as the Kleinman-Bylander projectors and the optimized
Vanderbilt projectors [61]. Thus, the fully general Ā · p̄ form
[Eq. (2)] should be used when first-principles hybrid DFT
calculations are carried out.

As mentioned in the introduction, in nonrelativistic
QEDFT [47–49] the Hamiltonian [Eq. (1)] is diagonalized
for arbitrary light matter coupling strengths and coupled elec-
trons and photons (polaritons and exciton-polaritons) wave
functions are computed. Such an approach allows for the
exploration of strong coupling regimes useful to investigating
phenomena such as polaritonic catalysis [50]. However, in the
case of NRET between localized defects in a bulk solid, the
photon modes leak into the continuum within ∼femtosecond
time scale, while light matter coupling (as measured by ra-
diative decays) usually occurs within ∼nanosecond or longer
time scales for typical emitters, including deep-levels and
rare earths in semiconductors and insulators, and quantum
dots. These conditions define the so-called weak coupling
regime, whose description may be obtained using a perturba-
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tive approach, where the unperturbed states of electrons and
photons are used as basis sets for the interacting Hamiltonian
of Eq. (1).

We consider an initial state where only the source S is in
an excited state (ES), no photon is present in the system and
the absorber is in the ground state (GS): �i = �(t = 0) =
|ES(S)〉|GS(A)〉; after the energy is transferred from S to the ab-
sorber A, the system is in the final state � f = |GS(S)〉|ES(A)〉.
The energy transfer between S and A can occur through
all possible intermediate states |I〉 = |GS(S)〉|GS(A)〉|1k,αS 〉 or
|ES(S)〉|ES(A)〉|1k,αS 〉 [See Appendix G]. In these two interme-
diate states, the photon mode |1k,αS 〉 constitutes the spherical
Hankel function of type (1) or type (2), respectively, to rep-
resent outward propagating and inward propagating spherical
waves centered at S. Thus, the effect of retarded and advanced
photon green function can be separated from the beginning
by choosing the type of the Hankel function. We here take
the intermediate states represented by the type 1 Hankel func-
tion to understand the energy propagation from S to A. This
is different from plane wave formulation where sum of all
plane wave modes automatically includes both retarded and
advanced parts and a Fourier transform is needed to separate
the two [4,5].

The NRET amplitude c(t ) = 〈� f |�(t )〉 is [4,5]

c(t ) = 2M

h̄

sin
(

�ω
2 t

)
�ω

e− t
2T1S . (7)

Here ω(S/A) = 〈ES(S/A)|H(S/A)|ES(S/A)〉−〈GS(S/A)|H(S/A)|
GS(S/A)〉 are the electron state transition energies for the
source and the absorber in the solid state environment, and
�ω = ω(A) − ω(S) is the energy mismatch between the source
and the absorber transitions as indicated in Fig. 1(b), T1S is
the decay rate of the isolated source, and within second- order
perturbation theory, the matrix element M is expressed as a
sum over all possible intermediate states:

M =
∑

I

〈� f |H̃int|I〉〈I|H̃int|�i〉
h̄(ωi − ωI )

, (8)

where H̃int (t ) = e
iH0t

h̄ Hint (t )e− iH0t
h̄ . Here ωI and ωi represent

the energy of the intermediate state and the energy of the
initial state, respectively. For the absorption of a photon in the
state |1k,αS 〉 resulting in an electronic transition from |GS(A)〉
to |ES(A)〉 at the absorber site, we define the photon absorption
matrix element:

V (A)
k, αS

= 〈� f |H̃int|I〉 = 〈ES(A) | H̃int

∣∣GS(A), 1k,αS

〉
. (9)

Equation (9) can be simplified to an expression containing
only integrals of single electron orbitals φ

(A)
i/ j using the Slater-

Condon rule [62, 63, Appendix C and D]:

V (A)
k, αS

= 〈
φ

(A)
i

∣∣H̃int

∣∣ φ
(A)
j , 1k,αS

〉
. (10)

Similarly, for the emission of a photon |1k,αS 〉 resulting
from an electronic transition from the excited state |ES(S)〉 to
the ground state |GS(S)〉, we define the matrix element:

V (S)
k,αS

= 〈I|Hint|�i〉 = 〈
φ

(S)
i , 1k,αS

∣∣H̃int

∣∣φ(S)
j

〉
. (11)

As shown in Appendix G, it is convenient to use the fol-
lowing expressions for the matrix elements V (S)

k,αS
= v

(S)
k,αS

√
�k,

and V (A)
k,αS

= v
(A)
k,αS

√
�k. Here �k is the width of the mode

|1k,αS 〉 in k space and is related to the radius of the normalizing
sphere Rnorm : �k = π/Rnorm. From Eq. (8) we have

M = iπni

h̄c

∑
α

v
(S)
kS,αS

v
(A)
kS , αS

, (12)

where the expression of M is general and contains all the
multipolar contributions along with the absorption and emis-
sion matrix elements defined from first principles. Here ni

represents the refractive index of the host material and c
the vacuum speed of light. We emphasize that Eq. (12) not
only goes beyond the dipolar approximation, but also con-
tains the interactions between the source and absorber and the
solid matrix, through the calculation of the matrix elements
Eqs. (10) and (11). Under the dipole approximation in the
long wavelength limit the expression in Eq. (12) is consistent

with M(R̄) = p̄S · G(R̄) · p̄A, where G is the electromagnetic
Green function, and p̄S and p̄A are the transition dipoles at the
source and the absorber. For convenience we can express the
transfer amplitude c(t ) as a function of the mediating photon
amplitude ck (t ), with c(t ) = ∫ dkck (t ), where (Appendix G)

ck (t ) = 1

h̄2

∑
αS

v
(S)
kS ,αS

v
(A)
kS,αS

ωk − ωS

×
(

e−iωSt − e−iωAt

ωA − ωS
− e−iωkt − e−iωAt

ωA − ωk

)
. (13)

Equation (13) is analogous to similar expressions using a
plane wave basis (for example Eq. (1) of Ref. [4]). However,
here the momenta of the multipole modes are expressed by a
number (k = radial momentum) and not a vector (as in plane
wave basis), thus simplifying the expressions particularly for
the higher order multipoles [11,12] of interest to the discus-
sion of our results.

We note that expressing v
(A)
kS ,αS

and v
(S)
kS, αS

from first prin-
ciple allows for the study of different, interesting cases of
emitters in solids: (i) emitters with electronic states localized
in < nm scale, which can be described using DFT [28–30],
many body perturbation theories [31–35], or embedding the-
ories [36–38]; (ii) emitters such as rare-earth substitutional
sites where one can derive the associated multipoles of the
transitions either from theory, including crystal field theory
[64–66], or from experiments [7,8]; and (iii) emitters such
as quantum dots for which the wave functions of the bound
electron and hole may extend over ∼20 nm and may be
described using a single particle picture, together with our
perturbative approach with higher order multipoles [67]. In
addition, first-principles calculations of the matrix elements
pave the way to predictive discoveries of viable defects and
host platforms for optical memories and quantum networks,
since we do not assume any ad hoc model for the source and
emitters, and we consider their electronic structure within the
solid.

As an example, we now turn to describe energy transfer in
a well-known defect in MgO, the F center, where we assume
photon sources are provided by rare-earth defects implanted
in the material and pinpoint the uniqueness and the relevance
of the near-field effects.
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FIG. 2. (a) Schematic representation of the energies of the | s〉
and |p〉 states localized at the VO: MgO that participate in optical
absorption and emission transitions. The conduction band minimum
and valence band maximum of the host are indicated by CBM and
VBM, respectively. (b) Projections of the square moduli of the Kohn-
Sham wave functions |ψ (z)|2 of the |s〉 and |pz〉 states along a chosen
direction z, computed with semilocal (PBE) and hybrid (DDH) func-
tionals (Appendix F). Owing to the highly localized nature of the
orbitals, the inclusion of the exact exchange in the KS Hamiltonian
has little effect on the orbital, as seen by the difference between PBE
and DDH results.

III. RESULTS: F CENTER IN MGO

In recent years MgO has been studied as a potential host
for spin defects to build quantum memories and quantum
networks [68]. In such systems, it is common to observe en-
ergy transfer between spin defects acting as quantum emitters
and oxygen vacancies present in the surrounding environ-
ment, resulting in dephasing of the spin defects. Similarly,
in substrates with coexisting rare-earth dopants and oxygen
vacancies, NRET from rare earths to the localized states of
the oxygen vacancies constitute a possible excitation process.
Particularly if such excitation process is dominantly a spin-
flip transition, it could be used to create long lived defect
excitations.

Here we consider the energy transfer to an F center, i.e.,
a neutral oxygen vacancy (VO: MgO), which has two lo-
calized electrons. The VO: MgO has been experimentally
and theoretically studied for several decades using optical
absorption, photoluminescence, and electron spin resonance
techniques [69–72]. Experimentally, the optical absorption of
neutral F centers is found at ∼5 eV and emission at ∼2.3 eV
and ∼3 eV [70,71]. As indicated in Figs. 2(a) and 2(b), the
relevant single electron orbitals are the localized s-type (a1g)
orbitals that are midgap, filled orbitals in the ground state,
and the empty triply degenerate localized p-type (t1u) orbitals
(referred to as px,y,z) above the conduction band minimum
(CBM). An excitation from the many-body ground 1A1g state
may result in either excited singlet (1T1u) or triplet (3T1u)
states. The ∼5 eV absorption is assigned to the singlet-to-
singlet transition 1A1g → 1T1u [36–38,70,71,73–76] and the
singlet-to-triplet absorptions are known to be forbidden at
far field. There has been much debate regarding the nature

of the emission [68–70,72–75]. Recent work has shown that
the ∼2.3 eV emission likely originates from the transition
from the triplet 3T1u to the ground state 1A1g [37,38], whereas
the ∼3 eV emission is likely from a bound exciton [38]. All
studies of optical absorption and emission on the VO: MgO
reported so far have only addressed the far-field regime, as
most studies of point defects in solids. Below we explore the
near-field regime.

A. Transition matrix elements as a function of distance
at near field

When the distance between the emitters in a host is small
compared to the wavelength of the photon being exchanged,
the lifetime of the photon is shorter than its time period. The
energy of such a short-lived photon (commonly referred to
as virtual photon [9]) exhibits a large quantum uncertainty,
resulting in an electric and magnetic field that vary as ∼1/R3

[1], R being the distance from the source (see Fig. 1). As
R increases, the photon’s propagation characteristic and its
lifetime vary [10], eventually leading to an ∼1/R dependence
of the E and H fields at larger distances. For typical atomic de-
fects, the spatial extent of the emitter can be ignored compared
to the variation of the field at this far-field regime, leading to
the dipole approximation. In contrast, at the near field, the
energy density and the E and H fields of the photon may
vary significantly over the spatial extent of an absorber, and
higher order multipoles cannot be neglected when describing
the energy transfer processes [2,12].

We numerically computed the matrix elements v
(A)
k,αS

(R̄)
[Eqs. (10) and (2) with g = 2] for an oxygen vacancy in MgO.
As discussed earlier, the relevant transition corresponding to
optical absorption are between the defect-s and the defect-p
orbitals [36–38, details in Appendix D]. For the energy scale
of the photon of a few eV, the Frank-Condon principle ap-
plies [77,78]. Thus, the orbital wave functions [Fig. 2(b)] are
calculated using first-principles DFT calculations (Appendix
F) at the ground state relaxed configuration of the ions. As
suggested by previous works [36–38], we also neglect the
forbidden transition from the defect s orbital to the con-
duction band minimum. We first verified that the transition
between the far-field, 1/R and near-field 1/R3 regimes occurs,
as expected, at R ∼ 1/k; for the 5-eV optical absorption line
this distance corresponds to ∼20 nm. Separations of <20 nm
can be readily reached at realistic doping concentrations of
∼10 ppm, indicating that near-field energy transfer is a rele-
vant process in devices. In Figs. 3 (a) and 3(b) we also show
the comparison between results obtained with the Ā · p̄ and
Ē · r̄ Hamiltonians for s to pz type spin conserving transitions
(|GS〉to |ES〉). Note that, due to the nonlocal nature of the
Kohn-Sham Hamiltonian, results obtained with Ā · p̄ and Ē · r̄
differ. (For comparison with emitter with a local Hamiltonian,
see Appendix E).

In VO: MgO, while the transitions between the GS and the
triplet states of the F center are spin forbidden at far field,
they have nonzero amplitude at near field, due to the selection
rules of the photon emission and absorption when transitions
higher than dipolar ones are involved [11]. Hence the sum of
the total angular momenta of the electrons in the source and
the absorber may not be conserved at near field. Note that by
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FIG. 3. Comparison between the absorption matrix elements for
the ground to excited state singlet transition for VO: MgO (v(A)

k,αS
),

computed using the A · p Hamiltonian (red curve, see text) and E · r
Hamiltonian (blue curve). (a) shows the frequency response at a
constant source-to-absorber distance of 10 nm and (b) shows the
distance dependence at resonance condition at 5 eV.

the definition, the transition from the GS (singlet) to triplet
states could not be studied within a dipolar approximation
and/or without considering on the same footing orbital and
spin degrees of freedom.

We show in Figs. 4(a) and 4(b) the matrix elements for
the GS to singlet and triplet transitions where the near-field
source (S) is either of an electric dipole (ED) or magnetic
dipole (MD) type. Note, for rare-earth emitters, both the ED
and MD type source can naturally exist [7,8]. The case for
an ED source (αS = {L = 1, Jz = 0, P = −1}) is shown in
Fig. 4(a), where the singlet transition is dominant both at near
and far field. At near and far field, the matrix element depends
on the distance as ∼1/R3 and ∼1/R respectively. How-
ever, the |GS〉 to |3T1u(ms = ±1)〉 triplet transition is allowed
at the near field. In this case the magnetic field produced by
the electric dipole source results in a spin-flip transition from
the ground level singlet state to the mS = ±1 triplet states.
To flip the spin along the z axis, one needs to consider the
action of the Pauli operators σX or σY . Thus the spin-flip
processes in the Z basis include contributions by the X and
Y components of the magnetic field, i.e., g eh̄

2m0
σX x̂ · ∇̄ × Ā

and g eh̄
2m0

σY ŷ · ∇̄ × Ā terms of Hint of Eq. (2), which explains
the observed radial dependence reported in Fig. 4(a). The
|GS〉 to |3T1u(ms = 0)〉 transition remains forbidden even at
near field, as the symmetry between the spin up and spin
down states is not broken. By including the effect of zero
field splitting, or applying an external B field, one can further
reduce the symmetry, in which case the |GS〉 to |3T1u(ms = 0)〉
transition may become active. For example, for a photon
state with preferred direction of rotation along a given axis
z, the symmetry between the up and down spin is broken
and the matrix element for the transition between the singlet
and the ms = 0 triplet state becomes nonzero.

The case of a magnetic source is shown in Fig. 4(b). As
in Fig. 4(a), the absorber and the source are assumed to lay
in the X direction. In this case, the spin flip singlet-to-triplet
transition (|GS〉 to |3T1u(ms = ±1)〉) becomes dominant, com-
pared to the spin-conserving singlet-to-singlet (|GS〉 to |1T1u〉)
one. Also, the radial dependences are significantly different.
The spin nonconserving transitions are dominated by the Y
directional magnetic field produced by the magnetic dipole
[i.e., the g eh̄

2m0
σY ŷ · ∇̄ × Ā term of the interaction Hamilto-

nian of Eq. (2)] whereas the spin nonconserving transition
are dominated by the action of e Ā·p̄i

m0
. This result highlights

the striking difference between far-field and the near-field
absorption processes. The spin-flip singlet-to-triplet transition
is expected to give rise to a long-lived excited state at the
F center and carries great significance towards the proposed
optical memory platform (Appendix A), where excitations
are transferred from RE emitters to nearby oxygen vacancies.
Note that magnetic dipole radiation naturally exists for 4f-4f
and 4f-5d transitions in several platforms of rare-earth doped
oxide systems [7,8]. Further, the z-directional magnetic dipole
source produces a z-directional magnetic field at the absorber,
leading to a symmetry breaking between the spin up and down
states. This symmetry reduction results in a nonzero absorp-
tion matrix element for the (|GS〉 to |3T1u(ms = 0)〉) transition
as shown by the purple curve. Interestingly, at large distances,
the spin conserving transition (red curve) becomes dominant
again, highlighting the importance of the explicit treatment of

FIG. 4. The distance dependence (R, see Fig. 1) of the matrix element |v(A)
k,αS

(R̄)| at a fixed direction R̂ = X̂ for the spin conserving (1A1u

→ 1T1u; red squares) and spin nonconserving(1A1u → 3T1u; blue and purple squares) absorption transitions in the VO: MgO center for (a)
Electric dipole source and (b) Magnetic dipole source. Blue and purple squares indicate the transition to 3T1u (ms = ±1) and to 3T1u (ms = 0),
respectively. The power law behavior of the matrix elements as a function of R is shown for each matrix element. The results indicate that for
energy transfer from a magnetic dipole source, a dominant spin nonconserving transition can be achieved in the near field.
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FIG. 5. The angular dependence of the absorption matrix element |v(A)
k,αS

(R̄)| at a fixed source-absorber distance of R = 10 nm for the spin
conserving and spin nonconserving absorption transitions in the VO: MgO center for (a) Electric dipole source and (b) Magnetic dipole source.
The color code for transitions is the same as in Fig. 4. The color scale represents the value of |v(A)

k,αS
|/h̄ in the units of rad/s.

the absorption of a photon at the near field, as a function of the
distance, as enabled by the framework proposed here. Overall,
the results reported in Fig. 4 provide guidance and insight
towards singlet-to-triplet absorption processes that may be
used for the design of optical memories.

We get further insight into the difference between far and
near-field processes by studying the angular distribution of
the absorption matrix elements. We fix the source-absorber
distance at 10 nm (near field in our case) and vary the
source-to-absorber direction R̂. For the ED and MD sources,
|v(A)

k,αS
(R̂)| is plotted as a function of R̂ and the result-

ing angular distributions are shown in Figs. 5(a) and 5(b),
respectively, for the spin-conserving (|GS〉 to |1T1u〉) and
spin nonconserving (|GS〉 to |3T1u(ms = ±1)〉) (blue), and
(|GS〉 to |3T1u(ms = 0)〉) (purple) transitions. Note that the
angular symmetry of the spin-conserving and spin noncon-
serving transitions are different for ED and MD sources. This
difference is interesting as it implies that at certain specific
orientations between the source and the absorber, spin non-
conserving processes can be engineered to become dominant;
hence our results provide insight into geometrical configu-
rations which may be attained by nanofabrication design to
control the angular orientation between the source and ab-
sorber.

We further explore v
(A)
k,αS

(R, θ ) for ED and MD transi-
tions in Fig. 6. Figure 6(a) shows a two-dimensional plot for
v

(A)
k,αS

(R, θ ) for the |GS〉 to |1T1u〉 transition by an electric dipo-
lar mode (αS = {L, Jz, P = 1, 0, −1} = ED) as a function
of the distance R and the polar angle θ of the source at which
the absorber sits. In Fig. 6(b) we plot −∂ (log|v(A)

k,αS
|)/∂logR

for the same transition, which results in the dominant ex-
ponent n corresponding to the |v(A)

k,αS
| ∼ 1/Rn relation. The

dashed lines are guides to the eye. At the polar direction
(θ = 0 and π, ±Z direction), the associated fields are zero
and the matrix element is only a result of the field gradient
across the finite size of the absorber, thus the radial depen-
dence is ∼1/R2 even at far field. In contrast, near the equator,
(θ = π

2 , XY plane), a standard near field to far-field transition
of ∼1/R3 to ∼1/R behavior is observed for |v(A)

k,αS
|.

In Figs. 6(c) and 6(d), we show the results for a MD source
inducing a spin nonconserving |GS〉 to |3T1u(ms = ±1)〉
transition. These results are markedly different from those
obtained in the ED case. Now, the equator (θ ∼ π

2 ) is the zone
where the B field at the equatorial plane has only a z compo-
nent. Thus, the gradient of the B field results in the nonzero

part of the matrix element and hence the radial dependence,
even at R > 10 nm, is ∼1/R2.

The results shown in Figs. 4–6 map out the distance and
angle dependence for the near-field matrix elements pertain-
ing to energy transfer processes, and involving spin allowed
and spin forbidden transitions for both electric and magnetic
dipolelike sources. Our findings indicate that the symmetry of
the angular distribution of the matrix elements corresponding
to spin conserving and nonconserving transitions are differ-
ent; hence our calculations point at possible design rules for
geometrical configurations more prone to yield long-lived
transitions useful to create desired states of memories or quan-
tum networks in solid hosts.

FIG. 6. The distribution of photon absorption matrix element
|v(A)

k,αS
(R̄)| for (a) spin conserving |GS〉 to |1T1u〉 and (c) spin noncon-

serving |GS〉 to |3T1u(ms = ±1)〉 transitions showing the response as
a function of source-absorber distance R, and the polar angle θ (For
these cases, cylindrical symmetry (Fig. 5) ensures no variation with
φ. (b) and (d) show the plots of exponent n of the ∼1/Rn dependence
of |v(A)

k,αS
| (n = −∂ (log|v(A)

k,αS
|)/∂logR). The dashed lines in (b) and (d)

are guide to the eye to indicate the boundary where the exponent n
changes its value.
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FIG. 7. (a) Normalized spectrum of the photon amplitude ck (t ) as a function of the photon frequency (ωk) at different times = 10 ns, 100
ns, 1us, and 10 us for the energy difference between source and absorber transition ωA − ωS = 5MHz. (b) Two-dimensional plot of the NRET
probability (|c(t )|2) as a function of time and frequency mismatch ωA − ωS for a magnetic dipole source (MD) of oscillator strength 1, which
induces a singlet-to-triplet transition. The corresponding singlet-to-singlet transition for the same MD source is shown in (c) which is much
weaker compared to the singlet-to-singlet transition at this configuration.

B. Transfer rate calculations

We now turn to examining the NRET transfer rate. We con-
sider a physical source of unity oscillator strength, which is a
realistic oscillator strength for deep-levels such as rare-earth
centers [8]. For a generic source of oscillator strength fosc the
emission matrix elements satisfy

∑
αS

∣∣v(S)
k,αS

∣∣2 =
(

μ0 h̄2ω2
k e2

3π2m0

)
fosc. (14)

Here μ0 represents the vacuum permeability. Equation (14)
yields the emission matrix element of a generic source if the
energy ωk and the oscillator strength are known.

With the knowledge on the specific type of a multipole
source (αS specified), Eq. (14) can be used to calculate the
emission matrix element values up to an arbitrary phase. Here
we show the transfer amplitude for purely electric dipole
source with αS = {L, Jz, P = 1, 0, − 1}, and a purely mag-
netic dipole source with αS = {L, Jz, P = 1, 0, 1}. We
assume in each case that all the other multipole com-
ponents vanish. Thus, from Eq. (14) we have |v(S)

k,αS
| =√

( μ0 h̄2ω2
k e2

3π2m0
) fosc, where αS is either {L, Jz, P = 1, 0, − 1},

or {L, Jz, P = 1, 0, 1} corresponding to electric or magnetic
dipoles, respectively. The unknown phase of v

(S)
k,αS

factors out
as a global phase in calculation of the NRET matrix element
as per Eq. (12). Also note that here for simplicity we have
assumed the source to be an ideal dipole. For a realistic defect
as the source, v

(S)
k,αS

, the emission matrix elements can be
readily computed from first principles as shown in Eqs. (11),
and (14) can then be used to estimate the oscillator strength of
the source.

We consider short time scale processes for which there
can be finite transfer even for a finite energy mismatch. At

small time, �ω�t � 1, the width of the spectrum of ck (t )
[Eq. (13)] is relatively large and it gradually decreases as t
increases. This is shown in Fig. 7(a) for the spin nonconserv-
ing |GS〉 to |3T1u(ms = ±1)〉 transition, induced by a magnetic
dipole source of oscillator strength 1. The corresponding
NRET probability of coherent transfer is shown in Fig. 7(b) as
a function of both time in the horizontal axis and the energy
mismatch between the source and the absorber in the vertical
axis. As a comparison we also show in Fig. 7(c) the transfer
probability for the spin-conserving singlet-singlet transition
for the same magnetic dipole source of 1 oscillator strength.
While the energy-time uncertainty behavior in Fig. 7(c) is
the same as in Fig. 7(b), the transfer amplitude is negligible
compared to that of the spin nonconserving transition. This
is an interesting example of the spin nonconserving transition
dominating over the spin conserving one for a realistic near-
field process.

C. Effective parameter to characterize coherent transfer

Historically, the energy transfer between emitters has been
characterized using the notion of the Förster radius [1]. Such
radius is defined as the distance between a source and an
absorber at which the energy transfer rate between the source
and the absorber matches the rate of radiative decay of an
isolated source, resulting in a 50% probability of the trans-
fer. In most systems investigated in the chemistry literature,
the energy transfer of interest is between a large number of
sources and absorbers. Thus, averaging over angular coordi-
nates has been always implicit. However, in the solid state,
using thin film growth, nanofabrication, and spatially selec-
tive doping techniques, some control can be achieved on the
relative placement of the source and the absorber sites. Thus,
the angular dependence cannot be assumed to be averaged out.
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FIG. 8. Contour plots of the parameter Reff (see text) for the (a)
singlet-singlet absorption transition by an F center from an electric
dipole source, at near field, and the (b) singlet-to-triplet absorption
from a magnetic dipole source. The different lines indicate cases with
different oscillator strengths of the dipolar source: fosc ∼ 0.1 to 1
represents a deep-level source whereas, fosc ∼ 10 to 30 represents
larger sources like quantum dots.

Note that due to the large phonon induced broadening in
room temperature measurements in solution chemistry and
biological systems, the emission and absorption spectra are
always incoherently broad, resulting in a dominant incoherent
energy transfer. Our interest lies in a different regime and
pertains to solid state environments. First, several deep-level
systems such as rare-earth substitutional sites, NV centers,
and other point defects, exhibit narrow emission spectra com-
pared to the measurement time scale. Second, in the solid state
most characterizations and device design occur at cryogenic
temperature which suppresses decoherence and dephasing and
can lead to even <kHz linewidths [7,8]. Thus, in the fol-
lowing, we define a parameter representing the equivalent
of a Forster radius for angle resolved configurations, but for
coherent processes, and we include spin conserving and non-
conserving transitions in the coherent limit.

We define the effective radius Reff as a function of the
direction defined by the unit vector R̂ = (θ, φ) from the
source S to the absorber A such that max(|c(t )|2) = 1/2.
Using Eq. (7) we get |c(t )|2 = 4M2

h̄2
sin2(�ωt/2)

�ω2 e− t
T1S . Here T1S

is the average time for the source to emit a single photon
and can be estimated directly from the oscillator strength as
T1S = 6πε0m0c3

foscniω2e2 .The maximum probability is achieved at t =
tmax = 2 atan(�ωT1S )

�ω
. Imposing |c(t )|2 |t=tmax = 1

2 , and invoking
M = iπni

h̄c

∑
α v

(S)
kS ,αS

v
(A)
kS, αS

we get

π2n2
i

h̄2c2

∣∣∣∣∣
∑

α

v
(S)
kS ,αS

(Reff , R̂) v
(A)
kS , αS

∣∣∣∣∣
2

= h̄2
(
1 + T 2

1S�ω2
)

8T 2
1S

e
tmax
T1S .

(15)

Solving Eq. (15) numerically for an arbitrary source and
arbitrary absorber yields Reff as a function of the source-to-
absorber direction R̂.

We show Reff at resonant conditions (�ω = 0) for (1) the
singlet (|GS) to singlet (|1T1u〉) absorption for a near-field
electric dipole source, and (2) the singlet (|GS) to triplet
(|3T1u(ms = ±1)〉) absorption for a near-field magnetic dipole
source in Figs. 8(a) and 8(b), respectively. The function
Reff (θ ) is shown as a polar plot in the XZ plane—but a

rotational symmetry around the Z axis can be assumed. The
different lines in Figs. 8(a) and 8(b) represent different values
of the oscillator strength of the source dipole, encompassing
a vast category of emitters including deep levels ( fosc ∼ 0.1
to 1) and quantum dots ( fosc ∼ 10 to 30). We find that for
the spin conserving transition from an ED source of fosc = 1,
Reff ≈ 10 nm whereas for the spin nonconserving transition
from a MD source, Reff ≈ 2 nm. Distances of ∼2–10 nm are
realistic distances in either random ensembles or controlled
pairs of defects and emitters in semiconductors and insulators.
Additionally, with increasing �ω, as per Eq. (15) the variation
of the matrix element follows approximately a Lorentzian
and the Reff drops accordingly. We see from Fig. 8 that in
several cases, for both ED and MD sources, an angular coarse
graining may not be appropriate as there is a high degree of
variation of Reff as a function of the source-absorber polar
angle θ . These results provide a possible way to understand
quantitatively how to guide the growth and nanostructuring of
a solid host to facilitate specific, desired transitions.

IV. DISCUSSION

We investigated the transfer of energy between localized
emitters in a solid and explored the spin nonconserving tran-
sitions in the near field. In most realistic materials and devices
for quantum information and classical optical applications,
native or implanted defects reside at distances at which near-
field energy transfer occurs. In some case near-field transfer
may be undesirable (e.g., in some quantum information ap-
plications [7] where specific transitions of a given defect are
of interest for optical addressability); in some other cases,
near-field transfer can represent an opportunity to design
new functionalities. The investigation of the new function-
ality proposed here (ultradense classical memories) requires
an approach beyond the dipole approximation, where orbital
and spin degrees of freedom are considered on the same
footing and the interactions between emitters and the solid
matrix are taken into account. The perturbative approach pre-
sented in this paper includes first-principles calculations of
electronic states and accounts for the quantum nature of the
broad spectrum virtual photons mediating the energy trans-
fer. Our findings indicate that for realistic oxides, magnetic
and spin nonconserving transitions are key to understanding
light-matter interaction and to derive design rules to engineer
long-lived transitions. The approach provides a way to address
a wide variety of NRET processes that are highly relevant
to quantum and classical optical devices—specifically optical
memories, quantum optical networks, and quantum memo-
ries.

Specifically, we applied our approach to the F center in
MgO, and we presented a systematic study of the NRET
amplitude for spin-conserving (singlet-to-singlet) and spin
nonconserving (singlet-to-triplet) absorption transitions orig-
inating from a near-field source (e.g., a RE impurity) of
magnetic or electric dipole type, as a function of the relative
orientation and distance between the source and the absorber.
We showed that in certain configurations of the source and the
absorber, singlet-to-triplet transitions not only become active
at near field but constitute the dominant process. Our study
revealed some key design principles to realize such singlet-to-
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triplet type transitions at the near field. In the case of the F
center in MgO we found that a magnetic dipole type source is
necessary to obtain dominant spin nonconserving transitions.
In the case of rare-earth-doped oxides, an intrinsic magnetic
dipole type emission is available [7,8], thus providing a viable
path to create long-lived excited state in localized defects
that are relevant to rare-earth based ultrahigh density optical
memory platforms envisioned in this work (Appendix A). Our
approach can be used to facilitate material search to identify
spectrally matched rare-earth-defect combinations for such
optical memory platforms.

We also explored the NRET amplitude as a function of
the angle between the source and the absorber and shown a
significant angular variation of both the amplitudes and the
radial dependence of the absorption matrix elements of the
transitions. This variation represents a significant result as
it provides insight into nanofabrication design where certain
processes may be favored by engineering specific geometri-
cal configurations of the emitters. Finally, we found that the
effective radius for singlet-to-triplet transition in VO: MgO is
∼1–2 nm for coherent transfer rate of 50% of the radiative
decay, which provide insight into the required density of the
source and absorber site in the host material to enable such
processes.

Importantly, although we showed results for an exemplar
oxide, VO: MgO, the approach presented here is general and
applicable to any localized defects in any solid that can be
described using first-principles calculations. In addition, our
approach is easily generalizable to distributed systems of de-
fects thus allowing for the study of near-field energy transfer
in larger emitters such as quantum dots, as well as defects and
dopants with inhomogeneous distributed spectral lines. These
include the interaction between different REs for quantum
memories, the interaction between a localized defect acting
as a quantum memory with another localized defect acting as
a qubit, and energy trapping by localized electronic states.

In the results presented here we have assumed a uniform
and isotropic medium for simplicity. However, the host ma-
terial may often exhibit an anisotropic dielectric response.
In addition, in most practical applications, the host can be
in the form of a membrane/film. Under those circumstances,
Eq. (8) still holds, but the spherical harmonics are no longer
the eigenfunctions of the Maxwell equations, and thus the
propagating photon in a specific multipole mode αS may scat-
ter to a different multipole mode α′

S due to the medium. This
effect can be readily accounted for by explicitly including
the photon Green function expressed in the multipole basis
between the source and the absorber, resulting in a revised
Eq. (12) as M = iπni

h̄c

∑
αS,α′

S
v

(S)
kS ,αS

GαS ,α′
S (r̄S, r̄A) v

(A)
kS , α′

S
.

Thus, the framework reported here is readily generalizable
to anisotropic media.

Our approach is suited for addressing photon hopping
in large (∼μm) ensembles, taking into account finite en-
ergy uncertainty, and including spin flip and spin conserving
processes alike. The computational cost of the method pre-
sented here is only limited by the computation of the matrix
elements at the separate localized emitters and thus large-
scale systems with emitter-emitter distances ranging from
∼1 to ∼1000 nm can be tackled with equal computational
cost.

Furthermore, using the first-principles electronic structure
calculation paves the way to include lattice relaxation be-
tween energy transfer processes in a chain of emitters. The
excited states of many localized emitters of interest undergo
significant relaxation compared to the ground state. The ap-
proach reported here provides a pathway to understanding
such physics of collective emitters in realistic devices towards
classical and quantum photonic applications.

ACKNOWLEDGMENTS

We thank Prof. J. Sofo, Dr. Y. Jin, and Dr. C. Vorwerk
for useful discussions. We acknowledge the computational
resources of the National Energy Research Scientific Comput-
ing Center (NERSC), a DOE Office of Science User Facility
supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC02-05CH11231, and
the computational resources of the University of Chicago Re-
search Computing Center (RCC). This work was supported
by the U.S. Department of Energy, Office of Science, for
support of microelectronics research, under Contract No. DE-
AC0206CH11357.

APPENDIX A: NEAR-FIELD ENERGY TRANSFER IN
ULTRAHIGH DENSITY OPTICAL MEMORY

In this section we discuss the key concept behind a poten-
tial platform of ultrahigh density optical memories with RE
emitters and defects in oxides, a platform where the near-field
energy transfer plays a critical role. The approach exploits 4f-
4f transitions of rare-earths that lead to very narrow linewidth
(sub kHz) even in solid state, with the typical inhomogeneous
spread of these transitions being of ∼MHz to ∼GHz range
[7,8]. The large inhomogeneous spread relative to the narrow
homogeneous linewidth provides a way to optically address a
large number (�1000) of RE atoms even within a diffraction
limited volume and provides a potential path to ultrahigh
density optical memories.

However, the lifetime of the optically excited state is still
limited by the radiative decay lifetime of the RE emitters (typ-
ically ∼10 ms). We propose that a possible route to enhance
the lifetime is to transfer the excitation to a proximal defect.
Further, by inducing transitions that are spin nonconserving,
i.e., optically forbidden in the far field, one can potentially
create longer lifetimes.

The basic idea is captured in Fig. 9. Each cell in the left
panel represents an optically addressable memory cell doped
with RE emitters (red) and suitable defects (blue) that ex-
hibit optical absorption transitions in the same band at the
RE emission. Individual RE ions can be identified by their
narrow spectral lines and optically excited. The excitation can
then be transferred and trapped into a nearby defect (e.g., an
oxygen vacancy in an oxide). For typical doping concentration
of ∼ few ppm, the average REs and vacancies can reach ∼5
to ∼10 nm, a distance much smaller than the wavelength of
the optical/near IR photons (∼500 nm to ∼1μm). Thus, un-
derstanding near-field energy transfer is critical to understand
the transfer process. Further, the excitation of the trap could
be quenched, or Stark shifts could be exploited in the RE
emission process as readout mechanisms.
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FIG. 9. A schematic representation of ultrahigh density optical
memories where each memory-cell in a solid host (left panel) con-
tains an ensemble of RE emitters (red) and point-defects (blue).
Right: A RE emitter-defect complex representing the working “unit”
of the memory. Optical excitations of RE emitters that are spectrally
separated can be transferred to a suitable defect in the proximity of
the emitter to trap the excitation and increase its lifetime (see text).

Understanding the design rules required to engineer the
processes described above call for (1) exploring possible com-
binations of RE emitters, defects, and host oxides to allow
spectrally matched RE-defect combinations, and (2) a quanti-
tative understanding of the energy transfer rates for optically
allowed and optically forbidden absorption transitions in the
near field and (3) understanding the energy trapping and
relaxation dynamics. The combination of (1), (2), and (3) de-
mands a unified approach between first-principles electronic
structure calculations and quantum electrodynamical near-
field energy transfer in the solid state, which is the framework
established in this work.

APPENDIX B: MULTIPOLE BASIS OF THE PHOTON

We used a multipole basis to represent photon modes
[55,56,57] in a uniform dielectric medium; this basis fa-
cilitates investigating the transfer/ conservation of angular
momentum states during the energy transfer process [11] as
all the multipole modes are eigenfunctions of the angular
momentum operator. In this section we give a brief overview
of how we represent photon modes.

In Fig. 10 we consider a spherical cavity of radius Rnorm

centered around the source denoted as S, here taken as a
two-level system. The ladder-down operator of this two-level
system is σ̂S and âk, αS represents the annihilation operator of
a photon mode with radial wavevector k and αS = {L, JZ , P}
in the spherical cavity. Here L denotes the orbital angular mo-
mentum of the photon, JZ is the total (orbital + spin) angular
momentum, and P the parity. The multipole basis provides
a complete orthogonal basis of the cavity photon mode and
can be appropriately normalized for finite R as shown below.
We then consider another two-level system, denoted as A, that
acts as the absorber and has σ̂A as the operator representing
annihilation of an excitation.

We can rewrite the overall Hamiltonian of the interact-
ing source-absorber system [Eq. (2)] in the second quantized

FIG. 10. Schematic representation of the macroscopic system
considered in our work, where the photon modes are defined within
a sphere of radius Rnorm centered at the emitter S. The absorber
is denoted as A. The photon multipole modes are the propagating
photon modes in a multipole basis.

notation as

H = ωSσ̂
†
S σ̂S + ωAσ̂

†
A σ̂A +

∑
k,αS

ωkâ†
k, αS

âk, αS

+
∑
k,αS

(σ̂S + σ̂
†
S )

(
V (S)

k, αS
â†

k, αS
+ V (S)†

k, αS
âk, αS

)

+
∑
k,αS

(σ̂A + σ̂
†
A )

(
V (A)

k, αS
âk,αS + V (A)†

k, αS
â†

k, αS

)
. (B1)

The multipole photon modes [56], i.e., |1k, αS 〉 = â†
k, αS

|0〉
are a complete basis that can be obtained by solving the
Maxwell equations under the boundary condition chosen for
a specific problem. The expressions for their vector and scalar
potential fields have been defined in Eqs. (3)–(6). Rnorm shown
in Fig. 10 is the radius of the normalizing sphere for the
multipole modes which translates to the width of the modes
in k space: �k = π

Rnorm
. It is apparent from Eqs. (3)–(6) that

the vector and scalar potentials of the photons are normal-
ized by

√
�k. The normalization constant is included in

V (S)
k,αS

and V (A)
k,αS

. We thus define V (S)
k,αS

= v
(S)
k,αS

√
�k, and V (A)

k,αS
=

v
(A)
k,αS

√
�k. This definition facilitates the k-space summation

over all virtual photons as shown below.
Closed versus open systems. As mentioned above, the

photon modes |1k,αS 〉 are solutions of the Maxwell equa-
tion under properly chosen boundary conditions. In the case
of perfectly reflecting boundary, e.g., a perfectly enclosing
spherical mirror of radius Rnorm, the radial functions are the
Bessel function of type j- resulting in standing wave-type
modes of a nondecaying photon. The Bessel j radial de-
pendence can be decomposed into Hankel functions of type
1 and type 2- representing the radially inward propagating
and outward propagating waves using the relation: jL(kr) =
1
2 (h(1)

L (kr) + h(2)
L (kr)) [56,57].
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If the boundary of the system is open, the radially out-
ward propagating waves are represented by Hankel function
of type 1. In this case, gL(kr) = 4π iLh(1)

L (kr). Such functions
possess a singularity at the origin (phase center). However,
this singularity does not affect the evaluation of the emission
matrix elements. Thus, we can express the photon mode close
to the center (r < r0, for some r0) by the Bessel j function.
Hence for an open system, the photon mode |1k,αS 〉 represents
the radially outward propagating wave, with type 1 Hankel
function being the radial function in the source-free region
(r > r0), and the Bessel j-type radial function near the source
at r < r0 [56].

From Eq. (B1), we rewrite the interaction part of the
Hamiltonian as

Hint =
⎛
⎝∑

k,αS

V (S)
k, αS

σ̂Sâ†
k, αS

+
∑
k,αS

V (A)
k, αS

σ̂
†
A âk, αS

⎞
⎠ + h.c.

+
⎛
⎝∑

k,αS

V (S)
k, αS

σ̂Sâk, αS +
∑
k,αS

V (A)
k, αS

σ̂
†
A â†

k, αS

⎞
⎠ + h.c.

(B2)

Here V (S)
k, αS

and V (A)
k, αS

are the matrix elements correspond-
ing to the photon emission and photon absorption at S and A,
respectively, that we evaluate in the main text.

APPENDIX C: DESCRIPTION OF THE
ELECTRON STATES

The source S and the absorber A may possess generic
many-electron states; in general we have HX |�(X )〉 =
E (X )|�(X )〉 where X = S, A. The many electron eigenstates
|�(X )〉 can be represented by a sum of Slater determinants
constructed from single electronic states {|φ(X )

i 〉, i = 1 : NX }
where NX is the number of the single particle electronic states
in emitter X . The Hamiltonians HS and HA may be approxi-
mated by the Kohn-Sham Hamiltonian in density functional
theory [28–30], or with effective Hamiltonians derived from
a chosen active space using, e.g., using quantum embed-
ding theories [34–37], depending on the level of electronic
structure theory needed. The ground state of S or A can be
generically represented as

|GS(S/A)〉 =
∑

i∈occ
j∈unocc

α
(GS)
i j, S/Ac(S/A)†

j c(S/A)
i |D(S/A)〉, (C1)

and similarly, the excited state

|ES(S/A)〉 =
∑

i∈occ
j∈unocc

α
(ES)
i j, S/Ac(S/A)†

j c(S/A)
i |D(S/A)〉 , (C2)

where |D(S/A)〉 represents the Slater determinant built from
the first filled N orbitals, i.e., |D(S/A)〉 = ∏N

i=1 c(S/A)†
i |0〉. Here

c(S/A)
i denotes the annihilation operator of an electron in the

single electronic state |φ(S/A)
i 〉. Note that Eqs. (C1) and (C2)

represent the generic form in which the many body electron
states are represented and the orbitals and the α coefficients
are determined from the electronic structure calculations.

APPENDIX D: MATRIX ELEMENTS FOR OPTICALLY
ALLOWED AND FORBIDDEN TRANSITIONS IN VO: MGO

The matrix elements for transitions from a many-body
ground to an excited state can be obtained by adding up all
possible single-orbital matrix elements based on the Slater-
Condon rule. For a transition from any generic many-body
state |�〉 to the state |�1〉 = c †

j ci|�〉, we have

〈�1|Ô |�〉 = 〈φ j |Ô|φi〉 = Oji. (D1)

Thus, for a generic single excited state: |ES(A)〉 =∑
iε occ

jε unocc

αi jc
(A)†
j c(A)

i |GS(A)〉, we have

〈ES(A)|H̃int |GS(A), 1k,αS 〉=
∑

i∈occ
j∈unocc

α∗
i j
〈
φ

(A)
j

∣∣H̃int

∣∣φ(A)
i , 1k,αS

〉
.

(D2)

For the VO: MgO center, we use Eq. (D2) to write the
matrix elements for the optical absorption singlet-to-singlet
and singlet-to-triplet transitions below. The electronic defect
states are localized midgap s-type orbital (|s〉) and localized
p-type orbitals (|px〉, |py〉, |pz〉) just above the conduction
band edge. In the ground state configuration of the neutral
F center, both spin states of the s orbitals are filled resulting
in a singlet ground state |GS〉 = |s↑, s↓〉. Here |s↑, s↓〉
represents the Slater determinant where two electrons occupy
the defect-s orbital and all valence orbitals are filled. For
an excitation to the pz orbital, the excited singlet can
be written as |1T1u〉 = [ 1√

2
ĉ†

pz↑ ĉs↑ + 1√
2
ĉ†

pz↓ ĉs↓]|s↑, s↓〉, or

|1T1u〉 = 1√
2
(|pz↑, s↓〉 + |s↑, pz↓〉), whereas the three triplet

states are |3T1u(ms = 0)〉 = 1√
2
(|pz↑, s↓〉 − |s↑, pz↓〉),

|3T1u(ms = 1)〉 = |s↑, pz↑〉, and |3T1u( ms = −1)〉 =
|pz↓, s↓〉. The matrix elements between these Slater
determinants can be reduced to the matrix elements between
the single electron orbitals in the following way:〈

1T1u

∣∣Hint

∣∣GS, 1kαS

〉 = 1√
2
〈pz↑ |Hint |s↑, 1kαS 〉

+ 1√
2
〈pz↓ |Hint |s↓, 1kαS 〉 , (D3)〈3T1u(ms = 1)

∣∣Hint

∣∣GS, 1kαS

〉 = 〈pz↑ |Hint |s↓, 1kαS 〉 , (D4)〈 3T1u(ms = −1)
∣∣Hint

∣∣GS, 1kαS

〉 = 〈pz↓ |Hint |s↑, 1kαS 〉 ,

(D5)〈
3T1u(ms = 0)

∣∣Hint

∣∣GS, 1kαS

〉 = 1√
2
〈pz↑ |Hint |s↑, 1kαS 〉

− 1√
2
〈pz↓ |Hint|s↓, 1kαS 〉,

(D6)

Note that the ±1 spin triplet state transitions are spin for-
bidden at far field, but they can have nonzero contributions
at near field. The ms = 0 triplet state transition vanishes if
the symmetry between the up and down spin states is not
broken. However, for a photon state with preferred direction
of rotation along z, the symmetry between the up and down
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FIG. 11. Comparison between the absorption matrix element
(v(A)

k,αS
) computed using the A · p Hamiltonian (red curve) and E · r

Hamiltonian (blue curve) for the |φ0,0,0〉 to |φ0,0,1〉 transition at 5eV in
a harmonic oscillator. (a) shows the frequency response at a constant
source-to-absorber distance of 10 nm and (b) shows the distance
dependence at resonance (5 eV).

spin is broken and the matrix element for the Sz = 0 triplet
state [Eq. (D6)] also becomes nonzero.

APPENDIX E: ABSORPTION MATRIX ELEMENT FOR
THE SIMPLE HARMONIC OSCILLATOR

For comparison with the results presented in the main
text, in this section we show the absorption matrix elements
of a model system with single-particle localized eigenstates.
We choose a ubiquitous reference system, i.e., the quan-
tum simple harmonic oscillator (SHO). The SHO is defined
by the Hamiltonian H = p2

2me
+ 1

2 m0ω
2r2 where the energy

eigenvalues are given by Enx, ny, nz = h̄ω(nx + ny + nz + 1
2 ),

nx/y/z being the quantization number along X , Y , and Z ,
and the eigenfunctions are given by the Hermite polynomials
H, i.e., 〈r|φnx,ny, nz〉 ∝ Hnx (x)Hny (y)Hnz (z) with appropriate
normalization. The energy spacing between the ground state
|φ0,0,0〉 and the z-polarized first excited state |φ0,0,1〉 is h̄ω

which we equate to 5eV to match the absorption line of the F
center in MgO. We then compute the matrix element between
|φ0,0,0〉 and |φ0,0,1〉: v

(A)
k,αS

= 〈φ0,0,1|Hint|φ0,0,0, 1kαS 〉/
√

�k.
Such a transition has, by definition, an oscillator strength
of 1.

As expected, in Fig. 11(a) it is apparent that the Ā · p̄ and
eĒ · r̄ matrix elements are only equivalent at resonance. For
the simple harmonic oscillator, the electron Hamiltonian is of
the type of HA = p2

2m0
+ V (r), hence the commutation relation

[H, r̄] = p̄ holds which makes the two matrix elements equal
at resonance (ωk = ωA). We further note from Fig. 11(b) that
the equality between the Ā · p̄ and eĒ · r̄ matrix elements at
resonance extend at both the near-field and far-field regimes.
This is unlike the matrix element between the Kohn-Sham
orbitals of the VO: MgO defect shown in Fig. 2 of the main
text, for which the Hamiltonian is nonlocal and thus the Ā · p̄
and eĒ · r̄ matrix elements are not equivalent.

APPENDIX F: DENSITY FUNCTIONAL THEORY
CALCULATION OF THE ORBITALS

We estimated the wave functions of the localized s and p
orbitals of the VO: MgO (as shown in Fig. 2) using Kohn-
Sham DFT using the QUANTUM ESPRESSO package [30]. We

FIG. 12. (a) Two possible paths for the energy transfer from S to
A, with respective Feynman diagrams shown in (b) and (c).

used the SG-15 norm-conserving Vanderbilt pseudopotentials
[61,79]. We used both the Perdew-Burke-Ernzerhof approx-
imation (PBE) [80] and dielectric dependent hybrid (DDH)
[81] exchange correlation functionals and we found that this
choice does not significantly affect the shape and localization
of the defect orbitals, as indicated in Fig. 2 of the main text.
There are several many body perturbation theory approaches
to estimate the absorption and emission energies of the tran-
sitions [36,37,38]. However, in our calculations we simply
take the known experimental value of 5 eV as the absorption
energy in the transition of interest.

APPENDIX G: SOLUTION OF ENERGY TRANSFER
UNDER SECOND-ORDER PERTURBATION

We start with emitter S in the excited state at time t = 0
and derive the probability amplitude for the energy transfer
to the absorber A as a function of time within second-order
perturbation theory.

We consider two possible paths [Fig. 12(a)]. In path 1,
the source S emits a photon and transitions from an ex-
cited state to the ground state and the photon is absorbed
in A. This is shown in the Feynman diagram in Fig. 12(b).
The interaction terms for this path come from the first term
of the interaction Hamiltonian in Eq. (B7). In path 2
[Fig. 12(c)], the time ordering of the photon absorption and
emission events are reversed. In our case path 2 does not
contribute to any NRET amplitude and only the contribution
of path 1 provides the transfer amplitude [4,5].
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The overall NRET amplitude c(t ) can be expressed as

c(t ) = 〈� f |T
{

exp

(
− i

h̄

∫ t

0
dt′ H̃int (t

′)
)}

|�i 〉. (G1)

Here H̃int (t ′) = e
iH0t ′

h̄ Hint (t ′)e− iH0t ′
h̄ where Hint (t ′) is from Eq. (2) and H0 = HA + HB + HField is the Hamiltonian of the

unperturbed system. The initial state is |�i〉 = �(t = 0) = |ES(S)〉|GS(A)〉; and the final state is |� f 〉 = |GS(S)〉 |ES(A)〉. T
represents time-ordering of the operators. Using second-order perturbation theory, we obtain

c(2)(t ) = e−iωAt

(
− i

h̄

)2 ∫ t

0
dt ′

∫ t ′

0
dt ′′ ∑

I

〈� f |H̃int (t
′)|I 〉 〈I|H̃int (t

′′)|�i 〉. (G2)

The sum is over all possible intermediate states, which, for the positive time solution [path1, Figs. 12(a) and 12(b)] is given
by |I〉 = |GS(S)〉|GS(A)〉|1k,αS 〉. Thus, the evaluation of the NRET amplitude rests on the evaluation of the photon emission and
absorption matrix elements denoted by 〈I|H̃int (t ′)| �i 〉 and 〈� f |H̃int (t ′)| I〉 above. We calculate these matrix elements using
wave functions obtained from first-principles electronic structure theory based on DFT, as discussed in the main text. We have

c(2)(t ) = −e−iωAt 1

h̄2

∑
k, αS

V (S)
k,αS

V (A)
k,αS

∫ t

0
dt ′

∫ t ′

0
dt ′′ e−i(ωk−ωA )t ′+i(ωk−ωS )t ′′

= −e−iωAt 1

h̄2

∑
k, αS

�k v
(S)
k,αS

v
(A)
k,αS

∫ t

0
dt ′

∫ t ′

0
dt ′′ e−i(ωk−ωA )t ′+i(ωk−ωS )t ′′

. (G3)

Note that the summation extends to all energies of the photon modes as well as all possible multipole modes of the photon.
The summation in k can be converted to an integral in energies:

c(2)(t ) =
∑

k

�kck (t ) =
∫ ∞

0
dkck (t ) = ni

c

∫ ∞

0
dωck (t ). (G4)

Here ck (t ) is the contribution of the photons of wave vector k and width �k in k space.
Straightforward evaluation of Eq. (G3) yields

ck (t ) = 1

h̄2

∑
α

v
(S)
kS,αS

v
(A)
kS ,αS

ωk − ωS

(
e−iωSt − e−iωAt

ωA − ωS
− e−iωkt − e−iωAt

ωA − ωk

)
. (G5)

Assuming a smooth function for v
(S)
kαS

and v
(A)
kαS

, the k integral is done by using a contour integration approach resulting in

c(t ) = 2iπni

h̄c

∑
αS

v
(S)
kS,αS

v
(A)
kS,αS

sin
(

�ω
2 t

)
�ω

= 2M sin
(

�ω
2 t

)
h̄�ω

. (G6)

M = iπni
h̄c

∑
α v

(S)
kS,αS

v
(A)
kS, αS

here is the NRET matrix element which is equivalent to the coupling energy between the source
and the absorber due to all the photon modes. For a point dipole source and absorber, M reduces to the dipole-dipole coupling
energy of dipole moments p̄1 and p̄2 separated by a distance R̄ and is given by

M(R̄) = p̄1 · ¯̄G(R̄) · p̄2 (G7)

with

¯̄G(R̄) = I − 3R̂ ⊗ R̂

4πεR3
+ k2eikR

4πεR

[(
1 + ikR − 1

k2R2

)
I +

(
3 − 3ikR − k2R2)

k2R2

)
R̂ ⊗ R̂

]
, (G8)

being the electromagnetic Green dyadic for a homogeneous medium. Equations (G7)–(G8) are commonly used in molecular
QED [55] to calculate energy transfer within the dipole approximation. However, unlike the dipole-dipole coupling, Eq. (G6)
accounts for all the multipole modes and uses the absorption and emission matrix elements derived from first-principles theory.
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