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Internal sites of actuation and activation in thin elastic films and membranes of finite thickness
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Functionalized thin elastic films and membranes frequently feature internal sites of net forces or stresses.
These are, for instance, active sites of actuation, or rigid inclusions in a strained membrane that induce coun-
terstress upon externally imposed deformations. We theoretically analyze the geometry of isotropic, flat, thin,
linearly elastic films or membranes of finite thickness, laterally extended to infinity. At the mathematical core of
such characterizations are the fundamental solutions for localized force and stress singularities associated with
corresponding Green’s functions. We derive such solutions in three dimensions and place them into the context
of previous two-dimensional calculations. To this end, we consider both no-slip and stress-free conditions at the
top and/or bottom surfaces. We provide an understanding for why the fully free-standing thin elastic membrane
leads to diverging solutions in most geometries and compare these situations to the truly two-dimensional case.
A no-slip support of at least one of the surfaces stabilizes the solution, which illustrates that the divergences
in the fully free-standing case are connected to global deformations. Within the aforementioned framework,
our results are important for associated theoretical characterizations of thin elastic films, whether supported or
free-standing, and of membranes subject to internal or external forces or stresses.
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I. INTRODUCTION

Under various circumstances, we meet thin elastic films
and membranes being exposed to the action of internal
forces and stresses. One obvious situation arises when such
membranes are mechanically reinforced, for instance, by the
inclusion of relatively firmer fibers to increase the overall sta-
bility under loading [1]. When the overall system is stretched,
mechanical counterstresses are generally exerted by these
fibers on the elastic environment.

The same is true for any rigid inclusion upon functional-
ization of thin elastic films or membranes. A specific example
is given by elastic membranes containing rigid magnetic or
magnetizable inclusions [2]. The action of loudspeakers can
be mimicked in such cases by directly exerting magnetic
forces on the membrane itself, without additional external
mechanical components of stimulation.
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Situations of supported elastic films on a substrate are
encountered frequently during measurements of atomic force
microscopy (AFM). In the field of soft matter, scales of the
probes are given by lengths up to micrometers [3,4]. The
tip used for this purpose directly exerts forces onto the film.
Depending on the situation, one can consider such forcing as
internal, with the AFM tip pressed into the membrane.

In a biological context, living cells generate internal and
external stresses. Depending on the time scales, layers of
growing and/or migrating biological cells [5–8] can be con-
sidered as thin elastic or viscoelastic films that generate
internal stresses. Similarly, biofilms typically consist of liv-
ing bacteria inside a thin elastic extracellular matrix [9–12],
supported by a substrate.

On the theoretical side, there have been some recent
observations concerning two-dimensional elastic systems as
representations of free-standing thin elastic membrane sys-
tems. Net forces acting in an in-plane direction within
infinitely extended two-dimensional systems lead to a formal
logarithmic divergence of the induced displacement field as a
function of the distance from the force center [13]. The two-
dimensional elastic membrane, even if infinitely extended,
does not offer sufficient resistance against a net force. Instead,
the whole two-dimensional system will get displaced. This
is in contrast to three-dimensional materials, which do not
experience such diverging displacements in bulk in response
to persistent pointlike force centers [14].
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The divergence in two dimensions naturally cancels if the
overall force on the elastic membrane vanishes [15]. Particu-
larly, this is the case when so-called symmetric force dipoles
[16] act on the material. Similarly, it vanishes in the presence
of, for example, a no-slip boundary [17,18]. This means that,
no matter how distant a boundary is, it always has a decisive
influence on the displacement field resulting from a net force
in the two-dimensional membrane system.

Here, we employ a two-dimensional Fourier transforma-
tion technique to investigate thin elastic films. Yet and notably,
we here do not confine ourselves to strictly two-dimensional
systems. Instead, we consider elastic films and membranes
of finite thickness, that is, of finite extension in the third
dimension. The two-dimensional Fourier transformation tech-
nique has been widely utilized in elucidating the behavior
of elastic sheets and deformable membranes. Its fundamental
concept revolves around harnessing the translationally invari-
ant symmetry along horizontal planes. The approach involves
transformations of the partial differential equations govern-
ing membrane displacements or fluid flows—particularly in
fluid dynamics—into remaining ordinary differential equa-
tions with respect to the out-of-plane coordinate. Previously,
this technique has been effectively used to describe in low-
Reynolds-number hydrodynamics the behavior near walls and
interfaces [19–23]. The same applies to the behavior of elas-
tic membranes undergoing shear and/or bending deformation
modes [24–32].

When in the present work we consider flat elastic mem-
branes or thin films that are infinitely extended in the
lateral direction, yet of finite thickness in the normal, third
direction, the situation is intermediate between genuinely
two-dimensional and three-dimensional, space-filling, bulk
systems. An important question from the conceptual per-
spective is the role of force-induced divergences in this
intermediate situation. How does it compare to the results for
two- and three-dimensional systems?

To address this question, the remainder of the paper
is structured as follows. In Sec. II, we present the two-
dimensional Fourier transformation technique applied to
the governing equations of elasticity, along with solutions
for various boundary conditions. Specifically, these are no-
slip and/or stress-free conditions at the top and/or bottom
surfaces. We explore both monopole and dipole types of sin-
gularity and address the solutions in terms of resulting Green’s
functions. Our results are discussed in Sec. III, where we also
delineate the conditions under which the solutions converge
and diverge. The paper concludes in Sec. IV. Complex ex-
pressions pertaining to the solution are presented in tables
within Appendix A, while additional background concerning
the calculations is included in Appendix B.

II. MATHEMATICAL FORMULATION

The displacement field u(r) of the material points in the
elastic medium is governed by the Navier-Cauchy equation

μ�u(r) + (λ + μ)∇[∇ · u(r)] + f (r) = 0, (1)

with μ and λ denoting the shear modulus and Lamé parameter,
respectively, and f (r) the force density field acting on the

elastic material. Both coefficients are related to each other via

λ = 2μν

1 − 2ν
, (2)

where ν ∈ (−1, 1/2] is the Poisson ratio. The components of
the stress tensor read

σi j = 2μεi j + λεkkδi j . (3)

In this expression, δi j represents the Kronecker δ and equal
to the components of the unit matrix. εi j = (∇iu j + ∇ jui )/2
includes the components of the linearized strain tensor.

To derive solutions for the displacement field, we utilize
a two-dimensional Fourier transformation in both the x and
y direction. This transformation is defined as follows. The
forward two-dimensional Fourier transformation of a function
g(ρ, z) is denoted as g̃(k, z) and is expressed as

g̃(k, z) = F {g(ρ, z)} =
∫
R2

g(ρ, z) e−ik·ρ d2ρ, (4)

where k represents the wave vector in the two-dimensional
plane of the Fourier transformation. Here, ρ = (x, y) denotes
the projection of the position vector into the xy plane. We
do not perform a Fourier transformation with respect to the z
component. Similarly, we define the inverse two-dimensional
Fourier transformation as

g(ρ, z) = 1

(2π )2

∫
R2

g̃(k, z) eik·ρ d2k. (5)

Additionally, we introduce the wave number k = |k|, repre-
senting the magnitude of the two-dimensional wave vector,
and we define the unit vector k̂ = k/k.

To address the elastic equations, we adopt a cylindrical
coordinate system and represent the unit wave vector as k̂ =
cos φ x̂ + sin φ ŷ. Additionally, we define the two-dimensional
unit vector t̂ in the xy plane perpendicular to k̂ such that
t̂ = sin φ x̂ − cos φ ŷ. Consequently, the Fourier-transformed
displacement field and force density field can be projected
onto the basis consisting of the unit vectors k̂ and t̂ . The longi-
tudinal and transverse components of the Fourier-transformed
displacement field are defined as ũl = ũ · k̂ and ũt = ũ · t̂ ,
respectively [33]. We refer to the z component ũz of the
Fourier-transformed displacement field as the normal com-
ponent. Similarly, the longitudinal, transverse, and normal
components of the Fourier-transformed force density are de-
noted as f̃l , f̃t , and f̃z, respectively.

Next, in the new orthogonal basis, we derive the two-
dimensional Fourier-transformed elastic equations. We find
that the transverse component of the displacement field
is completely independent of the longitudinal and normal
components,

(∂zz − k2 )̃ut + f̃t

μ
= 0. (6)

The longitudinal and normal components of the dis-
placement field are governed by a system of second-order
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differential equations,(
∂zz − 2(1 − ν)

1 − 2ν
k2

)
ũl + ik

1 − 2ν
∂zuz + f̃l

μ
= 0, (7a)

(
2(1 − ν)

1 − 2ν
∂zz − k2

)
ũz + ik

1 − 2ν
∂zũl + f̃z

μ
= 0. (7b)

Although our focus lies in seeking solutions to the elastic
equations involving force singularities concentrated at one
point, we remark that Eqs. (6) and (7) apply to any arbitrary
force density f (r), given that its Fourier transformation is
known.

A. Solution in a bulk elastic medium

We begin by revisiting the scenario involving a force sin-
gularity within an infinitely extended, three-dimensional, bulk
elastic medium. Thus, we examine the effect of a force density
represented by a Dirac δ function located at the origin of
our Cartesian coordinate system, f (r) = F δ3(r). The cor-
responding two-dimensionally Fourier-transformed quantity,
according to Eq. (4), follows as f̃ (z) = F δ(z). Below, F is
likewise expressed in the orthogonal basis (k̂, t̂, ẑ).

Equation (6) represents a second-order differential equa-
tion. The characteristic polynomial of the homogeneous
equation features two distinct roots, ±k. As a consequence,
the solution for the transverse component of the displacement
field takes the form ũ∞

t = Ae−k|z|, where the constant A is
obtained from the jump in the first z derivative due to the Dirac
δ function. Specifically,

∂zũ
∞
t

∣∣
z=0+ − ∂zũ

∞
t

∣∣
z=0− = −Ft

μ
. (8)

This leads to

ũ∞
t = Ft

2k
e−k|z|. (9)

The characteristic polynomials associated with the homo-
geneous parts of Eqs. (7) similarly yield two distinct roots ±k,
each with a multiplicity of 2. Consequently, the longitudinal
and normal components of the displacement field take on the
forms ũ∞±

l = (α±
1 + α±

2 z)e∓kz and ũ∞±
z = (β±

1 + β±
2 z)e∓kz,

where the superscripts “plus” and “minus” correspond to the
regions above and below the singularity. Continuity of the
displacements across z = 0 implies α+

1 = α−
1 and β+

1 = β−
1 .

Further relations follow by introducing these functional forms
into Eqs. (7) away from the singularity position. Moreover,
the Dirac δ function at z = 0 implies the jump conditions

∂zũ
∞
l

∣∣
z=0+ − ∂zũ

∞
l

∣∣
z=0− = −Fl

μ
, (10a)

∂zũ
∞
z

∣∣
z=0+ − ∂zũ

∞
z

∣∣
z=0− = − 1 − 2ν

2(1 − ν)

Fz

μ
. (10b)

Upon solving the resulting system of linear equations, we
acquire the final expressions

ũ∞
l = e−k|z|

8μ(1 − ν)k
((3 − 4ν − k|z|)Fl − ikzFz ), (11a)

ũ∞
z = e−k|z|

8μ(1 − ν)k
((3 − 4ν + k|z|)Fz − ikzFl ). (11b)

FIG. 1. (a) Illustration of the system setup. A force F acts onto
the thin elastic film or membrane of finite thickness H at the position
(0, 0, h). The bottom surface of the film or membrane is located
at z = −H/2, the top surface at z = H/2. For this situation, three
different sets of boundary conditions are addressed. These are (b) no-
slip boundary conditions at both the top and bottom surface (2NOS),
(c) the bottom boundary exhibiting a no-slip condition while the
top boundary remains stress-free (NOS-STF), and (d) stress-free
boundary conditions at both the top and bottom surfaces (2STF).
No-slip boundary conditions imply vanishing displacements u = 0,
while stress-free conditions imply σ · ẑ = 0.

B. Image solution technique

Our goal is to quantify the static deformational response
of an elastic membrane of finite thickness H to an applied
static force acting at position h ∈ (−H/2, H/2), see Fig. 1(a).
Initially, in the undeformed state, the membrane features two
flat, parallel, infinitely extended (top and bottom) surfaces at
z = ±H/2. We examine three scenarios concerning the pos-
sible confinement of these surfaces when a force singularity
is applied between these surfaces. These are (i) no-slip con-
ditions both at the top and bottom boundaries, see Fig. 1(b),
(ii) one no-slip condition (top boundary) and one stress-free
condition (bottom boundary), see Fig. 1(c), and (iii) stress-
free conditions both at the top and bottom boundaries, see
Fig. 1(d).

Utilizing the bulk solution derived in Fourier space in
Sec. II A, we express the result as a combination of the bulk
term and an additional contribution necessary to meet the
prescribed boundary conditions. This technique is commonly
known as the image solution technique. Specifically,

ũ = ũ∞ + ũ∗, (12)

with ũ∗ representing image solution.
We remark that the position of the force center in the bulk

elastic medium considered in Sec. II A was located at the
origin. Obtaining the corresponding expressions for the force
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acting at z = h is straightforward in bulk through simple trans-
lation. To this end, z is replaced by z − h in the expressions for
ũt , ũl , and ũz in Eqs. (9) and (11).

The image solution ũ∗ satisfies the homogeneous parts of
Eqs. (6) and (7). It can be expressed in the form

ũ∗
t = c−

1 e−kz + c+
1 ekz (13)

for the transverse component and

ũ∗
l = (c−

2 + c−
3 z)e−kz + (c+

2 + c+
3 z)ekz, (14a)

ũ∗
z = (c−

4 + c−
5 z)e−kz + (c+

4 + c+
5 z)ekz (14b)

for the longitudinal and normal components, where

c±
4 = i

k
((3 − 4ν)c±

3 ∓ kc±
2 ), (15a)

c±
5 = ∓ic±

3 . (15b)

The wave-number-dependent coefficients c±
1 , c±

2 , and c±
3 will

subsequently be determined based on the boundary conditions
specified at z = ±H/2, see Fig. 1.

At each no-slip surface, we enforce the vanishing compo-
nents of the displacement field, namely u = 0, ensuring ũt =
ũl = ũz = 0 at these boundaries. For a stress-free surface, we
prescribe σ · ẑ = 0, implying the boundary conditions

∂zũt = 0, (16a)

∂zũl + ikũz = 0, (16b)

(1 − ν)∂zũz + iνkũl = 0. (16c)

Particularly, we note that, if ν = 1/2, Eq. (16c) becomes
the incompressibility condition for the elastic medium.

Subsequently, we express lengths in dimensionless units by
normalizing them with respect to the thickness of the mem-
brane H . Effectively we thus set a unit membrane thickness,
which simplifies the resulting expressions.

Imposing the relevant boundary conditions on the top and
bottom surfaces, we obtain a system of six linear equations for
each combination of boundary conditions. Their solutions
yield the expressions for the remaining unknown coefficients
c±

j , j ∈ {1, 2, 3}. Due to their complexity and lengthiness,
and since it is straightforward to formulate the system of
equations using computer algebra systems, we do not include
the details of evaluation here.

First, as previously indicated, the transverse component of
the displacement field, see Eq. (13), remains unaffected by
normal and longitudinal forces, see Eq. (8). This results in a
set of equations for c±

1 when imposing the relevant boundary
conditions. For both types of boundary conditions, the expres-
sions for the coefficients c±

1 follow in the form

c±
1 = Ft

2kd
(w0e∓kh + w1ek(1±h) ). (17)

Here, the specific expressions for w0, w1, and d are de-
termined by the specified set of boundary conditions. As
depicted in Fig. 1, we introduce the abbreviations 2NOS (two
no-slip walls, NOS-STF (bottom no-slip and top stress-free),
and 2STF (two stress-free surfaces). We find that d = μ(e2k −
1) for 2NOS and 2STF, and d = μ(e2k + 1) for NOS-STF. In
addition, (w0,w1) = (1,−1), (−1,±1), and (1,1) for 2NOS,
NOS-STF, and 2STF, respectively.

The coefficients c±
2 and c±

3 entail more complex ex-
pressions, as they specify both the longitudinal and normal
components of the displacement field, see Eqs. (14) and (15).
This results from their combination in the coupled differential
equations, see Eqs. (7). For ease of reference, we introduce
the abbreviations

σ = 3 − 4ν ∈ [1, 7), (18)

together with δ± = 1 ± h and η± = 1 ± 2h. Imposing the dif-
ferent sets of boundary conditions, the expressions for the
coefficients c±

2 and c±
3 determining the expressions for the

longitudinal and normal components of the image displace-
ment field, see Eqs. (14) and (15), for all sets of boundary
conditions can be formulated as

c±
2 = 1

D

3∑
n=0

(a±
n Fl + ib±

n Fz )ek(n∓(−1)nh), (19a)

c±
3 = 2k

D

3∑
n=0

(g±
n Fl + iq±

n Fz )ek(n∓(−1)nh). (19b)

Here, the specific expressions for the coefficients a±
n , b±

n ,
g±

n , and q±
n together with the denominator D depend on the

specific boundary conditions. They are provided in Table II of
Appendix A.

We now define the displacement Green’s function as

u(r) = G(r) · f . (20)

It is composed of the Green’s function associated with the bulk
displacement field, G∞(r), and the Green’s function associ-
ated with the image displacement field, G∗(r),

G(r) = G∞(r) + G∗(r). (21)

Based on Eqs. (9) and (11), we deduce that in Fourier space
the components of the Green’s function associated with the
bulk displacement field for a force acting at a distance h above
the center plane are

G̃∞
tt (k, z) = 1

2k
e−k|z−h|, (22a)

G̃∞
ll (k, z) = σ − k|z − h|

8μ(1 − ν)k
e−k|z−h|, (22b)

G̃∞
lz (k, z) = − ik(z − h)

8μ(1 − ν)k
e−k|z−h|, (22c)

G̃∞
zz (k, z) = σ + k|z − h|

8μ(1 − ν)k
e−k|z−h|. (22d)

These expressions can simply be read off from Eqs. (9) and
(11), recalling the vertical shift due to the position of the force
center at z = h instead of z = 0 and regarding Eq. (18). In
addition, it follows that G̃∞

zl (k, z) = G̃∞
lz (k, z).

Next, in a similar way, we infer the the corresponding
expressions for the Fourier-transformed image solution of the
Green’s function from the previous results for the image dis-
placement field. Utilizing Eqs. (13) and (17), we may express
the tt component of the image Green’s function for all sets of
boundary conditions as

G̃∗
tt (k, z) = 1

2kd
(w0(ψ−

0 + ψ+
0 ) + w1(ψ−

1 + ψ+
1 )), (23)
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where

ψ±
n = ek(n∓(−1)nh±z). (24)

Moreover, it follows from Eqs. (14), (15), and (19) that

G̃∗
i j (k, z) = 1

D

3∑
n=0

(A−
n i jψ

−
n + A+

n i jψ
+
n ) (25)

for i, j ∈ {l, z} for all sets of boundary conditions. We here
defined the abbreviations

A±
n ll = a±

n + 2kzg±
n , (26a)

A±
n lz = i(b±

n + 2kzq±
n ), (26b)

A±
n zl = ∓i(a±

n + 2(kz ∓ σ )g±
n ), (26c)

A±
n zz = ±(b±

n + 2(kz ∓ σ )q±
n ). (26d)

The expressions for w0, w1, d , a±
n , b±

n , g±
n , q±

n , and D again
depend on the specific set of boundary conditions and are
listed below Eq. (17) and in Table II of Appendix A.

It is beneficial to have available the expressions of the
Green’s functions in the standard Cartesian coordinate system
as well. To this end, we invert the transformation outlined
below Eq. (5). This implies

G̃xx = G̃ll cos2 φ + G̃tt sin2 φ, (27a)

G̃yy = G̃ll sin2 φ + G̃tt cos2 φ, (27b)

G̃xy = (G̃ll − G̃tt ) sin φ cos φ. (27c)

Besides, G̃xz = G̃lz cos φ, G̃yz = G̃lz sin φ, G̃zx = G̃zl cos φ,
and G̃zy = G̃zl sin φ. Moreover, G̃yx = G̃xy, which is dictated by
the geometric symmetry in the xy plane.

We next proceed to the inverse Fourier transformation back
to real space [34]. Given that the expressions in Fourier space
are formulated utilizing polar coordinates (k, φ), we antici-
pate that the expressions in real space, after inverse Fourier
transformation, can likewise be expressed in polar coordinates
(ρ, θ ). Here, ρ :=

√
x2 + y2 represents the radial distance

from the origin, while θ := arctan(y/x) denotes the angle
formed between the positive x direction and the radial di-
rection of the considered position in space. A comprehensive
collection of associated formulas can be found in Ref. [35]. In
Appendix B, we include an overview of the pertinent formulas
utilized in the present computation. For later reference and for
the ease of computing the inverse Fourier transformation, we
present the expressions of the Green’s function itself in Carte-
sian coordinates. Conversely, its dependence on the position
for convenience is maintained in polar coordinates ρ and θ .

First, we list the components of the Green’s function as-
sociated with the z component of the applied force. A force
only featuring a z component is oriented perpendicular to the
surfaces, implying an axisymmetric geometry. The inverse
Fourier transformation yields

Gρz = i

2π

∫ ∞

0
G̃lz(k, z)J1(ρk) k dk, (28)

Gzz = 1

2π

∫ ∞

0
G̃zz(k, z)J0(ρk) k dk. (29)

In our notation, Jn refers to the Bessel function of the first
kind of order n [36]. It follows that Gxz = Gρz cos θ and Gyz =
Gρz sin θ in Cartesian coordinates.

The remaining components of the Green’s function are
calculated in analogy to that. We introduce the notation

G̃±
n (k, ρ, z) := k

4π
(G̃tt (k, z) ± G̃ll (k, z))Jn(ρk). (30)

Then, we obtain

Gxx =
∫ ∞

0
(G̃+

0 (k, ρ, z) + G̃−
2 (k, ρ, z) cos (2θ ))dk, (31a)

Gyy =
∫ ∞

0
(G̃+

0 (k, ρ, z) − G̃−
2 (k, ρ, z) cos (2θ ))dk. (31b)

Moreover,

Gxy =
∫ ∞

0
G−

2 (k, ρ, z) sin (2θ ) dk. (32)

Again, Gyx = Gxy, which agrees with the geometric symmetry
within the xy plane. Furthermore, Gzx = Gzρ cos θ and Gzy =
Gzρ sin θ , where

Gzρ = i

2π

∫ ∞

0
G̃zl (k, z)J1(ρk) k dk. (33)

In a bulk elastic medium, which is infinitely extended in all
space directions, the Green’s function reads [37]

G̃∞
i j = 1

16πμ(1 − ν)

(σ

r
δi j + rir j

r3

)
, (34)

where r := |r| =
√

ρ2 + (z − h)2 denotes the distance from
the position of the applied force singularity. The result in
Eq. (34) is obtained by inverse Fourier transformation of
Eqs. (22). For ν = 1/2, implying σ = 1 in Eq. (18), represent-
ing an incompressible elastic medium that does not allow any
divergence of the displacement field at any position in space,
we recover the classical solution recognized in fluid mechan-
ics as the Oseen tensor [38,39]. This tensor characterizes the
behavior of an incompressible fluid under the influence of
a force singularity under low-Reynolds-number conditions.
There, μ assumes the role of the (dynamic) shear viscosity
and u(r) takes the role of the flow field of the fluid.

C. Convergence of the Green’s functions for force monopoles

We here consider the displacement fields arising in a lat-
erally infinitely extended elastic film or membrane of finite
thickness. The expressions for the Green’s functions quan-
tifying these displacements in real space in response to the
localized application of a force were derived in Sec. II B, see
Eqs. (28)–(33). They are provided by integral expressions that
result from the inverse two-dimensional Fourier transforma-
tion back to real space, see Eq. (5). We discuss the divergence
of these expressions for the different types of boundary
conditions.

Considering that the Green’s functions exhibit a screened
exponential decay as the wave number k approaches infinity,
which results from the Bessel functions in Eqs. (28)–(33),
problems of convergence of the integrals do not arise when
k approaches infinity. Our primary concern remains the con-
vergence of the integrals determining the Green’s functions
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in Eqs. (28)–(33) as k tends towards zero. Near k = 0, the
Bessel functions Jn(ρk) can be approximated as (ρk/2)n/n! +
O(kn+2). Thus, G̃ must exhibit O(k−1) or higher-order behav-
ior in k near k = 0 to warrant convergence of the integrals.
The cause lies with the factor k that the Green’s functions
G̃ are multiplied with in polar coordinates when performing
the two-dimensional inverse Fourier transformation in Eq. (5).
Overall, this requires an exponent of k of at least −1 in G̃ to
hinder divergence of the integrals at k = 0.

For boundary conditions involving at least one no-slip
surface, that is, for the categories 2NOS and NOS-STF, we
observe that the diagonal components G̃tt , G̃ll , and G̃zz all ex-
hibit behavior of the order O(k−1), see Eqs. (34)–(26) together
with the expressions of the parameters listed in Table II of
Appendix A. Moreover, the off-diagonal components G̃lz and
G̃zl show behavior on the order of O(1), as equally inferred
from this set of equations. Overall, this indicates convergence
of the Green’s function for all cases involving at least one
no-slip boundary.

The situation becomes markedly different in the case of
two stress-free boundaries (2STF). In this situation, from
Eqs. (23)–(26) together with the coefficients listed in Table II
in Appendix A, we observe that G̃tt and G̃ll exhibit behavior on
the order of O(k−2). Even more so, G̃lz and G̃zl show behavior
of the order of O(k−3), and G̃zz is of the order of O(k−4).
These relations indicate a nonconvergent Green’s function in
real space when the integrals in Eqs. (28)–(33) are carried out.

D. Convergence of the Green’s functions for force dipoles

Having analyzed the behavior in response to singularities
consisting of force monopoles, our focus shifts to singulari-
ties of force dipoles. Again, we investigate how the behavior
varies for the different boundary conditions enforced at the
surfaces.

First, we introduce the â-directed Green’s function as

G(r; â) = G(r, r0) · â, (35)

where a is a unit vector and r0 is the position of applying the
force singularity. Next, we calculate the gradient ∇0 of the
â-directed Green’s function with respect to the position r0. In
this way, we define the Green’s function for the force dipole
composed of â-directed forces as

GD(r; â, b̂) = 8πμ(b̂ · ∇0)G(r; â). (36)

This force dipole extends along the direction given by the unit
vector b.

In this expression, the differentiation ∇0(·) with respect to
the position r0 of the force singularity stems from casting the
discrete setup of two nearby force centers into a differential
form. During this process, as a limit, the distance between the
two centers of the point forces tends to zero. This is how we
turn from the two infinitesimally separated force centers to the
force dipole. In contrast to ∇0(·), the regular ∇(·) is the dif-
ferentiation with respect to the regular space coordinate. Due
to the translational symmetry along the xy plane, it follows
from Eq. (36) in Cartesian coordinates that ∂/∂x0 = −∂/∂x
and ∂/∂y0 = −∂/∂y. However, in the presence of a boundary,
∂/∂h does not equate to −∂/∂z. In fact, G(r, r0) in Eq. (35)

depends on x − x0 and y − y0, but not on z − z0, where r0 =
(x0, y0, z0).

Next, we define the stresslet as the symmetric part of the
force dipole, expressed as

GS(r; â, b̂) = 1
2 (GD(r; b̂, â) + GD(r; â, b̂)). (37)

Likewise, we define the rotlet as the antisymmetric part,

GR(r; ĉ) = 1
2 (GD(r; b̂, â) − GD(r; â, b̂)), (38)

where ĉ = â × b̂.
It is more convenient to derive the expressions of the force

dipole in Fourier space according to Eq. (4). Then, we obtain

G̃D(k, z; â, x̂) = −ik cos φ G̃(k, z; â), (39a)

G̃D(k, z; â, ŷ) = −ik sin φ G̃(k, z; â), (39b)

G̃D(k, z; â, ẑ) = ∂hG̃(k, z; â), (39c)

recalling that the Fourier transformation is performed only
in two dimensions so that the arguments are given by the
two-dimensional wave vector k together with the real-space
z coordinate. The minus signs in Eqs. (39a) and (39b) result
from the relations ∂/∂x0 = −∂/∂x and ∂/∂y0 = −∂/∂y noted
above.

When turning to the inverse two-dimensional Fourier trans-
formation according to Eq. (5), the solution is expressed in
integral form

GD(r; â, b̂) =
∫ ∞

0
k �(r, k; â, b̂) dk. (40)

Integration with respect to the variable φ has already been
performed in the function �(r, k; â, b̂). This calculation can
be supported by conventional computer algebra systems. In
Cartesian coordinates, the expression for �(r, k; â, b̂) needs
to be evaluated with respect to all â, b̂ ∈ {x̂, ŷ, ẑ}. Each such
combination of â and b̂ implies three Cartesian components of
GD(r; â, b̂) in Eq. (40). We present the corresponding compo-
nents of GD(r; â, b̂) in Table III of Appendix A.

Next, we investigate the convergence of the integral in
Eq. (40) in analogy to the procedure outlined in Sec. II C. To
this end, we examine whether � is of order k−1 or higher as
k approaches 0. From the relations in Eqs. (35) and (39), we
infer convergence for GD whenever the integrals for G con-
verge. We found convergence for the pure force singularity in
all cases that involve at least one no-slip boundary (2NOS and
NOS-STF). Thus, we may assume converge of the solution
under these boundary conditions also for GD.

Therefore, the remaining task is to consider the situation
of two stress-free boundaries (2STF). It turns out that in this
case the solution for the force dipole generally can still show
divergence. For certain geometries, it converges while the
solution for the pure force singularity diverges.

The leading-order behavior of � with respect to k near
k = 0 can be determined from the expressions in Ta-
ble III in Appendix A systematically using computer algebra.
Upon examination, we observe that only the configurations
�(r, k; x̂, ŷ) and �(r, k; ŷ, x̂) satisfy the criteria necessary for
the integral in Eq. (40) to generally converge. Thus, only
the Green’s functions GD(r; x̂, ŷ) and GD(r; ŷ, x̂) for the force
dipole are well defined in general. We present in Table I the
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TABLE I. Leading-order expressions in k of the function
�(r, k; â, b̂) around k = 0 with â, b̂ ∈ {x̂, ŷ, ẑ} up to O(k−3). The
function � determines the Green’s function GD for the force dipole,
see Eq. (40). Here, we refer to the scenario of a free-standing elastic
film or membrane of finite thickness featuring two parallel sur-
faces of stress-free boundary conditions (2STF). The combinations
�(r, k; x̂, ŷ) and �(r, k; ŷ, x̂) are omitted because both are of O(1)
to leading order in k at k = 0 and thus imply convergent integrals in
Eq. (40).

�(r, k; â, b̂) Expression for 2STF up to O(k−3)

1 �(r, k; x̂, x̂) 12(1 − ν )hk−2 ẑ
2 �(r, k; ẑ, x̂) 12(1 − ν )k−2(−z x̂ + x ẑ)
3 �(r, k; ŷ, ŷ) 12(1 − ν )hk−2 ẑ
4 �(r, k; ẑ, ŷ) 12(1 − ν )k−2(−z ŷ + y ẑ)
5 �(r, k; x̂, ẑ) 12(1 − ν )k−2(z x̂ − x ẑ)
6 �(r, k; ŷ, ẑ) 12(1 − ν )k−2(z ŷ − y ẑ)
7 �(r, k; ẑ, ẑ) −24 νhk−2 ẑ

leading-order terms in the series expansion of the remain-
ing combinations of �(r, k; â, b̂) around k = 0 with â, b̂ ∈
{x̂, ŷ, ẑ}. From there, it is obvious that no other combination
of â and b̂ provides the required leading-order behavior of k−1

or higher so that convergence of the integral in Eq. (40) does
not generally result.

Concerning the Green’s function for the stresslet GD, see
Eq. (37), it is evident that convergence is achieved, neverthe-
less, if the stresslet is positioned precisely at the center plane
of the elastic film or membrane. This implies h = 0. Then,
we find from Table I that the leading orders in k−2 cancel
for �(r, k; x̂, x̂), �(r, k; ŷ, ŷ), and �(r, k; ẑ, ẑ). Moreover, upon
symmetrization in Eq. (37), the leading orders in k−2 cancel
for �(r, k; x̂, ẑ) + �(r, k; ẑ, x̂) and �(r, k; ŷ, ẑ) + �(r, k; ẑ, ŷ).
Therefore, the leading order is shifted to at least k−1 around
k = 0, thus satisfying the required criterion of convergence
for the integral in Eq. (40). Besides, this implies that for
the Green’s function of the rotlet GR, see Eq. (38), only the
configuration of ĉ = ẑ implies general convergence from the
integrals in Eq. (40).

III. DISCUSSION

We touched here the subtle question of possible diver-
gences in the displacements of elastic films and membranes
when exposed to mechanical force density fields. Conversely
to many previous works, we here focused on systems of finite,
nonvanishing thickness. In deriving associated Green’s func-
tions, we concentrated on the response to imposed forces, see
Secs. II A–II C, stresslets (symmetric contributions to force
dipoles), see Sec. II D and rotlets implying torques (antisym-
metric contributions to force dipoles), see Sec. II D as well.

During these investigations, we encountered possible di-
vergences in the resulting displacement fields. Generally, we
found that the presence of at least one no-slip boundary
stabilizes the system so that no divergence is observed, see
Sec. II C. However, divergences in the displacement field
emerge for free-standing elastic membranes that are infinitely
extended to the lateral sides and of finite thickness in the
normal direction. That is, stress-free boundary conditions

apply on both the top and bottom surface. The divergences
are connected to small wave numbers and thus large length
scales, see Sec. II C. In fully three-dimensional, bulk systems
such divergences are not observed [14].

We first compare to the situation of two-dimensional elastic
systems, that is, infinitely thin, flat elastic membranes. In
that case, logarithmic divergences are found for displacement
fields in response to net forces [40], but not in response to
force dipoles [15], all applied along in-plane directions.

In our considerations, the two-dimensional situation is
recovered when applying forces and force dipoles that are
oriented in the xy plane and positioned in the center plane
at z = 0 (h = 0), see Fig. 1. In that case, in strictly two di-
mensions, net forces lead to diverging displacement fields, but
force dipoles do not [15]. Indeed, we recover this convergence
for force dipoles, if GD(r; x̂, x̂) and GD(r; ŷ, ŷ) are evaluated
for positioning the force dipoles in the center plane. This is
observed from Eq. (40) together with entries 1 and 3 in Table I.
For h = 0, the leading order in k around k = 0 for �(r, k; x̂, x̂)
and �(r, k; ŷ, ŷ) shifts to at least k−1, thus ensuring conver-
gence of the integral in Eq. (40), see also Sec. II D. Along
the same lines, from the orders of � mentioned in the caption
of Table I, we infer that the expressions of GD(r; ŷ, x̂) and
GD(r; ŷ, x̂) are always well defined. Therefore, the symmetric
positioning of force dipoles at h = 0 recovers the situation of
strictly two-dimensional considerations [15], where all result-
ing displacement fields remain finite. Conversely, off-center
positioning of force dipoles, implying h �= 0, can lead to di-
verging displacement fields, signaled by the nonconverging
integral in Eq. (40) when k approaches 0 as highlighted by
the expressions in Table I.

Additionally, we note that displacements according to
stresslets corresponding to the Green’s functions GS(r; x̂, ẑ)
and GS(r; ŷ, ẑ) are always well defined, also for off-center
positioning at h �= 0. The cause lies with the symmetrization
in Eq. (37). In combination, as is obvious from entries 2 and
5 in Table I, the leading order of the symmetrized � shifts to
at least order k−1, thus ensuring convergence of the integral
in Eq. (40) around k = 0. The analogous behavior is observed
when considering entries 4 and 6 in Table I. Therefore, the dis-
placements associated with GS(r; x̂, ẑ) and GS(r; ŷ, ẑ) remain
finite.

The remaining question is, how the diverging displacement
fields can arise even in the case of symmetric force dipoles. In
fact, considering elastic films or membranes in three spatial
dimensions, a bending contribution can generally be involved,
as soon as the force dipole is not placed to the center plane
at h = 0. We recall absence of anchoring at infinity. Con-
sequently, we expect bending modes associated with infinite
magnitudes of normal displacements at infinite distance from
the center of the force dipole. Moreover, antisymmetric parts
of force dipoles that involve the normal direction lead to over-
all rotations of the membrane, and therefore again to diverging
displacement fields at infinity. Once more, the cause lies with
the absence of anchoring of the lateral ends at infinity. We
refer to the remark at the end of Sec. II D. Only for in-plane
rotations, we found converging integrals in Eq. (40), implying
finite displacements. Thus, again, for the scenario of in-plane
rotations, we recover the two-dimensional situation of well-
defined displacement fields [15].
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Finally, we remark that in the context of linear elasticity,
small strains do not necessarily equate to small displace-
ments. Rather, they signify a small symmetrized gradient in
displacement, that is, strain. In other words, we may reside
well in the regime of linear elasticity (small strains) but still
encounter divergences in the displacement field (for instance,
at infinity in an infinitely extended system). Nonlinear elastic
response may suppress such divergences. To our knowledge,
there is limited analytical exploration of nonlinear elastic-
ity theory concerning singularities within the framework
of free-standing elastic films and membranes. Investigating
the challenging nonlinear problem in future research could
provide further insight.

IV. CONCLUSIONS

In summary, we here consider the mechanical displace-
ments and deformations of linearly elastic, initially flat films
and membranes exposed to forces and force dipoles. The
systems are infinitely extended to the sides, yet of finite,
nonvanishing thickness in their normal direction. We address
supported films and membranes subject to no-slip boundary
conditions on at least one of the two surfaces (top and/or
bottom). In these situations, the solutions for resulting dis-
placements in response to both net applied forces and/or
stresslets are well defined. For free-standing elastic films and
membranes, that is, for stress-free boundary conditions apply-
ing to both the top and bottom surface, we observe diverging
solutions for most geometries. These divergences can be re-
lated to global deformations and large-scale displacements
of the whole (infinitely extended) system. When positioning
the force dipoles at the center plane of the elastic sheet, our
expressions are in line with corresponding considerations for
genuinely two-dimensional systems [15,18].

Our results are significant for any theoretical approach
that addresses the deformation of thin, isotropic elastic films
and membranes of infinite lateral extension within the linear
regime. Particularly, we find that, unless for very symmetric
situations of stresslets included symmetrically at the cen-
ter plane of the membrane, infinitely extended free-standing
membranes cannot serve as immediate theoretical model sys-
tems without further precaution. In contrast to genuinely
two-dimensional treatments, even off-center stresslets imply
divergence of the solutions. Therefore, some stabilization of
the system, presumably by introduction of lateral boundaries
and/or counterforces, is necessary in this case.

Overall, the analysis in this study relies on linear elasticity,
primarily due to the employed formalism of Green’s functions
and the principle of superposition. Yet, linear elasticity does
not always accurately capture the observed response of var-
ious materials, particularly in the fields of soft matter and
biology. Defining parameters like Young’s moduli for bio-
logical tissues poses significant challenges, especially when
their stiffness is very small in the absence of loading or pre-
stretch. We opt for a linear framework as an initial approach
to understand the behavior within the regime of small defor-
mations and to facilitate analytical advancements. Addressing
nonlinearities represents an important avenue for future in-
vestigations, potentially through perturbative methods. Still,
we note that the observed divergences in displacement do

not necessarily imply that the regime of linear elasticity is
violated. Since strains follow as symmetrized gradients in
displacements, strains can be small in magnitude even if dis-
placements diverge in infinitely extended systems.

Finally, it will be interesting to analyze experimental data
in view of our results. Particularly, this concerns the analysis
and quantification of observed displacement fields. Naturally,
real-space experimental systems are always of finite extent,
in contrast to our mathematical picture. It is crucial to ac-
knowledge that the role of thermal fluctuations may become
significant with increasing extension. Potentially, they ob-
scure certain aspects of the described effects, especially in
large systems. Introducing lateral boundaries into our inves-
tigations, such as clamping of elastic films and membranes,
comparison with experiments is facilitated. Mathematically
speaking, such additional boundary conditions play a pivotal
role. Our study offers valuable insight in this regard, aiming to
draw attention to this aspect. We infer that in experiments the
role of lateral clamping is dominant for free-standing systems
of stress-free top and bottom surfaces, as they are the ones
that maintain displacements finite. Eventually, if the system
is stabilized by a no-slip boundary condition at the bottom
surface, while stress-free conditions apply at the top surface,
we recover the situation of atomic force microscopy of thin
films [3,4]. It is our plan to provide further theoretical tools in
this framework.

ACKNOWLEDGMENTS

We acknowledge support of this work by the Deutsche
Forschungsgemeinschaft (DFG, German Research Founda-
tion) through the research Grant No. ME 3571/5-1. A.M.M.
thanks the DFG for support through the Heisenberg Grant No.
ME 3571/4-1.

APPENDIX A: TABLES OF EXPRESSIONS

In this Appendix, we present tables containing the remain-
ing expressions that specify the Green’s functions introduced
in the main text. While not essential for comprehending the
contents, they detail the Green’s functions for reference. In
Table II, we include the expressions for D, a±

n , b±
n , g±

n , and
q±

n , n ∈ {0, 1, 2, 3}, as defined in Eqs. (19). They determine
the coefficients c±

2 and c±
3 introduced in Eqs. (14) and (15),

thus governing the image solution for the longitudinal and
normal components of the displacement field. Consequently,
they also enter the corresponding part of the Green’s function
in Eqs. (25) and (26). The expressions depend on the specific
set of boundary conditions and are tabulated accordingly.
Moreover, Table III includes expressions of the Cartesian
components of the function �(r, k; â, b̂), â, b̂ ∈ {x̂, ŷ, ẑ}. Via
Eq. (40), this function determines the Green’s function for the
force dipole GD(r; â, b̂).

APPENDIX B: TWO-DIMENSIONAL INVERSE FOURIER
TRANSFORMATION IN POLAR COORDINATES

In this Appendix, we summarize expressions for calculat-
ing two-dimensional inverse Fourier transformations in polar
coordinates. For a comprehensive cover and associated proofs,
classical textbooks on Fourier analysis [34,41,42] offer
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TABLE II. Expressions for a±
n , b±

n , g±
n , and q±

n , where n ∈
{0, 1, 2, 3}, defining the coefficients c±

2 and c±
3 introduced in

Eqs. (19). These coefficients specify the longitudinal and normal
components of the two-dimensionally Fourier-transformed image
solutions for the displacement field, ũ∗

l and ũ∗
z , respectively, see

Eqs. (14) and (15). The expressions vary depending on the bound-
ary conditions imposed at the top and bottom surface. We address
geometries of two no-slip boundaries (2NOS), two stress-free bound-
aries (2STF), and the combination of one bottom no-slip and one top
stress-free boundary (NOS-STF). For convenience, the definitions of
σ , δ±, and η±, see Eq. (18) and thereafter, are repeated on the bottom
right.

2NOS

D 4μk(1 + σ )(σ 2e4k − 2(σ 2 + 2k2 )e2k + σ 2)
a±

0 ±2σ 2(kh ∓ σ )
a±

1 σ (k2η± + 2σkδ± + 2σ 2)
a±

2 −2k3η± + 4σk2δ± − 2σ 2(2 ± h)k + 2σ 3

a±
3 −σ (k2η∓ − 2σkδ∓ + 2σ 2)

b±
0 −2σ 2kh

b±
1 σk(2σh ± kη±)

b±
2 2k(±k2η± − 2σkh + σ 2h)

b±
3 kσ (∓kη∓ − 2σh)

g±
0 ∓σ 2

g±
1 ±σ (kη± + σ )

g±
2 ±(2k3η± − σ (2k − σ ))

g±
3 ±σ (kη∓ − σ )

q±
0 σ 2

q±
1 σ (kη± − σ )

q±
2 −2k2η± − σ (2k + σ )

q±
3 σ (kη∓ + σ )

2STF

D 4μk(1 + σ )(e4k − 2(1 + 2k2)e2k + 1)
a±

0 2(±kh − σ )
a±

1 −(k2η± + 2σkδ± + 1 + σ 2)
a±

2 2(−k3η± + 2σk2δ± − k(σ 2 + δ±) + σ )
a±

3 k2η∓ − 2σkδ∓ + 1 + σ 2

b±
0 −2kh

b±
1 ∓k2η± − 2σkh ± σ 2 ∓ 1

b±
2 2k(±k2η± − 2σkh ∓ σ 2 ± δ±)

b±
3 ±k2η∓ + 2σkh ∓ σ 2 ± 1

g±
0 ∓1

g±
1 ∓(kη± + σ )

g±
2 ±(2k2η± − 2σk + 1)

g±
3 ∓(kη∓ − σ )

q±
0 1

q±
1 σ − kη±

q±
2 −(2k2η± + 2σk + 1)

q±
3 −(kη∓ + σ )

NOS-STF

D 4μk(1 + σ )(σ (1 + e4k ) + (1 + σ 2 + 4k2)e2k )
a±

0 −2σ (σ ± kh)
a+

1 k2η+ + 2σkδ+ + 2σ 2

a−
1 −σ (k2η− + 2kσδ− + 1 + σ 2)

a+
2 2k3η+ − 4σk2δ+ + (3σ 2 + η+)k − σ 3 − σ

TABLE II. (Continued.)

a−
2 2k3η− − 4σk2δ− + (1 + (3 − 2h)σ 2)k − σ 3 − σ

a+
3 σ (k2η− − 2σkδ− + 1 + σ 2)

a−
3 −k2η+ + 2σkδ+ − 2σ 2

b±
0 −2σkh

b+
1 k(kη+ + 2σh)

b−
1 σ (k2η− − 2σkh + 1 − σ 2)

b+
2 −2k3η+ + 4σk2h + (σ 2 − η+)k + σ 3 − σ

b−
2 2η−k3 + 4σk2h + (1 − η+σ 2)k + σ 3 − σ

b+
3 σ (k2η− + 2σkh + 1 − σ 2)

b−
3 k(kη+ − 2σh)

g±
0 ∓σ

g+
1 kη+ + σ

g−
1 σ (kη− + σ )

g+
2 −2k2η+ + σ (2k − σ )

g−
2 2k2η− − 2σk + 1

g+
3 σ (σ − kη−)

g−
3 σ − kη+

q±
0 σ

q+
1 kη+ − σ

q−
1 σ (σ − kη−)

q+
2 2k2η+ + 2σk + σ 2

q−
2 2k2η− + 2σk + 1

q+
3 −σ (σ + kη−)

q−
3 kη+ + σ

Definition of coefficients

σ 3 − 4ν

δ± 1 ± h
η± 1 ± 2h

detailed insight. Additionally, a concise summary of the meth-
ods is found in Ref. [35].

The two-dimensional inverse Fourier transformation of a
given function expressed in polar coordinates as f̃ (k, φ) can
be represented through Fourier series as

f (ρ, θ ) = F−1{ f̃ (k, φ)} =
∞∑

n=−∞
fn(ρ) einθ , (B1)

where

fn(ρ) = in

2π

∫ ∞

0
f̃n(k)Jn(ρk) k dk, (B2)

with

f̃n(k) = 1

2π

∫ 2π

0
f̃ (k, φ) e−inφ dφ. (B3)

Here, again, Jn refers to the Bessel function of the first kind of
order n [36].

When dealing with a radially symmetric function f̃ (k)
independent of the azimuthal angle φ, only the term n = 0
persists in the series described by Eq. (B1). As a result, the
inverse Fourier transformation simplifies to

f (ρ) = F−1{ f̃ (k)} = 1

2π

∫ ∞

0
f̃ (k)J0(ρk) k dk. (B4)
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TABLE III. Expressions for the various combinations of the function �(r, k; â, b̂), where â, b̂ ∈ {x̂, ŷ, ẑ}, are listed componentwise by
projecting them for each combination on the Cartesian unit vectors. The function � upon integration defines the Green’s function of the
force dipole in real space, see Eq. (40). We here express � in the system of polar coordinates (ρ, θ ). In these expressions, G̃i j represents the
two-dimensionally Fourier-transformed Green’s function quantifying the displacements induced in the elastic system in response to a force
acting at position (0, 0, h) on the elastic film or membrane of finite thickness, see Eqs. (21)–(26).

�(r, k; â, b̂) Exact expression in terms of the monopole solution

�(r, k; x̂, x̂) · x̂ k((3G̃ll (k, z) + G̃tt (k, z))J1(ρk) cos θ + (G̃tt (k, z) − G̃ll (k, z))J3(ρk) cos(3θ ))

�(r, k; x̂, x̂) · ŷ k(G̃tt (k, z) − G̃ll (k, z))(J3(ρk) sin(3θ ) − J1(ρk) sin θ )

�(r, k; x̂, x̂) · ẑ 2ik G̃zl (k, z)(J2(ρk) cos(2θ ) − J0(ρk))

�(r, k; ŷ, x̂) · x̂ k(G̃tt (k, z) − G̃ll (k, z))(J3(ρk) sin(3θ ) − J1(ρk) sin θ )

�(r, k; ŷ, x̂) · ŷ k((3G̃tt (k, z) + G̃ll (k, z))J1(ρk) cos θ − (G̃tt (k, z) − G̃ll (k, z))J3(ρk) cos(3θ ))

�(r, k; ŷ, x̂) · ẑ 2ik G̃zl (k, z)J2(ρk) sin(2θ )

�(r, k; ẑ, x̂) · x̂ 2ik G̃lz(k, z)(J2(ρk) cos(2θ ) − J0(ρk))

�(r, k; ẑ, x̂) · ŷ 2ik G̃lz(k, z)J2(ρk) sin(2θ )

�(r, k; ẑ, x̂) · ẑ 4k G̃zz(k, z)J1(ρk) cos θ

�(r, k; x̂, ŷ) · x̂ k((3G̃tt (k, z) + G̃ll (k, z))J1(ρk) sin θ + (G̃tt (k, z) − G̃ll (k, z))J3(ρk) sin(3θ ))

�(r, k; x̂, ŷ) · ŷ −k(G̃tt (k, z) − G̃ll (k, z))(J1(ρk) cos θ + J3(ρk) cos(3θ ))

�(r, k; x̂, ŷ) · ẑ 2ik G̃zl (k, z)J2(ρk) sin(2θ )

�(r, k; ŷ, ŷ) · x̂ −k(G̃tt (k, z) − G̃ll (k, z))(J1(ρk) cos θ + J3(ρk) cos(3θ ))

�(r, k; ŷ, ŷ) · ŷ k((3G̃ll (k, z) + G̃tt (k, z))J1(ρk) sin θ − (G̃tt (k, z) − G̃ll (k, z))J3(ρk) sin(3θ ))

�(r, k; ŷ, ŷ) · ẑ 2ik G̃zl (k, z)(J0(ρk) + J2(ρk) cos(2θ ))

�(r, k; ẑ, ŷ) · x̂ 2ik G̃lz(k, z)J2(ρk) sin(2θ )

�(r, k; ẑ, ŷ) · ŷ −2ik G̃lz(k, z)(J0(ρk) + J2(ρk) cos(2θ ))

�(r, k; ẑ, ŷ) · ẑ 4k G̃zz(k, z)J1(ρk) sin θ

�(r, k; x̂, ẑ) · x̂ 2(∂h(G̃tt (k, z) + G̃ll (k, z))J0(ρk) + ∂h(G̃tt (k, z) − G̃ll (k, z))J2(ρk) cos(2θ ))

�(r, k; x̂, ẑ) · ŷ 2∂h(G̃tt (k, z) − G̃ll (k, z))J2(ρk) sin(2θ )

�(r, k; x̂, ẑ) · ẑ 4i ∂hG̃zl (k, z)J1(ρk) cos θ

�(r, k; ŷ, ẑ) · x̂ 2∂h(G̃tt (k, z) − G̃ll (k, z))J2(ρk) sin(2θ )

�(r, k; ŷ, ẑ) · ŷ 2(∂h(G̃tt (k, z) + G̃ll (k, z))J0(ρk) − ∂h(G̃tt (k, z) − G̃ll (k, z))J2(ρk) cos(2θ ))

�(r, k; ŷ, ẑ) · ẑ 4i ∂hG̃zl (k, z)J1(ρk) sin θ

�(r, k; ẑ, ẑ) · x̂ 4i ∂hG̃lz(k, z)J1(ρk) cos θ

�(r, k; ẑ, ẑ) · ŷ 4i ∂hG̃lz(k, z)J1(ρk) sin θ

�(r, k; ẑ, ẑ) · ẑ 4 ∂hG̃zz(k, z)J0(ρk)

This specific formulation applies to the component Gzz of
the Green’s function, as indicated by Eq. (29). For the other
components, we observe that only terms of n ∈ {0, 1, 2}

remain for the force monopole and terms of n ∈ {0, 1, 2, 3} for
the force dipole. The entries of Table III were derived using
Eqs. (B1)–(B3).
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