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Abstract

The Weak Instruments problem, which characterizes the situation where the endogenous
regressor is only weakly correlated with the excluded instrument, is a problem frequently
encountered in empirical practice. In this paper, we focus on the most popular setting where
there is a single endogenous regressor and single instrument, and try to provide empirical
researchers with an accessible guide to the weak instruments literature. The focus is on
the nature of weak instruments problem, methods to detect weak instrument, and methods
to deal with weak instrument. A distinct feature of this paper is that it also explores the
situation where the true first stage regression is nonlinear. This paper also surveys papers
published on American Economic Review between 2020 and 2024. The result shows that
empirical researchers still have relatively insufficient understanding of the weak instruments
problem and the methods available to deal with it.

Keywords: Weak Instruments, Nonlinear First Stage, Anderson-Rubin

1 Introduction

In linear Instrumental Variable (IV) regression, the Weak Instruments problem characterizes
the situation where the correlation between the endogenous regressor and the instrumental
variable(s) is so weak that the limiting distribution of the conventional “Two Stage Least
Squared” (TSLS) estimator and the corresponding t statistic are highly non-normal. Thus,
the TSLS estimator will have large finite sample bias and the traditional t-ratio-based infer-
ence will have severe size distortion. I. Andrews et al. (2019) surveys 17 papers published
on American Economic Review (AER) between 2014 and 2018 and finds that the weak
instruments problem is prevalent in the empirical literature, so it has practical value in
providing a survey of the literature and helping empirical researchers do correct estimation
and inference in practice. This paper will exclusively focus on specifications with a single
endogenous regressor and a single instrument (just-identification), as it is the most popular
case in practice (See I. Andrews et al., 2019) and the case that we know most about.

The papers survey by I. Andrews et al. (2019) are published between 2014 and 2018 and
the papers survey by D. S. Lee et al. (2022) are published between 2013 and 2019. Thus,
to see if there are significant changes of empirical practice, we do a brief survey of papers
published on American Economic Review that use IV model between 2020 and 20241 and

1Only papers that have IV regression results in the main text are included, so papers that use IV regression
in the appendix are excluded. We also exclude papers that have multiple endogenous regressors or use other
estimation techniques, such as non-linear GMM.
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focus on the first stage F statistic they report2.
We have a total of 78 papers that have a single endogenous regressor and use 2SLS

to estimate the result. In this sample, 60 papers exclusively use just-identified model,
15 papers exclusively use over-identified model, and 3 papers use both just-identified and
over-identified models. Therefore, just identified-model constitutes the vast majority of IV
application we encounter in practice, which is in contrast to the survey by I. Andrews et al.
(2019) for AER between 2014 and 2018 and D. S. Lee et al. (2022) for AER between 2013
and 2019, where only about half of the papers use just-identified models.

Figure 1: Distribution of First Stage F statistic under 50

Among just-identified models, Figure 1 shows the histogram of reported first stage F
statistic under 50. Similar to the finding in I. Andrews et al. (2019) and D. S. Lee et al.
(2022), there is a spike at 10, which means that researchers may have screened the First
stage F statistic to make it pass the “rule of thumb”.

It is also worth noting that there is a non-negligible number of specifications with first
stage F statistic below 10, suggesting possible bias of TSLS and size distortion of corre-
sponding t test. However, only 2 papers report Anderson-Rubin confidence interval, which
we will see is robust to weak instruments problem and is the recommended procedure.

There are many first stage F statistics, including heteroskedasticity robust and non-
robust first stage F statistic in the just-identified case, and effective first stage F statistic
due to Olea and Pflueger (2013) in the over-identified case. We find that only 13 out of 63
papers that use just-identified models explicitly state the type of first stage F statistic that
they use. Thus, providing a review of methods available in the weak instruments literature
may be helpful.

2We only include first stage F statistic that is directly available in the table or can be directly computed
based on the information in the table. For example, some papers with just-identified models only report
the first stage coefficient and corresponding standard error rather than first stage F statistic explicitly, but
obviously we can compute first stage F statistic based on these information.
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The remaining parts of the paper are structured as follows: Section 2 sets up the Instru-
mental Variable context and relevant assumptions. Section 3 discusses the problems caused
by having a weak instrument. Section 4 shows the bootstrap method does not work under
weak instrument. Section 5 presents methods to detect the presence of weak instrument.
Section 6 presents methods to deal with instruments, including alternative estimators and
alternative inference methods. Section 7 allows nonlinear first stage and examines its con-
sequences on estimation and inference. Section 8 extends the model to allow error term to
be heteroskedastic. Section 9 applies methods discussed in Section 5 and 6 to the famous
Acemoglu et al. (2001) paper. Section 10 discusses possible directions for future research.

2 IV set up

Consider the following just-identified linear IV regression model with a sample of indepen-
dent and identically distributed (iid) data {Yi, Xi, Zi}n

i=1, where Yi is the outcome variable,
Xi is the endogenous regressor, and Zi is the exogenous instrumental variable. We assume
no control variables (included instruments) for simplicity. Y = (Y1, Y2, ..., Yn)′ ∈ Rn, X =
(X1, X2, ..., Xn)′ ∈ Rn, and Z = (Z1, Z2, ..., Zn)′ ∈ Rn, we will have:

Y = Xβ + u (1)

X = Zπ + v (2)

Before proceeding to the estimators and their limiting distributions, we make the following
assumptions:

1. Instrument Relevance and Exogeneity

π ̸= 0, E(ui|Zi) = 0, E(Zivi) = 0

2. Conditional Homoskedasticity and Normalization

1
n
Z ′Z

p→ E[z2
i ] = 1

( 1√
n
Z ′u,

1√
n
Z ′v)′ d→ N(

(
0
0

)
, E[z2

i ]
(
σ2

u σuv

σuv σ2
v

)
)

3. Endogeneity
σuv ̸= 0

Several comments of Assumption 1 are in order. u is the structural error which has specific
economic interpretation, for example the “ability” in the context of return to education. As
Z is exogenous, it makes sense to assume E[ui|Zi] = 0. In contrast, v is a pure mathematical
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object, namely the remainder after projecting X to Z, so it has no economic interpretation.
It is simple to show that E[Zivi] = 0 is true by construction, whereas E[vi|Zi] = 0 is not
true in general unless E[Xi|Zi] is linear in Z.

3 The Weak Instruments Problem

The weak instruments problem happens when the correlation between the endogenous re-
gressor and the instrument is so low that the bias of IV estimator is large and t-ratio-based
inference procedure is potentially very misleading. To more clearly see this problem, assume
the extreme case where π = 0, which means the instrument is completely irrelevant and β

is unidentified. The IV estimator has limiting distribution:

β̂IV − β = Z ′u

Z ′X
d→ σuv

σ2
v

+ η

ψzv
(3)

(
η

ψzv

)
∼ N(

(
0
0

)
,

(
σ2

u(1 − ρ2) 0
0 σ2

v

)
), ρ = σuv

σvσu
(4)

The proof will be given in the Appendix.

Similarly the OLS estimator is

β̂OLS − β = X ′u

X ′X

p→ σuv

σ2
v

We can see from Equation 4 that β̂IV is not even consistent. More interestingly, the
IV estimator is converging to the probability limit β + σuv

σ2
v

of β̂OLS plus a scaled Cauchy
distribution. Thus, in the extreme case where the instrument is completely irrelevant, β̂IV

is neither consistent nor asymptotically normal, so the traditional t-ratio-based inference
will generally provide misleading result. In fact, β̂IV performs even worse than β̂OLS , as
Cauchy distribution has heavy tails.

Now let us consider the more realistic case where the first stage coefficient is close to 0,
but not exactly 0. Before diving into the math, we first show some simple simulations to
more intuitively understand the problem. The sample size N = 1000, iterations S = 5000,
degree of endogeneity ρ = 0.99, first stage strength π ∈ {0, 0.05, 0.10, 0.15, 0.20, 0.35},
Zi = 1, σu = σv = 1

Figure 2 shows the distribution of the IV estimator under different identification strength.
We can see that when the instrument is weak, the median of IV estimator is far from 0,
showing substantial median bias. When the instrument gets stronger, the median gradually
converges to the true value 0.
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Figure 2: Distribution for IV estimator with ρ = 0.99

Figure 3: Distribution of t statistic with ρ = 0.99
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Figure 4: Power of t-test with ρ = 0.99

Figure 3 shows that the distribution of t-statistic under different instrument strength,
holding the degree of endogeneity (correlation between first stage and second stage error
term) fixed at 0.99. The t statistic under β = β0 is:

t =
√
n(β̂IV − β0)√ ̂AsyVar(β̂IV )

̂AsyVar(β̂IV ) = σ̂2
u( 1
n
Z ′X)−2 1

n
Z ′Z, σ̂2

u = 1
n

(Y −Xβ̂IV )′(Y −Xβ̂IV )

We can see that when the instrument is strong, the distribution resembles a normal distri-
bution, but as the instrument gets weaker, the t-statistic performs less and less similar to a
normal distribution, suggesting t-ratio-based inference will produce misleading result.

Figure 4 shows the power of the t-test with different degree of instrument strength. We
use a grid of parameter values, in this case from -1 to 1, with interval 0.1, and collect cases
where the |t| > 1.96. By doing so we can get the power of t test for each parameter value.
When β−β0 = 0, namely the null hypothesis is true, the rejection probability is exactly the
size of the test. It is obvious that when π = 0 or π = 0.05, the t test has virtually no ability
to detect a large true negative effect, but has some ability to detect large true positive
effect. As the instrument becomes stronger, the power curve becomes more symmetric and
has roughly correct size and power.

Before preceding, it is interesting to see from Figure 3 the distribution of t statistic is
highly asymmetric, namely it has a much fatter tail on the right, which is even true when π =
0.35, which corresponds to a first stage F statistic (See more in Section 5) larger than 100.
Another way of interpreting this asymmetry is that positive parameter estimate corresponds
to smaller standard error while negative parameter estimate corresponds to larger standard
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error. The reason for this pattern is simple. As pointed out by Keane and Neal (2023),
when the bias of OLS estimate is positive (or the correlation between the endogenous
regressor and the structural error is positive), a positive sample correlation between the
instrument and structural error (the population correlation is 0 by the instrument validity
assumption) will inflate both the TSLS estimate and the correlation between instrument
and endogenous regressor, namely dragging down the standard error. Thus, there is a
negative correlation between TSLS estimate and standard error. Keane and Neal (2023)
shows that this phenomenon may cause the traditional t test to have low power in detecting
true negative effect while high power to find false positive effect, a phenomenon which they
argue to be largely neglected in the weak instruments literature.

The simulation results in Figure 2, 3, and 4 illustrate the poor performance of β̂IV

and t statistic even in large samples under weak instruments. Thus, the sample size does
not affect whether instruments is weak. The literature suggests that the “Concentration
Parameter”, which I will define below, is the parameter that truly dictates the performance
of IV estimator and t statistic.

Further assume vi ∼ N(0, σ2
v), ui ∼ N(0, σ2

u), 1
nZ

′Z = 1. The concentration parameter
µ2 = π′Z′Zπ

σ2
v

, we have

β̂IV − β = Z ′u

Z ′X

∼ σu

σv

zu

µ+ zv(
zu

zv

)
∼ N(

(
0
0

)
,

(
1 ρ

ρ 1

)
), ρ

σuv
σuσv

It is clear from the expression that when µ2 is large, β̂IV well approximates β and the
conventional estimation and inference methods work. If µ2 is small, β̂IV will be far from β

in finite samples, so the conventional t-ratio-based inference methods do not work.
As µ2 = π′Z′Zπ

σ2
v

, when the sample size is large µ will be large at well, β̂IV will be
approximately normal and weak instruments is no longer a problem. However, as shown by
Bound et al. (1995), the weak instruments problem can happen even when the sample size
is extremely large. Therefore, Staiger and Stock (1997) tries to model the weak instruments
problem by setting π = C√

n
, where C is some constant. It is also known as the “weak

instruments asymptotics”.
The intuition for “weak instruments asymptotics” is straightforward: After setting

π = C√
n

, we have µ2 = C′ 1
n

Z′ZC

σ2
v

p→ C′QzC
σ2

v
, a constant. In other words, we do not al-

low the concentration parameter to depend on the sample size, as it should only depend
on the strength of instruments. By doing so, the concentration parameter can indicate the
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instrument strength. Without assuming the finite sample distribution of vi and ui, we have
β̂IV − β

d→ σu
σv

zu
C/σv+zv

Even though the intuition is straightforward, the approximation can still be bad in
practice. Figure 5 is a simulation that examines the quality of modelling π = C√

n
. The idea

is to compare the distribution of β̂IV −β and distribution of zu
C+zv

, the limiting distribution
of β̂IV − β under weak instrument asymptotics. We can see from Figure 5 that the actual
distribution and the limiting distribution is virtually indistinguishable, confirming that the
“weak instrument asymptotics” is a good model for weak instruments.

Figure 5: Distribution of original IV estimate and sample from zu
C+zv

After modelling the weak instruments problem, let us go back to the problem shown in
Figure 2, 3, and 4, namely why IV estimator and t statistic perform so poorly under weak
instruments. We first consider the size (maximum rejection probability of t test under the
null and across nuisance parameters) of the t test.

Suppose we are testing

H0 : β = β0 vs H1 : β ̸= β0

A note of caution is that under weak instrument asymptotics, the t statistic will no longer
have a limiting distribution that is symmetric around 0, so the sign of certain quantities (as
we will see in the Appendix, Z ′X) will affect the limiting distribution of t statistic. Thus,
For Equation 6, 26, 27, and 37, we will present the limiting distribution of t2 (or Wald)
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statistic. The asymptotic distribution of Wald statistic as:

t2 = (
√
n(β̂IV − β0)√ ̂AsyVar(β̂IV )

)2 (5)

d→ z2
u

1 − 2ρ zu
C/σv+zv

+ ( zu
C/σv+zv

)2 (6)

The asymptotic distribution of t statistic is highly non-normal, causing the traditional

confidence interval [β̂IV −1.96
√ ̂AsyVar(β̂IV)

n , β̂IV +1.96
√ ̂AsyVar(β)IV

n ] to be unreliable. Figure
6 shows the effect of weak instruments on the size of t-test. It is shown that when C is small,

Figure 6: size of t-test with different instrument strength and degree of endogeneity

the size of the t-test can be much larger than 5%, in other words, the confidence interval
significantly undercovers the true β. While the size becomes much closer to 5% when the
instrument becomes stronger. It is worth noting that when the degree of endogeneity is
small, the size of t test is less than 5% however weak the first stage is. In fact, J. Angrist
and Kolesár (2023) argues that it is unlikely to have degree of endogeneity larger than 0.5
in practice, so t test for just-identified IV regression is reliable irrespective of instrument
strength.

Another problem caused by weak instruments is that IV estimator is “biased”, or not
centered at the true value. Under weak instrument asymptotics,

β̂IV − β = Z ′u

Z ′X
d→ ψzu

C + ψzv
(7)
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(
ψzu

ψzv

)
∼ N(

(
0
0

)
,

(
σ2

u σuv

σuv σ2
v

)
) (8)

I use quotation marks because IV estimator does not have moments when the model is just-
identified, so the bias in the usual sense does not exist. Stock and Yogo (2005) considers
the Nagar bias to approximate the deviation from the true value.

Under the weak instrument asymptotics3,

β̂IV − β
d→ zv

µ∞ + zv

σuv

σ2
v

+ η

C + ψzv
, µ2

∞ = C2

σ2
v

(9)

The second term is a scaled Cauchy distribution, so we only focus on the first term in terms
of the location of the estimator. Using Taylor expansion, we have

E[β̂IV − β] ≈ E[ zu

µ∞ + zv

σuv

σ2
v

] ≈ −σuv

σ2
v

1
µ2

∞
(10)

Thus, the “bias” of the IV estimator increases as the concentration parameter becomes
smaller and the degree of endogeneity becomes higher. Note σuv

σ2
v

is exactly the bias of OLS
estimator, so Stock and Yogo (2005) considers the relative “bias” of IV with respect to OLS,

E[β̂IV − β]
E[β̂OLS − β]

≈ − 1
µ2

∞

which only depends on the concentration parameter. In fact, as we will see in Section 5,
the first stage F statistic has mean µ2

∞ + 1, if the researcher believes 10% relative bias is a
reasonable threshold for weak instruments, he will find first stage F statistic greater than
10 an indication of strong instruments, and this is where the “rule of thumb”, 10, for the
first stage F statistic comes from.

4 Bootstrap Failure Under Weak Instruments

Bootstrap is a popular alternative when the conventional normal approximation fails. How-
ever, Bootstrap does not work for the weak instruments problem because the distribution
of t statistic is not continuous with respect to the data generating process.

We are interested in forming confidence interval for θ that has coverage at least 1 − α.
Let Rn =

√
n(θ̂− θ), traditionally we use normal distribution to approximate Rn and form

confidence interval of θ based on it. However, as shown in Section 3, this normal approxima-
tion can be bad. The idea of Bootstrap is to take the sample {Wi}n

i=1 = {Xi, Yi, Zi}n
i=1 ∼ P

as the population, get new sample by sampling with replacement from the new population,
and take advantage of the fact that the relationship between the new sample and the new

3I use µ∞ here to separate it from the finite sample µ
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population is similar to that of original sample and original population. As we can ap-
proximate the distribution of the new population and the new sample using their empirical
counterpart, we can form confidence interval for θ. In fact, the reason for Bootstrap failure
under weak instruments is that the relationship between new sample and new population
is not close enough to that of original sample and population.

More formally4, let Rn =
√
n(θ̂n − θ), Jn(t, P ) = P (Rn < t). Sample B times with

replacement from the original sample {Wi}n
i=1 to getW 1, ...,WB, computeRb

n =
√
n(θ̂b

n−θ̂n)
for each W b. Let Jn(t, P̂n) = P (Rb

n ≤ t). P̂n denotes the empirical distribution of the
original samples. As Jn(t, P̂n) is still observed, we use its sample analogue Ĵn(t, P̂n) =
1
B

∑B
b=1 I{Rb

n≤t}. We hope Ĵn(t, P̂n) and Jn(t, P ) are closed as P̂n gets close to P , but it is
not true here because

√
n(β̂IV − β) diverges when π = 0 while

√
n(β̂IV − β) d→ N(0, σ2

e
π2 )

when π ̸= 0, namely the distribution of J is not continuous.
A simple simulation demonstrates the point. Let sample size n = 500, Bootstrap it-

eration B = 1000, ρ = 0.99, π ∈ {0, 0.05, 0.1, 0.15, 0.2, 0.35}, Zi = 1. Repeat the above
procedure 1000 times.

Figure 7: Size of Bootstrap t test

Figure 7 shows the size of the Bootstrap t test. We can see that the size is extremely
close to 0 in most of the cases, suggesting that the confidence interval may too wide.
Interestingly in this specific simulation design the bootstrap test does not over-reject, even
when instruments is extremely weak. Probably in some other cases it will over-reject.
Modifications of Bootstrap, including m out of n bootstrap and subsampling, also do not
work when instrument is weak, see D. W. Andrews and Guggenberger (2009) for more
discussion.

4This part borrows heavily from Dr Ponomarev’s machine learning class note and Professor Torgovitsky’s
Applied Microeconometrics class note
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5 Detection of Weak Instruments

We have shown that weak instruments can have serious consequences, both in terms of bias
of IV estimator and size distortion of the corresponding t statistic. so it is important to
detect it. It is shown that the instrument strength depends exclusively on the first stage
coefficient π (or C). However, C is neither known nor consistently estimable. Thus, the idea
is to find a statistic whose distribution depends on C, so that we can form hypothesis based
on this statistic and test the strength of the instrument. The most popular way in practice
is to compute the first stage F statistic testing the hypothesis that first stage coefficient
π = 0, suggested by Staiger and Stock (1997) and formalized by Stock and Yogo (2005).

F̂ = (
√
nπ̂)2̂AsyVar(π̂)

d→ (zv + C

σv
)2 def= F (11)

̂AsyVar(π̂) = σ̂2
v(Z ′Z)−1, σ̂2

v = 1
n

(X − Zπ̂)′(X − Zπ̂) (12)

Thus F ∼ χ2
1(( C

σv
)2), E(F ) = ( C

σv
)2 + 1 (13)

Obviously the limiting distribution of first stage F statistic is a non-central chi square
distribution, with non-centrality parameter ( C

σv
)2. If we set σv = 1 and test the hypothesis

H0 : C =
√

10 vs H1 : C >
√

10. Under the null hypothesis the distribution of F is known,
so we can compute the sample first stage F statistic and compare it with the critical value
of this known non-central chi square distribution. If the hypothesis is rejected, or the first
stage F statistic is large enough, we do not need to worry about the weak instruments
problem, otherwise we may worry about the consequences of weak instruments.

Hahn and Hausman (2002) proposes another method to detect weak instruments. The
idea is to compare the conventional 2SLS estimator with the “backward” 2SLS estimator,
namely estimating the same parameter in two different ways. In the conventional case where
the first order asymptotics provides a good approximation to the distribution, the difference
between these two estimators, after proper rescaling, should converge in probability to 0.
If it does not, we may worry that the first order asymptotics does a bad job and the weak
instruments problem may be a concern.

More formally, the traditional TSLS estimator is

β̂T SLS = (X̂ ′X̂)−1X̂ ′Y = (X ′PzX)−1X ′PzY

We now consider the backward TSLS estimator 1
ĉ derived from the “backward” TSLS re-

gression.

X = Y c+ u
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Y = Zπ + v

ĉ = (Ŷ ′Ŷ )−1Ŷ ′X = (Y ′PzY )−1Y ′PzX

We can show that
√
n(β̂ − 1

ĉ
) p→ 0 (14)

However, as Hahn and Hausman (2002) points out, in practice β̂ and 1
ĉ can differ by a large

amount.
Hahn and Hausman (2002) uses the second order asymptotics to derive the asymptotic

distribution of β̂ − 1
ĉ , under the assumption that K

n → α, as in the many instruments
literature initiated by Bekker (1994). It is shown in Hahn and Hausman (2002) (omitted
in this paper) that

β̂ − 1
ĉ

p→ B

√
n(β̂ − 1

ĉ
) d→ N(0, V )

where both B and V are proportional to α. Then we can test the hypothesis

H0 : plim
√
n(β̂ − 1

ĉ
− B̂) = 0

where B̂ is the estimator for B. This idea is exactly the opposite as the test using first
stage F statistic, as it tests the null hypothesis that the instrument is strong, while the test
based on first stage F statistic tests the null that instrument is weak. Unfortunately, this
test is shown to have poor power by Hausman et al. (2005), namely it may not do a good
job detecting the presence of weak instruments.

In the just-identified setting that we focus on, this test does not work because β̂ and 1
ĉ

are exactly the same, namely
β̂ = 1

ĉ
= (Z ′X)−1Z ′Y

6 Dealing with Weak Instruments

6.1 Alternative Estimators

After detecting the presence of weak instruments, another important question is how to deal
with it. A natural suggestion is to use another estimator so that bias can be eliminated.
However, Hirano and Porter (2014) shows that no unbiased or asymptotically unbiased
estimator5 is available if instrument can be arbitrarily weak (“singular” in their terminology)

5“Asymptotically unbiased” means that the estimator converges in distribution (After proper centering
and rescaling) to a random variable, which has expected value equal to the true parameter value.
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and no additional assumption is imposed. Thus, researchers aim for alternative estimators
that can reduce bias. Limited Information Maximum Likelihood estimator (LIML) is a
popular alternative among econometricians, as Staiger and Stock (1997) and Stock and
Yogo (2005) show in simulations that it is less biased than TSLS and can have better size
control. However, none of the papers with over-identified model in my AER sample reports
LIML estimate. J. D. Angrist et al. (2023) is a nice paper that reports LIML estimate.

LIML is a maximum likelihood estimator, which can be shown to be:

β̂LIML = (X ′(I − κMz)X)−1X ′(I − κMz)Y (15)

where Mz = I − Z(Z ′Z)−1Z ′ , and κ is the smallest root of equation

det(Ȳ ′Ȳ − κȲ ′MzȲ ) = 0

where Ȳ = (Y,X). It can be shown that κ = 1 in the just-identified model, so β̂LIML =
β̂2SLS under just identification.

However, I. Andrews and Armstrong (2017) shows that if the sign of one or more first
stage coefficient is known, unbiased estimator (and asymptotically unbiased, if the error
term is unknown and distribution is non-normal) is available.

More formally, Consider the just identified reduced form regression with fixed instru-
ments.

y = Zπβ + v1 (16)

X = Zπ + v2 (17)

and known variance covariance matrix(
v1i

v2i

)
∼ N(

(
0
0

)
,

(
σ2

1 σ12

σ12 σ2
2

)
)

Then (
π̂β

π̂

)
∼ N(

(
πβ

π

)
, (Z ′Z)−1

(
σ2

1 σ12

σ12 σ2
2

)
) (18)

β̂IV = π̂β
π̂ , but the expectation of ratio is not the ratio of expectations, so β̂IV is not

unbiased. I. Andrews and Armstrong (2017), however, considers δ̂ = π̂β − σ12
σ2

2
π̂, and τ̂ , an

unbiased estimator for 1
π . Also τ̂ is only a function of π̂.

As π̂β and π̂ are jointly normal, and

Cov(δ̂, π̂) = (Z ′Z)−1σ12 − (Z ′Z)−1σ12 = 0
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δ̂ is independent of π̂, thus independent of τ̂ . Therefore,

E[δ̂τ̂ ] = E[δ̂]E[τ̂ ] = β − σ12
σ2

2

and
β̂ = δ̂τ̂ + σ12

σ2
2

is an unbiased estimator for β
The problem left is finding τ̂ . I. Andrews and Armstrong (2017) shows that,

τ̂ = 1
σ2

1 − Φ(π̂2/σ2)
ϕ(π̂2/σ2)

E[τ̂ ] = 1
π if π > 06

Thus,
β̂ = (π̂β − σ12

σ2
2
π̂)( 1

σ2

1 − Φ(π̂2/σ2)
ϕ(π̂2/σ2) ) + σ12

σ2
2

is an unbiased estimator of β. I. Andrews and Armstrong (2017) also shows that, if the
distribution of error term is unknown, under strong instrument, β̂ has the same asymptotic
behaviour as β̂T SLS , namely asymptotically normal, but is asymptotically unbiased if is
under the weak instrument asymptotics.

6.2 Valid Inference

No unbiased or consistent estimator exists does not mean that no valid statistical inference is
available. By “valid statistical inference” I mean using a statistical test that has the correct
size (normally 5%). By test inversion a valid 95% confidence interval can be constructed
once a test with 5% size is available.

Currently there are mainly two approaches to conduct valid inference when facing weak
instruments. The first method is to completely discard estimators but focus on using pivotal
test statistic, which has a limiting distribution that does not depend on the strength of
instruments or other nuisance parameters. Anderson Rubin statistic (AR) and Lagrange
Multiplier statistic (LM) (or Kleibergen’s K statistic) are two main examples in this class
of tests.

The second method uses non-pivotal statistic, for example t statistic, but adjusts the
critical value to ensure correct size of the test. Sometimes the critical value is adjusted by
combining the original test with pivotal test statistic mentioned above. Researchers first
conduct a pre-test based on first stage F statistic. If F is small, for example less than 10,

6Though the theorem only applies when π > 0, we can run the first stage X = −Zπ + v if π < 0, so that
the theorem still applies.
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Figure 8: Size of the two step method with ρ = 0.99

researchers use pivotal test statistic. If F is large, researchers use the conventional point
estimate and standard error. As this is a two-step method, the overall size of the procedure
is not correct if the traditional 1.96 critical value is used. Thus, if the researcher wants to
have a 5% size for the overall procedure, he needs to change the threshold for first stage F
statistic or the critical value of t test, or both. Figure 8 simulates the size of the two step
method, which uses a AR test if the first stage F statistic is less than 10, and a t test with
1.96 as critical value when the first stage F statistic is larger than 10. Obviously relying on
the “rule of thumb” 10 and critical value 1.96 will not give correct size for some instrument
strength, though it has much better size control compared to using the t test alone.

There are other methods to adjust critical value. The most famous one is the “Con-
ditional test” approach popularized by Moreira (2003) and Moreira (2009). The idea is
straightforward: Although the original test statistic is not pivotal, if there is a statistic that
is sufficient for the nuisance parameter, then conditioning on this sufficient statistic will
give a pivotal statistic for every value of this sufficient statistic, thus valid inference can be
conducted. Conditional Likelihood Ratio statistic (CLR) and Conditional Wald statistic
(CW ) are two main examples in this class of tests.

Some very recent papers (D. S. Lee et al., 2022 and D. Lee et al., 2023), however, use
some complicated methods to adjust critical value, which turns out to work well. I will
introduce these valid inference methods one-by-one.

I will start by introducing the AR test proposed by Anderson and Rubin (1949). The
idea is to make use of the exclusion restriction and deal with the null hypothesis directly,
without using information about the first stage, thus is robust to weak instruments.
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More formally, suppose researchers want to test the hypothesis

H0 : β = β0 vs H1 : β ̸= β0

If the exclusion restriction of instruments holds under the null hypothesis, namely Z does
not enter the second stage regression, researchers can test whether Γ in the regression
y −Xβ0 = ZΓ + u is 0. The only reason for rejecting the hypothesis Γ = 0 is that the null
hypothesis H0 is not true, because the exclusion restriction is satisfied. Otherwise we do
not find enough evidence to reject β = β0. Therefore, the Anderson-Rubin statistic is the
F statistic testing Γ = 0, with k being the number of instruments

AR(β0) = (y −Xβ0)′Pz(y −Xβ0)
1

n−k (y −Xβ0)′Mz(y −Xβ0)

where Pz = Z(Z ′Z)−1Z ′,Mz = I − Pz

It is obvious that AR does not depend on first stage information, hence robust to weak
instruments. To verify the performance, I conduct a similar simulation exercise to compute
the rejection probability of AR statistic under different degree of instrument strength in
Figure 9.

Figure 9: AR Size with ρ = 0.99

It is obvious that the size of AR statistic remains at 5% no matter how weak the
instrument is. Therefore, researchers suggest using AR statistic for inference when the
instrument is weak.

Kleibergen’s K statistic, due to Kleibergen (2002), is also pivotal. The K statistic is
in fact equivalent to the Lagrange Multiplier (LM) statistic, but K statistic is proposed
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without distributional assumption while obviously LM statistic requires the normality as-
sumption. The LM statistic will be introduced in the next section, where we have all
the notations ready, and the equivalence between LM and K statistic will be given in the
Appendix.

K = (y −Xβ0)′PZ̃(y −Xβ0)
1

n−k (y −Xβ0)′Mz(y −Xβ0)

where

Z̃ = Pz(X − (y −Xβ0)
1

n−k (y −Xβ0)MzX
1

n−k (y −Xβ0)′Mz(y −Xβ0)
)

Again k is the number of instruments. We can show that the limiting distribution of K is
χ2(1), irrespective of instrument strength.

The K statistic is quite similar to AR statistic, except that K statistic projects y−Xβ0

to Z̃, which only has one column, whereas AR statistic projects y − Xβ0 to Z, which has
k columns. It is known that AR statistic has poor power when there are a large number
of instruments, as it has a limiting distribution of χ2(k), but the K statistic can avoid the
problem as it has a limiting distribution of χ2(1). In fact, it can be shown that the K
statistic is exactly the AR statistic under just-identification.

Let us consider two conditional test, Conditional Likelihood Ratio (CLR) statistic and
Conditional Wald (CW ) statistic. We first introduce the idea of conditional tests. We have
seen that under weak instrument asymptotics the t statistic has a limiting distribution that
depends on nuisance parameters C and ρ. Therefore, the t test will not have correct size
as some value of nuisance parameter can cause size to well exceed 5%, as we have shown in
Figure 6. The idea of conditional test is to express the original test statistic, say Tn, as a
function of two statistics, say S and T , where the distribution of S does not depend on the
nuisance parameter, but the distribution of T depends on the nuisance parameter. Thus,
the conditional distribution Tn|T does not depend on the nuisance parameter, and we can
get critical value functions that depend on T to ensure the test has correct size.

More formally, consider the reduced form IV regression:7

y1 = ZΠβ + v1 (19)

y2 = ZΠ + v2 (20)(
v1i

v2i

)
∼ N(

(
0
0

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
) = N(0,Ω) (21)

where v1 = βv2 + u, u is the error term in the structural equation. Z is non-stochastic and
7This part borrows heavily from Xiaoxia Shi’s lecture note, available here https://users.ssc.wisc.edu/

∼xshi/econ715/Lecture 11 WeakIV.pdf, and Moreira (2003)
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Ω is known. We are interested in the following hypothesis testing problem:

H0 : β = β0 vs H1 : β ̸= β0

We can then write down the likelihood function for {y1i, y2i}n
i=1

f(y1, y2;β,Π) = (2π)−n|Ω|−
n
2 exp(−1

2[
n∑

i=1
Y ′

i Ω−1Yi − 2Π′Z ′Y Ω−1A+A′Ω−1AΠ′Z ′ZΠ])

where Yi = (y1i, y2i)′ and A = (β, 1)′. As Z and Ω are non stochastic, by factorization the-
orem, Z ′Y is the sufficient statistic for (β,Π′)′. Thus, Z ′Y D, where D = [b0,Ω−1A0], b0 =
(1,−β0)′, A0 = (β0, 1)′, is also a sufficient statistic for (β,Π′)′, as D is a constant matrix.

Now we have Z ′Y D = [Z ′(y1 − β0y2), Z ′Y Ω−1A0] = [S, T ]. Under H0,

S = Z ′(y1 − β0y2) ∼ N(0, Z ′Zb′
0Ωb0) (22)

T = Z ′Y Ω−1A0 ∼ N(A′
0Ω−1A0Z

′ZΠ, Z ′ZA′
0Ω−1A0) (23)

It is obvious that the distribution of S does not depend on Π, but the distribution of T
depends on Π. Therefore, if we are using a test statistic ϕ(S, T ) that has a distribution that
depends on Π, as we do not know the value of Π nor can we consistently estimate Π when
the instrument is weak, using such test statistic and the traditional fixed critical value will
not have correct size.

There are test statistics that has a distribution that does not depend on Π, either
because the test statistic is not a function of T , for example the AR statistic that we have
introduced before,

AR(β0) = (y1 − β0y2)′Z(Z ′Z)−1Z ′(y1 − β0y2)
σ2

u

= S′(Z ′Z)−1S

σ2
u

or the test statistic is a function of T , but the distribution does not depend on Π, for
example the LM (K) statistic that we have alluded to. Define the standard statistic T̄ =
(Z ′Z)− 1

2T (A′
0ΩA0)− 1

2 , S̄ = (Z ′Z)− 1
2S(b′

0Ω−1b0)− 1
2 , we can show that the LM statistic is

LM = S̄′T̄ (T̄ ′T̄ )−1T̄ ′S̄ (24)

and since S̄ and T̄ are independent, LM statistic has a χ2
1 distribution under the null, which

does not depend on Π. When the model is just identified, T̄ is a scalar, so LM statistic is
equivalent to AR statistic

LM = S̄′S̄ = S′(Z ′Z)−1S

σ2
u

= AR(β0)

Many other test statistic, however, have nuisance parameters in the distribution. To

19



Boyang Zhang

deal with this problem, a natural idea is to use a critical value function that depends on
T , and this is exactly what Moreira (2003) does. As S and T are independent (proven in
Appendix), we can consider ϕ(S, T ) at each value T = t. ϕ(S, t) has a distribution that does
not depend on Π, so we get a critical value for each value of T = t. Although the functional
form of the critical value function could be hard to derive, especially for complicated ϕ(S, T ),
in practice we can simulate the function.

Consider the Wald statistic (square of the t statistic)

W = (
√
n(β̂IV − β0))2̂AsyVar(β̂IV )

= ((y′
2Pzy2)−1y′

2Pzu)2

σ̂2
u(y′

2Pzy2)−1 = (y′
2Pzu)2

σ̂2
u(y′

2Pzy2)

Under the null, S = Z ′u and σ̂2
u = σ2

1 − 2β̂IV σ12 + β̂2
IV σ

2
2. Note both σ̂2

u and y′
2Z depend

on π through y′
2Z, so we need to express y′

2Z as a function of S and T . Note thatS = Z ′y1 − β0Z
′y2

T = c1Z
′y1 + c2Z

′y2

where c1 and c2 are functions of Ω−1 and a0, then we have

Z ′y2 = T − c1S

c2 + c1β0

Thus, we can express W as a function of S, T , Ω, and β0. Once we conditional on T = t,
the distribution of W does not depend on Π, and we can form test that has correct size,
which is the conditional Wald (CW ) statistic. Figure 10 shows the size of the CW test. It
is obvious that CW test is robust to weak instruments.

Figure 10: CW Size with ρ = 0.99

Here we motivate the usefulness of conditional tests with extremely restrictive assump-
tions: finite sample normal distribution and known variance covariance matrix. This result,
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however, can be easily extended to unknown distribution, as σ2, σ1, σ12 can all be consis-
tently estimated.

Moreira (2003) utilizes the conditional test approach to propose the Conditional Likeli-
hood Ratio (CLR) test. The idea is to use the traditional likelihood ratio statistic

LR = 2[max
β,Π

Ln(y1, y2;β,Π) − max
Π
Ln(y1, y2;β0,Π)]

to do conditional test.
We can show that

LR = b′
0Y

′PzY b0
b′

0Ωb0
− λmin

where λmin is the smallest eigenvalue of Ω− 1
2Y ′PzY Ω− 1

2 . we can write

LR = 1
2[S̄′S̄ − T̄ ′T̄ −

√
(S̄′S̄ + T̄ ′T̄ )2 + 4[S̄′S̄T̄ ′T̄ − (S̄′T̄ )2]] (25)

Obviously LR is a function of S and T , so we can use the conditional test idea that we
introduced before.

In the just-identified case, S̄ and T̄ are scalars, so we have LR = S̄′S̄, which is exactly
the AR statistic, because

LR = S̄′S̄ = S′(Z ′Z)−1S

b′
0Ωb0

= S′(Z ′Z)−1S

σ2
u

= AR

Although both CW and AR have correct size, they have different power properties. In
fact, Moreira (2009) shows AR test is the Uniformly Most Powerful Unbiased Test (UMPU)
under just identification, where “unbiased test” means power can never be lower than size
while “uniformly most powerful” means that the test always has the highest power under the
constraint of size, regardless of the alternative hypothesis8. However, D. W. Andrews et al.
(2007) shows that CW can have poor power properties. Mills et al. (2014) proposes the one-
sided conditional t test and modifies the original CW to propose a new two-sided conditional
t test, and show that they can perform as well as CLR. The literature except Keane and
Neal (2023) does not seem to pay much attention to the one sided test and continues to
recommend using AR under just-identification (I. Andrews et al., 2019). However, as I will
mention below, some very recent papers provide evidence that AR may not be the best
choice even under just-identification.

I will briefly introduce two recent papers (D. S. Lee et al., 2022 and D. Lee et al., 2023)
that adjust critical value of the t test directly to conduct valid statistical inference. At a
high level, both papers are motivated by the need by applied researchers, who prefer sticking
to the familiar t test based inference and are reluctant to use robust inference methods, as

8See Chapter 3 of Lehmann and Romano (2022) for further discussion.

21



Boyang Zhang

shown in Section 1. D. S. Lee et al. (2022) proposes the tF procedure, which uses a critical
value function that is a smooth function of the first stage F statistic while D. Lee et al.
(2023) proposes the V tF procedure, which uses a critical value function that is a function
of both the first stage F statistic and the correlation between first stage and second stage
error.

Let us dive deeper into D. S. Lee et al. (2022). Recall Equation (6) which shows the
limiting distribution of Wald statistic under weak instrument asymptotics:

t̂2
d→ t2 ∼ z2

u

1 − 2ρ zu
C/σv+zv

+ ( zu
C/σv+zv

)2 (26)

where (
zu

zv

)
∼ N(

(
0
0

)
,

(
1 ρ

ρ 1

)
), ρ = σuv

σuσv

Note AR(β0) d→ z2
u and F̂

d→ ( C
σv

+ zv)2. Following the notation in D. S. Lee et al.
(2022), let tAR = zu, f = C

σv
+ zv, f0 = C

σv
, Thus,

t̂2
d→ t2 ∼ t2AR

1 − 2ρ tAR
f + ( tAR

f )2 (27)

The goal is to ensure t test has correct size, namely under H0,

P (|t| > cα) ≤ α

Figure 6 provides a heuristic9 argument that for a fixed, weak instrument strength, larger
value of ρ corresponds to higher rejection probability. Thus it is natural to impose

Pβ=β0,ρ=1(|t| > cα) = α

Note this approach is inherently conservative as for smaller value of ρ, which as shown
by J. Angrist and Kolesár (2023) may be the prevalent case in practice, the null rejection
probability is less than α, which may produce unnecessarily wide confidence intervals. In
fact, D. Lee et al. (2023) exactly solves this conservativeness problem, a point I will come
back later.

As ρ = 1, f = tAR + f0, we have

t2 ∼ f2t2AR

(f − tAR)2 = f2(f − f0)2

f2
0

This is a function of f , an example is given in Figure 11, with f0 = 3, which corresponds
9Stock and Yogo (2005) initially makes the conjecture, and D. S. Lee et al. (2022) proves the result.
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to E[F ] = 10, the rule of thumb.

Figure 11: An Example of distribution of t2

We know P (|t| > cα) = P (t2 > cα), so the idea to construct a critical value function
that is a function of cα(f), and the region where cα(f) is above t2 is exactly the acceptance
region. D. S. Lee et al. (2022) restricts attention to cα(f) that only intersects t2 at two
points, denoted by f̄ and f

¯
, for some technical reasons. In this way we can solve for cα, f̄ ,

and f
¯

using the following system of equations:



f̄2(f̄−f0)2

f2
0

− cα(f̄) = 0

P (f
¯
< f < f̄) = 1 − α

f
¯

2(f
¯
−f0)2

f2
0

− cα(f
¯
) = 0

(28)

For the specific solution of cα(f) and its properties, see D. S. Lee et al. (2022).
An interesting feature of tF procedure is that the test is not unbiased, namely the power

can dip below the nominal level α. However, AR test is only uniformly most powerful among
the class of unbiased tests, so it is possible that tF is more powerful than AR in some cases.
Indeed, the survey of D. S. Lee et al. (2022) shows that tF confidence interval has shorter
expected length than AR.

D. Lee et al. (2023) tries to eliminate the conservativeness by imposing

Pβ=β0(|t| > cα(ρ, f)) = α

which resembles the AR test that gives exactly level α. A notable feature is that the critical
value function is both a function of both first stage strength, denoted by f , and degree of

23



Boyang Zhang

endogeneity, denoted by ρ. The idea behind constructing the critical value function is
complicated, so readers are referred to Appendix D of D. Lee et al. (2023) for further
information.

This critical value function seems counter-intuitive that the function can depend on ρ.
In fact, we can consistently estimate ρ under the null. Consider the reduced form regression
as in Equation 17 and normalization so that 1

nZ
′Z

p→ Qzz = 1, we have

√
n

(
π̂β − πβ

π̂ − π

)
d→ N(

(
0
0

)
,

(
σ2

1 ρRFσ1σ2

ρRFσ1σ2 σ2
2

)
)

There are no weak instruments problems in reduced form regressions, so σ1, σ2, ρRF are all
consistently estimable10. It is not difficult to show that

ρ =
ρRF − β σ2

σ1√
1 − 2ρRFβ

σ2
σ1

+ β2 σ2
2

σ2
1

(29)

Thus, under the null, ρ can be consistently estimated by ρ̂, with β = β0 and σ1, σ2, ρRF

replaced by their consistent estimates.
Similar to the tF test, V tF test is also not unbiased. Indeed, V tF produced shorter

confidence intervals than AR in all 10 papers surveyed by D. Lee et al. (2023).
D. Lee et al. (2023) also provides extensive simulation evidence to compare the power

among different tests under just-identification, including AR, tF , V tF , and CW . V tF

seems to have higher power than AR in large area of the parameter space, though it is not
uniformly higher than AR as AR is admissible, shown in Chernozhukov et al. (2009). It is
surprising that CW also seems to have higher power than AR for many parameter value,
as it seems to contradict what is observed in D. W. Andrews et al. (2007). In fact, D. W.
Andrews et al. (2007) never shows simulation evidence for just identified model, so it is not a
contradiction here, though Keane and Neal (2023) argues that in just-identified model, CW
(or conditional t) provides similar results as AR but is much harder to implement. In terms
of the reason for the better performance of V tF and CW , similar to that of tF , all three
tests are not unbiased, so they may have power lower than 5% for some alternatives, but
have higher power than AR in other alternatives. It turns out that even in just identified
model AR may be overly conservative. Figure 12, 13, and 14 give power curves for AR
and CW under different alternatives. In the simulation, we vary the true parameter value
in the grid, in this case between -1 and 1, with interval 0.1, and collect cases where the test
statistic is larger than 3.84, the 95% quantile for χ2

1. By doing so, we can get the rejection
probability (power) for each alternative value. It seems that when instrument is strong, AR

10Intuitively, the weak instruments problem really comes from dividing the first stage, which is close to 0.
As long as you are not dividing by first stage, conventional estimator works just fine.
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Figure 12: Power when π = 0.05

Figure 13: Power when π = 0.15

Figure 14: Power when π = 0.35
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performs much better than CW , when the instrument is weak, CW is a bit better than
AR.

7 Non-Linear First Stage

Assumption 1 in Section 2 makes it clear that the first stage is a projection relationship
between X and Z, so it is possible that the true relationship between X and Z is nonlinear,
for example E[Xi|Zi] = Z2

i . This section explores if nonlinearity could cause any problems
to the estimation and inference procedure discussed before.

As a working example, consider the following model:

Yi = Xiβ + ui (30)

Xi = Z2
i δ + wi (31)

E[ui|Zi] = E[wi|Zi] = 0 (32)

Zi ∼ N(0, 1) (33)(
ui

wi

)
|Zi ∼ N(

(
0
0

)
,

(
σ2

u σuw

σuw σ2
w

)
) (34)

The model differs from the general setup in Section 2 because Equation 31 spells out the
true relationship between X and Z, rather than a pure projection from X to Z. The
reason for setting Z ∼ N(0, 1) is to ensure Cov(X,Z) = E[XZ] − E[X]E[Z] = 0, because
E[Z3] = 0 for Z ∼ N(0, 1). In other words, there is no linear relationship between X and
Z. Thus, under weak instrument asymptotics, F̂ d→ χ2

1, and E[F ] = 1, namely the first
stage F statistic will always indicate a weak instruments problem, no matter how big δ is.

The behaviour of β̂ = (Z ′X)−1Z ′Y is also quite interesting. In fact, it resembles the
behaviour when the instrument is weak, for example Equation 7. It is simple to show that

β̂ − β = Z ′u

Z ′X
d→ ϕzu

ϕzx
= σuw

δ2E[Z6
i ] + σ2

w

+ ξ

ϕzx
(35)

(
ϕzu

ϕzx

)
∼ N(

(
0
0

)
,

(
σ2

u σuw

σuw δ2E[Z6
i ] + σ2

w

)
)

(
ξ

ϕzx

)
∼ N(

(
0
0

)
,

σ2
u − σ2

uw

δ2E[Z6
i ]+σ2

w
0

0 δ2E[Z6
i ] + σ2

w

)

When δ is small, the limiting distribution of β̂ − β again resembles a Cauchy distribution
plus a biased term, which means β̂ will have large median bias. When δ is big, β̂ − β still
has a scaled Cauchy as the limiting distribution, but without the biased term , so β̂ will be
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approximately median unbiased. Figure 16 illustrates the point.
Next we examine the limiting distribution of Wald statistic (t2). It is not difficult to

show that

t2 = β̂ − β0√
σ̂2

u(Z ′Z)(Z ′X)−2 (36)

d→ ϕ2
zu

( σuw

δ2E[Z6
i ]+σ2

w
+ ξ

ϕzx
)2(δ2E[Z4

i ] + σ2
w) − 2σuw( σuw

δ2E[Z6
i ]+σ2

w
+ ξ

ϕzx
) + σ2

u

(37)

σ̂2
u = 1

n
(Y −Xβ̂)′(Y −Xβ̂) (38)

When δ is small, namely the instrument provides little information, We would expect
a similar behaviour of t test as discussed in Section 3, namely there is substantial size
distortion. When δ is large, the denominator will be quite large, so t2 will be close to 0.
Figure 15 confirms the above findings. The simulation setup for Figure 15 and 16 is: Sample
Size N = 1000, Iterations S = 5000, δ ∈ {0.1, 0.5, 1, 5, 10}, and(

ui

wi

)
∼ N(

(
0
0

)
,

(
1 0.99

0.99 1

)
)

Figure 15: Size of t test with ρ = 0.99 Figure 16: Median bias of β̂

Obviously t test may not be a desirable choice in this context. AR test is a natural
alternative. Figure 17 shows that AR test has correct size regardless of δ.

As a side note, in this working example we have shown that even when the first stage
F statistic is quite small, β̂ may have low bias and t test may have correct size. This result
matches the pattern shown in Figure 3 of I. Andrews et al. (2019), which is a calibrated
simulation to AER papers. Figure 3 of I. Andrews et al. (2019) shows that the first stage
F statistic is small, the median bias of β̂ and size of t test can be quite volatile, ranging
from unbiased and correct size to heavily biased and large size distortion.

In summary, it seems that the issue of using traditional TSLS and t test when the true
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Figure 17: Size of AR test with ρ = 0.99 Figure 18: E[Fnonlinear] and δ

first stage is nonlinear in Z is that the t-test will converge to 0 when δ is large and the first
stage F statistic does not indicate instrument strength. We may want to correctly specify
E[X|Z] and estimate δ, then derive the first stage F statistic that is suitable for this case.
It is simple to show that when applying OLS on Xi = Z2

i δ + wi,

δ̂ = (
n∑

i=1
Z4

i )−1
n∑

i=1
Z2

i Xi

and if we use the weak instrument asymptotics, namely δ = C√
n

, we have

F̂nonlinear = δ̂′[V̂ ar(δ̂)]−1δ̂
d→ (CE[Z4

i ]
1
2

σw
+N(0, 1))2 d= Fnonlinear

The concentration parameter µ2 = C2E[Z4
i ]

σ2
w

, E[Fnonlinear] = µ2 + 1. Figure 18 shows how
E[Fnonlinear] evolves with δ, obviously Fnonlinear regains the ability to indicate identification
strength after correctly specifying E[X|Z]

We may also want to see if correctly specifying E[X|Z] can bring some other benefits.
If we follow the idea of “Two Stage Least Square”, namely obtaining the fitted value by
running OLS in the first stage, then using the fitted value as an IV11 for β

β̂nonlinear = (
n∑

i=1
X̂ ′

iXi)−1
n∑

i=1
X̂iYi

11The idea of using first stage fitted value as an regressor in the second stage and running OLS in the second
stage also works in this case, but is susceptible to misspecification (for example specifying E[X|Z] = Φ(πZ)
but in fact E[X|Z] = exp(πZ)

1+exp(πZ) ). The intuition is that the estimated residual in the first stage using probit
or logit or other nonlinear models under misspecification is not guaranteed to uncorrelated with the fitted
value X̂, thus plugging in fitted value in the second stage and run OLS may not be valid. This is termed
“Forbidden Regression”. See J. D. Angrist and Pischke (2009), pp. 143-144 for discussion.
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where X̂i = Z2
i δ̂. It is simple to show

β̂nonlinear
p→ β (39)

√
n(β̂Nonlinear − β) = ( 1

n

n∑
i=1

Z2
i Xi)−1 1√

n

n∑
i=1

Z2
i ui

d→ N(0, σ2
uE[Z4

i ]E[Z2
i Xi]−2) (40)

so we have
tnonlinear = β̂nonlinear − β0√

σ̂2
u(
∑n

i=1 Z
4
i )(
∑n

i=1 Z
2
i Xi)−2

d→ N(0, 1)

σ̂2
u = 1

n
(Y −Xβ̂Nonlinear)′(Y −Xβ̂Nonlinear)

Figure 19 and 2012 show the median bias of β̂nonlinear and size of t test based on tnonlinear.
Reassuringly, when δ is large, β̂nonlinear is approximately unbiased and the size of t test based
on tnonlinear is approximately 5%. An interesting observation is that both the estimator and
test are more robust to weak instruments, in the sense that when δ = 0.1, a situation where
the instrument is already weak enough (as shown in Figure 15 and 16, there is substantial
size distortion and bias), β̂nonlinear is still approximately unbiased and t test using tnonlinear

still has correct size. Of course, when the instrument becomes even weaker, these methods
will not give correct estimate and inference. Thus, we can conclude that correctly specifying
the first stage will give valid first stage F statistic, β̂ and t test when δ is large, and seems
to be more robust to small δ compared to conventional TSLS estimate.

Figure 19: Median bias of β̂nonlinear Figure 20: Size of t test using tnonlinear

However, in practice we do not know whether true first stage is quadratic or cubic or
some other complicated forms. It will have a high cost if we use run OLS on Xi = Z2

i δ+wi

but in fact the model is misspecified. For example, if the E[Xi|Zi] = Ziδ, E[Fnonlinear] and
β̂nonlinear will behave as in Figure 21, 22, and 23, which does a bad job compared with using

12In Figure 19 and 20 only, I add a situation where δ = 0, in order to show that correctly specifying the
first stage still cannot solve the fundamental problem of unidentification
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conventional TSLS.

Figure 21: E[Fnonlinear] when the true model is linear

Figure 22: Median bias of β̂nonlinear when the true model is linear

Figure 23: Size of t test when the true model is linear

To tackle misspecification we may want to recall the essence of TSLS estimation. In fact,
it is shown in Equation 43 (proof is given in the Appendix) that TSLS replaces endogenous
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X with exogenous E[X|Z]. So our goal is to correctly estimate E[X|Z]13.

βT SLS = E[X̂2]−1E[X̂Y ], X̂ = E[X|Z] (41)

= E[E[X|Z]2]−1E[E[X|Z]Y ] (42)

= β (43)

Naturally, we want to use a nonparametric first stage, namely creating a dummy variable
for each unique value of the instrument. For example, if Z has 10 unique values, we
need to create 9 dummy variables (Omitting one to avoid multicollinearity). Each dummy
variable takes value 1 if the original instrument takes this unique value, 0 otherwise. Using a
nonparametric first stage will give E[X|Z] automatically, no matter what specific functional
form the true first stage is. However, an immediate issue of this approach is that Z may take
a lot of distinct values, so the first stage will ultimately have a large number of regressors,
creating a serious many instruments bias. In fact, the instrument used in the main IV
regression of Acemoglu et al. (2001) has virtually as many distinct values as the number
of observations. Though there are instruments that only take a few distinct values, for
example the quarter of birth instrument used in J. D. Angrist and Krueger (1991), which
only has 4 distinct values.

A simple simulation shows the problem of many instrument bias. I cannot use the
previous simulation design to generate Z because Z will have as many distinct value as
observations, so I designate that Z takes 20 distinct value14, the total number of observations
is 500. The true first stage is given by Xi = logZi + wi, E[wi|Zi] = 0, the first stage
that I actually run is Xi = α + π′(I{Zi=1}, I{Zi=1.25}, ..., .I{Zi=5.5}) + vi, E[Zivi] = 015.
δ = {0.05, 0.1, 0.3, 0.5, 0.7, 1}, number of iterations is 2000, error variance is 1 and correlation
is 0.99.

Figure 24 and 25 compare the size of t test and median bias of β̂ when using traditional
linear first stage and fully saturated first stage. It is clear that there is a substantial many
instruments bias.

Jackknife Instrumental Variable Estimator (JIVE) and LIML introduced in Equation
15 are two popular alternatives when facing many instruments bias

β̂JIV E =
∑

i

∑
j ̸=i PijXiYj∑

i

∑
j ̸=i PijXiXj

where Pij is the (i, j) element of Pz = Z(Z ′Z)−1Z ′. Figure 26 and 27 show the median
13Chen et al. (2020) also examines the problem of potential nonlinear relationship between X and Z in

the first stage, and proposes to use machine learning methods to estimate E[X|Z]
14The values are {1.00,1.25,1.50,1.75,2.00,2.25,2.50,2.75,3.00,3.25,3.50,3.75,4.00,4.25,4.50,4.75,5.00,5.25,5.50,5.75

}. Then I repeat such sequence 25 times to generate a total observation of 500.
15E[vi|Zi] = 0 is true by construction
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Figure 24: Median Bias Figure 25: Size of t test

Figure 26: Median bias Figure 27: Size of Wald test
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bias of both JIVE and LIML estimator, and the size of Wald test based on them. Clearly,
both perform better than running naive TSLS in the many instruments context, with LIML
doing better than JIVE. This is a little surprising as JIVE is known to be more robust than
LIML in the many instruments context, see Mikusheva and Sun (2022). An explanation
is that when δ = 0.05 or 0.1, the instrument is already too weak to allow any consistent
estimate, so none of the estimate is reliable. It could also be possible that the nonlinear
first stage contributes to the result.

Thus, in this simulation, it seems that using a nonparametric first stage together with
robust estimators like JIVE or LIML does not do better than running linear first stage
with TSLS in terms of bias or size. Researchers sometimes also care about interpretation
of the parameter estimate. If we add covariates and allow heterogeneous treatment effect,
nonparametric first stage combined with JIVE may be a better choice as it allows us to
interpret the parameter estimate as a positively weighted average of Local Average Treat-
ment effect (LATE)16. Thus, which method to use in practice depends on which goal the
researcher wants to achieve. It might be a good practice to try all these methods and let
the reader decide which one is most useful.

To sum up, E[X|Z] being nonlinear in Z can cause problem in estimation and inference
to traditional methods. When we try to estimate E[X|Z], machine learning methods may
help. A nonparametric first stage together with JIVE/LIML may also solve this problem,
but it may also do worse (when there are too many covariate bins). Probably it is a good
idea to try all these methods and let the reader decide which one is most useful.

8 Extension to Heteroskedastic Models

I spent most of the paper summarizing results under the assumption of homoskedasticity,
mainly for simplicity. However, in practice it is extremely rare to see applied researchers
calculating any estimator or test statistic under homoskedasticity. In fact, only one paper
in my AER sample reports first stage F statistic under homoskedasticity. Therefore, in
this section I will introduce the extension of aforementioned estimators and test statistic to
heteroskedastic case. In fact, in just identified models, such extension is straightforward.

Let us consider the first stage F statistic. We have shown in Equation (11) that in just-
identified model, the first stage F statistic has a limiting distribution of χ2

1(( C
σv

)2) under
homoskedasticity. Under heterskedasticity,

F̂robust = ((Z ′Z)−1Z ′X)′((Z ′Z)−1
n∑

i=1
Z2

i v̂
2
i (Z ′Z)−1)−1(Z ′Z)−1Z ′X (44)

16Unfortunately, the interpretation of LIML is tricky, as it is shown in Kolesar (2013) that LIML may be
outside the convex hull of LATE
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d→ χ2
1(( E[Z2

i ]C√
E[Z2

i v
2
i ]

)2) (45)

v̂i = Xi − Ziπ̂ (46)

Obviously if E[Z2
i v

2
i ] = E[Z2

i ]σ2
v , we are back to the homoskedastic case, assuming E[Z2

i ] =
1. As pointed out by I. Andrews et al. (2019), applied researchers normally use the het-
eroskedasticity robust first stage F , but refer to the “rule of thumb” 10, which is derived
under homoskedasticity. Thus, new critical value for the weak instruments test is required
to accommodate the heteroskedastic case. Olea and Pflueger (2013) derived the “Effec-
tive first stage F”, or “FEff ” statistic based on controlling Nagar bias, without assuming
homoskedasticity.

More formally, consider the reduced form regression as in Equation 17 with normalized
instruments, namely 1

nZ
′Z = Ik( 1√

n
Z ′v1

1√
n
Z ′v2

)
d→ N(

(
0
0

)
,

(
W1 W12
W ′

12 W2

)
) (47)

FEff = X ′ZZ ′X

ntr(Ŵ2)
In just-identified model,

tr(Ŵ2) = 1
n

n∑
i=1

Z2
i v̂

2
i

, so FEff = F̂robust. In just identified setting, to ensure the Nagar bias is less than 10%,
the effective (robust) first stage F statistic should be at least 23.1, much larger than 10,
the threshold for having 10% Nagar bias under homoskedastic model and also the rule of
thumb. In fact, I. Andrews (2018) shows in the appendix that there are cases where the
homoskedastic first stage F statistic is 500 but the size of t test is still larger than 15%,
though the result is obtained with heavily over-identified models. For our purpose, a good
example of the importance of using heteroskedastic robust First stage F statistic is the
setting in Section 7, where the true first stage is nonlinear in Z. Consider

Xi = Ziπ + vi

Xi = Z2
i δ + wi

E[ei|Zi] = E[Zivi] = 0

Z ∼ N(0, 1)

In this setting, π = 0, so vi = Xi. Even though we assume wi is conditionally homoskedastic,
namely E[w2

i |Zi] = σ2
w, it is not possible for vi to be conditional homoskedastic, because
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E[v2
i |Zi] = V ar[vi|Zi] + E2[vi|Zi] = σ2

w + (Z2
i δ)2, which is a function of Zi. Figure 28

shows the expected value of robust and non-robust first stage F statistic. We know that
the correct answer should be 1, but the non-robust first stage F statistic obviously is too
large, which could be misleading.

Figure 28: Robust F vs Non-Robust F

Next consider the AR statistic under H0 : β = β0

AR(β0) = (y −Xβ0)′Z(Z ′Z)−1((Z ′Z)−1
n∑

i=1
û2

iZ
2
i (Z ′Z)−1)−1(Z ′Z)−1Z ′(y −Xβ0) (48)

=
1
nu

′ZZ ′u
1
n

∑n
i=1 û

2
iZ

2
i

(49)

d→ ψ2
zu

E[Z2
i u

2
i ]

∼ χ2
1 (50)

ûi = yi −Xiβ0 (51)

Thus AR still has a χ2
1 distribution under the null, so critical value does not change. The

only change applied researchers need to make in practice is to compute the AR statistic with
heteroskedastic error, as the original AR statistic does not have χ2

1 as limiting distribution

ARhomo(β0) = (y −Xβ0)′Pz(y −Xβ0)
1

n−1(y −Xβ0)′Mz(y −Xβ0)

d→ ψ2
zu

σ2
uE[Z2

i ]

9 Empirical Example

The most famous empirical example considered in the weak instruments literature is the
J. D. Angrist and Krueger (1991) study that uses quarter of birth as an instrument for
years of schooling to study return to education. However, the IV model in J. D. Angrist
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and Krueger (1991) is over-identified, which does not suit the purpose of this paper. Thus, I
pick Acemoglu et al. (2001), another famous IV application but with just-identified model.
It is shown in the original paper that the instrument is relatively strong, so I artificially
create an instrument that is weakly correlated with the endogenous regressor, and apply
the estimation and inference methods introduced in previous sections.

Acemoglu et al. (2001) estimates the effect of institution quality (measured by expropria-
tion risk) on economic growth, exploiting European settlers’ mortality rate as an instrument.
They estimate the effect using the following equation:

logyi = α1 + βRi + ei

Ri = α2 + πlogMi + vi

where yi is GDP growth rate, Ri is protection against expropriation, Mi is mortality rate
for European settlers.

The relevance of the instrument comes from the fact that European settlers adopted
more extractive institutions at places where their mortality is high, and the past institutions
can affect current institutions.

To examine the consequences of weak instruments, I mimic the idea of Bound et al.
(1995) and generate irrelevant instruments, in this case I let logMi ∼ U [0, 1] and estimate
the same equation using the new irrelevant instruments.

Table 1: Estimated effects of average protection against expropriation on economic growth

Original
OLS TSLS Unbiased

Coef 0.52 0.94 0.91
Std Error (0.05) (0.18)
First F 16.85

TSLS Confidence Interval [0.63,1.25]
AR Confidence Interval [0.71,1.42]
CW Confidence Interval [0.65,1.30]
VtF Confidence Interval [0.65,1.30]

We can see from Table 1 that the original equation has a relatively large first stage F
statistic, so if we believe the validity of instrument, we should be confident that the true
effect is around 1, which is nearly two times as large as the OLS estimate. The unbiased
estimate is also quite close to the TSLS estimate, confirming the result in I. Andrews
and Armstrong (2017) which shows that the unbiased estimate has the same asymptotic
behaviour as the TSLS estimate under strong instrument. As the instrument is relatively
strong, we can see that the naive TSLS confidence interval is not much different from the
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Table 2: Estimated effects of average protection against expropriation on economic growth

Simulated
OLS TSLS Unbiased

Coef 0.52 6.45 1.30
Std Error (0.05) (50.98)
First F 0.01

TSLS Confidence Interval [-93.47,106.47]
AR Confidence Interval (−∞,+∞)
CW Confidence Interval (−∞, 0.45] ∪ [0.51,+∞)
VtF Confidence Interval (−∞,+∞)

confidence interval that we derived from other robust procedures.
For the construction of confidence intervals, the TSLS confidence interval is derived

analytically using

[β̂T SLS − 1.96

√ ̂AsyVar(β̂T SLS)
n

, β̂T SLS + 1.96

√ ̂AsyVar(β̂T SLS)
n

]

The confidence interval for AR, CW , and V tF are computed using grid search. In this
case, I specify the grid to be between -10 and 10, with interval 0.01, and collect parameter
value in sets {β : AR(β) ≤ 3.84}, {β : CW (β) ≤ 3.84}, {β : V tF (β) ≤ 3.84} respectively.

Table 2 shows the instrument is completely irrelevant to the endogenous regressor, so
the TSLS estimate is extremely biased. The unbiased estimate, however, is much more
robust to weak instrument and is only slightly biased. As the instrument is completely
irrelevant, we should have no ability to identify the parameter of interest, so it makes sense
that the robust confidence interval virtually contains the whole real line.

A single point estimate and standard error tells us extremely little about the distribution
of the estimate. Thus, we calibrate our simulation to the original data to examine the effect
of weak instruments on the distribution of the estimate in this empirical context. The idea
is: Consider running the following first stage and reduce form regression

Yi = Ziπβ + ϵi (52)

Xi = Ziπ + vi (53)

then we obtain parameter estimate π̂β and π̂, and the estimate of their variance-covariance

matrix
(
σ̂2

ϵ σ̂ϵv

σ̂ϵv σ̂2
v

)
. Note all reduced form quantities can be consistently estimated under

mild assumptions, so no need to worry about weak instruments problem here. Then we
view these estimates as population quantity, and draw N = 1000 pairs of (πβ∗, π∗) from
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this bivariate normal distribution

N(
(
π̂β

π̂

)
,

(
σ̂2

ϵ σ̂ϵv

σ̂ϵv σ̂2
v

)
)

and compute β̂IV and standard error for each iteration.

Figure 29: Simulated distribution of
TSLS

Figure 30: Simulated distribution of t
statistic

Figure 29 and 30 show the simulated distribution of TSLS and t statistic for original
instrument and simulated instrument respectively. It is clear that the TSLS estimate under
simulated instrument is extremely dispersed and is no way close to the parameter estimate
6.45, suggesting that 6.45 is not a reliable estimate. In contrast, the distribution of TSLS
using original estimate is approximately centered around 0.9, the original parameter esti-
mate, suggesting a relatively reliable estimate. The t statistic under original estimate also
behaves much closer to a standard normal compared to the t statistic under the simulated
instrument. Thus, such simulations confirm that the parameter estimate and inference is
relatively reliable using original instrument, while the simulated instrument induces severe
bias.

We can see from Table 1 and 2 that confidence interval based on robust test has three
shapes: bounded interval, real line, and real line except a bounded interval. As we have
discussed, confidence interval being a bounded interval or the real line is not surprising, but
being the real line except a bounded interval seems counter-intuitive. In fact, if we examine
the form of AR statistic

AR(β0) = (y −Xβ0)′Pz(y −Xβ0)
1

n−1(y −Xβ0)′Mz(y −Xβ0)

and consider the confidence set {β : AR(β) < χ2
1}, we have that all β in the confidence set
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satisfies the following quadratic inequality

(y −Xβ)′Pz(y −Xβ)
1

n−1(y −Xβ)′Mz(y −Xβ)
< 3.84

(nX ′PzX − 3.84X ′MzX)β2 − 2(nX ′Pzy − 3.84X ′Mzy)β + ny′Pzy − 3.84y′Mzy < 0

Thus, it is not surprising that AR test can have confidence interval that is the real line
except a bounded interval. In our case, it is the CW test that shows such a shape of
confidence interval. I am not aware of literature discussing the shape of confidence interval
of CW test, but I guess it follows the same pattern as AR. Davidson and MacKinnon
(2014) and Zivot et al. (1998) further discuss the shape of AR confidence interval.

10 Directions for Further Research

Although Moreira (2009) shows that AR test is UMPU under just-identification, it does
not say anything about tests that are biased, namely tests that have power lower than
nominal size α under certain alternatives. Indeed, D. S. Lee et al. (2022) and D. Lee et al.
(2023) show that biased tests may have higher power than AR in many alternative values,
as shown in Figure 12, 13, and 14, and have shorter expected length of confidence interval,
whenever the confidence interval is bounded.17 Thus, it cases doubt on the recommendation
of AR test in just identified model. It seems interesting to explore if other tests can further
improve power and produce shorter expected confidence intervals.

Both I. Andrews and Armstrong (2017) and J. Angrist and Kolesár (2023) study if
imposing sign restriction on the first stage could give any new results. Indeed, imposing
sign restrictions gives unbiased estimator (I. Andrews and Armstrong, 2017), and minimizes
median bias (J. Angrist and Kolesár (2023)). J. Angrist and Kolesár (2023) also argue for
using t test anyway because it is unlikely to have large degree of endogeneity in practice,
though this point is not supported by D. S. Lee et al. (2022). Thus, it seems interesting
to explore if there is a general theory that can speak to the reasonablenss of imposing
such restrictions. For example, we have shown in Equation 29 that there is a one-to-one
relationship between the degree of endogeneity and the parameter value of interest. It will
be interesting if we can assess the possible value of β, and if it corresponds to a ρ that is
low enough, t test will provide valid inference (though its power may be worse than other
procedures, such as “V tF”).

17Dufour (1997) shows that confidence interval that has correct coverage under potentially weak instru-
ments must have infinite expected length, so comparing the unconditional expected length of confidence
interval among valid tests is not useful, as all of them are infinite.
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Appendix

Proof of the distribution of IV estimator when the instrument is irrelevant
in Equation 3

β̂ − β = Z ′u

Z ′X

= Z ′u

Z ′v

=
1√
n
Z ′u

1√
n
Z ′v

d→ ψzu

ψzv(
ψzu

ψzv

)
∼ N(

(
0
0

)
, E[z2

i ]
(
σ2

u σuv

σuv σ2
v

)
), E[z2

i ] = 1

ψzu = E[ψzu|ψzv] + η

= σuv

σ2
v

ψzv + η, ψzv ⊥ η

V ar(ψzu) = V ar(σuv

σ2
v

ψzv) + V ar(η)

σ2
u = σ2

uv

σ4
v

σ2
v + V ar(η)

V ar(η) = σ2
u(1 − ρ2), ρ = σuv

σuσv

⇒ β̂ − β
d→ σuv

σ2
v

+ η

ψzv(
η

ψzv

)
∼ N(

(
0
0

)
,

(
σ2

u(1 − ρ2) 0
0 σ2

v

)
)

Proof of Equation 6 the distribution of t2 statistic under weak instrument
asymptotics

t2 = (
√
n(β̂IV − β0)√

ˆAsyVar(β̂IV )
)2

= ( Z ′u/Z ′X√
σ̂2

u(Z ′X)−2Z ′Z
)2

= ( Z ′u√
σ̂2

uZ
′Z

· |Z ′X|
Z ′X

)2

σ̂2
u = 1

n
(y −Xβ̂IV )′(y −Xβ̂IV )
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= 1
n

[X(β − β̂IV ) + u]′[X(β − β̂IV ) + u]

= 1
n

[(β − β̂IV )2X ′X + 2X(β − β̂IV )u+ u′u]

= 1
n

(β − β̂IV )2(Zπ + v)′(Zπ + v) + 2 1
n

(β − β̂IV )(Zπ + v)u+ 1
n
u′u

= 1
n

( Z
′u

Z ′X
)2(Z C√

n
+ v)′(Z C√

n
+ v) − 2 1

n

Z ′u

Z ′X
(Z C√

n
+ v)u+ 1

n
u′u

d→ σ2
u[( zu

C/σv + zv
)2 − 2ρ zu

C/σv + zv
+ 1]

t2 = ( Z ′u√
σ̂2

uZ
′Z

· |Z ′X|
Z ′X

)2

d→ z2
u

( zu
C/σv+zv

)2 − 2ρ zu
C/σv+zv

+ 1

Proof of
√

n(β̂ − 1
ĉ
) p→ 0 in Equation 14

β̂ = (X ′PZX)−1X ′PZY

ĉ = (Y ′PZY )−1Y ′PZX

√
n(β̂ − 1

ĉ
) =

√
n(β + (X ′PZX)−1X ′PZu− β − (Y ′PZX)−1Y ′PZu)

=
√
n((X ′PZX)−1X ′PZu− (Y ′PZX)−1Y ′PZu)

= n− 3
2 [X ′PZuY

′PZX − Y ′PZuX
′PZX]

n−2X ′PZXY ′PZX

=
1⃝
2⃝

2⃝ = n−2X ′PZX(Xβ + u)′PZX

= β( 1
n
X ′Z( 1

n
Z ′Z)−1 1

n
Z ′X)2 + 1

n
X ′Z( 1

n
Z ′Z)−1 1

n
Z ′X

1
n
u′Z( 1

n
Z ′Z)−1 1

n
Z ′X

p→ βE[XiZ
′
i]E[ZiZ

′
i]−1E[ZiXi]

1⃝ = [ 1
n
X ′Z( 1

n
Z ′Z)−1 1√

n
Z ′u][β 1

n
X ′Z( 1

n
Z ′Z)−1 1

n
Z ′X + 1

n
u′Z( 1

n
Z ′Z)−1 1

n
Z ′X)]

− [β 1
n
X ′Z( 1

n
Z ′Z)−1 1√

n
Z ′u+ 1

n
u′Z( 1

n
Z ′Z)−1 1√

n
Z ′u][ 1

n
X ′Z( 1

n
Z ′Z)−1 1

n
Z ′X]

= [ 1
n
X ′Z( 1

n
Z ′Z)−1 1√

n
Z ′u][ 1

n
u′Z( 1

n
Z ′Z)−1 1

n
Z ′X]

− [ 1
n
u′Z( 1

n
Z ′Z)−1 1√

n
Z ′u][ 1

n
X ′Z( 1

n
Z ′Z)−1 1

n
Z ′X]

p→ 0
√
n(β̂ − 1

ĉ
) p→ 0, By CMT for p→
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Proof of β̂LIML = β̂2SLS in just identified model

The idea is to exploit the fact that κ ≥ 1, so we assume κ = 1, and see if the equation
holds. If the equation holds, it means that when the model is just-identified, the smallest
root of the equation is κ = 1, so κ = 1, and β̂LIML = β̂2SLS

det(Ȳ ′Ȳ − Ȳ ′MzȲ ) = det(Ȳ ′PzȲ )

= det(
[
Y ′PzY Y ′PzX

X ′PzY X ′PzX

]
)

= Y ′PzY X
′PzX − (Y ′PzX)2

= (Y ′Z)2(X ′Z)2(Z ′Z)−2 − (Y ′Z)2(X ′Z)2(Z ′Z)−1

= 0

The reason we can have the second to last equality is that the model is just identified, so
Z ′Z,Z ′X,Z ′Y are all scalars.

Proof of the LM ∼ χ2
1 distribution

The idea is to first show S̄ and T̄ are independent, which is equivalent to show S and T are
independent, then show LM |T = t ∼ χ2

1, thus LM ∼ χ2
1.

S = Z ′(y1 − β0y2), T = 1
|Ω|

Z ′[(β0σ
2
2 − σ12)y1 + (σ2

1 − β0σ12)y2]

Both S and T are normally distributed, to show they are independent, it is sufficient to
show Cov(S, T ) = 0

Cov(S, T ) = 1
|Ω|

Cov(Z ′(y1 − β0y2), Z ′[(β0σ
2
2 − σ12)y1 + (σ2

1 − β0σ12)y2])

= 1
|Ω|

n∑
i=1

Z2
i [(β0σ

2
2 − σ12)V ar(y1i) − β0(σ2

1 − β0σ12)V ar(y2i)

+ (σ2
1 − β0σ12 − β0(β0σ

2
2 − σ12))Cov(y1i, y2i)]

= 1
|Ω|

n∑
i=1

Z2
i [(β0σ

2
2 − σ12)σ2

1 − β0(σ2
1 − β0σ12)σ2

2

+ (σ2
1 − β0σ12 − β0(β0σ

2
2 − σ12))σ12]

= 0

Thus, S and T are independent, which implies S̄ and T̄ are independent.
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As S̄ and T̄ are independent, we can consider the conditional distribution LM |T = t

LM |(T = t) = S̄′t̄(t̄′t̄)−1t̄′S̄

t̄′S̄ ∼ N(0, t̄′t̄)

(t̄′t̄)− 1
2 t̄′S̄ ∼ N(0, 1)

S̄′t̄(t̄′t̄)t̄′S̄ ∼ χ2
1

Thus, LM ∼ χ2
1

Proof of Equivalence between Kleibergen’s K statistic and LM statistic

Note K statistic is derived without distributional assumption, so in the proof all the error
variance in the LM statistic will be replace by their consistent estimate under the null.

S̄′T̄ = ((Z ′Z)− 1
2Z ′Y b0(b′

0Ω̂b0)− 1
2 )′(Z ′Z)− 1

2Z ′Y Ω̂−1A0(A0Ω̂−1A0)− 1
2 )

= (b′
0Ω̂b0)−1|Ω̂|

1
2 b′

0Y
′Z(Z ′Z)−1Z ′Y Ω̂−1A0

= (b′
0Ω̂b0)−1|Ω̂|−

1
2 (y −Xβ0)′Pz[(β0σ̂

2
2 − σ̂12)y + (σ̂2

1 − β0σ12)X]

= (b′
0Ω̂b0)−1|Ω̂|−

1
2 (y −Xβ0)′Pz · (1)

(1) = (β0σ̂
2
2 − σ̂12)y + (σ̂2

1 − β0σ̂12)X

= (β0σ̂
2
2 − σ̂12)[y −Xβ0 + σ̂2

1 − 2β0σ̂12 + β2
0 σ̂

2
2

β0σ̂2
2 − σ̂12

X]

Suv = 1
n

(y −Xβ0)′MzX

= 1
n

(v1 − β0v2)′Mzv2

= 1
n
v′

1Mzv2 − 1
n
β0v

′
2Mzv2

= σ̂12 − β0σ̂
2
2

Suu = 1
n

(y −Xβ0)′Mz(y −Xβ0)

= 1
n

(v1 − β0v2)′Mz(v1 − β0v2)

= 1
n
v′

1Mzv1 − 2β0
1
n
v′

1Mzv2 + β2
0

1
n
v′

2Mzv2

= σ̂2
1 − 2β0σ̂12 + β2

0 σ̂
2
2

= b′
0Ω̂b0

(1) = −Suv[y −Xβ0 − Suu

Suv
X]

= Suu[X − (y −Xβ0)Suv

Suu
]
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S̄′T̄ = |Ω̂|−
1
2 (y −Xβ0)′Pz[X − (y −Xβ0)Suv

Suu
]

T̄ ′T̄ = ((Z ′Z)− 1
2Z ′Y Ω̂−1A0(A′

0Ω̂−1A0)− 1
2 )′((Z ′Z)− 1

2Z ′Y Ω̂−1A0(A′
0Ω̂−1A0)− 1

2 )

= (A′
0Ω̂−1A0)−1A′

0Ω̂−1Y ′Z(Z ′Z)−1Z ′Y Ω̂−1A0

= |Ω̂|(b′
0Ω̂−1b0)−1 · (1)′ · Pz · (1)

= |Ω̂|Suu[X − (y −Xβ0)Suv

Suu
]′Pz[X − (y −Xβ0)Suv

Suu
]

(S̄′T̄ )2

T̄ ′T̄
= 1
Suu

(y −Xβ0)′(Pz[X − (y −Xβ0) Suv
Suu

])(Pz[X − (y −Xβ0) Suv
Suu

])′(y −Xβ0)
(Pz[X − (y −Xβ0) Suv

Suu
])′(Pz[X − (y −Xβ0

Suv
Suu

)])

= (y −Xβ0)′PZ̃(y −Xβ0)
1
n(y −Xβ0)′Mz(y −Xβ0)

= K

Z̃ = Pz[X − (y −Xβ0)Suv

Suu
]

We have shown that LM statistic has a limiting distribution of χ2(1) (replacing reduced
form error variance with consistent estimate) and that LM and K statistic are equivalent,
so we K statistic also has a limiting distribution of χ2(1). Kleibergen (2002) gives an
independent proof of K statistic having limiting distribution of χ2(1) in the appendix.

Proof of the LR statistic as in Equation 25

f(y1, y2;β,Π) = (2Π)−n|Ω|−
n
2 exp(−1

2

n∑
i=1

(Yi − µ)′Ω−1(Yi − µ))

L = logf(y1, y2;β,Π)

= log((2π)−n|Ω|−
n
2 ) − 1

2

n∑
i=1

[Y ′
i Ω−1Yi − 2(Z ′

iΠA)′Ω−1Yi + (Z ′
iΠA)′Ω−1Z ′

iΠA]

= C − 1
2

n∑
i=1

Y ′
I Ω−1Yi +

n∑
i=1

(Z ′
iΠA)′Ω−1Yi − 1

2

n∑
i=1

(ZiΠA)′Ω−1Z ′
iΠA

= C − 1
2tr(Y Ω−1Y ′) + Π′Z ′Y Ω−1A− 1

2Π′Z ′ZΠA′Ω−1A

∂L

∂Π

∣∣∣∣
Π̂

= Z ′Y Ω−1A− Z ′ZΠ̂A′Ω−1A = 0

Π̂ = (Z ′Z)−1Z ′Y Ω−1A(A′Ω−1A)−1

L = C − 1
2tr(Y Ω−1Y ′) + Π̂′Z ′Y Ω−1A− 1

2Π̂′Z ′ZΠ̂A′Ω−1A

= C − 1
2tr(Y Ω−1Y ′) + 1

2
A′Ω−1Y ′PzY Ω−1A

A′Ω−1A
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Π̂A′ = (Z ′Z)−1Z ′Y Ω−1A(A′Ω−1A)−1A′

= (Z ′Z)−1Z ′Y
1

|Ω|

[
βσ2

2 − βσ12 βσ2
2 − σ12

βσ2
1 − β2σ12 β2

1 − βσ12

]
(A′Ω−1A)−1

I − b(b′Ωb)−1b′Ω = (b′Ωb)−1(b′ΩbI − bb′Ω)

= (b′Ωb)−1
[
βσ2

2 − βσ12 βσ2
2 − σ12

βσ2
1 − β2σ12 β2

1 − βσ12

]
Π̂A′ = (Z ′Z)−1Z ′Y [I − b(b′Ωb)−1b′Ω]

L = Π̂′Z ′Y Ω−1A− 1
2Π̂′Z ′ZΠ̂A′Ω−1A′

=
n∑

i=1
Y ′

i Ω−1(Π̂A′)′Zi − 1
2

n∑
i=1

Z ′
iΠ̂A′Ω−1(Π̂A′)′Zi

=
n∑

i=1
Y ′

i Ω−1((Z ′Z)−1Z ′Y [I − b(b′Ω−1b)b′Ω])′Zi

− 1
2

n∑
i=1

Z ′
i(Z ′Z)−1Z ′Y [I − b(b′Ωb)−1b′Ω]Ω−1[(Z ′Z)−1Z ′Y (I − b(b′Ω−1b′Ω)]′Zi

= 1⃝ + 2⃝

1⃝ =
n∑

i=1
Y ′

i Ω−1Y ′Z(Z ′Z)−1Zi −
n∑

i=1
Y ′

i b(b′Ω−1b)−1b′Y ′Z(Z ′Z)−1Zi

=
n∑

i=1
tr(Y ′

i Ω−1Y ′Z(Z ′Z)−1Zi) −
n∑

i=1
tr(Yib(b′Ω−1b)−1b′Y ′Z(Z ′Z)−1Zi)

=
n∑

i=1
tr(Ω−1Y ′Z(Z ′Z)−1ZiY

′
i ) −

n∑
i=1

tr(b(b′Ω−1b′)b′Y ′Z(Z ′Z)−1ZiY
′

i

= tr(Ω−1Y ′Z(Z ′Z)−1Z ′Y ) − tr((b′Ωb)−1b′Y ′Z(Z ′Z)−1Z ′Y b)

2⃝ = −1
2

n∑
i=1

Z ′
i(Z ′Z)−1Z ′Y Ω−1Y ′Z(Z ′Z)−1Zi

− 1
2

n∑
i=1

Z ′
i(Z ′Z)−1Z ′Y b(b′Ωb)−1b′ΩΩ−1Ωb(b′Ωb)−1b′Y ′Z(Z ′Z)−1Zi

+
n∑

i=1
Z ′

i(Z ′Z)−1Z ′Y Ω−1Ωb(b′Ωb)−1b′Y ′Z(Z ′Z)−1Zi

= 3⃝ + 4⃝ + 5⃝

3⃝ = −1
2

n∑
i=1

tr(Z ′
i(Z ′Z)−1Z ′Y Ω−1Y ′Z(Z ′Z)−1Zi)

= −1
2

n∑
i=1

tr((Z ′Z)−1Z ′Y Ω−1Y ′Z(Z ′Z)−1ZiZ
′
i)
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= −1
2tr((Z ′Z)−1Z ′Y Ω−1Y ′Z)

= −1
2tr(Ω−1Y ′Z(Z ′Z)−1Z ′Y )

4⃝ = −1
2

n∑
i=1

Z ′
i(Z ′Z)−1Z ′Y b(b′Ωb)−1b′Y ′Z(Z ′Z)−1Zi

= −1
2

n∑
i=1

tr(Z ′
i(Z ′Z)−1Z ′Y b(b′Ωb)−1b′Y ′Z(Z ′Z)−1Zi)

= −1
2

n∑
i=1

tr((Z ′Z)−1Z ′Y b(b′Ωb)−1b′Y ′Z(Z ′Z)−1ZiZ
′
i)

= −1
2tr((b′Ωb)−1b′Y ′Z(Z ′Z)−1Z ′Y b)

5⃝ =
n∑

i=1
tr((Z ′Z)−1Z ′Y b(b′Ωb)−1b′Y ′Z(Z ′Z)−1ZiZ

′
i)

= tr(Z ′Y b(b′Ωb)−1b′Y ′Z(Z ′Z)−1)

= tr((b′Ωb)−1b′Y ′Z(Z ′Z)−1Z ′Y b)

2⃝ = −1
2tr(Ω−1Y ′Z(Z ′Z)−1Z ′Y ) + 1

2tr((b′Ω−1b)−1b′Y ′Z(Z ′Z)−1Z ′Y b)

L = 1⃝ + 2⃝

= 1
2tr(Ω−1Y ′Z(Z ′Z)−1Z ′Y ) − 1

2tr((b′Ωb)−1b′Y ′Z(Z ′Z)−1Z ′Y b)

= 1
2tr(Ω−1Y ′PzY ) − 1

2
b′Y ′PzY b

b′Ωb
LR = 2(Lunrestrict − Lrestrict)

= b′
0Y PzY b0
b′

0Ωb0
− λmin

= S̄′S̄ − λmin

where λmin is the smallest root of equation |Y ′PzY − λΩ| = 0

or is the smallest eigenvalue of Ω− 1
2Y ′PzY Ω− 1

2

(S̄, T̄ ) = (Z ′Z)− 1
2Z ′Y Ω− 1

2J

J = [Ω
1
2 b0(b′

0Ωb0)− 1
2 ,Ω− 1

2A0(A′
0Ω−1A0)] is orthogonal

(S̄, T̄ )′(S̄, T̄ ) = J ′Ω− 1
2Y ′PzY Ω− 1

2J

Ω− 1
2Y ′PzY PzΩ− 1

2x = λx

=⇒ J ′Ω− 1
2Y ′PzY Ω− 1

2J = J ′Jλx

= λx
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=⇒ (S̄, T̄ )′(S̄, T̄ ) has the same eigenvalue as Ω− 1
2Y ′PzY Ω− 1

2

0 = |(S̄, T̄ )′(S̄, T̄ ) − λI)|

0 = λ2 − (S̄′S̄ + T̄ ′T̄ )λ+ S̄′S̄T̄ ′T̄ − (S̄′T̄ )2

λmin = 1
2[S̄′S̄ + T̄ ′T̄ −

√
(S̄′S̄ + T̄ ′T̄ )2 − 4(S̄′S̄T̄ ′T̄ − (S̄′T̄ )2)]

Proof of LM = S̄ ′T̄ (T̄ ′T̄ )−1T̄ ′S̄ as in Equation 24

Note: To get the formula LM = S̄′T̄ (T̄ ′T̄ )−1T̄ ′S̄, it seems that a slightly modified version
of the information matrix is required. I believe that the formula appeared in Moreira (2009)
is correct, as when the model is just identified, it reduces to the AR statistic. However, I
just cannot get back to this exact formula when using the traditional information matrix.
I will make this point explicit in the derivation.

L = C − 1
2tr(Y Ω−1Y ′) + Π′Z ′Y Ω−1A− 1

2Π′Z ′ZΠA′Ω−1A

= C − 1
2tr(Y ′Ω−1Y )

+ 1
|Ω|

Π′Z ′[(βσ2
2 − σ12)y + (σ2

1 − βσ12)X] − 1
2

1
|Ω|

(β2σ2
2 − 2βσ12 + σ2

1)Π′Z ′ZΠ

∂

∂β

∣∣∣∣
β0,Π̂

= 1
|Ω|

Π̂′Z ′(σ2
2y − σ12X) − 1

2
1

|Ω|
(2σ2β0 − 2σ12)Π̂′Z ′ZΠ̂

= (A′
0Ω−1A0)−1A′

0Ω−1Y ′Pz
1

|Ω|
[σ2

2y − σ12X]

− 1
|Ω|

(σ2
2β0 − σ12)(A′

0Ω−1A0)−2A′
0Ω−1y′PzyΩ−1A0

= 1
|Ω|

(b′
0Ωb0)−1[(β0σ

2
2 − σ12)y + (σ2

1 − β0σ12)X]′Pz[σ2
2y − σ12X]

− 1
|Ω|

(σ2
2β0 − σ12)(b′

0Ωb0)−1[(β0σ
2
2 − σ12)y + (σ2

1 − β0σ12)X]′Pz·

[(β0σ
2
2 − σ12)y + (σ2

1 − β0σ12)X]

= 1
|Ω|

(b′
0Ω−1b0)−1[(β0σ

2
2 − σ12)y + (σ2

1 − β0σ12)X]′Pz·

[σ2
2y − σ12X − β0σ

2
2 − σ12
b′

0Ωb0
((β0σ

2
2 − σ12)y − (σ2

1 − β0σ12)X)]

= 1
|Ω|(b′

0Ωb0) |Ω|A′
0Ω−1Y ′Pz·

[σ
2
2b

′
0Ωb0 − (β0σ

2
2 − σ12)2

b′
0Ωb0

y − σ12b
′
0Ωb0 + (β0σ

2
2 − σ12)(σ2

1 − β0σ12))
b′

0Ωb0
X]

= 1
b′

0Ωb0
A′

0Ω−1Y ′Pz · [ |Ω|
b′

0Ωb0
y − |Ω|

b′
0Ωb0

β0X]

50



Boyang Zhang

= |Ω|A
′
0Ω−1Y ′PzY b0

(b′
0Ωb0)2

∂

∂β2

∣∣∣∣
β0,Π̂

= − σ2
2

|Ω|
Π̂′Z ′ZΠ̂

= − σ2
2

|Ω|
A′

0Ω−1Y ′PzY Ω−1A0
(A′

0Ω−1A0)2

T̄ ′S̄ = ((Z ′Z)−1Z ′Y Ω−1A0(A′
0Ω−1A0)− 1

2 )′(Z ′Z)− 1
2Z ′Y b0(b′

0Ωb0)− 1
2

= |Ω|
1
2
A′

0Ω−1Y ′PzY b0
b′

0Ωb0

T̄ ′T̄ = ((Z ′Z)− 1
2Z ′Y Ω−1A0(A′

0Ω−1A0)− 1
2 )′(Z ′Z)− 1

2Z ′Y Ω−1A0(A′
0Ω−1A0)− 1

2

= A′
0Ω−1Y ′PzY Ω−1A0

A′
0Ω−1A0

( ∂

∂β

∣∣∣∣
β0,Π̂

)2 = (T̄ ′S̄)2 · |Ω|
(b′

0Ωb0)2

(− ∂

∂β2

∣∣∣∣
β0,Π̂

)−1 = (T̄ ′T̄ )−1 · |Ω|
σ2

2
A′

0Ω−1A0

( ∂

∂β

∣∣∣∣
β0,Π̂

)2(− ∂

∂β2

∣∣∣∣
β0,Π̂

)−1 = |Ω|
σ2

2(b′
0Ωb0)

S̄′T̄ (T̄ ′T̄ )−1T̄ ′S̄

|Ω| − σ2
2(b′

0Ωb0) = σ2
1σ

2
2 − σ2

12 − σ2
2(σ2

1 − 2β0σ12 + β2
0σ

2
2)

= −β2
0σ

4
2 + 2β0σ

2
2σ12 − σ2

12

= −(β0σ
2
2 − σ12)2

̸= 0 unless the degree of endogeneity is 0

Thus, it seems that the Moreira (2009) implicitly uses a scaled version of the information
matrix, but I am not sure.

Proof of the relationship between ρ and ρRF in Equation 29

ρ = Cov(u, v2)√
V ar(u)V ar(v2)

Cov(u, v2) = Cov(v1 − βv2, v2)

= Cov(v1, v2) − βV ar(v2)

= ρRFσ1σ2 − βσ2
2

V ar(u) = V ar(v1 − βv2)

= σ2
1 − 2βρRFσ1σ2 + β2σ2

2
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ρ = ρRFσ1σ2 − βσ2
2√

(σ2
1 − 2βρRFσ1σ2 + β2σ2

2)σ2
2

=
(ρRF − β σ2

σ1
)σ1σ2√

(1 − 2βρRF
σ2
σ1

+ β2 σ2
2

σ2
1
)σ2

1σ
2
2

=
ρRF − β σ2

σ1√
1 − 2βρRF

σ2
σ1

+ β2 σ2
2

σ2
1

Proof of Equation 35, the limiting distribution of β̂ when the true first
stage is quadratic

β̂ − β = Z ′u

Z ′X

=
1√
n
Z ′u

1√
n
Z ′X

d→ ϕzu

ϕzx
, By CMT for d→

E[ϕzx] = E[ZiXi]

= E[Zi(Z2
i δ + wi)]

= 0

V ar(ϕzx) = V ar(ZiXi)

= E[(ZiXi)2]

= E[(Z3
i δ + Ziwi)2]

= E[δ2Z6
i + 2δZ4

i wi + Z2
i w

2
i ]

= δ2E[Z6
i ] + σ2

w

Cov(ϕzu, ϕzx) = Cov(Ziui, Ziwi)

= E[Z2
i uiwi]

= σuw

=⇒
(
ϕzu

ϕzx

)
∼ N(

(
0
0

)
,

(
σ2

u σuw

σuw δ2E[Z6
i ] + σ2

w

)
)

β̂ − β
d→ ϕzu

ϕzx

= E[ϕzu|ϕzx] + ξ

ϕzx

= σuw

δ2E[Z6
i ] + σ2

w

+ ξ

ϕzx
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V ar(ϕzu) = V ar( σuw

δ2E[Z6
i ] + σ2

w

ϕzx) + V ar(ξ)

σ2
u = σ2

uw

δ2E[Z6
i ] + σ2

w

+ V ar(η)

V ar(η) = σ2
u − σ2

uw

δ2E[Z6
i ] + σ2

w

=⇒
(
ξ

ϕzx

)
∼ N(

(
0
0

)
,

σ2
u − σ2

uw

δ2E[Z6
i ]+σ2

w
0

0 δ2E[Z6
i ] + σ2

w

)

Proof of Equation 37, the distribution of Wald statistic when the true first
stage is quadratic under β = β0

t2 = (β̂ − β0)2

σ̂2
u(Z ′Z)(Z ′X)−2

= (Z ′u)2

σ̂2
u(Z ′Z)

=
( 1√

n
Z ′u)2

σ̂2
u

1
nZ

′Z

σ̂2
u = 1

n
(Y −Xβ̂)′(Y −Xβ̂)

= 1
n

[X(β − β̂) + u]′[X(β − β̂) + u]

= 1
n

( Z
′u

Z ′X
)2X ′X − 2

n

Z ′u

Z ′X
X ′u+ 1

n
u′u

= 1
n

( Z
′u

Z ′X
)2

n∑
i=1

(Z2
i δ + wi)2 − 2

n

Z ′u

Z ′X

n∑
i=1

(Z2
i δ + wi)ui + 1

n

n∑
i=1

u2
i

= 1⃝ + 2⃝ + 3⃝

1⃝ = ( Z
′u

Z ′X
)2 1
n

n∑
i=1

[Z4
i δ

2 + 2δZ2
i wi + w2

i ]

d→ ( σuw

δ2E[Z6
i ] + σ2

w

+ ξ

ϕzx
)2(δ2E[Z4

i ] + σ2
w)

2⃝ = −2 Z
′u

Z ′X

1
n

[
n∑

i=1
δZ2

i ui +
n∑

i=1
wiui]

d→ −2σuw( σuw

δ2E[Z6
i ] + σ2

w

+ ξ

ϕzx
)

3⃝ = 1
n

n∑
i=1

u2
i

p→ σ2
u
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σ̂2
u

d→ ( σuw

δ2E[Z6
i ] + σ2

w

+ ξ

ϕzx
)2(δ2E[Z4

i ] + σ2
w) − 2σuw( σuw

δ2E[Z6
i ] + σ2

w

+ ξ

ϕzx
) + σ2

u

by CMT for d→

t2
d→ ϕ2

zu

( σuw

δ2E[Z6
i ]+σ2

w
+ ξ

ϕzx
)2(δ2E[Z4

i ] + σ2
w) − 2σuw( σuw

δ2E[Z6
i ]+σ2

w
+ ξ

ϕzx
) + σ2

u

Proof of Consistency and Asymptotic Normality of β̂Nonlinear as in Equation
39 and 40

β̂nonlinear = (
n∑

i=1
X̂iXi)

n∑
i=1

X̂iYi

= (
n∑

i=1
Z2

i δ̂Xi)−1
n∑

i=1
Z2

i δ̂Yi

= (
n∑

i=1
Z2

i Xi)−1
n∑

i=1
Z2

i (βXi + ui)

= β + (
n∑

i=1
Z2

i Xi)−1
n∑

i=1
Z2

i ui

= β + ( 1
n

n∑
i=1

Z2
i Xi)−1 1

n

n∑
i=1

Z2
i ui

p→ β

√
n(β̂nonlinear − β) = ( 1

n

n∑
i=1

Z2
i Xi)−1 1√

n

n∑
i=1

Z2
i ui

d→ N(0, σ2
uE[Z4

i ]E[Z2
i Xi]−2)

Next I show using the idea of “Forbidden Regression” also works in this setting

β̂Nonlinear = (
n∑

i=1
X̂2

i )
n∑

i=1
X̂iYi

= (
n∑

i=1
Z4

i δ̂
2)−1

n∑
i=1

Z2
i δ̂(Xiβ + ui)

= δ̂−1(
n∑

i=1
Z4

i )−1
n∑

i=1
Z2

i (βXi + ui)

= (
n∑

i=1
Z2

i Xi)−1
n∑

i=1
(βZ2

i Xi + Z2
i ui)

= β + (
n∑

i=1
Z2

i Xi)−1
n∑

i=1
Ziui
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= β + ( 1
n

n∑
i=1

Z2
i Xi)−1 1

n

n∑
i=1

Z2
i ui

p→ β

Proof of Equation 43, the formula for TSLS

βT SLS = E[X̂2]−1E[X̂Y ]

= E[E[X|Z]2]−1E[E[X|Z]Y ]

= E[E[X|Z]2]−1E[E[X|Z](Xβ + e)]

= E[E[X|Z]2]−1(E[E[X|Z]Xβ + E[X|Z]e]

= E[E[X|Z]2]−1(βE[E[X|Z]X] + E[E[X|Z]e])

= βE[E[X|Z]2]−1E[E[X|Z]2] + E[E[X|Z]2]−1E[E[X|Z]E[e|Z]]

= β
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