
THE UNIVERSITY OF CHICAGO

DENSITY FUNCTIONAL THEORY TRANSFORMED INTO A ONE-ELECTRON

REDUCED DENSITY MATRIX FUNCTIONAL THEORY FOR THE DESCRIPTION

OF STATIC CORRELATION

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF CHEMISTRY

BY

DANIEL PATRICK GIBNEY

CHICAGO, ILLINOIS

AUGUST 2024



Copyright © 2024 by Daniel Patrick Gibney

All Rights Reserved



Dedication Text

To Rachel, Donna, Doug, Matthew, Gus, and Spencer



TABLE OF CONTENTS

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Quantum Chemistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Dirac Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 The Born-Oppenheimer Approximation . . . . . . . . . . . . . . . . . 3
1.1.3 The Variational Principle . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Spin and Spatial Orbitals . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.5 Wedge Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Solving for the Ground State . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.1 Kohn-Sham Density Functional Theory . . . . . . . . . . . . . . . . . 17
1.3.2 Density Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Electron correlation and Post-Hartree-Fock methods . . . . . . . . . . . . . . 20
1.4.1 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.4.2 Second Quantized Operators . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.3 Configuration Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4.4 Truncated CI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.4.5 Coupled Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.4.6 Electron Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4.7 Multi-Configurational Pair Density Functional Theory . . . . . . . . 34

2 REDUCED DENSITY MATRIX APPROACHES TO QUANTUM CHEMISTRY 36
2.1 Reduced Density Matrices and Their Properties . . . . . . . . . . . . . . . . 36
2.2 Variational 2-RDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.1 Semi-Definite Programming . . . . . . . . . . . . . . . . . . . . . . . 41
2.3 Anti-Hermitian Contracted Schrödinger Equation . . . . . . . . . . . . . . . 43
2.4 Reduced Density Matrix Functional Theory . . . . . . . . . . . . . . . . . . 45

2.4.1 RDMFT functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.5 Motivation for this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 TOWARD A RESOLUTION OF THE STATIC CORRELATION PROBLEM IN
DENSITY FUNCTIONAL THEORY FROM SEMIDEFINITE PROGRAMMING 51
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

iv



3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 DENSITY FUNCTIONAL THEORY TRANSFORMED INTO A ONE-ELECTRON
REDUCED-DENSITY-MATRIX FUNCTIONAL THEORY FOR THE CAPTURE
OF STATIC CORRELATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 COMPARISON OF DENSITY-MATRIX CORRECTIONS TO DENSITY FUNC-
TIONAL THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2.1 Conversion of DFT into a 1-RDMFT. . . . . . . . . . . . . . . . . . . 81
5.2.2 Comparison to iDMFT . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 UNIVERSAL GENERALIZATION OF DENSITY FUNCTIONAL THEORY FOR
STATIC CORRELATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.4 conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7 ENHANCING DENSITY FUNCTIONAL THEORY FOR STATIC CORRELATION
IN LARGE MOLECULES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

A ADDITIONAL FIGURES AND TABLES . . . . . . . . . . . . . . . . . . . . . . 122
A.1 Variation in the individual components to the total energy between SDP and

KS implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.2 Idempotency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

v



LIST OF FIGURES

1.1 Jacob’s ladder classification scheme introduced to partition density functionals
based upon their functional inputs. n(r), ∇n(r), and τ(r) are electron density,
and it’s first and second derivative respectively. Ψi and Ψa are respectively the
occupied and virtual orbitals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Illustration of the set of allowable 2-RDMs as different N-Representability con-
straints are applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Errors in kcal/mol with respect to experimental values for each species in our test
set with the PBE and MN15-L functionals in traditional KS and SDP DFT. Left
column: spin restricted calculations; right column: spin unrestricted calculations. 60

4.1 N2 dissociation curves obtained from [6,6] CASSCF, our algorithm with a CASSCF
optimized w parameter, and B3LYP. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 N2 dissociation curves obtained from the ACSE, our algorithm with ACSE- and
CASSCF-optimized w parameters, and B3LYP. . . . . . . . . . . . . . . . . . . 71

4.3 Occupations of the six frontier orbitals in the dissociation of N2 from a 1-RDMFT
with w optimized by CASSCF (solid lines) and [6,6] CASSCF (dashed lines). . . 72

4.4 Symmetric dissociation of linear H4 in the 6-31G basis from B3LYP, FCI, and
1-RDMFT with w = 0.143 from a fit to the ACSE N2 dissociation curve. . . . . 75

4.5 Sum of squares of the off diagonal elements of the 1-RDM obtained as a function
of interatomic distance for linear H4. The sum is defined as

∑
i ̸=j D

i
j
2 where i

and j are atomic centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Schematic description of the 1-RDMFT algorithm. From an initial guess density,
1D, the Kohn-Sham 1-body Hamiltonian, HKS[

1D], is generated using a tradi-
tional DFT exchange correlation functional. This Hamiltonian is then used in an
SDP-based minimization to yield a new 1-RDM. Self-consistent-field iterations
are continued until the energy is converged below a selected target threshold. . . 83

5.2 Plot of the linear dissociation of H4 in the cc-pVDZ basis set with equal distances
between all pairs of adjacent hydrogens. (a) Comparison of the SCAN functional
in the traditional KS-DFT implementation and within our 1-RDMFT method us-
ing a w value of 0.104 to FCI. (b) Comparison of HF in its traditional formulation
and within our 1-RDMFT method using a w value of 0.249 to FCI. . . . . . . . 88

5.3 Plot of the rotation of C2H4 along its HCCH dihedral angle. The relative energies
are zeroed to the planar geometry at 0°. (a) Comparison of the SCAN functional
in the traditional KS-DFT implementation and within our 1-RDMFT method
using a w value of 0.052 to the ACSE. (b) Comparison of HF in its traditional
formulation and within our 1-RDMFT method using a w value of 0.215 to the
ACSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vi



6.1 C2H4 rotational barrier potential energy surfaces obtained from CASSCF(12,12)/
ACSE, CCSD(T), PBE-RDMFT, SCAN-RDMFT, PBE-DFT, SCAN-DFT, and
CASSCF(12,12)/ tPBE calculations with the cc-pVDZ basis set. . . . . . . . . . 103

6.2 Relative energies of meta- and para-benzyne with respect to ortho-benzyne from
RDMFT and DFT with the SCAN and PBE functionals, MC-PDFT using the
tPBE functional, and CCSD(T). . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1 Energy per hydrogen atom as a function of the distance R between equally spaced
hydrogen atoms is shown for linear H10 and H50, using DFT, w RDMFT, and w̃
RDMFT all with the SCAN functional. . . . . . . . . . . . . . . . . . . . . . . . 116

7.2 Adiabatic singlet-triplet gap—the energy difference between the lowest lying sin-
glet and triplet states—for the n-acenes pentacene (n = 5) through dodecacene
(n = 12), using w̃ RDMFT with comparisons to DFT and V2RDM. Both w̃
RDMFT and DFT use the SCAN functional. . . . . . . . . . . . . . . . . . . . . 117

7.3 Edge carbon-carbon bond lengths from w̃ RDMFT are shown in red with com-
parisons to those from DFT and V2RDM in blue and green, respectively. . . . . 118

A.1 Electron densities in the carbon atom for left: V2RDM, center: SDP-DFT, right:
KS-DFT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.2 Linear H4 1RDMFT and iDMFT errors from FCI energy zeroed at 0.9 Å using
the SCAN and HF functionals. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.3 Rotation of C2H4 1RDMFT and iDMFT errors from the ACSE energy zeroed at
0° HCCH Dihedral angle using the SCAN and HF functionals. . . . . . . . . . . 127

A.4 The deviation from Non-Idempotency (Residual) and the HOMO-LUMO gap as
a function of the rotation of C2H4 from 1-RDMFT/SCAN. . . . . . . . . . . . . 128

A.5 The deviation from Non-Idempotency (Residual) and the HOMO-LUMO gap as
a function of the rotation of C2H4 from 1-RDMFT/HF. . . . . . . . . . . . . . . 128

A.6 HONO and LUNO occupations from CASSCF(Valence), PBE-RDMFT, and SCAN-
RDMFT along the dihedral angle of C2H4 . . . . . . . . . . . . . . . . . . . . . 129

A.7 Geometry optimized singlet C-C bond lengths for napthalene to dodecacene in
angstroms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.8 Geometry optimized triplet C-C bond lengths for napthalene to dodecacene in
angstroms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

vii



LIST OF TABLES

1.1 Number of configurations required by FCI for varying numbers of orbitals (K)
and electrons (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 Root Mean Squared Deviations (RMSDs) and Mean Signed Deviations (MSDs)
of the Singlet-Triplet gaps (∆EST = ES−ET) with Respect to the Experimental
Reference Values for the Test Set of C, O, S, Si, NF, NH, O2, PF, PH, S2, SO.
All values in kcal/mol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Mean Energy Differences of Total Electronic Energy between the SDP-DFT and
KS-DFT solutions (∆E = (ESDP − EDFT)/N) of Singlet and Triplet states in
Both Spin Restricted and Unrestricted Frameworks (in kcal/mol) . . . . . . . . 58

4.1 Errors of the dissociation energies in kcal/mol obtained with DFT (B3LYP) and
1-RDMFT Relative to the [6,6] CASSCF and ACSE References . . . . . . . . . 73

5.1 1-RDMFT and iDMFT error values used to quantify their reproduction of the
dissociations of H2, H4, N2, HF, and CO as well as the bond rotation of C2H4.
The maximal errors are defined as E1-RDMFT/iDMFT - EFCI/ACSE with the largest
absolute magnitude being selected. Reference energies are computed from FCI
for H2 and H4 and from the ACSE for the other molecules. The signed and
unsigned errors are obtained as the average deviation from the reference curve
from equilibrium to 4 Å using 0.1 Å step sizes. . . . . . . . . . . . . . . . . . . . 91

5.2 Optimized 1-RDMFT w and iDMFT θ values and their ratios are reported. . . . 92

6.1 The w values used throughout this work calculated using eq. 6.14 and w = kγ
where k is 0.158. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Dissociation errors in kcal/mol for a subset of the MR-MGN-BE17 test set com-
pared to the CASSCF(valence)/ACSE energies. Dissociation data taken at 5 Å in-
ternuclear distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

A.1 Mean energy differences of the individual components of the total electronic en-
ergy between the SDP and KS solutions of singlet and triplet states in both spin
restricted and unrestricted frameworks. . . . . . . . . . . . . . . . . . . . . . . . 122

A.2 Changes in the total energy and its individual components, defined as ∆E =
Enon−idempotent -Eidempotent. All calculations carried out with a aug-ccpvqz
basis set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

A.3 Frontier orbital occupations of each species with the LDA functional. Results are
functional independent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

A.4 Frobenius norm of the difference between the SDP-DFT and V2RDM 1-RDMs,
defined as ||∆D1|| =||D1(SDP −DFT )−D1(V 2RDM)||. . . . . . . . . . . . . 126

A.5 Dissociation energies obtained from our algorithm with a CASSCF optimized w1I
in kcal/mol relative to CASSCF and the ACSE . . . . . . . . . . . . . . . . . . 132

A.6 Dissociation energies obtained from our algorithm with an ACSE optimized w1I
in kcal/mol relative to the ACSE . . . . . . . . . . . . . . . . . . . . . . . . . . 132

viii



A.7 All 1-RDMFT obtained values. The maximal errors are defined as E1-RDMFT - E
with the largest absolute magnitude being selected. The w values are optimized
for each system and functional combination individually. Signed/Unsigned errors
are defined as the average of E1-RDMFT - E from equilibrium to 4 Å in 0.1 Å steps.133

A.8 All iDMFT obtained values. The maximal errors are defined as EiDMFT - E
with the largest absolute magnitude being selected. The θ values are optimized
for each system and functional combination individually. Signed/Unsigned errors
are defined as the average of EiDMFT - E from equilibrium to 4 Å in 0.1 Å steps. 134

ix



ACKNOWLEDGMENTS

First, I would like to thank my wife, Rachel, who has been my rock throughout this PhD

process. She has supported me through all the highs and lows of my research, from when it

seemed nothing would work and I understood nothing to my first publications—all the while

building a home together and adopting two loving cats. I truly cannot thank her enough.

I would also like to thank my family, starting with my parents, Donna and Doug, who

supported my interests in chemistry and computer science throughout my life, ultimately

leading me to where I am today. Lastly, my brother, Matthew, who has always listened to

me talk about my research with great interest, encouraging me to keep going.

I would also like to thank my advisor David Mazziotti, who has supported and guided

my research throughout my time at UChicago. From starting my work with him by reverse

engineering an input file to developing an electronic structure method, it has been a wild

and educational ride. Further thanks to his research group: Nik, Scott, Simon, LeeAnn,

Ryan, Jordan, Sam, Anna, Irma, Luis, Lily, Serina, and Michael. I’d especially like to thank

Nik for assisting me in the early years of my PhD on my research and those in my office,

specifically Simon and Sam for always being willing to help with research questions and

discussions outside of work.

A big thank you to my friends both at UChicago and outside of it. I’d especially like to

thank Melissa whose constant friendship has been invaluable. I will always fondly remember

the many random adventures we went on together, and how she pushed me to try activities

such as climbing that I probably wouldn’t have done by myself. Other Chicago friends I’d

like to thank are Julie and Allison for our many Costco and craft fair trips; Miah and the

birding club where I learned my favorite bird fact - that the American robin is not actually

a robin -, Sam for our many discussions on biking, urban planning, and go, and lastly Josh

for our many bike rides and brunch trips. For my friends outside UChicago, I’d like to

thank Santiago and Pingel who have always provided a constant source of encouragement

x



and always been willing to chat. Lastly, I’d like to thank my DnD group Josh, Jessie, Rachel,

and Ryan, our biweekly sessions have been a blast.

xi



ABSTRACT

Kohn-Sham Density Functional Theory (KS-DFT or just DFT) has become a go-to method

for electronic structure calculations due to its low computational scaling, allowing it to treat

large systems, while still being relatively accurate. However, DFT still struggles in strongly

correlated systems due to its inability to treat static electron correlation, leading to errors

in its prediction of charges, multiradicals, and reaction barriers. This error is primarily

driven by the single Slater determinant representation of the Kohn-Sham non-interacting

auxiliary wave function, which leads to integer occupations of the electronic orbitals. In this

thesis, we address this shortcoming by combining DFT with Semi-Definite Programming

(SDP) and a 1-Electron Reduced Density Matrix Functional (RDMF) to capture static

electron correlation through fractional orbital occupations. We derive our method termed

Reduced Density Matrix Functional Theory (RDMFT) from a unitary decomposition of the

2-electron reduced density matrix’s cumulant to obtain a system-specific dependence on the

electron repulsion integrals. This methodology retains DFT’s O(N3) computational scaling

while describing static correlation through fractional occupation. We apply this approach

to a series of small molecules such as the benzynes and find noticeable improvements over

DFT in each system tested. We’ve also modified the dependence of our method on the

2-electron integrals using the Cauchy-Schwarz inequalities to prevent the RDMF term from

decaying to zero with growing system sizes, leading to size extensivity issues. We apply

this modification to a series of linear hydrogen chains and find it remedies the size extensive

issues of the original derivation. We further apply the modification to the singlet-triplet gaps

of the acenes from pentacene to dodecacene and find excellent agreement with variational

2-RDM calculations.

xii



CHAPTER 1

INTRODUCTION

1.1 Quantum Chemistry

Quantum Chemistry involves the prediction of chemical properties using the theoretical

foundations afforded by the Schrödinger equation in either its time-dependent

iℏ
δ

δt
|Ψ(t)⟩ = Ĥ|Ψ(t)⟩ (1.1)

or time-independent forms

Ĥ|Ψ⟩ = E|Ψ⟩. (1.2)

Focusing on the time-independent form; Ĥ is the Hamiltonian, an operator corresponding to

the total energy of our system of interest, Ψ is the associated wave function of the system,

and E is the energy of the wave function. To obtain the energy, we can also rewrite Eq. 1.2

by left multiplying each side by ⟨Ψ| and dividing by ⟨Ψ|Ψ⟩.

⟨Ψ|Ĥ|Ψ⟩
⟨Ψ|Ψ⟩

= ⟨E⟩. (1.3)

This is the expectation value expression of the energy operator, Ĥ, which gives the energy

of the wave function. While in general, you cannot divide by your wave function to remove

it from one side of the equation, since ⟨Ψ|Ψ⟩ is a constant it can be divided. For any general

operator Ô, its expectation value is calculated similarly as:

⟨Ψ|Ô|Ψ⟩
⟨Ψ|Ψ⟩

= ⟨O⟩. (1.4)

Where ⟨O⟩ is the expected value of the operator, Ô, for the given wave function. As ⟨Ψ|Ψ⟩

is proportional to the probability of finding a particle, It is common practice for the wave
1



function to be normalized such that ⟨Ψ|Ψ⟩ = 1; assuming normalization allows the above

equation can be simplified to:

⟨Ψ|Ô|Ψ⟩ = ⟨O⟩. (1.5)

Throughout the rest of this work, unless otherwise noted, it will be assumed all wave functions

are normalized to one.

1.1.1 Dirac Notation

Before continuing, it would be prudent to explain the notation used above. In 1939 Paul

Dirac introduced what is called Bra-Ket or Dirac notation to simplify writing equations in

quantum mechanics [1]. The name Bra-Ket comes from the use of the angle brackets as bras

⟨| and kets |⟩ to succinctly represent the vectors corresponding to the wave functions. These

vectors are normally expressed as:

|ψ⟩ =



c1

c2

...

cm


(1.6)

and

⟨ψ| =
[
c∗1 c∗2 ... c∗m

]
(1.7)

where ci is a complex scalar value and the asterisk denotes the complex conjugate of said

value. Common operations in Bra-Ket notation include taking the inner product defined as

⟨ψ|ψ⟩ =
[
c∗1 c∗2 ... c∗m

]


c1

c2

...

cm


= c∗1c1 + c∗2c2 + ...+ c∗mcm =

m∑
i

|ci|2 (1.8)

2



where c∗i ci can be interpreted as the contribution function ψ∗i ψi has to the total wave function

ψ, and the outer product defined as

|ψ⟩⟨ψ| =



c1

c2

...

cm


[
c∗1 c∗2 ... c∗m

]
=



c1c
∗
1 c1c

∗
2 ... c1c

∗
m

c2c
∗
1 c2c

∗
2 ... c2c

∗
m

... ... ... ...

cmc
∗
1 cmc

∗
2 ... cmc

∗
m


(1.9)

which can be used to obtain density matrices. Bras and kets can be viewed as the conjugate

transpose of each other, such that

⟨Ψ|† = |Ψ⟩ (1.10)

and

|Ψ⟩† = ⟨Ψ| (1.11)

1.1.2 The Born-Oppenheimer Approximation

Returning to the energy operator, Ĥ, it must contain all relevant kinetic and potential energy

terms for the system. As the primary types of systems of interest in quantum chemistry

are composed of protons and electrons, Ĥ can be written, in atomic units and neglecting

relativity, as:

Ĥ = −
N∑
i

1

2
∇2
i −

M∑
A

1

2MA
∇2
A −

N∑
i

M∑
A

ZA
riA

+
N∑
i

N∑
j>i

1

rij
+

M∑
A

M∑
A>B

ZAZB
rAB

. (1.12)

Where i and j correspond to the ith and jth electrons in a system composed of N electrons.

Likewise, A and B correspond to the Ath and Bth nuclei in a system composed of M nuclei.

The first two terms on the right-hand side of Eq. 1.12 are the electronic and nuclear kinetic

energy terms respectively. The third, fourth, and fifth terms are the electron-nuclei attrac-
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tion, the electron-electron repulsion, and the nuclei-nuclei repulsion respectively. Therefore,

as the wave function exists in the same space as the Hamiltonian it also depends on both

the nuclear and electronic coordinates as follows:

Ψ = Ψ[ri, Ra]. (1.13)

Solving for the nuclear-electronic wave function as given in Eq. 1.13 is often unnecessary as

many molecular properties have minimal dependence on the motion of nuclei. This can be

rationalized by recognizing that, since the mass ratio between an electron and a proton is

approximately 1:1836, on the timescale of electronic motion, the nuclei are effectively fixed.

In nuclei heavier than hydrogen, the mass ratio is even smaller, making this approximation

even more justified. Using this idea of decoupling electronic and nuclear motion, the nuclear-

electronic wave function can be split into an electronic wave function and a nuclear wave

function by fixing the nuclei in space.

Ψ = |Ψ[ri]⟩|Ψ[Ra]⟩. (1.14)

This is known as the Born-Oppenheimer approximation[2] and allows us to simplify Eq. 1.12

down to the electronic Hamiltonian as:

Ĥelec = −
N∑
i

1

2
∇2

i −
N∑
i

M∑
A

ZA
riA

+
N∑
i

N∑
j>i

1

rij
. (1.15)

Where we have dropped the nuclear kinetic energy term as the nuclei’s positions are now

fixed. Additionally, since the nuclei-nuclei repulsion is now a constant, and thus shifts each

energy level of the system equally, it can be removed from the electronic Hamiltonian and
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added back in when calculating the total system energy as

Etot = Eelec + Enuc (1.16)

where

Eelec = ⟨Ψelec|Ĥelec|Ψelec⟩ (1.17)

and

Enuc =
M∑
A

M∑
A>B

ZAZB
rAB

. (1.18)

From Eq. 1.17 as the Hamiltonian no longer contains nuclei-dependent terms only the

electronic wave function is needed. Eq. 1.15 is the general form of the Hamiltonian used

within electronic structure theory.

1.1.3 The Variational Principle

All that remains in solving Eq. 1.17 is finding a wave function for the system of interest. To

make the problem computationally tractable we need an objective function that will inform

us about how close any arbitrary wave function is to the actual ground state wave function.

Where ground state refers to the lowest energy wave function. We can do this by making

use of the variational principle which states that any normalized trial wave function gives an

energy that is an upper bound of the true ground state energy of the system as:

⟨Ψ̃|Ĥ|Ψ̃⟩ ≥ ⟨Ψ0|Ĥ|Ψ0⟩ = E0 (1.19)

with

|Ψ̃⟩ =
∑
i

ci|Ψi⟩. (1.20)
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Here Ψ̃ is our trial wave function and |Ψi⟩ are the true wave functions of the ground state

(|Ψ0⟩) and all excited states (|Ψi≥1⟩) of the system which completely span our space and

thus any function satisfying the same boundary conditions as the set {|Ψi⟩} can be expressed

as a linear combination of {|Ψi⟩} with coefficients ci. Here all Ψ’s are orthonormalized such

that:

⟨Ψi|Ψj⟩ = δij (1.21)

where δij is the Dirac delta function which is equal to zero for all i ̸= j and one when

i = j; additionally, the ci’s are constrained such that the trial wave function maintains

normalization through:

1 =
∑
i

|ci|2 (1.22)

The true wave functions of the system result in ascending energies such that

Ĥ|Ψi⟩ = Ei|Ψi⟩ (1.23)

and

E0 ≤ E1 ≤ E2... (1.24)

Where E0 is the true ground state energy, E1 is the first excited state energy, and so on.

Plugging our trial wave function into Eq. 1.19 gives

∑
ij

cic
∗
j⟨Ψi|Ĥ|Ψj⟩ ≥ ⟨Ψ0|Ĥ|Ψ0⟩. (1.25)

Acting with the Hamiltonian to the right using Eq. 1.2 we obtain

∑
ij

cic
∗
j⟨Ψi|Ψj⟩Ei ≥ ⟨Ψ0|Ĥ|Ψ0⟩ = E0. (1.26)
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Since the wave functions are orthonormalized:

∑
i

|ci|2Ei ≥ ⟨Ψ0|Ĥ|Ψ0⟩ = E0. (1.27)

Rearranging:

|c0|2E0 +
∑
i=1

|ci|2Ei ≥ ⟨Ψ0|Ĥ|Ψ0⟩ = E0. (1.28)

Here it is evident that any trial wave function will be an upper bound to the true ground

state energy unless it is equal to the true ground state wave function. This bound can be

used as a measure of the quality of any given trial wave function where the lower the energy

of the trial wave function the better it should approximate the ground state.

1.1.4 Spin and Spatial Orbitals

To represent an electronic wave function for a single electron we use molecular orbitals (MOs)

which are generally taken to be a linear combination of atomic orbitals (LCAOs). Electrons

are fermionic particles with two possible spins, denoted as Ms = ±1/2, where +1/2 is an

up spin or α electron and -1/2 is a down spin or β electron, they are thus antisymmetric

with respect to exchanging a pair of electrons between orbitals. This directly results in

the well-known Pauli exclusion principle[3] which states that no two electrons can be in the

same orbital with the same spin. As the general form of the Hamiltonian, Eq. 1.15, does

not contain information about spin or antisymmetry it is generally incorporated through

the orbitals constituting the wave function. This is mathematically representable for a two-

electron system with a single alpha and beta electron as:

|Ψ⟩ = Ψ(x1, x2) =
1√
2
[ϕ1(x1)ϕ̄1(x2)− ϕ1(x2)ϕ̄1(x1)] (1.29)
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Here ϕ1 and ϕ̄1 are alpha and beta spin orbitals respectively. These can be broken down

into a spin and spatial component since:

ϕ1(x1) = χ1(r)α(ω) (1.30)

and

ϕ̄1(x1) = χ1(r)β(ω), (1.31)

which while having an identical spatial component are orthogonal as

∫
α(w)β(w)dw = 0. (1.32)

From this representation, it is easy to see that interchanging x1 and x2 changes the sign of

the wave function and that putting two electrons in the same spin-orbital would cause the

wave function to be zero and thus invalid. This antisymmetric form of the wave function can

be generalized through arbitrary numbers of electrons via a Slater determinant expressible

as:

|Ψ⟩ = Ψ(x1, x2, x3, ..., xn) =
1√
N !



ϕ11 ϕ̄11 ϕ12 . . . ϕ1d

ϕ21 ϕ̄21 ϕ22 . . . ϕ2d
...

...
... . . . ...

ϕn1 ϕ̄n1 ϕn2 . . . ϕnd


(1.33)

where once again the bar denotes a beta spin-orbital. Assuming a two-electron system and

evaluating the determinant of the above matrix, we recover the same antisymmetric wave

function from Eq. 1.29.

Ψ(x1, x2) =
1√
2

∣∣∣∣∣∣∣
ϕ11 ϕ̄11

ϕ21 ϕ̄21

∣∣∣∣∣∣∣ =
1√
2
[ϕ1(x1)ϕ̄1(x2)− ϕ1(x2)ϕ̄1(x1)]. (1.34)
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1.1.5 Wedge Products

Another way of expressing an anti-symmetrized wave function is with Grassmann wedge

products ∧. Equation 1.34 could be expressed using wedge products as

1√
N
ϕ1(x1) ∧ ϕ̄1(x2) (1.35)

where

ϕ1(x1) ∧ ϕ̄1(x2) = ϕ1(x1)ϕ̄1(x2)− ϕ1(x2)ϕ̄1(x1). (1.36)

In general

ϕi ∧ ϕj ∧ ...ϕn =
∑
P

sgn(P )ϕi(P1)ϕj(P2)...ϕn(Pn) (1.37)

where P is a specific permutation of the electrons (x1, x2,...,xn), P1 and onwards are the

indexed terms in the specific permutation (eg. P1, P2 are the first and second terms in the

permutation) and sgn(P ) is the permutation symbol of P which is 1 or -1 if the number of

pair permutations needed to recover the original order is even or odd respectively. Wedge

product notation, when applied to matrices or tensors, acts as

Ai
k ∧B

j
l =

∑
sgn(Pup)sgn(P dn)A

Pup
1

P low
1

B
Pup
2

P low
2

(1.38)

where the upper and lower indices are permuted independently of one another.

1.2 Hartree-Fock

If we assume that the wave function of a system is well represented by a single Slater

determinant, then we can obtain the mean field method known as Hartree-Fock[4, 5]. What

is meant by mean field here will be discussed in further depth in subsection 1.4.6 on Electron

Correlation. Starting from this assumption and acting on the ground state wave function
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with the Hamiltonian given in Eq. 1.15 we get

[−
N∑
i

1

2
∇2
i −

N∑
i

M∑
A

ZA
riA

+
N∑
i

N∑
j>i

1

rij
]|Ψ0⟩. (1.39)

Where we can break the problem into 1 and 2 electron energy terms as

⟨Ψ0|[−
N∑
i

1

2
∇2
i −

N∑
i

M∑
A

ZA
riA

]|Ψ0⟩+ ⟨Ψ0|
N∑
i

N∑
j>i

1

rij
|Ψ0⟩ (1.40)

Explicitly evaluating the one body term above using a 2-electron wave function from 1.34

we obtain:

1

2
⟨ϕ1(x1)ϕ̄1(x2)− ϕ1(x2)ϕ̄1(x1)| −

N∑
i

1

2
∇2

i −
N∑
i

M∑
A

ZA
riA

|ϕ1(x1)ϕ̄1(x2)− ϕ1(x2)ϕ̄1(x1)⟩

(1.41)

which can be expanded as:

+
1

2
⟨ϕ1(x1)ϕ̄1(x2)| −

N∑
i

1

2
∇2

i −
N∑
i

M∑
A

ZA
riA

|ϕ1(x1)ϕ̄1(x2)⟩

−1

2
⟨ϕ1(x1)ϕ̄1(x2)| −

N∑
i

1

2
∇2

i −
N∑
i

M∑
A

ZA
riA

|ϕ1(x2)ϕ̄1(x1)⟩

−1

2
⟨ϕ1(x2)ϕ̄1(x1)| −

N∑
i

1

2
∇2

i −
N∑
i

M∑
A

ZA
riA

|ϕ1(x1)ϕ̄1(x2)⟩

+
1

2
⟨ϕ1(x2)ϕ̄1(x1)| −

N∑
i

1

2
∇2
i −

N∑
i

M∑
A

ZA
riA

|ϕ1(x2)ϕ̄1(x1)⟩.

(1.42)

Let’s look at two prototypical examples from 1.42, the kinetic energy term in the first and

second lines. In the first line, the wave function in the bra and the ket are the same and can
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be rewritten into their integral form:

1

2

∫ ∫
ϕ
†
1(x1)ϕ̄

†
1(x2)[−

1

2
∇2

1 −
1

2
∇2

2]ϕ1(x1)ϕ̄1(x2)dx1dx2 (1.43)

which can be further broken down to:

−1

4

∫ ∫
ϕ
†
1(x1)∇

2
1ϕ1(x1)ϕ̄

†
1(x2)ϕ̄1(x2)dx1dx2

−1

4

∫ ∫
ϕ̄
†
1(x2)∇

2
2ϕ̄1(x2)ϕ

†
1(x1)ϕ1(x1)dx1dx2.

(1.44)

Since the orbitals are orthonormalized, when no operator acts on them their integral over

all space is either zero or one and can thus be easily integrated out. Using this idea on Eq

1.44 above, it can be further reduced to

−1

4

∫
ϕ
†
1(x1)∇

2
1ϕ1(x1)dx1 −

1

4

∫
ϕ̄
†
1(x2)∇

2
2ϕ̄1(x2)dx2. (1.45)

If we repeat the above logic with the second line of eq: 1.42 we get

+
1

4

∫ ∫
ϕ
†
1(x1)∇

2
1ϕ̄1(x1)ϕ̄

†
1(x2)ϕ1(x2)dx1dx2

+
1

4

∫ ∫
ϕ
†
1(x2)∇

2
2ϕ̄1(x2)ϕ̄

†
1(x1)ϕ1(x1)dx1dx2

(1.46)

Integrating over the electron not acted on by ∇ as we did previously now gives zero due to

ϕ̄
†
1 and ϕ1’s orthogonal spins. This same logic extends to the electronic-nuclear term as well,

where it is only non-zero when the electrons are in the same orbitals in both the bra and

ket of the wave function. Therefore, for a two-electron system as above, the one-electron
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energies can be written as:

Ĥcore(1, 2) = T̂ (1) + T̂ (2) + V̂ne(1) + V̂ne(2)

= −1

2

∫
ϕ
†
1(x1)∇

2
1ϕ1(x1)dx1 −

1

2

∫
ϕ̄
†
1(x2)∇

2
2ϕ̄1(x2)dx2

−
∫
ϕ
†
1(x1)

M∑
A

ZA
r1A

ϕ1(x1)dx1 −
∫
ϕ̄
†
1(x2)

M∑
A

ZA
r2A

ϕ̄1(x2)dx2

(1.47)

Where we introduce T̂ and V̂ne for the kinetic and electronic nuclear energies respectively.

Doing the same treatment as above but for the electron-electron interactions we obtain the

first two terms analogously to 1.44:

+
1

2

∫ ∫
ϕ
†
1(x1)ϕ̄

†
1(x2)

1

r12
ϕ1(x1)ϕ̄1(x2)dx1dx2

−1

2

∫ ∫
ϕ
†
1(x1)ϕ̄

†
1(x2)

1

r12
ϕ1(x2)ϕ̄1(x1)dx1dx2 (1.48)

The first line in eq: 1.48 can be classically interpreted as a coulombic interaction by rewriting

it in an equivalent form as

Ĵ11̄ = ⟨ϕ1ϕ̄1|ϕ1ϕ̄1⟩ =
1

2

∫ ∫
ϕ
†
1(x1)ϕ1(x1)

1

r12
ϕ̄
†
1(x2)ϕ̄1(x2)dx1dx2

=
1

2

∫ ∫
|ϕ1(x1)|2

1

r12
|ϕ̄1(x2)|2dx1dx2.

(1.49)

This is commonly denoted via J or the two-electron integral shorthand ⟨ab|ab⟩ as shown

above. The second term in eq: 1.48 does not have a nice classical interpretation. If we try

to rewrite it as we did for the coulombic term, we obtain

K̂11̄ = ⟨ϕ1ϕ̄1|ϕ̄1ϕ1⟩ =
1

2

∫ ∫
ϕ
†
1(x1)ϕ̄

†
1(x2)

1

r12
ϕ1(x2)ϕ̄1(x1)dx1dx2

=
1

2

∫ ∫
ϕ
†
1(x1)ϕ̄1(x1)

1

r12
ϕ1(x2)ϕ̄

†
1(x2)dx1dx2

(1.50)
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where each electron is split between two different orbitals. This is known as the exchange

term, due to the exchange of the electrons’ orbitals, and arises from the antisymmetry of the

wave function. For a wave function composed of a single Slater determinant, the exchange

term is only nonzero for same spin electrons. This term results in a lowering of the energy

of the system, hence favoring parallel spins, and is generally denoted via a K or by ⟨ab|ba⟩.

The two-electron energy terms for this two-electron system can be written as

Ĥee = Ĵ(1, 2)− K̂(1, 2)

= ⟨ϕ1ϕ̄1|ϕ1ϕ̄1⟩ − ⟨ϕ1ϕ̄1|ϕ̄1ϕ1⟩

=

∫ ∫
ϕ
†
1(x1)ϕ̄

†
1(x2)

1

r12
[ϕ1(x1)ϕ̄1(x2)− ϕ1(x2)ϕ̄1(x1)]dx1dx2

(1.51)

Therefore the electronic ground state for a two-electron system from Hartree-Fock (or a

single Slater determinant) is

Eelec = Ĥcore(1, 2) + Ĥee(1, 2)

= T̂ (1) + T̂ (2) + V̂ne(1) + V̂ne(2) + Ĵ(1, 2)− K̂(1, 2)

(1.52)

For an N-electron system, the energy is expressed as:

Eelec =
N∑
i

T̂ (i) +
N∑
i

M∑
A

V̂ne(i, A) +
N∑
i<j

Ĵ(i, j)− K̂(i, j) (1.53)

where the sum is over i < j to prevent double counting of the electronic energy due to

swapping indices.

1.2.1 Solving for the Ground State

To solve for the ground state in Hartree-Fock we can invoke the variational principle and

target the single Slater determinant that gives the lowest energy as the best approximation
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to the actual wave function. This can be done by searching for an energetic minima

E[ψ + δψ] = ⟨ψ + δψ|Ĥ|ψ + δψ⟩

= ⟨ψ|Ĥ|ψ⟩+ ⟨δψ|Ĥ|ψ⟩+ ⟨ψ|Ĥ|δψ⟩+ ⟨δψ|Ĥ|δψ⟩

= E + δE +O(δ2E).

(1.54)

Here we will only concern ourselves with first-order solutions where δE = 0. However,

we cannot just directly minimize the energy of the system as the orbitals need to remain

orthonormal to each other. Therefore, we can use Lagrange’s method of undetermined

multipliers to minimize the energy while ensuring the orbitals remain orthonormalized.

L = ⟨ψ|Ĥ|ψ⟩ −
N∑
i

N∑
j

∫
ϵij(ϕ

∗
i (x1)ϕj(x1)dx1 − δij) (1.55)

Where |ψ⟩ = |ϕ1ϕ2...ϕN ⟩ as it is a single Slater determinant and ϵij are the Lagrange

multipliers. By taking the derivative of eq: 1.55 with respect to the orbitals ϕ and setting

the result equal to zero

0 = ⟨ψ
′
|Ĥ|ψ⟩+ ⟨ψ|Ĥ|ψ

′
⟩ −

N∑
i

N∑
j

ϵij

∫
[ϕ∗

′
i (x1)ϕj(x1) + ϕ∗i (x1)ϕ

′
j(x1)]dx1 (1.56)

we can obtain a minimum of the energy subject to the orbitals being orthogonal. By choosing

a basis such that the Lagrange multipliers ϵ are diagonal and simplifying, we obtain

[Ĥcore(xi) + Ĵ(xi) + K̂(xi)]ϕi(xi) = F̂ (xi)ϕi = ϵiϕi(xi) (1.57)

where F̂ (xi) is the Fock operator. Eq. 1.57 is recognizable as an eigenvalue problem, where

the resulting eigenvectors are the molecular orbitals ϕi(xi) and the eigenvalues are the orbital

energies ϵi. However, as Ĵ and K̂ depend on the previous set of molecular orbitals this
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procedure needs to be solved “self consistently” giving rise to what is known as the self-

consistent field procedure (SCF) used for obtaining Hartree-Fock’s ground state. Therefore,

to find the ground state Hartree-Fock solution, one takes an initial set of orbitals, constructs

F̂ , and diagonalizes it to obtain a new set of orbitals. This repeats until the change in

orbitals between iterations is below a predefined convergence threshold.

1.3 Density Functional Theory

Density Functional Theory (DFT) is one of the most widely used methods for calculating

ground state properties of molecular systems due to its relatively high accuracy as well

as its computational affordability. This favorable combination arises due to DFT describing

electronic interactions as a functional of the electronic density instead of trying to use the full

N-electron wave function. The foundations of DFT were theoretically justified by Hohenberg

and Kohn[6] in 1964 where they showed using proof by contradiction that the groundstate

external potential, denoted Vext, is a unique functional - to within a constant - of the electron

density ρ(r⃗). Here Vext is defined as all potentials the electrons experience besides those

generated from other electrons such as the electron-electron interactions, Vee. Therefore, if

you know this unique functional of the electron density, a wave function is unnecessary for

obtaining ground state properties such as the energy.

Hohenberg and Kohn’s proof goes as follows, assume you have two Hamiltonians that

differ in only their external potentials, but both give rise to the same density

Ĥ1 = T̂ + V̂ee + V̂ 1
ext

Ĥ2 = T̂ + V̂ee + V̂ 2
ext.

(1.58)
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Therefore they have two different ground state wave functions

Ĥ1|Ψ1⟩ = E1
0 |Ψ

1⟩ ⇒ ρ(r⃗)

Ĥ2|Ψ2⟩ = E2
0 |Ψ

2⟩ ⇒ ρ(r⃗).

(1.59)

By the variational principle

E1
0 < ⟨Ψ2|Ĥ1|Ψ2⟩ = ⟨Ψ2|Ĥ2|Ψ2⟩ − ⟨Ψ2|Ĥ2 − Ĥ1|Ψ2⟩

E2
0 < ⟨Ψ1|Ĥ2|Ψ1⟩ = ⟨Ψ1|Ĥ1|Ψ1⟩ − ⟨Ψ1|Ĥ1 − Ĥ2|Ψ1⟩.

(1.60)

Expanding the two Hamiltonians

E1
0 < E2

0 − ⟨Ψ2|T̂ + V̂ee + V̂ 2
ext − (T̂ + V̂ee + V̂ 1

ext)|Ψ2⟩

E2
0 < E1

0 − ⟨Ψ1|T̂ + V̂ee + V̂ 1
ext − (T̂ + V̂ee + V̂ 2

ext)|Ψ1⟩
(1.61)

and simplifying gives

E1
0 < E2

0 − ⟨Ψ2|V̂ 2
ext − V̂ 1

ext|Ψ2⟩

E2
0 < E1

0 − ⟨Ψ1|V̂ 1
ext − V̂ 2

ext|Ψ1⟩.
(1.62)

However, since both wave functions yield the same density

E1
0 < E2

0 +

∫
ρ(r⃗)[V̂ 1

ext − V̂ 2
ext]dr⃗

E2
0 < E1

0 −
∫
ρ(r⃗)[V̂ 1

ext − V̂ 2
ext]dr⃗

(1.63)

adding them together leads to the contradiction:

E1
0 + E2

0 < E2
0 + E1

0 . (1.64)

Therefore, the electronic density must be a unique functional of the external potential.
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However, how can we be sure that we have the correct density for the ground state? Since

each wave function maps to a different electron density as proven above, we can invoke the

variation principle to obtain the lowest energy electron density which should be closest to

the exact wave function’s electron density[6]. To prove this we can write the energy as a

functional of the ground state electronic density, as shown above, as

E0[ρ] = T [ρ] +

∫
ρ(r⃗)V̂extdr⃗ + Eee[ρ] = ⟨Ψ|Ĥ|Ψ⟩ (1.65)

If we use a different electronic density

E[ρ̃] = T [ρ̃] +

∫
ρ̃(r⃗)V̂extdr⃗ + Eee[ρ̃] = ⟨Ψ̃|Ĥ|Ψ̃⟩ (1.66)

then by the variational principle

E0[ρ] = ⟨Ψ|Ĥ|Ψ⟩ < E[ρ̃] = ⟨Ψ̃|Ĥ|Ψ̃⟩. (1.67)

1.3.1 Kohn-Sham Density Functional Theory

Using the idea that there is a unique functional of the external potential and that the

variational principle applies to ground state electronic densities, in 1965 Kohn and Sham[7]

introduced a framework for performing ground state calculations in a manner analogous to

Hartree-Fock. The difficulty in directly minimizing the electronic density lay in accurately

capturing the kinetic energy as a function of the electronic density, as even 60 years later

it is still an active area of research. To avoid this issue they introduced a non-interacting

auxiliary system such that it gives the same electronic density as the system with interacting

particles but can be represented with a Slater determinant. Therefore, the energy can be

written as

E[ρ] = Ts[ρ] +

∫
drvext(r)ρ(r) + EH [ρ] + EXC [ρ] (1.68)
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where

ρ(r⃗) =
N∑
i

ϕ
†
i (r⃗)ϕi(r⃗) (1.69)

Ts[ρ] = −1

2

N∑
i

∫
ϕ
†
i (r⃗)∇iϕi(r⃗)dr⃗ (1.70)

EH [ρ] =
1

2

∫ ∫
ρ(r⃗)ρ(r⃗)

′

|ρ− ρ
′|

(1.71)

EXC [ρ] = T [ρ]− Ts[ρ] +

∫
ρ(r⃗)ϵxc[ρ(r⃗)]dr⃗. (1.72)

Here Ts is the non-interacting kinetic energy, EH is the coulombic term, and EXC is

the exchange correlation functional. This functional contains the correction from the non-

interacting kinetic energy to the interacting kinetic energy as well as the electronic exchange

and correlation effects. Unfortunately, this term is incredibly complicated and likely unknow-

able in general; therefore it is approximated in practice. Since there is a Slater determinant

being used to represent the non-interacting auxiliary system, finding the ground state in

Kohn-Sham DFT (KS-DFT) is the same as Hartree-Fock. Obtain the effective Kohn-Sham

matrix, which is analogous to the Hartree-Fock’s Fock matrix, given as

HKS [ρ] = Ts[ρ] + vext(ρ) +

∫
ρ

|ρ− ρ
′|
dr

′
+ vxc(ρ) (1.73)

where the third and fourth terms on the right-hand side are the derivatives of Eq. 1.71 and

1.72 respectively. Next, diagonalize the above Kohn-Sham matrix to obtain a new set of

orbitals following Eq. 1.69. Use these orbitals to generate an updated electronic density

to obtain a new effective Kohn-Sham matrix and repeat until the difference in the densities

between iterations is below an acceptable threshold.
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1.3.2 Density Functionals

While the exact universal functional, EXC , is not known there have been a plethora of

approximations to it constructed over the years. The first being introduced by Kohn and

Sham was the Local Spin Density Approximation[7] (LSDA) which is based on the homo-

geneous electron gas and only depends upon the electronic density at each point in space.

Since then many more exchange correlation functionals have been developed leading John

Perdew to suggest a Jacob’s ladder classification scheme[8], shown in Figure 1.1, based upon

the functionals inputs where the higher one ascends the ladder the closer they come to

chemical accuracy. The predominantly utilized levels of Jacob’s ladder are the lowest 4

consisting of Local Spin Density Approximations (LSDAs), Generalized Gradient Approxi-

mations (GGAs), Meta-Generalized Gradient Approximations (mGGAs), and Hartree-Fock

exchange (Hybrid). Each step up the ladder introduces a new ingredient for the functionals

to utilize, with LDSAs introducing the electron density, GGAs the first derivative of the

electron density, mGGAs the second derivative of the electron density, and Hybrid func-

tionals the exchange term from Hartree-Fock. Introducing these new terms also introduces

computational overhead, although it tends not to be significant until reaching hybrid func-

tionals. Furthermore, while each level introduces new functional inputs, they do not need to

use all the lower-level inputs. An example of this is the PBE0 functional which, while being

a hybrid functional, does not use the second derivative of the electron density.

Due to the approximate nature of the exchange correlation functionals in use today,

the absolute energies obtained from DFT are not inherently meaningful. Depending on

the functional employed, it is easy to produce either a higher or lower energy than FCI

- the variationally lowest possible energy in a given basis set - due to the approximate

functional erroneously over or under-correlating the electrons. While the absolute energies

aren’t meaningful, the relative energies still are as they ideally result in a cancellation of

errors.
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Figure 1.1: Jacob’s ladder classification scheme introduced to partition density functionals
based upon their functional inputs. n(r), ∇n(r), and τ(r) are electron density, and it’s first
and second derivative respectively. Ψi and Ψa are respectively the occupied and virtual
orbitals.

1.4 Electron correlation and Post-Hartree-Fock methods

An alternative approach to improving upon Hartree-Fock involves generating a more com-

plicated wave function to represent the system. These are generally taken to be a linear

combination of Slater determinants, which themselves can be expressed as excitations from

the Hartree-Fock reference.

1.4.1 Second Quantization

To make it easier to write more complex wave functions than a single Slater determinant, it is

useful to introduce second quantization. Everything preceding this point utilized first quanti-

zation, where the wave function contains the antisymmetry of the system, in contrast, second

quantization ensures anti-symmetry via creation/annihilation operators (a†i/ai). These op-
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erators act to either create or annihilate an electron in orbital i. As an example:

a1|ϕ1ϕ̄1⟩ = |ϕ̄1⟩ => a1⇃↾ = ⇃ (1.74)

a
†
1|ϕ̄1⟩ = |ϕ1ϕ̄1⟩ => a

†
1⇃ = ⇃↾ (1.75)

where

|ϕ1ϕ̄1⟩ =
1√
2!

∣∣∣∣∣∣∣
ϕ11 ϕ̄11

ϕ21 ϕ̄21

∣∣∣∣∣∣∣ and |ϕ1⟩ =
∣∣∣∣ϕ11∣∣∣∣ . (1.76)

We can view the action of the annihilation operator on a Slater determinant using an integral

as

a1|ϕ1ϕ̄1⟩ =
∫ √

Nϕ∗1(1)
1√
2!
[ϕ1(1)ϕ̄1(2)− ϕ̄1(1)ϕ1(2)]d1 (1.77)

where N is the number of electrons in the system, which in this case is two. Evaluating the

integral results in

a1|ϕ1ϕ̄1⟩ = |ϕ̄1(1)| = |ϕ̄1⟩ (1.78)

which is what is expected. It should be noted that a1|ϕ̄1ϕ1⟩ would evaluate to −|ϕ̄1⟩ as

the sign of the Slater determinant has changed. In general, it is common practice to move

whichever orbital is being annihilated to the leftmost element of the ket. Doing this causes

the sign of the wave function to switch if the orbital has to move an odd number of spaces.

However, it may be easier to manipulate strings of annihilation operators than the cor-

responding wave function. To understand how annihilation operators can be swapped, we

can act on an arbitrary wave function with two different annihilation operators

aiak|ϕiϕj ...ϕk...ϕl⟩ =

= (−1)nai|ϕiϕj ...ϕl⟩

= (−1)n|ϕj ...ϕl⟩

akai|ϕiϕj ...ϕk...ϕl⟩ =

= ak|ϕj ...ϕk...ϕl⟩

= (−1)n−1|ϕj ...ϕl⟩
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Where here n is the number of permutations needed to move the appropriate orbital to

the beginning of the ket. As both equations above share the same arbitrary wave function

we can add them together to give

(aiak + akai)|ϕiϕj ...ϕk...ϕl⟩ = 0 (1.79)

therefore

aiak + akai = 0. (1.80)

This is known as an anti-commutation relationship which is also expressible as

{ai, ak} = aiak + akai = 0. (1.81)

Therefore swapping the ordering of adjacent annihilation operators changes the sign of the

expression while being more convenient than going through and evaluating the effects upon

the wave function.

If the wave function does not contain the orbital which is being annihilated the result is

zero

a1|ϕ̄1⟩ = 0 (1.82)

and whether the wave function contains the orbital; two adjacent annihilation operators

acting on the same orbital is always zero

a1a1|Ψ⟩ = 0. (1.83)

In contrast to the annihilation operator which removes an electron, the creation operator
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adds one, due to the anti-symmetry a†i can be viewed as a Grassman wedge product ∧ as

a
†
1|ϕ̄1⟩ = ϕ1∧ϕ̄1 =

√
N !√

(N + 1)!
(ϕ1ϕ̄1−ϕ̄1ϕ1) =

1

2
(ϕ1(1)ϕ̄1(2)−ϕ̄1(1)ϕ1(2)) = |ϕ1ϕ̄1⟩ (1.84)

where the N corresponds to the number of electrons in the original wave function and is used

to maintain normalization. If we again act on an arbitrary wave function with two different

creation operators

a
†
ia

†
j |ϕk...ϕl⟩ =

= |ϕjϕk...ϕl⟩

= |ϕiϕjϕk...ϕl⟩

= |ϕiϕjϕk...ϕl⟩

a
†
ja

†
i |ϕk...ϕl⟩ =

= a
†
j |ϕiϕk...ϕl⟩

= |ϕjϕiϕk...ϕl⟩

= −|ϕiϕjϕk...ϕl⟩

Since they once again share the same wave function we can add them together giving us

(a
†
ia

†
j + a

†
ja

†
i )|ϕiϕjϕk...ϕl⟩ = 0 (1.85)

revealing the creation operators also obey the anti-commutation relation annihilation oper-

ators do

{a†i , a
†
j} = a

†
ia

†
j + a

†
ja

†
i = 0. (1.86)

Analogous to annihilation operators, if an electron already exists in the orbital or the

same creation operator occurs twice in a row:

a
†
ia

†
i |ϕj ...ϕl⟩ = a

†
i |ϕiϕj ...ϕl⟩ = 0. (1.87)

Furthermore, creation and annihilation operators are related to each other through

(⟨Ψ|a†i )
† = ai|Ψ⟩ (1.88)
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therefore a creation (annihilation) operator, a†i (ai), can be thought of as acting to the right

to create (annihilate) an electron or through its conjugate transpose as acting to annihilate

(create) an electron to the left.

The last situation that needs to be considered is a combination of creation and annihi-

lation operators. There are two cases to look at which are whether they act on the same or

different electrons
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Same electron

(a
†
iai + aia

†
i )|ϕj ...ϕl⟩ =

= ai|ϕiϕj ...ϕl⟩

= |ϕj ...ϕl⟩

(a
†
iai + aia

†
i )|ϕiϕj ...ϕl⟩ =

= a
†
i |ϕj ...ϕl⟩

= |ϕiϕj ...ϕl⟩

In either case - the orbital already existing

in the wave function or not - the same wave

function is returned, therefore

a
†
iai = 1 (1.89)

Different electrons

(a
†
jai + aia

†
j)|ϕiϕk...ϕl⟩ =

= a
†
j |ϕk...ϕl⟩+ ai|ϕjϕiϕk...ϕl⟩

= a
†
j |ϕjϕk...ϕl⟩ − |ϕjϕk...ϕl⟩

= 0

All other combinations of orbitals i and or j

existing in the wave function will be zero due

to either creating an electron that already ex-

ists or annihilating one that doesn’t. There-

fore,

a
†
iaj = 0 (1.90)

Overall this is expressible as

a
†
iaj = δij (1.91)

where δ is a Dirac delta function defined as

δij =


0 i ̸= j

1 i = j

.
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1.4.2 Second Quantized Operators

Operators can also be written in a second quantized form as

Ĥ =
∑
ij

hija
†
iaj +

1

2

∑
ijkl

V
ij
kl a

†
ia

†
jalak (1.92)

where

hij =

∫
−1

2
ϕ
†
i (x1)∇

2ϕj(x1)dx1 −
∫
ϕ
†
i (x1)

M∑
A

ZA
riA

ϕj(x1)dx1 (1.93)

and

V
ij
kl =

1

2

∫ ∫
ϕ
†
i (x1)ϕ

†
j(x2)

1

r12
ϕk(x1)ϕl(x2)dx1dx2. (1.94)

Written in this form the anti-symmetry is contained within the creation annihilation oper-

ators instead of the integrals themselves. To obtain the ground state energy in a second

quantized form

⟨Ψ|Ĥ|Ψ⟩ = ⟨Ψ|
∑
ij

hija
†
iaj |Ψ⟩+ ⟨Ψ|1

2

∑
ijkl

V
ij
kl a

†
ia

†
jalak|Ψ⟩ (1.95)

=
∑
ij

hij⟨Ψ|a†iaj |Ψ⟩+ 1

2

∑
ijkl

V
ij
kl ⟨Ψ|a†ia

†
jalak|Ψ⟩ (1.96)

=
∑
ij

hij
1Di

j +
1

2

∑
ijkl

V
ij
kl

2D
ij
kl (1.97)

where 1Di
j and 2D

ij
kl are the 1- and 2-electron Reduced Density Matrices respectively. These

will be discussed in more depth in the Reduced Density Matrix section.

1.4.3 Configuration Interaction

Now that we’ve built up the second quantization framework, we can use it to go beyond

the mean-field Hartree-Fock method for electronic structure theory. Taking |Ψ0⟩ to be our

Hartree-Fock ground state Slater determinant, we can create a more complicated wave func-
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tion as a linear combination of excitations (configurations) from this reference. Mathemati-

cally,

|Ψ⟩ = c0|Ψ0⟩+
occ∑
i

vir∑
a

cai a
†
aai|Ψ0⟩+

occ∑
i<j

vir∑
a<b

cabij a
†
aa

†
baiaj |Ψ0⟩... (1.98)

where ij... are occupied orbitals and ab... are virtual or unoccupied orbitals and the ci’s

are known as the ci coefficients, which represent the contribution to the wave function from

each Slater determinant. If we continue this procedure and create a wave function containing

every possible excitation (configuration) allowable, then we get Full Configuration Interaction

(FCI). The structure of the FCI matrix for this wave function is expressible as



⟨Ψ0|H|Ψ0⟩ 0 ⟨Ψ0|H|D⟩ 0 ...

⟨S|H|S⟩ ⟨S|H|D⟩ ⟨S|H|T ⟩ ...

⟨D|H|D⟩ ⟨D|H|T ⟩ ...

⟨T |H|T ⟩ ...


. (1.99)

Where |S⟩, |D⟩, |T ⟩ are single, double and triplet excitations respectively defined as a†aai|Ψ0⟩,

a
†
aa

†
baiaj |Ψ0⟩, and a

†
aa

†
ba

†
caiajak|Ψ0⟩. Since the Hamiltonian is written in second quantiza-

tion, as shown in Eq. 1.97, only has up to two body operations it can only connect configu-

rations that differ by at most two electrons. Any pair of configurations differing by three or

more electrons, for example, the ground state and a triply excited configuration, will be zero.

However, this does not explain why single excitations do not couple with the ground state.

The reason for this is Brillouin’s theorem, which states that single excitations correspond

to an off-diagonal element of the Fock matrix, but since we diagonalized the Fock matrix

during the Hartree-Fock procedure these must be zero.

To obtain the wave functions corresponding to the ground and excited states from FCI,

the matrix in Eq. 1.99 must be diagonalized. Unfortunately, while FCI is exact within a
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Nconfigs K Nα = Nβ
1 2 2

784 8 2
246016 32 2

66064384 128 2
63504 10 5

165636900 16 8

Table 1.1: Number of configurations required by FCI for varying numbers of orbitals (K)
and electrons (N)

given basis set, the number of configurations within the wave function is given by

Nconfigs =

(
K

Nα

)(
K

Nβ

)
(1.100)

whereK is the number of orbitals andNα andNβ are the numbers of alpha and beta electrons

respectively. We can evaluate Eq. 1.100 for different combinations of orbitals and electrons

the results of which are given in Table 1.1. From the table, it is evident that the number of

configurations required scales factorially with the number of orbitals and electrons. Putting

these numbers in context, the largest FCI calculation, as of this writing, was 24 electrons

in 24 orbitals which has ∼ one trillion configurations, required 8192 CPU cores, and took

almost 14 hours to complete[9]. A more commonly listed limit for desktop computers is ∼

18 electrons in 18 orbitals.

1.4.4 Truncated CI

It would not be unreasonable to expect that not all configurations, such as one where all the

electrons in a system are excited into higher-level orbitals, would contribute significantly to

its ground state character. This is the primary idea behind truncated CI; where the number

of electrons excited out of the Hartree-Fock reference is limited in some fashion. If instead of

including all excitations one limits themselves to only single and double excitations you’d get

a truncated CI which in this case would be known as CISD where the SD refers to single and
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double excitations. Due to Brillouin’s theorem, which states that single excitations cannot

couple directly to the Hartree-Fock reference, any methodology that aims to improve upon

Hartree-Fock’s ground state energy via excitations must include doubles, and as such CIS

would not improve the ground state energy. Although the high order excitations generally

contribute less to the ground state wave function than lower order excitations, it turns out

truncating excitations results in size consistency issues[10]. This means that as the system

size gets larger, a truncated CI’s improvement over Hartree-Fock decreases. Mathematically,

size consistency is expressed as

E(A+B) = E(A) + E(B) (1.101)

where for a method to be size consistent the energy of two non-interacting systems - say for

example at infinite distance - should be equal to the sum of each system individually. A

simple example to show CID’s lack of size consistency involves two helium atoms with two

spatial orbitals each.

He1

⇃↾

⇃↾ ,

⇃↾

⇃↾

+He2

⇃↾

⇃↾ ,

⇃↾

⇃↾

 ̸= He1He2

⇃↾

⇃↾

⇃↾

⇃↾ ,

⇃↾

⇃↾

⇃↾

⇃↾ ,

⇃↾

⇃↾

⇃↾

⇃↾ ,

⇃↾

⇃↾

⇃↾

⇃↾

 (1.102)

as we can see, there is a quadruply excited configuration when calculating the two Heliums

together which cannot be captured by CID but is needed to properly reproduce the energy

and make it equivalent to two individual Helium atom energies added together. In practice,

due to the issue of size-consistency, truncated CI methods are rarely used as larger system

sizes will give increasing small improvements over Hartree-Fock. Instead, a popular technique

called Coupled Cluster (CC) which truncates the number of excitations like in truncated CI

but does not suffer from size consistency issues is used in its place.
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1.4.5 Coupled Cluster

The way coupled cluster theory manages to be size consistent is by writing the wave function

through an exponential ansatz as[11]

|Ψ⟩ = eT̂ |Φ0⟩ (1.103)

instead of a linear combination of Slater determinants like truncated CI approaches as shown

in Eq. 1.98. Since a non-interacting system can be decomposed into a product wave function

as follows

Φ(A,B) = Φ(A)Φ(B) (1.104)

as long as the operator T̂ is additive then

eT̂ (A,B)Φ(A,B) = eT̂ (A)+T̂ (B)Φ(A)Φ(B)

= eT̂ (A)Φ(A)eT̂ (B)Φ(B)

= Ψ(A)Ψ(B) (1.105)

which ensures size-consistency through

Ĥ(A,B)Ψ(A,B) = Ĥ(A)Ψ(A) + Ĥ(B)Ψ(B)

= [E(A) + E(B)]Ψ(A)Ψ(B). (1.106)

Returning to Eq. 1.103 and 1.105 the T̂ is known as the cluster operator and is defined as

T̂ = T1 + T2 + T3 + ... (1.107)
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where Tn is the corresponding operator for nth level excitations. The single (T1) and double

(T2) excitation operators are defined as

T1 =
∑
i

∑
a

tiaa
†
aai (1.108)

and

T2 =
1

4

∑
i

∑
j

∑
a

∑
b

t
ij
aba

†
aa

†
bajai (1.109)

where the ts are known as the cluster amplitudes. If we assume only T1 and T2 make up the

cluster operator T̂ then we can expand the exponential ansatz using a Taylor series

eT̂ = 1 + T1 + T2 +
1

2
T 2
1 +

1

2
T1T2 +

1

2
T2T1 +

1

2
T 2
2 + ... (1.110)

where it is evident that coupled cluster theory approximates higher-order excitations through

combinations of lower ones. This is made more explicit by observing the relationship between

coupled clusters t amplitudes and the corresponding ci coefficients. Up to triple excitations

are given as

cia = tia (1.111)

c
ij
ab = t

ij
ab +

1

2
tiat

j
b (1.112)

c
ijk
abc = t

ijk
abc + tai t

jk
bc +

1

6
tiat

j
btct

k (1.113)

where even if the explicit T3 operator is not included in T̂ then there is still an approximation

to the triply excited state through T1 and T2. Unfortunately, while truncated coupled cluster

is still size consistent, it is no longer variational. This can be seen by evaluating the energy

expression

⟨E⟩ = ⟨Ψ0|e−T̂HeT̂ |Ψ0⟩
⟨Ψ0|Ψ0⟩

(1.114)
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where if T̂ is truncated then

⟨E⟩ = ⟨ΘB |H|ΘA⟩
⟨Ψ0|Ψ0⟩

(1.115)

where ΘA ̸= ΘB as e−T̂ ̸= (eT̂ )†. Therefore, when represented as a linear combination of its

eigenvectors

E =

∑
ij c

∗
i dj⟨Ψi|H|Ψj⟩
⟨Ψ0|Ψ0⟩

. (1.116)

Since c∗i does not need to equal dj there can be a negative contribution to the total energy

from a pair of ij which can lead to energies below FCI. In practice, coupled cluster not being

variational is not a large issue.

To get accurate properties from coupled cluster theory, it has been noted that triple

excitations need to be included. Unfortunately, including them fully in the cluster operator

T̂ causes the resulting method, known as CCSDT, to scale as O(N8) where N is the number

of basis functions. This limits CCSDT’s applicability to very small systems. There is another

approach, however, known as CCSD(T) where instead of the triples being included in the

cluster operator they are determined after as CCSD calculation using perturbation theory.

This gives a methodology that recovers most of the contributions of the triples while only

scaling as O(N7). Due to this, CCSD(T) is generally regarded as the gold standard within

electronic structure calculations.

1.4.6 Electron Correlation

The reason for wanting to introduce these improvements upon Hartree-Fock is to capture

the electron correlation neglected due to the assumption that electrons interact in an aver-

aged or mean field way. Put different, instead of feeling the instantaneous repulsion of an

electron’s motion, each electron will instead only feel the average of that motion. While this

does capture the majority of the electronic interaction, often upwards of 95% of its total

energy, that remaining correlated electronic motion can play an important role in describing
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properties and reactivity.

This missing electron correlation energy is defined as

Ecorrelation = E − EHF (1.117)

where E is a higher-level wave function calculation such as FCI. Ecorrelation is used as a

measure of the improvement of a correlated calculation over Hartree-Fock where the more

correlation energy that is captured, the larger the improvement in the representation of the

underlying wave function. Density functional theory is not included in this list as its absolute

energy is not reliable as previously discussed.

Electron correlation is generally broken into two domains: Strong or static correlation

and weak or dynamic correlation. While these are both fundamentally the same property,

electron’s correlated motion, they are divided into these two categories for convenience. The

simplest way to understand the difference between the two is through the FCI wave function.

Strong correlation occurs when there are configurations other than the Hartree-Fock reference

that contribute significantly to the character of the wave function. This expresses itself as

multiple Slater determinants with large Ci coefficients in the wave function. A prototypical

example of strong correlation is breaking the double bond in ethylene as one of the CH2

groups is rotated 90o of the other, resulting in a biradical. In contrast, weakly correlated

electrons result in small Ci coefficients. In a typical molecular system, there may only be a

few strongly correlated electrons, however, all the remaining electrons would still be weakly

correlated with one another; thus weak correlation tends to contribute more significantly to

the correlation energy.

The reason for dividing electron correlation into a strong and weak category is our algo-

rithms for obtaining electronic properties tend to be able to capture either one of the two

well but fail to properly capture or neglect the other entirely. A prime example of this is

with density functional theory. Since we do not have the exact functional and are using a
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single Slater determinant as our non-interacting reference, DFT fails to accurately describe

strong correlation. It is however excellent at describing weak correlation and, since most

molecules are only weakly correlated, has led to its rise as one of the main work horse’s in

quantum chemistry. On the flip side, there are methods such as Complete Active Space SCF

where the FCI problem is solved in only a subset of the total orbitals for capturing strongly

correlated electrons. As the remaining electrons will still only be described by mean field

Hartree-Fock this approach cannot capture the weak electron correlation.

1.4.7 Multi-Configurational Pair Density Functional Theory

Multi-Configurational Pair Density Functional Theory (MC-PDFT) builds upon the idea of

using a complete active space SCF calculation but instead of describing the electrons outside

the active space with Hartree-Fock, it uses a modification to DFT[12]. The rationale behind

this is that the active orbitals will capture the strong correlation and then DFT will describe

the remaining dynamical correlation. Along these lines, the energy expression is given as

E = ⟨Ψ|T̂ + V̂ne|Ψ⟩+ Vc[ρ] + Eot[ρ,Π] (1.118)

where Vc is the coulombic repulsion and Eot is an on-top pair density functional to capture

the remaining exchange and correlation.

Unlike density functionals, which use just the electronic density, on-top pair density

functionals rely on the on-top pair density, which is the probability of finding two electrons

at the same point in space. By using the spin magnetization defined as

m(r) = ρa(r)− ρb(r) (1.119)

where a and b correspond to alpha and beta spin electrons, and the electron density ρ(r)
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one can obtain the on-top pair density Π(r) using

m(r) = ρ(r)[1− 4Π(r)

ρ(r)2
]1/2. (1.120)

Functionals previously developed for use in Density Functional Theory have to be “translated”

into on-top pair density functionals from traditional density functionals using

Eot[ρ(r),Π(r)] = Exc

(
ρ(r),

ρ(r)(1−
4Π(r)
ρ(r)2

)1/2 if R ≤ 1

0 if R > 1

 , ρ
′
(r),

ρ
′
(r)(1− 4Π(r)

ρ(r)2
)1/2 if R ≤ 1

0 if R > 1


)

(1.121)

who’s form is motivated by Eq. 1.120. These translated functionals are denoted by a

lowercase t in front of the untranslated functional name. For example, the PBE functional

when translated is referred to as tPBE.
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CHAPTER 2

REDUCED DENSITY MATRIX APPROACHES TO QUANTUM

CHEMISTRY

2.1 Reduced Density Matrices and Their Properties

There is another approach to quantum chemistry which, instead of utilizing a wave function

or the electron density, uses Reduced Density Matrices (RDM’s). The 1- and 2-electron

Reduced Density Matrices (1- and 2-RDMs) were introduced previously in Eq. 1.97 when

the ground state energy was expressed using second quantization. For ease of reading I’ve

rewritten it here:

⟨Ψ|Ĥ|Ψ⟩ =
∑
ij

hij
1Di

j +
1

2

∑
ijkl

V
ij
kl

2D
ij
kl.

where 1Di
j is the 1-RDM defined as:

1Di
j = ⟨Ψ|a†iaj |Ψ⟩ (2.1)

and 2D
ij
kl is the 2-RDM defined as:

2D
ij
kl = ⟨Ψ|a†ia

†
jalak|Ψ⟩. (2.2)

Diving into properties of RDMs, we’ll first start with general properties they all share and

then explore properties specific to the 1- and 2- RDMs. All RDMs are hermitian, meaning

they equal their conjugate transpose, mathematically expressible as

pD = pD† (2.3)
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where pD is an arbitrary p-electron density matrix. With indices this is

pD
ij...z
ab...h = pD̄ab...h

ij...z . (2.4)

Additionally, all RDMs are positive semi-definite denoted

pD ⪰ 0 (2.5)

meaning their eigenvalues are all greater than or equal to zero. Furthermore, higher-order

RDMs contain all lower-order RDMs within themselves and they are accessible by tracing

out the additional electrons. Mathematically

p−1D(Ne − 1) =
∑
m

pD
ij...m
ab...m. (2.6)

The specific density matrices that will be used throughout the remainder of this work

are just the 1- and 2-RDMs. Starting with the 1-RDM it’s trace needs to be equal to the

number of electrons in the system

Tr(1D) = N. (2.7)

It is common to diagonalize the 1-RDM

1D = 1Dcoeff
1Docc

1D
†
coeff (2.8)

to obtain its eigenvalues, 1Docc, and eigenvectors 1Dcoeff . The eigenvalues, 1Docc, are

known as the orbital occupations and they denote the probability of finding an electron in

each orbital. These orbital occupations will lie between 0 and 1 and are often used as an

indicator of strong correlation. The stronger the electronic correlation the more the orbitals

will deviate from 0 and 1; giving what is often referred to as fractional orbital occupation.

37



In the limit that the underlying wave function is expressible as a single Slater determinant

the result 1-RDM will be idempotent such that

1D2 = 1D. (2.9)

The eigenvectors, 1Dcoeff , are the one-electron orbitals often referred to as molecular or

natural orbitals and denote where the electron is located in space.

Moving on to the 2-RDM, 2D, as it is a 2-electron probability matrix it’s trace equals

the number of electrons times the number of electrons minus 1

Tr(2D) = N(N − 1). (2.10)

Although the 2-RDM has 4 indices and is therefore a rank 4 tensor it is common to flatten

it into a matrix so that it can be diagonalized in the same manner as the 1-RDM to obtain

its eigenvalues, known as the geminal occupations, and its eigenvectors, known as geminals.

These geminal occupations correspond to the simultaneous probability of finding an electron

in orbital i and an electron in orbital j.

Additionally, the 2-RDM can be decomposed into a part that depends upon the 1-RDM

and a part that cannot as

2D = 1D ∧ 1D + 2∆. (2.11)

Where 2∆ is the cumulant of the 2-RDM. This cumulant is what contains all the correlation

phenomenon beyond what is captured by Hartree-Fock’s mean field approach.

2.2 Variational 2-RDM

From Eq. 2.1 is apparent that to obtain the energy using reduced density matrices we don’t

need to know the wave function of the system, just it’s corresponding 1- and 2-RDMs. The
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reason higher-order RDMs don’t contribute to the energy is that the electronic Hamiltonian

only contains one and two body terms. Writing the energy as a function of the RDMs has

the benefit of only scaling polynomially with the number of orbitals in the system, instead

of factorially as with FCI.

It is tempting from this point to invoke the variational principle and find the RDMs

that minimize the electronic energy. Unfortunately, doing so leads to an unboundly negative

result. It turns out RDMs need to be minimized subject to N-representability constraints,

which enforce that they could be obtained from an N-electron wave function. These con-

straints are known up through arbitrary p-electron RDMs, but it is most common to only

utilize those up to the 2-RDM. Constraining higher-order RDMs becomes unfeasible due to

their even increasing memory cost as well as computationally enforcing the constraints. The

N-representability constraints up to the 2-RDM are given below:

1-RDM N-Representability Constraints

1D ⪰ 0

1Q ⪰ 0

1D + 1Q = 1I

Nα = Tr(1Dα
α)

Nβ = Tr(1D
β
β)

(Nα − 1)1Diα
jα

=
∑
m

2Diαmα
jαmα

(Nα)
1Diα

jα
=

∑
m

2D
iαmβ

jαmβ

(Nβ − 1)1D
iβ
jβ

=
∑
m

2D
iβmβ

jβmβ

(Nβ)
1D

iβ
jβ

=
∑
m

2D
iβmα

jβmα
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2-RDM N-Representability Constraints 2D ⪰ 0

2Q ⪰ 0

2G ⪰ 0

2G
ij
kl = δjl

1Di
k −

2Dik
jl

2Q
ij
kl =

2Dkl
ij −

1Dk
j δil +

1Dk
i δjl+

1Dl
jδik − δjlδik − 1Dl

iδjk + δilδjk

Nα(Nα − 1) = Tr(2Dαα
αα)

Nβ(Nβ − 1) = Tr(2D
ββ
ββ)

Nα(Nβ) = Tr(2D
αβ
αβ)

where ⪰ 0 once again represents positive semi-definiteness, which defines the matrices to

have non-negative eigenvalues as it is non-physical to have a negative probability of finding

a particle or pair of particles. Additionally, 1Q is the 1-Hole matrix, 2Q is the 2-Hole matrix,

and 2G is the particle-hole matrix. These are defined in second quantization as

1Q = ⟨Ψ|aia
†
j |Ψ⟩

2Q = ⟨Ψ|aiaja
†
l a

†
k|Ψ⟩

2G = ⟨Ψ|a†iaja
†
l ak|Ψ⟩.

When just the 1- and 2-RDM constraints are enforced, known as Variation 2RDM (V2RDM),

the obtained RDMs will not, in general, be N-Representable and will result in a variationally

lower energy than FCI. Adding additional N-Representability constraints works to raise the

energy of the system closer to that of FCI’s as the set of allowable RDMs is contracted as

shown in Figure 2.1. Concerning the correlation energy of the system, V2RDM will result

in more than 100% of FCI’s as it overcorrelates the electronic motion.
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2-e conditions

3-e conditions

N-Representable

Set of 2-RDMs

Figure 2.1: Illustration of the set of allowable 2-RDMs as different N-Representability con-
straints are applied.

However, V2RDM, even with this pitfall, gives energies closely in line with those obtained

from CI calculations with the added benefit of being able to solve for the ground state

energies of larger systems. It is possible to use V2RDM on systems with up to 60 electrons

in 60 orbitals, which far exceeds FCI’s limit. This is due to the 2-RDM’s memory and

computational cost scaling quadratically as a function of system size instead of exponentially

like FCI’s wave function.

2.2.1 Semi-Definite Programming

To minimize the electronic energy as a function of the 1- and 2-RDMs constrained to be

N-Representable, we can use a Semi-Definite Program (SDP). SDPs are a subset of lin-

ear programming where the objective function spans the intersection of cones of positive

semi-definite matrices which form a convex set. The benefit of using an SDP is that the

minimization is guaranteed to converge to the global minima as long as it exists. As Eq.

1.97 is a linear functional of the 1- and 2-RDMs which are constrained to be positive semi-

definite and also form a convex set, it maps perfectly to an SDP. To computationally solve
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the SDP we can use a boundary point SDP (BPSDP) solver[13] which breaks down the

constraints as

2D = R∗R (2.12)

2Q = S∗S (2.13)

2G = T ∗T (2.14)

and ensures that the eigenvalues of 2D, 2Q, and 2G are non-negative by construction. The

problem is now non-linear and can be solved using an augmented Lagrangian via

L(x) = E(x)−
∑
i

λici(x) +
1

2µ

∑
i

ci(x)
2 (2.15)

where x is a vector containing the R, S, and T variables, E(x) is the ground state energy,

ci(x) are the equality constraints, λi(x) are the Lagrange multipliers, and µ is a penalty

parameter. This augmented Lagrangian is minimized using a quasi-Newton algorithm and if

the solution’s constraint’s maximal error is below a given threshold the Lagrange multipliers

are updated as λ(n+1)
i = λ

(n)
i − ci(x)/µ if not the constraints are enforced more tightly by

updating the penalty parameter as µ(n+1) = 0.1µ(n). Using this BPSDP, the memory cost

of solving V2RDM is O(N4) with an operations cost of O(N6). Therefore, the primary lim-

itation in exploring larger systems with V2RDM is the cost of the minimization procedure,

which is a function of the number of constraints on the system. If higher RDM representabil-

ity constraints are added, the computational complexity increases drastically with it scaling

as O(N9) when including full 3-RDM conditions.
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2.3 Anti-Hermitian Contracted Schrödinger Equation

Instead of directly minimizing the energy as a function of the 2-RDM it is possible to also

follow a derivative to arrive at a stationary state of the Schrödinger equation. To show this

starting from the Schrödinger equation

Ĥ|Ψ⟩ = E|Ψ⟩ (2.16)

we can left multiple both sides by ⟨Ψ|2Γ̂ijkl to give

⟨Ψ|2Γ̂ijklĤ|Ψ⟩ = E2D
ij
kl (2.17)

where 2Γ̂
ij
kl is the reduced density operator

2Γ̂
ij
kl = a

†
ia

†
jalak. (2.18)

Equation 2.17, also known as the contracted schrödinger equation or CSE, can be expressed

as a hermitian and an anti-hermitian part

⟨Ψ|{a†ia
†
jalak, (Ĥ − E)}|Ψ⟩+ ⟨Ψ|[a†ia

†
jalak, (Ĥ − E)]|Ψ⟩ = 0. (2.19)

Taking just the anti-hermitian part,

⟨Ψ|[a†ia
†
jalak, (Ĥ − E)]|Ψ⟩ = 0 (2.20)
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expanding the Hamiltonian using 1.92, and evaluating it gives

∑
s

1Kk
s

2D
ij
kl −

∑
s

1Kl
s
2D

ij
kl +

∑
p

1K
p
j

2D
pi
kl −

∑
p

1K
p
i

2D
pj
kl

+6
∑
pst

2V
pk
st

3D
ijp
stl − 6

∑
pst

2V
pl
st

3D
ijp
stk

+6
∑
pqs

2V
pq
sj

3D
pqi
kls −

∑
pqs

2V
pq
si

3D
pqj
kls + 2

∑
st

2V kl
st

2D
ij
st

+2
∑
pq

2V
pq
ji

2D
pq
kl = 0

(2.21)

where the terms that depend on the 4-RDM ended up canceling out due to the anti-

commutation operation. This can be further broken down into lower-order RDMs by using

the 3-RDM’s cumulant expansion

3D
ijk
qst =

1Di
q ∧ 1D

j
s ∧ 1Dk

t + 32∆
ij
qs ∧ 1Dk

t + 3∆
ijk
qst (2.22)

where the 2-RDM’s cumulant is given as

2∆
ij
qs =

2D
ij
qs − 1Di

q ∧ 1D
j
s. (2.23)

By setting 3∆
ijk
qst = 0 we get a set of equations for the energy that only depends on up

to the 2-RDM. It should be noted that this is analogous to coupled cluster theory in that

lower-order density matrices can be used to approximate higher-order ones, just as coupled

cluster theory approximates higher-order excitations through combinations of lower-order

ones.

By minimizing the residual given as Eq. 2.20 the ACSE will optimize towards the nearest

stationary state of the Schrödinger equation. This is achieved through a set of differential

equations as
d2D

ij
kl

dλ
= ⟨Ψ(λ)|[2Γ̂ijkl, Ŝ(λ)]|Ψ(λ)⟩ (2.24)
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where

Ŝ(λ) =
∑
ijkl

2S
ij
kla

†
ia

†
jalak(λ) (2.25)

and each element of Ŝ is chosen to minimize the residual through

2S
ij
kl = ⟨Ψ(λ)|[2Γ̂ijkl, Ĥ(λ)]|Ψ(λ)⟩ (2.26)

While this methodology has been shown to recover nearly 100% of the missing correlation

energy and can target excited states in addition to the ground state it is still limited to smaller

system sizes as storing the 2-RDM scales as O(N4) in terms of the memory requirements

which prevents the method from going beyond a couple of hundred orbitals.

2.4 Reduced Density Matrix Functional Theory

While we can use either V2RDM or the ACSE to solve for the ground state energy, we’re

still limited by either the numerical cost of the method or its memory scaling. Both of these

limitations can be traced back to the 2-RDM. However, there is an idea to use the 1-RDM as

the basic variable for the minimization, which is analogous to the electronic density in DFT.

The advantage to this approach over V2RDM is that the 1-RDM has a memory scaling of

only O(N2) where N is the number of orbitals in your system, which would allow systems

with thousands of orbitals to be calculated. To build the foundations of a 1-RDM functional

theory Gilbert’s theorem shows[14], analogous to the Kohn-Sham theorems, that the ground

state electronic energy can also be expressed as a unique functional of the 1-RDM. As the

wave function uniquely defines the 1-RDM as shown via Eq. 2.1 all that remains is to

show there is a unique mapping from the 1-RDM to the wave function. Using proof by

contradiction, Gilbert obtained this as follows: Start with two different external potentials

Vext and V
′
ext that correspond to two different ground states Ψ and Ψ

′
. Via the variational
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principle

E = ⟨Ψ0|Ĥ|Ψ0⟩ < ⟨Ψ
′
0|Ĥ|Ψ

′
0⟩

= ⟨Ψ
′
0|Ĥ|Ψ

′
0⟩+

∫
[Vext(x, x

′
)− V

′
ext(x, x

′
)]1D

′
(x, x

′
)dxdx

′

= E
′
+

∫
[Vext(x, x

′
)− V

′
ext(x, x

′
)]1D(x, x

′
)dxdx

′
.

Swapping Vext and V
′
ext

E
′
< E +

∫
[V

′
ext(x, x

′
)− Vext(x, x

′
)]1D(x, x

′
)dxdx

′
.

When added to the above we get

∫
[V

′
ext(x, x

′
)− Vext(x, x

′
)][1D

′
(x, x

′
)− 1D(x, x

′
)] < 0.

From this, if the 1-RDMs are equal, then the left-hand side of the equation would be zero.

Which would lead to the contradiction of 0 < 0. Therefore, the only way for this to be

true is for there to be a unique mapping between ground state wave functions and 1-RDMs.

This establishes a mapping between V-representable pure state wave functions and the 1-

RDM. This was later relaxed to pure-state N-representable 1-RDMs by Levy[15, 16] and

then further extended by Valone[17, 18] to ensemble N-representable 1-RDMs.

Extending the foundations of RDMFT to ensemble N-representable 1-RDMs was im-

portant as the necessary and sufficient conditions for ensuring a 1-RDM is ensemble N-

representable are well known[19] and expressible as

1D ⪰ 0 (2.27)

1Q ⪰ 0 (2.28)
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1D + 1Q = 1I (2.29)

∑
i

1Di
i = N. (2.30)

The equivalent set of necessary and sufficient conditions for ensuring pure-state N-representability

are not arbitrarily known thus hindering minimizations over the space of pure-state RDMs[20].

2.4.1 RDMFT functionals

Just like DFT, there have been different RDMFT functionals that have been developed

over the years, however, while DFT enjoys a plethora of different functionals to choose

from, RDMFT has only a handful. This is due to RDMFT generally requiring a two-step

minimization approach where the orbitals are optimized under orthogonality constraints and

then the orbital occupations are optimized separately. These primarily fall into two different

classes, those based upon the two-electron case - for which there is an exact density matrix

functional available - and those based upon a reconstruction of the 2-RDM.

2.5 Motivation for this work

The motivating idea throughout this dissertation is to combine the functionals from Density

Functional Theory with a Reduced Density Matrix Functional to create a methodology capa-

ble of capturing both dynamical correlation with the density functional and static correlation

with the reduced density matrix functional. The reason for this combination is that DFT

has been widely recognized as giving excellent results for its low computational scaling but

tends to fail in systems with strong correlation. RDMFT’s functionals have been successful

at capturing strong correlation effects but tend to result in over-correlation, artificially lower-

ing the energy. Additionally, RDMFT’s current dependence on orbital occupations results in

a two-step procedure for minimizing the electronic energy where you alternatively minimize

the energy as either a function of the orbital occupations or orbital coefficients. This results
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in a minimization with an overall computational scaling of O(N5). By combining aspects of

these two functional theories, we aim to obtain a methodology that offers the best of both

approaches.

The remainder of this thesis is organized around combining these two functional theories

presented as copies of the publications we made toward this goal with some minor edits.

In the first publication, Toward a Resolution of the Static Correlation Problem in

Density Functional Theory From Semidefinite Programming, we show that we can

substitute the Roothaan-Hall equations for obtaining the Hartree-Fock or Kohn-Sham DFT

orbitals at each iteration with a constrained semi-definite program. This directly minimizes

the energy of the system using the 1-RDM instead of the standard diagonalization procedure

to obtain the MO coefficients. This approach allows us to relax the constraint that the

orbitals must be either completely occupied or unoccupied by enabling fractional orbital

occupations and creates a framework for future minimization algorithms based on the 1-

RDM. Unfortunately, while this work shows the potential promise of directly minimizing

the 1-RDM in Hartree-Fock or DFT, through significantly improved singlet-triplet gaps, we

could only observe differences from the standard Roothaan-Hall implementations in systems

with degenerate frontier orbitals due to the linear nature of our minimization.

We remove this issue in the next publication, Density Functional Theory Trans-

formed Into a One-Electron Reduced-Density-Matrix Functional Theory for the

Capture of Static Correlation, we postulate a quadratic 1-RDM functional using 1D2.

This functional is still expressible through the use of semi-definite programming via a slack

variable, 1F , introduced to represent the 1D2 term and therefore can be added to our pre-

vious minimization. While this slack variable is only bound from below by 1D2, in practice

it is identical to the exactly obtained 1D2 to within the optimization’s tolerances. With

this quadratic form we’re able to obtain fractional occupation in systems without degenerate

frontier orbitals modulated through a newly introduced w value. We find this methodol-
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ogy improves upon DFT in the tested systems by enabling the capture of static correlation

through fractional occupations in line with those obtained from CASSCF calculations. Ad-

ditionally, we find the w value can be held fixed across a range of systems and still capture

static correlation effects. We term this methodology RDMFT.

To proceed with making RDMFT a useful theory in practice we needed to understand

how different functionals from DFT affect it and how it relates to similar methodologies. To

explore this, in Comparison of Density-Matrix Corrections to Density Functional

Theory we compare our RDMFT to the information Density Matrix Functional Theory

(iDMFT), uncovering a relationship between the Von Neumann Entropy and our quadratic

minimization using a Taylor Series expansion. We also explore the effect of changing the

density functional on both the w value and the maximal deviations from accurate reference

values. We find that the optimal w value scales in an approximately linear manner with

respect to the amount of Hartree-Fock exchange in the selected density functional and that

the errors tended to increase as more parameterized functionals were used.

In Universal Generalization of Density Functional Theory for Static Correla-

tion we find a deeper understanding of our RDMFT by formally deriving it from a unitary

decomposition of the 2-RDM’s cumulant. This results in the w value being explicitly defined

as the trace of the electron repulsion integrals, making RDMFT system specific. This also

highlights why previous attempts to use an arbitrary matrix for w instead of a scalar multi-

ple of the identity matrix were unsuccessful. Comparisons to the fixed value of w previously

used reveal similar results. Unfortunately, due to the derivation’s quadratic scaling on the

number of orbitals and linear scaling on the electron repulsion integrals, the RDMFT will

asymptotically approach DFT’s energy as the system size grows large.

In our last work, Enhancing Density Functional Theory for Static Correlation

in Large Molecules, we address this size extensivity issue by using the Cauchy-Schwarz

inequalities to renormalize each electron repulsion integral. This results in a new w value we
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call w̃ that is nearly independent of the system geometry and recovers size extensivity. We

show its applicability by applying RDMFT to linear hydrogen chains where the correction

fixes the energy per hydrogen and ensures that it is both constant in the non-interacting

limit and does not vary with number of atoms. Additionally, we investigate the linear acenes

from pentacene to dodecacene and find excellent agreement with reference V2RDM results.

With this modification to w RDMFT can be applied to systems of arbitrary size.
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CHAPTER 3

TOWARD A RESOLUTION OF THE STATIC CORRELATION

PROBLEM IN DENSITY FUNCTIONAL THEORY FROM

SEMIDEFINITE PROGRAMMING

Reprinted with permission from D.P. Gibney, J.-N. Boyn, and D.A. Mazziotti, Journal of

Chemical Physics Letters 12, 1, 385–391. Copyright © 2020 American Chemical Society

3.1 Introduction

Since its conception in the 1960s, Kohn-Sham density functional theory (KS-DFT) has be-

come omnipresent in the calculation of the physical properties of atoms, molecules, liquids,

and solids. Its favorable computational scaling compared to wave function-based methods

such as coupled cluster or complete active space (CAS) calculations has made it into the

foremost tool in computational catalysis and materials science[21, 22]. Nonetheless, current

exchange-correlation functionals continue to exhibit a long list of errors, including but not

limited to the underestimation of chemical reaction barriers and band gaps of semiconduc-

tors, inaccurate description of spin state splittings, and a general failure to describe systems

with degenerate or near-degenerate electronic states[23]. These failures can be traced to

three fundamental issues: (i) a failure to capture accurately the long-range 1/r6 asymptotic

behavior of London dispersion forces;[24] (ii) a delocalization error that arises in approximate

functionals due to the dominating Coulomb term, leading to ρ being artificially diffuse;[25, 26]

(iii) a static correlation error in near-degenerate states due to the single reference nature of

KS-DFT.[27, 28]

Over the course of the last five decades great progress has been made in functional de-

velopment. Nonetheless, it has been shown that while modern functionals are trained to

perform well in the calculation of specific chemical and physical properties, the error in
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computed electron densities has actually increased, suggesting the results may not reflect

physical improvements to the functional but rather good fitting to the energy.[29, 30] Until

DFT functionals can correctly account for both fractional spins and charges, a general solu-

tion will remain beyond reach and calculations will fail in systems where strong correlation

plays a significant role. While multiple approaches relying on optimized effective potentials

or modified Hamiltonians[31, 32, 33, 34, 35] have been conceived to account for fractional

orbital occupations, recent progress in solving the static correlation error in DFT was pre-

sented in a letter by Lee and co-workers in which a new class of charge and spin densities

is obtained via the breaking of time-reversal symmetry and the use of complex symmetry in

the KS-DFT determinant, which they term “complex polarization”.[36]

In this Letter we present a related and yet different approach to the static correla-

tion problem in DFT that implements a semidefinite programming approach instead of

the conventional KS self-consistent field (SCF) procedure. The SDP-DFT method vari-

ationally minimizes the energy with respect to the 1-electron reduced density matrix (1-

RDM).[37, 38, 39, 40, 41, 42, 43, 44, 45] This approach is similar to 1-RDM functional

theory (1RDMFT),[46, 19, 47, 48] recent versions of which, such as the PNOF7 functional

with MP2 correction,[49] have been shown to describe the O singlet-triplet gap within chem-

ical accuracy. Unlike 1RDMFT however, in SDP-DFT the correlation and exchange parts of

the energy are evaluated with one-density exchange-correlation functionals from DFT. Min-

imizing the energy with SDP allows idempotency breaking in the density matrix subject to

the presence of degenerate frontier orbitals, yielding correct fractional-orbital spin densities,

similar to those from complex spin-restricted orbitals, without the double-counting issue

in wave function-based multiconfigurational DFT approaches.[50, 51, 12, 52] We apply the

SDP-DFT algorithm to calculate the singlet-triplet gaps of a set of 11 atoms and molecules

surveying a range of commonly used DFT functionals.
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3.2 Theory

In contrast to the more complicated wave function-based approaches, DFT uses the electron

density as the basic variable of its calculations. The energy is minimized with respect to

the electron density; the correct ground-state density of a system is the one that minimizes

the total energy through the functional E[ρ(r)]. This gives rise to the Kohn-Sham equations

and their partitioning of the energy:[7]

E[ρ(r)] = Ts[ρ(r)] + ENe[ρ(r)] + J [ρ(r)] + EXC [ρ(r)] (3.1)

where Ts is the kinetic energy functional, ENe the classical nuclear-electron Coulomb at-

traction, J the classical Coulomb repulsion, and EXC the exchange-correlation functional.

The exact form of EXC [ρ(r)] remains unknown. The electron density ρ(r) may be computed

from the 1-RDM 1D:

ρ(r) = 2
∑
ij

ηi(r)ηj(r)
1Di

j (3.2)

where η are the molecular orbitals. In classical KS-DFT the 1-RDM is subject to trace,

Hermiticity and idempotency constraints.

Here we modify the traditional KS-DFT SCF approach to minimize the system energy

over the convex set of ensemble N-representable 1-RDMs, an approach that has previously

been demonstrated to obtain global solutions of restricted Hartree-Fock theory.[53, 54, 55]

The ensemble N-representability conditions of the 1-RDM restrict its eigenvalues - the nat-

ural occupation numbers - to lie between 0 and 1 in accordance with the Pauli exclusion

principle.[19] Although not required here, additional pure-state N-representability condi-

tions of the 1-RDM, known as generalized Pauli constraints, further restrict the eigenvalues

of a pure-state 1-RDM for N≥3.[56, 57, 58, 59, 60, 61] The modified theory is formulated in

a finite orbital basis set of rank r. The SDP replaces the diagonalization step in the SCF

procedure, which in contrast to a traditional KS SCF implementation allows the 1-RDM to
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break idempotency and correctly account for orbital degeneracies. In the SDP the degenerate

1-RDM 1D is obtained by minimizing the energy expectation value

min
∑
ij

1Hi
j
1Di

j (3.3)

where 1H is the Kohn-Sham Hamiltonian matrix. All components of the energy in eq

3.3 including the kinetic energy are computed with respect to the nonidempotent 1-RDM.

The 1-RDM is subject to ensemble N-representability constraints.[46, 19, 47, 48] Namely,

the N-representability constraints require 1D and the 1-hole matrix 1Q to remain positive

semidefinite, meaning their eigenvalues remain nonnegative

1D ⪰ 0 (3.4)

1Q ⪰ 0 (3.5)

These semidefinite constraints are equivalent to the Pauli exclusion principle.[19, 60] The

sum of 1D and 1Q is also set equal to the one-particle identity matrix

1D + 1Q = 1I (3.6)

and the trace of 1D is set equal to the total number of electrons in the system.

Computationally this procedure is implemented using a semidefinite program, namely,

a boundary-point SDP algorithm [62, 13] previously developed for variational 2-electron

reduced density matrix (V2RDM) calculations, in which a linear functional of matrices is

minimized subject to linear constraints and the restriction that the matrices be positive

semidefinite.[63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76] Computational scaling of

O(r3), where r is the number of basis functions, compares favorably to a nominal scaling of

O(r5) in 1RDMFT[49]. As is clear from eqs 3.4 and 3.5, a constraint is not placed on the
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idempotency of 1D, allowing us to obtain the correct nonidempotent 1-RDM with partial

occupancies that in the case of electronic degeneracies account for electron correlation.

As shown previously by Ess, Johnson, Hu, and Yang, the ensemble 1-RDM, in which the

degenerate orbitals are equally populated, shares the same open-shell singlet density as the

exact singlet open-shell wave function and hence produces exact eigenfunctions of the ⟨Ŝ2⟩

and ⟨Ŝz⟩ operators.[77] Computationally, we have shown that for degenerate orbitals the 1-

RDMs from SDP-DFT match the 1-RDMs from spin-adapted variational 2-RDM calculations

with the explicit singlet constraints ⟨Ŝ2⟩ = 0 and ⟨Ŝz⟩=0 [78](see appendix Table A.3).

Moreover, SDP-DFT also resolves unphysical symmetry breaking in KS-DFT; in accordance

with Unsöld’s theorem, the ensemble 1-RDM generates spatially symmetric solutions that

are independent of rotations in the manifold of energetically degenerate orbitals (refer to

appendix Figure A.1 for C atom densities).[79, 80]

3.3 Results

We apply the SDP-DFT algorithm to a set of 11 atoms and molecules, previously assembled

by Head-Gordon and co-workers for the purpose of benchmarking an electronic structure

theory’s ability to describe multireference character in atoms and small molecules from orbital

degeneracies via the calculation of singlet-triplet energy gaps.[36] We remove the charged

species NO−, leaving us a set consisting of C, O, S, Si, NF, NH, O2, PF, PH, S2, and

SO, all of which have ground triplet states which we compute with ⟨Ŝz⟩=1.[81] The excited

singlet states are biradicaloids, displaying a form of multi-reference correlation from the

degenerate natural orbital occupations.[82] We are using a range of functionals covering the

different rungs of Jacob’s Ladder,[8] namely, traditional local density approximation (LDA)

functionals VWN [6, 7, 83, 84] and SPW92 [85] generalized gradient approximation (GGA)

functionals PBE [86, 87] and BLYP,[88, 89] and some of the latest meta-GGA functionals
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Table 3.1: Root Mean Squared Deviations (RMSDs) and Mean Signed Deviations (MSDs)
of the Singlet-Triplet gaps (∆EST = ES −ET) with Respect to the Experimental Reference
Values for the Test Set of C, O, S, Si, NF, NH, O2, PF, PH, S2, SO. All values in kcal/mol.

Restricted Unrestricted

SDP-DFT KS-DFT SDP-DFT KS-DFT

Functional RMSD MSD RMSD MSD RMSD MSD RMSD MSD
VWN 5.33 -3.83 17.85 17.56 4.68 -3.03 14.56 -13.86

SPW92 5.46 -4.02 17.73 17.47 4.80 -3.22 14.27 -12.09
PBE 4.46 -1.01 17.46 17.29 4.44 0.07 18.08 -17.08
BLYP 5.00 -2.87 13.76 13.58 4.53 -1.79 19.15 -18.17
TPSS 5.79 2.78 16.81 16.43 6.87 4.26 18.66 -17.78
SCAN 11.91 10.42 19.98 19.73 14.23 12.66 17.53 -16.03

MN15-L 10.11 8.70 9.78 9.17 12.92 11.47 12.34 -11.21
B97M-V 8.54 6.36 11.64 11.43 10.52 8.46 15.10 -14.13

TPSS,[90] SCAN,[91] MN15-L,[92] and B97M-V.[93] The augmented correlation-consistent

polarized valence quadruple-ζ (aug-cc-pVQZ) basis set [94, 95] was used for all calculations.

To quantify the performance of DFT functionals within the SDP framework we calculate

the singlet-triplet gaps (∆EST = ES − ET ) for the 11 entities in our test set with the

chosen functionals and compare those against reference KS-DFT calculations and reported

experimental values. Statistical analysis of the performance of the various functionals in spin

restricted and spin unrestricted implementations is provided in Table 3.1 in the form of root

mean squared deviation (RMSD) and mean signed deviation (MSD) from the experimental

reference values.

In traditional unrestricted KS-DFT (UKS-DFT) all functionals significantly underesti-

mate ∆EST . The newer Minnesota functional MN15-L gives the best performance with

an RMSD of 12.34 kcal/mol and an MSD of -11.21 kcal/mol, while BLYP performs worst

with an RMSD of 19.15 kcal/mol and an MSD of -18.17 kcal/mol. These are large errors

compared to chemical accuracy of 1 kcal/mol, and the improvement of the newest meta-

GGA functionals over the 40-year-old VWN is minor at best. Use of the spin unrestricted

SDP-DFT (USDP-DFT) algorithm yields greatly improved results over UKS-DFT, with the
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largest increases in accuracy observed for the tested LDA and GGA functionals, all of which

give RMSDs in the 4-5 kcal/mol range. The popular PBE functional performs best with the

RMSD reduced to 4.44 kcal/mol. Of the tested meta-GGA functionals, only TPSS shows

a sizable improvement with an RMSD of 6.87 kcal/mol using USDP-DFT, compared to

18.66 kcal/mol in UKS-DFT. MN15-L, the best performing functional in UKS-DFT, is the

only functional tested to perform worse in USDP-DFT, with an increase in RMSD of 0.58

kcal/mol.

Applying restricted SDP-DFT (RSDP-DFT) yields results comparable to the unrestricted

calculations. While the RMSD is similar for the various functionals across restricted and

unrestricted KS-DFT we observe a sign change in the MSD, and ∆EST is significantly

overestimated rather than underestimated in a restricted calculation. Again MN15-L gives

the best performance compared to experiment. In contrast to this, the SDP results for

restricted calculations mirror those obtained via an unrestricted implementation. Compared

to USDP-DFT, the LDA and GGA functionals yield slightly increased RMSDs and MSDs in

RSDP-DFT. The meta-GGA functionals show small improvements. MN15-L again performs

worse with the SDP algorithm than without it.

Average changes of the total electronic energy between SDP-DFT and KS-DFT for the

singlet and triplet spin states of the tested functionals in both spin restricted and unrestricted

formalisms are shown in Table 3.2. In both restricted and unrestricted calculations the

changes to the electronic energy of the triplet states are minor. LDA functionals VWN and

SPW92 show minimal variation in ∆Etot (∼0.4 kcal/mol) upon changing from a KS to a

SDP algorithm while all other functionals show a small energy increase. It is worth noting

that these changes are entirely driven by changes from the atoms in the data set and both

the total energies as well as their individual components remain unchanged upon use of the

SDP in the molecules of the data set. This suggests an overestimation of the correlation

energy in the triplet state of the atoms in the data set by GGA and meta-GGA functionals
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in traditional KS-DFT.

Table 3.2: Mean Energy Differences of Total Electronic Energy between the SDP-DFT and
KS-DFT solutions (∆E = (ESDP − EDFT)/N) of Singlet and Triplet states in Both Spin
Restricted and Unrestricted Frameworks (in kcal/mol)

Restricted Unrestricted

Functional ∆ES
tot ∆ET

tot ∆ES
tot ∆ET

tot
VWN -21.60 -0.21 11.26 0.20

SPW92 -21.62 -0.12 11.02 0.19
PBE -17.31 0.99 18.75 1.60
BLYP -15.45 1.00 17.80 1.42
TPSS -10.97 2.69 25.14 3.10
SCAN -5.26 4.05 33.34 4.65

MN15-L 4.42 4.89 27.88 5.20
B97M-V -1.08 3.99 26.77 4.18

Variations are of significantly greater magnitude in the singlet state. In a spin restricted

formalism the singlet state is lowered by the SDP optimization in all functionals but MN-15L,

with the greatest energetic gains in LDA functionals, ∆ES
tot = -21.62 kcal/mol in SPW92, and

successive decreases as we progress up Jacob’s Ladder to ∆ES
tot = 4.42 kcal/mol in MN15-L.

In a spin unrestricted formalism singlet states are raised in energy and the functionals follow

the opposite trend to the restricted formalism, with the smallest change in LDA functionals

and the greatest in meta-GGA functionals, ranging from ∆ES
tot = 11.02 kcal/mol in SPW92

to ∆ES
tot = 33.34 kcal/mol in SCAN. The lowering in energy upon introduction of the

nonidempotent, correlated density via the RSDP-DFT procedure is expected, as the static

correlation energy of the open shell singlet is recovered. Conversely, in USDP-DFT, raising

of the singlet energy by introducing the correlated density points toward overcorrelation of

the open shell singlet by symmetry breaking in the UKS-DFT. The lack of energetic gain

in USDP-DFT of meta-GGA functionals and their strong overcompensation in RKS-DFT

suggests that the increasingly parametrized nature of these functionals seems to have resulted

in a nonphysical relationship between density and correlation energy.

Across all calculations the use of the nonidempotent SDP 1-RDM to evaluate the system
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energy leads to uniform changes in the individual components: a decrease in Ekin and EXC

counteracted to a varying degree by increases in EC and Enuc. Additional details can be

found in the appendix Table A.1. Furthermore, appendix section A.2 considers the projection

of the SDP-DFT nonidempotent density matrix onto the nearest idempotent density matrix

by Euclidean distance, and the changes in the functional’s energy components are given

upon relaxation of the idempotent density matrix to the nonidempotent density matrix

(Table A.2). The components EC and EXC decrease and increase, respectively, while Ekin

and Enuc remain the same. The total energies for functionals VWN through SCAN decrease

with |EC |>|EXC |, while those for functionals MN-15L and B97M-V increase unphysically

with |EC |<|EXC |.

To further analyze the performance of the SDP algorithm, we consider the errors of the

singlet-triplet gaps ∆EST of the best performing functional, the GGA functional PBE, and

the nonimproving MN15-L meta-GGA functional. For each species in our test set the errors

are shown in Figure 3.1 for both spin restricted and unrestricted implementations. PBE

shows a systematic improvement from a massive underestimation or overestimation of the

singlet-triplet gap in UKS-DFT and RKS-DFT, respectively. The oxygen and sulfur atoms

are the only species that, while still showing significant improvements over the KS-DFT,

display a ∆EST from SDP-DFT that is significantly lower than the experimental value.

Inspection of the changes in the individual energy components of the PBE functional from

a KS to SDP implementation shows particularly large stabilization of the singlets for O

and S (∆E’sof -27.78 kcal/mol and -25.41 kcal/mol, respectively, compared to an average

change of -17.31 kcal/mol) and disproportionate destabilization of the triplet (∆E’s of 5.76

and 1.80 kcal/mol, respectively, compared to an average change of 0.99 kcal/mol) leading to

an underestimation of the singlet-triplet gap. In contrast to PBE, MN15-L in USDP-DFT,

which again consistently underestimates the gap in UKS-DFT and overestimates the gap in

RKS-DFT for every species, uniformly overestimates ∆EST with large magnitudes and no
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Figure 3.1: Errors in kcal/mol with respect to experimental values for each species in our test
set with the PBE and MN15-L functionals in traditional KS and SDP DFT. Left column:
spin restricted calculations; right column: spin unrestricted calculations.
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major outliers. The O and S atoms again present negative deviations from the mean error;

however, because of the large, general overestimation of the gap these species now profit

from favorable error cancellations.

3.4 Conclusion

We present a new SCF minimization procedure for DFT functionals based on semidefinite

programming that allows for inclusion of some strong correlation effects via a non-idempotent

1-electron density in systems exhibiting orbital degeneracies. The SDP-DFT method deliv-

ers significant improvements over traditional DFT and, unlike traditional KS-DFT, yields

results that are consistent across both spin restricted and spin unrestricted implementa-

tions. However, improvements are strongly functional-dependent. LDA and GGA function-

als show consistent refinements from the SDP procedure while improvements from newer,

highly parametrized meta-GGA functionals are inconsistent and minor. In particular, the

MN15-L functional performs worse in the SDP implementation.

The present results are comparable to those achieved by Head-Gordon and co-workers

with the use of complex spin-restricted orbitals (presented in ref [36]). The only modifications

in the present method from traditional DFT are based on its most fundamental quantity,

the electron density, which through the use of SDP rather than KS-SCF minimization, is

allowed to derive from nonidempotent and correlated 1-RDMs. The variation of the tested

functional’s response to this change in density reveals flaws in the path of modern functional

development. Medvedev and co-workers found in their 2017 paper[29] that as functional

development has progressed from LDA and GGA to modern, highly parametrized meta- and

hyper-GGA functionals their predictions improve although DFT’s fundamental quantity,

the 1-electron density, has strayed further from the true solution. Our results lead to a

complementary conclusion, namely that as we progress up “Jacob’s Ladder” a functional’s

prediction of electronic properties, in our case the singlet-triplet gap of selected simple open
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shell systems, exhibits less improvement from a refined electron density, pointing towards

systematic overfitting in modern hybrid functionals. Nonetheless, the results show that this

problem is not universal to DFT as promising improvements are possible with the simplest

functionals. Developments focusing on improving implementations of DFT to yield more

accurate electron densities may be a more viable path forward than functional development

that is based on prediction-driven parametric fitting. This work presents important first

steps toward the use of SDP to resolve strong correlation in a DFT framework through the

use of improved densities which may improve the value of DFT as a tool in the resolution of

properties affected by strong correlation such as bond dissociation energies and the electronic

and magnetic properties of materials.
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CHAPTER 4

DENSITY FUNCTIONAL THEORY TRANSFORMED INTO A

ONE-ELECTRON REDUCED-DENSITY-MATRIX

FUNCTIONAL THEORY FOR THE CAPTURE OF STATIC

CORRELATION

Reprinted with permission from D.P. Gibney, J.-N. Boyn, and D.A. Mazziotti, Journal of

Physical Chemistry Letters 13, 6, 1382–1388. Copyright © 2022 American Chemical Society

4.1 Introduction

Since its formulation by Kohn and Sham [7] in the 1960s, Density Functional Theory (KS-

DFT) has seen widespread adoption within the chemistry community for the prediction

and modeling of various chemically relevant properties such as reaction barriers, vibra-

tional modes, ionization potentials, and molecular geometries. [21, 96, 97, 98, 99, 100]

This widespread adoption is owed to DFT’s favorable computational scaling compared to

wave function-based alternatives such as Coupled Cluster (CC) or Complete Active Space

(CAS) theories as well as its ease of use as an effectively black-box method. [101, 102]

The inexpensive computational scaling of DFT is a direct result of describing the complex

exchange correlation interactions through the use of an efficient energy functional of the

electronic density, referred to as the exchange correlation functional. However, while DFT

is in principle exact, [6] the fact that the universal functional is unknown requires the use

of approximations, giving us the so-called "functional zoo" of modern DFT functionals [103]

and leading to the creation of a Jacob’s Ladder classification scheme by Perdew.[8]

While functional developments have resulted in improvements to the description of many

physical properties such as reaction barriers and ground-state geometries, [96, 100, 104]
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DFT continues to be plagued by three notable failures: (1) the self-interaction error, (2) the

charge transfer (or noncovalent interaction) error, and (3) the static correlation error arising

from degenerate or near-degenerate states, [25, 24, 33] which is rooted in the fact that KS-

DFT is inherently based on a single Slater determinant. [105] Additionally, it has recently

been noted by Medvedev et al. that while the energies obtained with modern functionals

have been systematically improving, the fundamental property of DFT, the ground-state

electron density, has become less accurate in recent years. [29] This suggests that new

improvements to DFT’s functionals are the result of overfitting of the functional form to

reproduce experimental results, and without the development of a multireference formalism,

DFT with inherently continue to struggle with the description of strongly correlated systems.

Recent attempts to rectify this behavior within DFT have involved utilizing the universal

functional’s known flat plane behavior [106, 107, 108, 109] as well as the expansion of KS-

DFT into the complex plane to allow for solutions beyond what is possible with traditional

idempotent DFT. [36]

One-electron reduced density matrix functional theory (1-RDMFT) provides a viable path

to solve the static correlation problem in KS-DFT while retaining favorable computational

scaling compared to wave function based alternatives. 1-RDMFT utilizes Gilbert’s theorem

[14] to express the energy of any chemical system as a functional of the 1-electron reduced

density matrix (1-RDM). [110, 111, 112] By using the 1-RDM as the fundamental variable,

1-RDMFT is capable of capturing fractional occupation as required for the description of

strongly correlated systems. [37, 113, 114] Within this area of work, promising approaches

for creating 1-RDM functionals involve using the known functional for two-electron atoms

and molecules as a starting point [110, 115, 37] as well as reconstructions of the connected

(or cumulant) part of the 2-electron reduced density matrix in terms of the 1-RDM. [110,

116, 117, 49] These methodologies, while promising for capturing static correlation, are

computationally more demanding than DFT.
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In this work, we demonstrate that DFT can be formally and practically transformed into a

1-RDMFT to address DFT’s limitations without sacrificing its computational efficiency. Un-

like previously developed 1-RDMFT theories that dispense with DFT’s exchange-correlation

functional, we convert DFT into a 1-RDM functional theory by (1) relaxing the idempotency

restriction on the 1-RDM to recover the full kinetic energy of the electronic system including

the contribution from correlation and (2) adding a quadratic 1-RDM-based term to DFT’s

density-based exchange-correlation functional. The second modification is important because

it allows us to capture static correlation including fractional orbital occupations in generic

atoms and molecules. We implement the method by a quadratically constrained semidefinite

programming algorithm [13, 62, 63, 64, 66, 65] at DFT’s computational scaling of O(r3). We

apply our 1-RDMFT algorithm to the dissociation of a set of 11 molecules into radicals as well

as the Mott metal-to-insulator transition of H4 where the computed 1-RDMs are comparable

in accuracy to those from high-level multireference wave function-based methods.

The DFT and RDMFT functionals are defined in terms of the N -electron density matrix

ND as follows: [14, 112, 17, 15]

FDFT[ρ] = min
ND→ρ

Tr(T̂ND) + Tr(ÛND) (4.1)

FRDMFT[
1D] = min

ND→1D
Tr(ÛND) (4.2)

Here T̂ is the sum of the kinetic energy operator and the external potential, Û is the pairwise

electron repulsion, ρ is the one-electron density, and 1D is the 1-RDM. To transform DFT

into 1-RDMFT, we connect them through a functional C[1D] such that

FRDMFT[
1D] = FDFT [ρ] + C[1D] (4.3)

Written in this way, the 1-RDMFT functional is a correction of the DFT functional. The
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knowledge of this functional implies two significant advantages: first, from the perspective of

1-RDMFT, the large number of existing DFT functionals could be used in 1-RDM theories,

hastening the development of functionals, and second, from the perspective of DFT, the

potential ability of 1-RDMFT to treat static correlation could be used to address DFT’s

challenge in capturing static correlation. A potential drawback is that the functional C[1D]

might be complicated.

To convert the DFT functional to the 1-RDMFT functional, the correction must accom-

plish two separate but related adjustments: (1) addition of the full kinetic energy correction

to the explicit part of the functional (part of the functional that depends explicitly upon the

1-RDM) and (2) removal of the kinetic energy correction from the universal part of the func-

tional. In recent work, we accomplished the first part by expressing the self-consistent-field

Kohn-Sham equations as a special type of optimization known as a semi-definite program

(SDP). [118] The SDP formulation, which differs from local or complex extensions of DFT,

[36, 119] relaxes the usual criterion that the 1-RDM be strictly idempotent, allowing the

eigenvalues (natural occupations numbers) of the 1-RDM to become fractional and thereby

represent bi- or polyradical character when the molecular-orbital energies in the Kohn-Sham

Hamiltonian are degenerate.

The caveat “when molecular orbitals in the Kohn-Sham Hamiltonian are degenerate” in-

troduces a significant restriction that limits applicability of our recent SDP-DFT [118] to

static (multireference) correlation arising from orbitals that are nearly but not exactly en-

ergetically degenerate. Here we remove this restriction by implementing the second point

above: removing the kinetic energy from the universal part of the functional. The term

converting DFT to 1-RDMFT must obey several fundamental conditions-it must: (1) vanish

in the limit of no correlation, (2) obey particle-hole symmetry, and (3) reward the formation

of fractional occupation numbers for molecular orbitals that are degenerate or nearly degen-

erate in energy. Taken together, these conditions suggest the following 1-RDMFT energy
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functional:

ERDMFT[
1D] = EDFT[ρ]− Tr[(1W 1Q)1D] (4.4)

Here 1Q is the 1-hole RDM(=1I – 1D), and 1W is a general positive–semidefinite weight

matrix. Importantly, the weight matrix introduces significant flexibility into the functional

form that can be used to optimize the universal functional correction. The simplest possible

weight matrix 1W is a scalar multiple of the identity matrix, which we represent as 1WI =

w1I. Upon substitution into Eq 4.4, we obtain

ERDMFT[
1D] = EDFT[ρ]− w(Tr(1D2)−N) (4.5)

Physically, the correction contributes a negative energy to the functional as the 1-RDM

deviates from idempotency with the orbital occupations becoming fractional. The magnitude

of the negative energy contribution depends on the selection of the weight matrix or, in this

case, the parameter w.

Because this correction is quadratic in the 1-RDM, its addition to the Kohn–Sham energy

generates a quadratic semidefinite program (QSDP):

Egs = min
1D

EMKS [
1D] (4.6)

such that

1D ⪰ 0 (4.7)

1Q ⪰ 0 (4.8)

where the modifies Kohn-Sham energy (MKS) is

EMKS [
1D] = Tr[(HKS − 1W 1Q)1D] (4.9)
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and HKS is the conventional Kohn-Sham Hamiltonian. An SDP is a special type of opti-

mization in which a linear objective functional of a matrix M is minimized with respect to

both linear equalities and the constraint that M is positive semidefinite (nonnegative eigen-

values), M ⪰ 0. [13, 62, 63, 120] A QSDP is a generalized SDP in which the linear objective

is replaced with a quadratic objective.

While quadratic semidefinite programs can be solved directly, we relax it to a regular

semidefinite program [13, 62, 63, 120] which can be solved with the scaling of conventional

DFT O(r3) by the boundary-point SDP algorithm that we developed for solving the opti-

mization problem in the variational 2-RDM method. [62, 68] Minimization of the quadratic

correction can be relaxed to minimization of the trace of a positive semidefinite slack-variable

matrix M

M =

1F 1D

1D 1I

 ⪰ 0. (4.10)

By constructing M in this form, 1F is bounded through the determinant as 1F – 1D1D ⪰

0. Therefore, the solution of the Kohn–Sham equations can be replaced by a semidefinite

program whose energy

EMKS[
1D, 1F ] = Tr(1HKS

1D) + Tr(1W (1F − 1D)) (4.11)

is a function of the 1-RDM and the slack variable 1F .

By solving the semidefinite program iteratively until convergence of the energy and the

1-RDM, we obtain a general 1-RDM solution of the 1-RDMFT. Importantly, unlike DFT,

the solution of the 1-RDMFT returns a general, nonidempotent 1-RDM whose fractional

occupation numbers provide critical information about the degree of electron correlation

in the chemical system. In contrast to other 1-RDMFTs, our theory is constructed as an

inexpensive O(r3) correction to existing density functional theories.
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In our calculations, we consider only the simplest form of the weight matrix (1WI =

w1I) in which it is equal to the one-electron identity matrix multiplied by the scalar w. The

parameter w is “trained” to reproduce the dissociation curve of N2 obtained from either a

complete-active-space self-consistent-field (CASSCF) [121, 122] [6,6] or an anti-Hermitian

contracted Schrödinger equation (ACSE) [123, 124, 78] calculation in the 6-31G [125] basis

set. This allows us to evaluate the differences arising from optimizing w for primarily static

correlation (CASSCF) or the total energy of the system near the full configuration interaction

(FCI) limit (ACSE). In each case the training of the parameter w is accomplished by fitting

the predicted dissociation curve to the target dissociation curve at a set of discrete points.

Note that only a single value of w is trained for all points of a dissociation curve. The ACSE

calculations were performed in Maple using the Quantum Chemistry Toolbox [126, 127] while

the CASSCF results were obtained using PySCF. [128] B3LYP [129, 130] is utilized as the

DFT exchange correlation functional for both DFT and 1-RDMFT in this work.

Following optimization of w with either CASSCF or ACSE data, we find that the resulting

1-RDMFT accurately reproduces the dissociation curve of N2 with only minor deviations.

The trained values of w are 0.150 and 0.143 from CASSCF and ACSE, respectively. The

dissociation curve obtained from the 1-RDMFT trained on CASSCF is compared to CASSCF

and B3LYP in Figure 4.1. Use of the 1-RDM correction yields major improvements over

traditional B3LYP, closely mirroring the CASSCF curve and recovering the correct behavior

in the dissociated regime. The CASSCF dissociation energy is recovered to within 5.53

kcal/mol. Minor deviations from CASSCF arise in the intermediate bonding region where

dynamical correlation plays a major role. Training of the 1-RDMFT on the ACSE solution

further improves the description of the bonding and intermediate bonding regions and the

ACSE dissociation energy is again reproduced with high accuracy at a deviation of 1.69

kcal/mol. The two 1-RDMFTs trained on the ACSE and CASSCF are displayed with the

ACSE curve in Figure 4.2.
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Figure 4.1: N2 dissociation curves obtained from [6,6] CASSCF, our algorithm with a
CASSCF optimized w parameter, and B3LYP.

Investigation of orbital occupations along the dissociation coordinate of N2 (displayed

in Figure 4.3) reveals that our algorithm, while optimized to reproduce the energy along

the dissociation curve, also recovers orbital occupations in line with those of the CASSCF

[6,6] calculation. In the bonding region of 1 Å, there are no deviations from integer occupa-
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Figure 4.2: N2 dissociation curves obtained from the ACSE, our algorithm with ACSE- and
CASSCF-optimized w parameters, and B3LYP.

tions and single-reference behavior is recovered. However, as the bond is stretched, the six

strongly correlated frontier orbitals deviate from their integer occupations with the devia-

tions approaching half occupation at 4 Å, while the remaining orbitals display the correct

integer occupations.
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Figure 4.3: Occupations of the six frontier orbitals in the dissociation of N2 from a 1-RDMFT
with w optimized by CASSCF (solid lines) and [6,6] CASSCF (dashed lines).

Using the 1-RDMFT with the w parameter fitted to the N2 dissociation, we apply our

algorithm to a set of 11 molecules, B2, C2, CN, CO2, CO, F2, N2, NF3, NO, S2, and SiO,

selected from the MR-MGN-BE17 test set, [131] which is designed to benchmark a method’s

ability to describe multireference correlation in bond dissociation. Results obtained with
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Table 4.1: Errors of the dissociation energies in kcal/mol obtained with DFT (B3LYP) and
1-RDMFT Relative to the [6,6] CASSCF and ACSE References

REF B3LYP 1-RDMFT
CASSCF OPTIMIZED (w = 0.150)
CASSCF MSE 154.09 -17.68

MUE 154.09 32.19
ACSE MSE 137.03 -34.73

MUE 137.03 39.83
ACSE OPTIMIZED (w = 0.143)

ACSE MSE 137.03 -27.76
MUE 137.03 36.19

w fit to the CASSCF and ACSE dissociation curves of N2 are compared to the respective

CASSCF and ACSE reference data. In order to maintain consistency between the different

molecular systems, the CASSCF active space was constructed to include those molecular

orbitals that display a significant contribution from the valence atomic p-orbitals.

We first consider the dissociation energies from the 1-RDMFT with CASSCF-optimized

w. Data are shown in the top rows of Table 4.1. It is evident that B3LYP substantially

overestimates the dissociation energies as it fails to capture the static correlation of the dis-

sociated systems, yielding a mean unsigned error (MUE) of 154.09 kcal/mol. In contrast, the

1-RDMFT displays a MUE of 32.19 kcal/mol, yielding a 5-fold reduction in error compared

to traditional KS-DFT. Additionally, our algorithm results in a sign change of the mean

signed error (MSE), that corresponds to an underestimating of the dissociation energy on

average in contrast to KS-DFT which consistently overestimates it.

The calculations are repeated with the 1-RDMFT in which the w is based on the dis-

sociation curve of N2 from the ACSE. Recovery of additional dynamical correlation in the

N2 training data improves the results obtained with our 1-RDM functional corrections. The

ACSE reference columns of Table 4.1 compare the CASSCF- and ACSE-trained functional

forms. ACSE optimization reduces the 1-RDMFT’s MUEs by approximately -3 kcal/mol.

Errors for the individual molecular systems in the data set can be found in Tables A.5 and A.6
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in the appendix. Overall the 1-RDMFT yields significantly lower errors in the dissociation

energy of the small molecules in the set surveyed compared to traditional B3LYP.

Last, we investigate the Mott metal-to-insulator transition of linear H4 using 1-RDMFT

with w = 0.143, where w is trained on the dissociation curve of N2 from the ACSE, and

compare the results to those obtained from FCI [132, 133] and B3LYP using the 6-31G basis

set. [125] Figure 4.4 displays the dissociation curves obtained from 1-RDMFT and KS-DFT

with the B3LYP functional as well as FCI. The 1-RDMFT yields a dissociation error of

just 5.9 kcal/mol when compared to FCI. Additionally, the 1-RDM functional is able to

prevent the convergence failure seen in DFT at large interatomic distances, yielding smooth

asymptotic behavior in the dissociation limit.

As the linear hydrogen chain dissociates, it should become an insulator with the between-

atom elements of the 1-RDM in the local atomic-orbital basis set decaying to zero. The sum

of these 1-RDM elements squared from 1-RDMFT, shown in Figure 5, correctly tends toward

zero as the interatomic distance is increased, recovering FCI behavior, while in B3LYP it

erroneously approaches 0.83, indicating that in DFT the hydrogen chain remains metallic.

This failure in traditional KS-DFT arises because KS-DFT has an idempotent 1-RDM that

makes it difficult to localize the density in the dissociation limit.

Density functional theory, we show, can be formally and practically transformed into a

one-electron reduced-density-matrix functional theory, in which the exact correlated 1-RDM

is used as the basic variable in the theory. Use of the exact 1-RDM allows us to address

the limitations of DFT in its treatment of static correlation that often leads to inaccura-

cies in the prediction of molecular properties, especially at nonequilibrium geometries. In

contrast to most 1-RDMFTs, we retain the use of DFT’s exchange-correlation functional of

the density. While recent work including our own has relaxed the idempotency restriction

on the 1-RDM in the kinetic energy term, here we also add a quadratic 1-RDM-based term

to DFT’s density-based exchange-correlation functional. This additional term is especially

74



Figure 4.4: Symmetric dissociation of linear H4 in the 6-31G basis from B3LYP, FCI, and
1-RDMFT with w = 0.143 from a fit to the ACSE N2 dissociation curve.

important because it allows us to treat static correlation in molecular systems without ener-

getically degenerate frontier orbitals. The retention of DFT’s exchange-correlation functional

allows us to implement the 1-RDMFT algorithm by quadratic semidefinite programming at

DFT’s computational scaling of O(r3). The 1-RDMFT, as shown in the results, yields signif-
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Figure 4.5: Sum of squares of the off diagonal elements of the 1-RDM obtained as a function
of interatomic distance for linear H4. The sum is defined as

∑
i̸=j D

i
j
2 where i and j are

atomic centers.

icant improvements over traditional DFT in the description of static correlation in chemical

structures and processes such as singlet biradicals and bond dissociations.

Accurate descriptions of molecular bond dissociations are achieved with a simple form

of 1W based solely on the identity matrix modified by a scalar term. Using only N2 as the
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training set, this functional form displays significant improvements over traditional KS-DFT

in the capture of the dissociation energies of small molecules. Furthermore, while our param-

eter training focuses solely on the capture of static correlation within the π and π∗ orbitals

of N2, the resulting 1-RDM functionals accurately describe the Mott insulator transition

of H4, a system lacking statically correlated π orbitals. Moreover, even though functional

optimization for the capture of fractional natural occupation numbers is not performed, the

1-RDM correction in all systems studied yields natural occupations in line with those ob-

tained from CASSCF. While we train the w parameter in the one-parameter weight matrix

with standard optimization algorithms, the multiparameter flexibility of the weight matrix

1W suggests a natural combination with machine learning, which has recently been applied

to developing functionals of DFT [134, 135, 136, 137, 138] and, most recently, RDMFT. [134]

In summary, the present work provides a foundation for further research into the capture

of multireference correlation through the inclusion of fractional 1-RDMs in a DFT frame-

work. The functional developed in this work shows significant promise for the development of

an efficient 1-RDM functional theory that uses existing DFT exchange-correlation function-

als, or modifications thereof, for the evaluation of electronic energies of strongly correlated

systems. In independent work, appearing after we completed our study, Wang and Baerends

[139] developed a correction to the Hartree–Fock functional by adding a term based on the

von Neumann entropy. Both this study and our study suggest new directions for progress in

DFT and 1-RDMFT.
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CHAPTER 5

COMPARISON OF DENSITY-MATRIX CORRECTIONS TO

DENSITY FUNCTIONAL THEORY

Reprinted with permission from D.P. Gibney, J.-N. Boyn, and D.A. Mazziotti, Journal of

Chemical Theory and Computation 18, 6600-6607. Copyright © 2022 American Chemical

Society

5.1 Introduction

While density functional theory in the Kohn-Sham formulation (KS-DFT) has seen sig-

nificant success throughout chemistry due to its computational affordability as well as its

relative accuracy,[101, 102, 21, 96, 97, 98, 99, 100] it has been noted to struggle with three

significant failures, namely: (i) the self-interaction error, (ii) the charge transfer error, and

(iii) the static correlation error arising from near-degenerate electronic states.[33, 25, 24]

While KS-DFT is, in theory, exact when using the unknown universal functional,[6] the

aforementioned errors are rooted in the approximate nature of current density functionals.

Furthermore, in contrast to wave function-based theories where there exists a clear path

to improving the prediction of electronic properties via the inclusion of higher-order excita-

tions from the Hartree-Fock (HF) reference, for example, using the configuration interaction

(CI) or coupled cluster approaches, DFT does not offer such a clear systematic path of

improvement.[132, 133, 140]

Modern functional developments have utilized a wide variety of different approximations

with varying complexities to try to improve DFT, resulting in the so-called “functional zoo.”

A Jacob’s ladder style scheme has been conceptualized to aid in functional classification,[8]

with the idea being that ascending the ladder to more computationally complex functionals

will yield improvements. While modern functionals have generally predicted chemical prop-
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erties with increasing accuracy,[141] it has been argued by Medvedev et al.[29] and Brorsen

et al.[142] that, while properties predicted by newer functionals are more accurate, their

underlying electronic densities are increasingly deviating from the exact density. This dis-

connect has been attributed to newer density functional approximations relying on fitting to

reproduce specific chemical properties of interest from reference calculations or experimental

results instead of attempting to improve upon the fundamental quality of DFT, the elec-

tronic density.[143, 144] This is due, in part, to the difficulty in identifying and reproducing

properties of the universal functional as compared to simply optimizing a set of parameters

to reproduce reference data. Therefore, approaches outside of functional development may

be necessary to further improve upon DFT.

Several methods have been developed aiming to enable DFT to describe static correla-

tion. These approaches include the expansion of DFT into the complex plane to allow for

static correlation to be captured using fractional orbital occupations, which requires trans-

forming the real-valued functionals into the complex plane as well.[36] Complex orbital DFT

has recently been expanded to utilize hypercomplex numbers for describing statically corre-

lated systems beyond biradicals.[145] Another approach relies on enforcing the Perdew-Parr-

Levy-Balduz flat-plane conditions through a scaling correction,[106, 107, 108, 109] aiming to

recover the piece-wise linearity of density functionals between integer numbers of electrons.

These methodologies both utilize fractional occupations as part of their improvement over

KS-DFT.

Another area of research which focuses on fractional occupations for describing static cor-

relation is presented by one-electron reduced density matrix functional theory (1-RDMFT).[14,

37, 113, 114, 49, 38] These approaches utilize Gilbert’s theorem to express the ground-state

energy as a functional of the one electron reduced density matrix (1-RDM) rather than the
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wave function Ψ(12...N)[14] where

1D(1; 1̄) =

∫
Ψ(12...N)Ψ∗(1̄2...N)d2...dN (5.1)

with each roman number representing the spatial and spin coordinates of an electron. Us-

ing the 1-RDM as the fundamental variable allows for the description of static correla-

tion through fractional occupation numbers.[37, 113, 114] Natural orbital functional the-

ory presents a related approach which uses the natural orbitals and their occupation num-

bers, which may be obtained from the 1-RDM, to reconstruct the 2-RDM subject to N-

representability conditions.[49, 116, 117, 146, 40] Taking inspiration from these methods,

we previously transformed KS-DFT into a 1-RDMFT to retain the favorable computational

scaling of KS-DFT while enabling the description of static correlation.[118, 147]

In this article, we further expand upon the theory of translating DFT into a 1-RDMFT

framework and compare how our current implementation of our 1-RDMFT method relates

to the information density matrix functional theory (iDMFT) method developed by Wang

and Baerends.[139, 148] To facilitate this comparison, we generalize iDMFT to use density

functionals in addition to the Hartree-Fock functional. Since our 1-RDMFT approach as

well as iDMFT rely on functional selection, we perform benchmarking calculations on a test

set of small statically correlated molecules to elucidate the functional dependence of the

two surveyed methods. Finally, the magnitude of the correction term required with a given

functional for 1-RDMFT or iDMFT, obtained from our benchmark, provides insight into its

inherent ability to describe multi-reference correlation.

5.2 Theory

We review and expand upon the conversion of DFT into 1-RDMFT in Section 5.2.1 and

compare the resulting 1-RDMFT with iDMFT in Section 5.2.2.
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5.2.1 Conversion of DFT into a 1-RDMFT.

Consider the energy functional for DFT

EDFT[ρ] = Ts[ρ] + V [ρ] + Fxc[ρ] (5.2)

where ρ is the one-electron density, Ts[ρ] is the noninteracting kinetic energy functional

- the kinetic energy from the single Slater determinant that yields the density ρ, V [ρ] is

the sum of the one-electron (external) potential and the Coulomb potential, and Fxc[ρ] is

the exchange-correlation functional. As in ref [147], we convert DFT into a 1-RDMFT by

replacing the non-interacting kinetic energy by the full kinetic energy and adding a 1-RDM-

based correction functional C[1D]

ERDMFT[
1D] = EDFT+T[

1D] + C[1D] (5.3)

where EDFT+T[
1D] is defined as

EDFT+T[
1D] = EDFT[ρ] + (T [1D]− Ts[ρ]) (5.4)

Because the exchange-correlation functionals in traditional DFT are not exact, we can treat

C[1D] as a general functional that, as part of its conversion of DFT into a 1-RDMFT, also

accounts for the limitations of existing functionals to treat static electron correlation.

The correction has several advantages relative to traditional approaches in DFT and 1-

RDMFT. From the perspective of 1-RDMFT, the correction allows us to build upon the

wealth of functionals that have been developed for DFT as well as the low computational

scaling afforded by DFT’s exchange-correlation potential. From the perspective of DFT, the

correction allows us to use explicit 1-RDM information for an improved treatment of static

correlation.

81



As a practical correction to DFT, we focus on approximating the part of the correction

C[1D] that lowers the energy from the presence of static electron correlation. We assume

that this part of the correction functional: (i) obeys particle-hole symmetry, (ii) vanishes

in the limit of no correlation, and (iii) rewards the formation of fractional occupation for

orbitals as they near energetic degeneracy. Note that assumption (ii) is an approximation for

the exact C[1D] functional. Using these assumptions, we previously obtained the following

form in ref [147]

ERDMFT[
1D] = EDFT+T[

1D]− Tr[1W (1D − 1D2)] (5.5)

where 1W is an arbitrary positive semidefinite weight matrix. By taking 1W to be a weighted

identity matrix w1I, we produce the final form of our correction[147]

ERDMFT[
1D] = EDFT+T[

1D] + w(Tr[1D2 − 1D]) (5.6)

If the 1-RDM is idempotent, we note that this correction vanishes, and if the 1-RDM is not

idempotent, it is nonzero and serves to remove the double counting of the correlated kinetic

energy and to account for static correlation that is missing from traditional DFT.

When w = 0, the energy functional is readily minimized by a conventional Kohn-Sham

self-consistent-field (SCF) calculation; when w ̸= 0, the functional can be minimized by a

modified Kohn-Sham SCF calculation where the modified Kohn-Sham energy is given by

EMKS = Tr[HKS
1D] + w(Tr[1D2 − 1D]) (5.7)

where HKS is the Kohn-Sham Hamiltonian. To express the minimization of EMKS at each

SCF iteration as a semidefinite program (SDP), we can relax the quadratic term by intro-
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ducing an auxiliary matrix variable 1F

EMKS = Tr[HKS
1D] + w(Tr[1F − 1D]) (5.8)

in which  1I 1D

1D 1F

 ⪰ 0 (5.9)

The semidefinite constraint causes the trace of 1F to be bounded by the trace of the 1-

RDM squared,[147] and hence, the minimization of eq 5.8 as an SDP is equivalent to the

minimization of eq 5.7. The overall algorithm for our 1-RDMFT procedure is shown in

Figure 5.1. It should be noted that the modified Kohn-Sham energy, just like the Kohn-

Sham energy in DFT, does not yield the energy of the system, which instead is obtained by

evaluating eq 5.6 using the converged 1-RDM.

Initial 1D Build 1HKS[
1D]

min1D Tr(1HKS
1D) + wTr(1F − 1D)

Subject to
1D, 1Q,

(
1I 1D
1D 1F

)
⪰ 0

1D + 1Q = 1I
Tr(1D) = N

∆E < tol?Converged

Figure 5.1: Schematic description of the 1-RDMFT algorithm. From an initial guess density,
1D, the Kohn-Sham 1-body Hamiltonian, HKS[

1D], is generated using a traditional DFT
exchange correlation functional. This Hamiltonian is then used in an SDP-based minimiza-
tion to yield a new 1-RDM. Self-consistent-field iterations are continued until the energy is
converged below a selected target threshold.
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5.2.2 Comparison to iDMFT

We briefly review iDMFT [139] and then draw a comparison between iDMFT and our 1-

RDMFT. The iDMFT postulates that the missing correlation energy from the Hartree–Fock

method can be expressed as the fermionic entropy, defined as

S = −θ
∑
i

[niln(ni) + (1− ni)ln(1− ni)] (5.10)

where ni is the energy of the ith orbital. Minimizing the Hartree–Fock energy plus this

entropic term leads to orbital occupations defined by the Fermi–Dirac distribution

ni =
1

1 + exp [(ϵi − µ)/θ]
(5.11)

where ϵi is the energy of the ith orbital and µ is the chemical potential which is constrained

such that
∑

i ni = N . This distribution naturally leads to non-idempotent 1-RDMs, with

the degree of fractional occupation increasing as orbital energies become degenerate or the

fictitious temperature θ increases. The fractional occupations are then used in the fermionic

entropy correction to the energy, which is simply subtracted from the total electronic energy

of the system. iDMFT uses the same principles as thermally assisted occupation DFT and

the Fermi-smearing technique; however, it applies them to the Hartree-Fock theory instead

of a density functional. [33, 149, 150] In this work, we have implemented iDMFT to utilize

both the Hartree-Fock method (or functional) and available density functionals to facilitate

a more thorough comparison with 1-RDMFT.

The energy correction of iDMFT is based on the information entropy of the 1-RDM,

while the correction of the SDP-formulated 1-RDMFT is based on the idempotency relation

of the 1-RDM. These two corrections, we can show, agree with each other through second

order in a Taylor series expansion of the information entropy. We first recast eq 5.6 in terms
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of particle and hole matrices

S = −θTr[1D ln(1D) + 1Q ln(1Q)] (5.12)

Second, we expand the natural logarithm of 1D in powers of 1Q through second order

ln(1D) = ln(1I − 1Q) (5.13)

= −
∞∑
n=1

1Qn

n
(5.14)

= −1Q−
1Q2

2
−O(1Q3) (5.15)

Similarly, by particle-hole symmetry

ln(1D) = −1Q−
1D2

2
−O(1D3) (5.16)

Inserting eqs 5.15 and 5.16 into eq 5.12 yields

S ≈ −θTr[1D(−1Q−
1Q2

2
) + 1Q(−1D −

1D2

2
)] (5.17)

Upon substituting the identity 1Q = 1I−1D and simplifying without further approximation,

we obtain

S ≈ −5

2
θTr[1D2 − 1D] (5.18)

Comparing this form with eq 5.6 reveals that our energy correction and iDMFT’s correction

agree with each other through second order in the expansion of the natural logarithms of the

1-particle and 1-hole RDMs in the information entropy for θ = 2w/5. Furthermore, it can

also be seen from eq 5.17 that truncation of the logarithmic expansions to only first order

also yields eq 5.18 with the scalar value of 5/2 replaced by 2.
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5.3 Results

In this work, we utilize our 1-RDMFT method with a simple weight matrix defined as

(1W = w1I), where w is a system-specific constant and is optimized to reproduce either

the dissociation energy or rotational barrier obtained from full CI (FCI) or anti-Hermitian

contracted Schrödinger equation (ACSE) [132, 133, 123, 124, 78] calculations. Three different

functionals of varying HF exchange are surveyed and reported in the text, namely, SCAN,

[91] M06-2X, [151] and HF, with percent HF exchanges of 0, 54, and 100%, respectively.

Additional data obtained with the functionals M06-L, [143] B3LYP, [130, 129] M06, [143]

and M06-HF [152] are reported in Tables A.7 and A.8 in the appendix. All DFT, HF, and

1-RDMFT calculations were performed using PySCF [128] with the cc-pVDZ basis set, [94]

while the ACSE calculations for CO, N2, HF, and C2H4 were performed in Maple using the

Quantum Chemistry Toolbox.[126, 127] All 1-RDMFT calculations were started with the

converged 1-RDM from the respective DFT or HF results. The SDP was solved using a

boundary-point SDP algorithm previously developed by one of the authors for solving the

variational 2-RDM problem. [62, 68]

While both KS-DFT and HF struggle with the capture of static correlation due to their

single-reference nature, KS-DFT’s errors are generally smaller than those produced by HF.

[153] This is attributable to KS-DFT’s approximate exchange correlation functional that

captures some correlation effects. To investigate, we apply conventional DFT and our 1-

RDMFT with the SCAN and HF functionals to linear H4 where all adjacent hydrogens are

equally spaced, shown in Figure 5.2. The data reveal that in the KS-DFT formalism, the

SCAN functional fails to describe the dissociation limit, yielding an error of 122.72 kcal/mol

at 4 Å, while in the 1-RDMFT method, it accurately reproduces the dissociation curve

including the dissociation limit. Plots of the errors in the potential energy curves (PECs)

are shown in Figures A.2 and A.3 in the appendix. Furthermore, although the HF method

yields an even greater error of 218.68 kcal/mol at 4 Å than the DFT functional SCAN, it
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also yields an accurate PEC in the framework of the 1-RDMFT. Minor differences arise in

the stretched bonding region of 1.8–2.2 Å where the HF-based 1-RDMFT overestimates the

energy, which results in a faster approach to the dissociation energy limit relative to the FCI

reference curve.

Next, we consider the C–C bond rotation in C2H4. Here, the SCAN functional in KS-

DFT overestimates the barrier height by 31 kcal/mol, while in 1-RDMFT, the barrier height

can be recovered within sub-milli-kcal/mol accuracy (Figure 5.3). Although the 1-RDMFT

curve is unable to match the reference with the same level of accuracy as seen for H4, it is

able to remove the non-physical discontinuity observed from KS-DFT at the 90° dihedral

angle. This discontinuity is attributable to the increasingly diradical nature of the molecule

as the dihedral angle approaches 90° and the highest occupied natural orbital and lowest

unoccupied natural orbital become degenerate, which may not be properly described using a

single Slater determinant. Using HF in its traditional implementation also results in a non-

physical discontinuity as well as a barrier height error of 41 kcal/mol, which is an increase

relative to the barrier height error of 31 kcal/mol from SCAN. However, using HF within

our 1-RDMFT framework, we once again reproduce the barrier height to within sub-milli-

kcal/mol accuracy although the deviations from the reference curve are, as with H4, larger

than those seen using SCAN. Furthermore, while KS-DFT deviates from the 1-RDMFT

curve when using SCAN at a dihedral angle of 57.5°, traditional HF deviates from the 1-

RDMFT curve when using HF at a smaller angle of 50°. This points toward the 1-RDMFT

correction resulting in non-idempotency earlier in the bond rotation for HF than SCAN as

our 1-RDMFT method produces no energetic change until idempotency is broken. This is

verified through investigations of the non-idempotent residual in Figures A.4 and A.5 in the

appendix.

Expanding our test set to also include the statically correlated dissociations of H2, N2,

HF and CO, as well H4 and C2H4, we tabulate the maximal deviation and average signed
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Figure 5.2: Plot of the linear dissociation of H4 in the cc-pVDZ basis set with equal distances
between all pairs of adjacent hydrogens. (a) Comparison of the SCAN functional in the
traditional KS-DFT implementation and within our 1-RDMFT method using a w value of
0.104 to FCI. (b) Comparison of HF in its traditional formulation and within our 1-RDMFT
method using a w value of 0.249 to FCI.
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Figure 5.3: Plot of the rotation of C2H4 along its HCCH dihedral angle. The relative
energies are zeroed to the planar geometry at 0°. (a) Comparison of the SCAN functional in
the traditional KS-DFT implementation and within our 1-RDMFT method using a w value
of 0.052 to the ACSE. (b) Comparison of HF in its traditional formulation and within our
1-RDMFT method using a w value of 0.215 to the ACSE.
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and unsigned errors from the reference PEC in Table 5.1. The reference PEC is computed

from FCI for H2 and H4 and from ACSE for the other molecules; the signed and unsigned

errors for the dissociations are computed from the average errors in the reference curve

between equilibrium and 4 Å in 0.1 Å step sizes, while for C2H4, the errors are calculated

from finely spaced points over the entire dihedral angle. Comparing the surveyed density

functionals in Table 5.1 reveals that using any of them within the 1-RDMFT framework

reproduces the reference curve more accurately than when using HF in 1-RDMFT, which

consistently gives the largest errors. Comparing the maximal errors of the two density

functionals SCAN and M06-2X in Table 5.1 shows the SCAN functional obtaining a root

mean squared error (RMSE) of 5.72 kcal/mol, approximately half that of M06-2X’s 12.06

kcal/mol, with SCAN only having a slightly larger absolute error in two systems, H4 and

C2H4. Additionally, when including the functionals from Tables A.7 and A.8 in the appendix,

which, in terms of increasing HF exchange, have RMSEs of the maximal errors of 6.43, 6.56,

9.46, and 23.48 kcal/mol for M06-L, B3LYP, M06, and M06-HF, respectively, it is observed

that as the fraction of HF exchange in the DFT functional increases, the errors tend to

increase as well. The RMSEs of the mean signed errors being 1.31, 2.97, and 6.58 kcal/mol

for SCAN, M06-2X, and HF further clarifies that as the HF exchange increases, 1-RDMFT

increasingly overestimates the energy of the system. The relative improvements of the density

functionals over HF are attributable to their recovery of additional dynamical correlation as

the 1-RDMFT method is intended to treat strongly correlated orbitals, neglecting those with

only small fractional occupations. The maximal errors consistently occur in the stretched

bond region with both the equilibrium region and the dissociation limit being well described.

There was no noticeable trend between the fraction of HF exchange and the location of the

maximal error along a curve.

In the present exploratory calculations, because w is optimized for collections of calcu-

lations such as a given molecule’s bond dissociation curve, we can use it as a gauge for the
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Table 5.1: 1-RDMFT and iDMFT error values used to quantify their reproduction of the
dissociations of H2, H4, N2, HF, and CO as well as the bond rotation of C2H4. The maximal
errors are defined as E1-RDMFT/iDMFT - EFCI/ACSE with the largest absolute magnitude
being selected. Reference energies are computed from FCI for H2 and H4 and from the
ACSE for the other molecules. The signed and unsigned errors are obtained as the average
deviation from the reference curve from equilibrium to 4 Å using 0.1 Å step sizes.

Maximal Error kcal/mol Signed Error over PES Unsigned Error over PES
Method SCAN M06-2X HF SCAN M06-2X HF SCAN M06-2X HF

1-RDMFT H2 6.14 11.53 14.11 1.71 2.60 4.19 1.71 2.64 4.19
H4 -2.88 2.66 9.02 0.34 0.40 3.24 1.00 0.98 3.24
N2 9.99 19.01 34.88 0.87 4.22 11.20 1.65 4.24 11.20
HF -2.35 6.87 17.39 -1.29 0.30 -0.39 1.30 2.05 7.06
CO 3.80 17.31 35.05 0.79 4.99 9.84 1.68 5.89 11.06

C2H4 5.54 4.98 7.21 2.07 1.76 3.10 2.07 1.76 3.10
RMSE 5.72 12.06 22.66 1.31 2.97 6.58 1.60 3.36 7.48

iDMFT H2 -0.44 -1.88 -1.22 -0.12 -0.64 -0.36 0.15 0.67 0.37
H4 -8.38 -12.01 -9.87 -2.80 -4.59 -3.56 2.81 4.59 3.57
N2 -13.90 -12.03 2.92 -4.33 -3.97 0.51 4.33 3.97 0.85
HF -4.79 -4.08 3.56 -2.07 -2.32 -0.91 2.11 2.40 2.23
CO -7.89 -5.78 -8.50 -2.62 -2.10 -0.40 2.77 2.30 3.05

C2H4 2.28 -2.24 -2.40 0.97 -1.04 -1.03 0.97 1.04 1.05
RMSE 7.68 7.61 5.75 2.54 2.83 1.59 2.57 2.87 2.20

strength of the correction required for a given functional to capture static correlation. Com-

paring the w values used for H4 in Table 5.2, for example, gives 0.098, 0.171, and 0.256 for

the SCAN, M06-2X, and HF functionals, respectively. The data highlight that increasing HF

exchange yields less accurate descriptions of statically correlated systems and therefore re-

quires a larger correction weight w. The trend, not limited to H4 but observed in all systems

investigated here, supports previous work, arguing that larger contributions of HF exchange

in the exchange correlation functional increase static correlation errors within DFT.[154]

After investigating the use of different functionals within our 1-RDMFT framework, we

compare it to the iDMFT method. For this comparison, we utilize the same set of functionals

and chemical systems, optimizing the adjustable parameter θ in iDMFT to reproduce the

reference data. Starting with the maximum error from the reference curves, given in Table

5.1, it is evident that iDMFT reverses the trends seen in 1-RDMFT. In iDMFT, instead of
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Table 5.2: Optimized 1-RDMFT w and iDMFT θ values and their ratios are reported.

SCAN M06-2X HF
w θ w/θ ratio w θ w/θ ratio w θ w/θ ratio

H2 0.098 0.036 2.76 0.171 0.062 2.74 0.256 0.095 2.70
H4 0.104 0.038 2.72 0.170 0.063 2.69 0.249 0.094 2.66
N2 0.114 0.042 2.72 0.213 0.080 2.66 0.325 0.124 2.62
HF 0.073 0.024 3.11 0.189 0.061 3.08 0.318 0.105 3.04
CO 0.076 0.027 2.86 0.176 0.062 2.83 0.287 0.103 2.79

C2H4 0.052 0.019 2.75 0.127 0.048 2.67 0.215 0.083 2.58

the local functional SCAN having the lowest maximum errors and HF having the largest,

HF consistently gives lower errors relative to the DFT functionals. This is attributable to

the over-inclusion of dynamical correlation, which is treated in iDMFT through the density

functional as well as the small non-zero orbital occupations in the entropic correction. While

1-RDMFT and iDMFT have different trends in their maximum errors, the RMSEs of the

maximal errors of the best performing functionals, SCAN and HF, are 5.72 and 5.75 kcal/mol

for 1-RDMFT and iDMFT, respectively, leading to results of comparable accuracy between

the two methods. Further support for their comparable accuracy is found in the RMSE

of their unsigned errors where SCAN in 1-RDMFT has an RMSE of 1.60 kcal/mol, while

HF in iDMFT has an RMSE of 2.20 kcal/mol. Additionally, while H4 displays the smallest

deviations from the reference FCI curve using 1-RDMFT, H2 is the system most accurately

reproduced by iDMFT with a signed error of -0.12, -0.64, and -0.36 kcal/mol for SCAN,

M06-2X, and HF, respectively. Finally, comparing the signs of the signed errors between the

two methods, it is evident that while 1-RDMFT generally overestimates the energy along

the curve, iDMFT typically underestimates it due to the over-inclusion of the dynamical

correlation.

Because the adjustable parameter θ in iDMFT - like the w in 1-RDMFT - is optimized for

collections of calculations such as a given molecule’s bond dissociation curve, its magnitude

can again be used to gauge the degree of correction required for the HF and DFT functionals.

These θ values, given in Table 5.2, display the same trend observed in 1-RDMFT’s w values:
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as the fraction of HF exchange increases in the functional, the magnitude of θ, reflecting the

size of the correlation correction, increases. While the optimized values of θ are lower than

the w values, there is a consistent ratio between them, with w being ∼2.7 times larger than

θ (shown in Table 5.2). Additionally, the ratio also appears to be affected by the amount of

HF exchange in the functional, with it decreasing as the fraction of HF exchange increases.

The computed ratios are in good agreement with the factor of 2.5 predicted from the Taylor

series expansion in Section 5.2.2.

5.4 Conclusion

In this work, we have expanded on the theoretical underpinnings of our recently developed

methodology, which formally transforms traditional KS-DFT into a 1-RDFT via the inclusion

of a 1-RDM-based correction. A modified Kohn-Sham formalism, solvable by semidefinite

programming, allows for the accurate capture of strong correlation at favorable computa-

tional scaling. Here, we extend our 1-RDMFT to utilize the Hartree-Fock functional and

delineate and formally derive the relation of our approach to the recently developed iDMFT

method, which introduces multi-reference correlation effects to HF via the use of an entropic

correction, demonstrating that the two theories are in agreement through second order. We

also extend iDMFT to use DFT functionals for better comparison to our 1-RDMFT.

To demonstrate the potentially broad applicability of our 1-RDMFT as well as to inves-

tigate its dependence on the chosen DFT functional, we have calculated the potential energy

surfaces for several bond dissociations and the bond rotation of ethene, covering a range of

different chemical bonding environments and functionals. For the purpose of comparing HF

and the DFT functionals, we optimize the w parameter in 1-RDMFT (or θ parameter in

iDMFT) for each functional for a collection of calculations such as a molecule’s PEC. The

results reveal that the 1-RDMFT can be effective at capturing multireference correlation

across entire potential energy surfaces, smoothly interpolating between the single-reference
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equilibrium regime and the strongly correlated dissociated regime. Furthermore, we analyze

the differences in the results from 1-RDMFT and iDMFT, obtaining a ratio between the w

and θ values of 1-RDMFT and iDMFT, respectively, of 2.7 that is in good agreement with

the theoretically predicted value of 2.5.

While the general effectiveness of our weight-matrix correction, w1I, suggests that all

functionals investigated in this work suffer from the same fundamental failings in describing

static correlation - exemplified by the fact that only the adjustment of a scalar multiplier

for each system and functional combination is required to obtain accurate surfaces -, the

results also reveal fundamental differences in the various functionals’ ability to capture strong

correlation, quantified by the magnitude of the required 1-RDM correction. In particular, we

observe that the magnitude of the scalar value w (or θ for iDMFT) depends on the amount

of HF exchange included in a chosen density functional, with an increasing percentage of

HF exchange requiring a larger w and, hence, a bigger correction. Interestingly, while a

pure functional yields the best agreement with high-level reference data in our 1-RDMFT

framework, the opposite is true in the case of iDMFT, which performs best with the HF

method.

Future work will focus on the determination of the system specific weight matrix, w, with

particular promise being held by the use of machine learning[134, 135, 136, 137, 138] for this

purpose. More generally, the transformation of DFT into a 1-RDMFT presents a fresh

paradigm for the prediction of both dynamic and static correlation at a mean-field-scaling

computational cost. Unlike traditional 1-RDMFT approaches, the present theory allows us

to achieve a lower computational scaling by exploiting DFT’s existing functionals, and in

contrast to DFT, it allows us to harness the additional information of the 1-RDM, especially

its fractional eigenvalues (natural-orbital occupations), to realize a more accurate description

of static correlation, which has important applications to many molecular structures and

processes.
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CHAPTER 6

UNIVERSAL GENERALIZATION OF DENSITY FUNCTIONAL

THEORY FOR STATIC CORRELATION

Reprinted with permission from D.P. Gibney, J.-N. Boyn, and D.A. Mazziotti, Physical

Review Letters 131, 243003. Copyright © 2023 American Physical Society

6.1 Introduction

The success of density functional theory (DFT) [155, 156, 157] lies in its ability to improve

upon the energies and properties of mean-field theories like Hartree-Fock while retaining the

computational scaling of a one-electron theory. Nonetheless, the exact energy functional of

DFT, originally postulated by Hohenberg and Kohn [6], is not known in a practical form,

which leads to limitations in the prediction of charges [158, 159], Van der Waals forces

[160], barrier heights [161], and bi- and multiradicals [23]. These limitations largely arise

from the inability of DFT to provide a complete description of static (or multireference)

electron correlation, which occurs when two or more Slater determinants contribute equally

or nearly equally to the wave function. Recently, it has been shown that modern density

functionals typically improve the energy over more established functionals at the expense of

other properties including electron density [29, 142], implying that such improvements may

be arising in part from an overfitting of the energy rather than a fundamental enhancement

of the underlying functional.

In this Letter, we combine DFT [155, 156, 157] and its extensions [162, 33, 12, 108, 36,

118, 163, 164, 145, 165, 166] with 1-RDM [14, 15, 17, 167, 44, 112, 168, 169, 42, 40, 38, 37,

49, 111, 139, 165, 170, 171] and 2-RDM [172, 124, 173, 174, 175, 176, 177, 178, 123, 179, 180,

181, 182, 183, 184, 185, 43, 76, 74, 13, 72, 71, 62, 70, 186, 187, 188, 189] theories to obtain a

universal O(N3) generalization of DFT for static correlation. We consider the invariants of
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the cumulant part of the 2-RDM [175, 176, 177, 178] with respect to one-body unitary trans-

formations [190, 191]. Using the lowest order invariant, we derive a universal transformation

of DFT into a 1-RDM functional theory (1-RDMFT) whose convexity naturally allows the

orbital occupations to become fractional upon correlation. Critically, the correction, derived

from the cumulant invariant, has an explicit dependence on the trace of the electron-repulsion

matrix that correctly determines the magnitude of the correction, removing a significant lim-

itation of previous work [165, 147], to realize a predictive theory. The quadratic dependence

of the functional on the 1-RDM produces a quadratic semidefinite program that we solve

using an efficient boundary-point algorithm for semidefinite programming [62] developed for

variational 2-RDM theory [172, 192, 43, 76, 74, 13, 72, 71, 62, 70, 186, 187, 188, 189]. To

demonstrate, we apply the functional theory to examining the barrier to rotation in ethylene

[193], the relative energies of the benzynes [194], as well as a benchmark based on the dis-

sociation energies of 11 molecules [195]. The cumulant-based generalization of DFT has the

potential to extend the reach of DFT to treat a broader range of molecules and materials

including those whose properties are significantly influenced by static correlation.

6.2 Theory

Consider the energy of any many-electron atom or molecule in a finite basis of r spin orbitals

as a functional of the 1- and 2-RDMs[112]

E2RDM[1D, 2D] = Tr(1H1D) + Tr(2V 2D), (6.1)

in which 1H is the matrix representation of the one-electron kinetic energy and nuclear-

electron Coulomb terms, 2V is the matrix representation of the two-electron repulsion term,

and 1D and 2D are the 1- and 2-RDMs, normalized to N and N(N − 1)/2, respectively. We
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can reexpress the 2-RDM in terms of its cumulant expansion [175, 176, 177, 178]

2D = 1D ∧ 1D + 2∆ (6.2)

where ∧ denotes the antisymmetric (or Grassmann) tensor product [175] and 2∆ is the

cumulant (or connected) part of the 2-RDM. Hence, the energy can also be written as a

functional of the 1-RDM and the cumulant 2-RDM

E2RDM[1D, 2∆] = E[1D] + E∆[2∆], (6.3)

in which

E[1D] = Tr(1H1D) + Tr(2V [1D ∧ 1D]) (6.4)

E∆[2∆] = Tr(2V 2∆). (6.5)

Because the cumulant 2-RDM can be decomposed into three orthogonal subspaces based on

the unitary group [190], known as the unitary decomposition [191], we have

2∆ = 2∆0 +
2∆1 +

2∆2 (6.6)

or

E∆[2∆] = E∆
0 [2∆0] + E∆

1 [2∆1]E
∆
2 [2∆2] (6.7)

where

E∆
k [2∆k] = Tr(2∆)2I. (6.8)

Because the zeroth component of the unitary decomposition of the cumulant 2-RDM is [190]

2∆0 =
2

r(r − 1)
Tr(2∆)2I, (6.9)
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in which 2I is the two-electron identity matrix, we can express the zeroth component of the

cumulant correction to the energy as follows

E∆
0 [2∆0] =

2

r(r − 1)
Tr(2V )Tr(2∆). (6.10)

However, the trace of the cumulant 2-RDM can be expressed in terms of the 1-RDM’s

idempotency [196, 197, 198, 199]

Tr(2∆) = −1

2
Tr(1D − 1D2), (6.11)

in which 1D2 denotes the square of the 1-RDM, and the trace of 2V can be expressed in

terms of the two-electron repulsion integrals in physics notation

Tr(2V ) = 2
∑
ĩ,j̃

(2⟨̃ij̃||̃ij̃⟩ − ⟨̃ij̃||j̃ ĩ⟩), (6.12)

where the tilde denotes the index of the spatial part of the spin orbital. Therefore, using

Eqs. 6.11 and 6.12 in Eq. 6.10, we can express the zeroth component of the cumulant energy

correction as a functional of the 1-RDM

E∆
0 [2∆0] = −γTr(1D − 1D2), (6.13)

where

γ =
2

r(r − 1)

∑
ĩ,j̃

(2⟨̃ij̃||̃ij̃⟩ − ⟨̃ij̃||j̃ ĩ⟩) (6.14)

Approximating the cumulant energy with its zeroth-order component yields a 1-RDM func-

tional theory that corrects the Hartree-Fock energy.

The correction mainly accounts for static correlation. To see this, we consider the contri-

bution of energetically low-lying excitations to the electron correlation, known as dynamic
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correlation. The largest contribution arises from the double excitations in which two elec-

trons in occupied orbitals are promoted to two unoccupied orbitals. These excitations ap-

pear in off-diagonal terms of the cumulant 2-RDM in which both upper indices correspond

to unoccupied orbitals and both lower indices correspond to occupied orbitals [184]. These

elements, however, only contribute to the final energy term from the unitary decomposition.

Consequently, the zeroth energy term, arising from the trace of the cumulant 2-RDM, pri-

marily accounts for static correlation. We can alternately establish the relationship between

this correction and static correlation from directly evaluating the trace of the cumulant 2-

RDM. The cumulant’s trace equals the trace of the idempotency relation for the 1-RDM

[196, 197, 198, 199]. The 1-RDM only deviates significantly from idempotency when its oc-

cupation numbers are highly fractional-far from zero and one, which occurs primarily when

an atom or molecule possesses significant static correlation.

Previous work showed that we can transform DFT into a 1-RDMFT by adding a correc-

tion functional [165, 147]

ERDMFT[
1D] = EDFT+T[

1D] + C[1D] (6.15)

in which

EDFT+T[
1D] = EDFT[ρ] + (T [1D]− Ts[ρ]), (6.16)

EDFT = Ts[ρ] + V [ρ] + Fxc[ρ], (6.17)

where ρ is the one-electron density, Ts is the noninteracting kinetic energy functional, T [1D]

is the interacting kinetic energy functional, V [ρ] is the sum of the external and Hartree po-

tentials, Fxc[ρ] is the exchange-correlation functional, and C[1D] is the correction functional.

An approximate form for C[1D] we derived to be [147]

C[1D] = −wTr(1D − 1D2) (6.18)
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in which w was an unknown parameter whose value, we showed, depends on the molecular

system. Comparing Eq. 6.13 and 6.14, however, we find that w = γ or that w depends on

a subset of the electron repulsion integrals. We introduce a damping factor k ∈ [0, 1] such

that w = kγ to account for the fact that the density functional already includes some of

the static correlation. Importantly, k, we observe, is largely independent of the molecular

system because the system-dependent behavior is captured by the trace of the two-body

interaction matrix, and hence, for a given approximate density functional a single value for

the damping parameter can be used across molecules. While the damping parameter does

vary with the choice of the density functional, its optimal magnitude increases linearly with

the amount of Hartree-Fock exchange. Consequently, we find that a greater correction for

electron correlation is required for DFT functionals with a greater degree of Hartree-Fock

exchange. Using the correction with DFT rather than Hartree-Fock theory has the important

advantage that DFT already has a good approximation to the dynamic correlation.

The cumulant-based correction can also be viewed as a correction to the convexity of

the energy functional [200]. The Hartree-Fock energy is a concave functional of the 1-

RDM [201, 53]. This concave property causes the solutions of Hartree-Fock theory to occur

at extreme points along the boundary of the convex set of 1-RDMs that correspond to

Slater determinant wave functions [53]. The correct 1-RDM energy functional is convex,

which causes its solutions, when correlated, to lie inside the convex set of 1-RDMs [60].

Incorporation of the cumulant-based energy correction, which is a convex functional of the

1-RDM, increases the convexity of both the Hartree-Fock and DFT-based energy functionals.

This enhancement of convexity generates a movement, described by Schilling and Schilling

as a force [38], arising from correlation that drives the 1-RDM into the convex set and away

from its boundary.
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6.3 Results

We apply the 1-RDMFT to treat the barrier to rotation in ethylene [193], the relative ener-

gies of the three geometric isomers of benzyne [194], as well as a benchmark based on the

atomization energies of 11 molecules [195]. We use the formula w = kγ with γ in Eq. 6.14

and k = 0.158 for correcting both SCAN-DFT [91] and PBE-DFT [86], which we denote as

SCAN-RDMFT and PBE-RDMFT, respectively. All w values calculated and used are given

in 6.1. Previous work showed empirically that the ratio of the optimal weight for correcting

the Hartree-Fock method to the optimal weight for correcting the SCAN-DFT functional is a

constant [165], which determines the value of k. The fact that k is significantly less than unity

indicates that the SCAN and PBE functionals already account for a significant percentage

of 2∆0; nonetheless, as shown below, the missing part is critical to both generating the frac-

tional occupations and correcting the energy errors. Because the degree to which a functional

accounts for this term should be independent of the molecule, we can understand why a sin-

gle value of k for a given functional is likely to be accurate across a wide range of molecules.

All calculations use the correlation-consistent polarized valence double zeta (cc-pVDZ) basis

set [94]. We solve the 1-RDMFT by an O(N3) self-consistent-field method, detailed in Refs.

[165, 147], that solves a semidefinite program by the boundary-point algorithm developed in

Ref. [62] for variational 2-RDM theory [43, 76, 74, 13, 72, 71, 62, 70, 186, 187, 188, 189].

In general, the 1-RDMFT can be readily implemented on top of existing self-consistent-field

implementations of DFT. While DFT can, in principle, employ only the occupied molec-

ular orbitals, the 1-RDMFT can also exploit just the nonnegligible fractionally occupied

orbitals, which will be a small fraction of the total number of orbitals. Calculations with the

complete-active-space self-consistent-field method (CASSCF) [121] and the anti-Hermitian

contracted Schrödinger equation (ACSE) [123, 180] are performed with the Quantum Chem-

istry Package in Maple [126], and calculations with coupled cluster with single, double, and

perturbative triple excitations [CCSD(T)] [202] and multiconfiguration pair density func-
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w values
B2 0.051
C2 0.064
CN 0.071
CO2 0.066
F2 0.092

NF3 0.064
NO 0.082
S2 0.069
SiO 0.068
CO 0.076
N2 0.077

C2H4 0.052
Obenzyne 0.040
Mbenzyne 0.040
Pbenzyne 0.040

Table 6.1: The w values used throughout this work calculated using eq. 6.14 and w = kγ
where k is 0.158.

tional theory (MC-PDFT) [12] are performed with PySCF [128].

First, we calculate the potential energy surface for the C-C bond rotation in C2H4,

which corresponds to a transition from a double bond well captured by a single reference ap-

proach at a 0o dihedral angle to a strongly correlated biradical at a 90o dihedral angle. The

results, plotted in Fig. 6.1, reveal a general overestimation of the barrier height in single-

reference methods, with errors of 26.21, 31.50, and 6.70 kcal/mol for PBE-DFT, SCANDFT,

CCSD(T), respectively, as compared to a CASSCF (12,12)/ACSE reference [here we use the

(N, r/2) convention where N is the number of electrons and r/2 is the number of spatial

orbitals in the active space]. 1-RDMFT yields significant improvements with errors of -6.51,

and 0.33 kcal/mol for PBE-RDMFT and SCAN-RDMFT, respectively. These results com-

pare favorably to tPBE MC-PDFT, which yields an error of 5.72 kcal/mol. (The “t” in the

acronym tPBE denotes the translation of the conventional PBE exchange-correlation func-

tional in DFT to an on-top functional for use in MC-PDFT [12].) The DFT and 1-RDMFT

potential energy surfaces reveal identical relative energies along the HCCH dihedral angle
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Figure 6.1: C2H4 rotational barrier potential energy surfaces obtained from
CASSCF(12,12)/ ACSE, CCSD(T), PBE-RDMFT, SCAN-RDMFT, PBE-DFT, SCAN-
DFT, and CASSCF(12,12)/ tPBE calculations with the cc-pVDZ basis set.
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until the 1-RDMFTs yield fractionally occupied orbitals, starting at the 54o and 57o dihe-

dral angles, for PBE and SCAN, respectively, owing to increasingly strong static correlation.

A plot of the orbital occupations along the dihedral angle is available in Fig. A.6 of the

appendix. Both PBE-RDMFT and SCAN-RDMFT are able to remove correctly the ener-

getic discontinuity observed in DFT at the 90o dihedral angle caused by the degeneracy of

the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital

(LUMO), resulting in a smooth potential energy surface. CCSD(T) and tPBE MC-PDFT,

however, increasingly deviate from the reference CASSCF(12,12)/ACSE curve with a maxi-

mal error at the 90o dihedral angle, where they both fail to fully resolve the multireference

character, resulting in the overestimation of the barrier height compared to the ACSE and

the 1-RDMFTs.

Next, we apply PBE-RDMFT and SCAN-RDMFT to a subset of the multireference main

group non-metal bond energy molecular test set (MR-MGN-BE17) [195], previously devel-

oped as a set of systems for testing the accuracy of density functionals on bond dissociations.

Equilibrium geometries and reference dissociation energies are obtained by scanning over the

molecules’ limited degrees of freedom using the ACSE seeded with a valence CASSCF cal-

culation. The results, displayed in Table 6.2, yield mean unsigned errors (MUEs) of 29.50

and 36.91 kcal/mol for PBE-RDMFT and SCAN-RDMFT, respectively, compared to the

reference CASSCF/ACSE energies. Here, CASSCF calculations utilize active spaces encom-

passing all valence electrons and orbitals. These results present significant improvements

over traditional PBE-DFT and SCAN-DFT’s MUEs of 114.46 and 127.85 kcal/mol with an

approximate fourfold reduction in error. This is the result of 1-RDMFT fractionally occu-

pying the valence orbitals as the molecules dissociate which corrects DFT’s overestimation

of the dissociated limit. The 1-RDMFT MUEs also compare favorably to the explicitly cor-

related tPBE MC-PDFT calculations’ MUE of 22.15 kcal/mol. Finally, consideration of the

mean signed error (MSE) for PBE-RDMFT of 7.06 kcal/mol, reveals a nearly equal over and
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Table 6.2: Dissociation errors in kcal/mol for a subset of the MR-MGN-BE17 test set com-
pared to the CASSCF(valence)/ACSE energies. Dissociation data taken at 5 Å internuclear
distances.

Dissociation errors
DFT RDMFT MC-PDFT

PBE SCAN PBE SCAN tPBE
B2 → 2B 19.53 23.01 -2.12 -0.87 10.73
C2 -> 2C 101.47 85.63 12.12 23.38 7.80
CN -> C + N 125.34 139.02 29.47 48.28 17.69
CO2 -> C + 2O 172.11 205.46 8.17 46.22 35.37
F2 -> 2F 73.84 84.91 -19.13 -17.53 22.51
NF3 -> N + 3F 184.18 205.46 71.10 96.94 68.28
NO -> N + O 142.28 156.00 36.58 57.72 22.81
S2 -> 2S 58.21 153.34 -40.02 -27.79 17.41
SiO -> Si + O 67.55 251.27 -36.07 -15.28 8.77
CO -> C + O 94.62 359.51 -26.09 -0.47 12.27
N2 -> 2N 219.93 213.67 43.61 71.57 20.08
MSE 114.46 127.85 7.06 25.65 22.15
MUE 114.46 127.85 29.50 36.91 22.15

underestimation of the dissociation energies, while SCAN-RDMFT’s MSE of 25.65 kcal/mol

shows a stronger tendency to overestimate the dissociation energies. As PBE-DFT, SCAN-

DFT, and tPBE never underestimate the dissociation energy, their MSEs match their MUEs

with values of 114.46, 127.85, and 22.15 kcal/mol, respectively.

Finally, in Fig. 6.2 we investigate the relative energy differences between the three

geometric isomers of benzyne with ground-state geometries obtained from Ref. [194], which

become increasingly strongly correlated with increasing distance between the radical centers

(ortho-benzyne < meta-benzyne < para-benzyne) [203]. As both meta- and ortho-benzyne

have weak static correlation effects, the 1-RDMFTs are expected to remain idempotent,

recovering traditional DFT’s energies. This is, indeed, observed, with SCAN-RDMFT and

SCAN-DFT both producing energy differences of 9.34 kcal/mol between the two isomers

while PBE-RDMFT and PBE-DFT yield 8.4 kcal/mol. These results are both within 1.1

kcal/mol of CASSCF (4,4)/tPBE’s predicted energy difference of 9.5 kcal/mol. CCSD(T)

deviates more significantly from the previous results, yielding the largest energy difference
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Figure 6.2: Relative energies of meta- and para-benzyne with respect to ortho-benzyne
from RDMFT and DFT with the SCAN and PBE functionals, MC-PDFT using the tPBE
functional, and CCSD(T).
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at 14.03 kcal/mol, which is in good agreement with the experimentally predicted energy gap

of 15.6 kcal/mol. Calculation of the more strongly correlated para-isomer yields deviations

between 1-RDMFT and DFT, resulting in decreases in the para-ortho energy differences

obtained from SCAN-DFT and PBE-DFT of 35.89 and 33.73 kcal/mol, respectively, to 30.62

and 27.4 kcal/mol from SCAN-RDMFT and PBE-RDMFT. These 1-RDMFT values are

within the experimental error range and give significantly better agreement with CCSD(T)

and tPBE’s energy differences of 27.42 and 28.80 kcal/mol, respectively, compared to DFT.

6.4 conclusions

We present a universal 1-RDMFT functional for the treatment of strongly correlated systems,

based on a transformation of traditional DFT. While the development of density-, 1-RDM-,

and 2-RDM-based theories often occur separately, here we combine aspects of DFT and

2-RDM theory to develop a 1-RDMFT that retains DFT’s O(N3) efficiency while realizing

the ability to capture static correlation. Importantly, by using the unitary invariants of the

cumulant 2-RDM, we derive a general formula for the magnitude of the correction—the w

parameter—in terms of the diagonal part of two-electron interaction matrix, which over-

comes a limitation of earlier work, arising from the need to define a system specific w value

[165, 147]. The derived formula for w can also be used to systematize related approaches,

such as information density-matrix functional theory (iDMFT) [139] and thermally assisted-

occupation DFT (TAO-DFT) [33, 166], which rely on unknown fictitious temperatures in

Fermi-Dirac distributions. We can potentially improve the functional further by approximat-

ing the remaining terms of the unitary decomposition, which we will investigate in future

work. We demonstrate the applicability of 1-RDMFT by investigating a set of small molec-

ular dissociations in the MR-MGN-BE17 test set, as well as the rotational barrier height of

ethylene and the relative energy differences of the benzyne isomers. Because of the 1-RDM

correction in the energy functional, 1-RDMFT yields significant improvements over DFT in
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the presence of strong correlation while recovering the DFT energy in the single-reference

limit. The 1-RDMFT opens new possibilities for the treatment of static correlation in the

accurate prediction of molecular structures and processes.
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CHAPTER 7

ENHANCING DENSITY FUNCTIONAL THEORY FOR STATIC

CORRELATION IN LARGE MOLECULES

Printed with permission from D.P. Gibney, J.-N. Boyn, and D.A. Mazziotti

7.1 Introduction

Despite its ability to treat the electron correlation of many molecular systems with mean-

field computational cost, density functional theory (DFT) [155, 156, 157, 6] has limitations

in its treatment of charges [158, 159], barrier heights [161], and bi- and multiradicals [23].

These limitations arise from the inability of the approximate functionals employed within

DFT to provide a full description of static, or multireference, electron correlation. Static

correlation occurs in molecular systems with energetically degenerate, or nearly degenerate,

orbitals that lead to two or more Slater determinants contributing substantially to the wave

function [65]. Recently, we combined DFT [155, 156, 157, 6] and its extensions [162, 33,

12, 108, 36, 118, 163, 164, 145, 165, 166] with 1-electron and 2-electron reduced density

matrix (1-RDM [14, 15, 17, 167, 44, 112, 168, 169, 42, 40, 38, 37, 49, 111, 139, 147, 170, 171]

and 2-RDM [172, 204, 173, 174, 175, 176, 177, 178, 123, 179, 180, 181, 182, 183, 184, 185,

43, 76, 74, 13, 72, 71, 62, 70, 186, 187, 188, 189]) theories to obtain a universal O(N3)

generalization of DFT for static correlation [205]. This generalization transforms DFT into

a 1-RDM functional theory (1-RDMFT) whose convexity allows the orbital occupations to

become fractional.

In this Letter, we enhance the generalization of DFT for an improved treatment of static

correlation in large molecules. The generalized DFT, or 1-RDMFT, that we previously

derived [205], involves the trace of the two-electron identity matrix and the trace of the

cumulant part of the 2-RDM [175, 176, 177, 178, 190, 191]. The former, however, scales
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quadratically with system size r while the latter scales linearly with r. This scaling mis-

match causes the correction to the DFT energy to become less effective for larger molecules.

Here we renormalize the trace of the identity matrix by reweighting the two-electron space

with the electron repulsion term 1/r12, reducing its scaling from quadratic to linear. The

reweighting is performed with Cauchy-Schwarz inequalities [206] that relate the magnitudes

of the diagonal and off-diagonal elements of the two-electron repulsion matrix. To demon-

strate the effectiveness of this approach, we apply the corrected functional theory to linear

hydrogen chains [207] as well as the prediction of the singlet-triplet gap and equilibrium

geometries of acene chains [208, 209, 210]. The renormalization results in a 1-RDMFT, solv-

able by semidefinite programming [62], that accurately treats static correlation for a broad

range of molecules and materials at the same O(N3) computational scaling as DFT.

7.2 Theory

Following a brief review of the correction in the generalized DFT, we derive the renormaliza-

tion of the correction for large molecules. The energy of an N -electron atom or molecule in a

finite basis of r spin orbitals can be written as a functional of the 1-RDM and the cumulant

(or connected) part of the 2-RDM [112]

ERDMFT[
1D,2∆] = E[1D] + E∆[2∆] (7.1)

in which

E[1D] = Tr(1H 1D) + Tr(2V (1D ∧ 1D)) (7.2)

E∆[2∆] = Tr(2V 2∆) (7.3)
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and

2∆ = 2D − 1D ∧ 1D (7.4)

where 1H is the matrix representation of the one-electron kinetic energy and nuclear-electron

Coulomb terms, 2V is the matrix representation of the two-electron repulsion term, 1D and

2D are the 1- and 2-RDMs, normalized to N and N(N − 1)/2, respectively, ∧ denotes the

antisymmetric (or Grassmann) tensor product [175] and 2∆ is the cumulant part of the

2-RDM [175, 176, 177, 178].

The cumulant 2-RDM can be decomposed into three orthogonal subspaces based on the

unitary group [190], known as the unitary decomposition [191]

2∆ = 2∆0 +
2∆1 +

2∆2. (7.5)

By approximating the cumulant part of the energy in terms of just the zeroth component of

the unitary decomposition, we have

E∆[2∆] ≈ Tr(2V 2∆0). (7.6)

Further substituting the explicit unitary decomposition [190] in which 2I is the two-electron

identity matrix

2∆0 =
1

Tr(2I)
Tr(2∆) 2I, (7.7)

yields

E∆[2∆] ≈ 1

Tr(2I)
Tr(2V )Tr(2∆). (7.8)

Finally, the trace of the cumulant 2-RDM can be expressed in terms of the 1-RDM’s idempo-

tency [196, 197, 198, 199] and the trace of 2V can be expressed in terms of the two-electron
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repulsion integrals in physicist’s notation to obtain

E∆[2∆] ≈ −γTr(1D − 1D
2
) (7.9)

where

γ =
1

Tr(2I)

∑
ĩ,j̃

(
2⟨̃ij̃||̃ij̃⟩ − ⟨̃ij̃||j̃ ĩ⟩

)
(7.10)

in which the tilde denotes the index of the spatial part of the spin orbital. Equation (7.9),

derived in Ref. [205], provides a 1-RDM approximation for the cumulant energy that in com-

bination with the effective one-electron energy E[1D] in Eq. (7.1) yields a 1-RDM functional

theory that corrects the Hartree-Fock energy for static correlation.

As shown in previous work [205], we can apply this correction to transform DFT rather

than Hartree-Fock into a 1-RDMFT. To treat DFT with Eq. 7.1, we first modify the one-body

energy in Eq. (7.2) to include the exchange-correlation functional Fxc[ρ]

E[1D] = T [1D] + V [ρ] + Fxc[ρ] (7.11)

where ρ is the one-electron density, T [1D] is the interacting kinetic energy functional,

and V [ρ] is the external potential including the electron-nuclei Coulomb potential and the

Hartree-Fock Coulomb potential. Second, because an approximate exchange-correlation

functional already includes some static correlation, we define the cumulant energy in Eq. (7.9)

with the same functional form but a different weight parameter w

E∆[2∆] ≈ −wTr(1D − 1D
2
) (7.12)

where w = κγ in which γ is defined as before in Eq. (7.10) and κ is a damping factor

such as κ ∈ [0, 1]. When κ = 1, the cumulant energy in Eq. (7.12) is identical to the

cumulant energy in Eq. (7.9), but when κ < 1, the cumulant energy in Eq. (7.12) provides a

112



smaller correction than that in Eq. (7.9), reflecting that an approximate exchange-correlation

functional contains some static correlation. Importantly, as observed previously in Ref. [205],

the κ is largely independent of the molecular system because the system-dependent behavior

is captured by γ, and thus, for a given approximate density functional a single value for κ

can be used across molecules. We find that the optimal κ for a given functional increases

linearly with the amount of Hartree-Fock exchange in the functional. The advantage of using

the cumulant energy as a correction to DFT rather than Hartree-Fock theory is that DFT

captures the dynamic correlation.

For large molecules, however, the cumulant energy in Eq. (7.9) generally does not recover

enough of the static correlation. The problem arises because the trace of the two-electron

identity matrix in γ,

Tr(2I) =
r(r − 1)

2
, (7.13)

scales quadratically, rather than linearly, in r. Each of the diagonal elements of the identity

matrix 2I
ij
ij is equal to one even if the spin orbitals i and j correspond to spatial orbitals that

are significantly separated in space. In taking the trace of the identity matrix, we need to

reweight the two-electron space to account for the locality of the electron repulsion matrix

due to the locality of the Coulomb repulsion.

To perform the reweighting, we consider the electron repulsion matrix in a local orbital

basis, such as the atomic orbitals, with the indices arranged in chemist’s notation, denoted

by 2Ṽ

2Ṽ ĩ̃i
j̃j̃

=

∫ |χĩ(1)|
2|χj̃(2)|

2

r12
d1d2. (7.14)

Because this matrix 2Ṽ is positive semidefinite, that is 2Ṽ ⪰ 0, its diagonal and off-diagonal

elements must obey the Cauchy-Schwarz inequalities [206]

∣∣∣2Ṽ ĩ̃i
j̃j̃

∣∣∣2 ≤ 2Ṽ
ĩ̃i
ĩ̃i
2Ṽ

j̃j̃

j̃j̃
. (7.15)
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Dividing the left-hand side by the right-hand side of the inequalities and taking the square

root, we obtain weights W̃ĩj̃ of the two-electron space

W̃ĩj̃ =

2Ṽ ĩ̃i
j̃j̃√

2Ṽ ĩ̃i
ĩ̃i

2Ṽ
j̃j̃

j̃j̃

=
⟨̃ij̃||̃ij̃⟩√

⟨̃ĩi||̃ĩi⟩⟨j̃j̃||j̃j̃⟩
(7.16)

which lie between 0 and 1

0 ≤ W̃ĩj̃ ≤ 1. (7.17)

When ĩ = j̃, the weights equal one (W̃ĩ̃i = 1), but when the local spatial orbitals, ĩ and j̃, are

far from each other, the weights are much less than one (W̃ĩj̃ ≪ 1). The nonzero elements

of the weight matrix in the local spin orbital basis set 2W can be defined as

2W
ij
ij = W̃ĩj̃ (7.18)

with ĩ denoting the spatial orbital associated with the spin orbital of i. Using these weights

on the diagonal elements of the two-electron identity matrix renormalizes its trace to yield

Tr(2W 2I) = 4
∑
ĩ<j̃

W̃ĩj̃ +
∑
ĩ

W̃ĩ̃i. (7.19)

Asymptotically, the trace of the renormalized two-electron identity matrix scales linearly

with system size, and therefore, substituting this identity matrix for the conventional identity

matrix in Eq. (7.10) yields an approximation for the cumulant energy in Eq. (7.9) that scales

linearly with system size. We denote the modified right-hand side of Eq. (7.10) as γ̃ which

is related to the original γ by a ratio of the traces of the two identity matrices

γ̃ =
Tr(2I)

Tr(2W 2I)
γ. (7.20)
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Similarly, we define the renormalized weight w̃ as w̃ = κ̃γ̃ in which κ̃ is a modified damping

parameter. Using these modified parameters, we can obtain accurate corrections for static

correlation with either Hartree-Fock theory or DFT for both large and small molecules.

7.3 Results

We apply the 1-RDMFT (or RDMFT) with both the original w and renormalized w̃ weights

to the stretching of linear hydrogen chains and the singlet-triplet gap as well as the carbon-

carbon bond lengths of acene chains ranging in length from 5 to 12 units. We use w = κγ

and w̃ = κ̃γ̃ with γ and γ̃ being obtained from Eq. (7.10) and Eq. (7.20), respectively. All

RDMFT calculations are performed with the correlation-consistent polarized valence double-

zeta (cc-pVDZ) basis set [94] and the SCAN functional [91] with κ = 0.158, as employed

in our previous work [205], and κ̃ = 0.112. Analytical gradients [211] are implemented for

geometry optimizations. The RDMFT calculations are solved using a self-consistent-field

(SCF) procedure at O(N3) scaling, described in Refs. [118, 165], in which the solution of

the semidefinite program is computed at each SCF iteration with the splitting conic solver

(SCS) [212, 213] in the CVXPY Python program [214]. The DFT calculations are performed

in the Quantum Chemistry Package in Maple [215, 126] and PySCF [128] while the RDMFT

calculations are performed with a customized Python program that works with the Quantum

Chemistry Package in Maple [215, 126] and PySCF [128].

The energy per hydrogen atom as a function of the distance R between equally spaced

hydrogen atoms is presented for linear H10 and H50 in Fig. 7.1, using DFT, w RDMFT,

and w̃ RDMFT all with the SCAN functional. For H10, while both w and w̃ RDMFTs

improve upon the energy per hydrogen atom relative to DFT for R > 2 Å, only w̃ RDMFT

exhibits the correct asymptotic behavior of a nearly flat potential energy curve for R > 3 Å.

Moreover, for the larger H50, because w is incorrectly decaying with system size, w RDMFT

shows minimal improvement over DFT, but w̃ RDMFT produces a curve that agrees with
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Figure 7.1: Energy per hydrogen atom as a function of the distance R between equally spaced
hydrogen atoms is shown for linear H10 and H50, using DFT, w RDMFT, and w̃ RDMFT
all with the SCAN functional.

the one from H10, exhibiting the expected convergence in the energy per hydrogen atom

with respect to chain length in the dissociation limit.

Next, we consider the singlet-triplet gap—the energy difference between the lowest ly-

ing singlet and triplet states— for the n-acenes pentacene (n = 5) through dodecacene

(n = 12), displayed in Figure 7.2. The n-acenes have been shown to develop bi- and

multi-radical character with increasing chain length [208, 209, 210, 216]. Due to the conju-

gated π system increasing with the number of carbon atoms, acenes longer than tetracene

are beyond the capabilities of traditional configuration-interaction-based based methodolo-

gies such as the complete-active-space self-consistent-field (CASSCF) wave function method.

Therefore, we compare our results to those from the CASSCF variational 2-RDM (V2RDM)

method [209, 70, 188], which replaces the calculation of the active-space wave function by con-

figuration interaction by the calculation of the active-space 2-RDM by the V2RDM method

with 2-positivity conditions [43, 76, 74, 13, 72, 71, 62, 70, 186, 187, 188, 189]. The CASSCF

V2RDM method—denoted in the following as just V2RDM—can treat the (50,50) active

space required for dodecacene. Relative to the results from V2RDM [217], DFT underpre-
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Figure 7.2: Adiabatic singlet-triplet gap—the energy difference between the lowest lying
singlet and triplet states—for the n-acenes pentacene (n = 5) through dodecacene (n = 12),
using w̃ RDMFT with comparisons to DFT and V2RDM. Both w̃ RDMFT and DFT use
the SCAN functional.

dicts the gap for longer acenes with the triplet state becoming incorrectly lower in energy

than the singlet state. In contrast, the w̃ 1-RDMFT closely matches the gap predicted by the

V2RDM theory. Extrapolating to infinite chain length n using the function a exp (−n/b)+c,

we obtain singlet-triplet gaps of 7.23 and 7.77 kcal/mol from V2RDM theory and w̃ 1-

RDMFT, respectively.

Finally, we compute the equilibrium geometry of dodecacene in its ground singlet state

with w̃ RDMFT using analytical gradients. In Fig. 7.3 the edge carbon-carbon bond lengths

are displayed in red with comparisons to those from DFT and V2RDM, shown in blue and

green, respectively. The V2RDM method predicts edge carbon-carbon bond lengths that

are fairly uniform in the interior of the acene; in contrast, DFT predicts an alternating

bonding pattern with significant variations in the bond lengths. The w̃ RDMFT results,

which exhibit fractional occupations, agree with those obtained from V2RDM in predicting

equal bond lengths in the interior of the acene. All edge C-C bond lengths from napthalene

to dodecance for both the singlet and triplet states are available in the appendix as Figs A.7

and A.8.
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Figure 7.3: Edge carbon-carbon bond lengths from w̃ RDMFT are shown in red with com-
parisons to those from DFT and V2RDM in blue and green, respectively.

7.4 Conclusions

DFT provides an O(N3) electronic structure method that describes the electron correlation

in many important molecules and materials, and yet it struggles to treat a specific type

of correlation, known as static correlation, leading to errors in predicting charges, multi-

radicals, and reaction barriers. Here we enhance a recent generalization of DFT for static

correlation to improve its treatment of this correlation for large molecules. We renormal-

ize a 1-RDM-based energy correction to DFT by using Cauchy-Schwarz inequalities of the

electron-electron repulsion matrix to reweight the two-electron identity matrix, making the

correction effective for large molecules. The resulting 1-RDMFT, while retaining the O(N3)

scaling of DFT, significantly improves upon DFT within statically correlated systems while

reproducing DFT in systems lacking static, or strong, correlation. We demonstrate its scala-

bility with system size by considering a series of hydrogen and acene chains through H50 and

dodecacene, respectively. The theory offers new possibilities for calculating a broad range of

strongly correlated molecular systems beyond the reach of multi-reference methodologies.
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CHAPTER 8

FUTURE DIRECTIONS

This work still has more directions to be explored. These include, but are not limited to,

incorporating the 2∆1 term in the RDMFT functional, finding a way to obtain excited states,

creating a unique DFT like functional specifically for RDMFT, and exploring larger strongly

correlated systems.

Starting with the next term in the unitary decomposition, 2∆1, its final form should

resemble Tr(A[1D2 − 1D]) where A will be a matrix likely based upon the Hartree-Fock J

and K matrices. This will expand upon the previous form of the RDMFT correction which

is expressible as Tr(w1I[1D2 − 1D]) to add off diagonal elements to the minimization. For

smaller systems with a well-defined Homo-Lumo gap this new term,2∆1, is likely to be very

similar to the original, 2∆0. This is due to w being the trace of A. However, as 2∆1 adds an

energetic component to off diagonal elements to the residual of the 1-RDM, 1D2−1D, it may

result in orbital rotations that would not previously be possible. Unfortunately, this would

be the last term that could be added to the unitary decomposition in RDMFT’s current

implementation. If the final term, 2∆2, is included, RDMFT would effectively become

V2RDM theory as it would require a matrix of the same size as the 2RDM.

Another direction that deserves exploration in is how to obtain excited states using this

methodology. Excited states play an important role in many chemically relevant phenomenon

as their higher energies allow for processes to occur that would be inaccessible via the ground

state. This would include light-induced reactions[218, 219, 220], such as photosynthesis[221,

222], singlet-triplet fission[223], and conical intersections [224, 225]. Unfortunately, while

DFT has a linear response theory known as TD-DFT [226, 227] for excited states and other

RDMFTs have an ensemble approach to excited states[228], the RDMFT developed here is a

functional of both the electronic density and 1RDM. Therefore, neither of the two approaches

individually would work.
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As this is a ground state method, it would be possible to target the ground states of

different irreducible representations, which would allow for a limited exploration of excited

states in symmetric molecules. Unfortunately, this would only apply to symmetric modules

and the number of states accessible in this manner would depend on the degree of molecular

symmetry, with more symmetric molecules - and thus more irreducible representations -

allowing for more excited states. Even then, this would only allow for a limited exploration

into the molecule’s excited states.

Throughout this work, we found that the density functionals that were least parameter-

ized and obtained no Hartree-Fock exchange tended to perform the best when used within

RDMFT. Our hypothesis for this observation is that parameterized functionals, while de-

signed to best reproduce properties of interest, are optimized with only idempotent 1-RDMs.

This idea is supported by the primary implementation of DFT within electronic structure

packages being idempotent. Therefore, unparameterized functionals would best respond to

improvements in the underlying 1-RDM as they are developed independent of it.

Following through with this idea, it would be worthwhile to create a functional specifically

designed with non-idempotent 1-RDMs in mind. Although most systems found in large

functional test suites, such as the well known Minnesota databases [195, 229] which comprises

over 400 test systems, will be idempotent, including strongly correlated systems and thus

non-idempotent 1-RDMs should result in different optimized parameters for the resulting

functional. It would be important that the training sets include a combination of systems that

contain strong correlation and those without it. Over inclusion of strongly correlated systems

in the test set may hamper the function’s ability to respond appropriately to idempotent

1-RDMs.

This training could also have the benefit of enabling Hartree-Fock functionals to perform

at a similar level as the completely unparameterized functionals. As Hartree-Fock exchange

is often included to reduce electron self-interaction errors[230, 231], which is a common
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issue in current density functionals, this would be an important development. Furthermore,

Hartree-Fock exchange reduces the convexity of density functionals, further improving them

towards known behavior of the exact universal functional.
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APPENDIX A

ADDITIONAL FIGURES AND TABLES

A.1 Variation in the individual components to the total energy

between SDP and KS implementations

Restricted Unrestricted
Functional ∆Ekin ∆Enuc ∆EC ∆EXC ∆Etot ∆Ekin ∆Enuc ∆EC ∆EXC ∆Etot

S

VWN -81.19 197.62 34.16 -172.20 -21.60 -13.87 39.72 19.20 -33.79 11.26
SPW92 -81.25 197.81 34.15 -172.34 -21.62 -14.92 42.11 19.16 -35.34 11.02
PBE -59.30 146.63 33.17 -137.80 -17.31 -22.99 62.51 30.20 -50.97 18.75
BLYP -36.78 98.54 31.24 -108.45 -15.45 -24.40 68.04 29.28 -55.12 17.80
TPSS -28.32 73.93 32.90 -89.48 -10.97 -31.87 81.96 39.60 -64.55 25.14
SCAN -26.08 60.62 31.97 -71.77 -5.26 -36.47 89.32 49.82 -69.32 33.34

MN15-L -0.46 8.47 38.71 -42.30 4.42 -35.68 109.94 45.52 -95.32 27.88
B97M-V -14.91 31.64 35.44 -53.26 -1.08 -34.85 98.73 39.13 -76.24 26.77

T

VWN -4.27 10.13 5.01 -11.08 -0.21 -0.93 0.43 3.99 -3.29 0.20
SPW92 -5.11 12.35 5.02 -12.39 -0.12 -0.95 0.49 3.98 -3.33 0.19
PBE -5.99 14.66 6.54 -14.22 0.99 -2.06 2.97 5.82 -5.12 1.60
BLYP -4.70 12.89 6.34 -13.53 1.00 -2.11 3.39 5.62 -5.47 1.42
TPSS -4.28 11.58 7.75 -12.37 2.69 -3.83 7.36 7.93 -8.36 3.10
SCAN -3.73 6.23 8.59 -7.04 4.05 -4.21 7.00 9.74 -7.89 4.65

MN15-L -5.22 15.79 10.19 -15.87 4.89 -6.91 20.27 11.26 -19.42 5.20
B97M-V -6.31 18.81 9.36 -17.87 3.99 -5.03 12.91 9.01 -12.70 4.18

Table A.1: Mean energy differences of the individual components of the total electronic
energy between the SDP and KS solutions of singlet and triplet states in both spin restricted
and unrestricted frameworks.

A.2 Idempotency

Calculations were performed to investigate the effect of idempotency breaking in the den-

sity matrix on the individual components of the total energy. The non-idempotent frontier

orbital occupation numbers are shown in Table A.3. The total energies and their individual

components were evaluated for the singlet states using the SDP-KS algorithm. The obtained

1-RDM was then projected back onto one of its degenerate idempotent solutions and the

energies and their components were reevaluated. Table A.2 shows the differences between
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the idempotent and non-idempotent solutions with ∆E = Enon−idempotent − Eidempotent.

Generally Ekin and Enuc remain unchanged across all systems and functionals, demonstrat-

ing the absence of double counting in the kinetic energy functional. We observe decreases

in Etot across all systems in most functionals, as including multi-reference correlation lowers

the energy of the system and we converge to a lower solution. However, in the modern meta-

GGA functionals some non-physical Etot increases are observed, pointing towards flaws in

their construction. The changes in Etot arise from a universal gain in EC , which does not

vary significantly between functionals, and the degree to which this is counteracted by an

increase in EXC . While simple LDA functionals like VWN and SPW92, show the smallest

magnitude in ∆EXC this increases as we go to GGA functionals like PBE, BLYP and finally

becomes large enough to negate the decrease in EC in meta-GGA functionals MN15-L and

B97M-V, which yield non-physical increases in Etot in many systems upon the inclusion of

multi-reference correlation in the electron density matrix.
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C NF NH O2 O PF PH S2 S Si SO
∆Etot -16.99 -15.34 -17.14 -14.68 -30.7 -12.55 -13.15 -10.36 -22.67 -13.05 -12.03
∆Ekin -0.0 0.0 0.0 0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0 -0.0

VWN ∆Enuc 0.0 -0.01 -0.0 -0.01 0.0 0.01 0.0 0.0 0.0 0.0 0.01
∆EC -46.29 -33.53 -39.93 -28.8 -65.61 -25.82 -27.9 -18.71 -43.59 -32.43 -22.77
∆EXC 29.29 18.19 22.8 14.13 34.9 13.27 14.75 8.34 20.92 19.38 10.73
∆Etot -17.0 -15.34 -17.15 -14.69 -30.71 -12.55 -13.16 -10.37 -22.68 -13.06 -12.04
∆Ekin -0.0 -0.0 0.0 0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0 0.0

SPW92 ∆Enuc 0.0 0.01 -0.0 -0.01 0.0 0.01 0.0 0.0 0.0 0.0 -0.01
∆EC -46.27 -33.53 -39.93 -28.8 -65.59 -25.82 -27.89 -18.7 -43.58 -32.42 -22.75
∆EXC 29.27 18.18 22.78 14.12 34.88 13.26 14.73 8.33 20.9 19.36 10.72
∆Etot -12.88 -12.49 -13.36 -12.39 -24.56 -10.95 -11.23 -9.39 -19.98 -10.76 -10.63
∆Ekin -0.0 0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0 0.0

PBE ∆Enuc 0.0 -0.01 -0.0 -0.01 0.0 0.01 0.0 -0.0 0.0 0.0 -0.01
∆EC -46.27 -33.56 -39.98 -28.78 -65.67 -25.97 -28.05 -18.77 -43.8 -32.57 -22.81
∆EXC 33.39 21.08 26.62 16.39 41.11 15.02 16.82 9.39 23.82 21.8 12.18
∆Etot -10.13 -10.47 -11.16 -10.86 -21.51 -10.38 -10.7 -8.82 -19.07 -10.19 -9.81
∆Ekin -0.0 -0.0 0.0 0.0 0.0 -0.0 -0.0 -0.0 0.0 -0.0 0.0

BLYP ∆Enuc 0.0 0.01 -0.0 -0.01 -0.0 0.01 0.0 -0.0 0.0 -0.0 -0.01
∆EC -46.06 -33.59 -39.77 -28.73 -65.49 -25.83 -27.79 -18.63 -43.47 -32.14 -22.68
∆EXC 35.93 23.11 28.61 17.87 43.99 15.45 17.08 9.82 24.4 21.95 12.87
∆Etot -2.63 -6.45 -6.63 -7.59 -14.46 -7.94 -8.0 -7.35 -15.29 -6.24 -7.7
∆Ekin -0.0 0.0 -0.0 0.0 0.0 0.0 0.0 0.0 -0.0 0.0 0.0

TPSS ∆Enuc 0.0 -0.01 0.0 -0.01 -0.0 -0.01 -0.0 0.0 -0.0 0.0 -0.01
∆EC -46.22 -33.65 -40.01 -28.79 -65.79 -26.19 -28.28 -18.86 -44.01 -32.83 -22.88
∆EXC 43.58 27.21 33.37 21.2 51.33 18.25 20.28 11.51 28.73 26.58 15.19
∆Etot -1.82 -4.17 -1.23 -5.92 -5.38 -7.73 -6.19 -7.59 -12.93 -5.6 -7.44
∆Ekin 0.0 -0.0 -0.0 0.0 0.0 -0.0 -0.0 0.0 -0.0 0.0 -0.0

SCAN ∆Enuc -0.0 0.01 0.0 -0.01 -0.0 0.01 0.0 0.0 -0.0 0.0 0.01
∆EC -46.36 -33.99 -40.12 -28.96 -66.06 -26.41 -28.32 -18.97 -44.14 -32.92 -23.07
∆EXC 44.54 29.82 38.89 23.05 60.69 18.67 22.13 11.37 31.21 27.32 15.62
∆Etot 13.42 7.11 11.59 3.98 16.51 -2.12 -0.88 -1.78 -1.62 0.25 -0.72
∆Ekin 0.0 0.0 0.0 0.0 0.0 -0.0 -0.0 -0.0 -0.0 0.0 0.0

MN15-L ∆Enuc -0.0 -0.01 -0.0 -0.01 -0.0 0.0 -0.0 -0.0 -0.0 0.0 -0.01
∆EC -44.35 -33.31 -38.92 -28.51 -65.27 -26.14 -27.64 -18.82 -43.8 -31.45 -22.85
∆EXC 57.77 40.42 50.52 32.5 81.78 24.01 26.75 17.04 42.18 31.7 22.13
∆Etot 4.13 1.65 5.77 -0.17 7.13 -5.32 -2.83 -5.43 -6.72 -2.01 -4.47
∆Ekin -0.0 0.0 -0.0 -0.0 0.0 0.0 -0.0 0.0 -0.0 0.0 0.0

B97M-V ∆Enuc 0.0 -0.01 0.0 0.01 -0.0 -0.01 0.0 0.0 -0.0 0.0 -0.01
∆EC -45.38 -33.82 -39.57 -28.73 -65.7 -26.38 -27.99 -18.86 -44.02 -32.16 -22.91
∆EXC 49.52 35.47 45.34 28.56 72.83 21.06 25.16 13.43 37.3 30.15 18.45

Table A.2: Changes in the total energy and its individual components, defined as ∆E =
Enon−idempotent -Eidempotent. All calculations carried out with a aug-ccpvqz basis set.
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A.3 Density

In accordance with Unsöld’s theorem, the SDP-DFT algorithm overcomes the symmetry

breaking issues for singlet states encountered in traditional KS-DFT. For validation, the

electron densities of singlet states from KS-DFT and SDP-DFT are compared to those ob-

tained via active-space 2-electron reduced density matrix (V2RDM) calculations performed

in the Maple 2020 Quantum Chemistry Package [126, 232]. Depending on the number of en-

ergetically degenerate orbitals in the atom or molecule, we use either a [2,2] or a [2,3] active

space. The V2RDM calculations are spin adapted, which enforces the correct expectation

values of the Ŝ2 and Ŝz operators [78]. The electron densities for the carbon atom are shown

in Figure A.1. While the PBE functional in KS-DFT leads to a symmetry-broken electron

distribution around the nucleus, this is not observed in the SDP-DFT implementation of the

PBE functional, where a spherically symmetrical electron density is recovered. The SDP-

DFT density agrees with that obtained from the [2,3] active-space V2RDM calculation. We

furthermore performed calculations in V2RDM for each atom and molecule in our test set

and calculated the distance of the SDP-DFT electron density from the V2RDM electron den-

sity, given by the Frobenius norm of the difference between SDP-DFT and V2RDM 1-RDMs.

The resulting norms are given in Table A.4. The largest distance between SDP and V2RDM

densities is 3.3 × 10−4 and all distances remain in range of 10−5 to 10−4, demonstrating

that SDP-DFT recovers the V2RDM CASSCF density.
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Occupation
C 0.333333 0.333333 0.333333

NF 0.5 0.5
NH 0.5 0.5
O2 0.5 0.5
O 0.666667 0.666667 0.666667
PF 0.5 0.5
PH 0.5 0.5
S2 0.5 0.5
S 0.666667 0.666667 0.666667
Si 0.333333 0.333333 0.333333
SO 0.5 0.5

Table A.3: Frontier orbital occupations of each species with the LDA functional. Results
are functional independent.

Figure A.1: Electron densities in the carbon atom for left: V2RDM, center: SDP-DFT,
right: KS-DFT.

C NF NH O O2

B97MV 1.67E-04 6.93E-05 1.23E-04 1.57E-05 1.18E-04
BLYP 4.06E-05 7.16E-05 1.57E-04 2.47E-05 9.76E-05
VWN 1.42E-04 1.02E-04 5.29E-05 8.49E-05 1.01E-04

MN15L 4.90E-05 3.30E-04 3.94E-05 3.91E-04 2.05E-04
PBE 1.05E-04 1.11E-04 1.34E-04 3.21E-04 5.90E-04

SCAN 2.74E-04 9.60E-05 1.13E-04 4.42E-05 4.18E-04
SPW92 1.42E-04 1.02E-04 1.87E-04 1.51E-05 8.77E-05
TPSS 5.09E-05 1.21E-04 7.47E-05 2.55E-05 6.84E-05

Table A.4: Frobenius norm of the difference between the SDP-DFT and V2RDM 1-RDMs,
defined as ||∆D1|| =||D1(SDP −DFT )−D1(V 2RDM)||.

126



Figure A.2: Linear H4 1RDMFT and iDMFT errors from FCI energy zeroed at 0.9 Å using
the SCAN and HF functionals.

Figure A.3: Rotation of C2H4 1RDMFT and iDMFT errors from the ACSE energy zeroed
at 0° HCCH Dihedral angle using the SCAN and HF functionals.
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Figure A.4: The deviation from Non-Idempotency (Residual) and the HOMO-LUMO gap
as a function of the rotation of C2H4 from 1-RDMFT/SCAN.

Figure A.5: The deviation from Non-Idempotency (Residual) and the HOMO-LUMO gap
as a function of the rotation of C2H4 from 1-RDMFT/HF.
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Figure A.6: HONO and LUNO occupations from CASSCF(Valence), PBE-RDMFT, and
SCAN-RDMFT along the dihedral angle of C2H4
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Figure A.7: Geometry optimized singlet C-C bond lengths for napthalene to dodecacene in
angstroms.
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Figure A.8: Geometry optimized triplet C-C bond lengths for napthalene to dodecacene in
angstroms.
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Table A.5: Dissociation energies obtained from our algorithm with a CASSCF optimized
w1I in kcal/mol relative to CASSCF and the ACSE

CASSCF ACSE
System B3LYP w1I B3LYP w1I
B2 49.44 15.46 18.56 -15.41
C2 133.11 -1.19 90.45 -43.87
CN 148.30 -5.33 127.05 -26.59
CO2 238.70 -45.00 201.17 -82.54
CO 118.85 -72.08 121.79 -69.14
F2 105.12 -8.07 95.27 -17.92
N2 257.83 -5.25 252.10 -11.26
NF3 291.60 45.97 266.67 21.04
NO 166.79 18.38 155.40 6.99
S2 96.42 -40.05 83.23 -53.23
SiO 88.75 -97.05 95.62 -90.18
MSE 154.09 -17.68 137.03 -34.74
MUE 154.09 32.19 137.03 39.83

Table A.6: Dissociation energies obtained from our algorithm with an ACSE optimized w1I
in kcal/mol relative to the ACSE

System B3LYP w1I
B2 18.56 -15.08
C2 90.45 -38.04
CN 127.05 -17.11
CO2 201.17 -65.69
CO 121.79 -57.88
F2 95.27 -15.79
N2 252.10 1.69
NF3 266.67 33.58
NO 155.40 16.63
S2 83.23 -53.23
SiO 95.62 -83.42
MSE 137.03 -26.76
MUE 137.03 36.20
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Table A.7: All 1-RDMFT obtained values. The maximal errors are defined as E1-RDMFT -
E with the largest absolute magnitude being selected. The w values are optimized for each
system and functional combination individually. Signed/Unsigned errors are defined as the
average of E1-RDMFT - E from equilibrium to 4 Å in 0.1 Å steps.

SCAN M06-L B3LYP M06 M06-2X M06-HF HF
Maximal Error kcal/mol

H2 6.14 7.09 6.17 8.03 11.53 17.35 14.11
H4 -2.88 2.40 -3.03 -2.61 2.66 10.48 9.02
N2 9.99 8.87 11.95 13.03 19.01 32.53 34.88
HF -2.35 -1.57 -3.09 3.60 6.87 19.57 17.39
CO 3.80 9.20 5.90 16.24 17.31 37.44 35.05

C2H4 5.54 5.11 4.84 4.41 4.98 7.32 7.21
RMSE 5.72 6.43 6.56 9.46 12.06 23.48 22.66

w Values
H2 0.098 0.098 0.116 0.128 0.171 0.284 0.256
H4 0.104 0.105 0.121 0.131 0.170 0.281 0.249
N2 0.114 0.112 0.143 0.157 0.213 0.348 0.325
HF 0.073 0.073 0.105 0.125 0.189 0.349 0.318
CO 0.076 0.074 0.105 0.120 0.175 0.314 0.287

C2H4 0.052 0.049 0.076 0.084 0.127 0.217 0.215
Signed Error over PES kcal/mol

H2 1.71 1.68 1.58 1.94 2.60 4.93 4.19
H4 0.34 0.52 0.17 -0.23 0.40 3.95 3.24
N2 0.87 1.49 2.11 2.67 4.22 8.96 11.20
HF -1.29 -0.94 -1.54 -0.55 0.30 2.80 -0.39
CO 0.76 1.80 1.64 3.59 4.99 9.80 9.84

C2H4 2.07 1.82 1.66 1.40 1.76 3.15 3.10
RMSE 1.31 1.46 1.57 2.09 2.97 6.24 6.58

Unsigned Error over PES kcal/mol
H2 1.71 1.68 1.59 1.94 2.64 4.96 4.19
H4 1.00 0.89 0.89 0.70 0.98 4.01 3.24
N2 1.65 1.39 2.19 2.53 4.24 8.96 11.20
HF 1.30 1.01 1.54 1.58 2.05 5.08 7.06
CO 1.68 2.30 2.44 4.42 5.89 10.90 11.06

C2H4 2.07 1.82 1.66 1.40 1.76 3.15 3.10
RMSE 1.60 1.59 1.79 2.40 3.36 6.78 7.48
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Table A.8: All iDMFT obtained values. The maximal errors are defined as EiDMFT - E with
the largest absolute magnitude being selected. The θ values are optimized for each system
and functional combination individually. Signed/Unsigned errors are defined as the average
of EiDMFT - E from equilibrium to 4 Å in 0.1 Å steps.

SCAN M06-L B3LYP M06 M06-2X M06-HF HF
Maximal Error kcal/mol

H2 -0.44 -0.65 -1.61 -1.42 -1.88 2.16 -1.22
H4 -8.38 -7.53 -9.83 -9.81 -12.01 -7.98 -9.87
N2 -13.90 -11.45 -12.76 -11.00 -12.03 -7.55 2.92
HF -4.79 -4.08 -6.77 -4.52 -4.08 5.41 3.56
CO -7.89 8.20 -7.91 15.24 -5.78 9.45 -8.50

C2H4 2.28 2.01 0.69 -0.84 -2.24 -2.24 -2.40
RMSE 7.68 6.78 7.86 8.88 7.61 6.44 5.75

θ Values
H2 0.036 0.035 0.042 0.047 0.062 0.106 0.095
H4 0.038 0.039 0.044 0.048 0.063 0.107 0.094
N2 0.042 0.041 0.053 0.058 0.080 0.135 0.124
HF 0.023 0.023 0.034 0.040 0.061 0.116 0.105
CO 0.027 0.027 0.037 0.042 0.062 0.114 0.103

C2H4 0.019 0.018 0.028 0.031 0.048 0.084 0.083
Signed Error over PES kcal/mol

H2 -0.12 -0.18 -0.64 -0.60 -0.64 0.32 -0.36
H4 -2.80 -2.48 -3.54 -3.91 -4.59 -2.56 -3.56
N2 -4.33 -3.79 -3.90 -3.80 -3.97 -1.03 0.51
HF -2.07 -1.48 -3.39 -1.64 -2.32 -0.73 -0.91
CO -2.62 -2.30 -2.85 -1.90 -2.10 -0.04 -0.40

C2H4 0.97 0.82 0.04 -0.22 -1.04 -0.97 -1.03
RMSE 2.54 2.19 2.82 2.46 2.83 1.24 1.59

Unsigned Error over PES kcal/mol
H2 0.15 0.26 0.64 0.64 0.67 0.49 0.37
H4 2.81 2.49 3.55 3.94 4.59 2.59 3.57
N2 4.33 3.79 3.91 3.80 3.97 2.05 0.85
HF 2.11 1.65 3.41 2.07 2.40 2.85 2.23
CO 2.77 3.19 2.87 3.47 2.30 3.14 3.05

C2H4 0.97 0.82 0.17 0.37 1.04 0.98 1.05
RMSE 2.57 2.39 2.83 2.79 2.87 2.24 2.20
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