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Reach-dependent reorientation of rotational
dynamics in motor cortex

David A. Sabatini1,2 & Matthew T. Kaufman 1,2

During reaching, neurons in motor cortex exhibit complex, time-varying
activity patterns. Though single-neuron activity correlates with movement
parameters, movement correlations explain neural activity only partially.
Neural responses also reflect population-level dynamics thought to generate
outputs. These dynamics have previously been described as “rotational,” such
that activity orbits in neural state space. Here, we reanalyze reaching datasets
from male Rhesus macaques and find two essential features that cannot be
accounted for with standard dynamics models. First, the planes in which
rotations occur differ for different reaches. Second, this variation in planes
reflects the overall location of activity in neural state space. Our “location-
dependent rotations” model fits nearly all motor cortex activity during
reaching, and high-quality decoding of reach kinematics reveals a quasilinear
relationship with spiking. Varying rotational planes allows motor cortex to
produce richer outputs than possible under previous models. Finally, our
model links representational and dynamical ideas: representation is present in
the state space location, which dynamics then convert into time-varying
command signals.

Controlling reaching movements requires complex, time-varying pat-
terns of muscle activity1,2. Correspondingly, the responses of neurons in
motor cortex are complex, time-varying, and heterogeneous during
reaching2–5. Understanding these responses and their significance for
movement has been the focus of previous studies, which have
found correlations between single-neuron responses and reach
direction6,7, distance8,9, speed10, curvature11, load12,13, individual muscle
activations14–16, andexternal forces17,18. Despite thesecorrelations and the
causal link between motor cortex activity and movement, it has been
challenging to find a high-fidelity relationship between the kinematics of
reaching and motor cortex activity19,20.

Though single neuron activity is complex during motor control,
dynamical systems analysis has revealed that population activity obeys
relatively simple rules: activity of the neural population determines
population activity moments later, consistent with motor cortex acting
as a generator20–26. During reaching, these rules have been argued to be
“rotational”27–30 or similar31–33, with the spike rates of individual neurons
containing low-frequency, sinusoidal modulation coordinated at the

population level. These reach-related dynamics are not trivial: they are
stronger than expected from other aspects of neural activity34, and are
absent inmuscle activity during reach27, S1 during cycling29, andhandM1
during grasp35. The dynamical systems approach has further organized
our understanding of population activity during reaching by showing
that preparatory activity sets the initial state for futuremovement-epoch
dynamics19 in dimensions orthogonal to outputs36–39; that a large trigger
signal, identical across reach types, coincides with the onset of
movement-epoch dynamics and may act as a ‘trigger’ for dynamics39–42;
and that these dynamics act partly in “output-null” dimensions to pro-
duce command signals in “output-potent” dimensions that constitute
the muscle readouts of neural activity23,36.

The dynamical systems framework provides a paradigm for
understanding pattern generation in motor cortex, but despite its
conceptual insights has fit only a fraction of the data. In particular,
rotational dynamics fit only 20–50% of the movement-specific
variance27, and model variants have reached similar plateaus31. Here,
we demonstrate that this plateau results because a central feature of
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motor cortex dynamics was previouslymissed. Althoughmotor cortex
activity during reaching is indeed rotational, population-level rotations
occupied substantially different planes in neural state space on dif-
ferent reaches. We also find that the center point of the rotations in
neural state space varies across reaches, and that the variation in
rotational planes correlates with this overall “location”. These findings
allow us to account for virtually all neural variance in dorsal premotor
(PMd) and primarymotor cortex (M1) during reaching; describe a class
of dynamics that reconciles previously-conflicting interpretations of
motor cortex; enable high-fidelity encoding and decoding between
motor cortex and kinematics with linear methods; and improve on
rotational dynamics as previously understood by allowing for a much
richer repertoire of motor cortical outputs.

Results
In this work, we re-analyzed data from previous studies19,27,40. Two
monkeys, J and N, performed a “maze” variant of a delayed-reach task
that evoked straight or curved reaches (Fig. 1a, b). We refer to the 72
unique combinations of target and virtual barrier positions as “con-
ditions”. Simultaneous single- and multi-unit electrophysiological
recordings were made with a pair of 96-electrode Utah arrays in each
monkey, implanted in PMd and in M1, yielding 79–118 units per array.
We analyzed activity from each array and monkey separately. After
aligning neural activity to movement onset, we trial-averaged and
smoothed activity with a Gaussian kernel (s.d. = 20ms) to estimate
firing rates (Fig. 1c). Consistent with previous literature, many units
displayed multiphasic activity beginning ~150ms prior to movement
onset (Fig. 1d).

Rotational dynamics incompletely describe motor cortex
activity
Previous studies have described motor cortex activity as “rotational”:
containing coordinated oscillations at the level of the population27. We
applied the method from that work for identifying rotations in neural
activity, jPCA, to our datasets to discover the planes in neural state
space in which the population state rotated over time (Fig. 2a). As
previously described, these planes contained coherent population-

level structure, consistent with neural dynamics. Rotational dynamics
fit neural activity within the identified plane reasonably well
(R2 = 0.64–0.73). This fit is lower than reported in some previous lit-
erature due to the inclusion of more complex curved reaches: rota-
tional dynamics fit neural activity on straight reaches more strongly
(R2 = 0.73–0.88), but fit curved reaches less closely (R2 = 0.56–0.70;
Supplementary Fig. 1). As previously shown, though, activity within the
jPCA-identified rotational planes explained only 7–12% (s.d. <13%
across conditions; Supplementary Fig. 1) of the total variance in peri-
movement firing rates (“population variance”; “Methods”). This lim-
itation in variance explained was partly due to using too-low dimen-
sionality and an overly-constrained dynamical system.When including
very small numbers of straight reaches, a single linear dynamical sys-
tem (LDS) can indeed fit most of motor cortical activity43. The data
used here, however, included a much wider variety of straight and
curved reaches. A single LDS on thesedata only captured an average of
46–66% of the population variance (s.d. <16%). This argues that linear
dynamics, and rotational dynamics in particular, are incomplete
models of activity in motor cortex.

We hypothesized that rotational dynamics captured only a small
portion of motor cortex activity due to incorrect model assumptions.
jPCA finds rotational dynamics in neural activity by fitting a particular
class of model, a type of LDS. This restricted LDS is shared across
conditions, and contains rotations at the population level. The most
basic assumption of this procedure is that an LDS, rotational or
otherwise, is an appropriate model for motor cortex activity on even a
single condition. If single-condition population dynamics are highly-
nonlinear or lie on a curved manifold in neural state space, an LDS will
poorly describe single-condition neural activity (Fig. 2b).

As a first test of this assumption, we fit a low-dimensional LDS to
each condition individually (“Methods”). This test does not make
assumptions about how dynamics may be similar or different between
conditions. Motor cortex activity for each single condition was low-
dimensional and could be approximated as an LDS: 5–9 dimensional
LDSs explained 71–93% (Fig. 2c; s.d. <10% across conditions) of the
population variance.Modeling one condition at a timewith an LDSwill
necessarily explain more population variance than modeling them all

unit 61, M1-N unit 69, M1-J unit 61, M1-N

unit 63, M1-N unit 44, PMd-N

monkey J monkey N

illustration

Fig. 1 | Units in motor cortex display complex activity during reaching.
a Illustration of task. b Straight and curved reaches performed by monkey J (left)
and N (right). c Spiking activity and PSTH for unit 61, M1-N, for five example con-
ditions. Lines, mean firing rates; shaded area, SEM. In PSTHs, tall vertical line

indicates movement onset, and scale bars indicate 250ms and 40 spikes/s,
respectively. d PSTHs for example motor cortex units, where each trace is a single
condition (all conditions plotted). In (b–d), colors assigned according to
target angle.
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together. Nevertheless, the drastic gap in variance explained by rota-
tional dynamics vs. single-condition LDSs suggests that jPCA makes
some incorrect assumption about motor cortex activity.

Rotation frequencies are conserved across reaches in motor
cortex activity
If we model each condition as its own LDS, different conditions may
differ in two distinct ways: the frequencies of rotations and the
orientations of the rotational planes (Fig. 2d). The frequency of a
rotation is described by a pair of complex eigenvalues, while the
rotational plane is described by the associated pair of eigenvectors.
These two hypotheses can thus be readily distinguished. If different
conditions have different eigenvalues, that means that motor cortex
produces rotations of different frequencies for different reaches
(Fig. 2e). If different conditions have different eigenvectors, that
means that motor cortex activity rotates in different parts of neural
state space on different reaches (Fig. 2f). In addition to rotations, LDSs
can include an offset. A real-valued eigenvalue determines the rate-of-
decay and its eigenvector determines the direction in neural state
space of the offset (which we term the “state space location”). jPCA
assumes both shared rotational frequencies and shared rotational
planes across conditions, whereas fitting an LDS to each condition
independentlymakes no assumptions a priori of shared frequencies or
rotational planes. We therefore examined each condition’s LDS to test
the two assumptions.

For the recordedmotor cortex activity, the eigenvalues for all the
conditions formed distinct clusters (Fig. 3a). These clusters corre-
sponded to the presence of rotations on every condition with fre-
quencies of approximately0.5, 1.5, 2.5, and 4Hz, alongwith an offset in
the firing rates. The rotational frequencies (specified by the eigenva-
lues) were nearly identical between conditions: the variation in
eigenvalues between conditions was only slightly larger than the floor
due to estimation noise (ROC-AUC=0.51–0.58; Fig. 3b, c). This slight
variation in eigenvalues additionally contained little-to-no information
about ongoing reaches: kinematic parameters performed poorly as
predictors of eigenvalues (mean R2 = 0.1, leave-one-out cross-valida-
tion; Supplementary Fig. 2). This demonstrates that rotational fre-
quencies are approximately conserved between conditions.

Identifying rotations with varying planes
Given that the rotational frequencies were consistent across condi-
tions, we hypothesized that the limited fit of standard rotational
dynamics was due to variation in the rotational planes between con-
ditions. To test this hypothesis, we designed a simple method that
identifies rotations in neural activity with identical frequencies for all
conditions, but that allows the rotational planes and offset dimension
to vary across conditions if needed. This method takes the form of a
low-rank matrix factorization (Fig. 3d; “Methods”), in which neural
activity on each condition is decomposed into two parts: a set of
temporal basis functions that is identical for all conditions, and a
loading matrix that can differ across conditions. Importantly, the fac-
torization is performed on all conditions at once. Thismethod thus fits
a model of shared rotational frequencies and (potentially) varying
rotational planes.

The temporal basis functions capture a limited number of pat-
terns over time that are shared across neurons and conditions.Most of
these temporal basis functions come in pairs, which form the rotations
at a particular frequency, like a sine and cosine. These temporal basis
functions describe rotations that are present inneural activity on every
condition. The last temporal basis function is a “0Hz” offset term. At
the single-neuron level, each condition’s loadingmatrix describes how
to recreate a neuron’s activity on that condition as a weighted sum of
temporal basis functions. At the population level, pairs of columns
describe the magnitude, phase, and plane of each rotation. For this
reason, we refer to such pairs of columns as the parameters of a
rotation (Fig. 3e). One last column of the loading matrix defines the
dimension and magnitude of the offset, and so determines the con-
dition c’s state space location: the point in neural state space around
which the population state rotates on that condition (Fig. 3f).

This method captures motor cortex activity well. In agreement
with our fits to single conditions, the optimal temporal basis functions
contained 3–4 rotations at 0.5, 1.5, 2.5, and 4Hz, along with an offset
(Fig. 3g; optimal number determined by cross-validation). These
rotations explained 90–96% of the population variance (s.d. <2%
across conditions). To address concerns that this high-variance
explained was due to smoothing, pre-processing, limited temporal
bandwidth, or frequency-limiting artifacts, we shuffled time bins to
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eigenvalues determine frequency
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Fig. 2 | Standard rotational dynamics incompletely describe neural activity.
a Rotational dynamics found in motor cortex activity using jPCA, traces colored
according to target angle. b Examples of linear (left) and nonlinear (right) popu-
lation activity. c Histograms of population variance explained in motor cortex
activity by rotational dynamics (jPCA, gray) and single condition LDSs (black).
d Linear dynamical systems can be decomposed into eigenvalues, describing

rotational frequencies and half-lives (left); and eigenvectors, describing where the
rotational planes are in neural state space. e Changing eigenvalues causes rota-
tional frequencies to change between conditions, without affecting the location of
rotational planes. f Changing eigenvectors causes rotational planes to differ
between conditions, without affecting rotational frequencies.
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disrupt temporal structure in motor cortex activity while preserving
inter-unit spike correlations, before identically smoothing and pre-
processing the shuffled data (“Methods”). This shuffle significantly
lowered the variance explained by this method (35–46%; Wilcoxon
rank sum test, p < 0.001). Our method also explained greater variance
than jPCA or even single-condition LDSs (due to lower overfitting and
differences in objective function; Supplementary Fig. 3).

Two potential degeneracies in this model must be controlled for.
First, one concern is that this factorization may act as a kind of special-
purpose Fourier transform: not identifying true rotations in motor cor-
tex activity, but simply performing a frequency decomposition. In this
case, we would expect any given plane in neural state space to contain a
mixture of different frequencies, and therefore each rotation frequency
would not be cleanly “recoverable” from its plane of neural activity
(“Methods”). Instead, as expected from themodel,motor cortex activity
on each condition was cleanly rotational at the expected frequencies in
the expected planes of neural state space (Fig. 3h). The projections from
each condition’s motor cortex activity recovered the temporal basis
functions almost perfectly (91–95% variance explained; s.d. <2.5% across
conditions; chance, 63–80%;Wilcoxon rank sumtest,p<0.001), arguing
the factorization in fact identified rotations in motor cortex activity.

The second concern is that a common time course could be
present in motor cortex activity simply because different reaches take
similar amounts of time, and the neural activity structure is inherited
from the behavior. If similar reach time courses were the primary
source of the similar neural frequencies across conditions, then

warping reaches to identical durations should further improve this
similarity. Prior to warping, the frequencies of the rotations were
unrelated or weakly related to reach duration (M1-N, Pearson’s Rho =
−0.26, p =0.023; other datasets, Pearson’s Rho = −0.18–0.21,
p >0.067). Warping to equalize reach duration induced a negative
correlation: the more a reach was warped, the less that condition’s
neural activity was fit by the common rotations (Fig. 3i; Pearson’s
Rho = −0.63 to −0.52, p <0.001). The conserved rotational frequencies
were therefore not explained by the similar time courses of the
reaches. Given that the fit of this model could not be explained by
degeneracies, we used the rotational planes identified by it for sub-
sequent analyses.

Rotational planes differed across reaches
To quantify how different the rotational planes were on different
conditions, we first used the alignment index37,44. The alignment index
measures howwell one subspace inneural state space (suchas a plane)
aligns with another, measuring 1 if the subspaces are identical, 0 if the
subspaces are completely orthogonal, or intermediate values for cir-
cumstances in between (Fig. 4a). We compared the corresponding
rotational planes for pairs of conditions: for example, we calculated
the alignment index between the 4Hz rotational planes on two dif-
ferent conditions.We found that rotational planeswere far less aligned
than expected due to estimation noise (ROC-AUC =0.85–0.96; Wil-
coxon signed-rank test, p <0.001; Fig. 4b and Supplementary Fig. 4a).
In other words, the orientation of the rotation planes differed across
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Fig. 3 | Rotational frequencies are conserved between different reaches.
a Eigenvalues of a single condition’s dynamics (left), and probability density of
eigenvalues for all conditions (right). Data shown fromM1-N. b Eigenvalue distance
between conditions was calculated by averaging over the distances between cor-
responding eigenvalues in complex space. c Histograms of eigenvalue distance
observed between condition (black) and distribution expected from estimation
noise (gray). d We used a matrix factorization to identify temporal basis functions
shared across conditions, along with the condition-specific loading matrix. e Each

condition’s loading matrix specifies the rotational plane, phase, and magnitude, or
“parameters” of a rotation. f Each condition’s loading matrix specifies the dimen-
sion and magnitude of firing rate offsets, or the “state space location”. g Temporal
basis functions identified for M1-J. h Rotations recovered from motor cortex
activity by projecting onto loading matrix. Solid line, mean projection across
conditions; translucent lines, projections of single conditions. i Warping reaches
(gray) induced a negative correlation between model fit and extremity of reach
duration not observed in the original data (blue).
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condition, contrary to the assumptions of previous studies on rota-
tional dynamics in motor cortex.

To better understand how much each rotational plane varied, we
used a metric of subspace geometry, Subspace Excursion Angles (SEA).
SEA takes a set of subspaces in neural state space (for example: the 4Hz
rotational plane of each condition) and sorts the set so that each sub-
space in the list has the largest possible subspace angle with respect to
all the previous subspaces in the list. SEA therefore quantifies howmany
dimensions contain substantial variation in subspace angle. Across
conditions for each rotational frequency, SEA identified 6–20 distinct
dimensions with angles >45° to each other in motor cortex activity, and
far more that varied above chance (Fig. 4c and Supplementary Fig. 4b).
We validated these measures of subspace geometry with previously
existing measures of extrinsic dimensionality applied to the subspace
orientations. Rotation orientations required 23–40 principal compo-
nents to capture 80% of their total variance, had 7–33 dimensions with
an SNR> 145, and had participation ratios46 of 16.7–36.8. Rotational
planes therefore varied substantially between conditions.

These results explain a previous observation: while most condi-
tions exhibit rotations in the jPCA-identified rotational planes, on
many conditions neural activity has very lowmagnitudeprojections on
to the rotational plane. We found that these conditions were not
actually less “rotational”: variance in the jPCA planes was only mod-
erately correlated with the variance in the rotations we identified
(Fig. 4d; Pearson’s Rho =0.39–0.46, 66% of jPCA planes correlated at
p <0.05). Instead, for conditions that did not exhibit clear rotations in
the jPCA planes, the rotations our model discovered were misaligned
with the jPCA planes (Fig. 4e, f; Pearson’s Rho = 0.82–0.97 between
plane alignment and variance explained by jPCA, p <0.001). Previously
described rotational dynamics were therefore an incomplete descrip-
tion of motor cortex activity: while jPCA found planes in which motor
cortex activity rotated for some reach conditions, these planes were
compromises that missed equal-magnitude but nearly-orthogonal
rotations on other conditions.

Different-frequency rotations occupied distinct yet coordinated
subspaces
Although the rotationalplanes varied substantiallybetween conditions
as shown above, we found that this variation was structured to avoid

reusing the same plane for different frequency rotations. If we con-
sidered pairs of conditions and computed the alignment index for the
corresponding rotations (e.g., the 2.5Hz plane for both conditions) vs.
the alignment index for different-frequency rotations (e.g., 2.5Hz for
one condition and 4Hz for the other), the different-frequency pairs
were consistently nearly-orthogonal, and the corresponding rotations
were better aligned (Fig. 5a; Wilcoxon signed-rank test, p < 0.001;
Supplementary Fig. 5). Different frequencies were therefore segre-
gated into different subspaces of neural state space.

Although different frequency rotations occupied different sub-
spaces of neural state space, their orientations across conditions were
nevertheless related. We tested whether one rotation’s parameters for
a given condition could be used to predict the parameters of a
different-frequency rotation in the same condition. For example, could
the 4Hz rotation’s parameters be predicted from the 2.5 Hz rotation’s
parameters using the same model for all conditions (Fig. 5b)? We
quantified the prediction quality as the variance explained in the true
rotation by the predicted rotation, using the same prediction model
for all conditions. We quantified this predictive ability over all pairs of
rotation. Each rotation predicted an average of 43–94% of the variance
in other rotations (s.d. <25%, 6-fold cross-validation), significantly
greater than expected by chance (Fig. 5c; Wilcoxon signed-rank test,
p <0.001). This finding suggests that although rotations occupied
separate parts of neural state space, their parameters are set jointly by
an underlying low-dimensional structure.

Motor cortex rotations were location-dependent
So far, we have analyzed differences in the orientations of the rota-
tional planes between conditions. These results generalized to the
state space location, the point around which the rotations occurred.
The state space location subspace was multi-dimensional: the dimen-
sions occupied across conditions were less aligned than expected due
to estimation noise (ROC-AUC=0.88–0.95;Wilcoxon signed-rank test,
p <0.001; Supplementary Fig. 6a). To determine the geometry of the
state space location across conditions, we again used SEA. SEA iden-
tified 4–5 state space location dimensions with angles >15° (Supple-
mentary Fig. 6b). Again, we validated SEA using previously existing
measures of extrinsic dimensionality applied to the subspace orien-
tations. The state space location required 21–30 principal components

Fig. 4 | Rotational plane differs substantially between reach conditions. a The
alignment index quantifies the overlap between two rotational planes. b Alignment
indices between corresponding (same-frequency) rotational planes on pairs of
reach conditions (colored) and distribution expected by estimation noise (gray).
c Subspace excursion angles for corresponding rotational planes across conditions
(blue), along with angles expected by estimation noise. Line, mean; shaded, 1

standard deviation. d Total rotational variance of a condition vs. the condition’s
variance in the first jPCA plane. e The “misalignment” hypothesis: all conditions are
equally rotational, but some rotate in planes orthogonal to the jPCA plane.
f Alignment index between a condition’s rotational planes and the first jPCA plane,
vs. the condition’s variance captured by jPCA. Data shown from M1-J.
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to capture 80% of the total variance, had 5–12 dimensions with an
SNR > 1, and had participation ratios of 15.1–26.4. Moreover, the state
space location dimensions were distinct from those of rotations (same
analysis as Fig. 5a; Wilcoxon signed-rank test, p <0.001; Supplemen-
tary Fig. 6c).

In a dynamical system, location in state space determines
dynamics. Accordingly, the state space location was strongly pre-
dictive of rotations’ parameters (Fig. 6a). We repeated our previous
analysis (predicting each condition’s rotation’s parameters from one
another’s), but instead used the state space locations to linearly

predict rotations’ parameters. The state space locations predicted an
average of 67–80% of the total population variance (Fig. 6b; s.d. <15%,
6-fold cross-validation), significantly greater than expected by chance
(Wilcoxon signed-rank test, p <0.001). These findings suggest that
motor cortex activity uses “location dependent rotations” (LDR): that
“where” the population state is in the neural state space determines
“how” the population state rotates over time—that is, in which
dimensions the rotations occur.

Reach kinematics correlate with state space location
If motor cortex does in fact use location dependent rotations, then the
state space location determines the time-varying aspects of neural
activity. In agreement with the many known relationships between
motor cortex activity and movement parameters, the state space
location was strongly related to reach kinematics. We visualized state
space locations across conditions using Principal Component Analysis
(PCA). Qualitatively, state space location related to the overall direc-
tion from starting point to target in a continuous manner (Fig. 6c). To
quantify the relationship between state space location and reach
kinematics, we used linear regression to predict state space location
from kinematics (Fig. 6d). We used linear dimensionality reduction to
summarize reach kinematics, extracting four “reach parameters” per
condition that captured information about reach angle and curvature
over the course of the reach. Reach parameters linearly predicted
37–71% of the variance in state space location (6-fold cross-validation),
greater than expected by chance (shuffle, p <0.001). Allowing non-
linearities via kernel regression raised the variance explained to
69–81% of the variance in state space (6-fold cross-validation; shuffle,
p <0.001). These observations suggest that the state space location
relates closely to reach kinematics.

Reach kinematics correlate with the dynamics of motor cortex
activity
Above, we found that the state space location of motor cortex activity
could predict the parameters of rotations in neural activity, and that
state space location relates tightly to reach kinematics. We therefore
hypothesized that motor cortex activity during reaching could be

Fig. 6 | State space location predicts rotational plane. a Illustration of “location-
dependent rotations” model. The state space location was used to predict the
parameters of every rotation. b Population variance explained by predicting rota-
tional parameters from state space location. c PCA plot of state space locations
across condition. Each dot is a single condition, colored as in Figure 1b. d Reach

parameters describing reach angle and curvature were used to predict state space
location. e Variance explained in the state space location from reach kinematics
using linear (blue) and nonlinear (teal) regression, alongwith distribution expected
by chance (gray bar).

Fig. 5 | Rotational planes coordinated variation between conditions.
aCumulative distribution functionof alignment index betweendifferent-frequency
rotational planes (gray) and same-frequency rotational planes (colored) on pairs of
conditions. Shaded gray regions indicate maximum and minimum of CDF across
shuffles. Same-frequency rotational planes were more aligned than different-
frequency rotational planes. b To test for correlations between different rotations’
parameters, we used one rotation’s parameters to predict a different rotation’s
parameters. c Mean variance explained in each rotation across condition by pre-
diction from a separate rotation. Data shown from M1-J.
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predicted by using reach parameters (a whole-sequence summary of
kinematics) to reconstruct both the state space location and the
rotational parameters (orientation, magnitude, and phase for each
frequency) of the neural activity. Most previous attempts to relate
neural activity to movement have used moment-by-moment correla-
tions between kinematic parameters and firing rates to fit an instan-
taneous encoding model. Historically, encoding models in motor
cortex have achievedonly limited success; they have explained atmost
approximately half the variance of motor cortex activity19,47, leading to
discussion of what the rest of the activity inmotor cortex corresponds
to20. Our proposed LDR encoding model takes a different approach,
predicting features ofmotor cortex dynamics (the state space location
and rotational parameters) instead of activity directly. Moment-by-
moment firing rates are determined only indirectly, by the rotations
unfurling over time in the specified planes.

To fit this model, we used linear regression to predict the loading
matrix of a condition’s neural activity, which includes both the state
space location and rotation parameters, from that condition’s reach
parameters (which summarize the kinematics; Fig. 7a). Importantly, a
single model was used for all conditions. Motor cortex activity was
reconstructed for held-out conditions by first predicting the loading
matrix, then using the temporal basis functions to produce the pre-
dicted neural activity over time. We quantified model fit as the popu-
lation variance explained in motor cortex activity.

This linear LDR-encodingmodel explainedmost of the population
variance: 60–78% (s.d. <22%, 6-fold cross-validation), greater than
expected by chance (Wilcoxon signed-rank test, p <0.001). To deter-
mine whether including a nonlinearity could further boost perfor-
mance, we also tested kernel regression. This nonlinear LDR encoding
model explained 71–87% of the population variance (s.d. <17%, 6-fold

Fig. 7 | Reach kinematics are encoded in the rotational planes and state space
location of motor cortex activity. a Illustration of LDR encoding and decoding
model. b True PSTH for unit 61, M1-N (left), reconstruction by a nonlinear LDR-
encoding model (center), and reconstruction by a standard linear multi-parameter
standard encoding model (right). c Median (bar), interquartile range (IQR, box),
and 1.5x IQR (whiskers) of population variance explained by linear and nonlinear
LDR-encoding models, along with variance explained by standard encoding mod-
els. Hand position over time (d) and hand velocity over time (e) along with

reconstruction by LDR-based decoding and kernel regression on smoothed spiking
(100ms Gaussian filter). f Median, IQR, and 1.5x IQR of variance in hand position
explained by LDR-based decoding, along with variance explained by standard
techniques employing a denoising step and then fitting an instantaneous activity-
baseddecoder of reach kinematics. Statistics calculated across trials (1469 trials for
monkey J, 2014 trials for monkey N). LDR-based decoding explainedmore variance
than every other method tested (two-sided Wilcoxon signed-rank test, p <0.001).
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cross-validation), greater than expected by chance ormemorization of
the dataset (Fig. 7b, c; Wilcoxon signed-rank test, p <0.01; Supple-
mentary Fig. 7). Motor cortex activity could therefore be predicted
from kinematics by predicting the state space location and rotations’
parameters.

To reiterate, LDR encoding models do not fit an instantaneous
relationship between neural activity and kinematics as in standard
models. LDR predicts the state space location and rotations’ para-
meters from a summary of the kinematics for the entire reach, and
thus forms a “sequence-to-sequence” encoder: an entire reach is used
topredict features ofmotor cortex dynamics. Thisdifference is crucial.
We quantified the performance of various linear and nonlinear stan-
dard encoding models and found they were substantially out-
performed by both linear and nonlinear LDR encoding models
(Fig. 7b, c; Wilcoxon signed-rank test, p < 0.001). Importantly, though,
this model is compatible with motor cortex having a subset of
dimensions that relate instantaneously tomuscle activity or kinematics
(see “Discussion”).

LDR allows linear decoding of single-trial kinematics
We hypothesized that because LDR relates a larger fraction of neural
activity to kinematics, it would also allow us to better decode reach
kinematics from neural activity. We therefore formulated an LDR-
based decoder to predict reach kinematics from single-trial spiking
activity, which is essentially the encoding model in reverse applied to
single-trial spiking data (Fig. 7a, “Methods”). In particular, it acts as a
linear sequence-to-sequence decoder: projecting spiking activity onto
the temporal basis functions to extract the state space location and
rotational dynamics orientations, and using these to predict a static
representation of the reach trajectory.

Despite using only linear operations on spiking activity, this LDR-
based decoder on average explained 84–92% of the variance in the
hand’s position over time (s.d. <15% across trials; 2-fold cross-valida-
tion across conditions). This decoder outperformed every other
standard offline decoder we tested, including combining acausal de-
noising methods such as Gaussian Process Factor Analysis45 with
nonlinear decoders (Fig. 7d–f; Wilcoxon signed-rank test, p < 0.001 vs.
everyother testeddecoder for all datasets). Importantly, this decoding
did not rely on neural activity in output-potent dimensions36 alone
encoding for kinematics or muscle activity. Identifying and removing
dimensions that encoded hand position, hand velocity, and muscle
activity produced no substantial degradation in decoding quality
(Supplementary Fig. 8; Wilcoxon signed-rank test, p =0.04–0.96).
Given that the LDR-based decoder was trained using trial-averaged
data, one concern might be that LDR-based decoding may produce
only the average reach for each condition—de-noising trajectories at
the expense of real variability. Using an LDR-based decoder, however,
we were able to decode trial-by-trial variations in reach curvature
(Pearson’s rho, 0.16–0.41; p <0.001), indicating that our model deco-
ded fine variations in movement.

Discussion
Our results reveal several previously-undescribed features of motor
cortex activity in themonkey during a variety of reachingmovements.
First, although the same frequencies of rotations were present across
reaches, the rotational planes changed substantially across different
reach conditions. Second, the overall state space location of motor
cortex activity predicts which planes are occupied by the rotations in
the population state. Finally, both the state space location and the
rotational planes correlate strongly with the kinematics of the ongoing
reaches.

Ourfinding that rotational planes differ betweendifferent reaches
explains why previous rotational models of motor cortex failed to
describe the activity for many conditions: it is not that dynamics were
weak for those conditions, but simply that rotations occurred in other

dimensions of neural state space. This variability in rotational plane
means that neural dynamicswerenot, aspreviously assumed, very low-
dimensional. This is consistent with an emerging understanding that
motor cortex activity is higher-dimensional than previously
hypothesized16.

Consistent with our observations, several recent studies have
documented rotational planes varying between conditions. Motor
cortex has been observed to rotate in largely separated planes during
forward and backward cycling29, while network models of motor cor-
tex exhibit different rotational planes during different grasping
movements48. These observations fit with a growing body of literature
suggesting that confining different dynamics to different parts of state
space allows recurrent neural networks to flexibly perform multiple
behaviors without catastrophic forgetting49, to reduce interference
between different movements50, or to segregate movement-epoch
dynamics from preparatory activity40.

We observed that rotational planes not only differ between con-
ditions, but differ smoothly as a function of difference in reach kine-
matics. This reconciles seemingly-contradictory observations about
the dimensionality of neural data22. The variability in rotational planes
makes motor cortex activity moderately high-dimensional across
neurons. Yet at the same time, that rotational planes change smoothly
as function of reach kinematics means that motor cortex activity is
low-dimensional in conditions, because there are a limited number of
independent neural responses motor cortex can produce22,46,51.

This low-dimensionality of conditions, combinedwith high neural
dimensionality due to rotational plane variation, may allow motor
cortex to generalize well while nevertheless being sufficiently
expressive52,53. Smoothly varying the rotational plane may allowmotor
cortex to generate the “correct” activity patterns for new reaches by
reaping the benefit of strong generalization due to local linearity54,55, as
previously argued in dynamical systems analysis42,56,57 and models33 of
motor cortex. On the other hand, allowing the population state to
rotate in substantially different planes for different reaches may allow
motor cortex to produce a variety of different output signals across
reaches33. Qualitatively, the ability of dynamics to change system-
atically with state space location also relate to work on network solu-
tions to producing a variety of cycling speeds, where speed is encoded
along a dimension in the network’s state space, while dynamics vary
along the encoding dimension58; and to how the brain times intervals52.

Our findings additionally help reconcile classic representational
models of motor cortex with the dynamical systems perspective.
Representational models focus on firing rates correlating with move-
ment parameters such as the direction and distance of a target. In our
model, this tuning is captured in the correlation between location in
state space and parameters of movement. Our findings suggest the
state space location is used to set up motor cortex dynamics to pro-
duce the appropriate trajectory in neural state space, thereby con-
verting a simple representation into the necessary time-varying
outputs. This model therefore argues that tuning and dynamics are
both meaningful and are interrelated.

Based on our findings, we propose the following conceptual
model of motor cortex during reaching (Fig. 8a). Unique to the LDR
model, the population state of motor cortex is moved to the appro-
priate state space location, and the population state then rotates in the
condition-specific planes set by the local dynamics around that state
space location. As in many previous models, the phase andmagnitude
of the rotation are set by the initial activity, whether this is from a
preparatory period or the irreducible preparation preceding
movement19,37,39. Also as in many models, the outputs from cortex in
our model are determined by the activity in specific output-potent
dimensions36, which may contain only modest variance16,18. We spec-
ulate that having the system work in this way may help the brain solve
the “inverse problem”59: it allows a linear mapping of the desired
kinematic trajectory to a location in neural state space, and the local
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dynamics can then produce the needed patterns in the output
dimensions.

This conceptual model explains why an LDR encoding model is
able to explain somuchmore variance in neural activity than standard
representational encoding models. Dynamical systems models argue
that neural activity occupies both output-potent dimensions, which
directly drive outputs, and output-null dimensions, which are needed
to support the generating dynamics (Fig. 8b)23,25,36,60. Indeed, here we
were able to decode kinematics accurately after regressing off our
estimates of output-potent dimensions entirely. Representational
encoding models consider correlations between neural activity and
movement variables, and therefore can only explain activity in output-
potent dimensions. LDR encoding models relate whole neural trajec-
tories to whole-reach kinematics, and are therefore able to predict
activity in both output-potent andoutput-null dimensions fromahigh-
level description of the reach. Similar logic applies to decoding mod-
els. Though standard decoders can use output-potent dimensions to
decode movement from neural activity, LDR-based decoding can
leverage output-null activity as well, effectively giving it more data to
work with (Fig. 8c, d)61. To do so, however, requires the additional
understanding provided by LDR of the relationship between repre-
sentation and dynamical pattern generation.

LDR may have other advantages for the brain, allowing motor
cortex to generate richer command signals during movement than
would be possible with strictly rotational dynamics. When limited to a
single readout, planar rotational dynamics can approximate any

arbitrary pattern over time given a well-chosen initial state. This allows
rotational dynamics to drive the needed spiking in, for example, a
single corticospinal neuron (CSN). Rotational dynamics, however,
cannot arbitrarily set the phases and amplitudes of two or more CSNs’
activity. Readouts from rotational dynamics are therefore strictly
locked in phase and magnitude, meaning that spiking activity of mul-
tiple CSNs cannot be independently modulated without an explosion
of model dimensionality (Fig. 8e). LDR does not have this limitation.
With rotations oriented appropriately in state space, each CSN contains
oscillations of the correct amplitude and phase to produce the needed
pattern of spiking over time (Fig. 8f). By changing rotational planes
between conditions, CSNs can be driven with effectively independent
phases and magnitudes. Given that muscle activity for reaching can be
assembled from a small basis set of sines and cosines27,62, this makes
LDR a potentially adequate generator for the required control signals.
Note, however, that the data used here did not identify CSNs, and thus
we cannot examine M1’s outputs directly here.

Our findings suggest several immediate avenues of future
research. LDR-based decoding, as a sequence-to-sequence model,
cannot be used for real-time control of brain computer interfaces
(BCI), except perhaps in tasks such as speech which may naturally be
organized as sequence-to-sequence problems and where the relevant
parts of motor cortex are known to exhibit dynamics30. Our findings
argue for an alternate conception of motor cortex dynamics, which
could be exploited for decoding in multiple ways. Previous methods
have used dynamics to incorporate information from output-null

Fig. 8 | LDR allows richer outputs than rotational dynamics. This figure is
entirely schematics of hypotheses. a Illustration of proposed model. Preparatory
activity moves the population state to the necessary state space location, where
local rotational dynamics cause the population state to rotate in the correct planes
upon movement onset. b In a dynamical system, output-null dimensions act as
supporting dynamics for producing activity along output-potent dimensions. This
means activity in output-null dimensions, though not directly “read out” by the
nervous system indrivingbehavior, is informative ofbehavior.c Standarddecoders

attempt to estimate output-potent dimensions, but in the process discard infor-
mation in output-null dimensions. d LDR-based decoding, by using motor cortex
dynamics on each condition, leverages output-null and output-potent activity to
refine estimates of reach kinematics. e Rotational dynamics impose strict phase-
and magnitude-locking on outputs, such as CSNs. f By contrast, LDR allows for
CSNs to break phase- and magnitude-locking, allowing motor cortex to produce a
richer set of outputs.
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dimensions to denoise the output-potent dimensions that are read
out63; or, usedwhole neural trajectories to estimate the current one61. A
better understanding of the dynamics may be able to improve per-
formance with such methods. Alternatively, the location and orienta-
tion of the dynamics themselves might be used directly for decoding.

Methods
Subjects, behavior and data pre-processing
All data used here have been analyzed in previous studies. Animal
protocols were approved by the Stanford University Animal Care and
Use Committee. Two adult male rhesus macaque monkeys (Macaca
mulatta), J and N, performed the “maze” center-out delayed-reaching
task for juice reward19. Briefly, the monkey initially fixated a central
point on a vertical screen with the eye and a cursor floating slightly
above the fingertips, then a slightly jittering target was shown. After a
brief delay (0–1000ms), a Go cue was presented (cessation of target
jitter, filling in of target, and disappearance of fixation point), and the
monkey was required to make a fast, accurate reach to the target. On
some trials, the monkey was required to avoid virtual barriers pre-
sented at the same time as the target, eliciting curved reaches to
produce 72 different reaching “conditions” (36 straight, 36 curved).
For both monkeys, data were collected using two 96-electrode “Utah”
arrays (Blackrock Microsystems, Salt Lake City, UT), one implanted in
PMd and one in M1. Both single-units and stable multi-units were
included for analysis. Spiking activity was binned at 1 millisecond,
smoothed with a 20ms Gaussian kernel, trial-averaged, and down-
sampled to 10millisecond resolution. Except where noted, all analyses
were performed on each dataset (monkey and array) independently.

Fitting dynamics to single conditions
Condition-specific dynamics were examined by fitting, for each condi-
tion independently, a discrete-time linear dynamical system to popula-
tion activity from 150ms prior to movement onset to 850ms after
movement onset. If an eigenvalue in a fit LDS had a half-life >10 s, it was
reduced to 10 s.We fit the LDS using reduced-rank regression to find the
optimal low-rank LDS that explained maximum variance in that condi-
tion’s neural activity. We determined the dimensionality of the LDS via
cross-validation (see below64). To quantify the fit of linear dynamics, for
each condition we simulated the dynamics forward from the population
state 150ms prior to movement onset, then quantified the population
variance explained in the observed neural activity for that condition.

To perform the cross-validation mentioned above, for each con-
dition independently we assigned trials into one of two partitions, then
smoothed and trial-averaged each partition independently to produce
independent estimates of firing rates. We denote these estimates X and
Y. We estimated the singular vectors of population activity from X. We
then, for different dimensionalities k, projectedX on to its top k singular
vectors and quantified the variance explained in Y. We repeated this
procedure 100 times per condition, and selected the value of k that
maximized the average variance explained across folds and conditions.

Controlling for the expected similarity of conditions’
eigenvalues
There are two reasons that eigenvalues for pairs of conditions may
differ: true differences and estimation noise. To quantify the expected
dissimilarity due to estimation noise, we simulated 2 sets of 20 trials
from each condition’s firing rate via a Poisson process, then smoothed
and trial-averaged each partition to estimate firing rates. We then fit
linear dynamics independently to each partition. Finally, we quantified
themeandistancebetween the eigenvalues between the twoestimates
of the same condition’s firing rates. This provides an estimate of the
eigenvalue distance attributable to estimation noise under the Poisson
assumption. We repeated this procedure 500 times per condition to
estimate a distribution of the mean distance between eigenvalues. We
then compared this null distribution to the true distribution of

eigenvalue-distances between pairs of conditions. We quantified dif-
ferences in distribution by quantifying the Receiver Operator Char-
acteristic Area Under the Curve (ROC-AUC) to quantify the
discriminability between the two distributions. As an additional con-
trol that did not assume Poisson firing rate statistics, we repeated the
above control, but generated separate estimates of each condition’s
activity by randomly partitioning trials in half. We then identically fit
linear dynamics to each partition, quantified the eigenvalue distance,
then quantifying the ROC-AUC between the generated null and
empirical distributions.

Factorizing neural activity using temporal basis functions
To identify rotations conserved in motor cortex activity across con-
ditions, without assuming preservation of rotational planes across
conditions, we exploited the convenient fact that any diagonalizable
LDS:

x t + 1ð Þ=Mx tð Þ ð1Þ

can be re-written on a single condition (defined with an initial state)
as:

xðtÞ=LbðtÞ ð2Þ

expressed as the product of loading matrix L and a set of temporal
basis functions b (see Supplement for derivation). Briefly, the loading
matrix captures information about the eigenvectors and initial state of
the LDS, while the temporal basis functions describe the temporal
patterns produced by the eigenvalues. Importantly, two LDSs with the
same eigenvalues will have the same temporal basis functions, even if
their eigenvectors differ. Assuming neural activity on each condition
has the same eigenvalues, but different eigenvectors, these temporal
basis functions will be shared by neural activity across conditions, just
with (potentially) different loading matrices. Neural activity on each
condition is therefore just a (potentially) different linear transforma-
tion on the same temporal basis functions, so the temporal basis
functions can be recovered via a Singular Value Decomposition on the
neural activity across conditions concatenated into a (neurons x
conditions)-by-time matrix. The top k singular vectors over the time
index are assigned as the temporal basis functions, while the top k
singular vectors over neurons and conditions (weighted by the singular
values) can be partitioned into condition-specific loading matrices.
Activity on condition c, a neurons-by-timematrixX(c), is then expressed
as:

X cð Þ≈L cð ÞB ð3Þ

where L(c) is a neurons-by-k loading matrix for condition c, and B is a k-
by-time matrix where each row of the matrix is a temporal basis
function. This procedure is related to the Higher-Order Singular Value
Decomposition. To quantify the approximation provided by this
factorization, for eachconditionwemultiplied that condition’s loading
matrix by the shared temporal basis functions and computed the
population variance explained in that condition’s neural activity.

De-mixing temporal basis functions
Like many matrix factorizations, the factorization in Eq. (3) is only
unique up to an invertible linear transformation. To allow for later
analyses that considered the different frequencies of rotations, we
aimed to “de-mix” the temporal basis functions into as pure of fre-
quencies as possible—corresponding to functions attributable to sin-
gle (pairs of) eigenvalue(s). To this end, we fit an LDS to the temporal
basis functions from 150ms prior to movement to 850ms after
movement onset and projected the temporal basis functions onto the

Article https://doi.org/10.1038/s41467-024-51308-7

Nature Communications |         (2024) 15:7007 10



eigenvectors of this LDS:

B : = E�1B ð4Þ

This operation does not affect the quality of the factorization, as
we correspondinglymultiplied the loadingmatrix of each condition by
the eigenvectors:

L cð Þ : =L cð ÞE ð5Þ

The eigenvalues of the fit LDS can then be matched one-to-one
with temporal basis functions.

Cross-validating the number of temporal basis functions
To cross-validate the number of temporal basis functions to use, we
assigned trials to one of two partitions, then smoothed and trial-
averaged each partition to produce independent estimates of each
condition’s firing rates. We estimated loading matrices and temporal
basis functions for one partition, varying the number of temporal basis
functions used. We then reconstructed, for each condition, the neural
activity as the product of that condition’s loadingmatrix and temporal
basis functions. We repeated this procedure over 100 folds, and
selected the number of temporal basis functions to maximize the
average variance explained in the held-out partition across conditions.
After the fact, we visually screened temporal basis functions, and dis-
carded the last basis function if it was “unpaired”; that is, if it did not
have a similar-frequency basis function with a phase offset.

Quantifying the recoverability of temporal basis functions
Basis function decompositions, such as the Fourier transform, have
been applied widely to decompose complicated datasets into linear
sums of more interpretable functions. We therefore needed a method
to ensure that the factorization described above was identifying
rotations inmotor cortex activity, and not simply acting as an arbitrary
basis function decomposition. To measure this, we exploited a key
distinction between rotations and oscillations. Rotations require that
each temporal basis function be embedded in a distinct dimension, so
that each sine/cosinepair of temporalbasis functions occupies a plane,
and each different-frequency rotation occupies a different plane. In
general, basis function expansions will not meet these requirements.
We therefore attempted to “recover” the temporal basis functions
from neural activity as:

B’ðcÞ =LðcÞyXðcÞ ð6Þ

where B’(c) is the recovered temporal basis functions for condition c
and † indicates pseudo-inversion. We quantified the “recoverability” of
temporal basis functions on condition c as the variance explained in
the temporal basis functions by the projected neural activity. If this
metric is 1, it suggests that the condition’s loading matrix is invertible,
and therefore fulfills the requirements of rotations. More specifically,
we expect recoverability to fail when two (or more) temporal basis
functions are assigned the same dimension in state space by the
loadingmatrix. As each temporal basis functions dynamically supports
eachother, this overlapwouldpreclude neural activity fromacting as a
dynamical system.

Control for data smoothing
One potential concern is that the factorization described above works
well on neural data simply because the data are smoothed before
analysis, and smoothing limits the frequency spectrum and therefore
allows neural activity to be reconstructed by a small number of tem-
poral basis functions. To test these possibilities, for each trial of each
condition independently we shuffled time bins before smoothing and
averaging, to disrupt the temporal structure of motor cortex activity

while preserving inter-neuron spike correlations and total spike
counts. We then extracted temporal basis functions, with the number
of temporal basis functions matched to the original dataset, and
quantified the population variance explained and recoverability
(defined above) of the temporal basis functions.We compared this null
distribution to the data distribution using a Wilcoxon signed-rank test
to test for differences in distributions.

Control for stereotyped time course of behavior
One potential concern is that the factorization described above can
find common frequencies between conditions simply because reaches
take similar amounts of time, and motor cortex activity is likely
modulated by movement onset, offset, and speed. If this hypothesis
were correct, then time-warping reaches and the correspondingmotor
cortex activity to equalize reach duration should strengthen the
recoverability of the temporal basis functions, as aspects of motor
cortex activity are warped to become more aligned. To test this, we
used linear time-warping to equalize all reaches at 600ms duration,
then time-warpedmotor cortex activity correspondingly. For the post-
reach activity, in which motor cortex firing rates are still changing, we
tested two methods: one warped the post-reach activity to uniformly
last 250ms, and the other truncated post-reach activity at 850ms after
movement onset. Both methods produced similar results; the latter
variant is shown in Fig. 3i. For both methods we then extracted the
same number of temporal basis function as in the original dataset, and
then quantified the recoverability of the temporal basis functions as a
quantification ofmodel fit.We then quantified the correlation between
howmucha reachcondition’s duration differed from themean and the
recoverability. This was done for both the original and warped
datasets.

Subspace excursion angles
A set of vectors may be high-dimensional because they vary slightly
from an otherwise low-dimensional plane, or because they are truly
spread out and ‘fill’ the high-dimensional space. For example,
3-dimensional vectors can be chosen fromwithin a cubeor fromwithin
a narrow cone; either way, the space spanned is 3-dimensional, but if
the vectors are chosen from the cube they will sweep ‘farther’ into the
three dimensions. We attempted to distinguish these possibilities for
the planes occupied by neural dynamics using a metric, Subspace
Excursion Angles. More generally, in this analysis we sought to
understand whether, for a set of low-dimensional subspaces {S(1), …,
S(c)} of a high-dimensional space, these subspaces varied only slightly
relative to one another, forming small angles, or whether the objects
truly “pivoted” far into many different dimensions and formed large
angles with one another. Here, each S(i) was the dimension(s) for a
given component on a given condition (taken from the column(s) of
loading matrices), embedded in high-dimensional neural state space.
Existing methods of estimating dimensionality do not distinguish
slight variations from more substantial variations, as long as the
occupancy of each additional dimension is above the noise level. To
better characterize the geometry of this set of subspaces, we took one
of the observed subspaces S(i) as a seed and found the greatest sub-
space angle (the principal angle) to any other observed subspace S(j).
We then replaced S(i) with the union of S(i) and the vector in S(j) that
formed the greatest anglewith S(i). We repeated this process to find the
next greatest angle to the augmented S(i), and so forth. This searchwas
optimized over all possible sequences to find the sequence with the
largest angles.

Estimating the dimensionality of each rotation’s orientations
We supplemented our estimates of each rotation’s dimensionality in
three ways. First, we used cross-validation to measure the dimen-
sionality of each rotation’s orientation. For this measure, we defined
this dimensionality as the number of dimensions in the loading
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matrices with an SNR > 1 (analogous to the cross-validation procedure
in ref. 64). To estimate this dimensionality, we partitioned trials in half
to extract two independent estimates of each condition’s neural
activity. We then extracted temporal basis functions from partition 1
and used regression to fit loading matrices to both partitions sepa-
rately. We then performed PCA on the dimensions occupied by these
rotations (the loading matrices) in partition 1. Sweeping over dimen-
sions retained, we quantified the alignment index between the
dimensionality-bottlenecked estimate of the loading matrices from
partition 1, and the unmodified loading matrices from partition 2. We
averaged alignment indices over 100 folds and all conditions, and
chose the dimensionality thatmaximized the alignment indexbetween
estimates. Second, we performed PCA on each rotation across condi-
tions independently, to produce an estimate of the number of
dimensions in neural state space needed to capture 80% of the rota-
tion’s variance across conditions. Finally, we used the previous PCA to
calculate the participation ratio of that rotation across conditions.

Measuring the across-condition alignment of rotations
We found that neural activity always contained rotations at a small
number of fixed frequencies, but on different conditions neural
dynamics potentially occupied dissimilar rotational planes. To deter-
mine whether each of the rotations occupied different planes on dif-
ferent conditions, or whether only some of the rotations did, we
probed each rotation separately. Todo so,wefirst grouped the pairs of
identified temporal basis functions that shared the same frequency
into rotations (a sine and cosine pair). Empirically, this produced 3–4
pairs of same-frequency sinusoidal temporal basis functions, and a
single activity mode with zero frequency. We could correspondingly
then group columns of each condition’s loading matrix that corre-
sponded to single rotations. We then computed the alignment index
for pairs of conditions for each rotation. For the state space location,
the analysis was identical but with a single dimension instead of a pair.
To determine whether one rotation ever used the same dimensions as
a different frequency rotation on a different condition (Fig. 4b), we
performed the same analysis but with the two planes coming from
different rotations (different column pairs of L(c)). As before, the two
planes came fromdifferent conditions. To put these alignment indices
into context, it was necessary to understand what to expect due to
estimation noise (gray distribution in Fig. 4b). To find the distribution
expected from estimation noise, for each condition we randomly
assigned trials into one of two partitions, then smoothed and trial-
averaged each partition to estimate firing rates. We then used linear
regression to identify the loading matrix for both partitions indepen-
dently. Finally, we quantified the alignment index for rotational planes
of the same frequency between these independent estimates of the
same condition in either partition. We repeated this procedure 36
times to estimate a distribution of alignment indices.

Explaining variability in jPCA-identified rotations
To link our findings with previous work, we applied jPCA to neural
activity27. As in the original work, we applied jPCA with mean-sub-
traction, a soft-normalization constant of 5, and after reconstructing
neural activity with temporal basis functions (which we note is a
population-level version ofpreviously-used “PC smoothing”). Based on
visual inspection and the results in the original work, we kept the first
two of the discovered jPCA planes forM1 as “rotational”, while for PMd
we kept only the first plane. To quantify the fit of jPCA to the total
activity, we computed the percentage of population variance con-
tained in the plane(s). To quantify total rotational activity on condition
cwe quantified the variance due to rotational temporal basis functions
from the decomposition in our Eq. (3). To compare to jPCA, prior to
quantifying the variance or extracting temporal basis functions we
soft-normalized and mean subtracted activity identically to jPCA. We
then quantified the Pearson correlation of this variance measure with

the variance in each jPCA plane across conditions, for each retained
jPCA plane independently. To quantify the alignment between neural
activity and the jPCA plane on condition c (Fig. 4f), we computed the
alignment index between the total rotations in neural activity and the
jPCA plane for each condition. We then quantified the Pearson corre-
lation of the alignment index with the variance in each jPCA plane
across conditions, for each retained jPCA plane independently.

Predicting rotations from other rotations or the state space
location
On a single condition, that condition’s loading matrix describes the
state space location and each rotation’s parameters: the rotational
plane, along with the initial location of the population state within the
plane. To demonstrate the rotations’ parameters were not indepen-
dent, we predicted the parameters of one rotation from another’s on
the same condition. Each rotation’s parameters on a single condition
are described by a pair of columns in the loadingmatrix. We therefore
used linear regression to predict the pair of columns describing one
rotation’s parameters from the pair of columns describing a different
rotation’s parameters. This was done by vectorizing each pair of col-
umns for the predictor rotation and the predicted rotation, with each
condition acting as an observation, then using ridge regression
(lambda =0.1) to relate the two rotations. We cross-validated our
model with 6-fold cross-validation: fitting temporal basis functions,
loading matrices, and the regression model to 5/6 of the conditions,
then testing on the remaining 1/6. To quantify model performance, we
reshaped the output of the model back into a pair of column vectors,
and then multiplied by the two associated temporal basis functions to
produce the “predicted rotation”. We correspondingly multiplied the
two empirical columns of the loading matrix by the same temporal
basis functions to produce the “true rotation”. We then quantified the
variance explained in the true rotation by the predicted rotation. We
repeated this procedure over all conditions and pairs of rotations.

We similarly fit a nonlinear version of this model using kernel
ridge regression65 (lambda =0.1, Gaussian Kernel, length-scale = 400).
Parameters for this and all other kernel regressions were optimized by
grid search. As a null distribution, we independently shuffled predictor
and predicted rotations between conditions, quantified variance
explained by model output, and tested for difference in the true dis-
tributions used a Wilcoxon signed-rank test to test for differences in
distributions.

To extend this procedure to the state space location, we used the
column of the loading matrix associated with state space location as a
predictor, and predicted the (vectorized) remainder of the loading
matrixusing ridge regression (lambda =0.1).We identically used6-fold
cross-validation for this model. To quantify model performance, we
concatenated the observed state space location column with the
(reshaped) output of themodel, multiplied the resultingmatrix by the
temporal basis functions, then computed variance explained in that
condition’s neural activity. We similarly fit a nonlinear version of this
model using kernel ridge regression (lambda = 0.1, Gaussian Kernel,
length-scale = 400). As a null distribution, we independently shuffled
state space locations and rotations between conditions, quantified
variance explained by model output, and tested for difference in the
true distributions used a Wilcoxon signed-rank test to test for differ-
ences in distributions.

LDR encoding
On a single condition, the state space location and rotation’s parameters
are given by that condition’s loading matrix. By contrast, the temporal
basis functions describing the frequencies of these rotations are com-
mon across conditions. To predict neural activity from kinematics, we
therefore used linear regression to predict a condition’s loading matrix
from that condition’s kinematics. To both regularize the model and to
allow for model interpretability, we reduced the dimensionality of the
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kinematics on each condition using linear dimensionality reduction. We
regressed each condition’s hand position over time against two kine-
matic basis functions to extract four “reach parameters” that described
target location and reach curvature along the x- and y-axis. We vector-
ized each condition’s loading matrix, and used ridge regression
(lambda =0.1) to fit a map from these four coefficients to a condition’s
loading matrix. We used 6-fold cross-validation, fitting temporal basis
functions, loading matrices, and the regression model to 5/6 of the
conditions, thenquantifyingmodel performanceon the remaining 1/6of
the conditions. We quantified model performance by reshaping model
output, multiplying by the temporal basis functions, then quantifying
variance explained in neural activity. We similarly fit a nonlinear version
of this model using kernel regression (Ornstein-Uhlenbeck kernel,
length-scale = 103). As a null distribution, we shuffled neural activity and
kinematics between conditions, quantified variance explained bymodel
output, and tested for difference from the true distributions using a
Wilcoxon signed-rank test.

Extracting kinematic basis functions
To perform sequence-to-sequence mapping of an entire neural trajec-
tory to anentire kinematic trajectory,we requireda low-dimensional and
meaningful summary representation of reaching kinematics over the
entire trial. We therefore performed an SVD on the x- and y-coordinate
velocity of thehandon all conditions in all our datasets (Fig. 6d). The top
two velocity singular vectors were interpretable. The first velocity sin-
gular vector was a unimodal trace, with rapid rise from zero beginning
aroundmovementonset, peakingaround250msaftermovementonset,
and then slower decay toward zero. The second velocity singular vector
was a bi-phasic trace, with alternating up and down modes, and
approximately represented the derivative of the first vector. The first
velocity singular vector therefore mostly contained information about
the straight reaching velocity component, while the second velocity
singular vector contained information about reach curvature or target
overshoot. We fit these two kinematic basis functions as a skew-normal
curve and the derivative of a skew-normal curve. Decoding results were
essentially identical if the raw vectors from SVD were used, but this fit
ensures that position andvelocity variants of themodel are identical.We
optimized parameters using gradient descent. After fitting these com-
ponents, we analytically integrated them to obtain the equivalent basis
functions over position.

Controlling for nonlinear LDR encoding
One potential concern in nonlinear regression models is that the
model will collapse points in the test set towards the nearest points in
the training set, acting not as a continuous regression model but as a
nearest-neighbor regression model. To control for this possibility, we
divided target locations into sextants. We trained nonlinear LDR
encoding models on 5/6 of the sextants and tested on the held-out
sextant. For comparison, we trained a nonlinear LDR encoding model
that used nearest neighbor regression in place of kernel regression
with the same cross-validation. This explicitly compares nonlinear
regression’s performance to memorization of the training set. We
compared distributions of variance explained using either approach
with a Wilcoxon signed-rank test.

Comparing the LDR encoding with standard instantaneous
encoding models
To compare our encoding model based on LDR to standard, instan-
taneous tuning models, we fit several forms of encoding model to
motor cortex activity. In particular, we compared:

• Linear regression to predict motor cortex activity as a linear
combination of baseline firing rate, position, extent, velocity,
speed, velocity angle, and acceleration.

• Kernel regression to predict motor cortex activity from hand
position.

• Kernel regression to predict motor cortex activity from hand
velocity.

For all regressions, we included a 100ms causal lag between
kinematics and neural activity. For linear regression, we used ridge
regression (lambda =0.1). For kernel regression, we used the Ornstein-
Uhlenbeck kernel with a length-scale of 1012 for position encoding and
1011 for velocity encoding. For each encoding method, we then quan-
tified the variance explained for motor cortex activity, using each
condition as a data point for the distributions. Finally, we compared
these distributions to the distributions obtained from LDR encoding
using a Wilcoxon signed-rank test.

LDR-based decoding
We fit an LDR-based linear decoder that directly used the state space
location and rotation orientations to decode reach kinematics. The
predictors for this decoder consisted of the vectorized loading
matrices of each condition. The targets of the model consisted of the
four reach parameters described earlier, which capture target position
and reach curvature. We used 6-fold cross-validation: fitting temporal
basis functions, loading matrices, and the decoder to 1/2 of the con-
ditions (trial-averaged). For the remaining 1/2 of the conditions, we
decoded from single-trials rather than trial-averaged activity. To
decode, we estimated the loading matrix for each trial by pseudo-
inverting the temporal basis functions and multiplying with the trial’s
spike counts (see Supplementary). We then vectorized this estimated
loading matrix and used the model to predict the four coefficients.
Finally, we multiplied these coefficients by the kinematic basis func-
tions to produce an estimate of reach position over time. We quanti-
fiedmodel fit as the variance explained in reach position over time. As
a null distribution, we shuffled neural activity and kinematics between
conditions, quantified variance explained, and compared with the true
distributions using a Wilcoxon signed-rank test.

Comparing LDR-based decoding to instantaneous decoding
methods
Webenchmarked our decodingmethods against advanced versions of
more traditional decoding models, which decode the value of kine-
matic parameters at an instant in time frommotor cortex firing rates at
an earlier instant in time. As exemplary instantaneous decoding
methods, we used:

• Linear regression to decode handposition or hand velocity, with a
lag of 100ms, on spiking activity smoothed with a 20 or 100
millisecond Gaussian kernel.

• Kernel regression todecodehandposition or handvelocity, with a
lag of 100ms, on spiking activity smoothed with a 20 or 100
millisecond Gaussian kernel, trained on a subset of single-
trial data.

• Same as above, but trained on trial-averaged activity.
• Linear or kernel regression to decode hand position or hand
velocity, with a lag of 100ms, on single-trial trajectories inferred
by Gaussian Process Factor Analysis (GPFA).

For linear regression, we used ridge regression (lambda = 1). For
kernel regression, we used the Ornstein-Uhlenbeck kernel with a
length-scale of 102 and an L2-penalty of 0.1. For eachdecodingmethod,
we quantified the variance explained in hand position for each con-
dition. We compared each of these distributions to the data distribu-
tion using a Wilcoxon signed-rank test.

Quantifying the trial-to-trial fidelity of decoding within
condition
An ideal kinematic decoder would follow variations in individual
movements, not categorically decode condition identity and output
kinematics corresponding to the condition.Wewished to test whether
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the LDR-based decoder acted akin to a nearest neighbor classifier,
detecting which condition a trial was most similar to and returning the
corresponding average reach. To test whether our decoder was con-
tinuous or categorical, we asked whether it could decode the residuals
of the reach parameters, within a condition. Specifically, we con-
sidered the third and fourth reach parameters, which describe curva-
ture. We then quantified the Pearson correlations between the
decoded and true reach parameters.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedata used in this study are available onDANDI (https://dandiarchive.
org/dandiset/000070), as datasets sub-Jenkins_ses-20090918_behavior
+ecephys.nwb and sub-Nitschke_ses-20100923_behavior+ecephys.nwb.
Code-compatible data are available upon request within 1 week.

Code availability
Analysis was performed using methods available in MATLAB 2018b.
Code is available at https://github.com/kaufmanlab/LDR-public.
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