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Abstract 

This dissertation investigates the inequitable distribution and causal impacts of 

mathematics teachers' content knowledge for teaching (CKT) on instructional quality and student 

learning outcomes. Using the rich information in the Measures of Effective Teaching (MET) 

project longitudinal database, the study addresses three core research questions: the systematic 

inequality of CKT associated with student backgrounds, the causal impacts of CKT on the fine-

grained aspects of instructional quality, and the mediating role of instructional quality in the 

relationship between CKT and student achievement. 

The research comprises three interconnected studies. The first study uses latent scores of 

mathematical CKT as a direct measure for teacher knowledge and explores its distribution across 

different school levels. Unlike conventional qualification indicators such as advanced degrees, 

CKT is fundamental to instructional quality and significantly associated with students' learning 

gains. This study employs a novel analytic strategy that accounts for measurement errors in 

multilevel variance decomposition, providing clarity on the comparative sizes of within-school 

and between-school variation in teacher CKT. Results revealed that approximately half of the 

CKT variation lies within schools, while a third is across schools. Notably, although substantial 

within-school variation exists, it is largely random and not systematically associated with 

students' prior achievement or socioeconomic backgrounds. However, between-school variations 

indicate that schools with higher average student achievement and more advantaged 

socioeconomic backgrounds tend to have teachers with higher CKT. 

The second study attempts to construct a comprehensive measure of instructional quality 

that integrates multiple instruments—observational ratings and student perception surveys—to 

analyze the causal relationship between CKT and instructional quality using a three-level 



 xiv 
 

hierarchical linear model. This model accounts for the multilevel clustering of comparable 

classrooms within randomization blocks at the grade-by-school level, a unique experimental 

design feature of the MET project. Results found that that higher CKT significantly enhanced the 

mathematical quality of instruction, particularly in elementary and middle school classrooms. 

This is reflected in a significant increase in the richness of mathematical content. In contrast to 

mathematical quality of instruction, no significant CKT impacts were found on other dimensions 

of instructional quality, such as teacher-student interaction and student perceived classroom 

experience. 

With enhanced measurements of CKT and multiple instruments of instructional quality, 

the third study examines the mediation pathways of instructional quality in the relationship 

between CKT and student achievement through a multi-step regression approach. This approach 

allows for a nuanced understanding of how different dimensions of instructional quality might 

mediate the effect of CKT on student outcomes. While high-school data are restricted by 

significant reductions in sample size due to missingness in administrative data, the mediation 

analyses identified noticeable indirect effects of CKT on student achievement through 

mathematical instructional quality in elementary schools and middle schools.  

This dissertation provides robust evidence on the importance of CKT in shaping 

instructional practices and student achievement. By addressing critical gaps and employing 

rigorous analytical approaches, this research informs future educational policies and practices 

aimed at enhancing educational equity and effectiveness, ensuring all students receive high-

quality instruction from knowledgeable and skilled teachers. 

Keywords:  Content knowledge for teaching, Mathematics teachers, Education equity, 

Instructional quality, Causal analysis, Causal mediation analysis, Student achievement 



 1 

 1 

Chapter One. Overview 

Ensuring every student has equal access to high-quality instruction have been 

longstanding goals of parents, educators, and policymakers. Many students from families of 

poverty, immigrants, racial minorities, and other marginalized backgrounds heavily rely on 

school instruction, as their families often cannot afford the supplementary learning resources 

outside of school (Alexander et al., 2004; Downey, 2023; Downey et al., 2004; Entwisle & 

Alexander, 1992, 1994). It is clear that teachers play a crucial role in the academic learning and 

future achievements for these disadvantaged students.  

This study chose to focus on mathematics, considering that mathematics is a foundational 

subject essential for academic success across various disciplines in K-12 and postsecondary 

education. In the United States, mathematics education begins in kindergarten and continues 

through middle school, laying the groundwork for higher-level math and science courses in high 

school and college. Moreover, mathematics education often involves performance-based 

grouping and tracking, which can significantly impact students' academic trajectories, 

particularly for those from disadvantaged backgrounds (Figlio & Page, 2002; Gamoran & Mare, 

1989; Mickelson & Everett, 2008; Vanfossen et al., 1987). Ensuring high-quality math 

instruction is therefore vital for promoting educational equity and preparing all students for 

future academic and career opportunities. 

Shulman (1986) introduced the concept of teachers' content knowledge for teaching 

(CKT) as a comprehensive theoretical framework for teacher knowledge, integrating subject 

matter knowledge, pedagogical knowledge, and knowledge about curriculum, students and 

broader educational contexts. It is widely believed that teachers with high levels of CKT are 

better equipped to deliver high-quality instruction, thereby facilitating student learning and 
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improving academic performance. Furthermore, the effective transmission of teacher CKT 

heavily relies on the quality of teachers’ instructional practice, suggesting that instructional 

quality may mediate the relationship between CKT and learning outcomes (Baumert et al., 2010; 

Kelcey et al., 2019; Kersting et al., 2012).  

However, prior research on the relationships among teacher knowledge, instruction and 

student learning has been constrained by several factors. Firstly, teacher knowledge has 

conventionally been measured using qualification indicators such as certifications, advanced 

degrees, years of experience, under the assumption that teachers with these qualifications possess 

high CKT and are capable of deliver instruction of high quality. However, evidence showed 

some teacher qualification measures are at best weakly associated with student achievement and 

may not accurately reflect teacher knowledge required to deliver high-quality instruction (e.g., 

Goldhaber, 2008; Hanushek & Rivkin, 2006; Kane, Rockoff, & Staiger, 2008). Consequently, 

conclusions from prior research on systematic inequality of teacher knowledge and its impacts 

on student outcome are tentative. Furthermore, while theories and prior research have suggested 

that CKT plays a fundamental role in instructional quality and student learning (Baumert et al., 

2010; Campbell et al., 2014a; Charalambous et al., 2020; H. C. Hill et al., 2005; Kelcey et al., 

2019), comprehensive evidence, particularly utilizing a causal mediation framework, remains 

limited. This limitation is primarily due to the challenges of relatively small sample sizes in 

previous experimental studies and difficulties in accurately measuring variations in CKT. 

Secondly, assessments of teacher knowledge and instructional quality are often 

inconsistent across studies, with measures designed or selected based on specific research 

focuses, restricting the generalization and integration of analytic results (Charalambous, 2020; 
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Mu et al., 2022). Additionally, many instructional quality measures fail to incorporate 

multifaceted constructs, potentially leading to findings with limited generalization. 

Thirdly, prior research has largely focused on observational studies with minimal 

controls, primarily examining associations rather than establishing causality. Among a few 

studies that have explored causal links, many relied on professional development (PD) 

interventions that may not induce significant changes in CKT in the short term  (Garet et al., 

2011; Jacob et al., 2017; Roschelle et al., 2010; Santagata et al., 2010). Therefore, it is necessary 

to utilize the natural variation of CKT from a larger sample size to ensure sufficient 

heterogeneity for detecting the impacts of CKT. 

I. Research Questions 

This dissertation project aims to fill in the research gaps and generate rigorous evidence 

to answer three core research questions: 

i. How does the distribution of teacher knowledge measured by CKT vary across 

classrooms and schools within a grade level? To what extent is this variation related 

to student composition? 

ii. Do teachers with higher levels of CKT deliver higher quality instruction? 

iii. Does the quality of instruction mediate the impact of CKT on student learning? 

To answer these three research questions, the dissertation presents three empirical studies 

(Figure 1. 1) and is organized as follows: Chapter 2 examines how teacher CKT naturally varies 

across classrooms and schools within a grade level. Chapter 3 assesses the impacts of CKT on 

fine-grained dimensions of instructional quality using experimental data. Chapter 4 extends the 

line of mediation research by exploring the causal effects of CKT on student achievement via 
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various pathways of instructional quality. Chapter 5 briefly concludes and identifies areas for 

future investigations. 

II. Research Design 

This study utilizes the Measures of Effective Teaching (MET) longitudinal database, 

collected from a large-scale, two-year teacher evaluation project designed for a comprehensive 

investigation of effective teaching. The MET project selected six urban school districts across the 

United States, involving 2,741 teachers of English Language Arts (ELA), Mathematics, or 

Biology and their approximately 160,000 students in 4th to 9th grade classrooms. These school 

districts, along with the participating schools and teachers, were recruited through a process of 

“opportunity” sampling, meaning all participants volunteered. Consequently, the sample is not 

nationally representative, necessitating caution when interpreting and generalizing the results. 

The MET project includes two survey waves: Academic Year 2009-2010 (year 1) and 

Academic Year 2010-2011 (year 2). The first year employed a purely observational design, 

collecting baseline data on districts, schools, teachers, and students, as well as videotaped 

classroom sessions rated by professional raters. Student outcomes were measured through state 

standardized test scores, supplementary tests, and student perceptions. More details can be found 

in Table 1. 1. 

In the second year, the design incorporated an experimental component. School 

principals were asked to create "exchangeable" class portfolios at each subject-grade 

combination level, ensuring similar student composition across classes. The clusters of these 

“exchangeable” classrooms are called randomization blocks. If the experimental design is strictly 

implemented, any class-level differences in average prior achievement levels and class 

compositions are removed by design within the randomization blocks at the grade-by-school 
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level. Teachers eligible for the study were then randomly assigned to these exchangeable classes, 

forming the randomization blocks in year 2. 

The sample size decreased from year 1 to year 2 due to school and teacher attrition (Table 

1. 2). Specifically, 60 teachers from 11 schools were lost because their schools withdrew from 

the study. Additional teacher dropouts were due to transfers, leaves of absence, career changes, 

or changes in teaching assignments that made them ineligible for the second-year study. 

However, since randomization occurred after the first year, these dropouts should not affect the 

study's randomization process. 

Focusing on Mathematics, the analytic sample for this study includes 913 Mathematics 

teachers and their 56,613 students in 267 schools for year 1, and 735 Mathematics teachers and 

their 12,209 students in 182 schools for year 2. This rich dataset allows for a comprehensive 

investigation into the distribution of teacher knowledge, instructional quality, and student 

learning outcomes. 

III. Measurement 

For measurement of CKT, this study employs well-developed assessment forms of 

teachers' subject matter knowledge and teaching skills from the six districts provided by the 

MET project and builds a measurement model built on item response theory (IRT). Unlike 

traditional measurement approaches, IRT models relax restrictions on the type of items used for 

measuring constructs and only assume that the latent ability follows a normal distribution in the 

population, an assumption that is highly likely valid for CKT assessments. The reliability 

estimate of the CKT latent scores is approximately 0.82. 

To measure instructional quality, this study employed several commonly used 

instruments, including the Classroom Assessment Scoring System (CLASS), Mathematical 
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Quality of Instruction (MQI), and the Tripod student perception survey. Evidence from analyses 

aimed at uncovering the underlying structure across these instruments suggested against 

integrating information from various instruments when they measure distinct theoretical domains 

and perspectives of instruction. This is particularly relevant considering that the Tripod 

instrument is rated by students with year-long classroom experience, whereas other instruments 

are rated by trained professionals based on limited-time classroom observations. 

IV. Analyses 

Corresponding to the research questions, the analyses begin with a descriptive analysis of 

systematic inequality in the distribution of mathematics teachers' CKT. An uneven distribution of 

teacher CKT between schools and between classes within a school may contribute to educational 

inequality, which can be revealed by the multilevel variance decomposition of CKT. Preliminary 

findings show that teacher CKT, a direct measurement for teacher knowledge, is insignificantly 

and even negatively associated with conventional qualification indicators and value-added scores 

of teachers—a finding that diverges from common beliefs and prior research (H. C. Hill, 2010; 

H. C. Hill et al., 2011). Thus, analytic results of this study contribute novel evidence to the field. 

The insights provided in the descriptive study naturally prompt an important theoretical 

question that will be investigated in the second study: How does teacher CKT influence 

instruction and subsequently student learning outcomes? Since primary teaching and learning 

activities occur during class, it can be presumed that teacher knowledge primarily affects student 

learning by influencing the quality of teaching in the classroom (Pianta & Hamre, 2009). 

Therefore, understanding the impacts of CKT on instructional practices is crucial for uncovering 

the mechanism by which various levels of CKT affect student learning.  
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Undoubtedly, the ultimate goal of improving teacher knowledge and the quality of 

instruction is to enhance student learning outcomes. With enhanced measurements of CKT and 

various instruments for instructional quality available, as well as large-scale experimental data 

from the MET database, the third study extends the investigation to identify how CKT affects 

student learning. This includes both direct pathways and through changes in specific aspects of 

instructional quality.  

In summary, this dissertation seeks to address critical gaps in understanding the impact of 

teachers' CKT on instructional quality and student learning outcomes. By leveraging the rich, 

longitudinal data from the MET project, this research aims to provide robust evidence on three 

core research questions: the systematic inequality of CKT associated with student backgrounds, 

the causal impacts of CKT on the fine-grained aspects of instructional quality, and the mediating 

role of instructional quality in the relationship between CKT and student achievement. Through a 

combination of descriptive analysis and causal analyses, the subsequent chapters will present 

three studies, each corresponding to one of these research questions. Utilizing the improved CKT 

measurement, various instruments for instructional quality and extended causal analytic 

frameworks, this research not only contributes to theoretical advancements in the field but also 

offers practical insights for policymakers and educators striving to enhance the quality of 

education for all students. 
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Chapter Two. Inequitable Distribution of Teachers’ Content Knowledge for Teaching Across 

Elementary and Secondary Math Classes 

I. Introduction 

Investigating the distribution of teacher content knowledge for teaching (CKT) is of great 

importance to educational equity. Students of low socioeconomic status (SES) heavily rely on 

mathematical instruction at schools, since they usually lack the learning support high SES 

students have at home that can supplement school education (Alexander et al., 2004; Downey, 

2023; Downey et al., 2004; Entwisle & Alexander, 1992, 1994). Therefore, teachers play an even 

more important role in mathematical learning and future achievements for them than their peers 

from more advantaged backgrounds. However, evidence from prior research has found that 

teachers with better qualifications usually concentrated in schools with better funding. Such 

schools are generally located in higher SES neighborhoods and with a lower concentration of 

students from poverty, minority, and immigrant backgrounds. Consequently, if teacher 

qualifications are valid proxies for teacher knowledge and if the inequitable distribution of high-

quality teachers continues, students from low SES backgrounds will be systematically deprived 

of equal opportunities to high quality mathematical education, which will ultimately sustain or 

even worsen the inequity in math achievement among students who differ in their family 

backgrounds. 

Inequitable distribution of teacher knowledge may occur not just between but also within 

schools. Between-class ability grouping or tracking based on students’ prior performance has 

been a common practice in K-12 mathematics education, especially in middle and high schools 

(Standing & Lewis, 2021). If schools purposely assign their most knowledgeable and effective 

teachers to classrooms consisting of high-performing students and leave low-performing students 
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with novice teachers, achievement gaps between low-performing students and high-performing 

students may continue to widen. On average, lower SES students tend to have struggled more in 

previous math learning and therefore display lower achievement. Therefore, under a tracking 

system, pairing high-quality teachers with high-performing students tend to further disadvantage 

low-SES students and further widen the SES-related achievement gaps. It would be nearly 

impossible for students who have performed relatively poorly in early grades to switch up to 

high ability groups, especially if these students have been constantly provided with a less 

advanced math curriculum and relatively low-quality instruction (Steenbergen-Hu et al., 2016). 

For this reason, inequitable teacher assignment may bear larger negative impacts if it happens in 

lower grades. Hence, it is important to investigate whether teachers’ mathematical content 

knowledge is distributed inequitably at each grade level and whether inequitable distribution 

within a grade level is systematically associated with students’ SES status. 

Prior research has well documented disparity in exposure to qualified mathematics 

teachers between students from advantaged and disadvantaged backgrounds. However, two 

limitations are yet to be addressed:  First, the majority of previous studies have used teacher 

qualification indicators, such as certification, teaching experience, college major coursework, 

and advanced degrees. However, some of these indicators, such as advanced degrees, are not 

math-specific and are weakly associated with students’ learning outcomes, potentially limiting 

their construct validity as measures of teacher knowledge for math learning. Second, relatively 

few studies paid attention to disparities in teacher knowledge both within schools and between 

schools, where systematic sorting associated with students’ prior academic performance and 

socioeconomic background may simultaneously occur (Chetty et al., 2013, 2014; C. T. Clotfelter 

et al., 2005; Conger, 2005; Goldhaber et al., 2015; Hanushek et al., 2005). With school-level and 
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classroom-level disparities in teacher knowledge under-studied, districts and schools would lack 

evidence to help improve the cultivation and allocation of teacher knowledge and further 

improve students’ math learning.  

Unlike prior research, this study utilizes latent scores of mathematical content knowledge 

for teaching (CKT), a measurement that directly assesses teachers’ subject matter knowledge and 

teaching skills. Compared with conventional qualification indicators, teacher CKT is arguably a 

better alternative to estimate teacher effects, given that teacher knowledge is conceptually 

fundamental to instruction with high quality, and might have stronger impacts in student 

achievement. Importantly, this study reveals that teacher CKT is insignificantly, and even 

negatively, associated with conventional qualification indicators and value-added scores of 

teachers, a finding that diverges from common beliefs and prior research (H. C. Hill, 2010; H. C. 

Hill et al., 2011). Therefore, using teacher CKT, the evidence generated from this study 

contributes novel insights to the literature on unequal distribution of high-quality teachers.  

Furthermore, this study employs a novel analytic strategy that accounts for measurement 

errors in multilevel variance decomposition and thus brings clarity to the comparative sizes of 

within-school variation and between-school variation of teacher knowledge. Specifically, the 

results reveal that after accounting for measurement errors that constitute around 16.7% of the 

total variance, half of the CKT variation lies within schools, and one third of it lies between 

schools. Grade levels, district fixed effects, and student composition mainly explain between-

school variation. Although within-school variation is larger in proportion than between-school 

variation, there is no evidence of systematic sorting within schools. In contrast, systematic 

sorting between schools associated with students’ disadvantaged status and prior achievement is 

apparent, particularly in high schools. 
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The organization of this chapter is as follows: The next section will lay out the theoretical 

framework. Section III will introduce the dataset and analytic strategy. Following that, Section 

IV will present the analytic results, and finally, Section V will conclude and discuss potential 

contributions. 

II. Literature Review 

1. Prior research on allocation of high-quality teachers 

Variations in teachers' capability to deliver high-quality instruction naturally arise due to 

differences in their academic backgrounds, professional training, and teaching experience. 

However, if high-quality teacher is consistently unequally allocated and tends to favor those with 

pre-existing advantages, disadvantaged students may consistently find themselves taught by 

teachers with lower levels of knowledge and skills. Consequently, they may lag further behind 

their more advantaged peers in mathematics. 

One strand of studies on disparities in access to high-quality teachers focuses on 

identifying teacher qualification gaps through investigating the disparities in exposure to 

qualified or highly qualified teachers between groups of students of different social origins, such 

as between historically marginalized minority populations and white populations or between 

economically disadvantaged students and their more advantaged peers (e.g., Cardichon et al., 

2020; Corcoran, 2007; Knight, 2019). Through between-group comparisons, studies have 

revealed that systematic disparities exist in that students of low socioeconomic status (SES), with 

relatively low prior achievement, from historically underserved populations, and from immigrant 

families are in general taught by teachers that are considered less qualified (C. Clotfelter et al., 

2004, 2008; Loeb, 2000; Springer et al., 2016; Steele et al., 2010). This phenomenon arises 

partly because schools serving higher proportions of disadvantaged students typically employ 
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teachers with less experience and lower qualifications because of budget constraints and 

relatively poor working conditions. These schools also face challenges in retaining qualified 

teachers who are competitive in the labor market, resulting in high turnover rates, which 

aggravates the disparities, Consequently, qualified teachers are concentrated in schools and 

districts that are well-funded, have good prior performance, and a high concentration of students 

from high SES backgrounds (Betts et al., 2000; Hanushek et al., 1999; Hanushek & Rivkin, 

2012). This sorting of high-quality teachers between schools and districts leaves many students 

with disadvantaged backgrounds being taught by teachers with inadequate qualifications, 

resulting in persistent gaps in access to high-quality teachers. 

In addition to systematic sorting between schools and districts, sorting of teachers into 

classes according to students’ prior achievement, SES, and demographic backgrounds may also 

occur within schools (C. T. Clotfelter et al., 2006; Goldhaber et al., 2015; Kalogrides et al., 2011, 

2013; Kalogrides & Loeb, 2013). Kalogrides and colleagues (2011, 2013) found evidence of 

within-school sorting where teachers of different qualifications and backgrounds were 

systematically matched with students’ prior math and reading achievements from 4th to 11th grade 

levels (Kalogrides et al., 2011; Kalogrides & Loeb, 2013). Specifically, high-achieving students 

were more likely assigned experienced, white, male teachers, while low-achieving students were 

assigned less experienced, minority, female teachers. Teachers in leadership positions and those 

who had attended selective colleges were more likely assigned to teach high-achieving students. 

Moreover, there was evidence that the within-school sorting was also related to students’ prior 

behavioral problems and attendance rates in record. Principals, parents, and even teachers 

themselves could be the reasons behind this matching pattern. For instance, principals may face 

conflicting priorities when assigning teachers: they may want to assign their best teachers to 
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students most in need while also needing to retain their most competent teachers. Additionally, 

concerned parents may pressure principals to match their children with teachers whose 

qualifications they find satisfactory. Moreover, teachers, particularly those who are more senior, 

may prefer to teach certain groups of students they find less challenging (Kalogrides et al., 2011, 

2013). Goldhaber and colleagues (2015) examined the inequitable distribution of high-quality 

teachers utilizing teachers’ licensure exam and value-added scores as well as teachers’ 

experiences; identifiers of students’ backgrounds include poverty status (eligible for 

free/reduced-price lunch), minority status, and prior academic performance. Evidence indicating 

inequities were universally found in all subgroup comparisons across elementary, middle, and 

high school classrooms in the State of Washington.  

Additionally, Kalogrides and Loeb (2013) have found that sorting of qualified teachers 

may vary by grade levels, with teacher sorting being more prevalent in middle schools and high 

schools than in elementary schools. Specifically, between-school variation in teacher 

qualification and background is larger in elementary schools, while within-school variation tends 

to increase with grade levels (Kalogrides & Loeb, 2013). 

Although sorting of qualified teachers occurs both between schools and within schools, 

there is no agreement about the comparative sizes of within-school sorting and between-school 

sorting (Chetty et al., 2013, 2014; C. T. Clotfelter et al., 2005; Conger, 2005; Goldhaber et al., 

2015; Hanushek et al., 2005). Hanushek et al. (2005) maintained that the majority of the 

variation in access to high-quality teachers measured by value-added occurs within schools 

rather than between schools in 4th to 8th grades. Chetty et al. (2014) also found that over 85% of 

the variation in 4th to 8th grade teachers’ value-added is within schools rather than between 

schools. Clotfelter et al. (2005) found that within-school or classroom effects explained 
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approximately one fourth of the total racial differences in exposure to novice teachers, slightly 

lower in proportions than district effects and school effects in 7th grade math classrooms. 

Goldhaber et al. (2015) examined teacher quality gaps in math and reading classrooms across 3th 

to 10th grades and concluded that most of the sorting of teacher quality measured by their 

qualifications came from district and school effects instead of classroom effects. Research 

contexts, methods, and various types of teacher quality indicators, as well as controls, may all 

affect the results. Nonetheless, regardless of where it occurs and their relative sizes, teacher 

sorting may have severe consequences for educational inequality, especially when students from 

the least advantaged backgrounds, e.g., racial minority groups, low SES, and immigration status, 

consistently taught by the lowest-quality teachers. 

Following the line of scholarship that investigates systematic disparities in access to high-

quality teachers associated with student backgrounds (e.g., Hanushek et al. 2005, Clotfelter et al. 

2005, and Goldhaber et al. 2016), this study conducts variance decomposition of teacher CKT. 

However, instead of conducting a Blinder-Oaxaca decomposition analysis or constructing 

segregation indexes, this study uses hierarchical linear modeling that simultaneously analyze 

between-school variation and within-school variation, an approach that has been rarely employed 

in this literature. The results contribute new evidence on the multilevel variance of teacher 

knowledge measured by CKT.  

Furthermore, this paper attempts to conquer the measurement limitation of previous 

research on teacher knowledge. Notably, prior studies used one or more qualification indicators 

as proxy for teacher knowledge, including teaching experience, certification, college rank, major 

or related coursework, and advanced degrees. However, given that some of these qualification 

indicators, e.g., advanced degrees weakly predict improvement in students’ learning, the field 
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calls for evidence using alternative indicators of teacher knowledge that are strongly related to 

student learning. This study sets itself apart from prior research by employing a direct 

measurement of teacher knowledge--content knowledge for teaching. The advantages of using 

this direct measurement rather than qualification   are discussed in the subsequent session.  

2. Measurement of teacher knowledge in mathematics 

Traditional definitions of “qualified” teachers, as outlined in federal education guidelines, 

often include criteria such as being certified, in-the-field, experienced, and/or holding a degree of 

master’s or above. Hence, with little exception, prior studies have predominantly relied on one or 

a combination of these qualification proxies to assess teacher knowledge and its effects. 

However, an increasing body of recent studies has demonstrated that these qualification 

characteristics are only weakly associated, if at all, with students’ academic performance (e.g., 

Goldhaber 2008; Hanushek & Rivkin 2006; Kane, Rockoff & Staiger 2008). In essence, as no 

conclusive evidence shows strong relationship between qualification and student achievements, 

the conventional understanding of “high-quality teachers”, as indicated by teacher qualification 

does not necessarily align with the actual teacher effectiveness in influencing student learning 

outcomes (Hanushek & Rivkin, 2012). Given the limitations of these conventional qualification 

indicators, the evidence on inequity in access to high quality teachers remains tentative. 

To overcome the limitations of qualification indicators, researchers have proposed using 

the outcome of teaching, i.e., students’ academic achievement or learning growth as an 

alternative approach to estimate teacher effects. However, some of these outcome measures such 

as average standardized test scores in a class, year-to-year change in test scores etc., are 

imperfect to be used for estimating teacher effects. One challenge is to isolate the contribution of 

teachers to students’ learning gains over time from other correlated contributing factors, 
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especially with the presence of nonrandom sorting of students into schools and classrooms 

(Baker et al., 2010; Hanushek & Rivkin, 2012; Kalogrides et al., 2013). Value-added measures 

represent a significant attempt to address this challenge by removing the influence of various 

observed confounding factors in assessing the effects attributable to teachers. However, 

researchers remain skeptical about relying solely on value-added measures in making important 

personnel or policy decisions. They argued that statistically, misspecification can occur because 

the value-added measure is calculated using a limited sample size of students and only a few 

observational time points, and cannot rule out influences from out-of-school learning and 

accumulating influences from previous years. Additionally, value-added measures may suffer 

from measurement errors, and lead to inference with flaws due to nonrandom sorting of students 

within and across schools. In practice, considering that value-added measures rely solely on 

standardized test scores, concerns also arise about teachers prioritizing teaching to the test rather 

than focusing on thoughtful and comprehensive instruction that meet student’s diverse needs, 

potentially favor more advanced students and discouraging teacher collaboration (Baker et al., 

2010; Corcoran, 2010). From these perspectives, value-added measures might not accurately 

indicate teacher effects. 

This paper seeks to address the measurement limitations of prior research by focusing on 

the measure of content knowledge for teaching (CKT), also called pedagogical content 

knowledge, a concept incorporating both subject matter expertise and practical teaching skills. 

Unlike relying on qualification indicators or outcome-based measures that may not reliably 

measure teacher effects, CKT is arguably fundamental to instruction quality. A teacher’s mastery 

of subject matter expertise and teaching skills substantially impacts students’ knowledge 

acquisition (Shulman, 1986, 1987). Recent empirical evidence also suggests that CKT positively 
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predicts student learning gains (Baumert et al., 2010; Campbell et al., 2014a; Charalambous et 

al., 2020; Kelcey et al., 2019). However, it should be acknowledged that while CKT is a crucial 

component for high-quality instruction and student learning, it is not the sole determinant. 

Effective teaching also relies on other factors such as classroom management skills, the ability to 

engage and motivate students, and the availability of teaching resources. Therefore, while a 

strong foundation in CKT is necessary, it is not sufficient on its own to guarantee high-quality 

instruction and positive student outcomes. Additional elements and contextual factors may also 

play significant roles in the overall effectiveness of teaching and moderated the effects of CKT. 

In this study, the assessment forms used to collect CKT data were collected using 

assessment forms adapted from the Mathematical Knowledge for Teaching measures developed 

by Ball, Hill, and colleagues (Ball et al., 2005, 2008; H. C. Hill et al., 2004, 2005; H. C. Hill, 

2007; H. C. Hill et al., 2008; H. C. Hill, 2010), a measurement framework repeatedly validated in 

previous research. This paper constructs latent scores of CKT using item-level data from these 

assessment forms sourced from the Measures of Effective Teaching (MET) project database. To 

the best of my knowledge, no prior research has utilized latent scores of CKT constructed from 

an item-response-theory (IRT) model as a measurement of teacher knowledge for relevant 

analyses. By employing IRT-based CKT measurement, this study aims to provide more definitive 

evidence concerning the distribution of teacher knowledge in contrast with findings obtained 

through using qualification indicators or outcome-based measures. 

3. Hypotheses based on prior research 

Hypothesis 1. Between-school sorting of teacher CKT by student socioeconomic 

composition: Earlier research using qualification indicators such as certification, teaching 

experience, college major coursework, or advanced degree has found that schools with better 
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funding and located in higher SES neighborhoods attracted teachers with better qualification 

measured by these proxies. If some of these qualification indicators are positively correlated with 

teacher CKT, then schools with a higher level of socioeconomic composition of students may 

attract teachers with a higher level of CKT on average.  

Hypothesis 2. Within-school sorting of teacher CKT by students’ math preparation: 

Given the prevalence of between-class tracking and performance-based grouping in math based 

on pretest scores, which are positively associated with students’ socioeconomic backgrounds, 

teachers of higher CKT are more likely to be assigned to teach classes in accelerated math tracks 

within a school. 

III. Data 

1. Sample description 

This paper utilizes the Measures of Effective Teaching (MET) Longitudinal Database as 

the analytic sample. Supported by the Gates Foundation, the MET project collaborated with six 

urban school districts across the United States, gathering data on the teaching and learning 

activities involving approximately 2,700 teacher and their 160,000 students across 4th to 9th-

grade English Language Arts, Mathematics and Biology classrooms. The database comprises 

comprehensive information from administrative records, including the demographic composition 

of classrooms, teachers, and schools, as well as students’ standardized test scores from Academic 

Year 2004-2005 to Academic Year 2010-2011.  

This paper primarily focuses on investigating the natural variation of CKT among 

Mathematics teachers, with relevant characteristics summarized in Table 2. 1. The analysis is 

based on data collected in Academic Year 2009-2010, a year before the implementation of an 

experimental design in the MET project.  
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2. Measurement  

This study constructs latent scores of CKT as a measurement of teacher knowledge and 

examines its variation across classrooms, schools and districts. Latent scores of CKT are 

generated using models based on item response theory (IRT). Unlike traditional measurement 

approaches, IRT models relax restrictions on the type of items used for measuring constructs and 

only assume that the latent ability follows a normal distribution in the population, an assumption 

that is likely valid for CKT assessments. The reliability estimate of the CKT latent scores is 

approximately 0.82. 

Notably, with common items across assessment forms, equating techniques can be 

employed to align the IRT latent scores obtained from each of the three assessment forms 

corresponding to different grade levels. However, it is important to recognize that a teacher 

proficient in teaching 9th-grade mathematics may not necessarily possess the pedagogical 

content knowledge required for teaching 4th-grade mathematics. Therefore, direct comparisons 

across grades are impractical. Subsequent analyses were based on subsamples segmented by 

school levels, with grade fixed effects included to ensure variations are analyzed within each 

grade level.  

When inspecting the associations between CKT latent scores and teacher qualifications 

(see Table 2. 2), notable findings have emerged. Qualification proxies, particularly advanced 

degrees, exhibit a negative association with CKT scores, implying that conclusions regarding 

disparities in access to high-quality teacher may be inconsistent or even contradictory when 

relying on traditional qualification proxies instead of CKT measures. Furthermore, while a 

positive association between CKT and value-added scores is observed, the correlation is 

quantitatively small and statistically insignificant. These findings partially align with prior 
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research indicating that teachers’ value-added and CKT levels can be mismatched. For example, 

teachers with high value-added may receive low ratings in the mathematical quality of 

instruction and low CKT. The new evidence also contradicts with previous evidence suggesting a 

positive correlation between teaching experience and CKT (H. C. Hill, 2010; H. C. Hill et al., 

2011). The lack of strong linear correlations between CKT and conventional teacher qualification 

indicators suggests that the CKT measurement provides distinctive insights not found in previous 

studies. These results underscore the importance of examining disparities in access to high-

quality teachers with the improved measure of CKT.  

3.  Analytic strategy 

The analyses of this paper include decomposing the natural variation of CKT within the 

full analytic sample, as well as within elementary, middle and high school subsamples into the 

within-school component and the between-school component. It then examines whether teacher 

knowledge measured by CKT was distributed inequitably among students with different prior 

achievement levels or socioeconomic backgrounds. The analysis separates the dataset by school 

grade levels: elementary school grades (4th-5th grade), middle school grades (6th-8th grade), and 

high school grade (9th grade). Parallel analyses are conducted within each of these three 

subsamples. Table 2. 3 presents comprehensive descriptive statistics of variables used in the 

analyses, categorized separately at the student, class, and school levels consistent with the 

original records in the MET database. 

It's worth noting that the focus of this paper is on examining associations without 

establishing causation. Main variables of interest include teacher-level and school-level student 

composition, represented by percentages of students with specific disadvantaged statuses, 

including poverty (represented by eligibility for Free/Reduced lunch), minority (African 
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American or Hispanic), immigrant family (English Language Learner status) and disability 

(Special Education status), as well as students’ average pretest scores in math (i.e., math score in 

2009, one year prior to the MET project) at both the teacher and school levels. The values of the 

composition variables range from 0 to 1, with 1 indicating complete segregation. Pretest scores 

have been standardized and are considered comparable across different grades. During the 

Academic Year 2010-2011, some teacher participants taught multiple classes. Student 

composition at the teacher level is derived from all students taught by a given teacher. 

Additionally, when included in the regression analysis, teacher-level covariates are centered at 

their means within clusters identified by school ID, also known as group-mean centering. 

Through group-mean centering, coefficient estimates reflect changes in average teacher CKT 

levels associated with deviations in the profiles of the classes they teach from a typical class 

profile within their schools. Class profiles are defined by students’ prior achievement levels and 

socioeconomic backgrounds. For example, with pre-test scores, group-mean centering ensures 

that the coefficient estimate represents the change in teacher CKT if the average pre-test score of 

a teacher’s students is one unit higher than the average pre-test score of all students in that 

school. School-level covariates are centered at the overall sample mean, i.e., grand-mean 

centered.  The coefficient estimates of these covariates represent changes in teacher CKT 

associated with a one-unit deviation of a school's student profile from the typical student profile 

across all schools. 

The analyses primarily employ a three-level hierarchical generalized linear model (see 

model specifications in Table 2. 4). Given common clustering effects in school settings, utilizing 

a hierarchical linear model not only accounts for clustering that could otherwise compromise the 

validity of statistical inference, but also facilitates meaningful variance decomposition. A 
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hierarchical variation structure is appropriate especially when data are collected at multiple 

levels (Hedeker & Gibbons, 2006; Raudenbush & Bryk, 2002).  

Notably, the availability of item-level data on teachers’ CKT assessments in the MET 

database has provided an opportunity for researchers to address measurement errors, a challenge 

overlooked by prior studies. To overcome this methodological challenge, the regression models 

employed in this study has made several adjustments tailored to the current research context, 

which distinguishes itself from basic multilevel models. The primary adjustment involves 

incorporating a measurement model at the first level of the HGLM. This enables simultaneous 

consideration of unequal measurement errors across individuals while generating regression 

results. An alternative approach to address the unequal variance of measurement errors is by 

applying precision weights, calculated as the inverse of standard errors of empirical Bayes means 

for latent ability, estimated from a separate IRT model prior to the regression analyses. In 

essence, this alternative approach entails analyses based on a weighted two-level HLM at the 

second stage, with the first stage involving the estimation of CKT latent scores and measurement 

errors using the IRT model. This paper explores both approaches and will mainly discuss the 

results from HGLM in the subsequent sessions. The results of the weighted regressions are 

consistent with that of HGLM, reported in Appendix Appendix Tables 

Table A2. 1 to Table A2. 7. 

IV. Results 

1. Variance decomposition of teacher CKT 

The total variance of teacher CKT scores is 0.84. An analysis of variance decomposition 

(Table 2. 5) shows that approximately half (0.42) of the CKT variation lies within schools; 

around a third (0.28) is attributed to variation between schools; and the rest, roughly one sixth of 
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the CKT variation, is attributed to measurement errors. The estimated standard deviations of the 

measurement errors of CKT latent scores range from 0.32 to 0.63, with the average being 0.41.  

When controlling for the grade and district fixed effects, the regression results of the 

unadjusted model across segmented subsamples by school levels shown in Table 2. 5 revealed 

that the ratio of within-school to between-school variation is approximately 10:1, consistent with 

findings from variance decomposition using value-added measures in several prior studies 

(Chetty et al., 2013; Hanushek et al., 2005). Including the grade fixed effects and district fixed 

effects, either separately or together, decreases the between-school variation. Furthermore, upon 

examining variance decomposition across models adjusting for different covariates, it becomes 

evident that including covariates mainly decrease the between-school variation (Table 2. 6). 

Essentially, the covariates and the fixed effects mainly explained between-school variation under 

the current research contexts.  

This phenomenon regarding variance decomposition is consistently observed in the 

results from weighted regression. However, applying the precision weight (i.e., the inverse of the 

estimated posterior standard errors of the IRT latent scores, all below 1) will overestimate the 

magnitude of both within-school and between-school variations, particularly the former. Thus, 

this paper primarily relies on the results from the hierarchical generalized model. Future research 

should investigate the reasons behind the discrepancy in variance estimation between the two 

methods. 

2. Systematic sorting of teacher CKT across schools 

Analytic results revealed that the magnitude and significance of associations between 

teacher CKT and school-level students’ prior achievement and socioeconomic statuses are more 

pronounced at higher grade levels (Table 2. 8 to Table 2. 12). This suggests that systematic 
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sorting of CKT between schools may become increasingly prevalent with higher grade levels. In 

high schools, all measures of student demographic composition exhibit significant associations 

with teacher CKT. Schools with a higher concentration of students from disadvantaged 

backgrounds tend to have teachers with lower CKT. Specifically, a ten-percentage-point increase 

of students with disadvantaged statuses taught by a teacher, such as poverty (represented by 

eligibility for Free/Reduced lunch), minority (African American or Hispanic), immigrant family 

(English Language Learner status) and disability (Special Education status) is associated with a 

decrease in teacher CKT by 0.166 (0.194 SD), 0.151 (0.176 SD), 0.278 (0.324 SD), 0.534 (0.623 

SD) respectively, assuming linearity. The corresponding effect sizes (i.e., standardized regression 

coefficients, which will be used throughout the following paragraphs) are 0.044, 0.036, 0.054 

and 0.027. This suggests a tendency for high schools to sort students based on their demographic 

backgrounds, a pattern that is noticeably distinct from that observed in middle and elementary 

schools.  

Average math pretest scores at the school level significantly predict teacher CKT across 

elementary, middle, and high schools. Teachers with relatively higher CKT are concentrated in 

schools with students exhibiting relatively higher average pretest scores. The magnitude of the 

association increases with grade levels. Across elementary schools, a one unit (2.801 SD, 

detailed descriptive statistics can be found in Table 2. 3) increase in school average math pretest 

scores is associated with 0.248 (0.281 SD) increase in teacher CKT; across middle schools, the 

effect is 0.606 (0.654 SD); across high schools, it is 0.595 (0.694 SD). The corresponding effect 

sizes are 0.100, 0.268, and 0.227. One might suspect that teachers’ relatively higher CKT in a 

school may have contributed to their students’ relatively higher math pretest scores. However, 6th 

graders and 9th graders are new to middle school and high school, respectively. Their math 



 

 25 
 

pretest scores could not have been affected by the CKT levels of the teachers in the middle 

schools or the high schools that they have just entered. Thus, there is clear evidence that teachers 

of relatively higher CKT are sorted into schools that enroll students of relatively higher prior 

math skills.  

Systematic sorting of teacher CKT associated with school-level overall students’ minority 

status (African American or Hispanic) is also significant across all three school levels. 

Specifically, a ten-percentage-point increase (0.360 SD) in proportion of students from minority 

background is associated with a decrease in teacher CKT by 0.035 (0.040 SD) in elementary 

schools, 0.088 (0.095 SD) middle schools, and 0.151 (0.176 SD) in high schools, assuming the 

association decreases proportionally. The corresponding effect sizes are 0.011, 0. 026 and 0.036. 

This evidence indicates that classrooms comprised with a higher concentration of students from 

minority backgrounds are taught by teachers with significantly lower CKT levels compared to 

their peers. 

In summary, there is robust evidence on systematic sorting across schools, which is 

particularly pronounced in the 9th grade. Such sorting is significantly related to students’ prior 

achievement and socioeconomic backgrounds. 

3. Systematic sorting of teacher CKT within schools 

The analytic results do not indicate systematic sorting within schools. Despite 

considerable CKT variation within schools, there is no evidence of systematical sorting based on 

students’ prior achievement or socioeconomic backgrounds. Therefore, sorting within schools 

does not raise major concerns.  

The only significant association observed is between the proportion of F/R lunch and 

teachers’ CKT across classrooms within high schools. Unlike the association between school-
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level proportion of F/R lunch and CKT, the association between teacher-level proportion of F/R 

lunch and CKT is positive, implying that in high-school classrooms with a high concentration of 

students eligible for Free or Reduced Lunch, teachers exhibit significantly higher CKT levels. 

Specifically, a ten-percentage increase (0.341 SD) in proportion of students eligible for F/R 

lunch taught by a teacher is associated with an increase in teacher CKT by 0.238 (0.278 SD), 

assuming the association decreases proportionally. The effect size is around 0.081. Results from 

weighted regression also supported this result. Despite its counterintuitive nature, it could be the 

case that this is a purposeful strategy of the high schools in these six urban districts to assign 

teachers to classrooms with a high concentration of children in poverty. Researchers may need to 

conduct qualitative research and gather additional evidence to explore the underlying reasons for 

this phenomenon.  

Additionally, it should be noted that there is a significant negative association within 

schools between teachers’ CKT and proportion of students eligible for F/R lunch across middle-

school classrooms. However, this significant association is not found in the results obtained from 

weighted regression. 

V. Conclusion and discussion 

The paper contributes to the literature on disparities in access to high-quality teacher by 

utilizing latent scores of mathematical content knowledge for teaching (CKT) as a direct measure 

for teacher knowledge. Unlike conventional qualification indicators, such as advanced degrees, 

past research has suggested that CKT is fundamental to instructional quality and is significantly 

associated with students’ learning gains. The study reveals that CKT is insignificantly, and even 

negatively, associated with conventional proxies including years of experience and advanced 

degrees, and with value-added scores of teachers, challenging common beliefs and prior 
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research. Analyses on unequal distribution of CKT add robust evidence and offer a fresh 

understanding of disparities in access to high-quality teacher, presenting new insights distinct 

from previous studies. Moreover, the study employs a novel analytic strategy that accounts for 

measurement errors in multilevel variance decomposition, providing clarity on the comparative 

sizes of within-school and between-school variation in teacher knowledge.  

This study has revealed that substantial variation in math teachers’ CKT lies within 

schools, even after controlling for the fixed effects of grades and districts, as well as covariates 

representing student composition. However, there is no evidence suggesting systematic sorting 

within schools associated with students’ prior achievement and socioeconomic backgrounds. 

Essentially, within schools, students might be taught by teachers at different levels of CKT, but 

the variation in CKT is likely due to pure chance in classroom assignments and natural variation 

of CKT among teachers in current schools, factors unrelated to inequitable allocation of 

educational resources.  

Another important finding is the systematic inequality between schools in student access 

to high CKT teachers. Notably, students’ average prior math achievement emerges as a strong 

predictor of math teachers’ CKT. Across all grade levels, teachers with higher CKT are 

concentrated in schools where students have higher average math pretest scores. This association 

increases in magnitude as grade levels rise from elementary school to high school. Moreover, 

from analytic results regarding the associations between teachers’ CKT and school-level 

covariates, it is evident that the sorting of CKT between schools is systematically associated with 

students’ socioeconomic backgrounds in addition to their prior math achievement levels. Such 

sorting is most pronounced in high schools, which is in alignment with evidence from previous 

studies (C. T. Clotfelter et al., 2002; Morgan & McPartland, 1981). In high schools, a high 
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concentration of students with disadvantaged statuses (i.e., status of poverty, minority, immigrant 

background, and disability) is significantly associated with low CKT levels of teachers. In 

essence, students in urban public high schools serving a large population of students from 

disadvantaged backgrounds tend to be taught by teachers with relatively low CKT levels. 

Systematic disparities in teacher CKT might affect the quality of mathematical instruction these 

high school students receive, consequently impacting their academic achievement and college 

attendance, which perpetuates severe education inequity. 

This study adds to the large body of literature that studies systematic inequality in the 

distribution of high-quality teachers by employing a direct measure of teachers’ mathematical 

content knowledge for teaching. The insights provided in the current study naturally prompt an 

important theoretical question: How does teacher CKT influence instruction, and subsequently, 

student learning outcomes? This question will be answered in the following two chapters. 
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Chapter Three. Does Teacher Content Knowledge Impact the Quality of Instructional Practices? 

A Causal Analysis 

I. Introduction 

Teacher knowledge is one of the few teacher characteristics that are significantly 

associated with students’ learning outcomes (Baumert et al., 2010; Campbell et al., 2014a; 

Charalambous et al., 2020; H. C. Hill et al., 2005; Kelcey et al., 2019). In the study presented in 

the previous chapter, I explored the distribution of Mathematics teachers’ content knowledge for 

teaching (CKT), a direct measurement for teacher knowledge specifically relevant to 

Mathematics. Since primary teaching and learning activities occur during class, it can be 

presumed that teacher knowledge primarily affects student learning by influencing the quality of 

teaching in the classroom (Pianta & Hamre, 2009). Therefore, understanding the CKT impacts 

on quality of instructional practices becomes crucial for uncovering the mechanism by which 

various levels of teacher CKT affect student learning. However, there is a lack of causal 

definition regarding the relationship between student exposure to a teacher with relatively high 

CKT and the instructional quality experienced by the student, let alone quantify this relationship. 

The unique experimental design of the Measures of Effective Teaching (MET) project provides 

an opportunity to investigate the causal relationship between teacher knowledge and instructional 

quality as rated by professionals and experienced by students.  

Methodologically, the analytic strategy employed in this study sets a precedent for future 

studies analyzing multi-level data from experimental designs that randomize teachers to 

exchangeable classrooms within schools. The empirical results will have implications for 

improving the quality of instruction in underserved schools and classrooms by equitably 

allocating teacher resources. Notably, this study is not designed to answer the question about 
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whether interventions aiming at improving a teacher’s CKT would lead to an improvement in the 

quality of instruction delivered by the teacher. 

Furthermore, while some studies have explored how to incorporate the information across 

various classroom observation measurement frameworks (Blazar et al., 2017; Gill et al., n.d.; 

Lockwood et al., 2015; McClellan et al., 2013), very few have considered student perceptions, 

specifically in the context of mathematical instruction. This study extends this line of research by 

attempting to integrate professional observational ratings of classroom recordings with students’ 

perceptions of their classroom experiences—a combination previously unexamined. By 

employing various instruments of instructional quality, including the Classroom Assessment 

Scoring System (CLASS), the Mathematical Quality of Instruction (MQI), and the student 

perception survey Tripod, this study provides a detailed view of the underlying structures within 

and across different aspects of instructional quality. The analytic results highlight the challenges 

in constructing a general instructional quality index through combining multiple instruments that 

measure distinct theoretical domains of instruction and represent different perspectives. Major 

distinctions include that the Tripod assessment used student ratings based on their year-long 

classroom experience, while the other instruments used ratings by trained professionals based on 

limited-time classroom observations.  

With enhanced measurements of CKT and various instruments of instructional quality 

available, the study presented in this chapter intends to answer two research questions in the 

contexts of 4th- to 9th-grade mathematics classrooms across six urban public-school districts in 

US:  

1) Do mathematics teachers with higher levels of CKT deliver instruction with higher 

quality on average than those with lower levels of CKT?  
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2) How are various instruments of instructional quality causally impacted by variations in 

mathematics teachers’ CKT?  

The subsequent sections of this chapter are organized as follows: Section II reviews the 

theoretical framework of various instructional quality measures and prior literature on the 

impacts of teacher knowledge on instructional quality. Section III presents hypotheses derived 

from the theoretical framework and prior knowledge. The next two sections provide a description 

of the data and present analytic results, including both factor analyses and causal analysis, 

followed by discussions and conclusions. 

II. Literature Review 

1. Measurement of instructional quality: using classroom observation and student 

perception 

There is a lack of consensus regarding the definition and measurement of instructional 

quality in educational research. Some researchers focus on the product or outcome of instruction 

as the indicator for instructional quality. Average student achievement levels, or value-added 

scores in terms of student performance and other outcome-based measures are two most common 

indicators, where higher achievement levels indicate higher instructional quality (Chetty et al., 

2013, 2014; Hanushek & Rivkin, 2010). Others emphasize the process of instruction, focusing 

on specific teacher behaviors and teacher-student interactions that align with theories of learning. 

Used in on-site classroom observation or video recordings analyses, observational protocols 

provide criteria for ratings and usually result in continuous scales, where higher ratings indicate 

higher instructional quality. (Brophy & Good, 1984; Cohen & Goldhaber, 2016). Additionally, 

some researchers argue that student perceptions are crucial components of instructional quality 

(Ferguson, 2012; Raudenbush & Jean, 2015; Scherer et al., 2016).  
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(1) Classroom observations 

 Classroom observations have been used as an assessment tool for teacher evaluation 

since the 1980s (Bell et al., 2019; Cohen & Goldhaber, 2016; Pianta & Hamre, 2009). 

Researchers believe that classroom observations have great potential for measuring teacher 

effectiveness and instructional quality, particularly in the context of advancing new common core 

standards, developing teacher evaluation systems, and promoting school policy changes (Cohen 

et al., 2022; H. Hill & Grossman, 2013; Liu & Cohen, 2021). Observational ratings, rich in 

detailed information and relatively easy for teachers to interpret, may provide actionable 

feedback and pinpoint specific areas for instructional improvement. The feedback can help 

teachers make informed adjustment to meet the increasing accountability requirements (Bell et 

al., 2019; Cohen et al., 2022; Cohen & Goldhaber, 2016; Pianta & Hamre, 2009).  

Researchers have designed numerous observational protocols for teacher evaluation, such 

as the Classroom Assessment Scoring System (CLASS), the Framework for Teaching (FFT), the 

Mathematical Quality of Instruction (MQI), and the Protocol for Language Arts Teaching 

Observations (PLATO). While all these protocols measure instructional quality, they differ in 

theoretical foundations, measurement constructs, subject focus, implementation, and other 

aspects. To illustrate, I mainly review two protocols. The first is CLASS, an observational 

protocol emphasizes fostering a supportive environment and providing affirmation to students 

that can be generally applied to classrooms of all grades and subjects (Pianta & Hamre, 2009); 

the second is MQI, an classroom observational instrument targeting mathematics and specifically 

designed for mathematics instruction (Learning Mathematics for Teaching Project, 2011). 

CLASS. CLASS is an evaluation system based on standardized and validated 

observational protocols for assessing teacher-student interactions occurring in classroom. 
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Aligned with developmental theories, CLASS includes three major domains for assessing 

classroom instructional quality: emotional support, classroom organization, and instructional 

support. Each domain comprises specific sub-domains. 

Pianta and colleagues argue that an effective teacher’s role in classroom extends beyond 

the teaching of content to include socializing, motivating, and mentoring students, that teacher-

student interactions, particularly those that nurture a positive learning environment and manage 

behaviors effectively, significantly and positively contribute to students' social and academic 

development. These observable teacher behaviors are central to quality instruction and teacher 

effectiveness. A standardized and validated assessment of classroom interactions, if tested and 

proved as consistent, should be included in accountability frameworks, teacher preparation and 

professional development, national surveys, as well as value-added measures (Hamre et al., 

2007, 2013; Hamre & Pianta, 2007; Pianta et al., 2011; Pianta & Hamre, 2009).  

Another commonly used observational instruction protocol FFT also centers on teacher-

student interactions, emphasizing their role as determinants of teacher effectiveness (Cohen et 

al., 2022; H. Hill & Grossman, 2013; Liu & Cohen, 2021). While CLASS is based on 

developmental learning theories, FFT is grounded in constructivist learning theory and 

emphasizes teachers’ professional responsibilities both within the classroom setting and outside 

the classroom (Danielson, 2007, 2008; Danielson & Axtell, 2009). Content-general instruments 

such as CLASS and FFT assume that teachers' behaviors that facilitate or enhance teacher-

student interaction are universally applicable across all grades, subjects, and educational 

contexts. However, this assumption may not always hold true. 

MQI. MQI is a protocol specifically designed for evaluating Mathematics instruction. Its 

subject-specific theoretical framework distinguishes it from subject-general instruments focusing 
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on pedagogy. According to the MQI developers, “quality” is represented by distinctive features 

of instruction; “instruction” is defined as dynamic interactions involving teachers, students, and 

content; and “mathematical” refers to particular knowledge in the discipline of mathematics 

relevant to teaching (Learning Mathematics for Teaching Project, 2011). Through analyzing three 

sources of evidence—prior literature, experience of teaching and studying teacher education, and 

classroom videotapes of mathematics classrooms over an entire academic year—developers of 

MQI established its framework, encompassing seven major theoretical constructs with point 

rating scales. They also identified missing elements of MQI that could not be turned into reliable 

constructs, such as the launch of mathematical tasks and the scaffolding of student work (H. C. 

Hill et al., 2008, 2012, 2018; Learning Mathematics for Teaching Project, 2011). In a multiple-

case analysis that aims to systematically discuss strengths and limitations of using MQI to 

measure instructional quality, Charalambous and Litke pointed out that while providing rich 

information of discipline-relevant instructional practice, MQI as a content-focused instrument is 

inevitably limited in capturing generic pedagogy aspects. They suggested that utilizing MQI 

complementarily with instruments that are content-general may capture and explain more 

variation in teachers’ instructional quality than by each instrument separately, an argument 

consistent with other studies’ conclusions (Blazar et al., 2017; Charalambous & Litke, 2018).  

(2) Student perception 

As actual participants in classroom instruction, students provide ratings based on their 

year-long experiences, offering valuable insights that external observers, who only see a brief 

segment of instruction, might miss. Some researchers even argue that student perception is one 

of the most important criteria for assessing teacher quality and effectiveness (Ferguson, 2012; 

Polikoff, 2015; Scherer et al., 2016; Wagner et al., 2013). Various formats exist for capturing 
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student perceptions, ranging from large-scale surveys to focus group interviews. Among these, 

student questionnaires about their classroom perceptions are widely used because it is easy to 

implement and is cost-effective in terms of resources and time. However, ratings based on 

student self-report are often criticized for their instability and lack of reliability, as the ratings can 

be biased if students are influenced by subjective factors such as a teacher’s popularity, the 

difficulty of the subject, or the student’s own interests, rather than focusing on the quality of the 

actual instruction (Gitomer, 2019; Senden et al., 2022; Wagner et al., 2013).  

Here, I primarily review research based on the Tripod survey, a widely used student-

centered survey that assesses instructional quality based on student perceptions. A research team 

led by Ferguson defined seven theoretical dimensions of the Tripod survey as the 7Cs: Care, 

Control, Clarify, Challenge, Captivate, Confer, and Consolidate (Ferguson, 2012; Phillips et al., 

2021; Rowley et al., 2019). Using the 7Cs framework, Raudenbush and Jean (2015) identified 

Control and Challenge as two critical aspects of instructional quality that result in significant 

learning gains (Raudenbush & Jean, 2015). Subsequent research found that the 7Cs framework 

does not always best fit the data, likely due to varying research contexts. For instance, Wallace et 

al. (2016) found that a bi-factor structure, consisting of a general factor and classroom 

management, provided a better fit to their data. Similarly, Kuhfeld (2017) identified a two-

dimensional structure, comprising a Control factor and an Academic Support factor that includes 

the other 6Cs, as sufficient to explain her data on 6th-8th grade math and ELA teachers in 

secondary schools (Kuhfeld, 2017; Wallace et al., 2016). 

Despite criticisms regarding subjectivity and instability, student perception is considered 

to have incomparable advantages and has been widely accepted a tool for assessing instructional 

quality. A large body of literature showcases researchers’ attempts to address the validity 
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concerns and measurement challenges (Kuhfeld, 2017; Wagner et al., 2013; Wallace et al., 2016). 

With both student perception ratings and observational ratings from external raters available in 

the MET database, this study aims to explore the possibility of increasing validity by 

systematically integrating objective and subjective ratings.  

(3) Cross-instrument structure of instructional quality 

A review of the underlying theories and domains across various assessment instruments 

for instructional quality reveals that different approaches capture distinct facets of instructional 

quality, each with its advantages and limitations. These instruments can measure both common 

and complementary constructs while maintaining their distinctive elements (Berlin & Cohen, 

2018; Praetorius & Charalambous, 2018). Exploring how to systematically combine these 

constructs across instruments to generate a comprehensive measurement of instructional quality 

is both theoretically and methodologically important and holds great potential (Schlesinger & 

Jentsch, 2016). However, districts and schools often face constraints in funding and human 

resources, making it impractical to use multiple observational protocols to evaluate teachers’ 

instructional quality. Consequently, most districts employ only one protocol. This limitation has 

prevented researchers from accessing data containing ratings from multiple measurement tools 

for instructional quality, as such datasets did not exist. 

Thanks to extensive collaborations among researchers across the US and support from the 

Gates Foundation, the MET database has made ratings from multiple measurement protocols 

available for the first time. More importantly, these ratings are based on video recordings 

submitted by the teachers and questionnaires completed by the student cohorts they taught during 

the 2011-2012 academic year. This rich dataset provides a unique opportunity for researchers to 

study the underlying structure across existing observational protocols, determine if they measure 
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common and complementary constructs, and generate a comprehensive picture of classroom 

instructional quality by incorporating information from various ratings. For instance, Gill et al. 

(2016) conducted a content analysis (qualitative coding) through reviewing the detailed rubrics 

of five commonly used instruments available in the MET database: the CLASS, the FFT, the 

MQI, the PLATO, and the UTeach Observational Protocol. They identified potential overlaps 

among the assessment items from these various instruments and classified them into cross-

instrument dimensions. Their analysis revealed that eight out of the ten dimensions of 

instructional practice are common across all five instruments, indicating a high level of 

conceptual consistency (Gill et al., 2016).  

Lockwood et al. (2015) employed a novel Bayesian exploratory factor analysis method to 

investigate the structure of effective teaching using classroom observational ratings from the 

MET database for Mathematics and English Language Arts (ELA) separately. Their analysis of 

items from MQI, CLASS, and FFT revealed two primary cross-instrument factors, "Instructional 

Practices" and "Classroom Management," which together comprise the main construct of 

effective teaching. The cross-instrument structure with two primary factors is consistent for Math 

and ELA (Lockwood et al., 2015). 

Blazar and colleagues (2017) conducted extensive exploratory (EFA) and confirmatory 

factor analyses (CFA) to investigate cross-instrument factors between the CLASS and MQI 

observational ratings. Their exploratory factor analysis revealed clusters of items that span 

multiple instruments, although the degree of overlap was less pronounced compared to the 

findings of Lockwood et al. (2015). They termed these cross-instrument factors "instructional 

factors" to distinguish them from "instrument factors" composed of items within the same 
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observational protocol. Furthermore, they explored various CFA models, including those with 

and without a bi-factor structure (Blazar et al., 2017; Lockwood et al., 2015). 

The optimal CFA models identified by Blazar et al. (2017) included "instructional 

factors," indicating the presence of cross-instrument factors, alongside two "instrument factors," 

each respectively corresponding to subject-specific protocol and subject-general protocol. Based 

on these findings, they suggested that studying teaching, a phenomenon characterized by a 

multidimensional and conceptually complex structure, necessitates a comprehensive construct 

that integrates both subject-specific and subject-general instruments (Blazar et al., 2017). 

Prior research efforts to construct cross-instrument factors have revealed overlaps among 

various instruments of instructional quality (Blazar, 2015; Blazar et al., 2017; Gill et al., 2016; T. 

Kane, 2012; T. J. Kane & Staiger, 2012a; Lockwood et al., 2015). Additionally, even when using 

the same sets of observational scores from the same source, different contexts can influence the 

best-fit construct for measuring instructional quality, often diverging from the original constructs 

proposed by instrument developers. These findings highlight the necessity of conducting factor 

analysis to examine the underlying structure. Such analysis may uncover a parsimonious 

structure that can enhance subsequent analyses both conceptually and empirically. 

Notably, no prior research has examined the underlying structure of both classroom 

observational ratings by professional raters and student-perceived classroom experience surveys. 

This study aims to fill this gap by exploring the practicability of a multi-dimensional construct of 

instructional quality, incorporating both observational ratings and student perceptions. By doing 

so, it seeks to capture instructional quality more comprehensively than previous studies. The 

resulting measurement framework aims to integrate common and complementary constructs 

across instruments while preserving their distinctive elements. 
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2. Relationships between CKT and instructional quality 

Although researchers generally anticipate that high levels of CKT would lead to high 

quality of instruction, few studies have empirically investigated the direct links from teacher 

content knowledge to ratings on instructional quality using various instruments.  

The exception is the MQI. As both MQI and the instrument for assessing Mathematical 

(Content) Knowledge for Teaching were developed by the same research team, they had the tools 

and data to gather evidence on how mathematical CKT is associated with the quality of 

instruction within the context of mathematics education, examining fine-grained constructs 

specifically related to teaching Mathematics. Hill et al., (2008) found a positive and strong 

correlation between mathematical CKT and MQI scores. Their exploratory case study 

highlighted that teachers with higher CKT levels were better at avoiding mathematical errors, 

appropriately responding to students' mathematical expressions, and addressing 

misunderstandings. Additionally, they identified two contextual factors that could mediate this 

relationship: teachers' beliefs about making math classes enjoyable for students and their 

adherence to curricular materials. Subsequent analyses confirmed these significant associations 

between mathematical CKT and MQI (Charalambous, 2010; H. C. Hill et al., 2008, 2011). 

However, these studies cannot rule out student composition as a competing explanation for the 

association. It is possible that higher-achieving students are more likely to be assigned to 

teachers with higher mathematical CKT and that instruction may appear to have a higher quality 

when students are better prepared. 

Prior studies on teacher-student interactions in the classroom have predominantly focused 

on how the quality of these interactions affect student outcomes rather than examining how 

various levels of teacher CKT might influence these interactions; and even less research has used 
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high-quality instruments to examine this relationship. This gap is also present in studies on 

student perception and the Tripod survey. As previously mentioned, researchers did not have 

access to instructional quality ratings from multiple observational protocols before the MET 

project. Consequently, no prior research has directly linked CKT with CLASS or Tripod scores. 

Beyond specific instruments and towards a broader definition of instructional quality, the 

field lacks substantial evidence on the relationship between CKT and instructional quality. Some 

relevant findings can be found from studies examining relations of CKT, instruction and student 

outcomes, albeit their primary emphases were on how CKT and instructional quality affect 

student outcomes (Baumert et al., 2010; Copur-Gencturk, 2015; Kelcey et al., 2019; Kersting et 

al., 2012). 

Baumert et al., (2010) found significant effects of CKT on instructional quality measures 

regarding “Curricular level of tasks”, “Cognitive level of tasks”, and “Individual learning 

support” while no significant effect of CKT was observed for “Classroom management”. 

Kersting et al., (2012) used their own CKT and Instructional quality measures and reported that 

one standard deviation (SD) increase in CKT measure was associated with a two-thirds SD in 

overall instructional quality score. Kelcey et al., (2019) found that one SD change of CKT is 

associated with 0.22 SD change in Ambitious Mathematics and Errors domains derived from 

MQI, but not with CLASS domains, Ambitious General and Classroom Organization. Copur-

Gencturk (2015) observed that improvement in teachers’ mathematical CKT through intensive 

training on inquiry-based teaching correlated significantly with changes towards a more 

meaning-making teaching agenda, and a positive classroom climate, while no statistical 

relationship was found with the mathematical quality of classroom tasks or student engagement. 

In contrast, Shechtman et al., (2010) did not find statistically significant relations between 
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teachers’ CKT levels and their decision-making regarding classroom instruction, including the 

complexity of the topics focused in class, the complexity of their teaching goals and the use of 

technology such as time allocated in computer labs. In summary, the evidence is mixed, and the 

inconsistent measurements of CKT and instructional quality hinder comparison across studies 

(Baumert et al., 2010; Copur-Gencturk, 2015; Kelcey et al., 2019; Kersting et al., 2012; 

Shechtman et al., 2010a). 

The lack of solid evidence on the relationship between CKT and instructional quality 

necessitates a thorough analysis, particularly concerning the relations between CKT and both 

observational teacher-student interactions and classroom experiences as perceived by students. 

The MET database is unique as it employed multiple instruments to provide multi-dimensional 

measurement of instructional quality; moreover, by randomly assigning teachers to exchangeable 

classrooms within each school, the experimental design rules out the confounding impacts of 

student composition. Thus, this study will contribute valuable insights to the field. The results 

will be useful for future research aiming to establish a more comprehensive evaluation 

framework for teacher performance, providing interpretable and actionable feedback, and 

improving the design of future professional development programs in practice. 

III. Hypotheses 

Hypothesis 1. MQI: When teaching comparable classes of students, mathematical 

teachers with a higher level of CKT are expected to have higher ratings on MQI on average. 

Evidence from prior research has suggested that the impacts might be prominent in certain sub-

dimensions, such as reducing the frequency of errors and imprecision as well as being able to 

help student participate in meaning making and reasoning.  
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Hypothesis 2. CLASS: When teaching comparable classes of students, mathematical 

teachers with a higher level of CKT are expected to have higher ratings on CLASS on average. 

This is because a higher level of content knowledge for teaching allows teachers to better 

maintain a positive classroom environment, including showing more respect for students, being 

more patient with mistakes and classroom management, and allocating more time to provide 

additional feedback. 

Hypothesis 3. Student perception: When teaching comparable classes of students, 

mathematical teachers with a higher level of CKT are expected to generate more positive 

perceptions of classroom experiences among their students. Their expertise in the subject matter 

can help them earn students’ respect, increase students’ interest in mathematics, and maintain a 

welcoming and supportive classroom environment. Additionally, high CKT often correlates with 

effective pedagogical strategies, making students feel more comfortable and engaged in class. 

These factors collectively contribute to more positive student ratings. 

Hypothesis 4. Variation by school level: The impact of CKT on instructional quality can 

vary across school levels due to differences in students’ developmental stages and educational 

contexts. Specifically, in elementary and middle school classrooms where the math curriculum is 

less demanding, teachers with high CKT may prioritize interactional behaviors. These behaviors 

help scaffold learning and create a supportive environment to foster student interests and 

facilitate confidence building. Consequently, the impact of teacher CKT on classroom interaction 

and certain dimensions of MQI are likely evident in these settings. In high school classrooms, the 

curriculum demands a higher level of mathematics-focused instruction rather than extensive 

teacher-student interaction. Additionally, adolescents with growing self-awareness and self-

concept are likely more perceptive of the impact of teacher CKT on their learning experience 
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when compared to younger children in lower grades. This is likely due to adolescents’ 

heightened ability to reflect on and internalize the quality of instruction they receive. Therefore, 

the influence of CKT on instructional quality might vary significantly by grade level due to 

different developmental stages of students and changing emphases by the curricular 

requirements. 

IV. Data description 

Overview. The analytic data were derived from the Measures for Effective Teaching 

(MET) study, a large-scale two-year teacher evaluation project designed to investigate, identify, 

and comprehensively measure effective teaching skills and practice. The MET project recruited 

six urban school districts across the United States, with a total of 2,741 teacher volunteers 

participating. Among these teachers, this paper focuses on the 735 teachers teaching 

Mathematics during the Academic Year 2010-2011 when the MET project conducted randomized 

experiments. The analytic dataset was constructed using main files at the class session level, 

merged by unique IDs for teachers, schools and districts; the data set includes item-level 

observational scores for three classroom observation protocols used to construct instructional 

quality measures: MQI, CLASS, and Tripod.  

To distinguish between different developmental stages and educational contexts, I 

conduct parallel analyses for three subsamples categorized by grade levels separately: 

elementary schools, middle schools, and high schools. In the elementary school sample, there 

were 324 teachers each assigned to a classroom within 121 randomization blocks across 80 

schools. The classrooms within the randomized blocks are structured to ensure exchangeability 

in terms of classroom compositions including students’ academic and socioeconomic 

backgrounds. The middle school sample consisted of 257 teachers in 76 schools, each assigned 



 

 44 
 

to a classroom in 117 randomization blocks. The high school sample comprised 83 teachers in 35 

schools and 38 randomization blocks. I have excluded the randomization blocks with only one 

class section. 

Student perception survey. The Tripod survey used in the MET project came from the 

survey forms designed by Ronald Ferguson of Harvard University. Ratings of students' 

perceptions were collected and measured using five-point Likert scales (ranging from "Totally 

Untrue" to "Totally True"). The Tripod questionnaire comprised a total of 49 items, covering 

students' perceptions of their classroom experience, as well as survey questions regarding their 

demographics and socioeconomic backgrounds at home. Elementary school students were 

administered a shorter form of the survey compared to that for secondary school students. Based 

on previous research, I identified 19 items relevant to the domains of 7Cs in the elementary 

school data and 34 items in the secondary school data, as detailed in the Table A3. Within each 

sub-sample, I average Tripod's itemized rating scores to obtain class-level mean scores using 

unique class section IDs. 

Classroom observation measures. The MET data employed professional raters to 

evaluate classroom video recordings using five observational protocols widely accepted in 

practice. Among these, three were subject-specific: the Protocol for Language Arts Teaching 

Observations for ELA; the Quality Science Teaching Sciences Instrument for Science; and the 

Mathematical Quality of Instruction (MQI). The rest of the two protocols, the Framework for 

Teaching (FFT) and the Classroom Assessment Scoring System (CLASS), were designed to be 

universally applied across all subjects.  

After inspecting the codebooks of the observation scores from the MET database, I notice 

that a general instrument and a subject-specific instrument may be complementary to each other 
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and may have some degree of overlapping across their measurement items, consistent with the 

assumptions in prior studies. FFT and CLASS both measure the general classroom atmosphere. 

However, FFT additionally includes domains and items that assess instructional practices 

occurring outside the classroom, such as planning and preparation before class, and designing 

and analyzing assessments after class. To ensure the focus of the instructional quality measure is 

on practices occurring during the class period, and to align the subject-general instrument with 

the other two sources of ratings (subject-specific instrument for in-class instruction and student 

perception surveys of classroom experience), this study chooses MQI instead of FFT. Future 

extensions of the study may include FFT along with other measures to explore the validity of 

creating a broader measurement of instructional quality. 

To recap, this study to attempts to construct a multi-dimensional measurement for 

instructional quality that could incorporate information from these three sources of classroom 

ratings, i.e., the subject-specific measure MQI, the subject-general measure CLASS, and the 

student perception measure Tripod. The domains originally defined in the three rating 

frameworks can be found in Appendix (Table A3. 1 to Table A3. 3). 

V. Analytic results 

1. Factor analysis on classroom ratings 

The factor analysis in this paper adopts the strategy outlined by Blazar et al. (2017) who 

also analyzed the MET data for cross-instrument factors. However, this analysis differs from 

theirs in several key respects. Notably, while their study focused on examining the CLASS and 

the MQI observational instruments, this research also encompasses Tripod survey, which rated 

the classroom from the perspective of students. Additionally, whereas Blazar et al. concentrated 

on 4th to 5th grade teachers, this study encompasses a broader range of teachers in classrooms 
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spanning from 4th to 9th grades. It is important to note that while the CLASS protocol is uniform 

across all grade levels, the MQI and Tripod surveys were administered separately to 

accommodate the distinctions between elementary and secondary education contexts. To 

maintain consistency with the original design of the MQI and Tripod protocols, I segmented the 

analytical dataset into two sub-samples: one comprising elementary school grades (4th-5th grade) 

data and another encompassing middle and high school grades (6th-9th grade) data. Furthermore, 

unlike Blazar et al., who had access to detailed item-level scores of the MQI, the MQI data 

available to this research are less fine-grained. 

(1) Exploratory factor analysis 

The objective of the exploratory factor analysis is to unveil the underlying patterns of 

intercorrelation among classroom observation measures within the current dataset, providing 

evidence to guide decisions regarding the optimal number of factors needed to explain the 

instructional quality measures. To achieve this goal, I inspected the pairwise correlations of all 

items within and across observation protocols, along with their initial or unrotated factor 

loadings. 

a. Analysis within each framework.  

Classroom Assessment Scoring System (CLASS). Pairwise correlations among items 

within CLASS are moderate, ranging from 0.21 to 0.76 in the elementary school sample and 

relatively stronger in the middle and high school sample, ranging from 0.31 to 0.80. Among the 

CLASS items, Negative Climate was the only item negatively associated with others. 

The patterns of factor loadings for CLASS itemized scores in the current dataset did not 

conform to the four higher-level conceptual dimensions of CLASS. In middle and high school 

data, items primarily loaded into two factors, which explain cumulatively 98.6% of the test 
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variance. All items load onto factor 1 (Eigenvalue=7.74, Difference=6.44, proportion=0.844). 

Negative Climate, Behavioral Management and Productivity loaded onto factor 2 

(Eigenvalue=1.30, Difference=1.04, proportion=0.142) with a substantial loading (> 0.4 in 

absolute value), which is consistent with Blazar et al. (2017). The pattern in the elementary 

school data closely resembled that of the secondary school sample. Detailed results can be 

provided upon request. 

Mathematical Quality of Instruction (MQI). Correlations among MQI items are shown 

in Table 3. 1. Initial loadings of MQI items in middle and high school data result in only one 

factor with an eigenvalue greater than 1 (Eigenvalue=1.26, Difference=0.85, proportion=1.04). 

Only three items have a substantial loading (>0.4) on this factor, which are Student Participation 

in Meaning Making and Reasoning (SPMMR), Richness of Mathematics, and Working with 

Students and Mathematics (WWSM). Detailed results can be found in Table 3. 2. The rest of the 

three items have small loading, e.g., -0.09 for Error and Imprecision, which are considered not 

substantial. The pattern in the elementary school data is consistent with that of secondary school 

sample. 

Tripod. Given that the Tripod survey does not include items regarding negative 

perception in its elementary school form, the correlations are all positive and range from 0.08 to 

0.63. In the middle and high school sample, items relevant to negative perception of the 

classroom experience or teachers’ behavioral management practice are included. The correlations 

among items in Tripod’s secondary school form are stronger, ranging from 0.31 to 0.80 and with 

negative correlations ranging from -0.47 to -0.0026.  

Initial factor loadings of Tripod in the current dataset suggested no clear item-clustering 

pattern akin to the original 7Cs domains. Instead, the number of factors required to explain 
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students’ perception of classroom experience is relatively small. In the elementary school data, 

all 19 items loaded onto the first factor, which is the only factor that has an eigenvalue greater 

than 1 (Eigenvalue=6.45, Difference=5.75, proportion=0.818). In the middle and high school 

data, Factor 1 (Eigenvalue=16.34, Difference=13.04, proportion=0.717) was measured by items 

relevant to positive perceptions, Factor 2 (Eigenvalue=3.31, Difference=1.69, proportion=0.145) 

by items for negative perceptions, and Factor 3 (Eigenvalue=1.62, Difference=0.81, 

proportion=0.071) by items relevant to teachers’ classroom management that might lead to 

negative perceptions, some of which already exhibited substantial loadings on Factors 1 and 2. 

Detailed results can be provided upon request. 

Across each instrument, the initial factor loading results were consistent with the 

Cronbach’s alpha of each instrument. Scale reliability coefficients of CLASS and Tripod exceed 

0.90, while those of MQI remain lower than 0.50, for both elementary and secondary school 

data. The Cronbach’s alpha results indicated excellent internal consistency for CLASS and 

Tripod, while MQI demonstrated a low level of internal consistency. Consequently, it might be 

reasonable to construct CLASS and Tripod measures as a whole unit, while MQI items need to 

be analyzed separately. 

b. Analysis across observational frameworks.  

The correlations between items from different observational frameworks tend to be weak 

in general, indicating minimal overlapping between these measurement frameworks. 

Specifically, pairwise correlations between MQI and CLASS items typically range from -0.16 to 

0.39, with most falling below 0.2. The correlations between MQI and Tripod items are even 

weaker, ranging from -0.11 to 0.13 in elementary sample, and from -0.19 to 0.29 in secondary 

sample. Meanwhile, correlations between Tripod and CLASS items range from 0.21 to 0.24 in 
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elementary sample and from -0.34 to 0.43 in secondary sample, representing at best moderate 

correlations. This suggests that they might capture different aspects of instructional quality, 

which is to some extent inconsistent with previous research. 

The patterns of factor loadings for CLASS and MQI items remain consistent with the 

results obtained from analyzing each instrument separately. These items primarily load onto and 

cumulatively measure specific factors, even when items from other instruments are included in 

the analyses. For example, upon examining the initial loadings of all items from CLASS, MQI, 

and Tripod in secondary school data, the third factor predominantly comprises negative items 

from Tripod, aligned with the second factor observed in the initial loadings of Tripod data alone. 

However, there is evidence suggesting potential existence of overlapping or cross-

instrument factors. For instance, upon examining the initial loadings of CLASS and MQI items 

in secondary school data, the first factor is measured by all CLASS items and three MQI items 

(SPMMR, Richness, and WWSM), all of which exhibit substantial loadings. Similarly, the first 

factor (Eigenvalue=21.82, Difference=16.02, proportion=0.439) identified by the initial loadings 

of all items from CLASS, MQI and Tripod in secondary school data consists of all items from 

CLASS and all positive items from Tripod. Furthermore, the second factor (Eigenvalue=5.80, 

Difference=1.46, proportion=0.117) is measured by all CLASS items and three MQI items, 

SPMMR, Richness, and WWSM, the clustering of which is also found in the results examining 

factor loadings patterns across MQI and CLASS items. 

In summary, the structures unveiled by exploratory factor analyses within each 

instrument, especially for CLASS and Tripod, should be prioritized as the primary structure 

when constructing the final Structural Equation Models (SEMs). Meanwhile, the clustering 
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revealed by factor loadings across instruments suggest that cross-instrument factors should also 

be examined in confirmatory factor analysis. 

(2) Confirmatory factor analysis 

To ensure the robustness of dimension construction, I fit different Structural Equation 

Models (SEMs) based on evidence derived from the original conceptual framework, prior studies 

(e.g., Blazar et al., 2017 and Gill et al., 2016), and exploratory factor analysis. The overarching 

strategy involved initially testing the original conceptual dimensions due to their strong 

theoretical underpinnings, assessing whether these dimensions formed a suitable structure for 

SEM in the current dataset. Subsequently, adjustments were made to the structure based on 

insights from previous research, and further refinements were considered using evidence from 

exploratory factor analysis to enhance fit, particularly when convergence was not achieved. It is 

noteworthy that the MQI does not have a higher-level structure of domains beyond the available 

ones. 

The confirmatory factor analysis has provided evidence that, in the current dataset, using 

composite scores of the CLASS and Tripod to construct instructional quality measures is 

acceptable. For instance, in the elementary data, I conduct confirmatory factor analysis of the 

CLASS itemized scores with increasing structural complexity, including structures without 

higher-level factors, structures with the four theoretical dimensions each constructing a second-

level factor, and a structure incorporating four second-level theoretical dimensions and a third-

level factor measuring overall instructional quality. Although these SEM-constructed scores 

exhibited variations in means and variances, their pairwise correlations exceeded 0.99, indicating 

a perfect correlation. Additionally, the correlations between SEM-constructed domain factors 

were strongly correlated (> 0.80 in absolute value). Models with higher-level domains generally 
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exhibited better fit compared to those without such domains. Given the high correlation among 

composite scores, using these SEM-constructed scores is statistically equivalent to employing the 

overall score derived from summing up all itemized scores. 

Results from the Tripod data were consistent with those from CLASS. Pairwise 

correlations of overall composite scores, domain summative scores, and SEM-constructed scores 

from all items displayed perfect correlation (> 0.99). The only discrepancy was that the second-

order structure failed to converge in Tripod data. However, SEMs with domain structures still 

demonstrated better model fit than those without domain structures. 

Several technical nuances are worth noting. Firstly, the SEMs incorporating cross-

instrument factors displayed better fit than those only accounting for within-instrument item 

clustering. However, SEMs with factors solely based on itemized scores, regardless of whether 

there is cross-instrument inclusion, consistently showed poor fit with the data, notably less 

optimal than the SEMs using composite scores. Moreover, upon closer examination, the item 

clusters comprising the cross-instrument factors lacked theoretical justification. Secondly, 

removing items with insubstantial loadings, such as EI in MQI, marginally enhanced fit, albeit to 

an insignificant extent. However, in some cases, it is necessary to exclude them to achieve 

convergence. Lastly, the second-order SEM structure failed to converge when using MQI 

composite scores instead of MQI itemized scores along with CLASS and Tripod composite 

scores, possibly due to low internal consistency of MQI in the current dataset. All the 

aforementioned empirical evidence contributes to the selection of the final SEM with the current 

structure. 

Based on the findings from CLASS, Tripod, and exploratory factor analysis of MQI, the 

final SEM for constructing instructional quality measures utilizing information from all three 
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observational protocols entails a second-order model comprising one general factor (InsQ), a 

CLASS composite score, a Tripod composite score, and items from MQI (Figure 3. 1). Results 

and basic fit indices for elementary data are shown in Figure 3. 2, with additional model fit 

indices in Appendix Table A3. 4. A similar pattern emerged in secondary school data, albeit with 

a slightly less optimal model fit, with results shown in Figure 3. 3 and additional model fit 

indices in Appendix Table A3. 5.  

Notably, although the SEMs with the aforementioned bi-factor structure achieved 

excellent model fit, particularly for the elementary school data, the analytic results do not support 

the construction of a general index for instructional quality incorporating the information across 

the three instruments. This is primarily due to the minimal loading of MQI onto the proposed 

overall second-order factor, InsQ, which is 0.0024 in the elementary data and 0.0054 in the 

middle school data. Based on current evidence, subsequent analyses in this project will examine 

the causal impacts of CKT on each instrument individually, with a particular focus on MQI. 

Future research should employ sophisticated methods, such as item factor analysis based on item 

response theory, to account for measurement errors for each instrument and further explore the 

possibilities of a comprehensive framework and a general factor for instructional quality. 

Nevertheless, the analytic results presented in this session provide extensive evidence on the 

underlying structure within and across instruments, validating the strategy of analyzing fine-

grained yet distinctive aspects of instructional quality. 
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2. Causal analysis of CKT effect on instructional quality 

(1) Methodological framework 

a. Definition of the causal effect 

To define the causal effect of CKT on instructional quality in terms of potential outcomes 

(e.g. Huber et al., 2020; Imai & Van Dyk, 2004; Imbens, 2000), let Z denote the CKT level of a 

teacher, which is a continuous treatment variable with support  𝒵. Suppose 𝑧	𝑎𝑛𝑑	𝑧! are two 

possible CKT levels, 𝑧 ≠ 𝑧!	𝑎𝑛𝑑	𝑧, 𝑧! ∈ 𝒵	. Unlike a binary treatment variable, the binary 

indication of treatment or control group does not apply here. Instead, 𝑍 = 𝑧! represents a 

treatment value different from 𝑧 and can be called an alternative treatment status.  

Let 𝑀(𝑧) denote the potential instructional quality if a class has been assigned to 

treatment z, i.e. 𝑀(𝑧) and 𝑀(𝑧!) represent the potential levels of instructional quality if a class 

has been assigned to treatment values z or 𝑧!, respectively. Both are functions of the treatment. In 

the later causal mediation analysis where instructional quality serves as the mediator in the CKT 

effect on learning outcome, 𝑀(𝑧) and 𝑀(𝑧!) will be the potential intermediate outcomes.  

The causal effect of CKT on instructional quality is defined as:  

𝛽" =
𝑀(𝑧!) − 𝑀(𝑧)

𝑧! − 𝑧  

As treatment variable Z is continuous, suppose 𝛽" is a continuous function of z, which is 

denoted as 𝛽"(𝑧). Define the marginal causal effect of CKT at z as: 

𝑑𝛽"(𝑧) = "($%&$)("($)
&$

  where 𝑑𝑧 is an infinitesimal change from z. 

The marginal causal effect at z can be viewed as the instantaneous rate of change of a 

continuous treatment effect at value z. In this study, the treatment effect is assumed to be 

constant across the population of classrooms.  
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With the multisite randomization design, let subscripts j, m and k represent classroom j 

within randomization block r in school k. Denote 𝑀)*+(𝑧) as the instructional quality of 

classroom j within randomization block r in school k being taught by a teacher of CKT level at z, 

the classroom-specific causal effect is: 

𝛽)*+" =
𝑀)*+(𝑧!) − 𝑀)*+(𝑧)

𝑧! − 𝑧  

It should be noted that classrooms are made exchangeable at the grade level within 

schools by the experimental design. In other words, systematic between-class variation in student 

composition within a school has been removed by design. This can be viewed as a matched pair 

design given that each classroom was matched with another classroom at the same school 

comparable in student composition; they differ only in the treatment value.  

In a study of a binary treatment, the population average causal effect is 𝐸3𝛽)*+" 4. 

However, with a continuous treatment condition, in general, the causal effect for the population 

may be a continuous function that allows for heterogeneity across values of z. Here, the 

population of interest is the population of classrooms. For simplicity, in the primary analyses, I 

assume that the causal effects are constant across the classrooms in the population and conducted 

additional analyses that included a between-school random component for these effects. 

However, it should be noted that the causal effects may be not only heterogeneous but also 

potentially non-linear, in which case the analytic model would be misspecified. I empirically 

inspect the data to detect nonlinear patterns. 

b. Identification assumptions 

Assumption 1. Stable Unit Treatment Value Assumption (SUTVA) 

The unit of treatment assignment is classroom in this study. The potential outcomes for 

all classrooms are assumed to meet the SUTVA assumption within schools. It assumes that the 
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potential outcomes for one classroom won’t be affected by the teacher CKT in other classrooms 

within the same school after adjusting for the clustering within randomization blocks and within 

schools. This assumption will be violated if teachers and students from different classrooms at 

the same school have frequent interact, such as through teacher collaborations by sharing course 

materials or coordinating teaching plans to synchronize progress within the school. If this 

assumption is violated, the causal effects of CKT on instructional quality and student 

achievement will be biased. 

Assumption 2. Ignorable treatment assignment 

Let vector 𝑋)*+ denote teacher characteristics and 𝐺)*+ denote class composition that 

might have different values between classes within a school. Given covariates 𝑋)*+ and 𝐺)*+, 

treatment assignment 𝑍)*+ is assumed to be independent of potential outcomes 𝑀)*+(𝑧) for 

classroom j within randomization block m in school k. 

𝑀)*+(𝑧) ⊥ 𝑍)*+ 	|𝑋)*+ = 𝑥, 𝐺)*+ = 𝑔 

By the design of the randomization, student composition of the participating classes was 

made exchangeable within the randomization block at the same grade level within schools. i.e., 

G should be independent of Z within randomization blocks if the randomization was not 

contaminated. However, X is likely associated with Z and could be a confounder of the Z-M 

relationship given that CKT is one of the many teacher characteristics that are randomized to 

classrooms. Teachers who have different levels of CKT may also differ in other characteristics 

such as advanced degrees, years of teaching experience, racial identity, and other background 

characteristics. These teacher characteristics might be associated with both CKT and 

instructional quality and confound their relationship. However, if these teacher characteristics 
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would influence instructional quality only through affecting CKT, in econometric research, such 

variables are referred to as 'bad controls' and should therefore be excluded from the analysis. 

Another source of the confounding effects might come from noncompliance and non-

random attrition, which might make the classrooms not exchangeable, i.e., classroom 

characteristics systematically associated with CKT. Both types of potential confounders can be 

and will be empirically tested.  

Additionally, as the CKT assessment was administered to teachers throughout year 2, in 

some cases, it was observed possibly after classroom videos had been recorded for observational 

ratings. Nonetheless, it seems reasonable to assume that, in most cases, a teacher’s CKT was 

relatively stable during the two-year study period. 

(2) Analytic strategy 

a. Model specifications. 

The analytic model employed in the causal analysis is a three-level hierarchical linear 

model (HLM) with multi-level random intercepts and school-level random treatment effects to 

accommodate the clustering of exchangeable classrooms within randomization blocks at grade-

by-school level.  

To address variations in students’ developmental stages and educational environments, 

the data were segmented by school grade levels, and parallel analyses were conducted for each 

sub-sample separately. This approach simplifies the model specification. Initially, the subsamples 

have only a limited number of grades present: 2 in the elementary-school sample, 3 in the 

middle-school sample, and 1 in the high-school sample. I include an indicator variable for each 

grade in elementary-school and middle-school samples. Additionally, given that the dataset 

comprises only six districts, I included indicators for each district to capture fixed differences 
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between the districts. Further model specifications, such as grade-by-treatment interactions 

and/or a random-slope structure, were explored within segmented sub-samples. However, their 

inclusion was found to diminish the goodness-of-fit of the analytic models.  

Let subscript jrk indicates classroom j in randomization block r of school k. Independent 

variable CKT is centered at the mean within randomization blocks. Coefficients π, θ, β represents 

classroom-level coefficients, randomization block-level coefficients and school-level coefficients 

respectively. Graderk represents a vector of indicator variables for grade level, e.g., in middle 

school sample, Gradeij =[Grade5rk, Grade6rk]T where Grade5rk and Grade6rk are binary variables, 

indicating the classroom j in randomization block r is at 5th grade level. Districtk represents a 

vector of indicator variables for districts, District0j = [District2k, …, District5k]T, where District2k  

to District5k are binary variables. Residual variance components e, ε, d represent variation at the 

classroom-, randomization block- and school-levels and are assumed to follow zero mean normal 

distributions with variance se2, sε2, sd2 respectively. Therefore, the following model 

specifications represent optimal fit according to the current analytic approach for MQI. For 

CLASS and Tripod, simply replace the term MQI with corresponding terms.  

Level-1 Model (Classroom-level) 

MQI
jrk 

= π0rk + π1rk CKT
jrk

 + e
jrk

  

e
jrk 

~N (0, se2) 

Level-2 Model (Randomization block-level) 

π0rk = θ 00k + θ 01kGrade
rk + ε rk 

π1rk = θ 10k  

ε rk ~N (0, sε 2) 
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Level-3 Model (School-level)  

θ 00k = β000 + β010 Districtk + d00k 

θ 01k = β010 

θ 10k= β100+ d10k 

d00k ~N (0, sd02) 

d10k ~N (0, sd12) 

Cov (d00k , d10k)= t 

Mixed Model: 

MQI
jrk 

= β000 + (β100 + d10k) CKT
jrk

 + β010 Districtk + β010Grade
rk

 + d00k+ ε rk+ e
jrk

  

To be consistent with the multi-site randomized design, I employed a strategy known as 

group mean-centering, whereby the independent variable at level 1, CKT, is centered at the mean 

within each randomization block. In this context, randomization blocks are clusters comprised by 

same-grade classrooms with exchangeable student composition. Empirically, this centering 

strategy has proven effective. For instance, upon examining whether classroom composition still 

confounds the relationship between CKT and instructional quality due to possible contamination 

of the experimental design, notable findings emerged. Prior to centering, the percentage of 

minority students in elementary school classrooms significantly predicted CKT latent scores, as 

well as scores of CLASS and MQI. However, after centering, no classroom composition 

indicators significantly predicted CKT latent scores, nor did they significantly predict the 

outcomes, the SEM-constructed factors of instructional quality.  

Likewise, the centering strategy also provides evidence that CKT is the primary predictor 

of instructional quality, rather than other teacher characteristics. By mean-centering both CKT 



 

 59 
 

latent scores and teacher characteristics indicators, certain teacher characteristics e.g., teaching 

experience in elementary schools and middle schools, demonstrate significant associations with 

CKT latent scores (results summarized in Table 3. 5). However, only CKT significantly predicts 

the SEM-constructed factors of instructional quality, which will be discussed in detail in the 

subsequent section. 

(3) Analytic results of causal effects 

The outcome variables in the causal analysis are an SEM-constructed factor MQI 

(Italicized font indicates SEM-constructed factor and will be used throughout the following 

paragraphs), a composite score of CLASS, and a composite score for Tripod. Respectively, I 

investigated the causal relationships between CKT and each outcome variable within subsamples 

segmented by school level. It should be noted that the current analysis did not discuss 

measurement errors in the aforementioned instructional quality factors, as they are the outcome 

variables of primary interest. While measurement errors in outcome variables increase estimation 

uncertainty, they do not introduce bias into the estimation of relevant coefficients. However, this 

may become a concern when these instructional quality factors are predictors in the regression, 

such as when they act as mediators in a causal mediation relationship. 

In elementary and middle school mathematics classrooms, results of causal analyses 

indicate significant impacts of CKT on MQI, while no significant effects were found in high 

school classrooms (Table 3. 6). Specifically, a one-unit increase, approximately 1 standard 

deviation (SD) in CKT latent scores significantly predicts a 0.025 (0.179 SD) increase in MQI 

across elementary-school classrooms and a 0.021 (0.231 SD) increase across middle-school 

classrooms. The corresponding effect sizes, i.e., standardized regression coefficients, which will 

be used throughout the rest of this study, are 0.154 and 0.212. In contrast to significant CKT 
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effects on MQI in lower school grades, in 9th grade classrooms, higher levels of CKT do not 

significantly impact any of the measures of mathematical quality.  

Notably, in the analytic model specified above, effects of CKT are allowed to vary by 

school membership (i.e., random slopes for CKT), where the estimation for random component 

in the slope provides evidence of between-school variation in CKT impacts. One possible 

circumstance for between-school variation in CKT impacts is that the effects of hiring a high 

CKT teacher might be more pronounced in schools with scarce teaching resources compared to 

those with adequate resources. However, from Table 3. 6, the evidence indicates minimal 

between-school variation in CKT impacts on MQI. Note that Models including covariance for 

school-level random components cannot provide accurate standard errors for random-effects 

parameters using Stata/MP 18.0. Therefore, the covariance has been fixed to zero. This suggests 

that the benefits of high CKT are relatively consistent across different school environments under 

this experimental design, and the variation in instructional quality (as measured by MQI) due to 

CKT might not be fully captured with the current analytic strategy. 

With individual domain scores of MQI available, I further explored the causal 

relationships between CKT and these fine-grained MQI domain scores. This investigation was 

prompted for following reasons: first, the factor analysis results in prior sessions suggested that 

MQI lacks strong internal consistency, indicating that causal relationships might differ across 

individual domains within the MQI instrument. Second, understanding the relationship between 

more granular dimensions of instructional quality and CKT might offer valuable insights for 

providing detailed feedback to teachers, a strategy with great practical use. Additionally, results 

will reveal whether conclusions remain consistent when directly using the original domain scores 

instead of SEM-constructed scores. 
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Upon closer examination of the dimension scores within the MQI instrument (results 

summarized in Table 3. 7), it becomes evident that higher levels of CKT are linked to an increase 

in the richness of mathematical content, particularly in lower grades. Specifically, a one-unit 

(approximately 1 SD) increase in CKT latent scores predicts a 0.061 increase in Mathematical 

Richness ratings in elementary-school classrooms and a 0.049 increase in middle-school 

classrooms. The corresponding effect sizes are 0.202 and 0.243. Higher CKT also predicts less 

errors and imprecisions in middle schools, consistent with previous studies (e.g., Hill et al., 

2008). Further differentiation between elementary and middle school results reveals that in 

middle school classrooms, higher CKT predicts a greater degree of student participation in 

meaning-making and reasoning, whereas in elementary school classrooms, teachers with higher 

CKT tend to engage more actively with students and mathematical concepts. Higher CKT also 

significantly predicts a 0.066 decrease in the frequency of errors and imprecision in middle-

school classrooms (effect size: 0.243). These results align with previous research (e.g., Hill et al., 

2008) and highlight the varying impact of being taught by a high CKT teacher across different 

school grades. Notably, no significant effects were observed on any MQI dimension in 9th-grade 

classrooms, consistent with the absence of significant effects on the composite score at this grade 

level. 

In addition to MQI, no significant causal impacts were found for CLASS or Tripod across 

all school levels (results summarized in Table A3. 6). This suggests that teacher-student 

interaction and student-perceived classroom experiences, as measured by CLASS and Tripod, 

capture distinct aspects of instructional quality that may not be directly related to a teacher’s 

math CKT. These findings indicate that while a teacher's CKT is crucial for effective math 

instruction, it does not necessarily translate into better outcomes in areas assessed by CLASS and 
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Tripod, such as emotional support, classroom organization, or student engagement. This 

distinction underscores the multifaceted nature of instructional quality and the need to consider a 

broad range of factors when evaluating teaching effectiveness and quality of instruction. 

It is important to exercise caution when interpreting the significance levels of these 

estimated regression coefficients. To address the issue of inflated type 1 error rate related to 

multiple testing, an adjusted criterion for p-values was provided along with summarized results. 

 

VI. Conclusion 

This study aimed to investigate the causal relationship between teachers' content 

knowledge for teaching (CKT) and the quality of their instructional practices in mathematics 

classrooms. Teacher CKT primarily affects student learning by influencing the quality of 

teaching strategies and practices in the classroom, where major teaching and learning activities 

occur. Therefore, understanding CKT impacts on instructional practices become crucial for 

uncovering the mechanism through which various levels of CKT affect student learning. 

However, there is limited causal evidence on the relationship between CKT and instructional 

quality, particularly regarding the impact of CKT on various instruments of instructional quality. 

This gap is due to limitations such as the lack of experimental data and methodological 

challenges in measuring instructional quality's complex structure. This research addresses these 

gaps by: (1) investigating the underlying structures within and across multiple instruments—both 

subject-general and math-specific observational ratings, as well as student perception survey, and 

(2) analyzing experimental data from the Measures of Effective Teaching (MET) project. 

Specifically, it addressed two research questions: (1) Do mathematical teachers with higher 

levels of CKT deliver instruction with higher quality than those with lower levels of CKT? (2) 
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How are various instruments of instructional quality causally impacted by variations in 

mathematics teachers' CKT? 

This study examined the underlying structure of three commonly used instruments—

Classroom Assessment Scoring System (CLASS), the Mathematical Quality of Instruction 

(MQI), and the Tripod survey. The analysis revealed a more parsimonious structure than the 

theoretical frameworks suggested in the original protocols within these instruments. However, 

despite excellent model fit in SEMs with this bi-factor structure, the evidence does not support 

combining the three instruments due to the minimal loading of MQI (0.0024 in elementary data 

and 0.0054 in secondary school data) onto the general second-order index for general 

instructional quality. Advanced methods including item factor analysis based on item response 

theory should be employed to address measurement errors within each instrument and further 

explore a comprehensive framework for instructional quality. The results validate the approach 

of individually analyzing detailed yet distinct aspects of instructional quality. 

The causal analysis in this study employed a three-level hierarchical linear model with a 

random-effect structure to account for the clustering of exchangeable classrooms within 

randomization blocks within schools—a unique experimental design of the MET project. The 

analysis revealed significant impacts of CKT on the SEM-constructed factor MQI in elementary 

and middle school mathematics classrooms, particularly reflected by a significant increase in the 

richness of mathematical content. In contrast to MQI, no significant causal relationships were 

found between mathematical teachers’ CKT and teacher-student interaction measured by CLASS 

and student perception ratings Tripod across all school levels, indicating that these instruments 

measure distinct aspects of teaching that are not directly influenced by a teacher’s mathematical 

content knowledge. This divergence underscores the multifaceted nature of instructional quality. 
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Given the current experimental design that randomly assigns exchangeable classes to 

teachers with different levels of CKT, the analytic results have implications for hiring and 

assigning high CKT teachers to classrooms. Notably, this study does not evaluate the causal 

effect of training teachers to improve their CKT on instructional quality, which would require a 

different type of experimental study that randomly assigns teachers to either receive targeted 

CKT training or not. Current analytic results suggest that hiring teachers with varying levels of 

CKT can lead to changes in various dimensions of instructional quality, and these changes differ 

by grade level. For instance, hiring a high CKT teacher may effectively enhance the 

mathematical quality of instruction in elementary or middle schools. However, the same strategy 

may not yield significant improvements in high school settings. School and district 

administrators must thoroughly understand the specific needs of each grade level and customize 

their hiring and teacher assignment strategies to target relevant dimensions of instructional 

quality. 

The study presented in this chapter has several limitations. The first limitation lies in the 

data. The experimental design only spans one year, rendering the experimental data cross-

sectional. This limitation means that when comparing CKT effects on instructional quality by 

grade or across segmented samples, cohort differences cannot be ruled out. Additionally, the high 

school sample only includes 9th-grade classrooms, limiting the sample size and the generalization 

of the results to other high school grades. 

The second limitation stems from the assumptions regarding the distribution of treatment 

effects. For simplification, the causal framework of this study assumes a constant causal effect 

across classrooms within grade levels. However, the treatment effects can be heterogeneous and 

even non-linear, depending on where the teacher's CKT stands on the ability spectrum. Future 
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analyses should relax the assumption of constant treatment effects and explore various types of 

heterogeneity and non-linearity in these effects.  

Third, compared with summative scores or simpler structures, this study uncovered a 

parsimonious bifactor structure across the three commonly used instruments that yields a great fit 

for the current data. However, current empirical evidence did not support the construction of a 

general instructional quality index, particularly with relatively low internal consistency regarding 

MQI. Methodologically, combining multiple instruments that measure distinct theoretical 

domains of instruction and represent different perspectives requires intricate design and careful 

consideration. This is particularly relevant because the Tripod instrument is rated by students 

with year-long classroom experience, whereas other instruments are rated by trained 

professionals based on limited-time classroom observations. Advanced methods, such as item 

factor analysis based on item response theory, can be employed in future research to account for 

measurement errors within each instrument and further explore the possibilities of a 

comprehensive framework and a general index for instructional quality.  

Following this, considering that the ultimate goal of instruction is to improve students’ 

learning outcomes, the causal evidence on the relationship between CKT and instructional 

quality should be further utilized to identify how CKT affects student learning, whether through 

direct pathways or specific instructional practices. These questions will be addressed in the next 

chapter.  
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Chapter Four. Does Instructional Quality Mediate the Impacts of CKT on Student Achievement 

in Mathematics: Evidence from A Casual Mediation Analysis 

I. Introduction 

Content knowledge for teaching (CKT) is presumed to have a significant influence on 

students’ academic outcomes. The theoretical underpinning of this presumption lies in the belief 

that teachers with deeper CKT are better equipped to deliver high-quality instruction, thereby 

facilitate student learning and improving their academic performance (Baumert et al., 2010; 

Campbell et al., 2014; Charalambous, 2010; Hill et al., 2005, 2011; Kelcey, 2011; Metzler & 

Woessmann, 2012; Rockoff et al., 2011). Notably, the effective transmission of teacher content 

knowledge relies heavily on the quality of instructional practice. This suggests that instructional 

quality may serve as a mediator in the relationship between CKT and learning outcomes. Yet 

prior research on these relationships has yielded inconclusive results regarding the potential 

mediation mechanism, which can be attributed to several factors. First, measures of CKT and 

instructional quality are inconsistent across studies, with each research team designing their own 

measures or choosing certain items from an existing instrument based on their specific focuses, 

making it difficult to integrate and generalize the findings. Second, causal evidence is lacking, 

particularly those employing a mediation framework to analyze relations among the three 

constructs. Experimental designs targeting teacher CKT in previous studies have typically been 

based on professional development programs of short duration. These studies often failed to 

detect significant improvements because CKT is difficult to change in a short time frame, 

limiting their ability to observe impacts on instructional quality and student achievement. These 

limitations underscore the need for more rigorous and comprehensive research to clarify the 

relationships between CKT, instructional quality, and student outcomes. 
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To fill in the gaps of previous research, the study presented in this chapter primarily 

answers the following research question: How does the quality of instruction, particularly 

mathematical quality of instruction, mediate the impact of mathematics teachers’ CKT on student 

learning?  

By utilizing experimental data from the Measures of Effective Teaching (MET) project, 

where between-class contextual differences are removed by design within each randomization 

block at the school-by-grade level, this study seeks to provide more robust evidence on the 

causal relationships among CKT, instructional quality, and student outcomes. This is an 

extension of previous chapters where I explored natural variation of CKT and the causal 

relationship between CKT and instructional quality.  

The analytic results of this study enhanced our understanding of how CKT influences 

student outcomes. Specifically, the total effect of a one-unit (approximately 2 SD) increase in 

CKT from the randomization block mean at the grade-by-school level resulted in a 0.017 total 

increase in student test scores in elementary schools, a 0.037 total increase in middle schools, 

and a 0.0002 total increase in high schools, with effect size being 0.035, 0.090 and 0.0004. 

Further decomposing the total effects into mediating pathways through mathematical quality of 

instruction (MQI) ratings, reveals compelling findings. The indirect causal effects through the 

SEM-constructed factor MQI were 0.003, 0.008 and -0.025, with effect sizes being 0.002, 0.006 

and -0.025 respectively. These findings further elucidate the mediation mechanism of CKT on 

student achievement through the mediating pathways of mathematical instructional quality and 

enhance our understanding of how CKT causally influences student outcomes. Moreover, it 

identifies areas for future research, including potential non-linearity in the causal relationships 

and the heterogeneity in treatment effects across student subpopulations. 
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The subsequent sections of this chapter are organized as follows: Section II reviews the 

evidence from prior research and identify research gaps in studies of relations among CKT, 

instructional quality, and learning outcomes. Section III presents hypotheses derived from 

theoretical framework and prior knowledge. The next two sections provide a description of the 

data and methodology. Section VI presents analytic results, followed by conclusions. 

II. Literature Review 

This section will commence with a review of existing research evidence concerning the 

relationships among CKT, instructional quality, and learning outcomes. At the conclusion of the 

section, a summary of the research gaps will be presented, along with a discussion of how this 

study positions itself within the field.  

1. Evidence on relationship between CKT and learning outcomes.  

Prior studies have generally found a positive and significant association between 

teachers’ content knowledge for teaching (CKT) and students’ learning outcomes (Baumert et al., 

2010; Campbell et al., 2014; Charalambous, 2010; Hill et al., 2005, 2011; Kelcey, 2011; Metzler 

& Woessmann, 2012; Rockoff et al., 2011). However, some argue that this association may be 

spurious if higher-achieving students are more likely to be taught by teachers with greater 

knowledge. This could occur if parents influence school decisions to place their children in 

classes with better teachers or if administrators assign higher-achieving students to well-qualified 

teachers to boost performance ratings. An experimental design, particularly one that randomly 

assigns students to teachers, can eliminate the confounding effect of non-random student sorting. 

Experimental evidence on the relationship between CKT and student outcomes primarily 

comes from professional development (PD) programs where teachers are randomly chosen to 

receive PD aimed at increasing their CKT. The impact of an improvement in a teacher’s CKT on 
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students’ academic achievements is only observable when these PD programs effectively 

increase CKT (e.g. Carpenter et al., 1989; Jacobs et al., 2007; Perry & Lewis, 2011). In contrast, 

PD programs that have no or limited effects on improving teachers’ CKT and instructional 

practices fail to detect positive learning gains for students (Garet et al., 2011; Jacob et al., 2017; 

Roschelle et al., 2010; Santagata et al., 2010). PD interventions typically consist of training 

programs during the summer break and/or a few meetings during the academic year. Given this 

limited intensity and duration, short-term changes in teachers’ CKT can be minimal or largely 

unobserved. 

When studying PD interventions targeting teacher CKT, prior researchers have found that 

natural variations in CKT levels among teachers correlate with students’ academic achievements, 

highlighting the potential for future analyses on the relationship between CKT and learning gains 

(Garet et al., 2011; Santagata et al., 2010). However, PD programs are often limited by the scope 

of participant recruitment, typically involving teachers from the same school or schools within 

the same district. Researchers have acknowledged that this restricted recruitment can result in a 

lack of sufficient heterogeneity in CKT among participants, making it challenging to draw 

meaningful inferences (e.g. Jacob et al., 2017; Jacobs et al., 2007; Santagata et al., 2010).  

In essence, prior research suggests that an experimental design that removes the 

confounding effects of contextual differences is needed for better revealing the causal impacts of 

CKT on student achievement. Moreover, considering that CKT is difficult to improve in the short 

term, it may be more practical to utilize the natural variation in CKT levels to detect its effects, 

rather than relying on PD programs targeting CKT, which are often limited by uncertainty about 

whether the interventions can induce sufficient changes in CKT to observe its actual impact. 

Therefore, a broad range of teacher CKT is necessary, implying the necessity for a large sample 
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size. The experimental data from the MET project not only encompass a wide range of teacher 

CKT, but were collected from a unique experimental design that assign comparable classes of 

students to teachers with varying CKT levels. This design avoids the limitations of relying on 

short-term PD training improvements in CKT to detect its causal impacts.  

Moreover, while the experimental design of prior research and that of the MET project 

both aim to analyze the causal impacts of CKT, they address different policy questions. An 

experimental design that randomly assigns teachers to PD programs investigates whether 

improving a teacher's CKT would impact instructional quality and student learning. In contrast, 

an experimental design that randomly assigns students to teachers who naturally vary in their 

CKT levels, as seen in the MET project, examines whether students would benefit from being 

taught by teachers with higher CKT. The answers to these two questions are not necessarily the 

same and have different practical implications. Even if a specific PD program fails to improve 

teacher CKT, schools may nonetheless choose to recruit and retain teachers with high CKT if 

they prove to be better teachers. Therefore, causal evidence on the mediated impacts on student 

achievement of being taught by teachers with relatively high CKT, derived from analyzing the 

experimental data from the MET project, can provide important practical implications to improve 

instructional quality and student achievement through recruiting or retaining teacher with high 

CKT, offering a different perspective from prior research. 

2. Relation between instructional quality and student outcomes.  

Conceptually, researchers agree that higher quality instruction can lead to positive student 

outcomes. However, reaching a generalizable conclusion about the relationship between 

instructional quality and student outcomes is challenging. Previous studies are limited by 

evidence generated using inconsistent assessment of instructional quality that are designed or 



 

 71 
 

selected based on the researchers’ specific focuses and not generalizable across studies, 

instructional quality measures that did not incorporate multifaceted constructs, and in research 

settings that cannot ensure causality. Given that the relationship between instructional quality 

and student outcomes is not the primary focus of this chapter, I will briefly review the 

scholarship on how instructional quality generally relates to student learning outcomes, 

particularly highlighting evidence and limitations that are relevant to the effect pathway of CKT. 

Research on the relation between instruction practice and student achievement originates 

from the process-product studies of teaching. In their seminal paper, Brophy and Good critically 

reviewed 33 process-product studies, concluding that certain teacher behaviors (summarized in 

Appendix Appendix Figure 

Figure A4. 1) were found related to changes in students’ learning outcomes. It should be 

noted that as Brophy and Good emphasized, the effectiveness of instructional practices is heavily 

dependent on the contexts in which instruction actually takes place. Without considering the 

actual contexts, any attempts of identifying “the most productive” teachers behaviors are futile 

(Brophy & Good, 1984). 

Recent empirical evidence on the correlation between instructional practice and academic 

outcomes are mixed. While some researchers found instructional quality meaningfully 

“predicted” student achievement growth (Hill et al., 2011; Hill & Chin, 2018; Kane et al., 2011; 

Kane & Staiger, 2012; Milanowski, 2004; Tyler et al., 2010), others found the correlation weak 

and insignificant (Blazar, 2015; Gencturk, 2012; Shechtman et al., 2010). 

It is challenging to exhaustively discuss all the reasons contributing to the divergence in 

research evidence, and such a discussion is beyond the scope of this study. However, a few key 

factors are worth mentioning. First, the inconsistency in measures makes comparisons across 



 

 72 
 

studies difficult. Prior research focusing on instructional quality has highlighted this issue 

(Charalambous, 2020; Mu et al., 2022). In most cases, researchers relied on measurements 

designed by their own teams or adapted from a single observation protocol. Simplified measures 

might fail to capture the full range of elements that reflect the effects of instructional quality. 

Second, the variability in research contexts also complicates the ability to draw general 

conclusions (Lynch et al., 2017). While evidence gathered from case studies and natural 

associations is extremely valuable and informative, these settings often lack the control needed to 

ensure causality. Consequently, contextual differences regarding the characteristics of students, 

teachers, schools, and districts can confound the focal relationship, making it difficult to draw 

robust conclusions from non-causal evidence. 

3. Mediation studies of CKT, instructional quality, and student learning 

Several studies have employed the mediation framework to investigate the impacts of 

CKT on learning outcomes through instructional quality. Evidence from these studies suggests 

that instructional quality significantly mediates the effects of teachers' CKT on students' learning 

(Baumert et al., 2010; Kelcey et al., 2019; Kersting et al., 2012). 

Baumert and colleagues (2010) found that CKT was a decisive factor in instructional 

quality related to cognitive challenge levels, instructional support and classroom management. 

Moreover, CKT has predictive power for student progress. Their study revealed a significant and 

positive effect of CKT on students' learning outcomes, mediated through changes in certain 

aspects of teachers' instructional practices, such as modifying the cognitive levels of tasks and 

providing individualized learning support (Baumert et al., 2010).  

Kersting and colleagues (2012) developed a measure called the Classroom Video 

Analysis (CVA) to assess teacher CKT, which requires teachers to view and discuss classroom 
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video clips in written responses. Specifically, the CVA encompasses four domains: 

"mathematical content," "student thinking," "suggestions for improvement," and "depth of 

interpretation." When analyzing pairwise associations among the three constructs—CKT, 

instructional quality, and learning gains—significant associations were found between CKT (as 

measured by CVA) and instructional quality, as well as between instructional quality and 

learning. However, no significant associations were found between CKT and learning gains, 

except for the "suggestions for improvement" domain. Based on these findings on pairwise 

correlations, they further adopted a mediation model to focus on the indirect effect of CKT on 

learning gains through changes in instructional quality. They found that the estimated indirect 

effects of the three CVA domains other than "suggestions for improvement" were significant, 

suggesting that different domains of CKT might affect learning gains differently. In this case, the 

"suggestions for improvement" domain of CKT directly impacted learning gains, while the other 

three domains influenced students' learning gains primarily through the indirect pathway of 

changing instructional quality (Kersting et al., 2012).  

A recent correlational study by Kelcey and colleagues extended the mediation analyses to 

a larger sample with more participants observed over time than in prior studies. Although the 

authors acknowledged that the evidence were tentative since none of the analyses were causal, 

they confirmed that the correlations among CKT, instruction, and achievement were significant, 

consistent with prior research. Their results have several important implications: First, 

knowledge should be proximal to instruction to yield noticeable returns. Thus, returns to 

teachers' knowledge in a specific subject, such as mathematics, are more likely to be found in 

subject-specific domains of instructional quality. Second, district contexts matter. Evidence 

showed that the mediating role of instruction was more pronounced in districts with coherent 
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instructional guidance, long-term investment in instructional reforms, and cognitively 

challenging state tests. Third, their results revealed heterogeneity in returns to teacher knowledge 

on instructional quality across the percentiles of the MQI domain scores. Specifically, teachers 

who made more observed mistakes benefited more from increases in CKT than teachers with 

very few observed mistakes. Teachers who scored high in employing ambitious mathematics 

instruction benefited more from increases in CKT compared to teachers who rarely employed 

such instruction. In contrast, returns to instructional quality on student achievement were 

consistent and did not show noticeable heterogeneity across the distribution of student 

achievement. Fourth, contextual differences at various levels, (i.e., students, classrooms and 

districts) moderated different effect pathways. Specifically, district contexts, such as having a 

coherent and sustained system for instructional guidance, moderated the pathway between 

instructional quality (mediator) and student achievement (outcome) in both magnitude and 

direction. Districts with coherent and sustained instructional guidance system had higher returns 

of instructional quality on student outcomes. Classroom contexts, reflected by two MQI sub-

domain scores (ambitious mathematics instruction and frequency of mathematical errors 

occurred in class) primarily moderated the pathway between CKT (treatment) and instruction 

(mediator). Returns of high CKT were stronger in classrooms that scored higher in ambitious 

mathematics instruction and had fewer observed mistakes in teaching (Kelcey et al., 2019).  

Overall, research evidence on the mediation effects of CKT on student achievement 

remains limited, despite the crucial role of understanding the mechanisms by which CKT 

impacts student learning. This gap may stem from challenges in measuring the three constructs, 

especially CKT and instructional quality, as well as issues related to the availability of 

comprehensive data. 
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4. Summary of research gaps and potential contribution of this study 

Firstly, it is well-established that experimental designs are ideal for identifying causal 

links. However, previous research on the relationships among CKT, instructional quality, and 

student achievement has largely focused on observational studies with minimal controls, 

primarily examining associations rather than causality. Among the studies that have explored 

causal links, many relied on PD interventions that may not induce significant changes in CKT in 

the short term, Hence, it is necessary to utilize the natural variation of CKT from a larger sample 

size to ensure sufficient heterogeneity for detecting CKT impacts. This study aims to address 

these limitations by utilizing experimental data from the Measures of Effective Teaching (MET) 

project. Unlike conventional studies, the MET project involves randomly assigning teachers to 

exchangeable classrooms in its experimental stage. This design eliminates the confounding 

effects of class-level contextual differences resulting from non-random student sorting within 

schools. Furthermore, the MET project includes a large sample size, with 537 teachers from 162 

schools across six urban public-school districts in the United States. This expansive scope 

provides a broad range of teacher CKT levels, crucial for detecting its impacts on student 

learning. Consequently, the evidence obtained from this study will possess higher levels of 

internal and external validity compared to prior research. 

Secondly, prior research has faced limitations in measuring instructional quality and 

CKT, often using inconsistent measures across studies, which hinders comparisons and 

generalization of the conclusions. This study utilizes a well-developed measure of mathematical 

instructional quality, and an enhanced measure for CKT. These improved measures allow for a 

more nuanced analysis and generates more accurate evidence of causal mediation relationships 

that previous studies could not achieve.  
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Lastly, there is a lack of research evidence on the mediation effects of CKT on student 

achievement. Prior studies have faced challenges in establishing proper measurements for the 

three constructs, especially CKT and instructional quality, and have been limited by the 

availability of comprehensive data. This study extends the line of scholarship by attempting to 

unveil the causal links between CKT and student learning through the mediation of instructional 

quality. It aims to explore the multifaceted ways in which CKT influences instructional quality 

and student learning outcomes, considering both direct and mediated pathways as well as 

contextual differences across educational levels. This mediation analysis will help to clarify the 

specific mechanisms through which CKT affects student achievement, offering insights into how 

mathematical instructional quality serve as a mediator for these effects. This comprehensive 

approach will contribute to a deeper understanding of the interplay between teacher knowledge, 

instructional practices, and student outcomes, addressing gaps in the existing literature and 

providing a stronger empirical foundation for educational policy and practice. 

 

III. Hypotheses  

Informed by the causal analysis in the previous chapter and prior mediation research, I 

propose the following hypotheses: 

Hypothesis 1. Indirect effect of CKT on student achievement through changing 

MQI: Math teachers with higher CKT will demonstrate higher mathematical quality of 

instruction. This includes fewer errors and imprecisions and a greater ability to work with 

students to solve math problems, which in turn leads to better student learning outcomes. 

Hypothesis 2. Indirect effect of CKT on student achievement through changing 

student perception measured by Tripod: Math teachers with higher CKT will have more 
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agency to effectively plan and structure class time. This will result in students having a more 

positive perception of their classroom experience and will better facilitate their learning. 

Hypothesis 3. Direct and Alternative Pathways of CKT effect on student 

achievement: Math teachers with higher CKT will help students achieve better learning 

outcomes directly or through mechanisms other than those mentioned above. This may include 

enhanced teacher-student interactions, innovative teaching methods, or other instructional 

strategies not explicitly covered by the previous hypotheses. 

Hypothesis 4. Variation of CKT effects by school level: Educational contexts vary 

greatly by school level, e.g., students’ developmental stages, curriculum variations, and class 

structure differences. This suggests that the relationship between CKT and instructional quality, 

as well as subsequent student outcomes, may vary significantly across elementary, middle, and 

high school settings. 

These hypotheses aim to explore the multifaceted ways in which CKT influences 

instructional quality and student learning outcomes, considering both direct and mediated 

pathways as well as contextual differences across educational levels. 

IV. Data description 

The analytic data were derived from the Measures for Effective Teaching (MET) study, a 

large-scale two-year teacher evaluation project designed to investigate, identify, and 

comprehensively measure effective teaching skills and practice. The MET project recruited six 

urban school districts across the United States, involving 2,741 teachers and approximately 

160,000 students in 4th- to 9th- grade classrooms for English Language Arts (ELA), Mathematics, 

or Biology.  
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This paper focuses specifically on the 537 mathematics teachers, each responsible for 

teaching one class in 162 public schools across the six U.S. urban school districts during the 

Academic Year 2011-2012, the year when the MET project conducted randomized experiments 

that assigned teachers within a school and a grade level to comparable classes of students. The 

analytic dataset used in this study is identical to the one constructed for the causal analysis 

presented in Chapter 3. However, the final analytic sample is restricted to students and classes 

that had valid Mathematics standardized test scores available from state administrative records. 

V. Methodology 

This section outlines the methodology employed in the study. First, I laid out a general 

framework for causal mediation analysis within the current research context, where both 

mediators and treatment variables are continuous. Guided by this analytic framework, I discussed 

the identification assumptions necessary for analyzing the experimental data obtained from a 

multisite study that randomized teachers to comparable classes, featuring a continuous treatment 

and a continuous mediator at the class level. Finally, I specified a series of hierarchical linear 

models corresponding to the three-step procedures for causal mediation analysis and discussed 

the decisions that led to the final model setup. 

1. A General framework for causal mediation analysis.  

(1) Definition of the causal effect  

The purpose of a causal mediation analysis is to decompose the average treatment effect 

of a continuous treatment variable Z on an outcome Y into a direct effect and indirect effects 

transmitted through mediator(s) M. As one of the important pathways in the mediation 

framework is with M(z) as the intermediate outcome, the causal framework presented in the 

previous chapter regarding the causal effects of CKT on instructional quality still applies here. 
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The causal effect of CKT on the learning outcome is defined analogously as above. Note that in 

the descriptive analysis of CKT and in the causal analysis of the CKT effect on instructional 

quality, the respective dependent variables CKT and instructional quality are measured at the 

classroom level. However, in the causal mediation analysis, the dependent variable is the 

learning outcome Y and is measured at the student level. Let 𝑌(𝑧,𝑀(𝑧)) denote the potential 

learning outcome of a student assigned to a teacher with CKT level z; and let 𝑌(𝑧′,𝑀(𝑧′)) denote 

the student’s potential learning outcome if the class was assigned to a teacher with CKT level z' 

instead. 

The causal effect of being taught by a teacher with CKT level 𝑧!versus 𝑧 on the learning 

outcome is defined as: 

𝛽 =
𝑌=𝑧!, 𝑀(𝑧!)> − 𝑌(𝑧,𝑀(𝑧))

𝑧! − 𝑧 . 

Adapting the definitions of causal effects for a continuous treatment and a continuous 

mediator from those provided in the glossary in Chapter 9 of Hong (2015), the direct and indirect 

effects are defined as follows: 

Let 𝑌(𝑧!, 𝑚)	denote the potential learning outcome when teacher CKT level is at 𝑧! but 

with a mediator value (i.e. the level of instructional quality) counterfactually set at a fixed 

mediator value 𝑚.  

The controlled direct effect of the treatment on the outcome is defined as	

𝛽,-. = /0$!,2!3(/($,2!)
$!($

. 

This represents the effect of CKT on a student’s learning outcome when ratings of instructional 

quality (mediator) are held at a fixed value 𝑚!. 

The controlled direct effect of the mediator on the outcome is defined as	
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𝛽,-" = /0$,2!3(/($,2)
2!(2

. 

This represents the effect of ratings of instructional quality (mediator) on a student’s learning 

outcome under a fixed value of CKT 𝑧. 

Let 𝑌=𝑧!, 𝑀(𝑧)>	denote the potential learning outcome when teacher CKT level is at 𝑧! 

but with a mediator value (i.e. the level of instructional quality) counterfactually set at 

𝑀(𝑧)	associated with the alternative teacher CKT level 𝑧. The natural direct effect of the 

treatment on the outcome is defined as 

𝛽4- =
/5$!,"($)6(/($,"($))

$!($
. 

This represents the effect of being assigned to a teacher with CKT level 𝑧! versus a teacher with 

CKT level 𝑧 on a student’s learning outcome should the ratings of instructional quality 

(mediator) remain unchanged by teacher CKT. Notably, the difference between the controlled 

direct effect of the treatment on the outcome and the natural direct effect of the treatment on the 

outcome lies in the value of the mediator. In the controlled direct effect, the value of the mediator 

is set at 𝑚, while in the natural direct effect, the value of the mediator is the potential 

intermediate outcome of being assigned to a teacher with CKT value 𝑧, which is a random 

variable that can take different values. 

The natural indirect effect of the treatment on the outcome when the treatment value is 

fixed at 𝑧! is defined as 

𝛽47 =
𝑌=𝑧!, 𝑀(𝑧!)> − 𝑌(𝑧!, 𝑀(𝑧))

𝑧! − 𝑧 . 

This represents the effect of a change in the ratings of instructional quality (mediator) induced by 

a change of CKT from 𝑧! to 𝑧 on a student’s learning outcome under the condition that the class 

is assigned to a teacher with CKT level 𝑧!. 
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The pure indirect effect of the treatment on the outcome when the treatment value is fixed 

at 𝑧! is defined as: 

𝛽47 =
/5$,"0$!36(/($,"($))

$!($
. 

This represents the effect of a change in the ratings of instructional quality (mediator) induced by 

a change of CKT from 𝑧! to 𝑧 on a student’s learning outcome under the condition that the class 

is assigned to a teacher with CKT level 𝑧. 

The total effect is equal to the sum of the natural direct effect and the natural indirect 

effect: 

𝛽 = 𝛽47 + 𝛽4- . 

Unlike the descriptive analysis of CKT and the causal analysis of CKT's effect on 

instructional quality, the outcome variable in the causal mediation analysis—student learning—is 

measured at the student level. However, since a teacher’s CKT and instructional quality generally 

affect an entire class of students, it is important to note that both the instructional quality ratings 

(mediator) and CKT (treatment) are measured at the class level. Therefore, for the causal 

mediation analysis, the population of interest for the outcome variable—student learning—is the 

population of students, while the population of interest for the treatment effects on the 

intermediate outcome (mediators) is the population of classes. The subscripts for Y and M in the 

definitions of class-specific and student-specific causal effects will reflect these differences. 

Let subscripts i, j, r and k represent student i in classroom j within randomization block r 

of school k. Denote 𝑀)*+(𝑧) as the instructional quality of classroom j within randomization 

block r of school k being taught by a teacher of CKT level at z. Denote 𝑌8)*+(𝑧,𝑀(𝑧)) as the 

potential learning outcome of student student i in classroom j within randomization block r of 

school k if the class was assigned to a teacher with CKT level 𝑧.  
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The class-specific effect of being assigned to a teacher with CKT level z’ versus being 

assigned to a teacher with CKT level z on the class’s instructional quality ratings (mediator): 

𝛽)*+" =
𝑀)*+(𝑧!) − 𝑀)*+(𝑧)

𝑧! − 𝑧 . 

The student-specific causal effects including the following: 

Total effect: 

𝛽8)*+ =
𝑌8)*+ A𝑧!, 𝑀)*+(𝑧!)B − 𝑌8)*+(𝑧,𝑀)*+(𝑧))

𝑧! − 𝑧 . 

Natural indirect effect: 

𝛽8)*+47 =
𝑌8)*+ A𝑧!, 𝑀)*+(𝑧!)B − 𝑌8)*+(𝑧!, 𝑀)*+(𝑧))

𝑧! − 𝑧 . 

Natural direct effect: 

𝛽8)*+4- =
𝑌8)*+ A𝑧!, 𝑀8)(𝑧)B − 𝑌8)*+(𝑧,𝑀)*+(𝑧))

𝑧! − 𝑧 . 

 

(2) Identification assumptions 

Assumption 1. Stable Unit Treatment Value Assumption (SUTVA) 

The unit of treatment assignment and that of mediator value assignment is classroom for 

this project. However, the outcome is measured at the student level. When the teacher CKT level 

and the level of instructional quality are fixed, the average potential outcome for all student in 

the same classroom and the same school is assumed to be stable after adjusting for the clustering 

within classrooms and within schools. This assumption will be violated if teachers and students 

from different classrooms at the same school have frequent interactions with one another, leading 

to spillover effects between classrooms. 
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Assumption 2. Ignorable treatment assignment 

Treatment assignment 𝑍)*+ 	 is assumed to be independent of potential outcomes 

𝑌8)*+(𝑧,𝑚) and potential mediators 𝑀)*+(𝑧) for all possible values of 𝑧 and 𝑚 for classroom j 

within randomization block r of school k. 

𝑌8)*+(𝑧,𝑚),𝑀)*+(𝑧) ⊥ 𝑍)*+ 	 

By the design of the randomization, student composition of the participating classrooms 

was made exchangeable within every randomization block at each school; and teachers were 

assigned randomly to these classrooms. If the experimental design is implemented well, 

between-class differences in student composition will be removed and the treatment effects on 

the mediator and the outcome can be identified. The ignorability assumption will be violated if 

there exists noncompliance or non-random attrition, which will compromise the exchangeability 

of classrooms.  

Although randomly assigned to classrooms, teachers may differ not only in CKT but also 

in other characteristics including teacher qualifications and demographic backgrounds. We argue 

that teacher qualification indicators such as college major or SAT scores in Mathematics may 

affect instructional quality and student achievement primarily through teacher CKT. Controlling 

for such teacher qualification measures would be problematic when the current research question 

focuses on the CKT effects. Therefore, I chose not to control for these strong predictors of CKT.  

Furthermore, a teacher’s demographic backgrounds may or may not match the 

demographics of the majority of students in a class. In general, teacher-student demographic 

match is expected to contribute to instructional quality and student learning. Within a 

randomization block, suppose that a teacher who has a demographic match with the students has 

lower CKT than a colleague who does not have such a match. When this is the case, teacher-
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student demographic match will be a potential confounder that will lead to an underestimation of 

the potential benefit of being taught by a higher-CKT teacher. Yet within another randomization 

block, suppose that a teacher who has a demographic match with the students has higher CKT 

than a colleague who does not have such a match, in which case the potential benefit of being 

taught by a higher-CKT teacher will be overestimated. We assume that, when averaging the CKT 

effects over all the randomization blocks, the negative bias and the positive bias will be cancelled 

out. A sensitivity analysis can be employed to assess the potential consequences when the 

assumption is violated. 

Assumption 3. Ignorable mediator value assignment 

𝑌8)*+(𝑧,𝑚) ⊥ 𝑀)*+(𝑧),𝑀)*+(𝑧′)	 

This assumption states that a teacher’s instructional quality is independent of the potential 

outcomes. We assume that it is valid when the randomization design is well implemented. This 

assumption will be violated if there exists noncompliance or non-random attrition, which will 

compromise the exchangeability of the classrooms within a randomization block. As before, we 

assume that teacher qualifications would affect student learning primarily through teacher CKT; 

we additionally assume that teacher-student demographic match would affect student learning 

primarily through teacher CKT and instructional quality. Hence there is no need to control for 

these teacher characteristics. 

In addition to the aforementioned identification assumptions, I assume that teacher CKT, 

which was measured in the previous year, remained mostly unchanged during the two years of 

study. This assumption is likely valid because previous studies have found that CKT is mostly 

stable within a short period of time  (Garet et al., 2011; Jacob et al., 2017; Roschelle et al., 2010; 

Santagata et al., 2010). 
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(3) Model specifications 

To analyze the mediation effects, I have specified a 4-level hierarchical linear model with 

students as the primary unit of analysis with multi-level random intercepts and school-level 

random treatment effects. These students are clustered within classrooms, which are nested 

within the randomization blocks that are at the grade-by-school level. The analysis for estimating 

mediation effects involves three main steps, assuming the treatment-outcome, treatment-

mediator, and mediator-outcome relationships are all linear. Firstly, I estimate the total effects of 

CKT on students’ learning outcomes without including mediators (the Z-Y relationship). 

Secondly, I examine the treatment effects on mediators (the Z-M relationship). This step is 

equivalent to the analysis conducted in Chapter 3; thus, I use the same analytic model to ensure 

consistency. Lastly, I investigate the relationship between the outcome and treatment transmitted 

through the mediator. Empirically, this involves regressing the student outcome Y on Z and M. 

The indirect effect estimates are calculated utilizing the estimates from these three steps. 

Additionally, I also investigate the mediated relationship with a treatment-by-mediator 

interaction. This involves regressing the student outcome Y on Z, M, and the interaction 

term ZM. The model specification and results can be found in Appendix. 

The following decisions concerning the model setup have resulted in the final model 

specifications. First of all, the major decision relates to the validity of modeling the treatment-

mediator, mediator-outcome, and treatment-outcome relationships as linear. To closely examine 

whether the relationships among CKT, instructional quality ratings, and student achievement are 

linear, I have created a series of two-way scatterplots by school levels (Figure 4. 1 to Figure 4. 

12 ), including those between CKT and student achievement, between instructional quality 

factors, and between instructional quality factors and student achievement. The scatterplots 



 

 86 
 

suggest that the relationships are mostly linear. Thus, for the current study, the linearity 

assumptions are acceptable. Nonetheless, future research may explore the possibilities of fitting 

non-linear models to examine the relationships among the three constructs mentioned above, 

especially between CKT and instructional quality ratings. 

The second decision concerns the selection of covariates. In the analytic model, 

covariates such as pre-test scores and indicators of socioeconomic status (SES) are primarily 

included at the student level. The rationale for including these student-level covariates is twofold. 

First, it is theoretically important to include students’ pre-test scores and SES backgrounds as 

they might be potential confounders in the causal mediation analysis should be the 

randomization design be compromised. Second, including student-level covariates that are strong 

predictors of students’ learning outcomes increases the precision of the treatment effect 

estimation.  

Additionally, student-level characteristics such as gender and racial identity typically do 

not directly predict a teacher’s CKT or the overall instructional quality of a class. The analytic 

model assumes no interactions between student-level covariates and CKT or between student-

level covariates and instructional quality factors, as CKT and instructional quality serve as the 

treatment and mediator, respectively, at the class level. However, if such interactions do exist, the 

model would be misspecified. Even though a Z by X interaction might exist in 

predicting M or Y, if X is not a confounder, omitting the interaction will not introduce bias (for a 

detailed proof, see Appendix in Chapter 3 of Hong, 2015).  

I chose not to include covariates such as the proportions of students eligible for 

free/reduced-price lunch and average student pre-test scores at classroom or school level. First of 

all, these higher-level covariates are aggregated from student-level data. Pre-test scores, racial 
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identity and socioeconomic status indicators have already been included at the student level in 

order to increase precision of regression precision. If the experimental design is well 

implemented, class-level differences in student composition will be removed, thus, one does not 

need to include these class-level covariates to get unbiased estimate of treatment effects. Notably, 

treatment effects might vary by school contexts, however, in this research context, such 

heterogeneity is negligible, which was confirmed in Chapter 2. Lastly, not including higher-level 

covariates in the analysis greatly reduces regression complexity. Thus, only student-level model 

includes controls indicating student backgrounds. 

The third decision is regarding centering strategy. To remain consistent with the multisite 

experimental design, where classrooms within randomization blocks are exchangeable in student 

composition, and further rule out contextual differences regarding conditions of school SES, I 

centered the class-level predictors—CKT, mediators, and their interaction term—at the mean 

value within each randomization block.  

The last decision is concerning the inclusion of grade-by-treatment interactions. 

Considering that samples are segmented by grades, there is not enough grade span within each 

sub-sample. Any additional grade effects would be accounted for by the grade indicators.  

Preliminary model comparison results did not show potential model fit improvement by 

including grade-by-treatment interactions. Henceforth, it is reasonable to assume negligible 

distinctions in treatment effects between grades within each school level. Consequently, the final 

model specifications did not include grade-by-treatment interactions. 

Let subscripts ijrk indicate student i in classroom j of matched cluster m of school k. Xijrk 

indicates a vector of student-level characteristics, including their prior test scores (math scores in 

AY 2009-2010), eligibility of F/R lunch, racial identities, ELL status, and Special Education 
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status. Graderk represents a vector of indicator variables for grade level, e.g., in middle school 

sample, Gradeij =[Grade5rk, Grade6rk]T where Grade5rk and Grade6rk are binary variables, 

indicating the classroom j in randomization block r is at 5th grade level or at 6th grade level. 

Districtk represents a vector of indicator variables for districts, District0j = [District2k, …, 

District5k]T, where District2k  to District5k are binary variables, indicating to which public-

school district the schools belong. Residual variance components e, v, ε, d represent variation at 

the student-, classroom-, randomization block-, and school-levels, which are assumed to follow 

zero mean normal distributions with their own variances to be estimated.  

Below are the model specifications for the three analytic steps taken to investigate the 

causal effects of CKT on learning outcomes mediated by MQI. For Tripod, simply replace the 

term MQI with Tripod.  

Step 1. Analyzing the total effect of the treatment on the outcome conditioning on 

the covariates
 
 

Level-1 Model (Student) 

Y
ijrk 
= j’0jrk +	j’	1jrk	pre-testijrk	+	j’	2jrk	Xijrk

	+ e’
ijrk 

e’
ijrk 

~N (0, s’2e) 

Level-2 Model (Classroom) 

j	’0jrk = π’00rk + π’ 01rk CKT
jrk

 + v’
0jrk

  

j’1jrk= π’ 10rk 

j’2jrk= π’ 20rk 

v’
0jrk

 ~N (0, s’2v) 

Level-3 Model (Randomization block) 
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π’00rk = θ’ 000k + θ ’001kGrade
rk + ε’ 00rk 

π’01rk = θ’ 010k  

π’10rk = θ’ 100k 

π’20rk = θ’ 200k 

ε’ 00rk ~N (0, s’2ε) 

Level-4 Model (School)  

θ’ 000k = α 0000 + α 0100 Districtk + d’000k 

θ’ 001k = α 0010 

θ’ 010k = α 0100+ d’010k 

θ’100k = α 1000 

θ’200k = α 2000 

d’000k~N (0, s’2d0) 

d’010k~N (0, s’2d1) 

Cov(d’000k , d’010k)= t’ 

 

Mixed Model:     Y
ijrk
= α 0000 + (α 0200 +d’010k )CKT

jrk
 +	α 1000 pre-testijrk	+	α 2000Xijrk

 

+ α 0100 Districtk + α 0010Grade
rk 

+ d’000k +ε’00rk + v’
0jrk

 + e’
ijrk 

Step 2. Analyzing the treatment effect on each mediator conditioning on the 

covariates 

Level-1 Model (Classroom-level) 
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MQI
0jrk 

= πM
00rk + πM

01rk CKT
0jrk

 + eM
0jrk

  

eM
0jrk 

~N (0, sM2e) 

Level-2 Model (Randomization block-level) 

πM
00rk = θM

000k + θM
001kGrade

rk + εM
00rk 

πM
01rk = θM

 010k  

εM
00rk ~N (0, sM2ε) 

Level-3 Model (School-level)  

θM
000k = g0000 + g0001 Districtk + dM

000k 

θM
001k= g0010 

θM
 010k = g0100+ dM

010k 

dM
000k ~N (0, sM2d0) 

dM
010k ~N (0, sM2d1) 

Cov(dM 000k , dM 010k)= tM 

 

Mixed Model:     MQI
jrk =

 g0000 + (g0100 + dM
010k )CKT

jrk
 + g0001 Districtk + g0010Grade

rk
  

+ dM
000k+ εM 00rk+ eM

0jrk
  

Step 3. Analyzing the mediated effect on the outcome via the mediator conditioning 

on the covariates 

Level-1 Model (Student) 

Y
ijrk 
= j0jrk +	j	1jrk	pre-testijrk	+	j	2jrk	Xijrk

	+ e
ijrk 
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e
ijrk

 ~N (0, s2e) 

Level-2 Model (Classroom) 

j	0jrk = π 00rk + π 01rk MQI
jrk 

+ π 02rk CKT
jrk

 + v
0jrk

  

j	1jrk= π 10rk 

j	2jrk= π 20rk 

v
0jrk

~N (0, s2v) 

	

Level-3 Model (Randomization block) 

π00rk = θ 000k + θ 001kGrade
rk + ε00rk 

π01rk = θ010k  

π02rk = θ020k  

π10rk = θ100k 

π20rk = θ200k 

ε00rk~N (0, s2ε) 

Level-4 Model (School)  

θ 000k = β0000 + β0100 Districtk + d000k 

θ 001k = β0010 

θ 010k = β0100+ d010k 

θ 020k = β 0200 

θ 100k = β 1000 

θ 200k = β 2000 
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d000k~N (0, s2d0) 

d010k~N (0, s2d1) 

Cov(d000k , d010k)= t 

 

Mixed Model:     Y
ijrk
= β0000 + (β0100 + d000k)CKT

jrk
 + β 0200MQI

jrk
  

+	β 1000 pre-testijrk	+	β 2000Xijrk
 

+ β0100 Districtk + β0010Grade
rk 

+ d000k +ε 00rk + v
0jrk

 + e
ijrk

 

VI. Analytic results 

1. Main variables in the causal mediation analysis. 

Outcome variable. The outcome variable in this causal mediation analysis is the 

mathematics scores from state standardized tests in 2011. It is important to note that standardized 

test scores may not always be ideal measures for assessing students’ learning outcomes, as 

indicated by previous research (Brophy & Good, 1984; Lynch et al., 2017). State standardized 

tests typically emphasize lower-order skills, potentially overlooking the full impact of CKT and 

instructional quality (Lynch et al., 2017). Nevertheless, this study utilizes these test scores due to 

substantial missing data in other supplementary assessments available in the MET database, such 

as scores for SAT, ACT, Balanced Assessment in Mathematics, and Algebra (only available for 

9th grade students). Future research endeavors should explore strategies to integrate data from 

multiple sources and enhance the measurement of student outcomes comprehensively. 

Mediators. Theories of pairwise relationships between mathematics teacher CKT and 

MQI, and between MQI and student achievement, are well developed and supported by research 
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evidence from observational and correlational studies (e.g., Hill et al., 2005, 2018; Kelcey et al., 

2019). Empirical evidence from the causal analysis in Chapter Three also indicated significant 

causal relations between math CKT and MQI. Henceforth, subsequent analyses primarily focus 

on investigating the SEM-constructed factor MQI as the mediator in the relationship between 

CKT and student achievement.  

Additionally, considering that student perceptions based on year-long experiences may 

provide a distinctive perspective of instructional quality that complements observational ratings 

like MQI, Tripod has also been included as a potential mediator in the causal mediation analysis. 

Moreover, due to the lack of strong theoretical or empirical evidence supporting teacher-student 

interaction as a potential mediator in the CKT-student achievement relationship, results for 

CLASS were not included in the primary discussion but can be provided upon request. 

Treatment variable. CKT is the latent scores constructed using item response theory-

based model in Chapter 2. Given that CKT is only assessed once during the MET project, I 

assume that a teacher’s instructional quality fluctuated only to a relatively trivial degree from the 

time it was assessed to the time instruction occurred. If teachers’ CKT have changed significantly 

from the time they took CKT assessment, then the analytic results of this study would be biased. 

Descriptive statistics of the variables reflecting the three constructs at the elementary, 

middle, high school levels can be found in Table 4. 1. 

Step 1 Results: Total effects of CKT on student achievement  

To estimate the total effect of Content Knowledge for Teaching (CKT) on students' test 

scores, I directly regressed student test scores on CKT (results summarized in Table 4. 2). 

Specifically, being taught by a teacher with a CKT level of one-point, i.e., approximately 2 

standard deviations (SD), higher than the average CKT level within the randomization block at 
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the grade-by-school level predicts an increase in student math scores by 0.016 in elementary 

schools, 0.037 in middle schools, and 0.0002 in high schools. The corresponding effect sizes are 

0.011, 0.029 and 0.0002.  

It is evident that no significant total effects of CKT on test scores were found across all 

school levels. Although generally positive in the direction, the magnitudes of the CKT effects 

were indistinguishable from zero. Conceptually, this finding contradicts common sense as higher 

CKT teachers, despite receiving higher instructional quality ratings, yielded student scores no 

different from lower CKT teachers with lower instructional quality ratings.  

According to Baron and Kenny (1986), a mediated effect is considered absent if the total 

effect is estimated to be zero. Based on the current estimation results of total effects, one might 

conclude that there is no mediation of the CKT impact on students’ learning outcomes.  

However, an important exception should be considered: Even when the total effect is zero, 

nonzero indirect and direct effects can still exist. For instance, a negative indirect effect and a 

positive direct effect may sum to a zero total effect. Therefore, even though the Step 1 analysis 

showed that the total effect is close to zero, further investigation is needed to confirm that this is 

not a case where the direct and indirect effects are canceling each other out. 

Step 2 Results: Effect pathways of CKT on instructional quality 

As shown in Table 4. 3, mathematical quality of instruction ratings MQI is significantly 

impacted by CKT in elementary schools. Teachers with CKT one unit (approximately 2 SD) 

higher than the randomization block mean CKT at the school-by-grade level predict a 0.063 

increase in MQI in elementary schools, a 0.029 increase in middle schools, and a 0.003 increase 

in high schools, with effect sizes being 0.010, 0.003 and 0.000. The Tripod ratings are not 

significantly impacted by CKT across all school levels. Surprisingly, high school teachers with 
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CKT one unit higher than the randomization-block mean predict a 1.088 decrease in their 

students' Tripod perception ratings, with an effect size of -15.857, though this result is not 

statistically significant. 

The analytic results of Step 2 regarding CKT impacts on instructional quality ratings 

presented above is not diverge from the analytic results of previous chapter where I analyzed 

CKT impacts on class-level instructional quality ratings. Here, analyses employed student-level 

data which provides greater statistical power in comparison with the causal analysis of the CKT 

impacts on instructional quality factors presented in the previous chapter that was a class-level 

analysis. Therefore, conceptually, the estimates here reflect how each individual students’ 

exposure to varying CKT levels affects their exposure to different instructional qualities, while 

the estimates in the previous chapter reflect how the exposure of a class of students as a whole 

unit to teacher CKT affect their exposure to different instructional qualities. Future analyses may 

investigate whether these effects with strategy accounting for class size.  

Step 3 Results: Evidence on indirect effects of CKT through changing instructional 

quality 

For Step 3, I have fit a series of model regressing student outcome on CKT and 

instructional quality factors (results summarized in Table 4. 4). While one might argue that 

treatment-by-mediator interactions potentially exist, I have excluded these interactions from the 

primary analysis for two main reasons: First, there is no strong theoretical foundation supporting 

the existence of treatment-by-mediator interactions. Second, preliminary results from models 

including these interactions (summarized in Table A4.1) indicate that, in most cases, the 

treatment-by-mediator interactions are not statistically significant. Additionally, regression 



 

 96 
 

models without treatment-by-mediator interactions generally achieved a better fit. Therefore, I 

primarily discuss results obtained from models excluding interaction terms.  

If linearity assumptions on mediated relationships among CKT, instructional quality and 

student outcome hold, the natural indirect effect of CKT on student outcomes through the 

mediator pathway can be calculated as α 0200 - β0100 or	g100 β 0200  (Baron & Kenny, 1986; Hong, 

2015; MacKinnon et al., 2007). Utilizing estimates from Table 4. 3 and Table 4. 4, one can derive 

the natural indirect effects for mediation analyses, presuming linearity assumptions are valid 

(results presented in Table 4. 5). From Table 4. 5, it is evident that deriving the indirect effects 

through either taking the differences or multiplying two coefficient estimates from previous steps 

does cause some discrepancy but not alerting. Here I mainly discuss the differences (α 0200 - 

β0100). 

In elementary schools, if students are taught by a teacher with one unit (approximately 

1.712 SD) increase of CKT from the randomization block mean at the grade-by-school level, 

their test scores would increase 0.016 in total, with effect size being 0.011. For Mathematical 

quality of instruction ratings, MQI, the indirect effect is around 0.003 (effect size=0.002).  

Similarly, in middle schools, the total effect of being taught by a teacher with a one-unit 

(1.751 SD) increase of CKT from the randomization block mean at the grade-by-school level is 

0.037 in total, with effect size being 0.029. Of the 0.037 total effects of CKT, 0.008 (effect 

size=0.006) is via the indirect effect via, MQI.  

In high schools, if students are taught by a teacher with a one-unit (1.495 SD) increase of 

CKT from the randomization block mean at the grade-by-school level, their test scores would 

increase 0.0002 in total (the corresponding α 0200 estimate in Table 4. 2), with effect size being 

0.0002. The indirect effect of CKT through MQI is negative, while CKT positively impacts MQI 
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(corresponding g100 estimate in Table 4. 3). This pattern suggests a complex interaction where 

instruction of improved mathematical quality (MQI) do not translate into higher student 

achievement at the high school level. Instead, the increased CKT enhances these MQI ratings, 

which paradoxically predicted lower student achievement. Additionally, the negative indirect 

effects of CKT via MQI in high schools provides an example of how a non-zero indirect effect 

and a non-zero direct effect can cancel each other out, resulting in a nearly zero total effect. To 

illustrate, a one-unit (1.712 SD) increase in teacher CKT improved MQI by 0.004, which induce 

a 0.025 decrease in the total effects of CKT on student achievement. Thus, the direct effect of 

CKT through unspecified pathways other than MQI can be derived as 0.0252, considering the 

total effect of CKT on student achievement is 0.0002.  

In contrast to MQI, indirect effects of CKT on student achievement through changing 

student perception ratings Tripod are indistinguishable from zero across all school levels. Note 

that, although negatively impacted by higher CKT, Tripod does not have substantial indirect 

effect (estimate: 0.0001, effect size: 0.000) on student achievement in high schools. This 

evidence suggests that student perceptions may not mediate the relationship between teacher 

knowledge and student achievement. Instead, Tripod seems to capture a distinct aspect of 

instructional effectiveness that is not fully aligned with measures like MQI. 

It should be noted that, given that indirect effects are computed as the difference of two 

coefficient estimates from two separate regressions or the product of two coefficient estimates, 

the two-stage linear regressions cannot directly provide accurate standard errors for indirect 

effects, let alone using them for statistical testing, considering that the covariances of the 

coefficient estimates remain unknown from the current estimation results. Prior researchers have 

proposed various methods to accurately compute the SEs from two-stage regression estimates, 
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but they have not reached an agreement on an optimal method. Simulation methods are 

commonly accepted as a better alternative and should be used in future research (Hong, 2015).  

Discussion of the analytic results 

Several key considerations must be taken into account when interpreting the current 

analytic results. First, outcome variables might not be capturing the overall improvement induced 

by instructional quality. Standardized test scores have long been considered limited being used as 

outcome variables (Brophy & Good, 1984; Lynch et al., 2017). Importantly, prior research has 

found that some state tests lack the required cognitive challenge levels to capture the 

improvement in student learning (Kelcey et al., 2019; Lynch et al., 2017). Furthermore, one 

should not overlook the possibility that the effects of increased CKT and quality changes in 

instruction on student learning could be manifested after one year.  

Second, there might exist heterogeneity in treatment effects across student subpopulations 

that are yet to be explored. Certain subpopulations of students, e.g., those living under poverty, 

from immigrant families, or other disadvantaged backgrounds, might benefit more from an 

increase in teacher CKT and instructional quality than their more advantaged peers, given that 

disadvantaged students greatly rely on school education when additional learning support is 

unaffordable at home. Future research should investigate such heterogeneity in treatment and 

mediated effects across student subgroups. 

Third, the linearity assumption might not hold. Upon inspecting the two-way scatterplots 

among CKT, instructional quality ratings, and student achievement (Figure 4. 1 to Figure 4. 12), 

One can suspect the potential existence of non-linearity. In middle-school and high-school 

subsamples, the relationship between MQI and CKT appears flat when centered CKT scores 

range between -1 and 1, with linearity becoming more evident at the extreme ends. In the 
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elementary-school subsample, the relationship between MQI and CKT shows a negative trend 

when centered CKT values exceed one standard deviation. These non-linearities could be due to 

random noise, but it is also reasonable to assume that CKT impacts vary based on teachers' 

positions on the ability spectrum or student performance spectrum, supported by prior 

correlational studies using mediation frameworks (Kelcey et al., 2019). It is worthwhile for 

subsequent research to explore fitting non-linear models to investigate the relationships among 

CKT, instructional quality, and student achievement, especially for that between CKT and 

mathematical quality of instruction. 

Additionally, the mediation analyses suffer from a significant decrease in sample size 

caused by missing administrative data in mathematics test scores of high-school students from 

certain states. Examination of missing patterns revealed entire classroom test score absences, 

resulting in some randomization blocks with only one classroom. Further investigation into this 

unusual pattern of missing data should be carried out to determine strategies for better utilizing 

the data in the high-school subsample, or consider using another samples for high schools with 

additional grade levels and enhanced representativeness.  

Methodologically, it should be noted that the conventional multi-step approach based on 

path analysis using linear regressions employed in this study has its limitations. Notably, a multi-

step approach does not provide a direct estimate of the standard errors of indirect effect(s); 

bootstrapping and alternative testing procedures can be used to ensure the rigor of significance 

testing (Baron & Kenny, 1986; Hong, 2015; MacKinnon et al., 2007). In future research, rather 

than relying on the conventional approach, researchers should explore the potential of utilizing 

novel methods for mediation analyses to overcome the limitations of the multi-step approach. 

Potential alternative approaches may include but not restricted to structural equation models that 
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analyzes the mediator model and the outcome model simultaneously and semi-parametric 

weighting-based causal mediation analysis.  

 

VII. Conclusion 

This study was motivated by a common belief that teachers with higher level CKT are 

better equipped to deliver high-quality instruction, thereby enhancing student learning and 

improving their academic performance. Central to this theoretical framework is the role of 

instructional quality as a potential mediator in the relationship between CKT and student 

outcomes, which also suggested by a few prior studies (Baumert et al., 2010; Kelcey et al., 2019; 

Kersting et al., 2012). Despite this compelling theoretical framework, prior research has often 

yielded inconclusive results on the relations among CKT, instruction quality and student 

achievement, primarily due to methodological limitations such as inconsistent measures of CKT 

and instructional quality, potential lack of causal validity in the results of mediation analyses, and 

oversimplified constructs of instructional quality. 

To address these gaps, this study intended to answer an important research question: How 

does CKT affect student learning through the mediation pathways of instructional quality? 

Unlike previous correlational studies, this research utilized a causal mediation framework to 

analyze experimental data from the Measures of Effective Teaching (MET) project, which 

involved randomizing teachers across exchangeable classrooms in six urban school districts. 

Focusing on 537 mathematics teachers across 162 schools and their 12,204 students, this study 

employed various measures of instructional quality as well as an improved measure of CKT 

previously constructed based on item response theory. With these enhanced measures, I 

conducted a series of analyses to analyze the mediated effects of CKT through various 
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instructional quality factors individually, aiming to generate fine-grained evidence of causal 

mediation relationships among CKT, instructional quality and student achievement. 

Analytic results revealed compelling findings. In elementary schools, the total effect of a 

one-unit (1.712 SD) increase in CKT from the randomization block mean at the grade-by-school 

level resulted in a 0.016 increase in student test scores, with effect size being 0.011. The indirect 

effect through mathematical quality of instruction (MQI) ratings is approximately 0.003, with 

effect sizes being 0.002. In middle schools, a one-unit (1.751 SD) increase in CKT led to a 0.037 

total increase in student test scores, with effect size being 0.029. The indirect effect through MQI 

is 0.008; the corresponding effect sizes is 0.006. In high schools, the total effect of a one-unit 

increase (1.495 SD) in CKT on student test scores is 0.0002, with effect size being 0.0002. The 

indirect effect through MQI is negative. The negative indirect effect via MQI reveal how non-

zero indirect and direct effects can cancel each other out, resulting in an overall total effects that 

are indistinguishable from zero. For instance, a one-unit increase in CKT improved MQI by 

0.004, which led to a 0.025 decrease in student achievement. Thus, with a total effect of 0.0002 

and an indirect effect of -0.025, the direct effect of CKT through unspecified pathways other than 

MQI was 0.0252.  

In contrast to MQI, the indirect effects through student perception ratings, Tripod were 

indistinguishable from zero across all school level. Given that no significant CKT impacts on 

Tripod were observed with data at student level, this might suggest that student perception 

measured by Tripod is not a mediator in the causal relationship between teacher knowledge and 

student achievement. 

However, current study faced challenges of significant reductions in sample size caused 

by missing administrative data in high-school subsample. Addressing these challenges through 
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further investigation into missing data patterns is essential for enhancing the reliability and 

generalization of findings at the high school level.  

Furthermore, it is important to highlight several critical aspects when drawing inferences 

from the findings of this analysis. First, the outcome variables used may not fully capture the 

overall improvements induced by instructional quality. Second, there may be unexplored 

heterogeneity in treatment effects across different student subpopulations. Third, the assumption 

of linearity might not hold, as potential non-linear relationships are suggested by the visual 

inspection of the original data. Additionally, the analytic results obtained from the high-school 

subsample are limited by a reduced sample size due to missing data from state administrative 

records and the inclusion of only one grade span. 

Methodologically, the study acknowledges the limitations of the conventional multi-step 

approach based on path analysis and linear regressions. Future research could benefit from 

employing simulation studies and alternative testing procedures to strengthen the rigor of 

significance testing in mediation analyses. Additionally, exploring novel methods such as 

advanced path analysis using structural equation modeling and alternative weighting methods for 

mediation analysis could open the opportunities of overcoming the limitations of conventional 

methods, as well as providing deeper insights into the causal relationships among CKT, 

instructional quality, and student outcomes. 

In conclusion, this study contributes valuable insights into how CKT causally influences 

student achievement through the mediation pathway of mathematical instructional quality, and 

the complex nature of the relationships between teacher content knowledge, instructional quality, 

and student achievement. While direct effects of CKT on student outcomes are minimal, the role 

of mathematical instructional quality as a mediator warrants further exploration. Future research 
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should address the limitations identified in this study, including further examining non-linear 

relationships among the three constructs, investigating heterogeneity of treatment effects across 

diverse student populations, exploring a better alternative student outcome measure that 

comprehensively reflect improvement induced by various aspects of instructional quality on 

student learning, and applying more sophisticated analytical methods such as structural equation 

models and semi-parametric weighting-based causal mediation analysis. Through these efforts, a 

deeper understanding of how teacher knowledge impacts student learning can be achieved, 

ultimately informing educational policy and practice to enhance instructional quality and student 

outcomes. 
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Chapter Five. Summary and Future Directions 

This concluding chapter synthesizes the key findings from the three papers presented in 

this dissertation, discusses their implications for educational policy and practice, acknowledges 

the limitations of the study, and provides recommendations for future research.  

By leveraging the rich, longitudinal data from the Measures of Effective Teaching (MET) 

project, this research has explored the inequitable distribution of teachers' content knowledge for 

teaching (CKT) observed in six US urban public school districts, the causal impact of CKT on 

instructional quality, and the mediating role of instructional quality in the causal relationship 

between CKT and student achievement utilizing a unique experimental design that randomly 

assign teachers with comparable classrooms. Here I provide an overview of several key findings. 

I. Overview of the Key Findings 

Study 1: Inequitable Distribution of CKT: Evidence from Natural Variation of The 

Year 1 Baseline Observational Data 

The first study is a descriptive study that innovatively employed item-response-theory-

based (IRT) models to generate latent scores of mathematical content knowledge for teaching 

(CKT). With CKT as a direct measurement for teacher knowledge (reliability=0.82), results of 

the first study challenged the common reliance on conventional proxies such as advanced 

degrees and years of experience. The analysis revealed that CKT latent scores are insignificantly, 

and sometimes negatively, associated with these conventional proxies and value-added scores.  

When utilizing CKT to investigate inequitable distribution of teacher knowledge, analytic 

results uncovered significant systematic inequality in student access to high-quality teachers 

between schools, particularly affecting high schools with large populations of disadvantaged 

students. Meanwhile, although substantial within-school variation in CKT exists, it is not 
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systematically associated with students' prior achievement or socioeconomic backgrounds and is 

likely due to pure chance in classroom assignments and natural variation of CKT among teachers 

in current schools, factors unrelated to inequitable allocation of educational resources. 

Study 2: Causal Relationship Between CKT and Instructional Quality 

The second study investigated the causal effects of CKT on the quality of instructional 

practices in mathematics classrooms utilizing multiple commonly used instruments for 

instructional quality, including Classroom Assessment Scoring System (CLASS), Mathematical 

Quality of Instruction (MQI), and student perception survey Tripod.  

The results of factor analyses attempted to uncover a more parsimonious structure than 

the theoretical frameworks suggested in the original protocols of these instruments for measuring 

instructional quality. Although the SEMs with a bi-factor structure achieved excellent model fit, 

particularly for the elementary school data, the empirical evidence does not support the 

construction of a general higher-level index that can incorporate the information across 

instruments. Specifically, this is primarily due to the minimal loading of MQI onto the proposed 

overall second-level factor, InsQ, as well as its relatively low internal consistency. Meanwhile, it 

should also be noted that Tripod instrument is rated by students with year-long classroom 

experience, while other instruments are rated by trained professionals based on limited-time 

classroom observations. Methodologically, combining multiple instruments that measure distinct 

theoretical domains of instruction and represent different perspectives requires intricate design 

and careful consideration that are beyond the scope of this study. 

Investigating the causal effects of CKT on instructional quality measured by each 

instrument, the analytic results revealed significant impacts of mathematical teachers’ CKT on 

the SEM-constructed factor MQI in elementary and middle school mathematics classrooms, 
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particularly reflected by a significant increase in the richness of mathematical content. In contrast 

to MQI, no significant causal relationships were observed across all school levels between CKT 

and teacher-student interaction measured by CLASS or student perceived classroom experience 

measured by Tripod. 

Study 3: Mediation of Instructional Quality in the Relationship Between CKT and 

Student Achievement 

The third study explored the mediation pathways through which CKT affects student 

achievement via two instruments of instructional quality, MQI and Tripod. The analytic results 

are compelling.  

In elementary schools, a one-unit (1.712 SD) increase in teacher CKT from the 

randomization block mean led to a 0.016 total increase in student test scores (effect size: 0.011). 

The indirect effect through mathematical quality of instruction ratings MQI was approximately 

0.003 (effect sizes: 0.002), while the effect pathways through Tripod were insignificant and 

minimal (estimate: -0.001, effect size: -0.001). In middle schools, a one-unit (1.751 SD) increase 

in CKT resulted in a 0.037 total increase in student test scores (effect size: 0.029). The indirect 

effect through MQI was 0.008 (effect sizes: 0.006). The indirect effects via Tripod were 

indistinguishable from zero and not statistically significant. In high schools, the total effect of a 

one-unit increase (1.495 SD) in CKT on student test scores was 0.0002 (effect size: 0.0002). The 

indirect effects through MQI were negative, whereas the indirect effect via Tripod was positive 

but minimal (estimate: 0.0001, effect size: 0.0001). The negative indirect effects of CKT on 

student achievement via MQI suggest that non-zero indirect and direct effects can cancel each 

other out, resulting in an overall total effect that is indistinguishable from zero.  
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Overall, while direct effects of CKT on student outcomes appears to be minimal, nuanced 

causal mediation pathways through instructional quality warrants further exploration. It is 

evident that the indirect causal effects through mathematical quality factor MQI was more 

pronounced, while the effect pathways of CKT on student achievement through Tripod was 

negligible across all school levels.  

Furthermore, the study highlights several critical aspects readers should consider when 

drawing inferences from these findings of the causal mediation analyses. First, it should be noted 

that the outcome variables, standardized test scores provided by state administrators might lack 

the required cognitive challenge levels to capture the improvement in student learning (Kelcey et 

al., 2019; Lynch et al., 2017). Second, there may be unexplored heterogeneity in treatment 

effects across different student subpopulations. The treatment effects might be larger for certain 

subpopulations of students. For example, those students who cannot afford additional learning 

outside of school might benefit more from an increase in teacher CKT and instructional quality 

given that they greatly rely on school education. Third, the analytic results obtained from the 

high-school subsample are limited by a reduced sample size due to missing data from state 

administrative records and the inclusion of only one grade span. 

. In conclusion, this causal mediation study contributes valuable insights into how CKT 

causally influences student achievement through the causal mediation pathways of various 

instructional quality factors, and the complex nature of the relationships between teacher content 

knowledge, instructional quality, and student achievement. The study also identifies areas for 

subsequent research, including further examining non-linear relationships among the three 

constructs, investigating heterogeneity of treatment effects across diverse student populations, 

exploring a better alternative student outcome measure that can comprehensively reflect 
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improvement in student learning, and applying more sophisticated analytical methods such as 

structural equation models and semi-parametric weighting-based causal mediation analysis. 

Through these efforts, a deeper understanding of how teacher knowledge impacts student 

learning can be achieved, ultimately informing educational policy and practice to enhance 

instructional quality, student achievement and ultimately contributes to education equity. 

II. Implications for Policy and Practice 

The findings of this dissertation underscore the critical need for policies addressing the 

inequitable distribution of CKT. Ensuring that all students, particularly those in schools with 

high concentrations of disadvantaged students, have equal access to high-quality teachers is 

crucial. States and districts should consider developing and implementing equitable hiring 

practices that prioritize CKT and providing additional resources and support to schools with 

lower levels of teacher CKT. 

Given the significant impact of CKT on instructional quality, especially in elementary 

and middle school classrooms, professional development programs targeting CKT are essential. 

Such initiatives should not only focus on enhancing teachers' mathematical content knowledge 

and teaching skills in the long term, but also facilitate teacher collaboration, coaching, and 

mentoring to support instructional improvement with current teacher resources. 

Policymakers and practitioners should recognize the distinctive impacts of being taught 

by a high CKT teacher across different school levels, taking into account students' developmental 

stages and corresponding needs. While it is a common practice to assign high CKT teachers to 

grades and subjects where they can have the most significant impact, this strategy must be 

implemented cautiously to avoid controversy. School and district administrators must ensure that 

their decisions do not impede educational equity and equal access to quality education. When 
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assigning teachers based on their CKT levels to optimize instructional quality and student 

outcomes, it is crucial to maintain fairness and inclusivity.  

These policy and practice implications aim to create a more equitable educational 

landscape, ensuring that all students benefit from high-quality instruction and have the 

opportunity to achieve their full academic potential. 

III. Limitations and Future Directions 

The studies presented in this project are subject to several limitations. Firstly, the 

experimental design of the MET project only spans one year, rendering the experimental data 

cross-sectional. This limitation means that when comparing CKT effects on instructional quality 

by grade or across segmented samples, cohort differences cannot be ruled out. Additionally, the 

high school sample only includes 9th-grade classrooms, limiting the sample size and the 

generalization of the results to other high school grades. 

Secondly, the assumptions regarding the distribution of treatment effects can be extended. 

For simplification, the causal framework of this study assumes a constant causal effect across 

classrooms made exchangeable by experimental design at the grade-by-school level. However, 

the treatment effects can be heterogeneous and even non-linear, depending on where the teacher's 

CKT stands on the ability spectrum and across student performance spectrum, as indicated by a 

prior association study (Kelcey et al., 2019). Future analyses should relax the assumption of 

constant treatment effects and explore various types of heterogeneity and non-linearity in CKT 

effects.  

Furthermore, there might exist heterogeneity in treatment effects across student 

subpopulations that are yet to be explored. Certain subpopulations of students, e.g., those living 

under poverty, from immigrant families, or other disadvantaged backgrounds, might benefit more 
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from an increase in teacher CKT and instructional quality than their more advantaged peers, 

given that disadvantaged students greatly rely on school education when additional learning 

support is unaffordable at home. Future research should investigate such heterogeneity in 

treatment and mediated effects across student subgroups. 

Current results of causal mediation analyses also reveal the needs for an advanced study 

on the underlying structure of instructional quality factors, particularly when they act as 

mediators. It is worthwhile for future research to probe into the mediated pathways via multiple 

parallel mediators in current research contexts, addressing unsolved questions behind the absence 

of significant mediation effects of CKT on student test scores. 

Lastly, future research could benefit from employing simulation studies and alternative 

testing procedures to strengthen the rigor of significance testing in mediation analyses. 

Moreover, exploring novel methods such as advanced path analysis using structural equation 

modeling and alternative weighting methods for mediation analysis could open the opportunities 

of overcoming the limitations of conventional multi-step methods, as well as providing deeper 

insights into the causal relationships among CKT, instructional quality, and student outcomes. 

In summary, this dissertation contributes valuable insights into the relationships between 

CKT, instructional quality, and student outcomes. By addressing critical gaps and employing 

rigorous analytical approaches, this research provides a robust empirical foundation for future 

educational policies and practices. The findings underscore the importance of content knowledge 

for teaching in shaping instructional practices and student achievement and highlight areas for 

future investigation. Ultimately, this work aims to inform efforts to enhance educational equity 

and effectiveness, ensuring that all students receive high-quality instruction from knowledgeable 

and skilled teachers. 
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Tables 

Table 1. 1 Core Elements of the MET study by Year 

  
Elements Year 1 (Academic Year 

2009-2010) 
Year 2 (Academic Year 
2010-2011) 

1. District Administrative 
Data 

  

School o Grade, enrollment 
size, student 
composition 

o No new data is 
collected 

Teacher o Demographics, 
professional 
background 

o No new data is 
collected 

Student o Prior scores on state 
test, current test 
scores, gender, 
ethnicity, free lunch 
status, program 
participation 

o Prior scores on state 
test, current test 
scores, gender, 
ethnicity, free lunch 
status, program 
participation 

2. Classroom Videos   
For teachers that are 
generalists (Subject Matter 
Generalists) 

o Eight video sessions 
per teacher: each day 
recorded ELA, 
Mathematics for four 
days  

o Eight video sessions 
per teacher: each day 
recorded ELA, 
Mathematics for four 
days 

For specialist teachers 
(Subject Matter Specialists) 

o Four video sections 
per teacher: each day 
recorded two sections 
for two days 

o Four video sections 
per teacher: each day 
recorded one section 
for four days 

3. Classroom Video Scoring   
Subject Matter Generalists o Each video scored 

with CLASS and FFT. 
Additionally, ELA 
sessions scored with 
PLATO, Math 
sessions scored with 
MQI 

o Each video scored 
with CLASS and FFT. 
Additionally, ELA 
sessions scored with 
PLATO, Math 
sessions scored with 
MQI 

Subject Matter Specialist o English: CLASS, 
FFT, PLATO 

o Math: CLASS, FFT, 
MQI 

o Biology: QST 

o English: CLASS, 
FFT, PLATO 

o Math: CLASS, FFT, 
MQI 

o Biology: QST 
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Table 1. 1 Continued. 

4. Student Outcome Data o  o  
Grades 4-5 o SAT-9 open-ended 

reading; Balanced 
Assessment in 
Mathematic; Student 
Perception (or Tripod) 
Survey 

o SAT-9 open-ended 
reading; Balanced 
Assessment in 
Mathematics; Student 
Perception (or Tripod) 
Survey 

Grades 6-8 o SAT-9 open-ended 
reading; Balanced 
Assessment in 
Mathematics; Student 
Perception (or Tripod) 
Survey 

o SAT-9 open-ended 
reading; Balanced 
Assessment in 
Mathematics; Student 
Perception (or Tripod) 
Survey 

Grade 9 o ACT Quality Core 
English Grade 9; ACT 
Quality Core Algebra 
I; ACT Quality Core 
Biology; Student 
Perception (or Tripod) 
Survey 

o ACT Quality Core 
English Grade 9; ACT 
Quality Core Algebra 
I; ACT Quality Core 
Biology; Student 
Perception (or Tripod) 
Survey 

5. School Personnel Surveys   
Teachers o Teacher Working 

Conditions Survey 
o MET Teacher Survey; 

Content Knowledge 
for Teaching 
Assessment (Math 
and ELA) 

Principals - o MET Principal 
Survey; 
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Table 1. 2 Participation of the MET Study by Year, Study Type, and Unit Level 

 Year 1 (Academic Year 2009-2010) Year 2 (Academic Year 2010-2011) 
Unit Level Full sample Core Study 

Sample 
Randomized 
Sample 

Full sample 

Districts 6 6 6 6 
Schools 317 310 284 317 
Teacher 2741 2086 1559 2741 
Class sections 4497 1909 1379 4497 

Note: There exist a number of teachers whose conditions didn’t qualify for randomization 

requirements being observed in Year 2 (i.e. non-randomized sample). 
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Table 2. 1 Descriptive statistics of participating teachers’ characteristics 

VARIABLES Obs Mean Std. Dev. Min Max 
 Gender (1=male) 974 .206 .405 0 1 
 Race       
 White (1=yes) 972 .580 .494 0 1 
 Black (1=yes) 972 .335 .472 0 1 
 Hispanic (1=yes) 972 .055 .227 0 1 
Generalist (1=yes) 1005 .388 .488 0 1 
Master’s degree or 
above (1=yes) 738 .401 .490 0 1 

Years of experience      
 In total 370 9.927 9.018 0 44 
 In current district 751 6.777 6.489 0 37 
Novice teacher (1=yes) 669 .010 .203 -.661 .682 
Value-added scores 1005 0.005 .927 -3.104 2.864 
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Table 2. 2 Associations of CKT latent scores with teacher characteristics 

VARIABLES Regression 
Coefficients 

Standardized 
Coefficients 

Std. Errors 
(clustered by 

schools) 

p-value 

 Gender (1=male) .183* .121 .076 .016 
 Race      
 White (1=yes) .575*** .420 .068 .000 
 Black (1=yes) -.699*** -.499 .066 .000 
 Hispanic (1=yes) .083 .041 .157 .601 
Generalist (1=yes) -.376*** -.273 .084 .000 
Master’s degree or 
above (1=yes) 

-.345*** -.251 .078 .000 

Years of experience     
 In total -.010 -.031 .006 .086 
 In current district -.003 -.008 .006 .617 
Novice teacher (1=yes) -.092 -.043 .087 .293 
Value-added scores .355 .161 .191 .064 

Note: Here I present results regressing CKT on each one of the teacher characteristics in the first 
column without any other controls. These regressions were for descriptive purposes without 
making causal claims. For binary predictors, the regression coefficients were equivalent to t-tests 
to compare means of two sub-samples having different values of the predictors.  *** p<0.001, ** 
p<0.01, * p<0.05



 1 
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Table 2. 3 Descriptive statistics of covariates at teacher-level and school-level within segmented 
sub-samples 

VARIABLES Obs Mean Std. Dev. Min Max 
Elementary Schools 
Teacher-level      

CKT latent scores 394 -.137 .884 -2.16 2.51 
2009 Math scores 394 .022 .471 -2.73 1.55 
FRL (%) 290 .465 .293 0 1 
Black+Hispanic (%) 394 .715 .289 .03 1 
Black (%) 394 .433 .250 0 1 
Hispanic (%) 394 .054 .103 0 1 
ELL (%) 394 .150 .178 0 1 
Special Education (%) 393 .085 .093 0 .56 
School-level      
CKT latent scores 394 -.137 .884 -2.15 2.51 
2009 Math scores 394 .050 .357 -.703 1.09 
FRL (%) 290 .461 .280 .05 .98 
Black+Hispanic (%) 394 .713 .278 .09 1 
Black (%) 394 .434 .348 .004 1 
Hispanic (%) 394 .245 .237 0 .96 
ELL (%) 394 .141 .142 0 .73 
Special Education (%) 393 .095 .045 .02 .35 
Middle Schools      
Teacher-level      
CKT latent scores 373 .040 .927 -2.38 2.35 
2009 Math scores 373 -.002 .688 -2.24 1.71 
FRL (%) 315 .634 .301 0 1 
Black+Hispanic (%) 373 .690 .302 0 1 
Black (%) 373 .312 .312 0 1 
Hispanic (%) 373 .350 .303 0 1 
ELL (%) 373 .137 .166 0 .98 
Special Education 373 .099 .161 0 1 
School-level      
CKT latent scores 373 .040 .927 -2.38 2.35 
2009 Math scores 373 .101 .410 -.82 .95 
FRL (%) 315 .627 .278 .08 1 
Black+Hispanic (%) 373 .685 .279 .17 1 
Black (%) 373 .307 .280 .02 1 
Hispanic (%) 373 .351 .275 0 .96 
ELL (%) 373 .137 .111 0 .58 
Special Education (%) 373 .078 .048 0 .35 
High Schools      
Teacher-level      
CKT latent scores 141 .451 .857 -1.69 2.86 
2009 Math scores 131 -.289 .477 -1.64 1.27 
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Table 2. 3 Continued. 
 
FRL (%) 123 .623 .234 .07 1 
Black+Hispanic (%) 141 .798 .210 .18 1 
Black (%) 141 .431 .306 0 .1 
Hispanic (%) 141 .350 .269 0 .97 
ELL (%) 141 .124 .201 0 .83 
Special Education (%) 141 .053 .107 0 .59 
School-level      
CKT latent scores 141 .451 .857 -1.69 2.86 
2009 Math scores 131 -.123 .327 -.929 1.09 
FRL (%) 123 .611 .225 .104 .96 
Black+Hispanic (%) 141 .764 .207 .34 1 
Black (%) 141 .415 .289 .01 .1 
Hispanic (%) 141 .329 .259 0 .941 
ELL (%) 141 .111 .165 0 .665 
Special Education (%) 141 .065 .043 .001 .169 
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Table 2. 4 Model specifications for Hierarchical Generalized Linear Model 

Unadjusted model Adjusted model  

Level 1 (Item): 

𝜂8)+ = log G
𝜑8)+

1 − 𝜑8)+
J = 𝜃)+ − 𝛽8)+𝐼8)+ 

	
Level 2 (Teacher): 

𝜃)+ = π0k +	π1kGrade)+ + e)+ 
𝛽8)+ = π89+ 
e)+~N(0,s:9) 

Level 3 (School): 
π0k = γ;; +	γ;<District;+ + 	r;+ 

π1k = γ<; 
πi2k = γ89; 

r;+~N(0,s*9) 

	
Mixed Model 

𝜂8)+ = log G
𝜑8)+

1 − 𝜑8)+
J

= γ;; +	γ;<District;+
+ 	r;+ +	γ<;Grade)+ + e)+
− γ89;𝐼8)+  

 

Level 1 (Item): 

𝜂8)+ = log G
𝜑8)+

1 − 𝜑8)+
J = 𝜃)+ − 𝛽8)+𝐼8)+ 

 
Level 2 (Teacher): 
𝜃)+ = π0k +	π1kGrade)+ + 	π2k	X)+ + e)+ 

𝛽8)+ = π8=+ 
e)+~N(0,s:9) 

Level 3 (School): 
π0k = γ;; +	γ;<District;+ +	γ;9X;+

+ 	r;+ 
	π1k = γ<;	 
π2k = γ9; 
πi3k = γ8=; 

r;+~N(0,s*9) 

	
Mixed Model 

𝜂8)+ = log G
𝜑8)+

1 − 𝜑8)+
J

= γ;; +	γ;<District;+
+	γ;9X;+ + 	r;+
+	γ<;Grade)+ + 	 γ9;	X)+
+ e)+ − γ8=;𝐼8)+ 

 
 

 
Note: Here, subscripts i, j, k represent item i of teacher j in school k. Coefficients π, β represents 
classroom-level coefficients, and school-level coefficients respectively. Gradeij represents a 
vector of indicator variables for grade level, Gradeij =[Grade5ij,…, Grade9ij]T where Grade5ij to 
Grade9ij are dummy variables. Any one of the grade-level dummy indicates the teacher i in 
school j teaches the 5th to the 9th grades correspondingly; all equal to 0 indicates the teacher 
teaches the 4th grade. π1j  is a vector of coefficients for vector Gradeij. Similarly, District0j 
represents a vector of indicator variables for district, District0j = [District20j, …, District60j]T 
where District20j  to District60j are dummy variables. Any one of district dummy variables equal 
to 1 indicates school j being in District 2 to 6 correspondingly; all equal to 0 indicates school j 
being in District 1. β01 is a vector of coefficients for vector District0j. Residual variance 
components e, r represent variation at the classroom-, and school-levels and are assumed to 
follow zero mean normal distributions with variance se2, sr2 respectively.
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Table 2. 5 Natural variation by grade, by state and variance decomposition of full sample and 
subsamples of various levels of schools 

 (1) (2) (3) (4) 

VARIABLES Full sample Elementary 
school  

(4th to 5th) 

Middle school 
subsample 
(6th to 8th) 

High school 
subsample 

(9th) 
Intercept -.298* .574*** .492** 4.226*** 
 (.150) (.139) (.152) (.739) 
Grade indicators     
 4th grade baseline baseline - - 
     
 5th grade .070 .062 - - 
 (.077) (.069)   
 6th grade .796*** - baseline - 
 (.108)    
 7th grade .88*** - .044 - 
 (.113)  (.105)  
 8th grade 1.143*** - .342** - 
 (.117)  (.109)  
 9th grade 1.422*** - - - 
 (.123)    
District indicators YES YES YES YES 
 District 1 baseline baseline baseline baseline 
     
 District 2 .325* .073 - .789* 
 (.158) (.190)  (.292) 
 District 3 -.571*** -.782*** -.607** .173 
 (.096) (.113) (.192) (.278) 
 District 4 .114 -.056 .166 .552 
 (.093) (.112) (.164) (.289) 
 District 5 -.079 -.226* -.047 .224 
 (.085) (.115) (.138) (.225) 
 District 6 -.265** - -.253* - 
 (.121)  (.139)  
Within-school variation 
of the random intercept 

.414 .315 .501 .486 

Between-school 
variation of the random 
intercept 

.059 .028 .063 .084 

Level-2 intraclass 
correlation 

.126 .094 .146 .148 

Level-3 Intraclass 
correlation 

.016 .010 .016 .022 
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Table 2. 5 Continued. 

Observations     
Number of classrooms 908 394 373 141 
Number of schools 267 109 100 68 

 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2. 6 Variance comparison by different combinations of fixed effects (Full sample) 

 No fixed 
effects 

Only grade 
fixed effects 

Only district 
fixed effects 

Both types of 
fixed effects 

Within-school variation  .423 .413 .420 .414 

Between-school 
variation 

.275 .121 .182 .059 
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Table 2. 7 Variance comparison of CKT latent scores across models including different 
covariates by school levels (With adjustment for district and grade fixed effects) 

 Elementary 
schools 

Middle schools High schools 

No covariates    
Within-school variation  .315 .501 .486 

Between-school variation 
(% of total variation between 
schools) 

.028 .063 .084 

    

Prior achievement    

Within-school variation  .311 .511 .475 
Between-school variation .025 .002 .014 
    

F/R lunch*    

Within-school variation  .269 .515 .376 
Between-school variation .049 .053 .056 
    

Minority    

Within-school variation  .313 .505 .475 
Between-school variation .024 .026 .045 

Note: The sample size for regressions including F/R lunch statuses is notably smaller compared 
with other regressions. This vast difference came from the missing information of students’ F/R 
lunch statuses in the administrative records of an entire school district. 
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Table 2. 8 Inequality in CKT distribution by prior performance levels 

 (1) (2) (3) 
VARIABLES 
 
 

Elementary 
schools 

Middle Schools High Schools 

Average Math scores in 2009 of 
students taught by the teacher 

-.031 .051 -.081 

 (.130) (.101) (.237) 
School average Math scores in 
2009 

.248* .606*** .595* 

 (.123) (.114) (.240) 
Intercept .543*** .414** 4.874*** 
 (.139) (.144) (1.019) 
Within-school variation of the 
random intercept .311 .511 .475 

Between-school variation of the 
random intercept .025 .002 .014 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Level-2 intraclass correlation .093 .135 .130 
Level-3 Intraclass correlation .007 .0004 .004 
Number of classrooms 394 373 131 
Number of schools 109 100 67 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2. 9 Inequality in CKT distribution by Free/Reduced-priced Lunch Status 

 (1) (2) (3) 
VARIABLES 
 
 

Elementary 
schools 

Middle Schools High Schools 

Proportion of F/R eligible students 
taught by the teacher 

-.624 -1.047* 2.379* 

 (.526) (.515) (.492) 
Proportion of F/R eligible students 
in school 

-.286 -.334 -1.655** 

 (.217) (.266) (.485) 
Intercept .473** .524** 4.155*** 
 (.156) (.160) (.735) 
Within-school variation of the 
random intercept .269 .515 .376 

Between-school variation of the 
random intercept .049 .053 .056 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Level-2 intraclass correlation .088 .147 .116 
Level-3 Intraclass correlation .014 .014 .015 
Number of classrooms 290 315 123 
Number of schools 85 87 60 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

Note: The sample size for regressions including F/R lunch statuses is notably smaller compared 
with other regressions. This vast difference came from the missing information of students’ F/R 
lunch statuses in the administrative records of an entire school district. 
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Table 2. 10 Inequality in CKT distribution by Minority Status 

 (1) (2) (3) 
VARIABLES 
 
 

Elementary 
schools 

Middle Schools High Schools 

Proportion of minority students 
taught by the teacher 

-.159 -.542 -.065 

 (.555) (.432) (.743) 
Proportion of minority students in 
School 

-.345* -.881*** -1.511** 

 (.169) (.236) (.494) 
Intercept .504*** .332* 3.914*** 
 (.143) (.153) (.742) 
Within-school variation of the 
random intercept .313 .505 .475 

Between-school variation of the 
random intercept .024 .026 .045 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Level-2 intraclass correlation .093 .139 .137 
Level-3 Intraclass correlation .007 .007 .012 
Number of classrooms 394 373 141 
Number of schools 109 100 68 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2. 11 Inequality in CKT distribution by English Language Learner Status 

 (1) (2) (3) 
VARIABLES Elementary 

schools 
Middle Schools High Schools 

Proportion of ELL students taught 
by the teacher 

.295 -.519 -.339 

 (.358) (.402) (1.110) 
Proportion of ELL students in 
School 

-.440 -.077 -2.775** 

 (.333) (.652) (.971) 
Intercept .575*** .495** 4.159*** 
 (.094) (.154) (.736) 
Within-school variation of the 
random intercept .314 .497 .497 

Between-school variation of the 
random intercept .025 .064 .026 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Level-2 intraclass correlation .094 .146 .137 
Level-3 Intraclass correlation .007 .017 .007 
Number of classrooms 394 373 141 
Number of schools 109 100 68 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table 2. 12 Inequality in CKT distribution by Special Education Status 

 (1) (2) (3) 
VARIABLES 
 
 

Elementary 
schools 

Middle Schools High Schools 

Proportion of Special Ed students 
taught by the teacher 

.410 -.172 -.336 

 (.583) (.424) (.934) 
Proportion of Special Ed students 
in School 

.768 -2.202 -5.336* 

 (.952) (1.230) (2.622) 
Intercept .537*** .443 4.300 
 (.143) (.153) (.738) 
Within-school variation of the 
random intercept .315 .506 .484 

Between-school variation of the 
random intercept .026 .050 .061 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Level-2 intraclass correlation .094 .145 .142 
Level-3 Intraclass correlation .007 .013 .016 
Number of classrooms 393 373 141 
Number of schools 109 100 68 

Standard errors in parentheses 

 *** p<0.001, ** p<0.01, * p<0.05  
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Table 3. 1 Pairwise correlations of MQI items 

MQI Items CWCM EI ET RICH SPMMR WWSM 
Elementary school data       

classroom work connected to 
mathematics (CWCM) 

1      

errors and imprecision (EI) 0.07 1 /    
richness of mathematics (RICH) 0.05 -0.11 / 1   
student participation in meaning 
making and reasoning (SPMMR) 

0.05 -0.01 / 0.31 1  

working with students and 
mathematics (WWSM) 

0.05 -0.16 / 0.31 0.38 1 

       
Secondary school data       
classroom work connected to 
mathematics (CWCM) 

1      

errors and imprecision (EI) 0.14 1     
explicitness and thoroughness 
(ET) 

0.09 -0.1 1    

richness of mathematics (RICH) 0.33 0.08 -0.05 1   
student participation in meaning 
making and reasoning (SPMMR) 

0.09 -0.14 0.11 0.39 1  

working with students and 
mathematics (WWSM) 

0.14 -0.16 -0.02 0.38 0.5 1 
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Table 3. 2 Factor loadings of MQI items 

MQI Items Factor 1 
Elementary school data  
(Eigenvalue) 0.88 
classroom work connected to mathematics (CWCM) 0.08 
errors and imprecision (EI) -0.17 
richness of mathematics (RICH) 0.49 
student participation in meaning making and reasoning (SPMMR) 0.54 
working with students and mathematics (WWSM) 0.57 
Secondary school data Factor 1 
(Eigenvalue) 1.26 
classroom work connected to mathematics (CWCM) 0.3 
errors and imprecision (EI) -0.09 
explicitness and thoroughness (ET) 0.06 
richness of mathematics (RICH) 0.6 
student participation in meaning making and reasoning (SPMMR) 0.64 
working with students and mathematics (WWSM) 0.63 
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Table 3. 3 Descriptive statistics of SEM-constructed factors by grade levels 

VARIABLES Mean Std. Deviation Range 
Elementary schools (Obs=318)    
CKT latent scores -.12 .86 [-2.15, 2.27] 
 InsQ .01 1.96 [-7.06, 6.46] 
 MQI  .002 .14 [-.27, .49] 
CWCM .96 .11 [.5, 1] 
Error and Imprecision 1.26 .27 [1, 2.5] 
Richness of Mathematics 1.33 .26 [1, 2.25] 
SPMMR 1.24 .28 [1, 3] 
WWSM 1.31 .26 [1, 2.13] 
CLASS 49.44 4.01 [33.77, 59.66] 
Tripod 73.86 8.24 [35.75, 93.00] 
    
Middle schools (Obs=257)    
CKT latent scores 0.04 0.92 [-2.38, 1.94] 
 InsQ .04 3.92 [-14.61, 9.70] 
 MQI  .002 .091 [-.20, .34] 
CWCM .92 .16 [0, 1] 
Error and Imprecision 1.22 .25 [1, 2.13] 
Explicitness and Thoroughness 2.23 1.76 [1, 9] 
Richness of Mathematics 1.20 .23 [1, 2] 
SPMMR 1.15 .20 [1, 1.75] 
WWSM 1.27 .25 [1, 2.25] 
CLASS 111.84 15.50 [23.57, 143.59] 
Tripod 45.078 5.190 [28.76, 57.89] 
    
High schools (Obs=75)    
CKT latent scores .38 .81 [1.45, 2.09] 
 InsQ -2.78 3.26 [-10.82, 4.11] 
 MQI  -.04 .07 [-.16, .28] 
Error and Imprecision 1.14 .18 [1, 1.75] 
Explicitness and Thoroughness 2.87 3.07 [1, 22] 
Richness of Mathematics 1.15 .23 [1, 2] 
SPMMR 1.06 .14 [1, 1.67] 
WWSM 1.29 .23 [1, 1.75] 
CLASS 41.34 4.50 [29.29, 50.03] 
Tripod 106.63 16.06 [61.08, 131.15] 
Care -.11 .56 [-1.51, .94] 
Confer .08 .34 [-1.21, .45] 
Captivate -.12 .67 [-1.83, 1.26] 
Clarify -.12 .53 [-1.58, .76] 
Consolidate -.14 .55 [-1.54, .75] 
Challenge -.09 .39 [-1.13, .48] 
Classroom management -.10 .56 [-1.56, 1.09] 
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Table 3. 4 Pairwise correlations of SEM-constructed factors 

VARIABLES InsQ MQI CLASS 
composite 

score 

Tripod 
composite 

score 
Elementary school data     

InsQ 1    
MQI 0.81 1   
CLASS composite score 0.52 0.91 1  
TRI composite score 0.16 0.28 0.14 1 
     
Secondary school data     
InsQ 1    
MQI 0.7 1   
CLASS composite score 0.61 0.98 1  
TRI composite score 0.25 0.49 0.37 1 
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Table 3. 5 Associations of CKT latent scores with teacher characteristics  

VARIABLES Regression 
Coefficients 

Std. Errors 
(clustered by 

schools) 

p-value 

Elementary schools (N=98, 
n=335) 

   

 Gender (1=male) -.003 .024 .870 
 Race     
 White (1=yes) .074 .031 .016 
 Black (1=yes) -.078 .027 .004 
 Hispanic (1=yes) .003 .017 .876 
 Other (1=yes) .001 .008 .892 
Master’s degree or above (1=yes) -.027 .037 .472 
Years of experience    
 In total -2.044 .974 .036 
 In current district -.660 .415 .111 
    
Middle schools (N=279, n=84)    
 Gender (1=male) .018 .032 .576 
 Race     
 White (1=yes) .180 .029 .000 
 Black (1=yes) -.166 .026 .000 
 Hispanic (1=yes) -.004 .017 .821 
 Other (1=yes) -.011 .010 .290 
Master’s degree or above (1=yes) -.0004 .035 .990 
Years of experience    
 In total -1.763 .795 .027 
 In current district -1.637 .584 .005 
    
High schools (N=44, n=98)    
 Gender (1=male) .013 .058 .821 
 Race     
 White (1=yes) .001 .061 .983 
 Black (1=yes) .042 .042 .324 
 Hispanic (1=yes) .001 .034 .971 
 Other (1=yes) -.044 .033 .182 
Master’s degree or above (1=yes) -.059 .082 .470 
Years of experience    
 In total -.128 1.333 .335 
 In current district -1.597 .877 .069 

Note: Here I present results regressing CKT on each one of the teacher characteristics in the first 
column without any other controls. These regressions were for descriptive purposes without 
making causal claims. For binary predictors, the regression coefficients were equivalent to t-tests 
to compare means of two sub-samples having different values of the predictors. The p-values in 
bold indicate statistical significance of at least 0.05 level. 
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Table 3. 6 Analytic results for CKT impacts on MQI 

VARIABLES Elementary 
school  

(4th to 5th) 

Middle school 
subsample 
(6th to 8th) 

High school 
subsample 

(9th) 
MQI .025* .021** .007 
 (.012) (.008) (.010) 
Intercept .044* .042** -.046** 
 (.022) (.014) (.018) 
Grade indicators:    
 4th grade baseline - - 
    
 5th grade -.029 - - 
 (.016)   
 6th grade - baseline - 
    
 7th grade - -.033* - 
  (.015)  
 8th grade - -.036* - 
  (.015)  
District indicators:    
 District 1 baseline baseline baseline 
    
 District 2 -.060 - -.004 
 (.047)  (.027) 
 District 3 -.106** -.027 .028 
 (.030) (.032) (.032) 
 District 4 .011 -.032 .024 
 (.028) (.022) (.031) 
 District 5 -.046* -.008 -.009 
 (.028) (.019) (.022) 
 District 6 - -.050* - 
  (.020)  
Random intercept (random block) .0002 .001 .0001 
Random slope (school) .000 .000 .0003 
Random intercept (school) .003 .001 .0001 
Residual .014 .005 .002 
Level-2 intraclass correlation .175 .294 .336 
Level-3 Intraclass correlation .164 .153 .321 
Number of classrooms 273 238 71 
Number of randomization blocks 111 114 35 
Number of schools 76 74 32 

Standard errors in parentheses *** p<0.001, ** p<0.01, * p<0.05 
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Table 3. 7 Analytic results for CKT impacts on MQI dimension scores 

MQI dimension Regression 
Coefficients 

Standardized 
Coefficients 

Std. Errors  p-value 

Elementary schools     
CWCM .018 .141 .011 .123 
Error and Imprecision -.052 -.166 .029 .070 
Richness of Mathematics .061* .202 .023 .008 
SPMMR .011 .034 .027 .673 
WWSM .048 .159 .022 .035 
     
Middle schools     
CWCM .005 .029 .017 . 768 
Error and Imprecision -.066* -.243 .026 .012 
Explicitness and Thoroughness .096 .050 .311 .761 
Richness of Mathematics .049 .196 .022 .028 
SPMMR .043* .198 .018 .020 
WWSM .023 .085 .023 .310 
     
High schools     
Error and Imprecision .009 .041 .042 .823 
Explicitness and Thoroughness -.238 -.063 .627 .705 
Richness of Mathematics .028 .099 .048 .558 
SPMMR -.016 -.093 .023 .491 
WWSM .011 .039 .041 .779 

Standard errors in parentheses 
*** p<0.0002, ** p<0.002, * p<0.025 (p-value adjustment for 5 tests)  
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Table 4. 1 Descriptive statistics of main variables by grade levels 

VARIABLES Mean Std. Deviation Range 
Elementary schools (n=6,265)    
Student test scores  .026 .939 [-3.26, 3.02] 
(Centered) .000 .828 [-3.60, 2.85] 
CKT latent scores -.139 .842 [-2.15, 2.27] 
(Centered) .002 .584 [-1.71, 1.44] 
 MQI  -.003 .137 [-.27, .49] 
(Centered) .002 .094 [-.27, .34] 
Tripod 73.982 8.657 [35.75, 93.00] 
(Centered) .194 5.450 [-25.03,22.32] 
    
Middle schools(n=5,590)     
Student test scores  .125 .919 [-3.02, 2.82] 
(Centered) -.000 .722 [2.75, 2.93] 
CKT latent scores .048 .891 [-2.38, 1.94] 
(Centered) -.001 .571 [-1.84, 1.84] 
 MQI  .003 .092 [-.20, .34] 
(Centered) .002 .056 [-.17, .21] 
Tripod 111.120 16.203 [23.57, 136.20] 
(Centered) -.185 11.222 [-40.79, 40.79] 
    
High schools (n=354)     
Student test scores  -.365 .730 [-2.28, 1.61] 
(Centered) -.000 .676 [-2.18, 1.93] 
CKT latent scores .658 .932 [-1.19, 2.09] 
(Centered) .003 .669 [-1.19, 1.16] 
 MQI  -.051 .063 [-.16, .06] 
(Centered) -.010 .058 [-.16, .07] 
Tripod 99.916 11.962 [64.50, 125.22] 
(Centered) 1.254 9.750 [-30.28, 17.43] 
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Table 4. 2 Analytic Results for Step 1: Treatment Effects on Student Achievement- Total Effects, α 
0200 

VARIABLES 2011 Mathematics scores 
Elementary schools  
CKT .016 
 (.022) 
Middle schools  
CKT .037 
 (.021) 
High schools  
CKT .0002 
 (.040) 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05  

 

  



 

 137 
 

Table 4. 3 Analytic Results for Step 2: Treatment Effects on Mediators, g0100 

VARIABLES MQI Tripod 
Elementary schools   
CKT .063* .275 
 (.027) (1.391) 
Middle schools   
CKT .029 4.821 
 (.020) (4.145) 
   
High schools   
CKT 0.004 -1.088 
 (.020) (4.662) 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table 4. 4 Analytic Results for Step 3: Controlled Direct Treatment Effects, β0100  and Mediator 
Effects on Student Achievement given Treatment, β0200  

VARIABLES 2011 Mathematics scores 2011 Mathematics scores 
 (M=MQI) (M=Tripod) 
Elementary schools    
CKT, β0100 .013 .017 
 (.022) (.022) 
M, β0200 .137 .0005 
 (.141) (.002) 
Intercept, β0000 .117 .116 
 (.098) (.098) 
Student-level covariates YES YES 
District indicators YES YES 
Random slope (school) .0003 .000 
Random intercept (school) .134 .135 
Random block  .029 .028 
Class .031 .031 
Residual .306 .306 
Number of schools  74 74 
Number of random blocks 109 109 
Number of classrooms 267 267 
   
Middle schools   
Z, β0100 .029 .037 
 (.021) (.020) 
M, β0200 .381 .002 
 (.221) (.001) 
Intercept, β0000 .300** .300** 
 (.096) (.097) 
Student-level covariates YES YES 
District indicators YES YES 
Random slope (school) .000 .000 
Random intercept (school) .130 .131 
Random block  .136 .134 
Class .022 .022 
Residual .266 .266 
Number of schools  74 74 
Number of random blocks 114 114 
Number of classrooms 238 238 
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Table 4. 4 Continued. 

High schools   
Z, β0100 .025 .00008 
 (.050) (.040) 
M, β0200 -.846 -.00006 
 (.695) (.003) 
Intercept, β0000 -.668*** -.662*** 
 (.132) (.139) 
Student-level covariates YES YES 
District indicators YES YES 
Random slope (school) .000 .000 
Random intercept (school) .027 .036 
Random block  .001 .003 
Class .004 .0001 
Residual .240 .240 
Number of schools  14 14 
Number of random blocks 15 15 
Number of classrooms 26 26 

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05 
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Table 4. 5 Indirect effects derived from multi-step regression estimates 

Coefficients MQI Tripod 
Elementary schools   
α 0200 - β0100 .003 -.001 
g100 β 0200 .009 .0001 
   
Middle schools   
α 0200 - β0100 .008 0 
g100 β 0200 .011 .010 
   
High schools   
α 0200 - β0100 -.025 .0001 
g100 β 0200 -.003 .0001 
	   

  



 

 141 
 

Figures 

Figure 1. 1 Structure of dissertation project 

 

 

  

STRUCTURE OF DISSERTATION PROJECT

Part 1.

Descriptive analysis on 
natural distribution of Z

Part 2. Causal 
analysis on Z->M

Part 3. 

Causal mediation analysis: 

i.e., Z->M->Y and Z->Y 

PRESENTATION TITLE 4

Z

M

Y

Z: Content knowledge 
for teaching 
[Treatment]

M: instructional quality [Mediator]

Y:  Learning 
outcomes 
[Outcome]

(Path diagram representing the mediation framework)
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Figure 3. 1 Diagrams indicating structures of three different SEMs for CLASS 
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Figure 3.1 Continued. 
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Figure 3. 2 SEM Results of the final structure in path diagram (Elementary data) 

 

Fitness Indices: 

ChiSq=14.087 

ChiSq/df=1.08 

RMSEA= 0.032 

CFI= 0.993 

TLI= 0.989 
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Figure 3. 3 SEM Results of the final structure in path diagram (Secondary data) 

 

 

Fitness Indices: 

ChiSq=30.835 

ChiSq/df=2.37 

RMSEA= 0.072 

CFI= 0.889 

TLI= 0.821 
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Figure 4. 1 Pairwise relationship between CKT latent scores (group mean centered) and student 
math achievement (group mean centered) in elementary-school sample 
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Figure 4. 2 Pairwise relationships between CKT latent scores and MQI, and between MQI and 
student achievement in elementary-school sample, all variables group mean centered 
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Figure 4. 3 Pairwise relationships between CKT latent scores and CLASS composite scores, and 
between CLASS and student achievement in elementary-school sample, all variables group mean 
centered 
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Figure 4. 4 Pairwise relationships between CKT latent scores and Tripod composite scores, and 
between Tripod and student achievement in elementary-school sample, all variables group mean 
centered 
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Figure 4. 5 Pairwise relationship between CKT latent scores (group mean centered) and student 
math achievement (group mean centered) in middle-school sample 
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Figure 4. 6 Pairwise relationships between CKT latent scores and MQI, and between MQI and 
student achievement in middle-school sample, all variables group mean centered 
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Figure 4. 7 Pairwise relationships between CKT latent scores and CLASS composite scores, and 
between CLASS and student achievement in middle-school sample, all variables group mean 
centered 
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Figure 4. 8 Pairwise relationships between CKT latent scores and Tripod composite scores, and 
between Tripod and student achievement in middle-school sample, all variables group mean 
centered 
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Figure 4. 9 Pairwise relationship between CKT latent scores (group mean centered) and student 
math achievement (group mean centered) in high-school sample 
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Figure 4. 10 Pairwise relationships between CKT latent scores and MQI, and between MQI and 
student achievement in high -school sample, all variables group mean centered 
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Figure 4. 11 Pairwise relationships between CKT latent scores and CLASS composite scores, and 
between CLASS and student achievement in high -school sample, all variables group mean 
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Figure 4. 12 Pairwise relationships between CKT latent scores and Tripod composite scores, and 
between Tripod and student achievement in high -school sample, all variables group mean 
centered 
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Appendices 

Alternative Model for Step 3. Analyzing the mediated effect on the outcome via the 

mediator and the treatment-by-mediator interaction conditioning on the covariates 

Level-1 Model (Student) 

Y
ijrk 
= j0jrk +	j	1jrk	pre-testijrk	+	j	2jrk	Xijrk

	+ e
ijrk

 

e
ijrk

 ~N (0, s2e) 

Level-2 Model (Classroom) 

j	0jrk = π 00rk + π 01rk InsQ
jrk 

+ π 02rk CKT
jrk

 + v
0jrk

  

j	1jrk= π 10rk 

j	2jrk= π 20rk 

v
0jrk

~N (0, s2v) 

	

Level-3 Model (Randomization block) 

π00rk = θ 000k + θ 001kGrade
rk + ε00rk 

π01rk = θ 010k  

π02rk = θ3
020k  

π10rk = θ3
100k 

π20rk = θ3
200k 

ε00rk~N (0, s2ε) 

Level-4 Model (School)  

θ 000k = β0000 + β0100 Districtk + d000k 
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θ 001k = β0010 

θ 010k = β0100 

θ 020k = β 0200 

θ 100k = β 1000 

θ 200k = β 2000 

d00rk~N (0, s2d) 

 

Mixed Model:     Y
ijrk
= β0000 + β0100 CKT

jrk
 + β 0200InsQ

jrk
 +	β 0300InsQ

jrk 
CKT

jrk
 

+	β 1000 pre-testijrk	+	β 2000Xijrk
 

+ β0100 Districtk + β0010Grade
rk 

+ d000k +ε 00rk + v
0jrk

 + e
ijrk

 

Note: Subscripts ijrk indicate student i in classroom j of matched cluster m of school k; Xijrk 
indicates a vector of student-level characteristics, including their prior test scores (math scores in 
AY 2009-2010), eligibility of F/R lunch, racial identities, ELL status, and Special Education 
status. Graderk represents a vector of indicator variables for grade level, e.g., in middle school 
sample, Gradeij =[Grade5rk, Grade6rk]T where Grade5rk and Grade6rk are binary variables, 
indicating the classroom j in randomization block r is at 5th grade level. Districtk represents a 
vector of indicator variables for districts, District0j = [District2k, …, District5k]T, where District2k  
to District5k are binary variables. Residual variance components d, ε, v, e represent variation at 
the school-, randomization block-, classroom-, and student-levels and are assumed to follow zero 
mean normal distributions with variance s2d, s2ε, s2v,  s2e respectively. 
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Appendix Tables 

Table A2. 1 Model Specifications for Weighted Regression 

Unadjusted model Adjusted model  
Level-1 Model (Teacher) 
CKTij	=	π0j	+	π1jGradeij	+	eij  
eij	~N(0,	se2)	
	
Level-2 Model (School)  
π0j	=	β00	+	β01	Districtk +	r0j  
π1j	=	β10		
r0j	~N(0,	sr2)	
	
Mixed Model 
CKTij = β00	+	β01	Districtk + β10Gradejk 
+ r0j + ejk 
 

Level-1 Model (Teacher) 
CKTjk =	π0k	+	π1k	Xjk`	+	π2kGradejk	+	ejk  
ejk	~N(0,	se2)	
 
Level-2 Model (School)  
π0k	=	β00	+	β01	Xk	+	β02	Districtk +	r0k	
π1k	=	β10		
π2k	=	β20		
r0k	~N(0,	sr2)	
	
Mixed Model 
CKTjk = β00	+β01Xk	+	β10Xjk +	β02Districtk 
+β20	Gradejk + r0k + ejk 

 
 

 
Note: Here, subscripts i, j represent classroom i in school j. Coefficients π, β represents 
classroom-level coefficients, and school-level coefficients respectively. Gradeij represents a 
vector of indicator variables for grade level, Gradeij =[Grade5ij,…, Grade9ij]T where Grade4ij to 
Grade8ij are dummy variables. Any one of the grade-level dummy indicates the teacher i in 
school j teaches the 5th to the 9th grades correspondingly; all equal to 0 indicates the teacher 
teaches the 4th grade. π1j  is a vector of coefficients for vector Gradeij. Similarly, District0j 
represents a vector of indicator variables for district, District0j = [District20j, …, District60j]T 
where District20j  to District60j are dummy variables. Any one of district dummy variables equal 
to 1 indicates school j being in District 2 to 6 correspondingly; all equal to 0 indicates school j 
being in District 1. β01 is a vector of coefficients for vector District0j. Residual variance 
components e, r represent variation at the classroom-, and school-levels and are assumed to 
follow zero mean normal distributions with variance se2, sr2 respectively. 
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Table A2. 2 Natural variation by grade, by state and variance decomposition of full sample and 
subsamples of various levels of schools (Weighted regression) 

 (1) (2) (3) (4) 

VARIABLES Full sample Elementary 
school  

(4th to 5th) 

Middle school 
subsample 
(6th to 8th) 

High school 
subsample 

(9th) 
Intercept -.001 .177 .065 .173 
 (.008) (.017) (.007) (.014) 
Grade indicators     
 4th grade baseline baseline - - 
     
 5th grade .060 .052 - - 
 (.005) (.005)   
 6th grade .091 - baseline - 
 (.011)    
 7th grade .068 - -.030 - 
 (.012)  (.015)  
 8th grade .448*** - .342** - 
 (.011)  (.012)  
 9th grade .546*** - - - 
 (.010)    
District indicators YES YES YES YES 
 District 1 baseline baseline baseline baseline 
     
 District 2 .296* .094 - .691* 
 (.047) (.111)  (.088) 
 District 3 -.691*** -.959*** -.747*** .159 
 (.009) (.020) (.017) (.036) 
 District 4 .093 -.144 .208 .557* 
 (.010) (.021) (.028) (.059) 
 District 5 -.134 -.328* -.079 .201 
 (.009) (.023) (.024) (.031) 
 District 6 -.415** - -.381* - 
 (.021)  (.021)  
Within-school variation 
of the random intercept 

.644 .612 .687 .609 

Between-school 
variation of the random 
intercept 

.070 .030 .077 .073 

Intraclass correlation .108 .046 .101 .108 
Observations     
Number of classrooms 908 394 373 141 
Number of schools 267 109 100 68 
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Table A2. 3 Inequality in CKT distribution by prior performance levels (Weighted regression) 

 (1) (2) (3) 
VARIABLES 
 
 

Elementary 
schools 

Middle Schools High Schools 

Average Math scores in 2009 of 
students taught by the teacher 

-.098 .086 -.084 

 (.031) (.012) (.113) 
School average Math scores in 
2009 

.276* .638*** .681** 

 (.020) (.015) (.047) 
Intercept .142 -.013 .226 
 (.016) (.009) (.015) 
Within-school variation of the 
random intercept .606 .698 .612 

Between-school variation of the 
random intercept .027 .008 .000 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Number of classrooms 394 373 131 
Number of schools 109 100 67 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table A2. 4 Inequality in CKT distribution by Free/Reduced-priced Lunch Status (Weighted 
regression) 

 (1) (2) (3) 
VARIABLES 
 
 

Elementary 
schools 

Middle Schools High Schools 

Proportion of F/R eligible students 
taught by the teacher 

-.799 -.990 2.183* 

 (.784) (.242) (1.158) 
Proportion of F/R eligible students 
in school 

-.445 -.394 -1.710*** 

 (.072) (.085) (.189) 
Intercept .223* .032 .238 
 (.015) (.008) (.018) 
Within-school variation of the 
random intercept .564 .704 .538 

Between-school variation of the 
random intercept .049 .062 .036 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Number of classrooms 290 315 123 
Number of schools 85 87 60 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 

Note: The sample size for regressions including F/R lunch statuses is notably smaller compared 
with other regressions. This vast difference came from the missing information of students’ F/R 
lunch statuses in the administrative records of an entire school district. 
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Table A2. 5 Inequality in CKT distribution by Minority Status (Weighted regression) 

 (1) (2) (3) 
VARIABLES 
 
 

Elementary 
schools 

Middle Schools High Schools 

Proportion of minority students 
taught by the teacher 

-.208 -.625 -.134 

 (.535) (.289) (.842) 
Proportion of minority students in 
School 

-.366 -.903*** -1.511** 

 (.045) (.071) (.278) 
Intercept .102 -.097 -.139 
 (.018) (.011) (.031) 
Within-school variation of the 
random intercept .610 .692 .605 

Between-school variation of the 
random intercept .026 .036 .027 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Number of classrooms 394 373 141 
Number of schools 109 100 68 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table A2. 6 Inequality in CKT distribution by English Language Learner Status (Weighted 
regression) 

 (1) (2) (3) 
VARIABLES Elementary 

schools 
Middle Schools High Schools 

Proportion of ELL students taught 
by the teacher 

.678 -.656 -.464 

 (.153) (.162) (1.150) 
Proportion of ELL students in 
School 

-.560 -.122 -2.619** 

 (.212) (.654) (.302) 
Intercept .179 .060 .109 
 (.015) (.009) (.014) 
Within-school variation of the 
random intercept .607 .681 .621 

Between-school variation of the 
random intercept .027 .078 .017 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Number of classrooms 394 373 141 
Number of schools 109 100 68 

Standard errors in parentheses 

*** p<0.001, ** p<0.01, * p<0.05 
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Table A2. 7 Inequality in CKT distribution by Special Education Status (Weighted regression) 

 (1) (2) (3) 
VARIABLES 
 
 

Elementary 
schools 

Middle Schools High Schools 

Proportion of Special Ed students 
taught by the teacher 

.608 -.192 -.592 

 (.552) (.170) (.830) 
Proportion of Special Ed students 
in School 

.927 -1.841 -6.581** 

 (1.039) (2.091) (5.929) 
Intercept .142 .026 .264 
 (.017) (.009) (.013) 
Within-school variation of the 
random intercept .612 .693 .598 

Between-school variation of the 
random intercept .028 .063 .047 

Grade indicators YES YES YES 
District indicators YES YES YES 
Observations    
Number of classrooms 393 373 141 
Number of schools 109 100 68 

Standard errors in parentheses 

 *** p<0.001, ** p<0.01, * p<0.05  
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Table A3. 1 CLASS theoretical domains 

Theoretical domains Items 
EMOTIONAL SUPPORT Positive Climate   

Negative Climate  
Teacher Sensitivity  
Regards for Student Perspective 

CLASSROOM ORGANIZATION Behavior Management  
Productivity  
Instructional Learning Formats 

INSTRUCTIONAL SUPPORT Content Understanding  
Analysis and Problem Solving  
Quality of Feedback  
Instructional Dialogue 

STUDENT ENGAGEMENT Student Engagement 
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Table A3. 2 MQI domains 

MQI Items 
Classroom Work Connected to Mathematics 
Errors and Imprecision*(Not in Elementary School Form) 
Explicitness and Thoroughness 
Richness of Mathematics 
Student Participation in Meaning Making and Reasoning 
Working with Students and Mathematics 

 
 
  



 

 177 
 

Table A3. 3 Tripod items 

Theoretical 
domains 

Elementary 
survey code 

Secondary 
survey 
code 

Item description 

CARE 126 a10 My teacher in this class makes me feel that 
s/he really cares about me.   

180 b146 My teacher seems to know if something is 
bothering me.   

b34 My teacher really tries to understand how 
students feel about things.  

CONFER 168 b129 My teacher wants us to share our thoughts.   
159 b154 My teacher gives us time to explain our 

ideas.  
176 b155 Students speak up and share their ideas 

about class work. 
CAPTIVATE 

 
b29 My teacher makes learning enjoyable.   
b44 My teacher makes lessons interesting.  

108 b89 I like the ways we learn in this class.   
b141 This class does not keep my attention – I get 

bored. 
CLARIFY 96 b1 If you don’t understand something, my 

teacher explains it another way.  
185 b130 My teacher knows when the class 

understands, and when we do not.   
b136 When s/he is teaching us, my teacher thinks 

we understand even when we don’t.    
157  

97 b17 My teacher has several good ways to 
explain each topic that we cover in this 
class.  

98 b80 My teacher explains difficult things clearly.  
111 b90 In this class, we learn to correct our 

mistakes.  
165 b147 My teacher checks to make sure we 

understand what s/he is teaching us.   
b58 We get helpful comments to let us know 

what we did wrong on assignments.   
b83 The comments that I get on my work in this 

class help me understand how to improve.  
CONSOLIDATE 169 b145 My teacher takes the time to summarize 

what we learn each day.  
143 b70 In this class, we learn a lot almost every 

day. 
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Table A3. 3 Continued.  
164 b128 My teacher asks questions to be sure we are 

following along when s/he is teaching.  
CHALLENGE 

 
b133 My teacher asks students to explain more 

about answers they give.  
132 b21 In this class, my teacher accepts nothing less 

than our full effort.   
b36 My teacher doesn’t let people give up when 

the work gets hard.   
b45 My teacher wants us to use our thinking 

skills, not just memorize things.  
110 b59 My teacher makes us explain our answers – 

why we think what we think. 
CLASSROOM 
MANAGEMEN
T 

138 b6 Our class stays busy and doesn’t waste time. 

  
b49 Students in this class treat the teacher with 

respect.  
38 b46 My classmates behave the way my teacher 

wants them to.   
b138 Student behavior in this class is a problem.   
b114 Student behavior in this class makes the 

teacher angry.   
b113 I hate the way that students behave in this 

class.   
b112 Student behavior in this class is under 

control.  
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Table A3. 4 Detailed Fit Indices for Elementary School Data 

Fit statistics Value Description 
Likelihood ratio 

  

chi2_ms(13) 14.087 model vs. saturated 
p>chi2 0.368 

 

chi2_bs(21) 175.201 baseline vs. saturated 
p>chi2 0 

 
   

Population error 
  

RMSEA 0.015 Root mean squared error of approximation 
90% CI, lower bound 0 

 

upper bound 0.056 
 

pclose 0.906 Probability RMSEA <=0.05    

Information criteria 
  

AIC 4040.249 
 

BIC 4125.373 
 

   

Baseline comparison 
  

CFI 0.993 Comparative fit index 
TLI 0.989 Tucker-Lewis index    

Size of residuals 
  

SRMR 0.032 Standardized root mean squared residual 
CD 0.597 Coefficient of determination 
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Table A3. 5 Detailed Fit Indices for Secondary School Data 

Fit statistics Value Description 
   
Likelihood ratio 

  

chi2_ms(13) 30.835 model vs. saturated 
p>chi2 0.004 

 

chi2_bs(21) 181.869 baseline vs. saturated 
p>chi2 0 

 
   

Population error 
  

RMSEA 0.072 Root mean squared error of approximation 
90% CI, lower bound 0.039 

 

upper bound 0.105 
 

pclose 0.123 Probability RMSEA <=0.05    

Information criteria 
  

AIC 3421.981 
 

BIC 3500.901 
 

   

Baseline comparison 
  

CFI 0.889 Comparative fit index 
TLI 0.821 Tucker-Lewis index    

Size of residuals 
  

SRMR 0.056 Standardized root mean squared residual 
CD 0.781 Coefficient of determination 
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Table A3. 6 Analytic results for CKT impacts on CLASS and Tripod composite scores 

VARIABLES Regression 
Coefficients 

Std. Errors  p-value 

Elementary schools    
CLASS .011 .376 .977 
Tripod -.765 .748 .306 
    
Middle schools    
CLASS .272 .389 .484 
Tripod -.042 1.604 .979 
    
High schools    
CLASS -.001 .881 .999 
Tripod 3.764 3.314 .256 
    

Standard errors in parentheses 
*** p<0.001, ** p<0.01, * p<0.05  
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Table A3. 7 Analytic results for dimension scores (outcomes centered by randomization block) 

VARIABLES Regression 
Coefficients 

Std. Errors  p-value 

Elementary schools    
 InsQ .167 .139 .229 
 MQI  .027* .010 .004 
CWCM .021 .009 .016 
Error and Imprecision -.048 .020 .015 
Richness of Mathematics .055* .019 .003 
SPMMR .016 .021 .436 
WWSM .053* .018 .003 
CLASS .042 .284 .882 
Tripod -.704 .537 .190 
    
Middle schools    
 InsQ .315 .227 .165 
 MQI  .021*** .006 .000 
CWCM -.001 .012 .940 
Error and Imprecision -.069*** .019 .000 
Explicitness and Thoroughness .096 .253 .840 
Richness of Mathematics .049* .017 .003 
SPMMR .043* .014 .001 
WWSM .024 .017 .162 
CLASS .266 .289 .359 
Tripod -.071 1.171 .952 
    
High schools    
 InsQ .407 .404 .314 
 MQI  .007 .009 .428 
Error and Imprecision .010 .028 .711 
Explicitness and Thoroughness -.238 .477 .619 
Richness of Mathematics .042 .035 .230 
SPMMR -.016 .018 .395 
WWSM .011 .031 .713 
CLASS .289 .575 .615 
Tripod 4.866 2.136 .023 

Standard errors in parentheses 
*** p<0.0001, ** p<0.001, * p<0.005 (p-value adjustment for 10 tests)  
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Table A3. 8 Analytic results for CKT impacts on Tripod 7Cs in high school classrooms (outcomes 
centered by randomization block) 

 
Regression 
Coefficients 

Std. Errors  p-value 

Care .187 .075 .013 
Confer .120 .046 .009 
Captivate .254 .092 .006 
Clarify .187 .097 .010 
Consolidate .201 .076 .008 
Challenge .121 .055 .027 
Classroom management .137 .074 .065 
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Table A4. 1 Analytic Results for Step 3: Treatment Effects on Outcomes with Mediator and 
Treatment-by-mediator Interaction 

     
  MQI Tripod 

Elementary schools (total effects: 0.017)    
Z, β0100 .014 .012 
 (.022) (.022) 
M, β0200 .127 .0004 
 (.142) (.002) 
ZM, β0300 .175 .007 
 (.344) (.005) 
Intercept, β0000 .050 .051 
 (.100) (.100) 
Student-level covariates YES YES 
Grade indicators YES YES 
District indicators YES YES 
School .133 .134 
Random block  .023 .023 
Class .031 .031 
Residual .306 .306 
Number of schools  74 74 
Number of random blocks 109 109 
Number of classrooms 267 267 
   
Middle schools (total effect: 0.037)   
Z, β0100 .025 .042* 
 (.021) (.021) 
M, β0200 .433 .002 
 (.224) (.001) 
ZM, β0300 -.819 -.008 
 (.634) (.022) 
Intercept, β0000 .337** .315** 
 (.109) (.109) 
Student-level covariates YES YES 
Grade indicators YES YES 
District indicators YES YES 
School .136 .141 
Random block  .131 .128 
Class .022 .022 
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Table A4. 1 Continued. 

Residual .266 .266 
Number of schools  74 74 
Number of random blocks 114 114 
Number of classrooms 238 238 
   
High schools (total effect: 0.0002)   
Z, β0100 .012 .006 
 (.046) (.040) 
M, β0200 -.890 .000004 
 (.594) (.003) 
ZM, β0300 -2.991** -.006 
 (1.109) (.004) 
Intercept, β0000 -.662*** -.667*** 
 (.118) (.138) 
Student-level covariates YES YES 
Grade indicators YES YES 
District indicators YES YES 
School .012 .036 
Random block  .000 .000 
Class .0001 .000 
Residual .240 .239 
Number of schools  14 14 
Number of random blocks 15 15 
Number of classrooms 26 26 
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Appendix Figure 

Figure A4. 1 Effective Instructional Practices Identified by Brophy and Good 

 

 


