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ABSTRACT

Inverse problems are ubiquitous in science and engineering, manifesting whenever we seek

to determine the underlying causes or parameters that give rise to observed data. These

problems often involve latent variables, which in many cases, follow a group structure. In

this class of inverse problems, we aim to estimate an unknown function after being distorted

by a group action and observed via a known operator, with the observations typically being

contaminated with a non-trivial level of noise. Two particular such problems of interest in

this thesis are multireference alignment (MRA) and single-particle reconstruction (SPR) in

cryo-electron microscopy (cryo-EM). SPR is a widely used technique for estimating the 3-D

volume of a single macromolecule (often referred to as volume or signal) given several of

its noisy 2-D projections taken at unknown viewing angles. In Chapter 1 we discuss the

problem setting and mathematically formulate both MRA and cryo-EM.

The method of moments (MoM) is a powerful technique used to suppress the noise, and

provide a low-resolution ab initio initialization for the 3-D structure in cryo-EM. Maximum

likelihood estimation (MLE) based approaches like Expectation Maximization (EM) or Em-

pirical Risk Minimization (ERM) are widely used for iterative refinement of the ab initio

structure to obtain high-resolution reconstructions. This thesis broadly deals with develop-

ing deep neural networks for solving inverse problems with group structured latent variables

via MoM, and accelerating MLE-based methods using variance reduction techniques and

second-order information.

In Chapter 2 we suggest using the method of moments approach for both problems while

introducing deep neural network priors. In particular, given a set of datasets, each containing

observations corresponding to a single signal and distribution, our neural networks should

output the signals and the distribution of group elements, with moment pairs of each dataset

being the input. For MRA, we demonstrate the advantage of using the trained network

to accelerate the convergence of the reconstruction of signals from moments coming from

x



an unknown dataset. Finally, we use our method to reconstruct simulated and biological

volumes in the cryo-EM setting.

Chapter 3 is a direct extension of Chapter 2, in which we introduce MoM-net, a deep

neural network for learning the moment inversion map for a more generalized cryo-EM

setting where we assume the presence of small shifts in the projections. Our neural network

is trained to output the spherical harmonic coefficients of the volumes along the distribution

of rotations and shift variance, with moments from a set of datasets being the input. We

also demonstrate the acceleration of convergence for the reconstruction using the trained

neural network in this general cryo-EM setting, and use our method to reconstruct biological

volumes.

In Chapter 4 we study the same problems but using a different framework, i.e. maximum

likelihood. Maximization of the likelihood function is usually carried out using first-order

ERM and EM methods which suffer from slow convergence rates, while their stochastic

versions have high variance in parameter updates. Stochastic variance-reduced gradient

(SVRG) methods have been proposed in the literature to improve convergence rates and

stability by reducing the variance of the stochastic updates. This chapter thus explores

the application of SVRG and stochastic variance-reduced EM (sEM-vr) methods, along

with their second-order accelerated variants, in solving MRA and SPR. A second-order

acceleration of sEM-vr is also proposed. We conduct extensive experiments on simulated

datasets illustrating the applicability of variance-reduced methods for both of these problems.

We end with Chapter 5, where we provide final thoughts on the overarching theme of

this thesis, and discuss the strengths and drawbacks of our methods, along with potential

future research steps.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Inverse problems are a significant area of study in mathematics and applied sciences, charac-

terized by their fundamental role in various fields such as physics [47, 58], engineering [39, 25],

medical imaging [72, 12], and geophysics [62, 49]. The core idea in these problems is to infer

certain unknown parameters or inputs of a system from observable outputs. This contrasts

with direct problems, where the outputs are determined given specific inputs and system

parameters.

Inverse problems often involve latent variables, which significantly increase its complexity.

Mathematically, a direct problem involving latent variables can be described by

yj = F(x, hj), j = 1, . . . , N, (1.1)

where F is a known forward operator mapping input x and latent variables h1, . . . , hN to

observed data y1, . . . , yN . Then the inverse problem involves finding x (and h1, . . . , hN )

given y1, . . . , yN .

A particular class of inverse problems of interest involve incorporating the effect of a group

on a data model, i.e. the associated latent variables follow a group structure. The resulting

solution is determined up to an arbitrary group action, meaning that the solutions form an

orbit. This class of estimation problems is referred to as orbit recovery problems [22, 6],

and are crucial in various fields of science and engineering, ranging from signal processing

to structural biology. For instance, medical tomography often collects imaging data that

undergoes unknown transformations. Along with pixel-wise noise, each image may experience

rotation, translation, flipping, or other group actions in an unknown manner. This thesis

shall examine two problems in this category and develop new approaches to solving them,
1



while also proposing methods to accelerate existing approaches.

1.2 Notation

◦ Function composition.

⊙ Hadamard (also known as element-wise) product of vectors/matrices.

⊗ Tensor product.

v̂ Estimator of v.

v̂ Fourier transformation of v.

I Unit interval
[
−1

2 ,
1
2

]
.

X1 n equispaced points on I.

K1 n equispaced points on [−π, π].

X2 n2 equispaced points on I2.

K2 n2 equispaced points on [−π, π]2.

1.3 Orbit recovery problems

We first begin by formulating the general problem of orbit recovery. Let v be an unknown

scalar-valued object defined as a function

v : Ω → R, (1.2)

and let G be a group with a well-defined action on v, that is G↷ Ω. One class of estimation

problems we are concerned with consists of the following general formulation. Our goal is to

estimate the function v (which we shall refer to as the signal) from N observed samples,

vj = A(gj ◦ v) + εj , gj ∼ ρ, j = 1, . . . , N, (1.3)

2



where
{
εj

}N
j=1

is a set of i.i.d. random noise terms, A is a known operator, and {gj}Nj=1

is a set of i.i.d. random group elements distributed according to some distribution ρ on

G. These are treated as latent variables or nuisance parameters for our problem since the

objective is to estimate v. Note that one can only estimate v up to a group action, since for

any estimator v̂ and {ĝj}Nj=1 for the object and latent group elements respectively, g ◦ v̂ and

{ĝjg−1}Nj=1 give another set of equivalent estimators for any fixed g ∈ G. Hence our goal

becomes the orbit recovery of v.

In many orbit recovery problems, A is linear. In that case, customarily, in the lower-noise

regime where the magnitude of εj is smaller than that of v, a solution to (1.3) is obtained

using the following scheme. First gij ≈ gig
−1
j is estimated from vi and vj . The estimation

procedure depends on the specific problem (see [70, 60]). Then one recovers the group

elements {gj}Nj=1 from the set of their ratios {gig−1
j }Ni,j=1, i.e. solving a synchronization

problem over G, after fixing g1 to be the identity element. Then with a good estimation for

{gj}Nj=1, we solve for v in problem (1.3) via solving a system of linear equations [3].

As the level of noise in the observations increases, the random noise heavily influences

the alignment results so that even if the ground truth v is provided, finding the group action

corresponding to any particular observation would be extremely error-prone. Thus, the

assignment of group actions to the observations would incur large errors [68, 69]. A different

approach consists of treating the group elements {gj}Nj=1 as nuisance parameters and having

the signal be the primary estimation target. In other words, when considering a high level of

noise, we focus on methods that marginalize over the nuisance parameters by treating them

as random variables [11]. The estimation of v can be done via maximizing the marginalized

posterior distribution that has v being the random variable or using a method of moments

with moments formed by averaging vj ’s such that there is no dependency on gj ’s.

In the next two sections, we are going mathematically formulate two orbit recovery prob-

lems, Multireference Alignment (MRA) and single particle reconstruction (SPR) in Cryogenic

3



Electron Microscopy (cryo-EM). MRA involves estimating a signal from the observation of

noisy, circularly shifted copies of it. This model, which has its origins in both signal process-

ing [81] and structural biology [64, 73], provides a foundation for exploring the relationship

between the group structure, noise levels, and the possibility of recovery [74, 1, 43]. The

second problem, i.e. SPR, deals with 3D volume reconstruction in cryo-EM, as discussed

in [66]. The goal is to retrieve a 3D volume from 2D noisy images that result from rotating

the volume and applying a fixed tomographic projection. The dataset is a set of 2D images,

which are usually heavily contaminated with noise.

1.4 Multireference Alignment (MRA)

Multireference alignment is a critical problem in computational science that arises in var-

ious questions across science and engineering, like signal processing [81, 26], image recog-

nition [57, 23] and robotics [59]. This problem, along with its variant of windowed MRA

(explored in Chapter 4), serves as a simplification for more complex ones that feature re-

peated observations of a signal subject to latent group actions and additive measurement

noise, like SPR. MRA involves aligning multiple noisy observations of a signal or an object

that have been transformed by unknown translations. The objective is to recover the under-

lying structure or signal that is common to all the observations. The optimization landscape

is often non-convex, leading to multiple local minima that can trap optimization algorithms.

High dimensionality and low signal-to-noise ratio (SNR) are two other challenges.

For the MRA model, A from (1.3) is the identity. In this situation, the unknown signal

v is defined on a unit, symmetric segment I = [−1
2 ,

1
2 ]. Namely, the signal is v : I → R,

and we further assume it is a periodic, band-limited function. Let G be the group of circular

translations (rotations) on I, whose elements sj shift v in the following manner,

sj ◦ v := v(· − sj). (1.4)

4



Here, we interpret the difference as modulo the segment, namely · − sj is always in I. The

data, i.e. observations, we obtain are of the form

vj = sj ◦ v(X1) + ϵj , j = 1, . . . , N (1.5)

where ϵj ∼ N(0, σ2In), and X1 is a set of n equispaced points on I. Some sample MRA

observations corresponding to a Haar-like signal with different noise levels, are displayed in

Figure 1.1.

We next formulate the MRA problem in the Fourier domain. For convenience, we discuss

the case when there is no noise. Let v̂j be the Fourier transform of vj , in this case, a shift

sj becomes a phase, i.e.

v̂j(k) = exp(iksj)v̂(k), k ∈ [−π, π]. (1.6)

The frequency k has a natural bandlimit |k| ≤ π since the signal vj is usually provided on

n discretized points in I, where n is chosen to satisfy its Nyquist frequency. As for our

observation, let K1 be the set of n equispaced points between [−π, π]. Then, we have

v̂j(k) = exp(iksj)v̂(k), k ∈ K1. (1.7)

Henceforth, for brevity, we use v̂j(K1) = exp(iK1sj) ⊙ v̂(K1) instead of the pointwise no-

tation, where “⊙” denotes the Hadamard product (see Section 1.2). Hence in presence of

noise, our observations become

v̂j(K1) = exp(iK1sj)⊙ v̂(K1) + ϵ̂j , k ∈ K1, (1.8)

where ϵ̂j is the Fourier transform of ϵj from (1.5).

5



Figure 1.1: MRA observations as per (1.5). The left column presents three observations
corresponding to different shift in zero-noise case. The middle and right columns correspond
to the same translations but with low and high noise levels respectively. Image taken from [1].

1.5 Cryogenic electron microscopy (cryo-EM)

Cryogenic electron microscopy (cryo-EM) has revolutionized the field of structural biology

by allowing researchers to visualize macromolecules at near-atomic resolution. Unlike tradi-

tional methods such as X-ray crystallography or nuclear magnetic resonance (NMR) spec-

troscopy, cryo-EM does not require the crystallization of the sample or the use of large

quantities of the material. Among the various techniques within cryo-EM, single particle

reconstruction (SPR) [7, 71, 52] has become particularly significant. This technique involves

the analysis of individual particles suspended in a thin (∼ 100 nm) layer of vitreous ice,

capturing their images in numerous orientations and subsequently reconstructing their 3D

structure from these 2D projections [24, 50, 45]. Figure 1.2 shows a simplified diagram of

the acquisition of 2D projections from 3D biomolecular volumes.

The flash-freezing of biological molecules is done in a way that preserves their native state.

The sample, which contains the particles of interest, is vitrified to avoid the formation of ice
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Figure 1.2: Acquisition of 2D projections from 3D biomolecules. Image taken from [18].

crystals that could damage the structures. These vitrified samples are then imaged using an

electron microscope, producing a series of 2D images, each representing a projection of the

particles in random orientations. Figure 1.3 depicts a single cryo-EM image corresponding

to a random rotation of a single volume.

The challenge of single particle reconstruction lies in transforming these 2D images into

a coherent 3D model. This transformation is achieved through a series of computational

steps. First, individual particle images are extracted from the micrographs. These images

are typically noisy and low in contrast, requiring sophisticated algorithms for alignment and

averaging. The next step involves determining the relative orientations of the particles. Once

the orientations are known, the images are combined to reconstruct the 3D structure using

techniques such as weighted back-projection or iterative refinement methods.

The computational aspects of single particle reconstruction are highly demanding. One

of the primary challenges is dealing with the signal-to-noise ratio. Cryo-EM images are often

dominated by noise due to the low dose of electrons used to avoid radiation damage to the

sample. As a result, distinguishing between signal (the true structure of the particle) and
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Figure 1.3: Schematic drawing of the cryo-EM imaging process. Image taken from [70].

noise becomes a crucial task. Noise reduction techniques and averaging multiple particle

images help in enhancing the signal, but these processes require substantial computational

power and advanced algorithms. Another major challenge is the determination of particle

orientations. Since the particles are randomly oriented in the ice, accurately determining

these orientations is essential for successful reconstruction. Traditional methods involve

exhaustive searching and matching, which are computationally expensive. Another approach

is based on the method of moments (MoM) that exploits the known analytical relation

between the moments of the data with those of the 3D volume, but this only leads to a

low-dimensional ab-initio reconstruction (more in Chapters 2 and 3). Modern approaches

employ machine learning and optimization techniques to improve the accuracy and efficiency

of orientation determination [40, 78, 79, 63, 33].

The field of cryo-EM has seen remarkable advancements in both hardware and software,

significantly improving the resolution and efficiency of single particle reconstructions. One
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of the key hardware developments is the advent of direct electron detectors [76], which offer

superior sensitivity and faster readout speeds compared to traditional cameras, resulting in

higher quality images with better signal-to-noise ratios. On the software side, numerous tools

and algorithms have been developed to address the challenges of single particle reconstruc-

tion. Programs such as RELION [44, 63, 80], cryoSPARC [56], and cisTEM [27] provide

comprehensive pipelines for processing cryo-EM data, from initial image preprocessing to

final 3D reconstruction. These tools incorporate advanced image processing techniques, in-

cluding maximum likelihood estimation, Bayesian inference, and deep learning, to enhance

the accuracy and resolution of reconstructions.

The problem (1.3) also serves as a simplified model of single-particle cryo-EM, where the

operator A is a tomographic projection along a fixed axis. Let us denote by v : R3 → R

the Coulomb potential of the 3D volume we aim to determine, where we assume that v is

compactly supported in a ball of radius 1
2 around the origin, that is inside I3. We define the

composition of Rj with the volume v as

Rj ◦ v (x, y, z) = v
(
RTj [x y z]

T
)
, (x, y, z) ∈ I3, (1.9)

viewing Rj as a 3 × 3 matrix in the right hand side of (1.9) since SO(3) ⊂ R3×3. Let

P : R3 → R2 be the operator that projects a 3D volume along the z axis to a 2D image, i.e.

P ◦ v (x, y) =

∫ ∞

−∞
v (x, y, z) dz, (x, y, z) ∈ I2. (1.10)

Then, a standard image formation model in the absence of noise, after filtering the effect of

the contrast transfer function (CTF), image cropping, and centering, is (see [24, 29]),

vj = P ◦Rj ◦ v, j = 1, . . . , N, (1.11)
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where Rj ∈ SO(3) are the unknown group elements. In practice, the real noisy observations

that are provided to us are of the form

vj = P ◦Rj ◦ v(X2) + ϵj , j = 1, . . . , N (1.12)

where ϵj ∼ N(0, σ2In2) and X2 is n2 equispaced points on I2.

To avoid the computationally intensive integration in (1.10), we reformulate our prob-

lem in the Fourier domain. There, we can exploit the Fourier Slice Theorem to speed up

computation significantly. We define v̂ : [−π, π]3 → C as the Fourier transform of v, and

S : [−π, π]2 → C as the slice operator given as

S ◦ v̂(kx, ky) = v̂
(
kx, ky, 0

)
, (1.13)

i.e., S ◦ v̂ is obtained by slicing v̂ across the plane given by z = 0. Then, the Fourier Slice

Theorem [46] states that:

F2D ◦ P ◦R = S ◦R ◦ F3D, (1.14)

where R ∈ SO(3), F2D and F3D are the 2D and 3D Fourier transformations, respectively.

Therefore, in the no-noise setting, the equivalent of (1.11) becomes,

v̂j(kx, ky) = S ◦Rj ◦ v̂(kx, ky), (kx, ky) ∈ [−π, π]2, (1.15)

where v̂j is the Fourier transform of vj . Let K2 be a grid of n2 equispaced points on [−π, π]2,

flattened as a one-dimensional vector. Now, our noisy observations are

v̂j(K2) = S ◦Rj ◦ v̂(K2) + ϵ̂j , (1.16)
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with ϵ̂j being the Fourier transform of ϵj from (1.11).

The field of cryo-EM continues to evolve rapidly, driven by ongoing advancements in

technology and methodology. Despite the significant computational and technical challenges,

advances in hardware and software have enabled researchers to achieve unprecedented levels

of detail and accuracy. The impact of these developments is evident in the numerous high-

resolution structures obtained and the insights they provide into fundamental biological

processes. Future directions include the development of even more sensitive detectors, faster

and more accurate computational algorithms, and methods for improving sample prepara-

tion and preservation. Additionally, integrating cryo-EM with other structural biology tech-

niques, such as cryo-electron tomography (cryo-ET) [41] and single-molecule fluorescence

microscopy [67], holds promise for providing a more comprehensive understanding of cellular

structures and dynamics. As technology continues to advance, the potential for cryo-EM to

transform our understanding of molecular biology remains immense, heralding a new era of

structural biology.

1.6 Outline of thesis

A brief outline of the thesis is as follows. Chapters 2 and 3 deal with developing deep neural

network priors for solving orbit recovery problems via MoM. In Chapter 2, given a set of

MRA datasets, each containing observations corresponding to a single signal and distribution

of shifts, our neural networks are trained to output the signals and the distribution of group

elements, with moment pairs of each dataset being the input. We then demonstrate the

advantage of using the trained neural network to accelerate the convergence for the recon-

struction of signals (and distribution of shifts) from moments coming from a new, unknown

dataset. Finally, we modify our method to reconstruct simulated and biological volumes in

the cryo-EM setting. This chapter is adapted from the author’s paper [32], which is joint

work with Yuehaw Khoo and Nir Sharon.
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Motivated by the promise shown by our architecture in Chapter 2, we develop a slightly

different framework in Chapter 3, and call it MoM-net, a deep neural network for learning

the moment inversion map for the SPR problem. The setting is a lot more general than

in Chapter 2, and here we assume the presence of small shifts in the projections, i.e. the

projection of the unknown volume is not perfectly centered. Our neural network is trained

in a supervised way with a new loss function, so that provided with moments from a set of

datasets as input, it can output the spherical harmonic coefficients of the volumes along the

distribution of rotations and shift variance. As in Chapter 2, each dataset during training

corresponds to a single volume, distribution of rotations, and shift variance. We also demon-

strate a slight acceleration of convergence for the reconstruction using the trained neural

network in this general cryo-EM setting. Finally we illustrate the superiority of MoM-net in

the recovery of volumes in presence of shifts compared to our previous framework, and use

our method to reconstruct biological volumes.

In the last chapter of this thesis, i.e. Chapter 4, we shift our attention from MoM to

the MLE-based methods. Unlike the framework of the previous chapters where we only con-

sider the first and second moments for reconstruction, the likelihood function encapsulates

information from moments of all orders, and hence provides high-resolution reconstructions.

The likelihood function is maximized using first-order ERM and EM methods when solving

orbit recovery problems, which come with challenges in the form of slow convergence rates

and multiple passes over the entire dataset. Stochastic versions of these methods mitigate

the second challenge but the convergence rate decreases further owing to high variance in

the calculated parameter updates. In the literature, stochastic variance-reduced gradient

(SVRG) methods have been proposed to mitigate these issues, and they display improved

convergence rates and stability by reducing the variance of stochastic gradients. Thus, we

explore the application of SVRG and stochastic variance-reduced EM (sEM-vr) methods,

along with their second-order accelerated variants, in solving orbit recovery problems, par-
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ticularly MRA and SPR. A second-order acceleration of sEM-vr is also proposed, which is

an original contribution. We also conduct extensive experiments for both these problems

on simulated datasets, illustrating the applicability of variance-reduced methods and their

second-order variants for orbit recovery.

In the final chapter of this thesis, namely Chapter 5, we describe the strengths and

weaknesses of our main methods and provide final thoughts on the overarching theme of this

thesis. We also discuss potential future steps of research along with some ideas on how to

approach them.
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CHAPTER 2

DEEP NEURAL NETWORK PRIOR FOR ORBIT RECOVERY

FROM METHOD OF MOMENTS

2.1 Introduction

The method of moments (MoM) is a classical estimation technique that has been adapted

in modern forms to provide a powerful computational tool for solving large-scale problems,

especially when dealing with high noise levels. When used to solve orbit recovery problems,

the MoM consists of two stages. First, given a dataset corresponding to a single ground

truth signal and distribution of group elements, we compute the observable moments from

the data by averaging the low-order statistics of any observation. The second stage involves

retrieving the required signal from the observable moments by analyzing the relationship

between the observable and analytical moments, applying moments-matching (described in

Section 2.4.1), and deriving the unknown parameters from it. This second stage is the focus

of this study.

The usage of MoM is advantageous in several ways. Its robustness is derived from the

fact that noise is averaged out during the computation of observable moments. Namely, the

effect of noise can be rendered insignificant given enough data, as described in Section 2.4.1.

Furthermore, MoM gleans information about the data only through the moments, so it

does not require multiple passes over the dataset. This is beneficial for dealing with huge

datasets, as the moment calculation from the data takes place only in the first stage and in

one pass [66, 69]. However, this method does have a major drawback. We can lose resolution

since we are not using information from all the moments. MoM thus leads to low-dimensional

(i.e. low-resolution) reconstructions. Fortunately, our focus is mainly to recover an ab-initio

model; hence a low-dimensional reconstruction suffices. In the case of cryo-EM, this ab-initio

model is used as an initialization for iterative refinement algorithms, where reconstruction
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enables several possible conformations by further refinement [24].

This chapter introduces a new version of the method of moments that incorporates a

neural network for tackling orbit recovery problems. In particular, we demonstrate the effec-

tiveness of this approach for the two orbit recovery problems discussed earlier: Multireference

Alignment (MRA) and single-particle Cryogenic Electron Microscopy (cryo-EM) modeling.

Learning algorithms have recently taken a central role in cryo-EM computational methods:

a deep neural network for modeling continuous heterogeneity (3DFlex) [55], ab initio neu-

ral reconstruction [78, 79, 40], and many other parts of the cryo-EM pipeline [30, 10, 33],

to name a few. However, noise resilience remains one of the most significant challenges in

cryo-EM 3D reconstruction. The proposed neural network-based method of moments tech-

nique provides a promising alternative that addresses this challenge effectively while also

addressing the additional challenge of scalability.

In our method, we treat the group elements of each problem as random variables and

consider them as nuisance parameters or latent variables. Rather than estimating them

directly, we aim to target their density function along with the unknown signal. Our method

of moments incorporates neural networks to approximate the signal and distribution of group

elements to achieve this. We demonstrate that in the case of multireference alignment,

a neural network can mimic existing algorithms for solving the inverse problem from the

moments. Moreover, we propose that the moment inversion process can be significantly

improved by using neural networks which were previously trained in a supervised manner on

similar instances of the recovery problem. In other words, given a set of MRA datasets, each

containing observations corresponding to a single signal and distribution of shifts, our neural

network is trained in a supervised manner to output the signals and the distribution of group

elements, with moment pairs of each dataset being the input. Then given a moment pair from

a new dataset as input, the output of the trained neural network serves as a good initialization

for further refinement during the reconstruction process. Since the reconstruction process
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often gets stuck at spurious local minimas due to the ill-posed nature of the inverse problem,

this good initialization provides regularization and biases the final output towards itself,

effectively acting like a prior. We therefore refer to our method as a neural network-based

prior, or a neural network prior. Our approach to the MRA problem serves as a proof-

of-concept, and we extend these techniques to the case of cryo-EM.

The chapter is organized as follows. In Section 2.2, we present the method of moments

approach for the MRA model and cryo-EM model individually as special cases of our class

of estimation problems (1.3). Next, Section 2.3 introduces neural network priors for repre-

senting the volume and distribution of group elements for both models. Next, Section 2.4

illustrates the performance of our neural network priors in the reconstruction of various

simulated as well as real-world biological volumes. Finally, we conclude with Section 2.5,

including a summary of the next steps in this line of research.

2.2 Method of moments for orbit recovery

The method of moments (MoM) is a classical technique to estimate parameters from observed

statistics, and has already successfully been employed in multireference alignment (MRA) [1,

8] and cryo-EM recovery [66], where the operator A of (1.3) is either the identity or a

tomographic projection, respectively. The group consists of circular shifts on MRA and 3D

rotations in cryo-EM recovery. Then, the m-th moment is the expectation of the m-th-order

tensor product of the samples with themselves, i.e., v⊗mj (see Section 1.2). Interestingly, the

minimal number of moments to guarantee uniqueness also determines the sample complexity

— the number of samples needed, as a function of noise level, in order to have a consistent

estimation, see [1, 2, 52]. Therefore, when studying (1.3), the MoM plays a significant role

as a baseline for designing computational algorithms and analyzing the sample complexity.

In the method of moments for multireference alignment, we define the analytic moments
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as

M1
F [v̂, ρ](k1) = Eρ

 1

N

N∑
j=1

v̂j(k1)

 , M2
F [v̂, ρ](k1, k2) = Eρ

 1

N

N∑
j=1

v̂j(k1)v̂j(k2)
∗

 .

(2.1)

Here, M1
F and M2

F are functions of v̂, ρ. The goal is to retrieve v̂ from unbiased estimators

M̂1
F , M̂

2
F of M1

F ,M
2
F in the presence of noisy data via matching the moments. The procedure

to obtain these moment estimators M̂1
F , M̂

2
F from the data, along with the moment-matching

method, is described in Section 2.4.1.

Similarly for the cryo-EM model, the associated moments are

M1
F [v̂, ρ](kx, ky) = Eρ

 1

N

N∑
j=1

v̂j(kx, ky)


M2
F [v̂, ρ](kx, ky, k

′
x, k

′
y) = Eρ

 1

N

N∑
j=1

v̂j(kx, ky)v̂j(k
′
x, k

′
y)

∗

 .

(2.2)

We aim to retrieve v̂ by matching the moments M1
F [v̂, ρ](K2, K2) and M2

F [v̂, ρ](K2, K2) with

some unbiased estimators M̂1
F , M̂

2
F in the presence of noisy data.

2.3 Neural network priors for method of moments

This section presents neural network (NN) approaches for reconstructing the signal v and

distribution ρ in MRA and cryo-EM settings. The general strategy is to view both the

signal and distribution as being mapped by a NN from the estimated moments M̂1
F and

M̂2
F , as various previous works have shown that for MRA, M̂1

F , M̂
2
F are generically sufficient

statistics for estimating the signal and the distribution of shifts [1], while for cryo-EM, they

have enough information for recovering a low-resolution reconstruction [66]. In the MRA

case, we design an encoder that can map the empirical moments to discretized signal and
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Create
moments

Encoder

Figure 2.1: Overview of our MRA pipeline: The encoder ξθ takes moments (M̂1
F , M̂

2
F )

as input, and outputs zρ ∈ Rn, approximating a discretized probability density ρ(X1), and
zv ∈ Rn that approximates a discretized Fourier signal v̂(K1). Next, we use zρ and zv to
create

(
M1
F [zv, zρ](K1),M

2
F [zv, zρ](K1, K1)

)
via equation (2.14), which we then compare

with the inputs to the encoder, i.e., (M̂1, M̂2) via the loss function Lrecon (2.15).

density. In the cryo-EM case, we further design an encoder-decoder structure that allows us

to take the moments as input and give a continuous representation of a 3D volume.

2.3.1 Neural networks for multireference alignment

In multireference alignment, we are given a set of datasets, each containing observations from

the MRA model corresponding to a single underlying signal and distribution of shifts, while

the signal and shift distribution differ over the set of datasets. We wish to train a neural

network that can take the first two moments of a dataset as inputs, and output the underlying

signal and density of shifts, which can further be used to initialize an iterative reconstruction

algorithm. More precisely, we define F ∈ Cn×n as the matrix representation of a normalized

Fourier transform where F ∗F = In, andX1, K1 as sets of n equispaced points on I =
[
−1

2 ,
1
2

]
and [−π, π] respectively. The main component is an encoder, i.e., a neural network ξθ, whose

purpose is as follows. Let {D1, . . . ,DN} be a set of N datasets corresponding to different

pairs of signals and shift distributions, i.e. {(v1, ρ1), . . . , (vN , ρN )}. Then for any j ∈

{1, . . . , N}, the neural network ξθ takes the empirical moments (M̂1
F , M̂

2
F )j corresponding

to dataset Dj as inputs, and outputs (zρ, zv)j , where zρ ∈ Rn approximates the discretized

density ρj(X1) and zv ∈ Rn approximates the discretized signal v̂j(K1).
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The encoder ξθ := (ξvθ , ξ
ρ
θ ) consists of two neural networks ξvθ and ξ

ρ
θ , which are two 1D

convolutional neural networks (CNNs) that take M̂1
F ∈ Cn, M̂2

F ∈ Cn×n as input vector fields

supported on n grid points. Figure 2.1 provides an overview of our pipeline for MRA. While

the details of the architectures are provided in Appendix A, here we provide motivations as to

why a CNN has the capability to learn a mapping from the moments M̂1
F ∈ Cn, M̂2

F ∈ Cn×n

to v̂(K1). For simplicity, suppose |v̂(k)| = 1. Using the definitions in (2.1) and the fact that

translating v by s is equivalent to letting v̂(k) → v̂(k) exp(iks), one can show that

M2
F [v̂, ρ](k1, k2) = v̂(k1)ρ̂(k1 − k2)v̂(k2)

∗, (2.3)

as in [1]. In this case, M2
F [v̂, ρ](K1, K1) admits the eigendecomposition

M2
F [v̂, ρ](K1, K1) = diag(v̂(K1))F

∗(F [ρ̂(k1 − k2)]k1,k2F
∗)Fdiag(v̂(K1)

∗)

= [diag(v̂(K1))]F
∗diag(ρ(X1))[Fdiag(v̂(K1)

∗)] (2.4)

since [Fdiag(v̂(K1)
∗)] is an orthogonal matrix (due to the assumption |v̂(k)| = 1). From

this form, it is clear that the eigenvalues of M2
F [v̂, ρ](K1, K1) are ρ(X1) and furthermore,

the eigenvectors are Fdiag(v̂(K1)
∗). Since the spectral information of the second moments

contains information concerning the signal and density, if a neural network can mimic a

spectral method, then it can learn the mapping from moments to the signal and density.

The form of M2
F [v̂, ρ](K1, K1) in (2.4) suggests that it is a circulant matrix. Therefore

if we want to devise a neural network that takes M̂2
F =M2

F [v̂, ρ](K1, K1) (when there is no

noise) as input and output the eigenvectors Fdiag(v̂(K1)
∗), we can use a neural network,

composed of 1D convolutional layers, that takes M̂2
F as a 1D n-dimensional vector field

supported on n grid points. For example, to compute an eigenvector of M2
F [v̂, ρ](K1, K1), a
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convolutional layer l1 : Cn → Cn can take the form

l1(u) =
M̂2
Fu

∥M̂2
Fu∥2

. (2.5)

One can think about M̂2
F as the weights of the convolutional layer l1, and the division by

∥M̂2
Fu∥2 as some nonlinearities in the NN. Repeated applications of l1, gives an eigenvector

of M2
F [v̂, ρ](K1, K1), due to the power method [5]. After obtaining an eigenvector, say for

example F (:, 1)v̂(K1(1)) where F (:, 1) is the first column of F , the neural network can simply

apply a layer of pointwise nonlinearities l2 : Cn → Cn that performs

l2(u(i)) =
u(i)

F (i, 1)
, i ∈ [n]. (2.6)

Putting these elements together into a deep neural network, i.e., l2 ◦ l1 ◦ · · · ◦ l1 should

give v̂(K1(1)). Similar operations can be carried out for other eigenvectors. We also use

a similar structure for ξρθ to output zρ that approximates ρ(X1), since it is clear that if

u = l2 ◦ l1 ◦ · · · ◦ l1(M̂2
F ) is an eigenvector of M̂2

F , applying another nonlinearity of the form

l3(u) = ⟨u, M̂2
Fu⟩ (2.7)

gives the eigenvalue of M̂2
F which contains information of ρ(X1) (as shown in (2.4)). This

motivates our architecture in Appendix A. While our choice of non-linearities is simpler than

those in 2.6 and 2.7, our neural network architecture is still able to learn an approximation

to the true moment inversion map, as demonstrated through experiments in Section 2.4.1.

2.3.2 Neural networks for cryo-EM

We make some alterations to our MRA architecture for cryo-EM reconstruction since we need

to output a continuous representation of the volume to facilitate computing the moments
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Neural Representation

Optional
Encoder

Figure 2.2: Overview of our cryo-EM pipeline: The encoder ξθ takes moments
(M̂1

F , M̂
2
F ) as input, and outputs zρ ∈ R|Q|, approximating a discretized probabil-

ity density
(
ρ(R)

)
R∈Q for some fixed set of quadrature points Q ⊂ SO(3). Next,

we create copies of the grid K2 rotated corresponding to the elements of Q and in-
put them to our neural representation v̂ϕ, which outputs corresponding slices of a run-

ning estimate of v̂. These slices
{
S ◦Q(j) ◦ v̂ϕ(K2)

}
j

along with zρ are used to create(
M1
F [v̂ρ, zρ](K2),M

2
F [v̂ρ, zρ](K2, K2)

)
via equation (2.8), which we then compare with the

inputs to the encoder, i.e., (M̂1
F , M̂

2
F ) via the loss function Lrecon in (2.17). Optionally, ξθ

can also be used to output an extra zv, a latent variable of v̂ that can be provided to v̂ϕ as
an input.
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involving the reconstructed volume. Just as in the case of MRA, we have an encoder ξρθ

that outputs information regarding the density. More precisely, let Q ⊂ SO(3) be a set of

quadrature points on SO(3) and q = |Q|. We want ξρθ : (M̂1
F , M̂

2
F ) → zρ (M̂1

F , M̂
2
F ) are

estimators of (2.2)) where zρ should approximate
(
ρ(R)

)
R∈Q and ρ is a density on SO(3).

However, unlike the case of MRA, we now want to have a continuous representation of

the Fourier volume. Let v̂ϕ : R3 → C be an NN that represents a volume on the Fourier

domain, and K2 be n2 equispaced points on [−π, π]2. Suppose v̂ϕ = v̂ and zρ = ρ(Q),

one can evaluate M1
F [v̂, ρ](K2, K2),M

2
F [v̂, ρ](K2, K2) defined in (2.2) approximately via the

quadrature rule

M1
F [v̂ϕ, zρ](K2) ≈

q∑
j=1

zρ(j)S ◦Q(j) ◦ v̂ϕ(K2),

M2
F [v̂ϕ, zρ](K2, K2) ≈

q∑
j=1

zρ(j)
(
S ◦Q(j) ◦ v̂ϕ(K2)

)
⊗
(
S ◦Q(j) ◦ v̂ϕ(K2)

)
,

(2.8)

where, by an abuse of notation, we think about zρ = ρ(Q), i.e., the density ρ discretized on

Q, as ρ itself and Q(j) is an element in the set Q. For simplicity, in this chapter, we consider

a quadrature rule with uniform quadrature weights, as seen in (2.8). The benefit of having a

continuous v̂ϕ is clear, since it allows us to obtain v̂ϕ(Q(j)T (kx, ky, 0)) for any (kx, ky) ∈ K2

easily.

Note that we also allow the flexibility to have an encoder ξvθ just as in the case of MRA.

In this case, ξvθ : (M̂1
F , M̂

2
F ) → zv where zv is some latent variable of the volume. In this

case, we simply let v̂ϕ : R3+|zv| → C where the extra inputs of v̂ϕ corresponds to the output

of ξvθ . The neural network pipeline we devise is shown in Figure 2.2, where ξθ =
(
ξ
ρ
θ , ξ

v
θ

)
.

As for the architecture of ξvθ , ξ
ρ
θ , we adopt the type of architecture we use in Section 2.3.1,

though one should be able to improve it according to the structure of the cryo-EM problem.

The details of ξθ and v̂ϕ are given in A.
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2.4 Numerical examples

This section presents the results of numerical experiments with our method of moments

algorithm with NN prior done using PyTorch [51].

2.4.1 Multireference alignment

We first present results using the method for MRA in Section 2.3.1. There are two phases

when using the neural network detailed in Section 2.3.1:

• Supervised training phase: We are given a set of MRA datasets, each containing

observations corresponding to a single signal and distribution of shifts, where the signal

and shift distribution differs across the set of datasets. Our neural network is trained

in a supervised manner to output the underlying signals and the distribution of shifts,

with moment pairs of each dataset being the input.

• Reconstruction phase: A new and previously unseen dataset is provided, with obser-

vations corresponding to a single signal and distribution of shifts. Our neural network

performs moment-matching with the empirical moments calculated from this dataset,

using the loss function in 2.15, and outputs the underlying signal and distribution of

shifts.

It is important to distinguish between the two phases since their settings are a little

different, and the former can optionally be used to expedite convergence of the latter.

For evaluation purposes, we define the reconstruction error (also referred to as relative

error) of an estimator u ∈ Rn of a signal v (or a distribution ρ) discretized at X1, to be

inf
s∈I

∥∥s ◦ v (X1) − u
∥∥
F∥∥v (X1)

∥∥
F

, inf
s∈I

∥∥s ◦ ρ (X1) − u
∥∥
F∥∥ρ (X1)

∥∥
F

. (2.9)
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Figure 2.3: Predictions for the distribution ρ (Left) and volume v (Right), made by trained
encoders ξρθ and ξvθ respectively, for ρ, v being mixture of 2 Gaussians. The solid lines are the
ground truth ρ and v, while the dotted lines are the corresponding predictions by a neural
network.

In addition, we define the relative errors for any moment estimators A1, A2 for the first and

second moments, respectively, as

∥∥∥M1
F [v̂, ρ](K1)− A1

∥∥∥
F

∥A1∥F
,

∥∥∥M2
F [v̂, ρ](K1, K1)− A2

∥∥∥
F

∥A2∥F
. (2.10)
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Supervised training Phase

In this section, we demonstrate that the moment inversion map can be learned by neu-

ral networks in a supervised way. To this end, we pre-select a distribution of signals V

and a distribution of densities of shifts, P . We draw N pairs of signal and shift density,

(v1, ρ1), (v2, ρ2), . . . , (vN , ρN ) from V × P . Using these pairs as our ground truths, we form

their corresponding first and second moment pairs, i.e.
(
M1
F [v̂1, ρ1](K1),M

2
F [v̂1, ρ1](K1, K1)

)
,

. . . ,
(
M1
F [v̂N , ρN ](K1),M

2
F [v̂N , ρN ](K1, K1)

)
. We then train our encoder ξθ in a super-

vised way to take inputs of the form
(
M1
F [v̂j , ρj ](K1),M

2
F [v̂j , ρj ](K1, K1)

)
and output(

ρj(X1), v̂j(K1)
)
, for all j ∈ {1, 2, . . . , N}.

In our experiments, we let both V and P be the family of mixtures of Gaussians on

the interval I, where we repeat our training procedure separately for a different number of

Gaussians. We take 1.75× 106 of input-output moment pairs to do the training using (2.9).

We compute test error on 2.5× 105 of samples.

We now discuss the hyperparameters for training. We train the encoders ξρθ and ξvθ sepa-

rately; let us consider ξρθ . We take the training set and feed the moments pairs
(
M1
F [v̂j , ρj ](K1),

M2
F [v̂j , ρj ](K1, K1)

)
to ξρθ , which outputs corresponding zρ for each pair as a prediction for

ρ(X1). We train ξρθ over a total of 3×104 epochs with learning rates of 10−4, 10−5 and 10−6

over 104 epochs successively. We then repeat the same process for ξvθ .

Table 2.1 summarizes the average relative error on the training and test sets, using (2.9),

while evaluating our trained encoders on mixtures of different numbers of Gaussians. The

left and right columns of Figure 2.3 show some comparisons of the encoder output (zρ, zv)

with ground truth (ρ(X1), v̂(K1)) from the test set.

Reconstruction Phase

In the previous section, we discussed our process of training the encoder ξθ in a supervised

way such that it learns the moment inversion map. A useful application of this trained
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No. of Gaussians zρ (Train error) zρ (Test error) zv (Train error) zv (Test error)

1 0.042 0.048 0.048 0.052
2 0.121 0.141 0.156 0.170
3 0.177 0.195 0.180 0.206

Table 2.1: Average reconstruction errors (defined in (2.9)) of predictions zρ and zv on training
and test sets for mixtures of Gaussians.

encoder is when supplied with new, possibly noisy, moments (M̂1
F , M̂

2
F ) from a single MRA

dataset, we can use its outputs as a good initialization for further refinement. In this section,

we demonstrate that this procedure leads to faster convergence.

We first talk about how we obtain the estimators M̂1
F , M̂

2
F from observations of the form

vj = sj ◦ v(X1) + ϵj , j = 1, . . . , N (2.11)

where ϵj ∼ N(0, σ2In). Let F ∈ Cn×n again be the Fourier matrix, we form unbiased

moment estimators of the form

M̂1
F =

1

N

N∑
j=1

Fvj , M̂2
F =

1

N

N∑
j=1

(Fvj)(Fvj)
∗ − σ2In (2.12)

by subtracting a constant term on the diagonal of the empirical second moment. These are

used as input to the trained encoder ξθ for prediction. Note that from 2.11 and 2.12, we get

that as N → ∞,

M̂1
F

a.s.−→ E(M̂1
F ) = M1

F [v̂, ρ](K1, K1)

M̂2
F

a.s.−→ E(M̂2
F ) = M2

F [v̂, ρ](K1, K1),

(2.13)

due to the strong law of large numbers [20]. This means that even in very low SNR regime,

with sufficiently high number of samples N , the empirical moments can be made as close to

the analytical ones as desired. This underlines the noise resilience property of the method
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of moments.

Notice that the solution to the MRA problem has a global translation ambiguity. There-

fore, it is possible for the encoders ξvθ , ξ
ρ
θ , to output an approximation to signal v and density

ρ up to some arbitrary translations. While this is not an issue if the predicted signal is all we

want, it becomes an issue if we want to refine the predictions further. More precisely, before

deploying the encoder for refinement with empirical moments M̂1
F , M̂

2
F coming from a new

dataset, we conduct an alignment across s ∈ X1 to ensure that the outputs zρ = ξ
ρ
θ (M̂

1
F , M̂

2
F )

and zv = ξvθ (M̂
1
F , M̂

2
F ), upon forming

M1
F [zv, zρ](K1) =

n∑
j=1

zρ(j) exp(−iK1s⊙ zv,

M2
F [zv, zρ](K1, K1) =

n∑
j=1

zρ(j)
(
exp(−iK1s(j))⊙ zv

) (
exp(−iK1s)⊙ zv

)∗
, (2.14)

match the inputs (M̂1
F , M̂

2
F ) of the encoder. In other words, we loop over X1 and select the

shift s that minimizes the loss function

Lrecon =
∥∥∥M̂1

F −M1
F [zv, zρ](K1)

∥∥∥
F

+ λ
∥∥∥M̂2

F − M2
F [zv, zρ](K1, K1)

∥∥∥
F
, (2.15)

then shift zv by s to achieve the best alignment. Here by abuse of notation, we treat

zv, zρ as continuous objects and apply the functionals M1
F ,M

2
F to them. Recall that zv =

ξvθ (M̂
1
F , M̂

2
F ) and zρ = ξ

ρ
θ (M̂

1
F , M̂

2
F ). We further optimize the neural network parameters θ

to refine zv, zρ with the loss in (2.15). We refer to the process of minimization of this loss

function as moment-matching or moment-fitting.

We now show the results of the deployment of our architecture ξθ when working with

noisy moments from test datasets during the reconstruction procedure. We take 20 different

moments pairs, i.e.
(
M̂1
F , M̂

2
F

)
s corresponding to different datasets, and determine their cor-

responding (zv, zρ) pairs by minimizing (2.15) over the parameters of ξθ. The relative errors
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(defined in (2.9) and (2.10)) of the reconstructed (ρ(X1), v̂(K1)) and the moments are plot-

ted in Figure 2.4. The errors are averaged over 20 different instances of (ρ, v) combinations

from mixtures of 2 Gaussians, and the empirical moments are formed from 106 observations

for each pair of (ρ, v) as in (2.11), with Gaussian noise σ = 1.0. Depending on whether the

encoder underwent supervised training, we observe the trajectory of this “average” recon-

struction error to be different. Figure 2.4 illustrates that the average reconstruction error

indeed converges faster when the encoder is trained in a supervised phase.

Figure 2.4: Plots of logarithms (with base 10) of Sum of relative errors (defined in (2.10)) for
M̂1
F and M̂2

F across 3000 iterations (Top), and Reconstruction error (defined in (2.9)) across
3000 iterations (Bottom); averaged over 20 reconstructions of (ρ(X1), v̂(K1)) pairs drawn
from the family of a mixture of 2 Gaussians. In both plots, the blue curve corresponds to
the scenario where the encoder underwent supervised training, while the orange corresponds
to the scenario where it did not.

2.4.2 Cryo-EM

We now present the results using our method for cryo-EM as illustrated in Section 2.3.2.

Again for evaluation purposes, the relative error for an estimate u ∈ Rn3 of a signal v

discretized at n3 equispaced points X3 on I3, is defined as

inf
R∈SO(3)

∥∥R ◦ v (X3) − u
∥∥
F∥∥v (X3)

∥∥
F

. (2.16)
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Figure 2.5: (Left) 1000 points sampled from a mixture of eight von Mises-Fisher random
variables shown in different colors, and (Right) 100-point 13-design plotted on a 3D unit
sphere.

The relative errors for moment estimators of the first and second moments are defined anal-

ogously to (2.10).

While we do not describe any supervised training phase like in the MRA case, our archi-

tecture keeps this option open. We believe that even for cryo-EM, it would be possible to

train our encoder ξρθ in a supervised way to learn the moment inversion map, i.e., to take

inputs of the form
(
M1
F [v̂, ρ](K2),M

2
F [v̂, ρ](K2, K2)

)
and predict

(
ρ(R)

)
R∈Q for training

and reconstruction, where Q is the set of quadrature points on SO(3) defined in 2.3.2. It

would also be possible to train ξvθ such that it outputs a discretized approximation of the

volume from the moments, or at least some vector containing important feature information

about it.

The reconstruction is carried out by optimizing the NN parameters θ and ϕ of our encoder

zρ = ξ
ρ
θ (M̂

1
F , M̂

2
F ) and neural representation v̂ϕ, respectively, to minimize the loss function

Lrecon =
∥∥∥M̂1

F −M1
F [v̂ϕ, zρ](K2)

∥∥∥
F

+ λ
∥∥∥M̂2

F − M2
F [v̂ϕ, zρ](K2, K2)

∥∥∥
F
. (2.17)
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Figure 2.6: (Left) A clean projection, and (Right) its noisy counterpart with noise level
σ = 0.5 as defined in (2.18), for EMD-0409

During reconstruction, one of the challenges we face is fixing a good set Q ⊂ SO(3) on which

we shall use a quadrature rule with uniform weights to evaluate the functionals M1
F ,M

2
F , as

described in (2.8). In our experiments, we do so in two steps. First, we choose a q1-point

spherical design on S2, see, e.g., [75]. A q1-point spherical t-design is a finite set of points

with cardinality q1 on S2, such that their quadrature over S2 with uniform unit weights is

exact for any polynomial (spherical harmonics) with degree ≤ t. Then, for each point of

the design, treating the axis connecting that point to the center as a viewing direction, we

consider in-plane rotations with q2 equally spaced angles in [0, 2π) radians. This gives us a

set Q with |Q| = q1q2 quadrature points on SO(3). In our experiments, we take q1 = 100

and q2 = 12 for a total of |Q| = 1200 quadrature points. To illustrate these quadrature

points, we use a 100-point 13-design on S2 as the set of viewing directions, as seen in the

right side of Figure 2.5.

We now discuss our data generation process for cryo-EM and the moment estimators to
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Figure 2.7: (Left) A clean projection, and (Right) its noisy counterpart with noise level
σ = 0.5 as defined in (2.18), for EMD-25892

be used as input for the encoder. In practice, given real observations of the form

vj = P ◦Rj ◦ v(X2) + ϵj , j = 1, . . . , N (2.18)

where ϵj ∼ N(0, σ2In2) and X2 is n2 equispaced points on I2, we could form unbiased

moment estimators

M̂1
F =

1

N

N∑
j=1

F2vj , M̂2
F =

1

N

N∑
j=1

(F2vj)⊗ (F2vj) − σ2In2 , (2.19)

letting F2 ∈ Cn2×n2 be the two-dimension Fourier transform matrix. Noiseless observations

vj are depicted alongside their noisy counterparts in Figures 2.6 and 2.7.

We next discuss our choices of ground truth volumes v and rotational distributions ρ. For

our experiments, we use three volumes: EMD-0409 and EMD-25892 taken from the Electron

Microscopy Data Bank (EMDB); and a mixture of four Gaussians not lying on the same

plane in three dimensions. The dimensions of EMD-0409 are 128× 128× 128 with voxel size
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1.117 Å, while the dimensions of EMD-25892 are 320 × 320 × 320 with voxel size 1.68 Å.

Both volumes were downsampled to 63 × 63 × 63 and scaled to have norm 1. The mixture

of Gaussians has dimensions 25 × 25 × 25, whose voxel size is taken to be 1 Å since it is a

simulated volume. We represent the ground truth using v̂ϕ, and report the approximation

error (as defined in (2.16)) between the original and this neural network representation, as

0.043 for EMD-0409, 0.076 for EMD-25892, and 0.004 for the mixture of Gaussians. These

NN-approximated volumes are then used as the ground truths for the rest of the simulations,

and we refer to them as the neural ground truths. The ground truth distribution of rotations

ρ is chosen in the following way. The viewing directions are distributed as a mixture of 8 von

Mises-Fisher distributions with different mean directions µ and concentration parameters κ,

respectively, to ensure a sufficiently non-uniform distribution on S2. 1000 points from this

distribution are shown on the left side of Figure 2.5. The in-plane rotations are uniform on

[0, 2π) and independent of the viewing directions. We then create moment estimators from

N = 5 × 106 noisy observations with noise level σ = 0.5 using (2.19), where a neural slice

approximates F2vj .

We run our algorithm with learning rates 10−5 and 10−6 successively for 10, 000 epochs

each, to minimize the loss function in (2.17). The reconstructed volumes are visualized

in Figures 2.8, 2.9, and 2.10, alongside their corresponding neural ground truth volumes for

EMD-0409, EMD-25892, and mixture of Gaussian volumes, respectively. Table 2.2 shows the

relative errors of our moments from the reconstructed volumes, defined analogously to (2.10),

at the end of our reconstruction.

Finally to evaluate the quality of reconstruction, we first align the reconstructed volumes

with the ground truth. For that purpose, we run the algorithm for aligning three-dimensional

density maps in [28] multiple times and pick the best alignment. We then calculate the

Fourier Shell Correlation (FSC) between the ground truth volumes and their corresponding

aligned reconstructions. We denote the resolution of the reconstructed volume as the point
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Figure 2.8: Ground truth volume (in gray) and reconstructed volume (in yellow) for the
EMD-0409 volume, visualized using UCSF Chimera [53].

where the FSC curve goes below 0.5. The final resolutions between the ground truths and

reconstructed volumes are provided in Table 2.3.

Volume Relative error in M̂1
F Relative error in M̂2

F

EMD-0409 0.003 0.013
EMD-25892 0.007 0.035

Mixture of Gaussians 0.007 0.016

Table 2.2: Final relative errors of moment estimates M̂1
F and M̂2

F after reconstruction phase.

Volume Resolution (in Å)

EMD-0409 16.86
EMD-25892 21.52

Mixture of Gaussians 4.45

Table 2.3: Optimal resolutions between ground truth volumes and their reconstructions.

2.5 Conclusion and outlook

In this chapter, we addressed the reconstruction problem in cryo-EM as well as one of

its simpler versions, namely, multirefence alignment, both of which fall under the class of

orbit recovery problems. Although deep NN-based methods have been successfully used

in maximum likelihood estimation for orbit recovery problems, they have not historically
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Figure 2.9: Ground truth volume (in gray) and reconstructed volume (in yellow) for the
EMD-25892 volume, visualized using UCSF Chimera [53].

Figure 2.10: Two views of recovery of a mixture of Gaussians. Ground truth volume (in
gray) and reconstructed volume (in yellow) for a mixture of 4 Gaussians in three dimensions,
visualized using UCSF Chimera [53].

exploited the benefits offered by the MoM, like noise resilience, due to the central limit

theorem when averaging data. In this chapter, we take a first step towards using neural

networks for solving moment systems in orbit recovery problems. In the case of MRA, we

demonstrate theoretically and numerically that a map can be learned to take moments as

input and output the signal and density of translations, and develop novel neural network

architectures for the same. This map can then be used as a deep neural network prior to

accelerating convergence in unsupervised reconstruction from new incoming moments.

We also apply this approach to cryo-EM with encouraging results, but further work

is needed to demonstrate the superiority of supervised learning and tackle more general

cryo-EM models, like those dealing with small translations in addition to the rotations,

and further image contamination due to aberrations (which would involve accounting for

contrast transfer functions). Supervised learning would effectively enable low-dimension
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reconstruction of volumes near-instantly and would serve as an inexpensive and time-efficient

method of generating ab-initio models for iterative refinement algorithms. Other future work

includes investigating the use of higher-order moments to improve reconstruction accuracy

and parallelizing the model on multiple GPUs to enable reconstruction with larger images

and improve speed and accuracy. Additionally, tackling more general cryo-EM models will

bring us closer to operating on real-world datasets.
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CHAPTER 3

MOM-NET: LEARNING CRYO-EM VOLUMES VIA METHOD

OF MOMENTS

3.1 Introduction

Cryo-EM allows biologists to examine the structure of macromolecules in their natural state.

Unlike the older method of X-ray crystallography, cryo-EM does not need crystallized sam-

ples, making it possible to study larger and more complex molecules with intricate struc-

tures and conformations. The scientific community has recognized its potential for revealing

macromolecular structure and function: Nature Methods named cryo-EM the "Method of

the Year" in 2015, and its development earned the 2017 Nobel Prize in Chemistry.

As mentioned in Chapter 1, the typical cryo-EM single particle reconstruction (SPR)

workflow involves freezing a biological sample in a thin ice layer and imaging it with an

electron microscope. The resulting images capture multiple copies of a macromolecule in

various random and unknown orientations. Through several data processing steps, two-

dimensional projections of the macromolecule’s electrostatic potential are obtained in a series

of images known as particle images. To prevent damage to the biological sample from the

electron beam, imaging is performed at a low dosage, resulting in a poor signal-to-noise

ratio (SNR). The primary objective of the cryo-EM SPR workflow is to reconstruct a three-

dimensional volume representing the molecule’s structure from these particle images.

In Chapter 2, we devised a novel neural network-based method for solving the SPR

problem in cryo-EM, and recovering an ab-initio 3D volume from 2D projections. However,

our simplified setting where the ground truth volume was rotated by a random element of

SO(3) and projected, is rather limiting and non-representative of real data. In reality, each

projection of the volume is slightly offset from the image center by an unknown amount,

and the particle images are further blurred by a contrast transfer function (CTF), which is
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specific to each image and depends on the microscope settings. There is also the issue of

conformational heterogeneity, i.e. the projection images could correspond to different under-

lying volumes, with minor conformational differences between them. Inability to separate

the conformational states properly results in low-resolution volume recovery. Consequently,

cryo-EM reconstruction involves solving a tomography problem with structural variability,

unknown viewing directions, in-plane shifts, and low SNR. The particle orientations and

in-plane shifts together are referred to in literature as the pose variables.

In this chapter we introduce MoM-net, an extension of our cryo-EM framework from

Chapter 2 which we have adapted to serve a two-fold purpose. Firstly, when provided with

a set of cryo-EM datasets, each containing observations corresponding to a single volume,

distribution of rotations and shifts, MoM-net can be trained in a supervised manner to

predict very low-resolution structures along with distributions of rotations and levels of shift

present in the datasets, with the corresponding first and second moments as inputs. This

extends the supervised learning results of MRA from Chapter 2 to cryo-EM. Furthermore,

the data is allowed to come from a setting where the images are not perfectly centered.

The other utility of MoM-net is the reconstruction step, where our model can reconstruct

a refined 3D volume in presence of shifts. Again, similar to the MRA case in Chapter 2,

we also demonstrate the ability to accelerate the reconstruction process of MoM-net when

it is trained in a supervised manner beforehand. Our method thus enjoys all the advantages

offered by the method of moments, like its robustness in mitigating the impact of noise, and

not requiring multiple data passes which helps in dealing with large datasets, then uses that

for ab-initio SPR in presence of shifts. This ab-initio model serves as an initialization for

iterative refinement algorithms in our general cryo-EM setting, taking us a step closer to

handling real-world datasets.
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3.2 Method of moments for cryo-EM in presence of shifts

In this section we describe the more general SPR setting, and provide formulae for the

analytical moments of data for the same. From Chapter 1, recall the simplified cryo-EM

setting (1.11) in the absence of shifts, where the observations were given by

vj = P ◦Rj ◦ v, j = 1, . . . , N, (3.1)

where Rj ∈ SO(3) are the unknown group elements. In practice during the image generation

process, the projected volume may not be perfectly centered. Instead, they could be trans-

lated slightly from the center of the image in any random direction. The image formation

model then becomes

vj = tj ◦ P ◦Rj ◦ v, j = 1, . . . , N, (3.2)

where tj ∈ R2 are i.i.d 2D translations that are also independent of the rotations. By abuse

of notation, we define the action of tj on a 2D function g ∈ L1(R2) as

tj ◦ g = g(.− tj). (3.3)

Again, the Fourier domain formulation becomes

v̂j(kx, ky) = exp(ikT tj) S ◦Rj ◦ v̂ (kx, ky), k = (kx, ky) ∈ [−π, π]2, (3.4)

where v̂j is the Fourier transform of vj . We assume that tj are i.i.d samples from bivariate

gaussian distribution ψ with zero mean and diagonal covariance matrix η2I2. Thus, η is the

only additional parameter we need to estimate in this setting where tj ∼ ψ = N(0, η2I2).
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The first and second analytical moments in this scenario are denoted by

M1
F [v̂, ρ, η](kx, ky) = Eρ,ψ

 1

N

N∑
j=1

v̂j(kx, ky)


M2
F [v̂, ρ, η](kx, ky, k

′
x, k

′
y) = Eρ,ψ

 1

N

N∑
j=1

v̂j(kx, ky)v̂j(k
′
x, k

′
y)

∗

 .

(3.5)

Notice that since ψ = N(0, η2I2), the first moment becomes

M1
F [v̂, ρ, η](kx, ky) = Et∼ψ

[
ER∼ρ

[
exp(ikT t) S ◦R ◦ v̂ (kx, ky) | t

]]
= Et∼ψ

[
exp(ikT t)

]
ER∼ρ

[
S ◦R ◦ v̂ (kx, ky)

]
=M1

F [v̂, ρ](kx, ky)
1

2πη2

∫
R2

exp(ikT t) exp

(
−∥t∥

2

2η2

)
dt

=M1
F [v̂, ρ](kx, ky)

1

2πη2

∫
R2

exp

(
−∥t∥

2 − i2η2kT t

2η2

)
dt

=M1
F [v̂, ρ](kx, ky) exp

(
−η

2

2
∥k∥2

)
1

2πη2

∫
R2

exp

−

∥∥∥t− iη2kT t
∥∥∥2

2η2

 dt

=M1
F [v̂, ρ](kx, ky) exp

(
−η

2

2
∥k∥2

)
, (3.6)

where the final equality follows from the Cauchy’s residue theorem [37]. M1
F [v̂, ρ] (given

by (2.2)) is the associated first moment of the scenario where we have no translations (or

equivalently, η = 0), and k = (kx, ky). A similar calculation in case of second moment gives

M2
F [v̂, ρ, η](kx, ky, k

′
x, k

′
y) = M2

F [v̂, ρ](kx, ky, k
′
x, k

′
y) exp

(
−η

2

2

∥∥∥k − k′
∥∥∥2) , (3.7)

where M2
F [v̂, ρ](kx, ky, k

′
x, k

′
y) (given by (2.2)) is the associated second moment in the no-

translation case, and k = (kx, ky) and k′ = (k′x, k
′
y). We aim to retrieve v̂ by matching
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the moments M1
F [v̂, ρ, η](K2, K2) and M2

F [v̂, ρ, η](K2, K2) with some unbiased estimators

M̂1
F , M̂

2
F when having noisy data.

3.3 Neural network prior for cryo-EM

This section presents neural network approaches for reconstructing the volume v and dis-

tribution ρ along with the shift standard deviation η, in the more general cryo-EM setting.

The strategy is again to view both the volume, distribution and shift standard deviation as

being mapped by a neural network from the estimated moments M̂1
F and M̂2

F . As mentioned

in Chapter 2, previous works have shown that the first 2 moments M̂1
F , M̂

2
F have enough

information for recovering a low-resolution reconstruction [66] of the volume in the no-shift

setting. In presence of shifts, (3.6) and (3.7) give us reason to believe that the first 2 moments

will still possess enough information about the underlying volume. On that note, we extend

the encoder-decoder structure of Chapter 2 to develop a new framework called MoM-net,

that allows us to take the moments as input and give a continuous representation of a 3D

volume.

The primary component of MoM-net is an encoder, i.e., a neural network ξθ, whose

purpose is as follows. We are given a set of N datasets {D1, . . . ,DN} corresponding

to different combinations of volumes, distributions of rotations, and levels of shifts, i.e.

{(v1, ρ1, η1), . . . , (vN , ρN , ηN )}. Then for any j ∈ {1, . . . , N}, the neural network ξθ takes

the empirical moments (M̂1
F , M̂

2
F )j corresponding to dataset Dj as inputs, and outputs vec-

tors zρ, zv, and η̂ containing information about the distribution of rotations, the volume,

and level of shifts respectively. In other words,

ξθ : (M̂
1
F , M̂

2
F ) → (zρ, zv, η̂) (3.8)

We explain the three outputs individually:
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• Let Q ⊂ SO(3) be a pre-chosen set of quadrature points on SO(3) and q = |Q|. ρ is a

density on SO(3), and zρ ∈ Rq should approximate
(
ρ(R)

)
R∈Q.

• We again output a continuous representation of the Fourier volume, but this time we

do it in 2 steps in order to aid the supervised learning process. The spherical harmonic

representation is a convenient way of representing the Fourier volume for SPR problems

(see [66, 9]) since it is a steerable basis, i.e. a function space closed under rotations.

Mathematically, the band-limited Fourier volume v̂ can be expanded to degree L as

v̂(k, θ, ϕ) ≈
L∑
l=0

l∑
m=−l

S(l)∑
s=1

Al,m,sFl,s(k)Y
m
l (θ, ϕ), (3.9)

where k is the radial frequency, and Yml are complex spherical harmonics defined by

Yml (θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pml (cos θ)eimϕ, (3.10)

with Pml being Legendre polynomials. Fl,s are spherical Bessel functions [4], which

are eigenfunctions of the Laplacian on a closed ball with Dirichlet boundary condition.

Because our goal is low-resolution modeling, we can limit L and Sl in order to reduce

computational burden. Hence, Al,m,s are the parameters we need to estimate in order

to recover the volume. Enumerating Al,m,s as a vector, we get a vector of length, say

L̃, and that is the vector that our encoder ξθ outputs an estimate of in the form of

zv ∈ CL̃. We refer to the continuous Fourier volume corresponding to zv as v̂sph, which

can then be refined as a next step.

• η̂ ∈ [0, ηmax] is the estimate of the standard deviation of the shift distribution corre-

sponding the the given data. ηmax is a pre-chosen maximum possible shift level.
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When v̂sph is obtained via zv, MoM-net moves on to the second step: refinement. We

use a second neural network, v̂Fnet : R3 → C initialized to the zero volume, to represent

the refinement in Fourier domain. We thus get a continuous representation of the Fourier

volume v̂ϕ : R3 → C, given by

v̂ϕ = v̂sph + v̂Fnet. (3.11)

This continuous representation v̂ϕ still has the same benefit as our previous frame-

work, since it helps facilitate the computation of moments involving the reconstructed vol-

ume. Suppose v̂ϕ = v̂ and zρ = ρ(Q), then if K2 is n2 equispaced points on [−π, π]2,

then M1
F [v̂, ρ, η](K2, K2),M

2
F [v̂, ρ, η](K2, K2) can be defined in (3.5) approximately via the

quadrature rule

M1
F [v̂ϕ, zρ, η̂](K2) ≈

 q∑
j=1

zρ(j)S ◦Q(j) ◦ v̂ϕ(K2)

⊙

exp(− η̂2
2
∥k∥2

)
k∈K2

,

M2
F [v̂ϕ, zρ, η̂](K2, K2) ≈

 q∑
j=1

zρ(j)
(
S ◦Q(j) ◦ v̂ϕ(K2)

)
⊗
(
S ◦Q(j) ◦ v̂ϕ(K2)

)
⊙

exp(− η̂2
2

∥∥∥k − k′
∥∥∥2)


k∈K2
k′∈K2

,

(3.12)

where ⊙ is elementwise multiplication. By an abuse of notation we think of zρ = ρ(Q), which

is the density ρ discretized on Q, as ρ itself, and Q(j) is an element in the enumeration Q.

In (3.12), we again consider a quadrature rule with uniform quadrature weights. Clearly the

continuous v̂ϕ allows us to obtain v̂ϕ(Q(j)T (kx, ky, 0)) for any (kx, ky) ∈ K2 easily.

The neural network pipeline of MoM-net is depicted in Figure 3.1. The architecture of

the encoder ξθ is motivated by Section 2.3.1 with slight adjustments, while its exact details

along with those of v̂Fnet are provided in A.
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Figure 3.1: Overview of MoM-net pipeline: Our encoder ξθ takes moments (M̂1
F , M̂

2
F )

as input, and outputs three things: zρ ∈ R|Q| which approximates a discretized probability
density

(
ρ(R)

)
R∈Q for some fixed set of quadrature points Q ⊂ SO(3); zv ∈ CL̃ which

approximates the spherical harmonics coefficients of the volume; and η̂ which approximates
the standard deviation of shifts in the images. Then we create copies of the grid K2 rotated
according to the elements of Q and input them to our continuous Fourier representation v̂ϕ,
which is the sum of v̂sph (volume corresponding to zv) and v̂Fnet (NN for refinement). v̂ϕ
outputs corresponding slices of a running estimate of v̂. These slices

{
S ◦Q(j) ◦ v̂ϕ(K2)

}
j

along with zρ and η̂ are used to create
(
M1
F [v̂ϕ, zρ, η̂](K2),M

2
F [v̂ϕ, zρ, η̂](K2, K2)

)
via equa-

tion (3.12), which we then compare with the moments used as input for the encoder, i.e.,
(M̂1

F , M̂
2
F ) via the loss function LKam in (2.17).
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3.4 Numerical examples

3.4.1 Supervised training phase

For evaluation purposes, we define the relative error for an estimate u ∈ Rn3 of a volume

v discretized at n3 equispaced points X3 on I3, and for moment estimators of the first and

second moments as in Section 2.4.2. The aim of the supervised training phase is to use the

encoder ξθ to predict (v, ρ, η) when provided with a previously unseen dataset of cryo-EM

images. In other words, we demonstrate that the moment inversion map can be learned by

neural networks in a supervised way for cryo-EM as well.

To this end, we pre-select a distribution of volumes V , a distribution of densities of rota-

tions P , as well as a distribution of standard deviation of shifts N . We draw N triplets of vol-

umes, rotational densities, and standard deviations of shifts, say (v1, ρ1, η1), (v2, ρ2, η2), . . . ,

(vN , ρN , ηN ) from V×P×N . Using these pairs as ground truths, we form their corresponding

first and second moment pairs, i.e.
{(

M1
F [v̂j , ρj , ηj ](K1),M

2
F [v̂j , ρj , ηj ](K1, K1)

)}N
j=1

. We

then train our encoder ξθ in a supervised way to take inputs of the form
(
M1
F [v̂j , ρj , ηj ](K1) ,

M2
F [v̂j , ρj , ηj ](K1, K1)

)
and output

(
zv, zρ, η̂

)
j , for all j ∈ {1, 2, . . . , N}. Here, zρ ∈ R|Q| ap-

proximates a discretized probability density
(
ρj(R)

)
R∈Q

for some pre-chosen set of quadra-

ture points Q ⊂ SO(3), η̂ approximates ηj , while zv ∈ CL̃ approximates the spherical

harmonics corresponding to the degree L expansion of v̂j .

In 2.4.1, we used the loss function (2.9) for supervised learning in case of MRA. This loss

calculates the minimum relative error in the ground truth and predicted signal over each

shift. Unfortunately, it would be a huge challenge to use that loss for cryo-EM, since that

would require taking an infimum over the whole of SO(3). That would be computationally

very intensive, even for small volumes. That is why in this case, we use a different loss which

is a small variant of the Kam’s volume metric introduced in [77]. We call it the Kam loss,

and define it as
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LKam =

∥∥∥M1
F [v̂, ρ, η](K2) −M1

F [zv, zρ, η̂](K2)
∥∥∥
F∥∥∥M1

F [v̂, ρ, η](K2)
∥∥∥

+

∥∥∥M2
F [v̂, ρ, η](K2, K2) − M2

F [zv, zρ, η̂](K2, K2)
∥∥∥
F∥∥∥M2

F [v̂, ρ, η](K2, K2)
∥∥∥ .

(3.13)

In other words, we define the Kam loss as the sum of relative errors between input and

output moments. Thus when a moment pair is given to the encoder as input, we create an-

other moment pair
(
M1
F [zv, zρ, η̂](K2),M

2
F [zv, zρ, η̂](K2, K2)

)
using the outputs (zv, zρ, η̂)

from (3.12), and compare them using (3.13).

In our experiments, we take P to be the family of mixtures of five von Mises-Fisher

random variables with fixed mean vectors. P is taken to be a family of simulated protein-like

structures having 20 atoms each, with isotropic Gaussian blobs on the atomic coordinates.

Cryo-EM images of size 15× 15 are then produced, and moments generated. Two cryo-EM

images corresponding to two different volumes used for training, are provided in Figure 3.2.

The distribution of standard deviation of shifts, i.e. N , is taken to be uniformly distributed

on [0, 1.33]. To save space, we generate different batches of input-output pairs for training,

at every iteration of our optimization. We compute test error on 1.3 × 104 samples using

(3.13).

We now discuss the hyperparameters for training. We train the encoder ξθ by feeding

batches of moment pairs
(
M1
F [v̂, ρ, η](K2), M2

F [v̂, ρ, η](K2, K2)
)

to ξθ, which outputs corre-

sponding (zv, zρ, η̂) for each pair, that are predictions for spherical harmonic coefficients of

v̂, ρ(Q) and η respectively. We train ξθ with batch sizes of 128 over a total of 2× 104 epochs

with learning rates of 10−5 and 10−6 over 104 epochs successively, by minimizing the Kam

Loss (3.13). Our Kam loss on the test set comes out to be 0.056.

As a further test, for visualization purposes, we feed input moment pairs corresponding
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Figure 3.2: (Top row) Two different protein-like volumes used to train ξθ, and (Bottom row)
two sample cryo-EM images corresponding to each of these volumes.

to the volumes EMD-0409 and EMD-25892 (used in Chapter 2) separately to the trained

encoder. Note that neither of these structures fall in the family of volumes that ξθ was

trained on. Their respective final Kam losses, along with their FSC values are provided

in Table 3.1. While the predictions (displayed in Figures 3.3 and 3.4) are admittedly too

low-resolution to be useful ab initio models, they do seem promising as good initializations

that can be further refined to obtain higher resolution reconstructions in the next phase.

Improving the quality of these predictions is a topic for further research.
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Figure 3.3: Two views of predicted volume by MoM-net. Reconstructed volume (in gray)
and ground truth volume (in yellow) for EMD-0409, visualized using UCSF Chimera [53].

Figure 3.4: Predicted volume by MoM-net (in gray) and ground truth volume (in yellow)
for EMD-25892, visualized using UCSF Chimera [53].

Volume Final Kam loss Resolution (in Å)

EMD-0409 0.094 74.27
EMD-25892 0.068 88.44

Table 3.1: Final Kam loss values of moment estimates M̂1
F and M̂2

F , as well as optimal
resolutions for ground truth volumes and predictions after supervised training phase.

3.4.2 Reconstruction phase

The reconstruction is carried out by optimizing the neural network parameters θ and ϕ of

our encoder (zv, zρ, η) = ξθ(M̂
1
F , M̂

2
F ) and continuous representation v̂ϕ, respectively, to

minimize the Kam loss. Here, M̂1
F , M̂

2
F are the first two moments from a previously unseen

cryo-EM dataset corresponding to a single (v, ρ, η) triplet.

The setting of our reconstruction process is same as that of Section 2.4.2. We select

our set of quadrature points Q ⊂ SO(3) by the same two step process: we pick a 100-point
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13-design on S2 as the set of viewing directions, and select in-plane rotations with 12 equally

spaced angles in [0, 2π) radians.

For our data generation process for cryo-EM: given real observations of the form

vj = tj ◦ P ◦Rj ◦ v(X2) + ϵj , j = 1, . . . , N (3.14)

where ϵj ∼ N(0, σ2In2) and X2 is n2 equispaced points on I2, we form unbiased moment

estimators

M̂1
F =

1

N

N∑
j=1

F2vj , M̂2
F =

1

N

N∑
j=1

(F2vj)⊗ (F2vj) − σ2In2 , (3.15)

letting F2 ∈ Cn2×n2 be the two-dimension Fourier transform matrix. Our choice of ground

truth volumes v is EMD-0409, downsampled to 45×45×45 and scaled to have norm 1. The

ground truth distribution of rotations ρ is also chosen the same way as in Section 2.4.2. We

then create moment estimators from N = 5×106 noisy observations with noise level σ = 0.5

using (3.15), where a neural slice approximates F2vj .

We run both MoM-net as well as our previous framework of Chapter 2, with learn-

ing rates 10−5, 10−6 and 10−7 successively for 2, 000 epochs each, to minimize the Kam

loss (3.13). The entire optimization process is repeated separately for different datasets for

the same volume and distribution of rotations, but with the standard deviation of shifts

being η = 0.0 (depicted in Figure 3.5), η = 2.0, and η = 4.0 (both depicted in Figure 3.6)

respectively. Table 3.2 shows the final Kam loss of our reconstructed volumes at the end of

our reconstruction.

Clearly, the aforementioned figures along with Table 3.2 demonstrate the superiority of

MoM-net over our previous framework, in presence of shifts in the data. We can see that

MoM-net produces much better reconstructions since it can estimate the shift level as well,

while our previous framework assumes the absence of shifts, hence producing much more
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η MoM-net Framework in Chapter 2

0.0 0.012 0.013
2.0 0.008 0.014
4.0 0.007 0.017

Table 3.2: Comparison of final Kam loss for MoM-net and our framework from Chapter 2,
after reconstruction phase, for three values of shift standard deviation η.

Figure 3.5: (Left) Ground truth volume EMD-0409. (Right) Volumes reconstructed using
MoM-net (in gray) and using the old framework of Chapter 2 (in yellow) for EMD-0409,
corresponding to shifts with η = 0.0. Images visualized using UCSF Chimera [53].

Figure 3.6: Volumes reconstructed using MoM-net (in gray) and using the old framework of
Chapter 2 (in yellow) for EMD-0409, corresponding to shifts with η = 2.0 (Left) and η = 4.0
(Right) respectively. Images visualized using UCSF Chimera [53].

blurry and low-resolution reconstructions. While the reconstruction quality of MoM-net also

suffers as η increases, but that is due to the loss of information regarding the volume that is

contained in the first two moments.

Finally, we also show that training ξθ in a supervised manner results in slightly faster

convergence than in the untrained scenario. We again choose the same volume and distri-
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bution of rotations, with η = 0.0 and run MoM-net in two scenarios: trained and untrained.

The logarithm of the corresponding Kam losses are plotted with respect to iterations in

Figure 3.7. While not very impressive, the trained scenario does save some iterations in the

reconstruction process.

Figure 3.7: Plot of logarithm of Kam loss during reconstruction in the trained vs untrained
scenarios, for EMD-0409 across 3000 iterations.

3.5 Summary

In this chapter, we have taken promising steps along two of the future lines of work underlined

in Section 2.5, namely, supervised learning of volumes for cryo-EM, and volume recovery in

a more general cryo-EM setting. Our neural network framework MoM-net takes the first

step in the integration of neural networks for solving moment systems in cryo-EM, where

we experimentally demonstrate that a map can be learned to take moments from a set

of datasets as inputs and produce the volumes, distribution of rotations, as well as shift
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variances as outputs. This gives us a near-instantaneous and cost-effective ab-initio estimate

of the underlying volume (albeit very low-dimensional) simply from the moments of a new

test dataset. We also show a potential usage of this map as a deep neural network prior to

expedite convergence in unsupervised reconstruction provided new observed moments.

It would be worth investigating some future directions stemming from this work. Par-

allelizing our model across multiple GPUs could lead to improved speed and accuracy, and

enable the handling of larger images. Third (and higher) order moments could be also used

to improve reconstruction. Improving the quality of the predicted volume via supervised

learning would also be extremely crucial, as this would lead to much faster convergence

during the reconstruction process. A possible method for the same might be the usage of

compressed moments during the training process, so that moments corresponding to larger

sized images can be used.

While we have tackled the setting allowing for small shifts to be present in our data,

real-world cryo-EM datasets also suffer from contamination due to aberrations, which re-

quire estimation of the CTF as well. Also present is conformational heterogeneity in the

underlying volume. Advanced algorithms such as those implemented in software like RE-

LION [44, 80] and cryoSPARC [56], are employed to distinguish between the different states

and accurately reconstruct each one separately. This approach enables the detailed study of

dynamic molecular machines and complexes, providing insights into their functional mecha-

nisms and conformational changes. While MoM-net deals with homogeneous reconstruction

for now, the ability to recover at least a finite number of conformations would be highly

desirable. By capturing the structural heterogeneity inherent in biological samples, this im-

provement would significantly enhance the applicability of MoM-net to real-world datasets.
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CHAPTER 4

ACCELERATING VARIANCE-REDUCED ERM AND EM

ALGORITHMS IN ORBIT RECOVERY SETTING USING

SECOND-ORDER INFORMATION

4.1 Introduction

In the last few chapters, we proposed methods to solve orbit recovery problems via MoM. In

this chapter, we look at another formulation of orbit recovery, i.e. as latent variable models,

which are an important class of models due to their wide applicability across machine learning

and statistics [35, 13]. Expectation Maximization (EM) [17] is a useful tool that is widely

used for maximum likelihood estimation for the parameters in latent variable models. It

is an iterative algorithm with two steps: an E-step which calculates the expectation of

sufficient statistics under the latent variable posteriors given the current parameters, and

an M-step which updates the parameters given the expectations. Another technique that

is often used is Empirical risk minimization (ERM), that directly minimizes the marginal

likelihood function, usually by deploying some variant of gradient descent. Both EM and

ERM can be accelerated using second-order information, with algorithms like Newton and

quasi-Newton methods [54, 38].

With the advent of large-scale datasets and complex models, these classical techniques

of ERM and EM often face challenges in terms of computational efficiency and scalabil-

ity. Stochastic optimization algorithms, such as stochastic gradient descent (SGD) [61] and

stochastic EM (sEM) [15], have gained popularity due to their ability to handle large datasets

and efficiently optimize complex objective functions by sampling the dataset at every itera-

tion. However, these methods may suffer from slow convergence rates and high variance in

parameter updates, particularly in non-convex and ill-conditioned cases.

To address these limitations, stochastic variance-reduced gradient (SVRG) [31] methods
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have been proposed as an effective alternative to traditional stochastic optimization algo-

rithms in case of ERM. SVRG leverages additional information from past iterates to reduce

the variance of stochastic gradients, thereby improving convergence rates and stability. Along

a similar vein, stochastic variance-reduced EM (sEM-vr) [16] method was introduced as an

alternative to traditional EM.

In this chapter, we analyse the usage of SVRG and sEM-vr along with their corresponding

second-order accelerations, to solve two orbit recovery problems: windowed multireference

alignment (MRA), and single particle cryo-EM modeling. SPA is a Nobel Prize-winning

area [19], which is now considered a widely popular method for determining the atomic-

resolution 3D structure of biological macromolecules, while windowed MRA is considered a

simpler variant of the same [81]. We also propose a quasi-Newton method of accelerating

sEM-vr and test it on simulated windowed MRA data.

4.2 The windowed multireference alignment model

Recall the general MRA model, (1.3), where A is the identity. Here, the unknown signal v is

defined on a unit, symmetric segment I = [−1
2 ,

1
2 ]. In other words, the signal is v : I → R,

which is further assumed to be a periodic, band-limited function. Let G be the group of

circular translations on I, i.e. the group whose elements sj shift v via

sj ◦ v := v(· − sj), (4.1)

where the difference is interpreted as modulo the segment, namely ·− sj is always in I. The

MRA problem can also be reformulated in the Fourier domain. Assuming absence of noise,

let v̂j be the Fourier transform of vj . Then in the Fourier domain, the shift sj becomes a
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phase, i.e.

v̂j(k) = exp(iksj)v̂(k), k ∈ [−π, π]. (4.2)

The signal vj is generally provided on n discretized points in I, where n is chosen to satisfy

its Nyquist frequency. Thus the frequency k has a natural bandlimit |k| ≤ π. In Fourier

domain, our observations become

v̂j(K1) = exp(iK1sj)⊙ v̂(K1), (4.3)

where we define K1 to be the set of n equispaced points in [−π, π].

In case of windowed MRA, the operator A is the windowing operator, which curtails

every general MRA observation to the first few positions. In real domain, let Rl be the

transformation that shifts vectors in Rn by l positions, while Wñ windows it, i.e. discards

all but the first ñ positions. In matrix notation,

Rl =

 0 Il

In−l 0

 , Wñ =

[
Iñ 0

]
.

For the complex domain, define Fn ∈ Cn×n as the matrix representation of a normalized

Fourier transform where F ∗
nFn = In. Since the window length ñ is fixed for a given problem,

for ease of notation we define the complex windowing operator R̃l ∈ Cñ×n as

R̃l = FñWñRlF
∗
n .

For our observations in the windowed MRA model, let Kn
1 and Kñ

1 be the set of n and
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ñ equispaced points between [−π, π] respectively. Then, we have

v̂j(K
ñ
1 ) = R̃lv̂j(K

n
1 ). (4.4)

4.3 Empirical Risk Minimization (ERM)

In this section we briefly explain methods of empirical risk minimization, which focuses on

minimizing the marginal likelihood function directly. Let f1, f2, . . . , fn be vector valued

functions from Rd to R. Then, the goal is to find

min
w∈Rd

F (w), where F (w) =
1

n

n∑
i=1

fi(w)

For orbit recovery problems, the functions f1, f2, . . . , fn are typically the likelihood func-

tions corresponding to a dataset of n observations v1, v2, . . . , vn, i.e. for any 1 ≤ i ≤ n, fi(w)

is the model likelihood of parameter w ∈ Rd when vi is observed.

4.3.1 Gradient descent

Gradient descent (GD) [61] is one of the foundational methods for unconstrained optimiza-

tion, known for its simplicity. It follows the following update rule for t ∈ N,

wt = wt−1 − ηt∇F (wt−1) = wt−1 −
ηt
n

n∑
i=1

∇fi(wt−1), (4.5)

where ηt is a step size chosen at every iteration. Gradient descent thus works by taking

steps along the direction of steepest descent in the optimization landscape.

One issue with gradient descent is that the calculation of ∇F requires calculating n

gradients ∇fi, which is very expensive for large n. Hence, a popular stochastic modification
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of GD is stochastic gradient descent (SGD) [61], also known as mini-batch gradient descent.

It follows the following update rule for t ∈ N,

wt = wt−1 −
ηt
m

∑
i∈It

∇fi(wt−1), (4.6)

where ηt is again a step size, while It ⊂ {1, 2, . . . , n} is a index set of fixed cardinality

m < n chosen randomly without replacement at iteration t. The main advantage of SGD

over GD is the fact that only m gradients are being calculated at every iteration. In practice

we typically take m ≪ n, which makes every individual iteration a lot faster than that

of gradient descent. The disadvantage, however, is that the variance introduced by the

randomness of the chosen mini-batch slows down convergence near the minima. Smaller the

value of m, higher the variance of the stochastic gradient 1
m

∑
i∈It ∇fi(wt−1). While in GD

we get linear convergence if we set ηt = η as long as η is sufficiently small, in SGD we need

to pick ηt = O(1t ) and even that gives us a sub-linear convergence rate of O(1t ). Inspite of

this disadvantage, SGD enjoys widespread use in ERM today especially in situations where

we want to come reasonably close to the minima, but do not care about its exact value.

4.3.2 Stochastic variance reduced gradient (SVRG) method

Stochastic variance reduced gradient (SVRG) method [31] is a hybrid technique leveraging

the characteristics of both GD as well as SGD, which reduces the variance of the the param-

eter updates at every epoch and hence achieves faster convergence. In the start of the sth

epoch in SVRG, the full gradient ∇F is computed at the snapshot w̃s−1, which is updated

in every epoch. The SVRG gradient estimator at iteration t of epoch s is defined as
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gt =
1

b

∑
i∈It

∇fi(wt−1)−
1

b

∑
i∈It

∇fi(w̃s) +∇F (w̃s−1), (4.7)

which has a lower variance than the gradient estimator in case of SGD, i.e. 1
b

∑
i∈It ∇fi(wt−1).

Unlike SGD, for SVRG the step size ηt is not required to decay in order to achieve conver-

gence. This leads to faster convergence, which was shown to be linear in [31]. Our imple-

mentation of SVRG in this chapter is one of its variants called VR-SGD proposed in [65],

which we then modified to work on mini-batches instead of a single datum in every iteration.

The procedure is described in Algorithm 1.

Algorithm 1 SVRG
Input: Data, initial w̃0, number of epochs S, number of iterations m every epoch, mini-

batch size b, step size η.
1: for s = 1, 2, . . . , S do
2: µ̃s−1 = ∇F (w̃s−1) =

1
n

∑n
i=1∇fi(w̃s−1)

3: w0 = w̃s−1
4: for t = 1, 2, . . . ,m do
5: Pick It ⊂ {1, 2, . . . , n} randomly without replacement, with |It| = b.
6: gt =

1
b

∑
i∈It ∇fi(wt−1)− 1

b

∑
i∈It ∇fi(w̃s−1) + µ̃s−1

7: wt = wt−1 − ηgt
8: end for
9: w̃s =

1
m

∑m
t=1wt

10: end for
Output: w̃S

We specifically chose VR-SGD not only due to its superior performance over the original

implementation of SVRG, but also because the objective function converges to the minima

in a very smooth linear manner every epoch. This makes it perform better empirically when

accelerated via incorporating second-order information.
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4.3.3 Subsampled Newton acceleration of SVRG

Second-order methods such as the Newton method incorporate curvature information, and

significantly improves convergence of ERM algorithms. However, calculating and inverting

the Hessian matrix involves high computational cost and memory. Thus, subsampling the

Hessian is often preferred to ease computational burden. The challenge is to incorporate

second-order information for acceleration in stochastic setting.

SVRG+I [34] focuses on incorporating an approximation of the curvature information

using subsampled hessian, to accelerate SVRG. [21] showed that subsampled Hessian can

capture accurate information only along high curvature directions. Since the estimation of

curvature in the low curvature directions is very inaccurate, they proposed thresholding the

low singular values to stabilize the estimate, resulting in conservative steps in the estimated

low curvature directions.

The subsampling and thresholding of Hessian at point w in SVRG+I works as follows: for

a sample I ⊂ {1, 2, . . . n} with |I| = B chosen randomly without replacement, calculate the

subsampled hessian 1
B

∑
i∈I ∇2fi(w), whose singular values we shall denote by σ1, . . . , σd in

descending order. For a given r, let the diagonal matrix Σr ∈ Rr×r contain the top r singular

singular values of the subsampled hessian, while Qr ∈ Rd×r contains the corresponding

singular vectors. Then the estimator for the inverse of the Hessian at w after thresholding,

is given by

Ĥ−1
s−1 = Qr

(
Σ−1
r − 1

σr+1Ir

)
Q′
r +

1

σr+1
Id, (4.8)

This makes Ĥ−1
s−1 the subsampled Hessian whose singular values from σr+2 to σd are set

to be equal to σr+1.

The entire procedure is described in Algorithm 2. In the beginning of every epoch, the

58



subsampled hessian is calculated at the snapshot w̃s−1 using (4.8), and in every iteration of

that particular epoch, the parameter estimates are updated by descending along the direction

of −Ĥ−1
s−1gt, where gt is the SVRG gradient estimator from (4.7). Once again, we have made

minor changes in our implementation by assigning the average of the parameter updates over

an entire epoch as the update to the snapshot of the next epoch, as in VR-SGD.

Algorithm 2 SVRG+I
Input: Data, initial w̃0, number of epochs S, number of iterations m every epoch, mini-

batch size b, batch size B for subsampling Hessian, number of singular values r for
thresholding, step size η.

1: for s = 1, 2, . . . , S do
2: µ̃s−1 = ∇F (w̃s−1) =

1
n

∑n
i=1∇fi(w̃s−1)

3: Pick IHs ⊂ {1, 2, . . . , n} randomly without replacement, with |IHs | = B.

4: Calculate Ĥ−1
s−1(w̃s−1) and threshold using (4.8) corresponding to IHs and r.

5: w0 = w̃s−1
6: for t = 1, 2, . . . ,m do
7: Pick It ⊂ {1, 2, . . . , n} randomly without replacement, with |It| = b.
8: gt =

1
b

∑
i∈It ∇fi(wt−1)− 1

b

∑
i∈It ∇fi(w̃s−1) + µ̃s−1

9: wt = wt−1 − ηĤ−1
s−1gt

10: end for
11: w̃s =

1
m

∑m
t=1wt

12: end for
Output: w̃S

4.3.4 Quasi-Newton acceleration of SVRG

Instead of subsampled Hessian, SVRG+II [34] uses the popular LBFGS method (see [48])

for the Hessian approximation to accelerate SVRG. The advantage of SVRG+II is that not

only do we not have to compute a subsampled Hessian, we do not have to invert it either.

The estimate for the inverse Hessian, Ĥs−1, is calculated in epoch s using the curvature
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information pair (∆w̃s−2,∆µ̃s−2), where

∆w̃s−2 = w̃s−1 − w̃s−2,

∆µ̃s−2 = µ̃s−1 − µ̃s−2, (4.9)

respectively encapsulate the epoch-to-epoch change in the snapshot w̃, as well the full gra-

dient computed at the same. Then, Ĥs−1 is updated via the popular BFGS formula

Ĥs−1 =

(
I −

∆w̃s−2∆µ̃
T
s−2

∆w̃Ts−2∆µ̃s−2

)
Ĥs−2

(
I −

∆µ̃s−2∆w̃
T
s−2

∆µ̃Ts−2∆w̃s−2

)
+

∆w̃s−2∆w̃
T
s−2

∆µ̃Ts−2∆w̃s−2
(4.10)

The parameter estimates are updated every iteration in epoch s by descending along

the direction −Ĥs−1gt, where gt is the SVRG gradient estimator from (4.7). The entire

procedure is described in Algorithm 3.

Algorithm 3 SVRG+II
Input: Data, initial w̃0, number of epochs S, number of iterations m every epoch, mini-

batch size b, step size η.
1: Run one epoch of SVRG to obtain w̃1 (and by extension, µ̃0).
2: Initialize Ĥ0 to be the identity matrix.
3: for s = 2, 3, . . . , S do
4: µ̃s−1 = ∇F (w̃s−1) =

1
n

∑n
i=1∇fi(w̃s−1)

5: ∆w̃s−2 = w̃s−1 − w̃s−2
6: ∆µ̃s−2 = µ̃s−1 − µ̃s−2

7: Ĥs−1 =

(
I − ∆w̃s−2∆µ̃

T
s−2

∆w̃T
s−2∆µ̃s−2

)
Ĥs−2

(
I − ∆µ̃s−2∆w̃

T
s−2

∆µ̃Ts−2∆w̃s−2

)
+

∆w̃s−2∆w̃
T
s−2

∆µ̃Ts−2∆w̃s−2

8: w0 = w̃s−1
9: for t = 1, 2, . . . ,m do

10: Pick It ⊂ {1, 2, . . . , n} randomly without replacement, with |It| = b.
11: gt =

1
b

∑
i∈It ∇fi(wt−1)− 1

b

∑
i∈It ∇fi(w̃s) + µ̃s−1

12: wt = wt−1 − ηĤs−1gt
13: end for
14: w̃s =

1
m

∑m
t=1wt

15: end for
Output: w̃S
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4.4 Expectation Maximization (EM)

The expectation maximization algorithm is designed for models with some observed variable

x and unobserved latent variable z. The setting is the following. Suppose a dataset of n

observations X = {xi}1≤i≤n is provided to us, while the corresponding hidden variables

Z = {zi}1≤i≤n are unobserved. The pairs (xi, zi) are assumed to be i.i.d.. Our goal then,

is to find the maximum likelihood estimate of the parameter w ∈ Rd, by maximizing the

marginal log-likelihood

F (w) =
n∑
i=1

log p(xi;w) =
n∑
i=1

log

∫
hi

p(xi, hi;w)dhi,

which is often considered intractable.

4.4.1 EM

The EM algorithm finds the MLE of the marginal log-likelihood by iteratively applying the

two steps:

• Expectation step: Define

Q(w|wt) = EZ∼p(.|X,wt)

(
log p(X,Z|w)

)
, (4.11)

i.e., let Q(w|wt) be the expected value of the log-likelihood with respect to the current

conditional distribution of Z given X and the current parameter estimate wt.

• Maximization step: wt+1 = argmaxwQ(w|wt).

These two steps can be combined into one function and presented in a concise manner.
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Define

Ψ(w) = argmax
w

EZ∼p(.|X,wt)

(
log p(X,Z|w)

)
, (4.12)

then, the EM update at parameter w becomes

wt+1 = Ψ(wt). (4.13)

The EM algorithm typically converges linearly [42]. Unlike gradient descent and its

variants, EM algorithm does not have a tunable hyperparameter like step size. Analogous to

SGD, stochastic EM (sEM) was proposed in [15] which possesses both the pros and cons of

SGD. In iteration t of the mini-batch variant of sEM, an index set It ⊂ {1, 2, . . . , n} of fixed

cardinality m≪ n is sampled randomly without replacement, and the parameter is updated

via

wt+1 = ψIt(wt), (4.14)

where

ψIt(w) = argmax
w

EZ∼p(.|{xi}i∈It ,wt)

(
log p({xi}i∈It , {zi}i∈It|wt)

)
. (4.15)

It enjoys much faster initial convergence due to cheap updates, but the convergence rate,

like SGD, falls to at best O(1t ) near the minima with a decaying step size [15].

4.4.2 Variance reduced stochastic expectation maximization (sEM-vr) method

The variance reduced stochastic expectation maximization (sEM-vr) algorithm was intro-

duced in [16] to leverage advantages of both EM and sEM, and has a lot of similarities with

SVRG. The main similarity is that the EM step wt − wt+1 can be viewed as an analogue
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of the gradient in ERM. In particular, for an index set It of cardinality b, wt − ψIt(wt) in

sEM is an analogue for 1
b

∑
i∈It ∇fi(wt) in SGD. Similarly, wt − Ψ(wt) in EM is an ana-

logue for ∇F (wt) in GD. Thus, a variance reduced gradient analogue of (4.7) for expectation

maximization, would be

(wt−1 − ψIt(wt−1))− (w̃s−1 − ψIt(w̃s−1)) + (w̃s−1 −Ψ(w̃s−1))

which simplifies to

(wt−1 − ψIt(wt−1)) + ψIt(w̃s−1)−Ψ(w̃s−1) (4.16)

The sEM-vr update in (4.16) can be shown to have a lower variance than that of sEM.

The main procedure of sEM-vr closely follows that of SVRG. At the start of the sth epoch,

the EM update on the full data is computed at the snapshot w̃s−1, which is updated in every

epoch. In iteration t of epoch s, the parameter wt is updated by descending opposite to the

direction of (4.16) with a step size of η. The entire procedure is described in Algorithm 4.

Algorithm 4 sEM-vr
Input: Data, initial w̃0, number of epochs S, number of iterations m every epoch, mini-

batch size b, step size η.
1: for s = 1, 2, . . . , S do
2: Compute and save Ψ(w̃s−1) for current epoch.
3: w0 = w̃s−1
4: for t = 1, 2, . . . ,m do
5: Pick It ⊂ {1, 2, . . . , n} randomly without replacement, with |It| = b.
6: wt = wt−1 − η

(
(wt−1 − ψIt(wt−1)) + ψIt(w̃s−1)−Ψ(w̃s−1)

)
7: end for
8: w̃s =

1
m

∑m
t=1wt

9: end for
Output: w̃S
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4.4.3 Quasi-Newton acceleration of sEM-vr

A subsampled Hessian-based acceleration of sEM-vr is not directly possible, since the EM up-

date can have a jacobian matrix which may not even be symmetric. However, a quasi-Newton

acceleration of sEM-vr is indeed possible, following the same spirit as that of SVRG+II. Us-

ing the analogues of gradient in EM case as mentioned in Section 4.4.2, SVRG+II can be

naturally modified to act as a quasi-Newton acceleration of sEM-vr, which we shall refer to

as sEM-vr+QN. To the best of our knowledge, this is an original contribution.

Defining µ̃s−1 := Ψ(w̃s−1), the estimate for the inverse Hessian, Ĥs−1, is calculated in

epoch s using the curvature information pair (∆w̃s−2,∆µ̃s−2), as defined in (4.9). Ĥs−1

is then updated via the BFGS formula (4.10). Parameter estimates are updated every

iteration in epoch s by descending along the direction −Ĥs−1gt, where gt is the sEM-vr

update direction from (4.16). The sEM-vr+QN procedure is described in Algorithm 5.

Algorithm 5 sEM-vr+QN
Input: Data, initial w̃0, number of epochs S, number of iterations m every epoch, mini-

batch size b, step size η.
1: Run one epoch of sEM-vr to obtain w̃1 (and by extension, µ̃0 := Ψ(w̃0)).
2: Initialize Ĥ0 to be the identity matrix.
3: for s = 2, 3, . . . , S do
4: Compute and save µ̃s−1 := Ψ(w̃s−1) for current epoch.
5: ∆w̃s−2 = w̃s−1 − w̃s−2
6: ∆µ̃s−2 = µ̃s−1 − µ̃s−2

7: Ĥs−1 =

(
I − ∆w̃s−2∆µ̃

T
s−2

∆w̃T
s−2∆µ̃s−2

)
Ĥs−2

(
I − ∆µ̃s−2∆w̃

T
s−2

∆µ̃Ts−2∆w̃s−2

)
+

∆w̃s−2∆w̃
T
s−2

∆µ̃Ts−2∆w̃s−2

8: w0 = w̃s−1
9: for t = 1, 2, . . . ,m do

10: Pick It ⊂ {1, 2, . . . , n} randomly without replacement, with |It| = b.
11: wt = wt−1 − ηĤs−1

(
(wt−1 − ψIt(wt−1)) + ψIt(w̃s−1)− µ̃s−1

)
12: end for
13: w̃s =

1
m

∑m
t=1wt

14: end for
Output: w̃S
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4.5 Numerical experiments

Notice that from (1.3), the negative log-likelihood of an unknown function v is given by

F (v) = − 1

N

N∑
j=1

log

∫
g∈G

exp

{
− 1

2σ2

∥∥∥A(gj ◦ v)− vj

∥∥∥2} ρ(g),
=

1

N

N∑
j=1

fj(v), (4.17)

where fj is the negative log-likelihood corresponding to a single observation vj . Clearly,

this fits into the ERM setting described in the beginning of Section 4.3. Also, observe that

the N observations vj correspond to unobserved latent variables gj . This also makes orbit

recovery problems fit into the EM setting described in the beginning of Section 4.4. In the

next two subsections, we conduct numerical experiments for windowed MRA and cryo-EM

case, where we compare the various methods for ERM and EM.

4.5.1 Windowed multireference alignment

Let v̂ ∈ Cñ be a given observation from the windowed multireference alignment model. The

negative log-likelihood of w = [x̂, ρ]T is given by

f(w) = − log
n−1∑
l=0

exp

{
log ρ[l]− 1

2σ2

∥∥∥R̃lx̂− v̂
∥∥∥2} , (4.18)

where x̂ ∈ Cn is a signal, and ρ ∈ Rn is a density vector of shifts, i.e. the probability

mass function. Clearly
∑N
i=1 ρ[i] = 1, i.e. ρ lies on the positive orthant of the N -dimensional

1-norm unit sphere SN1 . However, in all the ERM methods, after an update in any itera-

tion, there is no guarantee that the updated ρ will also be an element of SN1 . Hence we
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reparameterize ρ by

ρ = softmax(ρ̃)

for some ρ̃ ∈ RN .

The gradient of f with respect to x̂ is given by

∇x̂f(x̂) =
1

σ2

R̃∗
0(R̃0x̂− v̂)

...

 softmax


log(softmax(ρ̃))[0]− 1

2σ2

∥∥∥R̃0x− v̂
∥∥∥2

...


 ,

while that with respect to ρ̃ is given by

∇ρ̃f(ρ̃) = (diag(ρ̃)− ρ̃ρ̃T ) diag(softmax(ρ̃))−1

× softmax


log(softmax(ρ̃))[0]− 1

2σ2

∥∥∥R̃0x− v̂
∥∥∥2

...


 .

Using f and ∇f , we can calculate the updates of gradient descent, SVRG, and SVRG+II

for windowed MRA. The hessian for SVRG+I can be calculated using autograd.

Similar calculations can be done for the EM algorithm in case of windowed MRA. The

log posterior (up to a constant) is given by

log p
(
{v̂j}j≤N , {ŝj}j≤N |w

)
=

N∑
j=1

[
log softmax(ρ̃)[sj ]−

1

2σ2

∥∥∥R̃sj x̂− v̂j

∥∥∥2] ,
where w = [x̂, ρ̃]T , and sj are the hidden variables, i.e. the shifts corresponding to the

observations x̂j .

As per (4.12), the EM update is given by
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Ψ(wt) = argmax
w

Es∼p(.|{v̂j},wt)

(
log p({v̂j}, {ŝj}|w)

)
,

= argmax
x̂, ρ̃

N∑
j=1

n−1∑
l=0

ω
l,j
t

[
log softmax(ρ̃)[l]− 1

2σ2

∥∥∥R̃lx̂− v̂j

∥∥∥2] , (4.19)

where

ω
l,j
t = P

(
sj =

2πl

n

∣∣∣ {v̂j}, wt)
= softmax

(
log softmax(ρ̃t)[l]−

1

2σ2

∥∥∥R̃lx̂t − v̂j

∥∥∥2) . (4.20)

Solving for the argmax in (4.19) gives us that

x̂t+1 =

 N∑
j=1

n−1∑
l=0

ω
l,j
t R̃∗

l R̃l

−1 N∑
j=1

n−1∑
l=0

ω
l,j
t R̃∗

l v̂j

 ,

ρ̃t+1[l] = log

 ∑N
j=1 ω

l,j
t∑N

j=1

∑n−1
k=0 ω

k,j
t

 , ∀ 0 ≤ l ≤ n− 1.

Notice that ωl,jt is a function of x̂t and ρ̃t. The aforementioned EM updates for windowed

MRA are also used in sEM-vr and sEM-vr+QN.

For our experiments with windowed MRA, we took a Gaussian pulse with N = 16 as

the ground truth signal, and rescaled it to have norm 1. The window length is taken to

be 12, while the distribution of shifts were taken to be a mixture of two Gaussians. 3000

observations are taken from this model and Gaussian noise with σ = 0.2 is added to them.

The signal and histogram of shifts can be seen in Figure 4.1. The convergence plots of our

discussed methods for ERM are plotted in Figure 4.2, while those for EM and its variants

are plotted in Figure 4.3.

|F − F∗| and |Ψ−Ψ∗| are plotted along the y-axes of these convergence plots in common
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logarithmic scale, for ERM and EM respectively. The global minimas F∗ (respectively Ψ∗)

is obtained by running SVRG+II (respectively sEM-vr+QN) until convergence. Along the

x-axis, we plot the number of cost-weighted epochs and wall-clock time in seconds. The

cost-weighting of epochs is done on the basis of the number of effective passes through the

entire dataset. For example, each epoch of GD requires 1 pass through the dataset, while for

SVRG, the number of effective passes is 1+ mb
N , where m and b are the number of iterations

per epoch and the batch size respectively. SVRG+II requires the same number of effective

passes as SVRG, while for SVRG+I it is 1 + nB+mb
N , with n and B being the dimension

of the parameter and the batch size for subsampling the Hessian respectively. The cost per

epoch can be calculated accordingly for variants of EM. After reweighting according to cost,

the number of cost-weighted epochs and wall-clock time till convergence (or until stopping

criterion is reached) is also recorded and displayed in Tables 4.1 and 4.2 for ERM and

EM respectively, where a method is said to have converged if the objective at 2 consecutive

epochs differ by less than 10−14.

We observe from Figure 4.2 and Table 4.1 that for ERM, SVRG has a visibly faster rate

of convergence than GD. However, SVRG+I does not perform any acceleration over SVRG,

instead, is actually slower. None of them converged until maximum stipulated number of

cost-weighted iterations (i.e. 14000) were reached. SVRG+II was the fastest, and converged

in 821 cost-weighted epochs. From Figure 4.3 and Table 4.2 that for EM, we see that

similar pattern holds for EM. While all three of the tested methods converge in a reasonably

short time in comparison to ERM, sEM-vr+QN and sEM-vr still outperform the usual EM

algorithm.

4.5.2 Cryo-EM

For the cryo-em scenario, we shall limit ourselves to ERM and assume that the true density

of rotations is known. Let v̂0(K2) ∈ Cn×n be a given cryo-EM image, i.e. observation, with
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Figure 4.1: Plots of the signal to be estimated (left) and known distribution of shifts (right).

Figure 4.2: Convergence plots of |F−F∗| with respect to cost-weighted epochs (left) and wall-
clock time (right), for ERM and its variants in case of windowed multireference alignment
of the signal and distribution of shifts shown in Figure 4.1.

Methods Cost-weighted epochs Wall-clock time

GD 14000+ 3500+
SVRG 14000+ 3500+

SVRG+I 14000+ 3500+
SVRG+II 821 217

Table 4.1: Number of cost-weighted epochs and wall-clock time (in seconds) till convergence,
for ERM methods in case of windowed multireference alignment of the signal and distribution
of shifts shown in Figure 4.1.

K2 being a grid of n2 equispaced points on [−π, π]2. Then, following (4.17), the negative

log-likelihood of the volume v̂ is given by
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Figure 4.3: Convergence plots of |Ψ − Ψ∗| with respect to cost-weighted epochs (left) and
wall-clock time (right), for EM and its variants in case of windowed multireference alignment
of the signal and distribution of shifts shown in Figure 4.1.

Methods Cost-weighted epochs Wall-clock time

EM 3078 85
sEM-vr 392 53

sEM-vr+QN 188 34

Table 4.2: Number of cost-weighted epochs and wall-clock time (in seconds) till convergence,
for EM-based methods in case of windowed multireference alignment of the signal and dis-
tribution of shifts shown in Figure 4.1.

f(v̂) = − log

∫
x∈SO(3)

exp

{
− 1

2σ2

∥∥∥S ◦Rj ◦ v̂(K2)− v̂0(K2)
∥∥∥2} ρ(x), (4.21)

where ρ : SO(3) → [0, 1] is a density function on the space of 3D rotations.

In this section, we aim to re-purpose our MRA calculations to fit the cryo-EM scenario.

For that purpose, we have two challenges:

• We need to approximate the integration in (4.21) so that our windowed MRA calcula-

tions are applicable with minimal changes.

• We need a good way to parameterize the volume v̂ such that the slices S ◦Rj ◦ v̂(K2)
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can be calculated easily.

To address the first point, we approximate the integral in (4.21) using the quadrature rule.

We use the two-step process underlined in Section 2.4.2 for selecting a good set Q ⊂ SO(3)

on which we use a quadrature rule with uniform weights. First we chose a q1-point spherical

design (see [75]) on S2. Next, for every point of the design, treating the axis connecting the

center to that point as a viewing direction, we take in-plane rotations with q2 equispaced

angles in [0, 2π) radians. We thus obtained a set Q with |Q| = q1q2 quadrature points on

SO(3). For our purposes, let us denote the quadrature points as {Rquadk }1≤k≤Q. Thus, the

discrete approximation of (4.21) becomes

f(v̂) = − log

Q∑
j=1

exp

{
− 1

2σ2

∥∥∥S ◦Rquadj ◦ v̂(K2)− v̂0(K2)
∥∥∥2} ρ(Rquadj

)
. (4.22)

As for the second point, it is convenient to represent the Fourier volume using a steerable

basis, i.e. a function space that is closed under rotations. A popular such way is by using a

combination of spherical harmonics and the spherical Bessel basis (see [66, 9]), as described

in Section 3.3. Recall that a band-limited Fourier volume v̂ can be expanded to degree L as

v̂(k, θ, ϕ) ≈
L∑
l=0

l∑
m=−l

S(l)∑
s=1

Al,m,sFl,s(k)Y
m
l (θ, ϕ), (4.23)

where k is the radial frequency, Yml are complex spherical harmonics, and Fl,s are the

spherical Bessel functions [4]. Since our goal is low-resolution modeling, we can choose to

limit L and Sl in order to reduce computational requirements. Al,m,s are therefore, the

parameters we need to estimate in order to recover the volume.
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Enumerating the three summations in (4.23) as a single sum, we can rewrite it as

v̂(kx, ky, kz) ≈
L̃∑
p=0

wp Ỹp(kx, ky, kz), (kx, ky, kz) ∈ [−π, π]3, (4.24)

where wp and Ỹp(kx, ky, kz) correspond to a specific Al,m,s and Fl,s(k)Yml (θ, ϕ) respectively,

with (k, θ, ϕ) being the spherical coordinate representation of (kx, ky, kz). Therefore we have

from (4.22), that for all j ∈ {1, 2, . . . , Q},

S ◦Rquadj ◦ v̂(K2) ≈
L̃∑
p=0

wp S ◦Rquadj ◦ Ỹp(K2)

:= Mjw,

where w =
[
w0, w1, . . . , wL̃

]T
∈ CL̃ and Mj ∈ Cn2×L̃ is a matrix whose pth column is

S ◦Rquadj ◦ Ỹp(K2). Note that Mjs are known matrices that are calculated and fixed before

reconstruction, hence w is the only parameter representing the volume to be estimated.

(4.22) therefore becomes

f(w) = − log

Q∑
j=1

exp

{
log ρ[j]− 1

2σ2

∥∥∥Mjw − v̂0(K2)
∥∥∥2} , (4.25)

where by abuse of notation, ρ ∈ CQ is a vector whose jth coordinate is ρ
(
R
quad
j

)
. This

form is practically identical to that of (4.18) for windowed MRA, hence the gradient can be

calculated similarly.

For our experiments, we take q1 = 100 and q2 = 12 for a total of |Q| = 1200 quadrature

points. The parameters for spherical harmonic representation of the volume are taken as

L = 3, S(l) = 4. Note that since our Fourier volume is the Fourier transform of a real volume,
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Figure 4.4: Low-dimensional representation of mixture of 6 Gaussians

it is conjugate symmetric. This puts a lot of restrictions on Al,m,s in (4.23), effectively

reducing the dimensionality of the problem to L̃ = 40. The volume we consider is a spherical

harmonic representation of a mixture of 6 Gaussians. For this volume, we generate N = 3600

cryo-EM image observations of size 15 × 15 with respect to uniform distribution on SO(3),

with an SNR of approximately 0.34. The volume is depicted in Figure 4.4, while two sample

observations (one clean and one noisy) are displayed in Figure 4.5. The convergence plots

of our discussed methods for ERM (except SVRG+I) are plotted in Figure 4.6. We have

omitted SVRG+I since its performance is not competitive with the unaccelerated SVRG, as

observed in case of MRA.

We observe from Figure 4.2 and Table 4.1 that for ERM, SVRG and SVRG+II again

outperform GD, with SVRG+II being the fastest.

4.6 Conclusion

In this chapter, we have experimented with the application and development of variance-

reduced methods for accelerating variance-reduced EM and ERM in the context of orbit
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Figure 4.5: A clean (left) and a noisy sample observation (right), for testing accelerated
ERM methods.

Figure 4.6: Convergence plots of |F − F∗| with respect to cost-weighted epochs (left) and
wall-clock time (right), for ERM and its variants in case of cryo-EM reconstruction of the
volume in Figure 4.4.

Methods Cost-weighted epochs Wall-clock time

GD 2000+ 1500+
SVRG 1139 942

SVRG+II 790 713

Table 4.3: Number of cost-weighted epochs and wall-clock time (in seconds) till convergence,
for ERM-based methods in case of cryo-EM reconstruction of the volume shown in Figure 4.4.
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recovery problems, leveraging second-order information. Even first-order variance-reduced

(VR) methods display evident superior performance in comparison to traditional ERM and

EM algorithms. By incorporating curvature information, our methods are shown to often

achieve further computational efficiency and enhanced convergence rates compared to tradi-

tional first-order VR and non-VR methods.

Our experimental results on simulated datasets of two classes of orbit recovery problems,

namely multireference alignment and cryo-EM, is a proof-of-concept demonstration that

these variance-reduced algorithms of both first as well as second-order outperform their

unaccelerated counterparts. Further research is required to establish superiority of these

methods in high-dimensional settings typical of cryo-EM. We have also proposed a method

for quasi-Newton acceleration of sEM-vr, which according to our experiments outperform

the first-order variant in windowed MRA setting.

In conclusion, the integration of second-order information and variance reduction in EM

and ERM algorithms represents a significant advancement in the field of statistical estima-

tion. The promising results obtained in orbit recovery settings suggest that these methods

can be effectively applied to a wide range of other inverse problems, which could be also

be explored in future work. This would offer a robust tool for researchers and practitioners

seeking to enhance the performance of their analytical models. Additionally, further refine-

ment of these algorithms could involve adaptive schemes that dynamically adjust the use

of second-order information based on the problem’s characteristics, potentially offering even

greater efficiency and robustness.
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CHAPTER 5

FINAL THOUGHTS

Single-particle cryo-EM is a prominent method for determining the atomic-resolution 3D

structure of biological macromolecules. This technique underwent a “resolution revolution”

a decade ago [36], and three of its pioneers were awarded the 2017 Nobel Prize in Chem-

istry [19]. Over the past few years, cryo-EM has provided researchers with access to some of

the molecules’ smallest and most essential building blocks. One of its simpler versions, known

as the multireference alignment problem, is also of interest in areas like signal processing.

Broadly speaking, our primary contribution this thesis is two-fold:

• We developed deep neural network-based frameworks for solving moment systems in

orbit recovery problems, which both cryo-EM and multireference alignment fall under.

• We achieved faster convergence while solving orbit recovery problems via maximum

likelihood estimation by applying variance reduced methods, which we then further

accelerated by using second-order information.

For both multireference alignment as well as cryo-EM, we showed that a map can be

learned to take moments of orbit recovery observations as input and output the underlying

signal/volume and density of group elements. We then developed novel neural network

architectures to learn this map in a supervised manner. This enables us to obtain us a near-

instantaneous and cost-effective preliminary estimate of the underlying signal/volume. This

map was then used as a deep neural network prior to accelerate convergence in unsupervised

reconstruction when provided moments from a previously unseen dataset. The setting of

cryo-EM that we dealt with, was a general one which allowed for small translations in the

data images. We named the pipeline for dealing with this general cryo-EM setting MoM-net.

The biggest advantage of our neural network framework for MoM, is feasibility of super-

vised learning of the inversion map. If we had to directly learn the map from the set of cryo-
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EM datasets to the set of underlying structures, it would have been completely intractable

given the massive sizes of cryo-EM datasets. Any method aiming to learn this inversion map

would have to find some statistics from a dataset that encapsulates enough information to

recover the volume, otherwise supervised training would be impossible. Our framework uses

moments to encapsulate the necessary information from datasets, hence making supervised

training possible. Apart from this, the method of moments itself offers benefits like noise

resilience and scalability, requiring only a single pass over the entire dataset. A big drawback

of our framework is that it can only recover the underlying signals/volumes on the basis of

the information captured in the low-order moments, which in case of cryo-EM, is often not

enough to obtain a high-resolution reconstruction. Other issues include the ill-posed nature

of the problem. While this issue is somewhat alleviated by using the “good” initialization pro-

vided by the neural network prior, the reconstruction process can still get stuck in spurious

local minimas in the optimization landscape.

We then changed frameworks and explored the application of variance-reduced empir-

ical risk minimization (ERM) and expectation maximization (EM) methods to carry out

maximum likelihood estimation in the context of orbit recovery problems. We showed that

the first-order variance-reduced (VR) counterparts of traditional ERM and EM algorithms

exhibit superior performance in comparison to them. Incorporation of second-order infor-

mation led to even further acceleration in convergence of the same. We also proposed a

quasi-Newton acceleration method for stochastic variance-reduced expectation maximization

(sEM-vr), which outperforms the first-order sEM-vr in windowed multireference alignment

setting.

A potential next step for the work done in this thesis would be to develop a complete

pipeline for high-resolution reconstruction in orbit recovery problems. To elaborate, when

provided with an unknown dataset, our pipeline should be able to generate ab-initio recon-

structions from moments of the data (expedited using a trained neural network) along the
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lines of Chapters 2 and 3, and then further refine them using variance reduced algorithms

to provide high resolution reconstructions of the underlying signal/volume, along the lines

of Chapter 4. Several challenges would need to be addressed for this to come to fruition:

• Improving the resolution of the preliminary predicted volume via supervised learning

would be desirable since this would lead to faster convergence during the ab-initio

reconstruction process. Parallelizing the model on multiple GPUs, along with the

usage of compressed moments during the training process could be explored, so that

moments corresponding to larger sized images, or even higher order moments, can be

used.

• Our experiments using variance-reduced methods mainly focused on low dimensional

signals and volumes. However, if we were to use these methods to optimize the large

number of parameters of MoM-net, it is certain that further experimentation is required

in high-dimensional scenarios first to verify that our results hold.

Another avenue of research involves addressing conformational heterogeneity in the un-

derlying volume for cryo-EM. Softwares such as RELION [44, 80] and cryoSPARC [56] are

able to differentiate between various states and reconstruct each one with precision, but

they do not exploit the advantages of the method of moments. Currently, MoM-net fo-

cuses on homogeneous reconstruction, but the capability to recover a limited number of

conformations would be highly beneficial. Capturing the structural heterogeneity inherent

in biological samples would significantly expand the practical applicability of MoM-net to

real-world datasets.
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APPENDIX A

ARCHITECTURE OF NEURAL NETWORKS

In this appendix, we describe the details of the NN for both MRA and cryo-EM in Chapters 2

and 3. To facilitate the discussion, we first define conv1Dw,c to be a 1D convolutional layer

with periodic padding, kernel window size w and channel number c. In a similar way, we also

denote a 2D convolutional layer with window size w×w and channel number c as conv2Dw,c.

Furthermore we define input1Dℓ,c to be an input layer that prepares the input as a length

ℓ 1D vector field with channel number c. We then define a fully connected layer fullw that

takes an input vector field and output a vector with size w. The nonlinearities we use in this

chapter are leaky ReLu (LReLu) nonlinear activation with parameter 0.02, tanh(·) function,

and just linear activation (without nonlinearities). We make no distinction between real or

complex input, since changing real to complex input only requires doubling the input or

output channel number.

A.1 Multireference alignment

In the MRA case, we present the proposed architecture for the encoder ξθ. An illustration

of ξρθ is presented in Figure (A.1), and the same architecture is used for ξvθ . The input layers

input1Dn,1 and input1Dn,n take the moments as inputs. After a few layers of conv1D, we

stack the output of the upper branch and lower branch in Figure (A.1) together into a 1D

vector field of length n and 6 channels. Then after a few more layers of CNN conv1D and

fully connected layers full, we output zρ.

A.2 Cryo-EM

For ξθ in Chapter 2, the constituent encoders ξρθ and ξvθ are very similar to the one presented

in Figure (A.1) for MRA, except we replace all conv1D with conv2D with the same window
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Figure A.1: Architecture of ξρθ in case of MRA

sizes and channel numbers. In Chapter 3, a further change in the encoder ξρθ is that it

outputs (zρ, η̂) instead of simply zρ.

As for v̂ϕ of Chapter 2 and v̂Fnet of Chapter 3, currently, they are chosen to be the

FourierNet of [40]. FourierNet finds success in representing the Fourier transforms of three-

dimensional volumes of molecules and other volumes arising in nature, with values that often

span multiple orders of magnitude. The main point of such a representation is that, instead of

approximating v(x) directly by an NN, it is often easier to approximate its Fourier coefficients

v̂(x) by an NN on k-space when v(x) exhibits oscillatory patterns. This is also similar to

the approach taken in [14] for solving high-frequency wave equations. More precisely, it lets

v̂(k) ≈ v̂ϕ(k) = aϕ1(k) exp(ibϕ2(k)) (A.1)

with two NNs aϕ1(k) ∈ C and bϕ2(k) ∈ C where aϕ1 gives the amplitude of the Fourier

coefficients and bϕ2 gives the phase variations. By representing v in Fourier domain instead

of real domain, one can bypass the oscillatory pattern caused by the Fourier series exp(ikx)

in v(x) =
∑
k v̂(k) exp(ikx). More details regarding the architecture, its effectiveness, and

its memory requirements are provided in [40].
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