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ABSTRACT

Individuals are evaluated on their knowledge or expertise in a myriad of settings.
Students take exams, job candidates are interviewed on their domain knowledge,
consultants help firms make decisions and are often rewarded based on the ex-post
accuracy of their advice, and so on. In this dissertation I consider the problem of
designing these tests “optimally”, so as to maximize the examiner’s learning of the
quality of the test-taker. I take a mechanism design view of this problem, modeling
knowledge as beliefs over an unknown state.

I consider three environments that differ in terms of the features of this state and
the nature of knowledge. In Chapter 2, Dasgupta (2024a), I consider the most basic
form of this problem where the state is binary and knowledge is the test-taker’s single-
dimensional belief over it. I show that optimal tests are simple: They take the form
of True-False, weighted True-False or True-False-Unsure, regardless of the principal’s
preferences, the distribution of the agent’s beliefs, its correlation with his quality or
his knowledge thereof. The need to elicit knowledge forces the principal to trade-off
the efficacy of the test in terms of whom it rewards, against how much it rewards
them. The optimal resolution of this trade-off may lead to a partial penalty for an
“obvious” answer even if it is correct, a partial reward for a “counterintuitive” answer
even if it is incorrect, or a reward for admitting ignorance. When the principal can
pick the subject matter, she picks one that admits no such obvious answers. In this
case, the highly prevalent True-False test is always optimal, regardless of principal’s
preferences, agent’s learning, or the specific optimal choice of the subject matter.

In Chapter 3, Dasgupta (2024b), I consider the same problem and largely the
same setting, but now knowledge is demonstrable, modeled as verifiable evidence.
The test-taker learns about the state through two kinds of opposing verifiable signals,
each kind providing evidence in favor of one of the states. A high quality agent is
more likely to posses evidence which is greater in both quantity and accuracy, than
a low quality agent. In a symmetric setting, I show that the under the optimal test,
regardless of whether the agent can predict the state correctly, he is passed if his
total amount of evidence provided is sufficiently high and failed if it is sufficiently low.
Conditional on providing intermediate levels of evidence, the agent is passed based on
a simple True-False test – i.e., if and only if he gives the correct answer. Consequently,

x



for intermediate levels of quality sensitivity of the principal, the optimal test is
the simple True-False, which makes no use of verifiable evidence, even though it is
available.

In Chapter 4, Dasgupta (2024c), I consider a natural extension of the model of
Chapter 2, where I allow the state to take multiple values. This captures both the
cases where there are multiple questions in the test and the one where the test is
about a complex subject matter instead of a simple, binary one. I show that in a
symmetric setting, the standard multiple choice question – where the test-taker is
awarded full credit if and only if he selects the correct answer – is optimal, if and
only if the principal is sufficiently quality-sensitive.
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CHAPTER 1
INTRODUCTION

Evaluating people on the basis of their knowledge – e.g. through exams, job
interviews, standardized tests etc. – is a crucial part of the education and professional
worlds. Typically the goal of such knowledge-based evaluation schemes is to learn
about some underlying quality of the test-takers. As teachers we all want to write
exams which really discern who have learnt the course material, i.e., one which
awards points to answers in a way that ultimately results in rewarding of students
in proportion to their preparation level. Employers want interview processes which
help them tell apart the best job candidates from the rest based on how they answer
interview questions, and so on.

The central question I ask in the following chapters is: how best to design such
tests, to maximize learning of the test-taker’s quality? I take a mechanism design
view of this test design setting by recognizing that knowledge is the test-taker’s pri-
vate information. Hence, a central tension in the problem of designing such a test
is that, the test-designer has to maximize her learning of the test-taker’s underly-
ing quality, but not for free: she must incentivize the test-taker to reveal his true
knowledge.

Clearly, there are several questions pertinent to solving the test-design problem.
How should the topic of testing be selected? What should be the reward scheme?
Should test-takers only be required to provide an answer or also “show their work”?
How many questions should be asked? I address these questions in the following
chapters.

The various settings in which I consider the test design question are as follows.
In Chapter 2, I use a stylized setting where I model the subject matter as a binary
state and knowledge as beliefs over it. I model the topic as determining the prior
over this state. In Chapter 3 I consider settings where the test-taker may be required
to “show their work”. I capture this by assuming that the test-taker learns about the
state through verifiable evidence. In Chapter 4 I allow for the state to take multiple
values instead of just two.

Taken together, my results provide a holistic basis for the prevalence of simple,

1



multiple-choice type tests in knowledge-based evaluation settings. In Chapter 2 I
show that the ubiquitous simple True-False test is optimal when the designer can pick
both the topic and the reward scheme, regardless of other details. In Chapter 3, using
a mechanism design with evidence framework, I show that in a symmetric setting,
optimal tests once again take the form of the simple True-False test, with a required
evidence component. Depending on parameter values, the evidence component may
be absent, once again giving us the simple True-False test as optimal. In Chapter
4, in a stylized multi-state testing setting I show that the common multiple choice
format is optimal when the designer is sufficiently sensitive to quality.

I now discuss the specifics of the settings and results on a chapter by chapter
basis.
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CHAPTER 2
SCREENING KNOWLEDGE

2.1 Introduction

“Ignorance is preferable to error, and he is less remote from the truth who
believes nothing than he who believes what is wrong.”

Thomas Jefferson

Traditionally, many standardized testing institutions across the world seem to
have taken the above concept seriously – by penalizing wrong answers more than
ignorance, i.e. questions left unanswered. For example, the Advance Placement
and SAT I examinations employed “negative marking” – deducting a fraction of a
point for each wrong answer while awarding a point for each correct answer and
ignoring unanswered questions – until recently.1 However, in recent times there
is a move away from negative marking – the College Board removed penalties for
wrong answers on Advanced Placement examinations in 2011, and on the SAT I
tests in 2014. In 2015, testing authorities in Chile removed these penalties from the
University Selection Test.2 While the equity impacts of these changes are largely
considered to be positive (Baldiga, 2014; Saygin and Atwater, 2021; Coffman and
Klinowski, 2020), how do they affect the core objective of these tests, which is to
measure the quality of “college readiness”?

More broadly, in the context of knowledge-based evaluation schemes – such as the
standardized tests mentioned above, in-class exams or job interviews – why should or
shouldn’t a candidate be rewarded for admitting ignorance? Zooming out even more,

1. Other large scale standardized tests which have traditionally employed negative marking
include the University Selection Test (Prueba de Selección Universitaria) in Chile, the medical
entrance test Konkoor in Iran, the Higher Education Examination Undergraduate Placement Ex-
amination in Turkey, exams in the Ghent University system in Belgium and the MBA entrance
Common Admission Test, the engineering entrace IIT-JEE, as well as the accountancy exam Com-
mon Proficiency Test in India. (Coffman and Klinowski, 2020; Akyol et al., 2016; Lesage et al.,
2013).

2. See Coffman and Klinowski (2020).
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how best to design such tests? Does the universally common structure of responders
giving an answer to a question – instead of more open-ended formats we can imagine,
like expressing their views on how likely they think various possible answers are –
sacrifice efficacy? How to ensure that the tests are not “gamed”?3

To answer these questions, I develop a theory of screening knowledge, recogniz-
ing the fact that a test-taker’s knowledge is his private information. I consider a
model where a test-designer – such as a teacher or interviewer – tests a candidate’s
knowledge of a single binary fact. She can choose from all possible tests with one
restriction – the test must incentivize the candidate to reveal his true knowledge.
Depending on what the test is trying to measure, the designer may have different
preferences over knowledge. In many natural settings, she wants to reward those
who are knowledgable and penalize those who are not.4 The key insight from this
framework, however, is that incentive compatibility forces her to trade off between
the sharpness of this reward scheme on the extensive margin – whom it rewards –
and that on the intensive margin – how much it rewards them.

I show that resolving this trade-off in a way that is optimal for the designer’s ob-
jective of discerning candidate quality, can lead to potentially surprising tests which
reward ignorance. This provides a basis for the negative marking in standardized
tests, as discussed above. These results inform ongoing policy debates about the
benefits of negative marking in large scale standardized tests.

I now discuss the model and results in more detail.

Our model is as follows. There is a principal (test-designer, she) who wants to de-

3. A common example of profitably gaming the test is the following. A commonly suggested
strategy by test prep coaches in tests with negative marking, is to randomly guess, instead of
leaving the question, if the test-taker is able to eliminate at least one answer. For an expected
points maximizer who is indifferent among all but one options, this strategy strictly dominates the
desired behavior of leaving the question, for the most common negative marking scheme known as
“ 1
n−1 ”, i.e. where there are n options to each question and 1

n−1 points are deducted for each wrong
answer (Karandikar, 2010).

4. While intuitively we might assume more knowledge should always be preferred to less, our
model requires no such monotonicity assumptions. Moreover, Section 2.2 provides a natural class
of examples where even though the test-designer wants to reward “better” test-takers, who are also
more informed, her induced preferences over knowledge may turn out to be non-monotonic.
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cide whether to pass or fail an agent (test-taker, he). He has some underlying quality,
unobserved by the principal, which we equate to her payoff if he is passed. Quality
can be positive or negative. There is a binary state, representing a factual subject
matter. The principal can test the agent’s knowledge – modeled as his belief about
the state – to decide whether to pass him. For that, she commits to a mechanism,
which we interchangeably refer to as a test. A mechanism maps the agent’s reported
belief and each realized state – which the principal can precisely verify ex-post5 – to
a passing probability. The agent’s quality is correlated (not necessarily positively)
with the precision of his information about the state. Hence, observing his beliefs in
conjunction with the state lets the principal form posterior estimates of his quality,
which dictate her preferences over beliefs. The agent wants to maximize his passing
probability.6 There are no monetary transfers.

I begin by characterizing the class of optimal tests. Even though the principal
has the flexibility to make the reward scheme as sensitive to the agent’s knowledge as
she likes, potentially rewarding each belief differentially according to its correctness,
optimal tests fall within a simple class. In particular, they take the familiar form of
a True-False, weighted True-False or True-False-Unsure test (See Table 2.1 for their
precise definitions) regardless of the principal’s preferences over quality, the distri-
bution of the agent’s beliefs, its correlation with his quality or his knowledge thereof
(Theorem 1). The direct mechanisms depicted in Figure 2.1, provides an exhaus-
tive enumeration of the possible types of optimal tests, in terms of their qualitative
features.7

5. In Section 2.8.2 we consider the alternative timing where the principal observes the state ex-
ante instead, i.e., before choosing the mechanism. Our main results remain qualitatively unaltered
across a natural class of equilibria of the informed principal game Myerson (1983) which ensues in
this case.

6. The agent’s probability of passing can be interpreted as number of points as well, if we assume
the agent is an expected-points maximizer. For how our conclusions could change for other natural
classes of the agent’s preferences over points, see Section 2.8.5.

7. To be very precise, the class of optimal tests also includes trivial tests not included in Figure
2.1 – namely, under which the agent is passed or failed regardless of the state or his beliefs.
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Figure 2.1: Types of optimal tests
p denotes the agent’s belief that the state is T . The blue and red curves denote passing probability

in state T and F respectively.
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Chosen Answer
T F

Correct T x y

Answer F 0% 100%

(a) True-False, weighted True-False

Chosen Answer
T F U

Correct T 100% 0% z1

Answer F 0% 100% z0

(b) True-False-Unsure

Table 2.1: Indirect implementations of optimal tests
A test evaluates the agent’s knowledge of whether a given statement is True (T) or False (F). The
tables capture the following natural indirect implementation of optimal tests. The optimal test8

gives the test-taker two options, mirroring the possible answers. It may, in addition, give him the
option of declaring himself Unsure (U) (Table 1(b)). The cell entries capture percentages of the
full credit earned for each combination of the correct answer and the chosen option.
Table 1(a) captures the generalized structures of True-False and weighted True-False tests. We
call a test with x = 100% and y = 0% a True-False test. We show that if x ∈ (0, 1) (respectively,
y ∈ (0, 1)) under an optimal test, we must have y = 0% (respectively, x = 100%). Tests with
x ∈ (0, 1) or y ∈ (0, 1) are called weighted True-False tests. Finally, tests of the structure in Table
1(b) are called True-False-Unsure tests, z1, z0 ∈ (0, 1).
The direct mechanisms leading to these tests are detailed in Figure 2.1.

Two features of the optimal tests warrant emphasis. First, agents giving the
correct answer are sometimes failed – even the ones with the most precise possible
correct beliefs – and vice versa (Figures 2.1c and 2.1d). Second, agents can be
rewarded for admitting ignorance, i.e. choosing the “Unsure” option in a True-False-
Unsure test (Figure 2.1b). If a regularity condition is satisfied the second feature
does not arise (Theorem 2.A). This condition is mathematically similar to Myersonian
regularity – it is equivalent to the increasingness of a virtual value function that arises
in our setting (Proposition 1). However, unlike Myersonian regularity, its violation is
arguably rather natural in a broad class of settings (Proposition 3). I postpone the
discussion of such settings until a few paragraphs later, focusing on regular settings
for now, to highlight the fundamental incentive issue in the knowledge screening
problem, and to build intuition for the first of the aforementioned features.

8. To be precise, first, we do not claim that any optimal test within the aforementioned class is
uniquely optimal, and secondly, Tables 2.1 do not include the trivial tests included in the class of
optimal tests, which pass or fail the agent without screening.
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(b) A skewed prior

Figure 2.2: Examples of the principal’s preferences and corresponding first-best tests

The figures feature double axes. The agent’s belief (p) that the state is T is along the horizontal axis.
The dotted blue and red curves plot the posterior expected quality in states T and F respectively,
on the left vertical axis. Superimposed on this plot, the solid blue and red curves plot the passing
probability in states T and F respectively, under the first-best test, on the right vertical axis.9

To understand the role of incentives, we would start from the first-best – the
benchmark where the principal can observe the agent’s beliefs.10 As examples, we
consider the preferences of the principal depicted in Figures 2.2a and 2.2b. In these
examples, the posterior quality is positive (respectively, negative) for beliefs which
are more biased towards the correct (respectively, incorrect) state than the prior, and
is zero at the prior – which is 55% and 80 % that the state is T, in figures 2.2a and
2.2b respectively. Under the first-best, she passes a belief if and only if its posterior
quality is positive.

We first consider Figure 2.2a, where the prior is “moderate” – 55%. The first-best
test, as depicted in Figure 2.2a is not incentive compatible, for the following reason.

9. Note that Figures 2.2 provide schematic representations of possible principal preferences. In
particular, her interim values (interim quality) in each state reaching zero at the same belief, which
is also the prior, is a non-generic feature of such preferences. I still use these features in these
examples, in order to distill the most important forces of incentives, and how they vary with the
prior – my main focus in this paper.

10. Note that under our first-best, the principal observes only the agent’s belief, not any other
information such as his quality, including in the version of our model where the agent has other
private information. See Section 2.8.1 for more details.
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Essentially, under the first-best test, agents are required to “guess the state” and are
passed if and only if they guess correctly, but they “should” guess T only if they are
at least 55 % sure. Clearly, this test induces agents to guess the state they think
is more likely. Hence, those with beliefs in between one half and 55 %, deviate to
guessing T instead of F.

The only incentive compatible test which preserves the desired first-best feature
of being bang-bang,11 is the one with a belief threshold of one half. It turns out,
for a moderate prior, as in Figure 2.2a, that is the best the principal can do –
simply shifting the belief threshold to one half (Theorem 2.A). This gives rise to the
optimal test in Figure 2.1a – the ubiquitous True-False test. In this particular case,
this happens because the principal’s ideal threshold is “close enough” to one half. By
this reasoning, a threshold of one half must be optimal for a band of ideal thresholds
of the principal, i.e. the True-False test must arise “generically”. This is one way we
provide a basis for its prevalence.12

Now we consider a more extreme prior – 80 % for T – as in Figure 2.2b. For
restoring incentives, shifting the corresponding highly unbalanced threshold all the
way to one half is costlier to the principal in this case, than keeping the threshold un-
balanced, but adjusting the passing probabilities in a way which prevents deviations.
Such adjustments must result in smaller overall rewards for “guessing” T than for
guessing F, so that only those sufficiently biased towards state T, guess T, thereby
implementing the desired skewed threshold. Optimally, this can be achieved by ei-
ther bringing up the passing rate for wrongly guessing F (Figure 2.1d) or bringing
down that for correctly guessing T (Figure 2.1c), so as to make the threshold belief
indifferent. Which of these two adjustments is optimal is determined by whether
the principal would pass or fail “by default”, if she had to take that decision without
screening, i.e., whether the prior expected quality is positive or negative (Proposition
2).

Thus, the key trade-off the test-designer faces is one between the efficacy of the
reward scheme on the intensive and extensive margins. As outlined above, the dis-

11. i.e., switches abruptly from 0 to 1.

12. An additional basis for its prevalence arises by endogenizing the topic – modeled as endoge-
nizing the prior – as described a few paragraphs later. See Section 2.6 for details.
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tortions of potential penalties for the correct answer or rewards for the wrong one
arise because she trades off choosing her preferred belief threshold – which deter-
mines which beliefs are passed in each state (extensive margin) – against how much
probability they are passed with, in each state, on its two sides (intensive margin).

As we saw above, for either type of adjustment, the a priori unlikely – or coun-
terintuitive – answer is rewarded more vis a vis the a priori likely – or obvious –
answer (Corollary 1). Moreover, degree of this premium increases as the obvious
answer becomes more obvious, i.e., the prior grows more extreme (Theorem 2.B).
This reflects the common feature of real world evaluation schemes which sometimes
attach greater penalty to getting “obvious” questions wrong than to getting “trick”
questions wrong.

We now turn to the case where the optimal test features a third option – Unsure
(Figure 2.1b). Intuitively, a True-False-Unsure test is optimal in the following class of
settings. Suppose there are three types of signals – correct, wrong and uninformative.
Better agents are much more likely to receive a correct signal and much less likely
to receive a wrong one than worse agents, but all agents are almost similarly likely
to receive an uninformative signal. Hence, while extreme beliefs act as strong and
opposite (positive and negative) signals of quality to the principal in the two states,
moderate beliefs provide only a weak signal of quality in either state. This induces
the principal to keep the variation in rewards across states low for unsure agents –
those with moderate beliefs – while varying them starkly for those with more extreme
beliefs, as depicted in Figure 2.1b (formalized in Proposition 3).

Finally, we ask how the optimal test would look in the rather natural scenario
where the principal can also choose the topic under testing. We model this as her
choosing the prior. We show that the principal prefers a moderate prior – embodying
greater a priori uncertainty – over an extreme one, though the optimal prior need
not equal one half (Theorem 4). The broad intuition is that extreme priors “waste”
information: The informativeness of a correct answer as a signal of quality in the a
priori likely state falls too low because too much information is given away by the
prior. Building on this insight, we further show that when the principal can choose
the prior, the True-False test (Figure 2.1a) is optimal for all signal structures and
preferences of the principal. This provides another basis for its prevalence in the real
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world.
Finally, we consider the case when the principal is endowed with the correct

answer before the game begins. We show that our results remain qualitatively valid
in any undominated equilibrium Myerson (1983) of the informed principal game
which ensues in this case. (Proposition 8 and Theorem 5). Our main results also
qualitatively hold in the natural case when the test-designer wants to maximize social
welfare, instead of just screening efficacy (Proposition 10). We conclude by discussing
the extent to which our results apply to multi-question tests (Proposition 11).

To summarize, this paper highlights the role of agency issues in designing knowledge-
based tests for agents, when their knowledge generates value for the principal. The
optimal tests are shown to take simple true-false/true-false-uncertain forms. The
agency issues are shown to give rise to rewarding of not only correctness – as would
happen under full information – but also surprisingness of answers. Moreover, we
provide a basis for the ubiquitous simple True-False test by showing that it arises
universally, whenever the test-designer can choose both the evaluation scheme and
the question.

11



Related Literature. This paper relates to several different strands of literature.
I share the core of my model with that on evaluation of strategic forecasters, most
importantly Deb et al. (2018) and to a lesser extent, Chambers and Lambert (2021).
In Deb et al. (2018), the authors develop a dynamic model for screening an election
forecaster who privately observe signals about the election outcome which grow more
precise with time. My model, though static, allows the principal to choose from
the entire universe of tests, unlike theirs, where she is restricted to deterministic
tests. The literature has also studied forecasters being evaluated by a passive market
in settings without commitment (e.g. Ottaviani and Sørensen (2006a)). Also see
Marinovic et al. (2013) for a survey.

In their independent and concurrent work Deb et al. (2023) consider a joint
screening-and-persuasion problem and find a similar characterization of the class of
optimal mechanisms. However, while Deb et al. (2023) focus on the role of commit-
ment, with their main result establishing the sufficiency of partial commitment in
their setting, this paper focuses on the trade-off between effectiveness of screening
on the intensive and extensive margins created by agency issues, and on the joint
design problem of the prior and the mechanism.

The role of belief-based screening in my model relates it to the literature on
proper scoring rules. The latter term describes mechanisms that incentivize an agent
to reveal his true beliefs about an uncertain state. Much of the classical literature on
proper scoring rules focuses on characterizing the set of incentive compatible scoring
rules in general environments (McCarthy (1956), Osband and Reichelstein (1985),
Lambert (2011), Abernethy and Frongillo (2012), while remaining agnostic about
the designer’s objectives. A notable exception is Li et al. (2022), most related to my
work within this literature, who investigate how to optimize such rules, where the
objective is to incentivize effort by the agent to acquire more precise signals.

At a broader level, this paper also relates to the literature on mechanism design
with verification but without transfers. Like in my paper, in this literature the
instrument for eliciting private information from strategic agents is – not monetary
incentives, but – information obtainable by the principal. Closest to my work within
this literature are Glazer and Rubinstein (2004) and Carroll and Egorov (2019). In
their models a principal accepts or rejects an agent based on limited verification of
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his claimed “quality”. Also related, although less closely, is Ben-Porath et al. (2014)
which features a similar multi-agent model, but with exact verification at a cost.

Thematically, though not as closely in terms of model or methods, my work is also
related to the literature on how a receiver of information (in my case, the principal)
designs a test of some unobservable quality of a strategic sender (the agent) (Rosar
(2017); Harbaugh and Rasmusen (2018); Weksler and Zik (2022); Hancart (2022)).
Much of this literature leverages information design tools to characterize optimal
tests in various environments. A common finding of this literature is that more
informative tests are not always better, due to the strategic incentives such tests
create for the agent. In particular, similar to my paper, some of this literature finds
coarse tests arising at the optimum (Rosar (2017), Harbaugh and Rasmusen (2018),
Augias and Perez-Richet (2023)).

At a methodological level, our problem is one of constrained screening. To solve
it, we leverage results of Winkler (1988), who characterizes the extreme points of sets
of probability measures defined by a finite number of linear constraints.13 Our use
of this result is technically similar to that of Choi (2023), who solves an information
design problem with obedience and incentive compatibility constraints acting as the
relevant linear constraints. Other papers in the constrained screening literature which
bear similarities to our methods and results include those on screening with capacity
constraints (Loertscher and Muir, 2022), evidence constraints (Vaidya, 2023) and
various forms of truth-telling constraints (Krishna and Morgan, 2008; Che et al.,
2013; Guo, 2016).

2.2 A general model

There is a principal (she) and an agent (he). There is a binary state, ω ∈ Ω :=

{0, 1}, with prior probability π ∈ (0, 1) of being equal to 1. The agent observes a
signal about the state and forms beliefs. Let us denote the agent’s belief that the
state is 1 by p ∈ P ⊆ [0, 1]. We assume P is a compact interval, in particular,
P = [p, p]. Wherever appropriate, we refer to the agent’s belief as his type, capturing

13. It should be noted that Kleiner et al. (2021) do the same for infinitely many constraints.
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the fact that it is his private information and he is screened on it. Let F (·|ω) denote
the cumulative distribution of beliefs in state ω. The principal can take one of two
actions: pass or fail the agent. The agent prefers to be passed. There are no transfers.
Let vω(p) denote the principal’s payoff from passing an agent with belief p in state ω.
Her payoff from failing him is zero. We assume passing the agent hurts the principal
with positive probability – otherwise the problem is trivial. Formally, we assume:

max
ω

∫
{p:vω(p)<0}

dF (p|ω) > 0 (Non-triviality)

The above setup can arise from, for example, the principal (e.g. an employer)
benefiting from the precision of the agent’s (e.g. a job candidate) knowledge, i.e. vω
increasing in p for ω = 1 and decreasing for ω = 0. However, we require no such
assumptions on {vω}ω∈{0,1}. At this stage we deliberately abstract away from the
specifics of the principal’s preference over the agent’s beliefs as well as the latter’s
signal structure, because our characterization of the class of optimal mechanisms
depends on none of these particulars. See Section 2.3 for an example and section
2.5.1 for a more general microfoundation of the above model.

The principal chooses a mechanism to determine passing decisions for agents. A
mechanism is a tuple M := (M,a1, a0) where M is a set (of messages, to be sent by
the agent) and aω : M → [0, 1] is the passing probability or passing rate of the agent
upon sending message m ∈ M , when the true state is ω. The principal is risk-neutral.
She chooses this mechanism with the goal of maximizing her own ex-ante payoff.

The timing of the game is as follows:

1. The principal commits to a mechanism M = (M,a1, a0).

1. The agent observes his signal.

2. The agent makes his report m ∈ M to the mechanism.

3. The state ω is observed by the principal.

4. Allocations are made according to M and payoffs are realized.
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The same numbering of the first two stages of the game indicates that their
ordering does not matter.

2.3 An illustrative example

A teacher evaluates a student based on his answer to whether a given factual
statement is true (T) or false (F), using a pass-fail test. Hence, our unknown binary
state is, whether the statement is actually True or False. We encode True as 1 and
False as 0. Hence, going forward, our state is ω ∈ {0, 1}. A student’s preparation
can be High (H) or Low (L) with equal probability, ν := 1

2 . The teacher wants to
pass only students with high preparation. In particular, let us assume she gets a
payoff of uH := 2 from passing the High type and uL = −1 from passing the Low
type.

We describe the student’s learning process for any fact using the following signal
structure with the unit interval, T = [0, 1], as his signal space. The signal density
of learning type e ∈ {H,L} in state ω is feω : T → R+. Let fH1(t) = 2t, fH0(t) =

2(1− t), fL1(t) = fL0(t) = 1.
In order to avoid giving away hints to the answer through her choice of question,14

she promises to choose the question randomly from a question bank which contains
a mix of true and false statements. Suppose a proportion π of these statements are
actually true and this is common knowledge. Hence, π is the commonly held prior
belief that the correct answer is True. Over the course of this example we will use
two different values of π to highlight different aspects of the problem. First, let us
assume π = 1

2 . We assume preparation and the correct answer are independent.
We also assume the student does not know whether his level of preparation is

High or Low.15 Hence he interprets his observed signal, t ∈ [0, 1], using the uniform

14. For example, consider the question: Is New York City the capital of New York state? (A)Yes
(B)No. A completely uninformed person might get this question correct simply by reasoning that
if the correct answer were the apparently “obvious” answer ((A)Yes, in this case) the teacher would
not set such an easy question. Formally, this is an informed principal problem. See section 2.8.2
for details.

15. While this is a simplifying assumption for this example, none of our main results depends on
whether the agent knows his own ability.
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average of the two signal structures – the High and the Low type’s – via Bayes rule.
Let µ : T → [0, 1] map each of his signals to his belief that the state is ω = 1, i.e.
that the given statement is actually true. By Bayes’ rule we have:

µ(t) =
π(2t+ 1)

π(2t+ 1) + (1− π)(2(1− t) + 1)
=

(2t+ 1)

4
(Belief)

Using the above, the range of beliefs that the state is 1 is, P =
[
1
4 ,

3
4

]
. Let f(p|ω)

denote the density of the belief p in state ω ∈ {0, 1}.
The teacher wants to construct a test to maximize her expected payoff. Even

though the correct answer can only be True or False, she can structure the test in
many ways — offering potentially uncountably many options (since the student can
form uncountably many different beliefs) and an accompanying probability of passing
when each of the options is chosen, for each correct answer.

Ideally, the teacher wants to offer high passing probability to a belief, if and only
if it gives her a high payoff, if passed. What is her payoff from passing a given belief
p ∈ P? That depends on the correct answer. Below we calculate it for the case when
the true state is 1, i.e. the statement is actually true. Using Bayes’ rule (we use
Pr(·) to denote probability),

V1(p) = uHPr(H|p, 1) + uLPr(L|p, 0)

=
uHPr(p|H, 1)Pr(H) + uLPr(L|p, 0)pr(L)

Pr(p|1)

=
uH × 1

2 × f1H(µ−1(p))dt+ uL × 1
2 × f1L(µ

−1(p))dt

f(p|1)dp
(2.1)

By (Belief) we have, if p = µ(t),

dp = µ′(t)dt =⇒ dt =
dp

µ′(µ−1(p))
= 2dp (2.2)

The above tells us that the “weighted” value of belief p in state 1:
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V1(p)f(p|1)dp =

(
4p− 3

2

)
dt = (8p− 3)dp

The value function for state 0 can be similarly computed, and is the flipped
version of V1(p)f(p|1), by symmetry.

Hence the “weighted” value functions are given by,

V1(p)f(p|1) = 8p− 3,

V0(p)f(p|0) = 8(1− p)− 3 = 5− 8p.

Let us denote the weighted value function in state ω by v̂ω : P → R, ω ∈ {0, 1},
i.e. v̂ω(p) = vω(p)f(p|ω) for all p ∈ P . These weighted value functions are are
depicted by dashed lines in Figure 2.3a.
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Figure 2.3: The teacher’s value functions for symmetric and asymmetric priors
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We first describe the teacher’s optimal test if she could observe the students’
beliefs but not their preparation levels – her “first best” – and then add back the
incentive constraints to construct the optimal mechanism, as this is instructive in
highlighting the role of incentives in this setting. This “first best” test is clearly given
by a

fb
ω (p) = 1(vω(t) ≥ 0), ω ∈ {0, 1}, where a

fb
ω (p) denotes the passing rate of belief

p under this test, when the true state is ω. This is depicted with solid lines in Figure
2.3a.

However, as we can see from Figure 2.3a, the first best is not implementable
because the intermediate beliefs, p ∈

[
3
8 ,

5
8

]
, are passed for sure under this test,

and therefore the extreme beliefs – those beyond this range – would deviate to this
range, if this test is offered. Owing to the symmetry of the setting under the balanced
prior, the familiar “Simple True-False” test, where there are two options mirroring
the actual answers, and a student is passed if and only if his chosen answer is correct,
is optimal in this case. The direct mechanism which represents this test is, of course,
the one with a belief threshold of one half. Denoting the teacher’s maximized payoff
for prior π by V (π):

V

(
1

2

)
= (1− π)

1
2∫

1
4

V0(p)f(p|0)dp+ π

3
4∫

1
2

V1(p)f(p|1)dp

= 2× 1

2

3
4∫

1
2

V1(p)f(p|1)dp

=

3
4∫

1
2

(8p− 3)dp

=
1

2
.

The second line follows from π = 1
2 and V0(p)f(p|0) = V1(1− p)f(1− p|1).
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Now let us consider a different mix of statements in the question bank – a prior
of π = 3

4 . In this case, the belief associated with each signal is given by:

µ(t) =
π(2t+ 1)

π(2t+ 1) + (1− π)(2(1− t) + 1)
=

3(2t+ 1)

2(2t+ 3)

The range of possible beliefs, in this case, is therefore
[
1
2 ,

9
10

]
. The corresponding

asymmetric weighted value functions are given by:

v̂1(p) =
8p

(3− 2p)3
− 3

(3− 2p)2

v̂0(p) =
5

(3− 2p)2
− 8p

(3− 2p)3
.

These value functions are depicted in Figure 2.3b. See Section A.1 in the Ap-
pendix for details of calculations. The Simple True-False test would no longer remain
optimal, for the following reason. As we see from the figure, in this case, the high
prior pushes all beliefs above one half. So, a Simple True-False test offers no screen-
ing. Hence, in this case, it is appropriate for the teacher to move the belief-threshold
of her True-False test up. But in that case, she cannot simply pass each student
if and only if he gets the answer correct. That is because all the beliefs are biased
towards True in this case, and choosing between passing for sure in each of the states,
they would all choose True, i.e. deviate upwards. Hence, she must adjust the passing
rates – over- or under-rewarding at least one of the chosen answers – to make the
threshold type indifferent between choosing either answer, in her True-False test.

Which answer should she over/under-reward? Given the prior was already quite
biased towards True, she does not want to over-reward that answer. Therefore she
either over-rewards the answer False (Figure 2.1d) or under-rewards the answer True
(Figure 2.1c). More concretely, she chooses some belief threshold p > 1

2 , and imple-
ments it by committing to a True-False test with one of the following credit structure:

• The answer False is passed if it is correct and passed with probability
(
1− 1−p

p

)
if it is wrong; the answer True is passed if and only if it is correct.
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• The answer False is passed if and only if it is correct; the answer True is passed
with probability

(
1−p
p

)
if it is correct and failed for sure if it is wrong.

The optimal belief threshold – and therefore the corresponding partial credits
– can be calculated for the first case by solving the following single-dimensional
optimization program:

max
p

π

(1− 1− p

p

) p∫
p

v̂1(p
′)dp′ +

(
1− p

p

) p∫
p

v̂1(p
′)dp′

+ (1− π)

p∫
p

v̂0(p
′)dp′

Some algebra shows that in this particular case the above objective function is
concave in p, and the optimal belief-threshold, not coincidentally, is the belief at
which the weighted value functions are equal, p = 3

4 . We can similarly compute
the teacher’s optimal test of the second kind and her payoff from it. Given our
parameters, the optimal test of the first kind is strictly better for her. Her payoff
from it can be similarly calculated:

V

(
3

4

)
=

3

4


(
1−

1
4
3
4

) 9
10∫
1
2

v̂1(p
′)dp′ +

(
1
4
3
4

) 9
10∫
3
4

v̂1(p
′)dp′

+
1

4

3
4∫

1
2

v̂0(p
′)dp′

=
1

4


3
4∫

1
2

(
5

(3− 2p)2
− 8p

(3− 2p)3

)
dp+

9
10∫
3
4

(
8p

(3− 2p)3
− 3

(3− 2p)2

)
dp



+
1

2

9
10∫
1
2

(
8p

(3− 2p)3
− 3

(3− 2p)2

)
dp

=
1

4
.

The optimal tests in the two variations of the above example exhibit several
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notable features. First, optimal tests need not exploit the full richness of the range
of possible beliefs – in this example they divide that range only in two classes. Second,
we observe that in the case of an unbalanced prior, a student with an extreme signal
on the opposite of the direction in which the prior is biased might get passed “for
free”, even when they are wrong. Finally, the teacher has a higher maximized payoff
when the prior is balanced than when it is unbalanced. As we will show in the rest
of the paper, none of these features is specific to this example, and continue to hold
in a general class of environments.

2.4 Optimal tests

Our main result in this section is that the optimal mechanism is simple – it
partitions the belief space into at most three intervals, with both a1 and a0 staying
constant on each interval. We begin by characterizing the set of implementable
mechanisms.

2.4.1 Implementability

The revelation principle applies in our setting. In other words, given the prin-
cipal’s goal of maximizing her own ex-ante payoff, it is without loss to restrict to
direct, incentive compatible mechanisms, i.e. mechanisms where the set of messages
is the set of possible beliefs P , and the pair of passing rate functions are such that
the agent can never do strictly better by reporting a belief different than his own.
As is standard in the literature, we assume both that the agent reports truthfully
when indifferent among multiple reports, and the principal passes when indifferent.

Our first goal is to characterize the set of implementable mechanisms. Since
there are no transfers, this set is defined only by the agent’s incentive compatibility
constraints:

pa1(p) + (1− p)a0(p) ≥ pa1
(
p′
)
+ (1− p)a0

(
p′
)
,∀p, p′ ∈ P (IC)

The indirect utility of an agent with belief p is given by U(p) := pa1(p) + (1 −
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p)a0(p) = a0(p) + p (a1(p)− a0(p)). Note that this expression is identical to that
for the agent’s indirect utility in the standard monopolistic screening problem, with
q := a1 − a0

16 playing the role of the “allocation”, and −a0 playing that of the
“transfer”. Clearly, q ∈ [−1, 1]. Any mechanism (a1, a0) can therefore isomorphically
be described by (U, q) where U and q are as defined above.

With the above transformation, direct application of results from the standard
monopolistic screening setting allows us the following simplification.

Lemma 1. A mechanism (U, q) is incentive compatible if and only if q is non-
decreasing, and the agent’s indirect utility is given by:

U(p) = U(p) +

∫ p

p
q
(
p′
)
dp′ (2.1)

for all p.

Proof. Standard. See appendix.

Using the fact that U(p) = pa1(p) + (1 − p)a0(p) in conjunction with Lemma 1
gives us the following “integral formulas”:

a0(p) =

(
U(p) +

∫ p

p
q
(
p′
)
dp′
)

− pq(p)

a1(p) =

(
U(p) +

∫ p

p
q
(
p′
)
dp′
)

+ (1− p)q(p)

(Integral Formulas)

2.4.2 Optimal tests are coarse

Now we are ready to solve the principal’s constrained optimization problem. Note
that her objective is linear in (a1, a0). This means it is without loss of optimality
to restrict attention to the extreme points of the set of implementable mechanisms.
The rest of this section contains a sketch of characterization of these extreme points,

16. Throughout the paper we use the convention, that when the name of a function is used without
its argument, it denotes the function as a point in its respective vector space.
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which turn out to be precisely the set of optimal mechanism with at most two steps
described in the introduction.17 For this, we leverage results of Winkler (1988), who
characterizes the extreme points of sets of probability measures defined by a finite
number of linear constraints. Our use of this result is technically similar to that of
Choi (2023), who solves an information design problem with obedience and incentive
compatibility constraints acting as the relevant linear constraints.

The principal’s problem is as follows:

max
a1,a0∈[0,1]P

π

∫
p
v1(p)a1(p)dF (p|1) + (1− π)

∫
p
v0(p)a0(p)dF (p|0) (2.1)

s.t. a1, a0 ∈ [0, 1]. (Feas)

pa1(p) + (1− p)a0(p) ≥ pa1
(
p′
)
+ (1− p)a0

(
p′
)
,∀p, p′ ∈ P (IC)

In the rest of the section, we first present and discuss the results, providing some
intuition, and then move on to the proof sketch.

Theorem 1 (Optimal tests are simple). The optimal mechanism (a1, a0), which
solves (Primal), consists of step functions with at most two steps, where the a1 and
a0 change at the same belief(s).

In Section A.2 in the appendix we provide a more detailed characterization of the
exact form of the optimal mechanism, specifying formulas for the thresholds of these
steps, and associated passing probabilities (Theorem A.2.1).

In order to provide some intuition for why the optimal mechanisms take such
a simple form, we start from the first best benchmark and construct the optimal
mechanisms through gradual adjustments. As we saw in the Example (Section 2.3),
if the principal faced no incentive constraints, she would want to pass the agent with
a given belief if and only if her value from passing him given the true answer is
positive. This implies that under the optimal unconstrained mechanism (a1 and a0)

17. While here we provide a proof sketch for simply the characterization of the extreme points of
the feasible set of mechanisms, the analysis in Section 2.7 incorporates a slightly different approach
to the same proof, as part of a more holistic analysis of the problem.
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take values only in {0, 1}, are potentially non-monotone, and change at potentially
different belief thresholds.

Incentive compatibility can be restored to this ideal mechanism if and only if
adjustments are made to it to ensure the following: (i) coincidence of thresholds
(ii) monotonicity, and (iii) indifference at the thresholds.18 Below we discuss why
this holds and show how making these adjustments to the first-best mechanism im-
mediately leads to the class of optimal mechanisms. An agent cares only about his
weighted average probability of passing if the correct answer is 1 and 0, with his belief
dictating the weights. The higher the belief, the more (respectively less) the agent
cares about his probability of being passed in state 1 (respectively 0). Consider two
agents A and B such that A considers answer 1 to be more probable than B. Since
both care about the interim probability of being passed, if the passing probability
of A in one of the states is more than B, then his passing probability in the other
must be less than B, to ensure truthful reporting. Within the class of threshold
mechanisms, this would mean the thresholds of rising of a1 and falling of a0 must be
coincident.

We also need monotonicity, for the following reasons. Note that if B is passed
with a higher probability in state 1 than A, B’s passing probability in state 0 must
be low enough so that A does not find it beneficial to masquerade as B. But because
B cares about state 0 more than A, this would entice B to misreport as A. Therefore
A’s passing probability in state 1 (respectively, 0) must be more (respectively, less)
than B’s, i.e. both a1 and a0 must be monotonic.

Suppose the principal faces just the above two restrictions - common thresh-
olds and monotonicity - and no other. In this case she would like to use a single-
threshold mechanism where both passing probabilities undergo a dramatic change at
the threshold - a1 from 0 to 1 and a0 from 1 to 0.19 But unless this threshold is one-
half, such a mechanism is not incentive compatible - if types close to the threshold
type think the correct answer is more likely to be 1, between getting passed for sure

18. Formally, a piece-wise constant mechanism (a1, a0) is incentive compatible if and only if it
satisfies those three conditions.

19. This follows intuitively from the discussion in the previous paragraphs, but can be shown
formally.
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when the correct answer is 1 vs 0, they choose the former, misreporting if they are
below the threshold.

There are two types of adjustments the principal can make to her favorite common
threshold bang-bang mechanism described above - on the extensive and intensive
margins - to achieve full incentive compatibility, fulfilling condition (iii). She makes
adjustments on the extensive margin when she changes who to pass - by adjusting
the threshold. Conversely, adjustments on the intensive margin consist of changing
the rate at which to pass, given a threshold. How she trades off between these two
types of adjustments is determined by the specifics of the setting.

Each combination of adjustments gives rise to a different class of optimal mecha-
nisms, which solve (Primal). On the one hand, the principal can adjust only on the
extensive margin - adjusting the common threshold to one half without adjusting
the passing rates. The resulting mechanism, depicted in Figure 2.1a and called the
simple True-False test, arises as the optimal mechanism generically in a broad class
of settings (See Section 2.5.2). On the other hand, if she does choose to adjust on the
intensive margin, in general the optimal positioning of thresholds also changes as a
result, leading to an adjustment on the extensive margin as well. Loosely speaking,
she wants these adjustments to be to be minimal, so she adjusts the the passing rate
only in one of the states and on one of the sides of the optimal threshold an optimizes
the threshold accordingly. Each of the four classes of resulting mechanisms (Figures
2.1c-2.1d and their flipped versions around the x axis) can arise optimally, as shown
in Section 2.5.2.

Single threshold tests: “Pass-if-correct” and “Fail-if-incorrect”

In this subsection we describe in more details the single-threshold tests which arise
from the above adjustments, as these would prove key to subsequent results in the
rest of the paper. Let us take a common threshold bang-bang test with a threshold
below one half. The threshold type is not indifferent – he strictly prefers reporting
the “low message” over the “high message” because his belief is biased towards zero.
Therefore, there are two ways we can make this test incentive compatible – by making
the high message more lucrative or the low message less so. This can only be done by
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increasing the passing rate in state 0 for the high message or decreasing it for the low
message. We call the two types of tests which arise pass-if-correct and fail-if-incorrect
tests, respectively.

The formal definitions of pass-if-correct and fail-if-incorrect tests are as follows.
Let pω denote the agent’s belief that the state is ω, i.e. p1 = p and p0 = 1− p. We
call a test pass-if-correct if and only if it is given by (aω(p

ω) = 1(pω ≥ p0), aωc(pω) =

1(pω ≤ p0) + p∗1(pω ≥ p0) for some ω ∈ {0, 1}, p∗ ∈ (0, 1). Similarly we call it a
fail-if-incorrect test if and only if it is given by (aω(p

ω) = 1(pω ≥ p0), aωc(pω) =

p∗1(pω ≤ p0)) for some ω ∈ {0, 1}, p∗ ∈ (0, 1).
The names derive from the fact that any single threshold tests can be indirectly

implemented by a “pick the correct answer” test with two options, with credits spec-
ified for each combination of the correct and given answers, as depicted below. By
correctly specifying the credits, any desired threshold can be implemented.

p 1
2

0

a0

1

a0 = 1− p
1−p

p

a1(p)

(a) Pass-if-correct

p 1
2

0

a0

1

a0 = p
1−p

p

a0(p)

(b) Fail-if-incorrect

Figure 2.4: Direct and corresponding indirect implementations of Pass-if-correct and
Fail-if-incorrect tests
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Given Answer
T F

Correct
Answer

T 100% 1− p
(1−p)

F 0% 100%

(a) Pass-if-correct

Given Answer
T F

Correct
Answer

T p
(1−p)

0%

F 0% 100%

(b) Fail-if-incorrect

We wrap up this section with an overview of our proof strategy.

Proof sketch

Using the (Integral Formulas) derived in Section 2.4.1, we can express the prin-
cipal’s ex-ante value in terms of her “virtual value” function χ as follows:

V (a1, a0) = U(p)Ev +
p∫

p

χ(p)q(p)dp (2.2)

We abstract from the exact expression for χ(p) in this section, as it is not relevant
to the proof sketch. We introduce it in Section 2.5.1, where we formulate a standard
“regularity” condition in terms of our virtual value. See Section A.4.1 in the Appendix
for the derivation of (2.2) and Section A.3.1 for its economic significance, as well as
that of q (“knowledge premium”) introduced above.

Unlike in a standard monopolistic screening problem, our principal faces feasibil-
ity constraints, namely the fact that a1, a0 ∈ [0, 1]. But due to their monotonicity,
as seen from (Integral Formulas), it is sufficient to ensure that these feasibility con-
straints are satisfied at the extremes, namely, that a0(p) ≤ 1, a0(p) ≥ 0, a1(p) ≥ 0

and a1(p) ≤ 1. Combining these with the IC constraints we obtain a reduced-form
of the principal’s problem, as given by the following lemma.

Lemma 2. The principal’s optimal mechanism is given by the solution to the follow-
ing problem where a1 and a0 are as given by (Integral Formulas) and p0 := sup{p :

q(p) ≤ 0}.
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max
U(p),q(.)

U(p)Ev +
p∫

p

χ(p)q(p)dp (Problem)

s.t. q ∈ [−1, 1], q non - decreasing (MON)

a0(p) ≤ 1, (F1)

a0(p) ≥ 0, (F2)

a1(p) ≥ 0, (F3)

a1(p) ≤ 1, (F4)

where a1 and a0 are given by (Integral Formulas). (Integral)

An overview of the rest of the proof is as follows. We show that each bound - 1
and 0 - must be attained at least once. Moreover, unless there is no screening - i.e.
the optimal mechanism is constant with respect to agents’ beliefs - each extreme of
the belief space must have at least one of a1 and a0 attaining its respective bound
there. Combining these two insights shows that whenever there is screening at the
optimum, the above program reduces to one constrained by (MON) and a single
linear equality. We know the extreme points of the convex set of q’s described by
(MON) are step functions (including degenerate ones). By Winkler (1988)’s result
(Proposition 2.1) which characterizes extreme points of sets of distributions, those
of the convex subset of it described by imposing the additional linear constraint are
obtained by taking convex combination of at most two of them. Theorem 1 follows.

2.5 Rewarding ignorance and penalizing correct answers

In this section we delve deeper into the two most noteworthy features of the
optimal tests – that they might reward admission of ignorance (Figure 2.1b) and
that they may fail agents giving the correct answer or pass those giving the wrong
one (Figures 2.1c and 2.1d). We provide conditions when each of these cases arises.
Further, our comparative statics analysis uncovers a link between “obviousness” of
an answer and the rate at which it is failed in spite of being correct or passed in spite
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of being wrong.
For the sake of interpretability of the aforementioned results, first, we concretize

our model further, as described below.

2.5.1 A microfoundation

Suppose the value that the agent generates for the principal when passed is v, to
be interpreted as his quality. Sometimes we also refer to v as the agent’s learning
type. Let v ∈ V := [v, v], v < 0 < v. Further, let v be distributed according to
some commonly known probability measure ν ∈ ∆V . Paralleling (Non-triviality),
we assume ν({v < 0}) > 0 and ν({v > 0}) > 0, i.e. both positive and negative
qualities occur with positive probability. Let V0 := Eνv denote the a priori expected
quality. Quality is unobserved by both the principal and the agent.20 Quality and
the state ω are independent.

The agent’s learning technology is as follows. There is a signal space T := [0, 1].
We denote the typical signal realization by t ∈ T . The agent’s signal is drawn from
some known distribution over T for each each state ω and quality v, which is assumed
to have a density, denoted by f(·|ω, v), (ω, v) ∈ {0, 1} × V . Going forward, we refer
to the pair of signal densities (f(·|1, v), f(·|0, v)) as the signal structure of the agent
of quality v. We impose a number of assumptions on the family of signal structures
{(f(·|1, v), f(·|0, v))}v∈V , as detailed below.

Assumption 1. Suppose the following holds.

• Monotonicity: f(t|1, v) (respectively f(t|0, v)) is increasing (respectively de-
creasing) in t for all v.

• MLRP: The family of signal structures {(f(·|1, v), f(·|0, v))}v∈V satisfies the
Monotone Likelihood Ratio Property (MLRP). That is, f(t|1,v)

f(t|1,v′) is increasing

and f(t|0,v)
f(t|0,v′) decreasing in t for all v > v′.

• C2: f(·|ω, v) is twice continuously differentiable in t for all ω, v.

20. In Section 2.8.1 we use the alternative modeling assumption that the agents do observe their
quality. The main features of the optimal test remain unaltered.
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• Boundedness: sup
t,e,ω

f(t|ω, v) < ∞ and sup
t,e,ω

f ′(t|ω, e) < ∞.

We say the agent’s learning is symmetric if f(t|0, v) = f(1− t|1, v) for all t and
v.

Since the agent does not observe his own quality, the signal distribution from
which his observed signals are drawn – denoted by {fω}ω∈{0,1} – is the mean signal
distribution of the various learning types:

fω(t) =

∫
e

f(t|ω, v)dν(v), ∀ t, ω

He forms his beliefs about the state using Bayes rule using the above distribution.
Using µ : [0, 1] → [0, 1] to denote the mapping between signal and belief spaces, we
have using Bayes rule, for a given prior π,

p = µ(t) :=
f1(t)π

f1(t)π + f0(t)(1− π)
(2.1)

Note that by our assumptions on {(f(·|ω, v)}(ω,v)∈{0,1}×V , µ(t) is strictly increas-
ing for any given π. Hence there is a one-to-one map between signals and beliefs, i.e.
µ−1 exists. Let (â1, â0) denote the mechanism with the signal space as its domain,
with âω : [0, 1] → [0, 1] denoting the passing probability as a function of the reported
signal, in state ω. Hence, âω = aω ◦ µ−1, ω ∈ {0, 1}.21

In this specialization of our general model from Section 2.2, while choosing the
mechanism, the principal exploits the correlation between the informativeness of the
signal structures and agent quality to maximize the expected quality conditional on
passing. With some algebra, her payoff can be described in terms of “summarized”
value functions for each state – m1 and m0 – as given below. See Section A.4.1 in
the Appendix for exact expressions for m1 and m0 in terms of the family of signal
structures {(f(·|ω, v)}(ω,v)∈{0,1}×V .

21. Note that µ —and therefore the mapping between âω and âω – depends on the prior π.
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V (â1, â0) :=

π
 1∫

0

â1(t)m1(t)dt

+ (1− π)

 1∫
0

â0(t)m0(t)dt


(Principal’s Value)

Regularity

In this subsection, we provide a regularity condition which ensures that the op-
timal tests feature a single threshold. While none of our subsequent analyses – such
as comparative statics and endogenizing the prior – relies on a restriction to single-
threshold tests, we use the “regular” class of problems to offer simplified versions of
some of the results.

χ(p) :=

∫ 1

p
πv
(
p′
)
dp′ − pv(p) + πV1(p)dF (p | 1), ; where

v(p) = πV1(p)dF (p | 1) + (1− π)V0(p)dF (p | 0)

It is well-known that in the standard monopolistic screening problem, such a reg-
ularity condition is equivalent to concavity of the monopolist’s revenue in the price.
In a similar vein, in the rest of the subsection we show that within the microfounded
model introduced above, our regularity condition is equivalent to the concavity of the
principal’s value as a function of the threshold of a single-threshold test. But first,
we need to unavoidably define two new objects – the agent’s normalized likelihood
ratio and the principal’s value from each single threshold test as a function of the
threshold. These objects are key to our main result in this subsection as well as that
in Section 2.5.3 – characterization of when the optimal test rewards ignorance, i.e.
features two thresholds.

We define the normalized likelihood ratio (hereafter, NLR) function for state ω,
ϕω : T → R+, ω ∈ {0, 1}, as the likelihood ratio of each signal for state ω, normalized
by the prior likelihood ratio of the same state. Specifically, for each t ∈ T ,
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ϕ1(t) :=

µ(t)
1−µ(t)

π
1−π

=
f1(t)

f0(t)
, ϕ0(t) =

1

ϕ1(t)
(2.2)

Under any single-threshold optimal test with a belief threshold other than one
half, the passing rate in only one of the states is distorted on the intensive margin.
For any such test, let us call this the distorted state and the other state – the one
where the passing rate is bang-bang – the undistorted state.

Define vω : ϕω(T ) → R as the function which maps NLR’s to the principal’s max-
imized value from a single-threshold test with that NLR-threshold and undistorted
state ω. For example, given a signal threshold t and undistorted state 1, if the cor-
responding fail-if-incorrect test does better for the principal than the pass-if-correct
test,22 letting s1 = ϕ1(t) and using the expression for (Principal’s Value), we have,

V1(s1) = π

1∫
ϕ−1
1 (s1)

m1(t)dt+ (1− π)×
(

π

1− π

)
× s1

ϕ−1
1 (s1)∫
0

m0(t)dt

= π


1∫

ϕ−1
1 (s1)

m1(t)dt+ s1

ϕ−1
1 (s1)∫
0

m0(t)dt

 .

Alternatively, if the pass-if-correct test does better, we have,

22. In Proposition 2 in Section 2.5.2 we show that the fail-if-incorrect (respectively, pass-if-correct)
test does strictly better if and only if V0 < 0 (respectively, V0 < 0). We postpone that discussion
till the next section, as it is not relevant to the results presented here.
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V1(s1) = π

1∫
ϕ−1
1 (s1)

m1(t)dt+ (1− π)


ϕ−1
1 (s1)∫
0

m0(t)dt+

(
1−

(
π

1− π

)
s1

) 1∫
ϕ−1
1 (s1)

m0(t)dt


= π

1∫
ϕ−1
1 (s1)

(m1(t)− s1m0(t)) dt+ (1− π)V0

In general, V1(s1) is the maximum of the above two expressions. This can be
compactly written as:

V1(s1) = π

s1


ϕ−1
1 (s1)∫
0

m0(t)dt− v+0

+

1∫
ϕ−1
1 (s1)

m1(t)dt

+ (1− π)v+0

Similarly, we can derive the expression for V0(s0), s0 ∈ ϕ0(T ). See Section A.4.6
in the Appendix for details.

It can be shown that increasingness of the virtual value – our regularity condition
– is equivalent to concavity of the value functions defined above, as formalized below.

Proposition 1. The following are equivalent.

• V1 is concave.

• V0 is concave.

• The problem is regular.

The intuition is as follows. Why does increasingness of the virtual value lead to
sufficiency of single-threshold mechanisms in screening problems? It is because it
ensures concavity of the principal’s value from a single-threshold mechanism, as a
function of the threshold. In our case, this is her value from using a single-threshold
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bang-bang test (not necessarily incentive compatible) as a function of the belief-
threshold. This ensures the principal cannot gain from offering a lottery over two
such tests, which is what a two-threshold test is. Our proof shows, that translated
to the microfounded version of our model, such a lottery is essentially taken over two
single-threshold incentive compatible – but not necessarily feasible (because passing
rates can go beyond 1) – tests. Naturally, if the principal’s value (V1 and V0) is
concave in the threshold, she cannot gain from such a lottery.

It can also be easily shown that the regularity condition does not depend on the
prior – a fact we would exploit in our comparative statics analysis going forward.

Fact 1. The problem is regular for prior π if and only if it is regular for all other
priors π′ ̸= π.

2.5.2 Over-rewarding counterintuitive answers

Comparative statics

In this section we analyze how the optimal test varies with the prior. We show
that the more extreme the prior, the greater the distortion on the intensive margin.23

Moreover, if the prior is moderate, the principal cannot benefit from such distortions,
and chooses the simple True-False test instead. Whenever she has to distort on the
intensive margin, it gives rise to asymmetric rewards for the correct answer in the
two states. Our main result in this section is that, such a scheme always ends
up rewarding the counterintuitive answer – an answer which is a priori sufficiently
unlikely – more.

While none of the results in this section require regularity, for drawing the above
insights we focus on regular settings. Under regularity, there are only the four types
of single-threshold tests (Figures 2.1c-2.1d and their flipped versions around the x

axis) which can be optimal. As described in section 2.4.2, they can further be divided

23. Recall from Section 2.4.2 that we call adjustments in the rate of passing (as opposed to the
threshold of passing), away from the principal’s favorite levels of 1 or 0 – whichever is better – a
distortion on the intensive margin.
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into two categories – those which always fail incorrect answers (“fail-if-incorrect”) and
those which always pass correct answers (“pass-if-correct”).

When does each of these two types of tests arise as optimal?

It turns out, that depends only on the a priori expected quality, as described
below.

Cherry-picking and lemon-dropping markets. Note that if the principal could not
screen, she would pass the agent if and only if the a priori expected quality is positive,
i.e. V0 ≥ 0. Hence we call markets with V0 < 0 (respectively V0 ≥ 0) cherry-picking
(respectively lemon-dropping) markets, because the principal screens to “pick the
cherries”, i.e. identify the acceptable agents (respectively “drop the lemons”, i.e.
weed out unacceptable agents).

The lemma below captures the fact that the type of test – pass-if-correct or
fail-if-incorrect – depends only on the type of market.

Proposition 2. Pass-if-correct (respectively fail-if-incorrect) tests are optimal only
if the market is lemon-dropping (respectively cherry-picking).

The intuition behind the above insight is straightforward, once we note that for a
fixed threshold, the pass-if-correct test is identical to the fail-if-incorrect test, except
its passing rate in the distorted state24 is pushed upwards uniformly by a constant
amount for all beliefs. The jump of the passing rate in the distorted state between
the correct and wrong answers is fixed by incentive compatibility25, regardless of the
type of test. Hence for a fixed threshold, the only thing the principal is free to choose
is whether to offer a positive baseline passing rate in one of the states. By definition,
she gains (respectively, loses) from such default passing if and only if the market is
lemon-dropping (respectively, cherry-picking).

24. Under any single-threshold optimal test with a belief threshold other than one half, the passing
rate in only one of the states is distorted on the intensive margin. Recall the forllowing terminology
we introduced in Section 2.5.1: for any such test, we called this state the distorted state and the
other state – the one where the passing rate is bang-bang – the undistorted state.

25. Specifically,
(

p0

1−p0

)
for a threshold belief p0 < 1

2 , for example, and conversely, its reciprocal,

when p0 > 1
2 .
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Now we are ready to present the main result of this section.

Theorem 2.A (Variation of the optimal test with the prior). For any problem P
there exist 0 < π < π < 1 such that the type of the optimal test is always pass, never
pass or given by the following:

π < π π ∈ [π, π] π > π

Cherry-picking,
V0 < 0

Fail-if-incorrect,
penalize False

Simple T-F or
T-F-U, Simple
T-F if regular

Fail-if-incorrect,
penalize True

Lemon-dropping,
V0 ≥ 0

Pass-if-correct,
bonus for True

Pass-if-correct,
bonus for False

Table 2.3: Optimal tests across markets and priors

Moreover, if the signal structures are symmetric, π + π = 1.

The intuition for the above result is as follows. Let us consider only the cherry-
picking case, to simplify terminology. The belief-threshold in a single-threshold test
represents a bar of passing – it is the lowest belief for a state (i.e., an answer) which
could pass when that state realizes (i.e., when that is the correct answer).26 Its
choice constitutes a trade-off – the higher it is in one state, the lower it is in the
other. In other words, the more difficult the test is if the correct answer were 1, the
easier it is if it were 0. A belief threshold of one half offers the same bar of passing
in both states.27 As we would show in the next section, a two threshold test is a
lottery over two single-threshold tests – one with a belief threshold above one half
and the other below, i.e. one with a bar which is high for state 1 and hence low for
state 0, and the other, the reverse.

26. In the lemon-dropping case, this is the highest belief for that state which could fail if that
state realizes.

27. Note that the bar of passing is not the same as the belief-threshold of passing. The former
depends on the state. It is equal to the latter only in state 1, and is its complement in state 0.
Hence, while all single-threshold tests have the same belief-threshold of passing in both states, only
the one with the threshold of one half has the same bar.
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If the prior is too biased towards one of the states, resolving the aforementioned
trade-off is straightforward for the principal – she wants the bar for passing to be
high (i.e. greater than one half)27 in that state. The reason is as follows. Suppose
the prior is very high. In this case, so small a part of the population would have
a belief below one half, that a belief-threshold at or below it would lump nearly all
of the population together, offering very little screening. Hence, in this case, the
principal would benefit neither from mixing a high-bar test with a low-bar one, nor
from offering the same bar in both the states with a Simple T-F. Conversely, when
the prior is moderate, either of these compromises would make the her better off
than having a high bar only in one of the states.

Formalizing the above notion, going forward, given a problem P we call corre-
sponding priors π ∈ [π, π] moderate and those /∈ [π, π], extreme priors. An extreme
prior π is said to grow more moderate if it changes towards the nearest moderate
prior, i.e. when it increases for π < π and when it decreases for π > π.

We call the answer-option mirroring the a priori likely state the obvious answer
and the other one the counterintuitive answer. As we saw above, whenever the prior
is extreme, the principal must move the optimal threshold away from the balanced
threshold of one half, leading to a distortion – a partial reward for a wrong answer
or a penalty for the correct answer, in terms of the indirect implementations of the
optimal tests – in one of the states. Which answer does such a distortion benefit or
hurt. As Theorem 2.A details, it is the counterintuitive answer which always benefits,
compared to the obvious answer, whenever the prior is extreme. This is formalized
below.

Corollary 1. When the prior is extreme either there is a bonus for the counterintu-
itive answer or a penalty for the obvious answer.

Theorem 2.A tells us how the first trade-off faced by the principal - whether to
fine-tune the threshold - is resolved. The second trade-off she faces is how much to
fine-tune the threshold, when such fine-tuning is warranted, i.e. the prior is extreme.
This is elaborated by Theorem 2.B below.

Theorem 2.B (Variation of the optimal test with the prior). • When the prior
is extreme, as it grows more moderate, the signal threshold of the optimal test
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remains constant, its belief threshold grows more moderate and the distortion
in the allocation in the a priori obvious state reduces.

• Suppose the optimal test has two thresholds for some moderate prior π ∈ (π, π),
with signal thresholds t1 and t2, t1 > t2. Then:

– It has the same two signal thresholds for all priors π ∈
(

1
ϕ1(t1)+1

, 1
ϕ1(t2)+1

)
.

– As the prior increases from 1
ϕ1(t1)+1

to 1
ϕ1(t2)+1

, â1(t) increases from 0

to 1 and â0(t) decreases from 1 to 0, for all t ∈ (t2, t1).

– The optimal test for π = 1
ϕ1(ti)+1

is the Simple T-F with signal threshold
ti, i ∈ {1, 2}.

• Finally, if the optimal test is the Simple T-F for an open interval of moderate
priors, as the prior increases within this interval, the signal threshold decreases.

The intuition for the above result in the case of an extreme prior is as follows.
Suppose π > π and the signal threshold for the optimal test is t. As the prior
grows more extreme, the belief associated with t also grows more extreme – further
away from one half. So, the distortion on the intensive margin under the optimal
test increases. The principal can attempt to rectify the associated loss by making
adjustments on the extensive margin, i.e. by making the signal threshold moderate.
In this case, that would mean decreasing it. However, this would lower the bar for
passing in the a priori likely state 1, passing beliefs which are too inaccurate and
thereby hurting the principal’s payoff in that state. This loss also becomes more
costly to her as the prior grows more extreme, since a priori likely state 1 becomes
more likely.

A similar pair of forces come into consideration for the principal, when she decides
whether to vary the signal- thresholds of a two-threshold test with the prior. A two-
threshold test is a lottery over two single-threshold bang-bang tests, one of which is
preferred by the principal over the other. Suppose that is the test with the signal-
threshold t2, as described in the statement of Theorem 2.B. As the prior increases
within the range

(
1

ϕ1(t1)+1
, 1
ϕ1(t2)+1

)
, the distortion on the intensive margin, vis-

a-vis the principal’s favorite bang-bang test with threshold t2, increases. She could
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counteract this by bringing t1 closer to t2, but that would increase the distortion on
the extensive margin (lower the bar of passing).

In both of the above cases of extreme and moderate priors, these two forces –
those of minimizing the distortion on the intensive and extensive margins – exactly
cancel each other out, leaving the principal’s optimal signal-threshold(s) invariant to
the prior within a range. It is important to note that this exact cancellation happens
precisely because the principal and the agent share a prior. As we show in Section
2.8.2, this would not be the case if the priors are different, in which case the signal
threshold(s) would vary with (each) prior even within the aforementioned ranges.

We wrap up this subsection by presenting a simple example demonstrating the
comparative statics results of the section.

Example 1. There are two learning types, H(igh) and L(ow). Signal density of
learning type e in state ω is feω : T → R+. Let fH1(t) = 2t, fH0(t) = 2(1 −
t), fL1(t) = fL0(t) = 1. Proportion of High types: ν = 1

2 . The principal’s value from
passing learning type e is ve, e ∈ {H,L}. We want to find out principal-optimal
tests and their various characteristics as a function of the prior π. By Theorem 2.A,
in this symmetric setting it is without loss to assume π ∈

[
1
2 , 1
]
.

When choosing a mechanism (â1, â0) : T → [0, 1], what the principal cares about
is the probability of passing each learning type that it induces. By Bayes rule, the
probability of passing learning type e ∈ {H,L} is given by:

Pr(pass|e) = Pr(e)×
∫
t,ω

âω(t)feω(t)

Pr(pass|e) =
∫
t,ω

Pr(pass|(t, ω), e)Pr((t, ω)|e)Pr(e). Obviously, Pr(pass|(t, ω), e) =

Pr(pass|(t, ω)) = âω(t). Moreover, Pr((t, ω)|e) = f(t|ω, v)Pr(ω) (∵ ω ⊥⊥ e). Com-
bining these, the principal’s value from using a mechanism (â1, â0) : [0, 1] → [0, 1] is
given by:
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V (â1, â0) =

∫
v

v

∑
ω

Pr(ω)

1∫
0

âω(t)f(t|ω, v)dt

 dν(v)

=

∫
v

v

π

1∫
0

â1(t)f(t|1, v)dt+ (1− π)

1∫
0

â0(t)f(t|0, v)dt

 dν(v)

=π

1∫
0

â1(t)

∫
v

vf(t|1, v)dν(v)


︸ ︷︷ ︸

=:m1(t)

dt+ (1− π)

1∫
0

â0(t)

∫
v

vf(t|0, v)dν(v)


︸ ︷︷ ︸

=:m0(t)

dt

(2.1)

t∗(π) =


3
2 − 2π, if π ∈

[
1
2 , 1−

1
2

√
3
2

(
1− 1

2α

)
+
(
1
α − 1

)+]
,√

3
2

(
1− 1

2α

)
+
(
1
α − 1

)+
− 1

2 , if π ≥ 1− 1
2

√
3
2

(
1− 1

2α

)
+
(
1
α − 1

)+
.

Let t∗E =

√
3
2

(
1− 1

2α

)
+
(
1
α − 1

)+
− 1

2 .

µ∗(π) =



1
2 , if π ∈

[
1
2 , 1−

1
2

√
3
2

(
1− 1

2α

)
+
(
1
α − 1

)+]
,(

π
1−π

)(2t∗
E
+1

3−2t∗
E

)
(

π
1−π

)(2t∗
E
+1

3−2t∗
E

)
+1

, if π ≥ 1− 1
2

√
3
2

(
1− 1

2α

)
+
(
1
α − 1

)+
.
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Figure 2.5: Variations in the signal and belief thresholds of the optimal test with the
prior

As expected given our results, the signal threshold remains the same over a certain
range of priors over which the belief threshold keeps changing, and vice versa.

Distortions

In this section we analyze welfare effects of the distortions introduced by agency
costs. Turns out, the theme of counterintuitive answers being over-rewarded and
obvious answers being over-penalized carries over to welfare effects as well. Our main
insight is that agents with strong convictions about the counterintuitive answer are
better off and those with strong convictions about the obvious answer are worse off,
compared to the complete information benchmark.

The principal uses Bayes rule to update her beliefs about quality, based on reports
of signals, which, in turn drive her valuation of each signal. By (Principal’s Value),
the complete information – or first best – mechanism is given by a

fb
ω (t) = 1(mω(t) ≥

0), ω ∈ {0, 1}. An example is illustrated in the Figure 2.6.
Several features of the first best test in this example are notable. First, extreme

beliefs are passed if and only if they are “correct”, i.e. sufficiently close to the
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Figure 2.6: First best tests
Example: The principal’s value from passing type e is ve, e ∈ {H,L}. With prior π, the principal’s
expected payoff from a mechanism â1, â0 : T → [0, 1] is given by (Principal’s Value), with m1(t) =

2t− α,m0(t) = 2(1− t)− α, where α = |vL|
vH

.

true state. Second, moderate beliefs are either passed or failed, regardless of their
correctness. And finally, the test does not depend on the prior beliefs. None of these
features are specific to this example however, as the below proposition shows.

Theorem 3.A. For any problem P, unless the first-best test is to always or never
pass, there exist tfb0 , t

fb
1 ∈ (0, 1) such the first-best test afb0 , a

fb
1 : T → [0, 1] satisfies

the following properties:

• a
fb
0 (t) = 1(t ≤ t

fb
0 ), a

fb
1 (t) = 1(t ≥ t

fb
1 ).

• Types t ∈ [min{tfb0 , t
fb
1 },max{tfb0 , t

fb
1 }] are either passed or failed in both states.

• The test does not depend on the prior.

Comparing the first best test with the structure of the optimal constrained test
established in previous sections, we note the following.
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Theorem 3.B (Distortions). For any regular problem there exists 0 < t ≤ t < 1

such that the distortions for moderate and high priors are given in the following table,
where π and π are as defined in Theorem 2.A.

Prior
π > π

π < π < π
Cherry Picking,

V0 < 0

Lemon Dropping,
V0 ≥ 0

Agent
Signal

[0, t] No Distortion Better Off No Distortion
[t, t] Ambiguous
[t, 1] Worse Off No Distortion No Distortion

Table 2.4: Strong beliefs are over-rewarded when they are counterintuitive

Analogous results hold for π > π, with the rows reversed.

The reasoning behind the above result is straightforward. For moderate priors, by
Theorem 2.A, there is no distortion on the intensive margin. This leads to undistorted
allocations for extreme types. For extreme priors, we know from Theorem 2.A that
the beliefs which lean towards the obvious state are passed at a rate which is weakly
distorted downwards in that state (strictly if V0 < 0). The converse holds for beliefs
leaning towards the counterintuitive state. This explains the direction of distortion
for extreme priors.

For intermediate types, t ∈ [t, t], the sign of the distortion depends on the prior
ν. The details for those types, along with the proof are presented in the Appendix.

Comparing Theorem 3.B with analogous results for standard screening models
offers two key insights. First, it shows that unlike in those models, where screening
makes all agent types weakly better off vis a vis the full information benchmark, in
our model screening can both help and hurt the agent. This is because the objectives
of the principal and the agent are not fully opposed in our model, unlike in standard
screening models where the transfer component typically affects the two parties in
directly opposed ways. Hence, information rent can be negative in our model – a
common feature of models of mechanism design without transfer (e.g. Ben-Porath
et al. (2014)).
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Secondly, it further underscores the force in the model which favors agents with
strong counterintuitive beliefs. A broad class of screening models feature the well-
known no-distortion-at-the-top property (Mussa and Rosen (1978),Myerson (1981),
Rochet and Choné (1998),Rochet and Stole (2002) etc.). In these models typically
only “downward” incentive constraints bind. Therefore the only reason the allocation
of a type can be distorted downwards is to discourage impersonation by higher types.
Consequently the “highest” type’s allocation is undistorted because there are no
higher types which can impersonate it. Even in our model, the incentive constraints
bind only in one direction – from counterintuitive towards obvious. When the passing
rate of the obvious answer is distorted downwards it is to discourage the worst – i.e.
most moderate – among those giving the latter answer, from changing their answer.
In light of this framework, Theorem 3.B shows that counterintuitive extreme types
are the de facto “high types” in the knowledge screening setting.

2.5.3 Rewarding ignorance

In this subsection we fully characterize the conditions for the optimality of a
two-threshold test, using a concavity-like but weaker condition. But first, we need
to unavoidably define some additional notation.

Let v̂ω denote the concave envelope of vω, i.e. the smallest concave function that
lies above vω.

Note that a single threshold test need not be feasible for every given combina-
tion of NLR-threshold, undistorted state and prior. In other words, all values in⋃
ω
vω(ϕω(T )) need not be attainable for all π. As we shall see shortly, this is pre-

cisely what an optimal two-threshold test exploits – by effectively creating a lottery
over a feasible and an infeasible but more lucrative single-threshold test.

Let t∗0 := max argmax
t

V0(ϕ0(t)) and t∗1 := min argmax
t

V1(ϕ1(t)). It can be easily

verified using the expressions for V1 above and analogous expressions for V0, that t∗1
and t∗0 do not depend on π.

Now we are ready to state the main result of this subsection.

Proposition 3 (Characterization of conditions for TFU). The following are equiv-
alent.
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• There exists t ∈ (t∗0, t
∗
1) such that v̂1(ϕ1(t)) > V1(ϕ1(t)).

• There exists t ∈ (t∗0, t
∗
1) such that v̂0(ϕ0(t)) > V0(ϕ0(t)).

• If there exists a prior for which the optimal test is not “always pass” or “always
fail”, then there exists a prior for which a two-threshold test is optimal.

Proposition 3 immediately leads to the following corollary.

Corollary 2. If V1 (equivalently, V0) is concave, the optimal test for any prior has
at most a single threshold.

Note that Corollary 2 is implied by each of Proposition 1 and Proposition 3 but
Proposition 3 does not imply Proposition 1.

Our interpretation of the above results is as follows. Proposition 3 essentially
identifies a “convexity-like” property of the “effectiveness of screening” – as captured
by the designer’s value – in the difficulty level of the test, as necessary for the
optimality of a TFU test. It says that in order for an Unsure option to be effective,
it is necessary that (within a range of weakly informative signals) marginally raising
the bar of passing the test, when it is already quite high, improves the screening
effectiveness more, than raising it when it is low. Raising the bar marginally entails
excluding the “next” marginal signal from passing in a certain state, and therefore
including it in the opposite state. At a high level, one way this can happen is when
relative informativeness of the high type increases fast for extreme signals but not
so much for moderate signals.

Learning environments where ignorance is preferred to vagueness

In this subsection we provide natural sufficient conditions on the learning en-
vironment of the agent, which lead to rewarding of the admission of ignorance, for
some moderate priors. Specifically, we show that learning environments where higher
quality agents are not much more informed than lower quality ones facilitate the ap-
pearance of an “Unsure” option, as a part of the optimal test.

45



For this subsection we would assume there are binary learning types – High and
Low. In that case v ∈ {vH , vL} and ν denotes the probability of the High type, i.e.,
of vH . Clearly, in this case we must have vH > 0, vL < 0 for (Non-triviality). Let
us define α :=

|vL|(1−ν)
vHν – the parameter that captures the principal’s (probability

weighted) loss from passing the Low type as a fraction of her gains from passing the
High type. We would also assume that learning is symmetric. Let fH : [0, 1] → R and
fL : [0, 1] → R denote the signal densities of the High and Low types respectively,
when the state is 1.

With that notation, we formalize sufficient conditions for optimality of a third
option, “Unsure”, as follows.

Proposition 4. Suppose there are two learning types – High and Low – and that
learning is symmetric. Then, the True-False-Unsure test is optimal for some mod-
erate prior if the principal’s expected payoff from passing an uninformed agent (an
agent with the prior belief) is strictly positive, and the following condition holds:

f ′H(1/2)+α
fH(1/2)

f ′L(1/2)
fL(1/2)

< 2

The interpretation of Proposition 4 is as follows. As long as the principal is “not
too averse” to passing an uninformed agent, and the high type agent is not much more
informed than the low type over a range of weakly informative signals – specifically,
those around the fully uninformative signal of t = 1/2 – it would be beneficial for the
principal to offer the “Unsure” option for some moderate prior, rather than just the
options True and False. Intuitively, this is because, in such learning environments,
due to the near-“pooling” of high and low types over weakly informative signals (i.e.,
the ones close to t = 1/2), such a signal does not provide a strong indication of
quality either way to the principal, regardless of whether the signal leans towards
the correct or wrong state.

The condition in Proposition 4 that the principal’s payoff from passing the unin-
formed agent is positive, might point towards the intuition that passing uninformed
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agents must be profitable for the principal in order for the “admission of ignorance
to be rewarded”, i.e., for the “Unsure” option to arise in optimum. However, this
intuition is incomplete, as shown by an example towards the end of this section,
which shows that the third option can arise even when this condition is not fulfilled.
Intuitively, this is because the principal’s reason to allocate intermediate reward to
uninformed beliefs in both states under the True-False-Unsure test is driven not by
the level of her payoff from passing these types but by the difference between her
payoff from passing them in the two states being relatively low, which is driven by the
High and Low types being almost similarly informed over the range os such beliefs.

2.6 Universality of the simple True-False: Endogenous
question selection

The comparative statics analysis of Section 2.5.2 leads to a natural next question
- which priors maximize the principal’s payoff? If the agent learns the same way
about all facts, the prior captures the ex-ante uncertainty of each of them. Hence
endogenizing the selection of the prior by the principal captures a natural feature of
applications where the examiner or interviewer gets to select not only the evaluation
scheme but also the questions or facts on which the candidate is to be evaluated.

Our main result in this section is that, given a choice over the prior, the principal
always chooses “maximum uncertainty” – a moderate prior, in the sense of Section
2.5.2 – and consequently, offers a simple T-F test, regardless of other specifics.

Theorem 4 (Universality of the Simple True-False). Suppose the principal can
choose the prior. The simple T-F test is optimal under some optimally chosen prior
of the principal.

Note that regularity or symmetry are not required for the above result to hold.
The main intuition for Theorem 4 is that an extreme prior gives too much away

a priori. If the question is such that one of the two possible answers is too “obvious”
ex-ante, the probability that examinees get it just by guessing is too much from the
principal’s perspective, which – recall – is an ex-ante one.
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To understand why the above result holds, let us start from an extreme prior.
Recall that the signal threshold does not depend on the prior, as long as the prior
remains extreme. Hence for priors within the extreme range, the principal’s payoff
conditional on the counterintuitive state occurring remains invariant to the prior.
As the prior grows moderate within this range, two forces are in action. First,
the counterintuitive state grows more likely, which makes the principal better off.
Second, the distortion in the obvious, distorted state reduces, which further aids the
principal. This reduction happens because the belief at the constant signal threshold
grows more moderate – closer to one half, where no distortion on the intensive margin
is necessary. Due to these two forces, her expected gain from both states increases as
the prior grows more moderate. In other words, the principal will never choose an
extreme prior because she always gains from making it more moderate. This leads
to the first result above, which immediately leads to the second, by Theorem 2.A.

Some other notable features of the optimal prior and test under this setting are
summarized in the result below.

Corollary 3. Suppose, the principal can choose the prior. Then, in addition to
Theorem 4, the following hold.

• The passing probability is at least one half.

• In addition, if the signal structures are symmetric and the principal’s value
function in each state is monotone, the principal optimal prior is π∗ = 1

2 .

• If the problem is regular, π∗ ∈ (π, π) where π and π are as defined in Theorem
2.A.

2.7 An integrated proof sketch

Now that we have presented all our main results, we utilize this section to provide
a holistic proof sketch of all of them together, using graphical analysis.

An overview of our holistic proof strategy is as follows. Like in Section 2.4.2,
our strategy would be to appropriately transformation of our original linear program
(Primal), and exploit its similarity to the standard monopolistic screening problem.
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This would transform the principal’s objective function into her expected cumulative
virtual value – again, analogous to that in the standard monopolistic screening prob-
lem – once we make use of appropriate integral formulas for a0, in terms of a1, as
in Section 2.4.2. Also as in that section, it is sufficient to consider just one of the
infinitely many bound constraints which we have in addition to the constraints in
the standard monopolistic screening. This would enable us to use a concavification
approach, similar to the Bayesian persuasion literature (Kamenica and Gentzkow,
2011), where we concavify the cumulative virtual value function, and the single ad-
ditional constraint works in a way similar to the Bayes plausibility constraint in that
literature. This enables us to “read off” the optimal threshold(s) by constrained-
maximizing the concavified cumulative virtual value function.

For this proof sketch we would work directly with the microfounded set up of
Section 2.5.1. Without loss, we would model the agent’s signal structure as a joint
distribution of the state, his quality and the normalized odds ratio, so that this
signal structure remains fixed when we vary the prior, for our later analyses. Let
us assume that the support of the signal distribution over normalized odds ratios
is [γ, γ], where 0 < γ < γ < ∞. We would further assume Ev ≥ 0. Our results
go through without this last assumption in the way specified in each result and as
detailed in the Appendix. We would further assume that the induced distributions
over normalized odds ratios in each state is atomless.

The following six steps outline a primarily graphical analysis which sketches the
proof of all of our main results within it.

Step 1. Transforming our problem to one similar to monopolistic
screening.

Let us start from IC constraint (IC). Recall that we defined γ :=
p

1−p
π

1−π
as the

normalized odds ratio. We consider the case where π < 1. The case where π = 1

is, of course, trivial. With a slight abuse of notation, from now on, we would use
a1 and a0 to denote the principal’s chosen passing probabilities, as functions of γ,
rather than p. Diving both sides of (IC) by (1 − p)28 and using the definition of γ

28. Our assumption of π < 1 ensures that the agent’s belief remains bounded away from 1.
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we have our IC constraint as:

π

1− π
γa1(γ) + a0(γ) ≥

π

1− π
γa1

(
γ′
)
+ a0

(
γ′
)
,∀γ, γ′ ∈ [γ, γ] (IC-γ)

As already outlined in Section 2.4, (IC-γ) immediately implies non-decreasingness
of a1 and the following integral formula for a0:

a0(γ) = a0(0) +
π

1− π

[∫ γ

0
a1
(
γ′
)
dγ′ − γa1(γ)

]
Just like in the monopolistic screening problem, without loss of optimality we can

set the truth-telling payoff of the lowest buyer type to his outside option, here, we
can set a0(0) = 1, under our assumption Ev ≥ 0. Hence, we have the final envelope
formula as:

a0(γ) = 1 +
π

1− π

[∫ γ

0
a1
(
γ′
)
dγ′ − γa1(γ)

]
(Envelope-a0(γ))

Let us restate the principal’s objective function, as in (Primal), in terms of γ

rather than p. Again, in lieu of introducing additional notation, with a slight abuse,
we would continue to use vω to denote her interim value function in state ω ∈ {1, 0},
but this time as a function of γ rather than p. Let g(·|ω) denote the density over γ

in state ω. With that, the principal’s objective function is:

π

∫
γ
v1(γ)a1(γ)g(γ|1) + (1− π)

∫
γ
v0(γ)a0(γ)g(γ|0) (2.1)

Using the envelope formula (Envelope-a0(γ)) and a change in the order of inte-
gration, we can now express the principal’s transformed problem as follows:
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max
a1,a0∈R[γ,γ]

π

∫
γ

χ(γ)a1(γ)dγ + (1− π)Ev (2.2)

s.t. a1(γ) ∈ [0, 1] ∀ γ ∈ [γ, , γ] non-decreasing.

a0(γ) ∈ [0, 1] ∀ γ ∈ [γ, γ] (Feas-a0)

where χ(·) is the virtual value, given by:

χ(γ) := v1(γ)g(γ | 1)− γv0(γ)g(γ | 1) +
∫ γ̄

γ
v0
(
γ′
)
g(γ | 1)dγ′

Note that (Envelope-a0(γ)) implies non-increasingness of a0. That, and the fact
that we already made the replacement a0(0) = 1, allows us to ignore all of the
infinitely many feasibility constraints on a0, (Feas-a0) without loss, other than the
one at γ. Further, using the integral formula for a0(γ), we can simplify (2.2) to the
following:

max
a1∈R[γ,γ]

π

γ∫
0

χ(γ)a1(γ)dγ + (1− π)Ev (2.3)

s.t. a1(γ) ∈ [0, 1] ∀ γ ∈ [γ, , γ] non-decreasing. (Monotonicity-a1)[
γ̄a1(γ̄)−

∫ γ̄

0
a1
(
γ′
)
dγ′
]
≤ 1− π

π
(Linear constr)

Step 2. Structuring our problem as one similar to Bayesian persuasion.

In this step we would identify a structural similarity of our transformed prob-
lem with the Bayesian persuasion problem, akin to, e.g., Kamenica and Gentzkow
(2011) which would help us express the principal’s maximized value as a scaled and
translated version of – not the concave envelope (CE), but – the monotone concave
envelope (MCE), of her cumulative virtual value function. The monotone concave
envelope of a function is the lowest concave and monotone function which majorizes
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it. We would see that our maximized value is the MCE rather than the CE is be-
cause our constraint – (Linear constr) – is an inequality, whereas the corresponding
constraint in the Bayesian persuasaion problem – the Bayes plausibility constraint –
is an equality.

We know from the standard monopoly screening problem that the extreme points
of the set defined by (Monotonicity-a1) are step functions of the form 1(γ ≥ γ∗),
where γ∗ ∈ [γ, γ]. That is, any a1 ∈ [0, 1][γ,γ] satisfying (Monotonicity-a1) can be
expressed as a (potentially infinite) convex combination over step functions. Step
functions are characterized by the location of their step, γ∗ ∈ [γ, γ]. Hence, solving
(2.3) is equivalent to maximizing the objective function over the set of distributions
over [γ, γ] satisfying (Linear constr). If a1(γ) is characterized by the distribution
µ ∈ ∆[γ, γ] over the locations of the steps, some algebra shows[

γ̄a1(γ̄)−
∫ γ̄

0
a1
(
γ′
)
dγ′
]
= Eµ

where we use the notation Eµ to denote the expectation of the distribution µ.
In other words (2.3) it can be written as:

max
µ∈∆[γ,γ]

π

γ∫
0

χ(γ)

 γ∫
γ

1(γ ≥ γ∗)dµ(γ∗)

 dγ + (1− π)Ev (2.4)

Eµ ≤ 1− π

π
(Linear constr)

With the standard technique of changing the order of integrals, and scaling and
translating the objective function in a way that does not affect the solution(s), (2.4)
can be transformed into:
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max
µ∈∆[γ,γ]

γ∫
γ

W (γ)dµ(γ) (2.5)

Eµ ≤ 1− π

π
(Inequality constr)

where W (γ) :=
γ∫
γ
χ(γ′)dγ′, the cumulative virtual value function.

Clearly, any solution to (2.5) is a solution to (2.4).
Now we can see that (2.5) is analogous to the (infinite dimensional) linear program

which characterizes the classic Bayesian persuasaion problem, (e.g. the one speci-
fied under Corollary 1, Kamenica and Gentzkow (2011)), with just one difference –
(Linear constr) is an inequality, rather than an equality, constraint.
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(a) Cumulative virtual value, W (γπ) (b) Concave envelope of W (γπ), Ŵ (γπ)

(c) Monotone concave envelope of W (γπ),̂̂
W (γπ)

Figure 2.7: The principal’s maximized value as a function of the prior odds ratio,
1−π
π

The blue, red and green curves plot the cumulative virtual value function W (·), its concave envelope

Ŵ (·) and its monotone concave envelope ̂̂W (·) respectively, as a function of the prior odds ratio

γπ := 1−π
π .
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Figure 2.8: Graphical proof sketch of Theorem 2.A: Which range of prior leads to
which type of optimal test?

The figure indicates the type of optimal test which arises for various ranges of γπ, and therefore π.

PIC,bT and PIC,bF stand for Pass-if-correct, bonus for True and Pass-if-correct, bonus for False,

respectively. sTF and TFU stand for simple True-False and True-False-Unsure respectively.

Step 3. The monotone concave envelope of the cumulative virtual value

In this step we show that the value of program (2.4) as a function of the prior
odds ratio, 1−π

π , is the monotone concave envelope of the cumulative virtual value
function.

First let us solve the following auxiliary problem, replacing the inequality in
(Inequality constr) with an equality.
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max
µ∈∆[γ,γ]

γ∫
γ

W (γ)dµ(γ) (2.6)

Eµ =
1− π

π
(Equality constr)

This is clearly the Bayesian persuasion problem (Corollary 1, Kamenica and
Gentzkow (2011), e.g.) and hence the principal’s maximized value as a function of
1−π
π is given by the concave envelope of W – the red curve in Figure 2.7b.

The red curve in Figure 2.7b, therefore, gives a lower bound of the principal’s max-
imized value from (2.5), because (2.5) relaxes (Equality constr) to (Inequality constr).
We will now see that due to this relaxation, the value of program (2.5) as a function
of 1−π

π is given by a curve which majorizes the red curve in Figure 2.7c – namely,
the green curve in Figure 2.7c.

Let γ∗ = min argmax
γ

W (γ).

Clearly, if 1−π
π ≥ γ∗, an optimal solution to (2.5) is to set µ to be the degenerate

distribution with unit mass at γ∗, i.e. in this case the optimal a1 is a step function
with its step at γ∗. Hence, for 1−π

π ≥ γ∗, the value of (2.4) is constant at max
γ

W (γ) =

W (γ∗).
Hence, putting the two cases together – 1−π

π ≥ γ∗, when (Inequality constr) does
not bind, and 1−π

π < γ∗, when it does – we have the value of (2.5) as a function
of 1−π

π given by the green curve in Figure 2.7c. In particular, it is coincident with
the concave envelope of W (γ) – the red curve – for 1−π

π < γ∗, and flat at W (γ∗) for
1−π
π ≥ γ∗. The green curve is the monotone concave envelope of W (γ) – the lowest

monotone and concave function that majorizes W (γ).

Step 4. Comparative statics w.r.t. the prior

In this step, we provide a graphical proof sketch of Theorem 2.A, using the

principal’s (scaled and translated) value function ̂̂W (γ), constructed in the previous
step. Naturally, since we have assumed Ev ≥ 0, we only prove the statements
captured by the second row of the table in Theorem 2.A.
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Clearly, for sufficiently low π – specifically, for 1−π
π ≥ γ∗, or π ≤ γ∗

γ∗+1 – the
(Inequality constr) does not bind. So a1(γ) = 1(γ ≥ γ∗) is a constrained optimal
solution to (2.5). That the test is of the form Pass-if-correct, Bonus for True comes
from obtaining the corresponding a0(γ), substituting this a1(γ) in (Envelope-a0(γ)).

Now we show that similarly, at the other extreme, for 1−π
π < γ1π the optimal test

is of the form Pass-if-correct, Bonus for False. Because ̂̂W (γ) is both non-decreasing
and concave, it must be strictly increasing till it reaches W (γ∗) – the highest value
of W (γ). In order for the test to be non-trivial, we must have W (γ∗) > Ev. Clearly,

γ∗ > γ. Algebraic manipulations show that W (γ) = Ev for all γ ≤ γ. Hence ̂̂W (γ)

must lie strictly above W (γ) for γ ∈ (0, γ). This shows that for high enough π, the
optimal a1 is a convex combination of step functions with steps at γ1π and 0. Note
that the latter corresponds to the constant function a1(γ) = 1, a0(γ) = 0. Algebra
shows that any such convex combination gives rise to a1 and a0 which correspond to
a Pass-if-correct, bonus for False test.

The above analysis outlines how, in Figure 2.8, for γπ ≤ γ1π and γπ ≥ γ∗, the
optimal test is of the Pass-if-correct form, with a single threshold.

Clearly, a single threshold test with asymmetric rewards can arise only if, at the
optimum, either a1(γ) = 1(γ ≥ γ∗), or a1(γ) is a convex combination of a step
function and the constant function a1(γ) = 1. Clearly, the former case cannot arise
for γπ < γ∗. Moreover, as in Figure 2.8, if we define γ1π as the lowest γ ≥ γ for whicĥ̂
W (γ) = W (γ), the latter cannot arise at the optimum for γπ > γ1π. In the appendix
we show that Hence, for γπ ∈ (γ1π, γ

∗)

Step 5. Non-concavity of the cumulative virtual value function neces-
sary for the Unsure option to arise.

Step 6. Regions of concavification lead to linearity of the principal’s
maximized value in the prior.

In this final step, we want to sketch the proof of Theorem 4. We would do that
by showing that the principal’s maximized value, as a function of π is linear in π

whenever ̂̂W (
1−π
π

)
> W

(
1−π
π

)
. Therefore without loss, under the optimal prior,
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̂̂
W
(
1−π
π

)
= W

(
1−π
π

)
. Below we show that ̂̂W (

1−π
π

)
= W

(
1−π
π

)
if and only if

the optimal test is the simple True-False.
For 1−π

π < γ∗ the constraint (Inequality constr) binds, so we are in the “Bayesian

persuasion world” of (2.6), which means ̂̂W = Ŵ , the concave envelope. Hence, the
optimal distribution µ has either singleton or binary support. When it has a singleton
support, that must be at γ = 1−π

π , which corresponds to a belief threshold of one
half. Combined with (Envelope-a0(γ)), this corresponds to the simple True-False
test. By the definition of concave envelope, the optimal distribution has a singleton
support if and only if the value function – W (γ) – and its concave envelope – Ŵ (γ)

– coincide.
For 1−π

π > γ∗, the constraint is slack and hence ̂̂W (
1−π
π

)
is constant at W (γ∗).

2.8 Extensions

2.8.1 Agent observes quality

For our purposes, the setting where the agent does not know his quality, is not
fundamentally different from the one, where he does. As we show in this section, all
of our main results – Theorem 1 and slightly modified versions of theorems 2.A- 2.B
- hold even in this case.

First, even though the agent knows his quality, the principal obviously cannot
screen by it alone, because in that case, in the absence of transfers or verification,
there is no way to stop lower learning types from misreporting as higher ones. Hence
she must screen by both quality and signal – combined into beliefs – just as in our
main model. Hence basic characterizations of the set of incentive compatible and
potentially optimal mechanisms in terms of beliefs – Theorem 1 – hold even in this
case.

Proposition 5. The optimal mechanism is a step function with at most two steps,
regardless of whether the agent knows his quality.

The essential elements of the second set of main results – theorems 2.A and 2.B
– also hold true because the main forces are the same. The main difference between
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the two settings is that now a lower learning type needs a more extreme signal than
a higher one in order to have an equally extreme belief. Hence each belief threshold
of any optimal mechanism translates into different signal thresholds for the various
learning types. Similarly as before, the “indifference at the threshold” principle must
hold for each type, leading to a similar relationship between the threshold(s) and the
extent of distortion(s). The additional condition is that each set of signal thresholds
must give rise to the same belief.

To fix ideas, let us focus on the two learning type case. Let tH and tL be the
signal-thresholds for high and low learning types in a single-threshold test. Using
ϕe : [0, 1] → R to denote the odds ratio of type e ∈ {H,L} as a function of his signal,
we must have:

ϕH(tH) = ϕL(tL) ⇐⇒ fH1(tH)

fH0(tH)
=

fL1(tL)

fL0(tL)

As an illustration of the similarity between the two settings claimed above, let us
compute the principal’s value from a single threshold fail-if-incorrect test with a belief
threshold below one half. With slight abuse of notation, let tH : [0, 1] → [0, 1] be the
implicit function capturing the high learning type’s signal threshold as a function of
that of the low one, i.e. tH : t 7→ ϕ−1

H (ϕL(t)). Note that by strict increasingness of
ϕH , tH is well-defined. With that, the principal’s value (scaled by r) from a single
threshold fail-if-incorrect test with a belief threshold below one half with the low
type’s signal threshold t is given by:

V F
− (t) =

π

1∫
tH(t)

fH(t′|1)dt′ + (1− π)

(
π

1− π

)
ϕH(tH(t))

tH(t)∫
0

fH(t′|0)dt′


−

π

1∫
t

fH(t′|1)dt′ + (1− π)

(
π

1− π

)
ϕL(t)

t∫
0

fH(t′|0)dt′
 . (2.1)

From (2.1) it is clear that the characteristic features of the optimal test described
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in theorems 2.A and 2.B – such as invariance of the signal thresholds with the prior
for a range of extreme priors and the distortion on the intensive margin reducing
monotonically to zero as the prior goes from extreme to moderate – are preserved in
this case as well. This is formalized below.

Proposition 6. Suppose the agent observes his quality and the problem is regular.
Then the following hold:

• There exist 0 < π ≤ π < 1 such that the type of the optimal test is always pass,
never pass or given by the following:

π < π π ∈ [π, π] π > π

Cherry-picking,
V0 < 0

Fail-if-incorrect,
penalize False

Simple T-F Fail-if-incorrect,
penalize True

Lemon-dropping,
V0 ≥ 0

Pass-if-correct,
Bonus for True

Simple T-F Pass-if-correct,
Bonus for False

Table 2.5: Optimal tests across markets and priors

Moreover, if the signal structures are symmetric, π + π = 1 and π < 1
2 .

• When the prior is extreme, as it grows more moderate, the signal threshold
of the optimal test for each of the learning types remains constant, its (com-
mon) belief threshold grows more moderate and the (common) distortion in the
allocation in the a priori obvious state reduces.

• When the prior is moderate, as it increases, the signal threshold in the optimal
test for each of the learning types increases and its belief threshold remains
constant at one half. Consequently there is no distortion in the allocation in
either state.
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2.8.2 Alternative timings of the game

The informed principal game

In the main model we assume the principal does not know the answer to the
question before choosing the test. However, in many real world scenarios such as
teachers setting exam questions, this need not be the case. When the principal
knows the true state before choosing the test, we have an informed principal problem
(Myerson (1983),Maskin and Tirole (1990)). In this section we show that under
regularity, the ex-ante optimal mechanism is an equilibrium of the informed principal
game even in that case. Moreover, under mild additional assumptions, the main
qualitative properties of the optimal tests highlighted throughout this paper hold for
optimal tests arising in any other equilibrium of the informed principal game.

The solution concept we use is that of undominated mechanisms, as introduced
by Myerson (1983). In our setting, a mechanism (â1, â0) is undominated if and only
if there is no other mechanism under which the principal’s payoff in each state is
weakly greater than under (â1, â0) and strictly greater than (â1, â0) in at least one
state. This immediately leads to the following observation.

Fact 2. A mechanism a0, a1 : P → [0, 1] is an undominated mechanism if only if it
solves the following for some πP ∈ [0, 1].

max
a1,a0∈[0,1]P

πP

∫
p
v1(p)a1(p)dF (p|1) + (1− πP )

∫
p
v0(p)a0(p)dF (p|0) (2.1)

s.t. Feas and IC.

Fact 2 combined with Theorem 1 immediately tells us that any undominated
mechanism must have the same at-most-two-thresholds structure established earlier.
Therefore, analogously as Theorem 1, we observe the following:

Proposition 7. Any undominated mechanism (a1, a0) consists of step functions with
at most two steps, where the a1 and a0 change at the same belief(s).

As such, we reference undominated mechanisms by the relative weight they put
on the principal’s value when the realized state is 1. Specifically, an undominated
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mechanism π̃ is one which maximizes (2.1) with πP = π̃. Clearly, a mechanism is
ex-ante optimal if and only if it solves (2.1) for πP = π.

Next we show that under an (appropriately strengthened) regularity condition,
analogs of theorems 2.A and 2.B hold for any undominated mechanism in the in-
formed principal game as well.

“Regularity” in the informed principal game

In the main analysis we called a problem regular if the corresponding virtual
value was increasing whenever πP = πA. Analogously, we call a problem strongly
regular if the corresponding virtual value is increasing for all (πP , πA) pairs.

Clearly, strong regularity implies regularity.
An example of a class of natural settings satisfying strong regularity is given

below.

Observation 1. Consider Special Case 1. Suppose further that the high quality
type’s signal structure is linear – f(t) = 1 − b + 2bt, b ∈ [0, 1] – then the problem
is strongly regular whenever it is non-trivial for any γ ≥ 60%, regardless of other
parameters.

The theorem below shows that for a symmetric, strongly regular problem, our
main characterization, Theorem 2.A still holds, as long as the principal’s losses from
the low quality types are “not too high”. In the following theorem we use loss to mean
the absolute value of the principal’s payoff from agents whose quality is negative.

Theorem 5. If the problem is strongly regular and max
t∈[0,1]

min{m1(t),m0(t)} ≥ 0,

then for any undominated mechanism πP , the type of the optimal test is always pass,
never pass or given by the following:
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πA < π(πP ) πA ∈ [π(πP ), π(πP )] πA > π(πP )

Cherry-picking,
u0 < 0

Fail-if-incorrect,
penalize False

Simple T-F Fail-if-incorrect,
penalize True

Lemon-dropping,
u0 > 0

Pass-if-correct,
bonus for True

Simple T-F Pass-if-correct,
bonus for False

Table 2.6: Optimal tests across markets, priors and equilibria of the informed prin-
cipal game

In particular, for any problem P there exists k ∈ [0, 1) such that if all losses are
reduced by the same proportion k, the condition max

t∈[0,1]
min{m1(t),m0(t)} ≥ 0 is

satisfied.

Other equilibrium concepts

It may be worth mentioning that there are solution concepts other than undomi-
nated mechanisms as well, under which the ex-ante optimal mechanism we character-
ized remains an equilibrium mechanism of the informed principal game. In particular,
we consider the concept of core mechanisms, as defined by Myerson (1983). In our
context, a core mechanism is one for which neither of the two principal “types” can
do better by deviating and revealing her type.

Proposition 8. Suppose the problem is regular. Then the ex-ante optimal mecha-
nism is a core mechanism.

The main ideas behind the above result are as follows. Under regularity the
optimal tests have a single threshold. The common threshold is chosen trading off
principal’s expected values in the two states. But each state nevertheless “skims the
cream” – fails (or fails with a greater probability, in the lemon-dropping case) the
signals at its respective worse extreme. Thus, under such optimal tests the principal
strictly benefits from discrimination in each state. On the other hand if the principal
reveals the state, no discrimination is possible. Therefore the principal of each “type”
must prefer the ex-ante optimal mechanism over revealing her type, i.e. the state
itself. The details are in the Appendix.
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Strategic learning by the principal

In this section we consider two alternative timings where the principal makes a
strategic choice at the beginning of the game regarding whether or not to learn the
state. We show that in both cases she chooses the latter. We also show, by way of an
example, that when she is allowed to choose from the full set of possible experiments
about the state however, her optimal choice can be intermediate.

The first alternative timing is as follows.

1. The principal chooses between acquiring a fully informative and a fully unin-
formative signal about the state.

2. The agent observes her choice.

3. The principal’s signal is realized, unobserved by the agent.

4. If she has chosen the informative test in Step 1, the game given in Section 2.8.2
ensues. If she has chosen the uninformative test instead, that of Section 2.2
ensues.

In the second alternative timing, the agent also observes the principal’s signal.

1-3. As given above.

4. The agent observes the principal’s signal.

4. The game given in Section 2.2 ensues, but now with the potentially updated
fully revealing common prior, π ∈ {0, 1}.

We show that in either of these two cases, the principal chooses not to learn.

Proposition 9. For any of the two alternative timings given above, the principal
chooses the uninformative signal in Step 1.

The reasoning is as follows. In the second case, if the principal chooses to learn
the state, the agent also learns it. Clearly, in this case there can be no screening
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thereafter, which the principal cannot prefer. Now suppose the agent does not ob-
serve her signal. In this case, if the principal has chosen to learn the state in the
first stage, an informed principal game ensues, as in Section 2.8.2. As we showed
there, all equilibria of that game are weakly worse for the principal from her ex-ante
perspective, than if she can commit to the mechanism without learning the state,
and the agent knows that she has not learnt the state.

2.8.3 Efficient tests and questions

In this subsection we show that the class of optimal tests characterized in Theorem
1 remains optimal even when the test-designer cares – not only about the screening
effectiveness - but also about the test-taker’s payoffs.

Let us assume the test-designer wants to maximize a convex combination of her
own and the agent’s payoff – akin to a “social welfare” function. Let us call the
class of tests which maximize such a welfare function, “efficient” tests. Relooking
at her original program Primal, and considering our main analysis, it is clear that
in this case the class of optimal tests remains the same as that characterized in
Theorem 1. This is because even in this case, the welfare function remains linear
in the mechanism, (a1, a0), and therefore the set of potential optimal mechanisms
remains the set of extreme points of the feasible set, which does not change. This is
formalized below.

Proposition 10 (Analog of Theorem 1). Any efficient test (a1, a0) consists of step
functions with at most two steps, where the a1 and a0 change at the same belief(s).

In our microfounded model from Section 2.5, the principal caring about social
welfare is equivalent to her value from each learning type going up. Therefore all of
our results in sections 2.5 and 2.6 remain qualitatively valid too.

2.8.4 Multi-question tests

In this subsection we consider the design of a test consisting of n ∈ N questions,
each about a binary fact. We show that under a natural design restriction, our results
apply to the design of such tests as well.
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Now we have N binary states – let us call them states 1 to N – and 2N possible
state realizations. Let ω := (ω1, · · · , ωN ), where ωi ∈ {0, 1} for each i, denote the
typical state realization. ∴ Ω = {ω : ω = (ω1, · · · , ωN ), ωi ∈ {0, 1} ∀ i}.

Our belief space is the (2N −1)-simplex, P := {p ∈ [0, 1]2
N
:
∑
ω∈Ω

pω = 1}. Let pi

denote the agent’s marginal belief on the i-th state, i.e. pi =
∑

ω−i∈[0,1]N−1

p(ω−i,ωi)
,

where ωi = 1.
The analog of the mechanism (a1, a0) in this context would be a : P → [0, 1]2

N
.

a family of reward functions, one for each state. We can interpret a as passing
probabilities, as in the main model, but for the rest of the section we would call it
scores, which is more interpretable in this context.

We impose the design restriction that the total score has to be a weighted average
of scores for each question and that each question must be scored based on the
agent’s knowledge of that question only, i.e., his marginal belief over the binary state
representing that question. Formally:

Restriction 1. There exist functions aiωi : [0, 1] → [0, 1] and weights si ∈ [0, 1] ∀ i ∈
{1, · · · , N},

∑
i
si = 1, such that for all p ∈ P, ω ∈ Ω,

aω(p) =
N∑
i=1

sia
i
ωi(p

i)

To reiterate, we maintain the assumption, that the agent cares about the total
score only. Using U(p; p′) to denote the indirect utility of an agent with belief p,
from reporting p′, formally this means:29

U(p; p′) =
∑
ω

pωaω(p
′)

The principal, as before, wants to maximize her ex-ante payoff, given her interim
payoff function which depends on the belief-state combination.

29. Note that this assumption is equivalent to imposing risk neutrality over scores, if we interpret
the reward as some numerical score instead of passing probabilities.
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Our main result in this subsection is that, when the principal is restricted to
design essentially a separate test, {(ai1, a

i
0)}, for each question i, each of these tests

take the same format of making the agent pick from at most three options, as in our
main characterization. The analog of Thorem 1, therefore, would be:

Proposition 11. Under any optimal mechanism {(ai1, a
i
0)}

N
i=1, ai1 and ai0 consist

of step functions with at most two steps, where the ai1 and ai0 change at the same
belief(s), for all i ∈ {1, · · · , N}.

The key to the above result is that under the design restriction 1, incentive
compatibility is equivalent to question-wise incentive compatibility – not wanting
to misreport one’s marginal belief over each of the states. A corollary of design
restriction 1 is also that under it, the mechanism cannot distinguish among agents
with the same marginal beliefs for each state.

2.8.5 Risk averse agents

In this paper we have maintained that the passing probabilities can be inter-
preted as number of points, giving a natural interpretation of intermediate passing
probabilities as partial credit. However, this claim rests on the assumption that the
agent is an expected points maximizer, i.e., risk neutral.

Suppose, instead, that the agent is risk averse but the principal is still risk neutral,
i.e. her expected payoff is linear in the rewards of the agent (a1 and a0). In this case
our main claim of simplicity – implementability of the optimal tests with at most
three options – no longer holds in general. The reasoning is as follows.

In this case the appropriate primitive to work with is the agent’s utility from
a given number of points, from which the number of points can be backed out, to
be plugged into the principal’s payoff. Straightforward algebra shows that in this
case, her expected payoff is no longer necessarily convex in the aforementioned utility
function of the agent. Therefore optimizers are no longer necessarily extremal.

The main takeaway from the above insight is that when testing risk averse agents,
it may be optimal to give them more options – upto infinitely many – to express
their beliefs about the answer to a question. For future work, it may be interesting
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to see how heterogeneous and/or private risk aversion affects the optimal test – an
analysis which has implications to the debate on the differential impacts of negative
marking on men and women test-takers, who systematically differ in terms of their
risk aversion Baldiga (2014); Saygin and Atwater (2021); Coffman and Klinowski
(2020).

2.8.6 Forcing tests to be “fair”

One of the potentially surprising results to come out of our main analysis is that
optimal tests could be “unfair”, in the sense that they could pass incorrect answers or
fail correct answers (Section 2.5.2). However, in the real world, it is hard to justify
failing a test-taker who gives a correct answer, even if such a grading scheme offers
the optimally effective screening of the relevant underlying quality of the candidate
that the test-designer cares about. The main result of this subsection shows that such
a restriction – that “fully correct” answers must be passed with a 100 % probability
– can be accommodated in our framework, and that they keep the multiple-choice
structure of the test unaltered, give rise to potentially just one additional option.

We model the “fairness” restriction in the following way. We assume that the
“most correct” belief must be passed regardless of the correct answer. In terms of
our formal mechanism (a1, a0) introduced in our main analysis in Section 2.4.2, this
imposes the additional restrictions:

a0(p) = 1,

a1(p) = 1.

We say a test (a1, a0) is fair30 if the above restrictions hold.
So the principal’s problem, (Primal), becomes:

30. Note that this nomenclature is unrelated to the equity-based notion of fairness often used
in studying multi-agent mechanisms, where fairness captures some notion of “equal treatment of
equals”.
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max
a1,a0∈[0,1]P

π

∫
p
v1(p)a1(p)dF (p|1) + (1− π)

∫
p
v0(p)a0(p)dF (p|0) (2.1)

s.t. a1, a0 ∈ [0, 1]. (Feas)

pa1(p) + (1− p)a0(p) ≥ pa1
(
p′
)
+ (1− p)a0

(
p′
)
,∀p, p′ ∈ P (IC)

a0(p) = 1, (Pass correct 0)

a1(p) = 1. (Pass correct 1)

It turns out, even With this new restriction, the class of optimal tests remains
the same, as captured by the following result.

Proposition 12 (Analog of Theorem 1). The optimal fair mechanism (a1, a0), which
solves (Primal), consists of step functions with at most two steps, where the a1 and
a0 change at the same belief(s).

The proof is analogous to that of Theorem 1.

2.9 Conclusion

In this paper we analyze the problem of a principal trying to maximize the prob-
ability of accepting a good type of agent and minimize that of accepting a bad type
of agent, by designing a test of the agent’s knowledge of an unknown state, which
is correlated with his quality. Interviews and other knowledge-based tests frequently
employed in passing settings constitute our main application. We show that the
optimal tests take a simple “pick the correct answer” form, observed often in real-
ity. In general there can be at most three options – which can be thought of as
True/False/Uncertain. Under some natural regularity conditions, the optimal test
features at most two options – True and False. However, we show that due to agency
issues, giving a correct answer need not always earn the same credit. The partial
credits earned by the answer depends on the correct answer itself. This leads to over-
rewarding of “counterintuitive” – or a priori unlikely – answers and under-rewarding
of “obvious” (a priori likely) ones, compared to the efficient (full information) test.
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When the principal can choose the question – modeled as choosing the prior for the
unknown state on which the agent is quizzed – she naturally prefers to avoid these
distortions. Therefore in that case, we show, she chooses the prior in a way such
that there is no distortion at either extreme, even without regularity conditions. Un-
der regularity conditions, when the principal can choose the prior, the optimal test
always takes the form of a simple, unweighted True-False question.
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CHAPTER 3
SCREENING KNOWLEDGE WITH VERIFIABLE

EVIDENCE

3.1 Introduction

Individuals are evaluated on their knowledge or expertise in a myriad of settings.
Students take exams, job candidates are interviewed on their domain knowledge,
consultants help firms make decisions and are often rewarded based on the ex-post
accuracy of their advice, and so on. In Dasgupta (2024a), I consider the problem
of designing such a test of knowledge, to maximize its effectiveness as a screening
tool, from the perspective of the designer – an interviewer, teacher, standardized
testing company etc. There, I model the subject matter as a binary state and
the test-taker’s knowledge as his belief about this state. I then set up and solve
the designer’s mechanism design problem where test-takers’ beliefs are elicited and
rewarded according to their accuracy.

However, for many real world knowledge-based evaluation schemes, accuracy of
one’s answers is not enough to earn rewards. For that, one must justify one’s answers.
Many college exams give True-False or multiple choice tests to students, but specify
that their answers must be justified in order for them to earn points. It is not enough
for a consultant assisting a firm in making a decision to simply recommend a decision.
He must provide exhaustive data and analysis to back up any recommendations he
makes.

In this note, I model the above testing setting as a problem of mechanism design
with evidence. More specifically, the model is as follows. There is a binary state,
unobserved by a test-taker/agent. He learns about it only through verifiable evidence.
His evidence is a vector with two real components – each component indicating the
strength of evidence in favor of one of the states. There are two types of agents –
good and bad. There is a prior joint distribution over these evidence pairs and the
state, which varies by the agent type. The good type agents are more likely to posses
both higher quality and quantity of evidence – captured using an MLRP property,
adapted to our setting. The principal/test-designer wants to design a pass/fail test.
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She gets a positive payoff from passing the good type and a negative payoff from
passing the bad one. The true state is observed by the principal ex-post. She has
the power to commit to a “test” – without loss, a pair of passing probabilities as a
function of the agent’s reported evidence, one for each state. Our problem is her
mechanism design problem of choosing the test which maximizes her ex-ante payoff,
subject to the agent’s truth-telling constraint. The agent’s private information is
the two-dimensional vector indicating the amount of each type of evidence that
he possesses. The twist in the aforementioned constraint in our setting, vis-à-vis
standard mechanism design settings is that, our incentive constraints are “one-sided”:
The agent can hide evidence, but cannot manufacture it. Therefore he can misreport
any amount evidence which is component-wise weakly lower than the evidence he
really possesses, but not one which has a strictly higher component.

In this setting, assuming a symmetric signal structure,1 I show that the optimal
test takes a form which can be considered a natural generalization of the simple
True-False test (which has been shown to be generically optimal for a large class of
problems in Dasgupta (2024a)), and ubiquitous in the real world. In particular, the
optimal test passes (respectively, fails) the test-taker regardless of his answer, if the
amount of evidence provided is sufficiently high (respectively, sufficiently low), and
passes if and only if his answer is correct, when the amount of evidence provided
is intermediate. I also derive conditions on the signal structures which ensure that
evidence is always used under the optimal test. Conversely, when this condition
is not met, I show that for “intermediate” ranges of the sensitivity of the principal
to quality (good or bad), the optimal test does not demand any evidence from the
test-taker at all, testing him purely on the accuracy of his knowledge. Specifically,
in this case the optimal test is the simple True-False – it asks the test-taker to pick
the state he thinks is more likely and passes him if and only if he is correct.

In conclusion, our main result shows that in symmetric settings where knowledge
is gained, and screened, using verifiable evidence, the optimal mechanism is the com-
monly used simple True-False, plus an evidence component. Moreover, in a generic
class of settings, the optimal mechanism makes no use of the available evidence,

1. Symmetric in a sense which is made precise in Section 3.2
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even though the test-taker learns only through verifiable evidence. The last result
can be thought of as providing a suggestive basis for tests such as the SAT, GRE,
IIT-JEE or CAT having only multiple choice questions, without requiring test-takers
to provide any justification for their answers, even though these tests often feature
problems which require mathematical or non-mathematical reasoning, i.e. working
out (“learning”) the answer through verifiable, logical steps.

3.2 Model

There is a principal (she) who is a test-designer and an agent who is a test-taker
(he). The principal wants to decide whether to accept or reject the agent based on
a pass/fail test.

Preferences. There are two quality-types of agents – Good (G) and Bad (B). The
principal gets a positive payoff, normalized to 1, from passing the Good quality-type,
and a negative payoff, −uB , uB > 0, from passing the Bad quality-type. The prior
probability of a good type is g ∈ (0, 1), known by both principal and agent. We
assume quality-type is unobserved by both. The agent only cares about passing –
his payoff from passing is normalized to 1 and that from failing is 0.

Evidence and learning. There is an unknown state ω ∈ {R,L}. Let π ∈ (0, 1) be
the common prior probability that the state is R.

The agent learns about the state only through verifiable evidence. There are two
kinds of evidence. Let their respective amounts be denoted by r and l, r, l ≥ 0. We
assume there is an aggregate resource constraint on evidence, normalized to 1, i.e. we
assume ϕ(r, l) ≤ 1, where ϕ : R2 → R is a function which is symmetric and strictly
increasing in both of its arguments. This captures resource constraints in common
settings of evidence-based evaluation. For example, a student has time constraints
in an exam which puts a cap on the number of steps he can derive/arguments he
can give in favor of either of the possible answers; a consultant may have time and
other resource constraints on the amount of data he can collect in favor of either of
the options he recommends, and so on.

Hence the evidence space is:

73



Θ := {(r, l) ≥ (0, 0) : r + l ≤ 1}

There is a distribution over evidence in each state for each quality-type of agent,
which is assumed to have full support on Θ and a density. Let fe(r, l|ω) denote the
density of evidence type (r, l) in state ω for quality-type e ∈ {G,B}. We make a
number of assumptions on the evidence distribution. The specifics are as follows,
followed immediately by a discussion of the role of each assumption.

Assumption 2. We assume the following hold.

• Symmetry: fe(r, l|R) = fe(l, r|L) for both e.

Hence, going forward we use fe(r, l) to denote fe(r, l|R) for both e.

• Monotonicity: fe(r, l) is increasing in r and decreasing in l for both e.

• MLRP: fG(r,l)
fB(r,l)

is increasing in r and decreasing in l.

• C2: fe(·, ·) is twice continuously differentiable in each component.

Discussion of Assumption 2. Essentially, in our model of evidence, the two
types of evidence r and l provide support for the two opposite states – R and L.
Our symmetry assumption posits that “correct” and “wrong” evidence has the same
distribution, regardless of the true state. Our monotonicity assumption formalizes
the notion that more “correct” evidence is more likely – and conversely more “wrong”
evidence is less likely – in each state, for each quality-type. Our MLRP condition
captures the idea that the good type is more likely to possess correct evidence and
less likely to possess wrong evidence, than the bad type.

Fact 3. Note that a corollary of MLRP is:

fG(r, l)

fB(r, l)
≥ fG(l, r)

fB(l, r)
⇐⇒ r ≥ l.
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Let p : Θ → [0, 1] denote the agent’s belief that the state is R, associated with a
given evidence type in Θ, calculated using Bayes rule.

Mechanisms. The principal designs a mechanism, taking as given the learning
environment described above, in order to maximize her ex-ante expected quality.
In this environment, a revelation principle applies (Bull and Watson, 2007). It is
without loss for the principal to consider direct mechanisms that incentivize truthful
reporting and full disclosure of the agent’s evidence, i.e. it is without loss to restrict
attention to the following class of incentive compatible mechanisms, where incentive
compatibility is formalized immediately afterwards:

{(aR, aL) : Θ → [0, 1]2, (aR, aL) is incentive compatible}

Incentive compatibility. Recall that we normalized the agent’s payoff from
passing to 1 and that from failing to 0. It follows that the agent cares only about his
interim expected probability of passing, given the mechanism and his evidence level
(r, l) ∈ Θ. Hence incentive compatibility entails:2

aR(r, l)p(r, l) + aL(r, l)(1− p(r, l)) ≥ aR(r
′, l′)p(r, l) + aL(r

′, l′)(1− p(r, l)) (IC)

∀ (r, l), (r′, l′) ∈ Θ, (r′, l′) ≤ (r, l).

Note that the above IC constraints are “one-sided” – the agent can only misreport
an evidence level that is component-wise weakly lower than his actual evidence. In
other words, he can hide evidence he already has, but he cannot manufacture it.

Interpretation. In our model, the agent is being tested on his knowledge/predic-
tive capquality of some unknown binary state, where he learns only through verifiable
evidence. r ∈ [0, 1] and l ∈ [0, 1] capture the amounts of evidence in favor of each of
the possible states that the agent obtains. For example, a consultant may be able

2. Our evidence structure and therefore the nature of IC constraints is similar to the one used
by Dziuda (2011).
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to collect data both for and against a decision under consideration. A student may
be able to come up with several arguments both for and against a given statement,
without knowing if it is True or False. He may also be able to derive a few steps of a
mathematical problem without knowing the correct answer. These are all examples
of an agent learning the state partially through evidence of contradictory types.

As captured by (IC), in all of these cases, the agent can decide not to show all of
their evidence, depending on what they think the correct answer is, but he cannot
manufacture evidence he does not have.

In the rest of the paper we use r (l) interchangeably, as appropriate, to both
indicate type of evidence, as well as its amount.

3.3 Optimal mechanism

The principal’s problem is as follows:

max
aR,aL∈[0,1]Θ

π

∫
(r,l)∈Θ

v(r, l)aR(r, l)drdl + (1− π)

∫
(r,l)∈Θ

v(l, r)aL(r, l)drdl

(3.1)

s.t. aR, aL ∈ [0, 1]. (Feas)

p(r, l)aR(r, l) + (1− p(r, l))aL(r, l)

≥ p(r, l)aR(r
′, l′) + (1− p(r, l))aL

(
r′, l′

)
,∀(r, l), (r′, l′), (r′, l′) ≤ (r, l) (IC)

Our main characterization is as follows.

Theorem 6. Suppose the signal structures are symmetric and the prior is balanced,
i.e., π = 1

2 . Then, there exists an optimal mechanism of the form:

aR(r, l) = 1(r ≥ min{max{r̃1, l}, r̃2}) (Optimal Test)

aL(r, l) = aR(l, r). (3.2)

Figure 3.1 graphically illustrates the optimal mechanism for ϕ(r, l) = r + l. The
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optimal mechanism is a simple True-False test, as defined in Chapter 1, plus an
evidence component: If the agent possesses too little (respectively, enough) evidence,
he is failed (respectively, passed) regardless of what he thinks the correct answer is.
When he possesses an intermediate level of evidence, he is given a simple True-False
test. In particular – as we show in the next section – for a range of parameter values,
the optimal test might consist only of the simple True-False. We see this result
as providing a suggestive basis for why many tests (e.g. the GRE) do not require
showing of steps even for problems involving multiple steps.

Figure 3.1: Optimal mechanism; ϕ(r, l) = r + l.

We use the strong duality approach to certify optimality of the mechanism de-
scribed in Theorem 6. In the process we use a novel construction of dual multipliers
which may be of independent interest.
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3.3.1 Variation of the optimal test with principal’s preferences

In this section we provide conditions under which various types of tests arise, from
within the class of optimal tests established in the previous section. In particular,
we show that when principal’s quality sensitivity is neither too high nor too low, it is
possible that the optimal test would only ask the agent a simple True-False question,
and not make any use of his evidence at all, even though he learns only through
verifiable evidence, in our model.

First, we define some parameters of the agent’s signal structure which would
prove key in determining the type of optimal test.

Without loss, let us assume the true state is R. Suppose the principal knows that
the agent has the “correct” belief, i.e. is biased towards R, which means possesses
evidence r ≥ l. In this case, what is the weakest signal of good quality that the
principal can get, just by observing the agent’s level of evidence r∗? It is given by:

ξWC := inf
r∗

PrG(l ≤ r ≤ r∗|R)

PrB(l ≤ r ≤ r∗|R)
= inf

r∗

∫
l≤r≤r∗

fG(r, l)dldr∫
l≤r≤r∗

fB(r, l)dldr
(Weakest correct)

We call ξWC the weakest signal of good quality, based on correct evidence only.
Similarly we can define the strongest signal of good quality, based on incorrect evi-
dence only, as follows:

ξSI := sup
r∗

PrG(l ≥ r ≥ r∗|R)

PrB(l ≥ r ≥ r∗|R)
= sup

r∗

∫
l≥r≥r∗

fG(r, l)dldr∫
l≥r≥r∗

fB(r, l)dldr
(Strongest incorrect)

As the name suggests, ξSI is the strongest possible signal in favor of good quality
which the principal can get, if he only observes the “wrong” kind of evidence, i.e. r

when r ≤ l (i.e. the agent thinks state L is more likely).
Note that these signal strengths, ξWC and ξSI , are properties purely of the agent’s

signal structure.
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Note that within the class of mechanisms described by (Optimal Test), the ev-
idence thresholds r̃1 > 0 and/or r̃2 are non-trivial only if, at the optimum within
that class, r̃1 > 0 and/or r̃2 < 0.5, i.e. the corresponding two-variable optimization
problem has interior solutions for r̃1 > 0 and/or r̃2.3

Now we define some terminology which is used in our main characterization in
this section. We say the the optimal test must use evidence if under the optimal test,
as given by (Optimal Test), r̃1 > 0 or r̃2 < 0.5, i.e., if the solution for at least one
of the variables in the two-variable maximization problem described in the previous
paragraph, is interior. Conversely, we say evidence if unnecessary if the solution to
neither of r̃1 > 0 and r̃2 in that problem is interior.

Define α :=
uB(1−g)

g – it captures the “quality-sensitivity” of the principal, by
capturing her (probability weighted) loss from passing the bad type, vis-a-vis her
gain from passing the good type (recall that the latter has been normalized to 1.)

Theorem 7. Suppose the signal structure is such that:

• ξWC < ξSI . Then, optimal test must use evidence.

• ξWC > ξSI . Then, if ξWC > α > ξSI , then evidence is unnecessary.

The second point of Theorem 7 shows that when the principal’s preferences

3. To make things concrete, here are the details of the two-variable optimization problem the
principal must solve to find optimal evidence thresholds r̃1 and r̃2. See Appendix for more details.
Define v1, v2 : R → R as v1 : r 7→

∫
l≤r,

(r,l)∈E

v(r, l)dl, v2 : r 7→
∫

l≥r,
(r,l)∈E

v(r, l)dl. Hence the principal’s

value from the mechanism (r̃1, r̃2) is given by:

V (r̃1, r̃2) :=

∫
r≥r̃1

v1(r)dr +

∫
r≥r̃2

v2(r)dr

First order conditions which any interior (r1, r2) must satisfy are ∂v
∂r̃i

= 0 =⇒ −vi(ri) = 0, i ∈
{1, 2}.
Hence for interior solutions, we must have:

r1 = 0 if v1(r) > 0 ∀ r, v1(r1) = 0 otherwise, (FOC-1)

r2 = max

{
r1,

1

2

}
if v2(r) < 0 ∀ r, r2 = 0 if v2(r) > 0 ∀ r, v2(r2) = 0 otherwise. (FOC-2)
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3.4 Conclusion

In this note I characterize optimal tests in a knowledge-screening problem a la
Dasgupta (2024a), but where the test-taker needs to provide justifications/“show
his work” I show that the optimal test takes a form which can be considered a
natural generalization of the simple True-False test shown to be generically optimal
for a large class of problems in Dasgupta (2024a), and ubiquitious in the real world.
In particular, the optimal test passes (respectively, fails) the test-taker regardless
of his answer, if the amount of evidence provided is sufficiently high (respectively,
sufficiently low), and passes if and only if his answer is correct, when the amount of
evidence provided is intermediate. I also derive conditions on the signal structures
which ensure that evidence is always used under the optimal test. Conversely, when
this condition is not met, I show that for “intermediate” ranges of the sensitivity of
the principal to quality (good or bad), the optimal test makes use of no evidence.
Specifically, in this case the optimal test is the simple True-False – it asks the test-
taker to pick the state he thinks is more likely and passes him if and only if he is
correct. In other words, in such cases, the optimal mechanism makes no use of the
available evidence, even though the test-taker learns only through verifiable evidence.
This result can be thought of as providing a suggestive basis for tests such as the
SAT, GRE, IIT-JEE or CAT having only multiple choice questions, without requring
test-takers to providing any justification for their answers, even though the questions
typically feature problems which require rigorous mathematical or non-mathematical
reasoning, i.e. working out (“learning”) the answer through verifiable, logical steps.

80



CHAPTER 4
COMPLEX TESTS: SCREENING KNOWLEDGE OF A

MULTI-VALUED STATE

4.1 Introduction

Individuals are evaluated on their knowledge or expertise in a myriad of settings.
Students take exams, job candidates are interviewed on their domain knowledge,
and so on. In Dasgupta (2024a), I consider the problem of designing such a test of
knowledge, to maximize its effectiveness as a screening tool, from the perspective of
the designer – an interviewer, teacher, standardized testing company etc. There, I
model the subject matter as a binary state and the test-taker’s knowledge as his belief
about this state. I then set up and solve the designer’s mechanism design problem
where test-takers’ beliefs are elicited and rewarded according to their accuracy.

However, that set up leaves out the more natural real world setting where either
the question is more complex, i.e., it is about a state which can take more than
two values, or there are multiple questions, so the unknown state represents the
joint answer to all the questions taken together. In this note I begin analyzing that
case by modeling the subject matter under testing as a finitely valued state. Under
the assumption of symmetry on the signal structures of the agents, I show that
the familiar multiple choice type question is optimal if and only if the principal is
sufficiently quality-sensitive, i.e. sufficiently averse to passing bad types, in a sense
made precise in the model section.

Ours is a model of belief-based screening. When the state is binary, the agent’s
belief – his only private information – is just a number. Hence our screening problem
is single-dimensional, which facilitates tractability. When the state can take more
than two values, however, the agent’s belief has multiple components, making our
screening problem multi-dimensional, which is known to be hard.

In this note I tackle this hard problem by: (1) imposing a lot of symmetry
on the agent’s learning, (2) restricting attention to a particular range of principal’s
preferences (namely, high quality-sensitivity) and (3) allowing the principal to choose
not just the optimal mechanism, but an additional parameter – namely, the prior.
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The ways the aforementioned assumptions make the principal’s multi-dimensional
screening problem more tractable are as follows. (1) and (3) together ensure that the
principal’s optimally chosen prior is uniform, which gives us even more symmetry.
Finally, (2) ensures that incentive compatibility constraints bind only towards more
informed types, in the following sense. Consider two beliefs p, p′ ∈ [0, 1], both of
which put the highest probability on state 1 (say). Under our proposed optimal
mechanism – the multiple choice question – both p and p′ are passed if and only if
the state is 1. For such beliefs, (2) ensures that the IC from p′ to p binds only if
p1
pω

≥ p′1
p′ω

for all other states ω, i.e. p has a stronger signal in favor of the correct
state (state 1) than p′, vis a vis every other state. Our assumption (2) ensures that
the incentive constraint from p′ to p can only bind in such cases.

The rest of the note lays out the model, results and proof sketch in more detail.

4.2 Model

There is a principal (she) who is a test-designer and an agent who is a test-taker
(he). The principal wants to decide whether to accept or reject the agent based on
a pass/fail test.

Preferences. There are two quality-types of agents – e ∈ {G(ood), B(ad)}. The
principal gets a positive payoff, normalized to 1, from passing the Good quality-type,
and a negative payoff, −uB , uB > 0, from passing the Bad quality-type. The prior
probability of a high type is g ∈ (0, 1), known by both principal and agent. We
assume ability-type is unobserved by both. The agent only cares about passing – his
payoff from passing is normalized to 1 and that from failing is 0.

Agent’s learning. There is an unknown state that can take finitely many values,
ω ∈ Ω := {1, · · · , N}. I assume there is a common uniform prior over this state.1

There is some signal space, potentially different for different quality-types. The
agent learns about the state through a signal structure – a joint distribution over

1. In the next section I show that this is without loss, when the principal can choose the topic
flexibly, modeled as choosing the prior.
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states and signals, one for each type G and B. This induces a distribution over
beliefs for each quality-type of agent in each state. We do not explicitly model these
signal structures, working with induced distributions over the agent’s beliefs instead.

Let µG, µB ∈ ∆∆Ω be the induced distribution over beliefs for the two types.
At the outset we assume that the states are symmetric, in the following sense. We
assume:

µe

{(
p1
pω

, · · · , pω−1

pω
,
pω+1

pω
, · · · , pN

pω

)
∈ r′

∣∣∣∣ω}
= µe

{(
p1
p′ω

, · · · ,
pω′−1

pω′
,
pω′+1

pω′
, · · · , pN

pω′

)
∈ r′

∣∣∣∣ω′}
for all Borel subsets r′ of [0,∞)N−1 (the space of odds ratios), all ω, ω′ and e ∈
{G,B}. Therefore without loss, µe

{(
p1
pω

, · · · , pω−1
pω

,
pω+1
pω

, · · · , pNpω
)
∈ r′

}
denotes

µe

{(
p1
pω

, · · · , pω−1
pω

,
pω+1
pω

, · · · , pNpω
)
∈ r′

∣∣∣ω}, which is the same for any ω ∈ Ω, go-
ing forward. Let Fe be the induced distributions over odds ratios, i.e. Fe(r

′) :=

µe

{(
p1
pω

, · · · , pω−1
pω

,
pω+1
pω

, · · · , pNpω
)
∈ r′

}
for all Borel subsets r′ of [0,∞)N−1, e ∈

{G,B}.
Going forward we refer to the induced distribution {Fe}e∈{G,B} as the agent’s

signal structure. We are going to impose a number of substantive assumptions on
the agent’s signal structure {Fe}e∈{G,B}:

Assumption 3. Suppose the following hold.

• Support: supp FG = supp FB = r, where r ⊊ [0,∞)N−1 is compact and
convex. Moreover, it admits a component-wise lowest element, i.e. ∃ r ∈ r

such that rω ≤ rω

• Density: Fe admits a density fe, e ∈ {G,B}.

• Exchangeability: fe(r) = fe(σ(r)) for any permutation σ : {1, · · · , N−1} →
{1, · · · , N − 1} of the components of the agents odds ratio vector, e ∈ {G,B}.
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• Monotonicity: The good type is well-informed, in the sense that “more cor-
rect” signals are more likely in any state. Specifically,2

r ⪇ r′ =⇒ fG(r) ≥ fG(r
′)

• MLRP: “More correct” signals are relatively more likely for the Good than the
Bad type:

r ⪇ r′ =⇒ fG(r|ω)
fB(r|ω)

>
fG(r

′|ω)
fB(r

′|ω)

We denote the typical element of r by r.

Mechanisms. The principal designs a mechanism, taking as given the learning
environment described above, in order to maximize her ex-ante expected quality. By
the revelation principle, without loss, we restrict attention to incentive compatible
direct mechanisms, and assume principal-preferred equilibrium selection. Hence, the
set of mechanisms the principal can draw on are described by N passing probability
functions, one for each state, each mapping a reported belief (isomorphically, odds
ratio) of the agent, to a passing probability:

{(a1, · · · , aN ) : r → [0, 1]N , (a1, · · · , aN ) IC}

Incentive compatibility. The agent only cares about his interim probability of
passing. Therefore incentive compatibility demands:

∑
ω

pωaω(r) ≥
∑
ω

pωaω(r
′) ∀ r, r′ ∈ r. (4.1)

2. Recall that fG(r) is the density of the odds ratio vector r ∈ RN−1 in state ω, where in
calculating r, the belief that the state is ω appears in the denominator. Therefore if r ≤ r′

component-wise, r is a stronger signal in favor of state ω than r′.
Note that we do not impose such an assumption on the information of the Bad type. As we shall
see, there are natural examples – e.g. with an uninformed Bad type – where such an assumption
for the Bad type is not satisfied.
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By our assumptions of symmetry and ex-changeability, without loss we choose
state 1 as default. By our assumption of compactness of r, p1 ̸= 0, so we divide (4.1)
throughout by p1:

a1(r) +
∑
ω

rωaω(r) ≥ a1(r
′) +

∑
ω

rωaω(r
′) ∀ r, r′ ∈ r. (4.2)

4.3 Optimal mechanism

Let vω(r) denote the principal’s (density weighted) payoff from passing an agent
with odds ratio vector r in state ω. The principal uses Bayes rule to update her
beliefs about the agent’s quality upon observing any reported odds ratio vector and
the state. Therefore vω(r) is just her (density weighted) posterior mean quality of
an agent with odds ratio r in state ω.

The principal maximizes her ex-ante payoff. Her optimization problem is (recall
the prior is uniform) as follows, where dr = dr1 · · · drN−1:s

max
(a1,··· ,aN )∈[0,1]r

(
1

N

)∑
ω

∫
r∈r

vω(r)aω(r)dr (4.1)

s.t. a1, · · · , aN ∈ [0, 1]. (Feas)

a1(r) +
∑
ω

rωaω(r) ≥ a1(r
′) +

∑
ω

rωaω(r
′) ∀ r, r′ ∈ r. (IC)

Define α :=
uB(1−g)

g – it captures the “quality-sensitivity” of the principal, by
capturing her (probability weighted) loss from passing the bad type, vis-a-vis her
gain from passing the good type (recall that the latter has been normalized to 1.)

vω(r) = fG(r)− uBfB(r)

We call the state the belief for which is used in the denominator when calculating
odds ratios, the default state. E.g. if 1 is the default state, r2 denotes the odds ratio
of state 2 w.r.t. state 1, i.e. r2 = p2

p1
. We call the following mechanism a multiple
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choice test :

aω(r) = 1(max
ω′ ̸=ω

rω′ ≤ 1) ∀ ω.

Clearly, the above test passes the agent if and only if the state is the the one
the agent thinks is the most likely. It can be implemented by giving the agent N

options to choose from, mirroring the states, and passing him if and only if he picks
the correct one. In other words, its most natural indirect implementation takes the
familiar multiple choice form.

With that background, our main characterization is as follows.

Theorem 8. Suppose the agent’s signal structure is given by {Fe}e∈{G,B} which
satisfies Assumption 3. Then, there exist α ≤ α such that:

• If α ≥ α, multiple choice is an optimal test if it generates positive ex-ante value
for the principal.

• If α < α, the multiple choice test is not optimal.

Theorem 8 formalizes the perhaps natural intuition that the test-taker is passed if
and only if he correctly predicts the state, “if and only if” the principal is sufficiently
quality-sensitive.

4.4 Proof sketch

Suppose the multiple choice test generates positive ex-ante value for the principal,
i.e. the posterior quality of all agents who think state ω is the most likely, is positive,
when the state is ω. Fix the state 1. By symmetry, agents with all rankings over
the states with 1 on top generate the same ex-ante value for the principal, in state 1.
Hence that value must be positive for each ranking with 1 on top. Therefore without
loss, using r to denote the odds ratio with default state 1.∫

1≥r2≥r3≥···≥rN

v1(r)dr > 0
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.
First, by the symmetry of the problem it can be shown that restricting attention

to mechanisms which are symmetric in the states, is without loss.
Below we will sketch the proof for the case when there are just three states, i.e.

the type space is two-dimensional. Then we will outline how the proof extends to
the case of higher dimensions.

The proof proceeds in two parts: showing that (A) for a discretized, finite type
space (r-space), under the given assumptions an appropriate analog of the multiple
choice test is optimal, and (B) the approximation argument, i.e. showing that if
{Fn

G, F
n
B}n is a sequence of finitely supported distributions, the distributional limit

of which is {Fn
G, F

n
B}n, then the optimal solution for the latter is the limit of the

sequence of that of the former. We solve (A) by taking the dual of the principal’s
discretized linear program and constructing dual variables satisfying strong duality.
Each part is fleshed out in the corresponding subsections below, after establishing
some preliminary properties of the type space.

Throughout the proof sketch, we fix the default state 1, i.e. rω = pω
p1

.

4.4.1 Preliminaries: Properties of the type space

As established before, it is sufficient to consider the subset of the type space given
by r1 = {1 ≥ r2 ≥ r3}.

We are going to work in the log odds ratio space. Define γω = log rω, ω ∈ Ω.
Let Γ1 = {0 ≥ γ2 ≥ γ3} – (a transformation of) the set of agent beliefs which has
the ranking 1 ≿ 2 ≿ 3 over the states.

Define γ
3
(γ2) = inf

γ3
{γ3 ∈ supp Γ} – the lowest γ3 in the support for each γ2.

γ
3
(γ2) is part of the boundary of Γ1. Using our assumptions about convexity and

“lowest element” of the type space, we can show that this boundary is upward sloping.

Lemma 3. γ
3
(γ2) is upward sloping.

Further, by symmetry, the “lowest element” we assumed to exist in the support
takes the form (−γ,−γ). Putting the two together, the space Γ1 looks like this:
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Bayes rule shows v1(γ) = fG(γ) − αfB(γ). It can also be shown, by our mono-
tonicity and MLRP assumptions, that if γ′ ≥ γ and v1(γ

′) ≥ 0, v1(γ) ≥ 0v1(γ).
This further gives us the following.

Lemma 4. The curve v1(γ) = 0 is downward sloping.

Recall that by the definition of α, v1(0, γ3) < 0 and v1(γ2, 0) < 0 for all
(γ2, 0), (0, γ3) ∈ Γ1.

Putting it all together, the space Γ1 with its {v1 ≥ 0} region highlighted looks
like the following:

4.4.2 Multiple choice is optimal for the discretized joint distribution

Our goal is to consider the discretized version of the space Γ1 as depicted in Fig. 2,
and construct multipliers which satisfy primal and dual feasibility and complimentary
slackness, with the primal solution being the multiple choice test, appropriately
modified for a setting with a finite type space:

aω(r) =

(
1

#{ω′ ̸= ω : rω′ = 1}

)
1(max

ω′ ̸=ω
rω′ ≤ 1) ∀ ω. (Opt-Finite)

It says that the agent is equally likely to be accepted in all states he ranks the
highest, in terms of his posterior likelihoods. The indifference cases, of course, arise
with measure zero in the atomless case we assumed in our main model, obviating the
need for this extra specificity in the description of the optimal mechanism.

By symmetry, it is without loss to maximize the total ex-ante value in a given state
– we assume, 1. Let Γn denote the (common) support of the discretized distributions
{Fn

e }e∈{G,B}.

The discretized primal problem:
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max
a1∈RΓn

∑
ω∈Ω,γ∈Γn

a1(γ)v1(γ)
(Recall

uniform prior)
(Primal)

s.t. a1(γ) +
∑
ω

γωaω(γ) ≥ a1(γ
′) +

∑
ω

γωaω(γ
′) ∀ γ, γ′ ∈ Γn. (IC)

0 ≤ aω(γ) ≤ 1,∀γ (Feas)

Let λγ→γ′ denote the dual multiplier of the IC constraint between types γ and
γ′ and let µω(γ) be the multiplier for the aω(γ) ≤ 1 constraint. Let λ and µω denote
the vectors of these quantities, taking all types or pairs of types together.

Then, the discretized dual problem is given by:

min
λ,{µω}ω

∑
γ∈Γ

µω(γ) (Dual)

s.t.
∑
γ′ ̸=γ

γ′ωλγ′→γ − γω
∑
γ′′ ̸=γ

λγ→γ′′ + µω(γ)− vω(γ) ≥ 0,∀γ, ω ̸= 1,

∑
γ′ ̸=γ

λγ′→γ −
∑
γ′′ ̸=γ

λγ→γ′′ + µ1(γ)− v1(γ) ≥ 0,∀γ, ω ̸= 1.

λγ→γ′ ≥ 0, µω(γ) ≥ 0,∀γ, γ′, ω.

If a∗ω solves the primal problem and (λ∗, µ∗ω) solves the dual problem, then the
complimentary slackness conditions are given by (where γ1 = 1 for all γ):

89



∑
γ′ ̸=γ

γ′ωλγ′→γ − γω
∑
γ′′ ̸=γ

λγ→γ′′ + µω(γ)− vω(γ)

× a∗ω(γ) = 0,∀ω, γ (CS)

(1− a∗ω(γ))µ
∗
ω(γ) = 0, ∀ω, γ,

λγ→γ′

[∑
ω

γω
(
a∗ω(γ)− a∗ω

(
γ′
))]

= 0,∀γ, γ′

Our claimed optimal mechanism is of the form (Opt-Finite). Algebraic manip-
ulations of (Primal),(Dual) and (CS) give us the following sufficient conditions for
the existence of feasible λ and µω’s, which confirm optimality of (Opt-Finite).

Lemma 5. aω, as given by (Opt-Finite), is optimal if there exist λ′s such that
(γ1 = 0 ∀ γ):

•

∑
γ′ ̸=γ

exp(γ′ω)λγ′→γ − exp(γ′)
∑
γ′′ ̸=γ

λγ→γ′′ =


≤ vω(γ), if aω(γ) = 1

= vω(γ), if aω(γ) ∈ (0, 1)

≥ vω(γ), if aω(γ) = 0

(4.1)

• λγ′→γ > 0 only if the ICγ′→γ binds.

Further algebra shows that if only constraints towards more inform types bind –
i.e., if we have that IC from γ′ to γ binds only if γ′ ≥ γ componentwise – and “most”
of the state-1 conditions hold with equality, from (4.2), then that is sufficient for all
conditions of Lemma 5 to be satisfied. This is formalized below.

Lemma 6. aω, as given by (Opt-Finite), is optimal if there exist λ′s such that
(γ1 = 0 ∀ γ):
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•

∑
γ′ ̸=γ

exp(γ′ω)λγ′→γ − exp(γ′)
∑
γ′′ ̸=γ

λγ→γ′′ =


≤ vω(γ), if aω(γ) = 1

= vω(γ), if aω(γ) ∈ (0, 1)

≥ vω(γ), if aω(γ) = 0

(4.2)

• λγ′→γ > 0 only if the ICγ′→γ binds.
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APPENDIX A
APPENDICES FOR CHAPTER 2

A.1 Example: Additional calculations

In general, for any given prior π, the mapping between beliefs and signals is given
by:

µ(t) =
π(2t+ 1)

π(2t+ 1) + (1− π)(2(1− t) + 1)
(A.1)

This gives us the range of beliefs, P =
[

π
3−2π ,

3π
2π+1

]
.

Using (A.1) and simplifying, we have:

µ−1(p) =
2

1 +
(

π
1−π

)(
1−p
p

) − 1

2
(A.2)

Differentiating,

µ−1′(p) =
2(

1 +
(

π
1−π

)
(1− p)

)2 (A.3)

Also, using (2.1), in general, the teacher’s value from passing belief p in the two
states:

V1(p) =
uH × 1

2 × f1H(µ−1(p))dt+ uL × 1
2 × f1L(µ

−1(p))dt

f(p|1)dp

V0(p) =
uH × 1

2 × f0H(µ−1(p))dt+ uL × 1
2 × f0L(µ

−1(p))dt

f(p|0)dp

The above gives us the “weighted” value of belief p in state 1:
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V1(p)f(p|1)dp =

(
f1H(µ−1(p))− 1

2

)
dt

=

(
2µ−1(p)− 1

2

)
µ−1′(p)dp

=

(
8

1+
(

π
1−π

)(
1−p
p

) − 3

)
(
p+

(
π

1−π

)
(1− p)

)2 dp

V0(p)f(p|0)dp =

(
f0H(µ−1(p))− 1

2

)
dt

=

(
2(1− µ−1(p))− 1

2

)
µ−1′(p)dp

=

(
5− 8

1+
(

π
1−π

)(
1−p
p

))
(
p+

(
π

1−π

)
(1− p)

)2 dp
A.2 Formula for the optimal test

We start by specifying expressions for the principal’s value from the various types
of tests, which would be used in deriving the additional details of its structure which
we provide in this section.

Let V i
− :

[
0, 12

]
→ R and V i

+ :
[
1
2 , 1
]
→ R denote the principal’s value from a

single-threshold test of type i ∈ {P, F} - where P and F stand for pass-if-correct
and fail-if-incorrect test types respectively - as a function of its (belief) threshold.
Clearly,
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V P
− (p0) = π

p∫
p0

v1(p)dp+(1−π)

 p0∫
p

v0(p)dp+

(
1− p0

1−p0

) p∫
p0

v0(p)dp

 ,

V F
− (p0) = π

p∫
p0

v1(p)dp+(1−π)

(
p0

1−p0

) p0∫
p

v0(p)dp,

V F
+ (p0) = π

(1− 1−p0
p0

) p0∫
p

v1(p)dp+

p∫
p0

v1(p)dp

+(1−π)

p0∫
p

v0(p)dp,

V F
− (p0) = π

(
1−p0
p0

) p∫
p0

v1(p)dp+(1−π)

p0∫
p

v0(p)dp.

(Tests)

A.2.1 Dual threshold tests: Ironing

Sometimes, if the principal’s favorite common threshold bang-bang mechanism
has a threshold that is too extreme - requiring a large adjustment either on the
intensive or on the extensive margins - it may be better for her to introduce an
additional threshold, instead of making these adjustments while maintaining a single
threshold (See Figure 2.1b). Mathematically, the optimal mechanism features two
thresholds when the optimal knowledge premium (q) is a convex combination of the
knowledge premia of two (non-incentive compatible) bang-bang mechanisms. The
average of the thresholds for these two bang-bang mechanisms is equal to one half.
In other words, incentive compatibility conditions require that the optimal value is
the concavified value of bang-bang mechanisms as a function of their thresholds, at
1
2 .

In order to simplify the analysis of the two-threshold case, we redefine the virtual
value by picking p0 = 0 in (A.4). As discussed earlier, the principal’s value from any
incentive compatible mechanism is given by (A.4) for any choice of p0. If we choose
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p0 = 0, the second term in (A.4) vanishes, leaving us with only one virtual value,
χ := χ1, i.e. our virtual value is given by:

χ(p) = π(1− p)v1(p)− (1− π)pv0(p) +

∫
p′≥p

v(p′)dp′ (VV)

The value of the principal from a bang-bang mechanism with threshold p is clearly

Ev +
p∫
p
χ(p′)dp′ −

p∫
p
χ(p′)dp′. Hence, per the above discussion, her maximized value

from a dual threshold test is Ev +
p∫
p
χ̃(p′)dp′ −

p∫
p
χ̃(p′)dp′, where χ̃ is the ironed

virtual value, where ironing is used in the sense of Myerson (1981).
With that background we can describe the optimal mechanism more specifically,

as given below.

Theorem A.2.1 (General solution). Either the optimal mechanism is constant with
respect to both the state and the agent’s report, or the principal’s value is given by
the solution to the following one-dimensional maximization problem:

max
p0

V (p0)

where

V (p0) =


max{V F

− (p0), V
P
− (p0)}, for p0 < 1/2

Ev +
p∫
p0

χ̃(p′)dp′ −
p0∫
p
χ̃(p′)dp′, for p0 = 1/2

max{V F
+ (p0), V

P
+ (p0)}, for p0 > 1/2

(A.1)

Note that for single threshold tests, the threshold type is indeed p0 - the type
introduced earlier as the “lowest” type - as hinted by the above notation.
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A.3 Discussion

In this section we provide interpretations of the various objects in our framing of
the screening problem – such as the object we interpret as analogous to “allocation”
in the standard screening problem, and virtual value.

Note that (2.1) can be written alternatively as follows, fixing any p0 ∈ P as the
“base type” – the optimal q function will not depend on it.

U(p) = U(p0) +

∫ p

p0

q
(
p′
)
dp′, ∀ p, p0 ∈ P. (A.1)

For solving the problem, it is simplest to set p0 to be equal to one of the extremes
of the type space – p or p – as we did in the main text. The reason we still introduce
the above more general formulation in this section, is that it is helpful in interpreting
the various objects in our model.

Using the fact that U(p) = pa1(p) + (1 − p)a0(p) in conjunction with Lemma 1
gives us the following version of (Integral Formulas):

a0(p) =

(
U(p0) +

∫ p

p0

q
(
p′
)
dp′
)
− pq(p)

a1(p) =

(
U(p0) +

∫ p

p0

q
(
p′
)
dp′
)
+ (1− p)q(p)

(Generalized integral Formulas)

A.3.1 Significance of the model elements

The base type

As seen in the previous section, we can pick any base type p0 without affecting the
optimal mechanism. Let us interpret p0 as (one of) the “lowest” type(s) - that is, (one
of) the type(s) with the lowest interim passing rate under the optimal mechanism.
Hence by definition

∫ p
p0

q
(
p′
)
dp′ ⪌ 0 according to p ⪌ p0. This, combined with the

monotonicity of q, must mean q(p) ≷ 0 ⇐⇒ p ≷ p0. Hence we can formally define
p0 as:
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p0 := sup{p : q(p) ≤ 0} (A.1)

That is, the p0 is the (necessarily unique) type where the passing rate changes
from being weakly greater in state 0 to being strictly greater in state 1.1 Hence, the
mechanism is treating types p < p0 as relatively more suited to be passd when the
correct answer is 0, because they are relatively certain that the state is 0 - let us
call them the “left types” - and the reverse for p > p0 - who we would call the “right
types”. This is consistent with p0 being the “lowest” type - who the mechanism treats
as “ignorant”.

With this interpretation of the base type in mind, we turn to interpreting the
components of â1 and â0, as given by (Integral Formulas). The first component
in either of the expressions is the requisite interim rate at which each type must
be passd, as dictated by incentive constraints (equation 2.1), which is the same in
both the states. In addition, each rate is distorted in a direction and by an amount
consistent with the type. Specifically, each type - left or right - is passd at a rate
higher (lower) than its interim passing rate when the correct answer is the one (is not
the one) towards which he is biased. The amounts by which the interim passing rate
is adjusted up or down in case of a correct or wrong answer respectively, grows more
extreme in proportion to the extremity of the belief. In light of the above framing, we
call the absolute value of q(p) type p’s knowledge premium - the premium in passing
probabilities the type receives for their bias towards the correct answer, compared
to the wrong answer.

The virtual value

Using (Generalized integral Formulas), we can express the principal’s ex-ante
value in terms of her “virtual value” functions – χ0 and χ1 for beliefs more extreme
than p0 towards states 0 and 1 respectively – as follows:

1. Note that all types p with q(p) = 0 are “lowest” - they all have the same lowest interim passing
rate.
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V (a1, a0) = U(p0)Ev +
∫

p≤p0

χ0(p)q(p)dp+

∫
p≥p0

χ1(p)q(p)dp (A.2)

We provide the derivation of (A.4) and explicit formulas for χ0 and χ1 in Section
A.4.1.

Unlike the standard monopoly problem, the goals of our principal and agent
(recall that they represent an principal and a job seeker, in our leading application)
are not strictly adversarial - taking surplus away from the agent is not the only way
the principal can enrich herself. In the standard monopoly case, no type can earn less
under the incentive-constrained solution, than their full information surplus, which
is zero. That is not the case here. Hence, as we will show going forward, information
rent is not always paid by the principal, but sometimes earned.

In our model, the virtual value of a type is the value to the principal per unit of
knowledge premium allocated to that type. χ0 and χ1 - as in (A.3) - capture the
virtual values of the left and right types respectively. The virtual values from the
left and right types can be decomposed into “direct” and information rent effects as
follows:

χ0(p) = π(1− p)v1(p)− (1− π)pv0(p)︸ ︷︷ ︸
Direct effect

+

∫
p′≤p

v(p′)dp′

︸ ︷︷ ︸
Information rent

χ1(p) = π(1− p)v1(p)− (1− π)pv0(p)︸ ︷︷ ︸
Direct effect

+

∫
p′≥p

v(p′)dp′

︸ ︷︷ ︸
Information rent

(A.3)

In order to understand its direct and information rent components, let us decom-
pose the principal’s value per unit of incremental change in it as follows:
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πv1(p)a1(p) + (1− π)v0(p)a0(p)

= v(p)U(p)︸ ︷︷ ︸
Source of information rent

+(π(1− p)v1(p)− (1− π)pv0(p))︸ ︷︷ ︸
Direct effect

q(p),

putting a1(p) = a0(p) + q(p) and a0(p) = U(p)− pq(p)

The first term above is the interim unconditional (on the state) value from each
type times the interim passing rate of that type - it is the expected value the principal
would get from type p if she had no information about the correct answer. The second
part then, is the “premium” she gets due to knowing the right answer, which the agent
does not know - the value-weighted knowledge premium. Note that this premium
can never be negative under the unconstrained solution, though it can be under the
constrained solution.

From the above decomposition it is clear that the direct value of type p to the
principal should be the per unit value to her of increasing q(p) by a small amount
while keeping U(p) unchanged. If we want to increase q(p) by ϵ while keeping type p

indifferent between knowledge premia q(p) and q(p) + ϵ, then we need to implement
this change by changing a1(p) and a0(p) in the right proportions. In particular, we
need to increase a1(p) by ϵ(1−p) while decreasing a0(p) by pϵ. The net effect of this
adjustment on the interim passing rate of type p is p× (1− p)ϵ− (1− p)× pϵ = 0.
The value of this change to the principal is clearly π × v1(p) × change in a1(p) +

(1− π)× v0(p)× change in a0(p) = (π(1− p)v1(p)− (1− π)pv0(p))ϵ, giving us the
effect per unit of incremental change in q(p) as (π(1 − p)v1(p) − (1 − π)pv0(p)), as
we see from the decomposition above.

The information rent part can be further decomposed as:

v(p)U(p) = v(p)U(p0)︸ ︷︷ ︸
Info rent: Constant part

+ v(p)

p∫
p0

q(p′)dp′

︸ ︷︷ ︸
Info rent: Variable part
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The first part, when averaged over all types, gives rise to the first term in (A.4).
It is easy to see why - under the constrained solution, every type must be passd at
an interim rate of at least U(p0), regardless of the state, which gives the principal
the baseline value of Ev×U(p0), before she utilizes any of her knowledge of the state
via q. The second, variable (with chosen q) part of information rent gives rise to the
integral terms in the expressions for χ0 and χ1, as in (A.3). As we can see, these
terms result from the impact of increasing the knowledge premium of type p by ϵ, on
more extreme types. Naturally, incentives demand that if type p is rewarded with an
increase in its knowledge premium of ϵ, so must be types more extreme than it, at
the least. Mathematically, this is the familiar monotonicity condition on q. By (2.1),
this means types more extreme than it must passd at the interim rate of ϵ more. The
unconditional interim value from any more extreme type p′ is v(p′), which is accrued
to the principal due to this change, as captured by the two integral terms in (A.3).

Trade-off between guaranteed passing rate and knowledge premia

Note that both the components
∫

p≤p0

χ0(p)q(p)dp and
∫

p≥p0

χ1(p)q(p)dp in (A.4)

must be positive at the principal’s optimal mechanism, because if not, the principal
can do better by setting a1(p) = a0(p) = U(p0) for all p < p0 or p ≥ p0, depending
on whether

∫
p≤p0

χ0(p)q(p)dp or
∫

p≥p0

χ1(p)q(p)dp is negative, respectively. Hence, the

principal always wants to make the knowledge premium more extreme, if possible.
This leads to a trade-off between the guaranteed interim passing rate the principal
offers - U(p0) - and the knowledge premium, |q|. To see why, consider the following
cases.

Suppose Ev > 0. So the principal wants to give a high guaranteed passing rate
- driven by the first term in (A.4). However, if U(p0) is too high, she misses out
on more accurate passing because she is left with little room to incentivize greater
information revelation by extreme types (due to (2.1)). In other words, she loses out
on the full discerning power of the knowledge premium because she cannot make â1

for right types and â0 for left types as high as she would like.
Similarly if Ev < 0 the exact opposite happens - in this case if U(p0) is too low,
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the principal cannot make â0 for right types and â1 for left types as low as she would
like.

A.3.2 Regularity

In this subsection we provide some examples of natural classes of settings where
our regularity assumption holds.

We say the problem is trivial, if the principal’s value from every agent type in
every state is non-positive, i.e. if mω ≤ 0 – equivalently vω ≤ 0 – for ω ∈ {0, 1}.
Clearly, this case is trivial because in this case the principal’s optimized value is zero
- she passes no one in any state because every type earns her non-positive value.
Otherwise we call the problem non-trivial.

Special Case 1. Suppose the learning types binary and the signal structure of the
high quality agent is symmetric, i.e. fH1(t) = fH(1−t|0) = f(t) for some increasing
f : [0, 1] → R+. Suppose further, that that of the low quality agent takes the following
special form: in each state, the low quality agent gets the same signal as the high
quality agent with some probability, γ ∈ [0, 1), and receives the uninformative signal
f∅ : [0, 1] → R+, f∅(t) = 1 ∀ t, otherwise. That is, the low types signal structure
is given by: fLω(t) = γfHω(t) + 1 − γ, ω ∈ {0, 1}. Without loss we normalize
the principal’s payoff from the high learning type to 1 and assume that from the low
learning type to be −u, u > 0.

The following proposition provides natural classes of examples within Special
Case 1 which satisfy regularity.

Proposition 13. Consider Special Case 1.

• As long as the difference (f(t)−f(1−t)) is not too convex whenever it is positive
- in particular, as long as the elasticity of the rate of change in (f(t)−f(1− t))

w.r.t. (f(t) − f(1 − t)) is weakly lower than 1 whenever (f(t) − f(1 − t)) is
positive - for low enough r, the problem is regular whenever it is non-trivial,
regardless of other parameters.
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• As an example, if the low quality type is uninformed and the high quality type’s
signal structure is linear - f(t) = 1 − b + 2bt, b ∈ [0, 1] - then the problem is
regular for any r ≤ 1

2 , b ∈ [0, 1] and u > 0.

• When the signal structure follows a power law distribution and the low type is
uninformed - f(t) = (m+ 1)tm,m ≥ 0 and γ = 0 - for m ∈ [1, 2], r ≤ 1

2 , u ≥ 1
2

the problem is regular. In general, whenever m ≥ 1 - i.e. the signal density
is convex - for low enough r, the problem is regular whenever it is non-trivial,
regardless of other parameters.

A.4 Omitted Proofs

∆X, as usual, denotes the set of Borel probability measures on any given set
X. Pr(x) denotes the probability of an event x. With m1 and m0 as defined
in (A.2), we define the following two functions useful for our subsequent analysis,
M1,M0 : T → R:

M1(t) =

1∫
t

m1(t),

M0(t) =

t∫
0

m(t).

(M1,M0)

A.4.1 Preliminaries

Expression for principal’s value

As mentioned in our microfounded model section 2.5.1, here we derive (Principal’s Value).
Since the agent does not know his own quality type, the posterior distribution of

the state for any agent receiving a signal t depends on the “average” signal structure of
all quality types. We modify the notation for the mapping between signals and beliefs
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introduced in (2.1) – µ – to make its dependence on the prior explicit. Specifically,
we now define µ : T × [0, 1] → [0, 1] as:

µ(t; π) := Pr(ω = 1|t) = f1(t)π

f1(t)π + f0(t)(1− π)
(A.1)

The implication of a chosen mechanism (â1, â0) : T → [0, 1] the principal cares
about is the probability of passing for each learning type v induced by it. Using
Pr(I|I ′) to denote the probability of event I conditional on event I ′, where I and
I ′ are Borel subsets of Ω× T × V × {pass, fail}, we have:

Pr(pass|v) :=
∫
t,ω

Pr(pass|(t, ω), v)Pr((t, ω)|v)dν(v)

Obviously, Pr(pass|(t, ω), v) = Pr(pass|(t, ω)) = âω(t). Moreover, Pr((t, ω)|v) =
Pr(ω)f(t|ω, v)dt (∵ ω ⊥⊥ v). Combining these, the principal’s value from using a
mechanism (â1, â0) : [0, 1] → [0, 1] is given by:

V (â1, â0) =

∫
v

v

∑
ω

Pr(ω)

1∫
0

âω(t)f(t|ω, v)dt

 dν(v)

=

∫
v

v

π

1∫
0

â1(t)f(t|1, v)dt+ (1− π)

1∫
0

â0(t)f(t|0, v)dt

 dν(v)

=π

1∫
0

â1(t)

∫
v

vf(t|1, v)dν(v)


︸ ︷︷ ︸

=:m1(t)

dt+ (1− π)

1∫
0

â0(t)

∫
v

vf(t|0, v)dν(v)


︸ ︷︷ ︸

=:m0(t)

dt

(A.2)

We can change the order of integrals, as done in the last line, by Fubini’s theorem,
because each integrand is integrable. In particular, for each ω ∈ {0, 1}:
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∫
v

∫
t

|vâω(t)f(t|ω, v)|dtdν(v)

=

∫
v

∫
t

|v|âω(t)f(t|ω, v)dtdν(v)

≤
∫
v

∫
t

vf(t|ω, v)dtdν(v)

= v.

Relabelling m1 and m0 as in (A.2), we get back (Principal’s Value). By our
boundedness assumptions on f(·; ·, ·)’s and f ′(·; ·, ·)’s, mω’s are well-defined and in-
herit their continuous differentiability from f(·; ·, ·)’s.

Connection with the problem formulation in terms of beliefs

Below we also formulate the problem in terms of the belief p – a formulation
we use for the majority of the main analysis. Note that p = µ(t; π) where µ(·; π)
is strictly increasing and differentiable, by our assumption of differentiability of the
signal densities. Hence µ′(t; π) > 0 ∀ t ∈ [0, 1]. ∴ dt = dp

µ′(µ−1(p;π))
. With that, we

define aω(p) := âω(µ
−1(p; π)) and vω(p) :=

mω(µ
−1(p;π))

µ′(µ−1(p;π))
, ω ∈ {0, 1}. Therefore the

(scaled) objective function of the principal becomes the following, as in (Primal).

V̂ (a1, a0) = π

µ(1;π)∫
µ(0;π)

V1(p)a1(p)dp+ (1− π)

µ(1;π)∫
µ(0;π)

V0(p)a0(p)dp

Principal’s value in terms of her virtual value

Using (Integral Formulas) we can express the principal’s ex-ante value in terms
of its virtual value as follows:
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V (a1, a0) = π

∫
p
v1(p)a1(p)dp+ (1− π)

∫
p
v0(p)a0(p)dp

= π

∫
p
v1(p)

(
U(p0) +

∫ p

p0

q
(
p′
)
dp′ − pq(p)

)
dp

+ (1− π)

∫
p
v0(p)

(
U(p0) +

∫ p

p0

q
(
p′
)
dp′ + (1− p)q(p)

)
dp

= U(p0)Ev +
∫

p≤p0

q(p)

π(1− p)v1(p)− (1− π)pv0(p) +

∫
p′≤p

v(p′)dp′


︸ ︷︷ ︸

=:χL(p)

dp

+

∫
p≥p0

q(p)

π(1− p)v1(p)− (1− π)pv0(p) +

∫
p′≥p

v(p′)dp′


︸ ︷︷ ︸

=:χR(p)

dp (A.3)

= U(p0)Ev +
∫

p≤p0

χ0(p)q(p)dp+

∫
p≥p0

χ1(p)q(p)dp (A.4)

The third equality comes from the usual technique of changing the order of the
integrals using Fubini’s theorem. The details of the expression in (A.3) are as follows.
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p=p∫
p=p

v1(p)

 x=p∫
x=p0

q(x)dx

 dp

=

p=p∫
p=p

v1(p)

 x=p∫
x=p

(q(x) (1(p0 ≤ x ≤ p)1(p ≥ p0) + 1(p0 ≥ x ≥ p)1(p ≤ p0))) dx

 dp

=

p=p∫
p=p

v1(p)

 x=p∫
x=p

(q(x) (1(p ≥ max{x, p0})1(x ≥ p0) + 1(p ≤ min{x, p0})1(x ≤ p0))) dx

 dp

=

p=p∫
p=p

v1(p)

 x=p∫
x=p

(q(x) (1(p ≥ x)1(x ≥ p0) + 1(p ≤ x)1(x ≤ p0))) dx

 dp

=

p=p∫
p=p

x=p∫
x=p

v1(p)q(x)1(p ≥ x)1(x ≥ p0)dxdp+

p=p∫
p=p

x=p∫
x=p

v1(p)q(x)1(p ≤ x)1(x ≤ p0)dxdp

Now we use the standard technique of changing the order of integrals, which we
can do by Fubini’s theorem. This gives us the following simplification:

111



p=p∫
p=p

v1(p)

 x=p∫
x=p0

q(x)dx

 dp

=

x=p∫
x=p

q(x)1(x ≥ p0)

 p=p∫
p=p

v1(p)1(p ≥ x)dp

 dx+

x=p∫
x=p

q(x)1(x ≤ p0)

 p=p∫
p=p

v1(p)1(p ≤ x)dp

 dx

=

∫
x≥p0

q(x)

 ∫
p≥x

v1(p)dp

 dx+

∫
x≤p0

q(x)

 ∫
p≤x

v1(p)dp

 dx

A.4.2 Derivation of the optimal mechanism

In this section we keep the general “base type” (p0) based formulation introduced
in Section A.3, particularly envelope formula A.1. Obviously, all of the analysis goes
through if we put p0 = p instead, as done in the main text, Lemma 1.

Proof of Lemma 1

With slight abuse of notation, let U(p) = a0(p) + pq(p) for all p and U(p, p′) =

â0(p
′) + pq(p′), ∀ p, p′.

Necessity. (IC) requires that for each pair of types p, p′ both p and p′ prefer truth
telling:

U(p) ≥ U(p, p′) = U(p′) + (p− p′)q(p′)

U(p′) ≥ U(p′, p) = U(p) + (p′ − p)q(p)

Combining:

(p− p′)q(p) ≥ U(p)− U(p′) ≥ (p− p′)q(p′)
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This implies monotonicity.
Assuming p > p′ and p < p′ we also have, respectively:

q(p) ≥ U(p)− U(p′)
p− p′

≥ q(p′) and q(p) ≤ U(p)− U(p′)
p− p′

≤ q(p′)

Taking the limit p′ ↑ p we have:

U ′(p) = q(p) ∀ p s.t. U ′(p) exists

From standard arguments we also know U(p) is Lipschitz, therefore absolutely
continuous. Therefore for any reference type p0 we can write the following, giving
us the necessity of (2.1):

U(p) = U(p0) +

p∫
p0

q(p)dp

Sufficiency. Fix any type p. U(p, p′) = U(p′) + (p − p′)q(p′). By (2.1), U(p) =

U(p′) +
p∫
p′
q(p̃)dp̃. Therefore U(p) − U(p, p′) =

p∫
p′
(q(p̃) − q(p′))dp̃. Considering cases

where p′ > p and p′ < p, and using monotonicity of q, it is easy to see that this
implies U(p) ≥ U(p, p′) for all p′.

Constructing the optimal mechanism

Let us denote q(p) and q(p) by q and q respectively.

Claim A.4.2.1. The optimal mechanism is either “pass regardless of type and state”
or “do not pass regardless of type and state” or given by the solution to one of the
following two programs, whichever has higher value:
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max
q(.),q̄,p0

Ev +
∫

p≤p0

(χ0(p) + Ev)q(p)dp+
∫

p≥p0

χ1(p)q(p)dp

s.t. q ∈ [−1, q̄]

q non-decreasing∫
P
q(p)dp = pq − pq − 1

q ∈ [−1, 1].

(P )

max
q(.),q̄,p0

Ev +
∫

p≤p0

χ0(p)q(p)dp+

∫
p≥p0

(χ1(p)− Ev)q(p)dp

s.t. q(.) ∈ [q, 1]

q non-decreasing∫
P
q(p)dp = 1− (1− p)q + (1− p)q

q ∈ [−1, 1].

(P )

Proof. The constraints in (Problem) require
p0∫
p
q (p) dp − (1 − p)q ≤ U(p0) ≤ 1 −

p∫
p0

q (p) dp− (1− p)q and pq −
p∫
p0

q (p) dp ≤ U(p0) ≤ 1 +
p0∫
p
q(p)dp+ pq. Therefore we

need
∫
P

q(p)dp ≥ pq − pq − 1 and
∫
P

q(p)dp ≤ 1 − (1 − p)q + (1 − p)q. Using these,

(Problem) reduces to:

114



max
p0,U(p0),q(.)

U(p0)Ev +
∫
P

χ(p)q(p)dp (A.1)

s.t. q ∈ [−1, 1], q non - decreasing

pq − pq − 1 ≤
∫
P

q(p)dp ≤1− (1− p)q + (1− p)q (A.2)

max


p0∫
p

q (p) dp− (1− p)q, pq −
p∫

p0

q (p) dp


≤ U(p0) ≤ min

1−
p∫

p0

q (p) dp− (1− p)q, 1 +

p0∫
p

q(p)dp+ pq

 . (A.3)

Proof. Suppose, by way of contradiction, the optimal mechanism is neither constant
nor given by the solution to (P ) or (P ). Our proof strategy is to derive a contra-
diction by considering several cases. We could have set up a Lagrangian and made
an argument based on the complementary slackness conditions of the constraints.
However we present a direct proof as we believe this is more intuitive.

Before proceeding further we prove a claim below which would be helpful in our
analysis of the cases.

Claim A.4.2.2. Any solution to (P1) is a solution to (P2), where (P1) and (P2)
are as given below.
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max
p0,q(.)

∫
P
χ(p)q(p)dp

s.t. q ∈ [−1, 1]

q non-decreasing .

(P1)

max
q,q(.)

∫
P
χ(p)q(p)dp

s.t. q ∈ [−1, q]

q non-decreasing ,

q ∈ [−1, 1].

(P2)

Proof. By Proposition 2.1 of Winkler (1988), for any fixed q, a solution to the problem
of maximizing

∫
P χ(p)q(p)dp subject to q ∈ [−1, q] and q non-decreasing, is either

q(p) = −1 or q(p) = q or q(p) = −1+(q+1)1(p ≥ p∗) for some p∗ ∈ (0, 1). Therefore
the solution to (P2) is given by:

max
q∈[−1,1],p∗∈[0,1]

0, q

∫
P
χ(p)dp, q

1∫
p∗

χ(p)dp−
p∗∫

−1

χ(p)dp


The maximum value of q

∫
P χ(p)dp is clearly achieved for q ∈ {−1, 1}, de-

pending on if
∫
P χ(p)dp ≥ 0 or

∫
P χ(p)dp < 0. If a p∗ ∈ (0, 1) is to maximize(

q
1∫
p∗

χ(p)dp−
p∗∫
−1

χ(p)dp

)
, the first order condition requires that it must satisfy

(q + 1)χ(p∗) = 0, i.e. χ(p∗) = 0 for any q > −1.

Letting VP2(q) = max
p∗∈[0,1]

(
q

1∫
p∗

χ(p)dp−
p∗∫
−1

χ(p)dp

)
, by the envelope theorem,

∂VP2(q)
∂q =

1∫
p∗

χ(p)dp. Therefore for any p∗ ∈ {χ(p) = 0} such that
1∫
p∗

χ(p)dp ≥ 0

(respectively < 0) the optimal q = 1 (respectively −1).
If the optimal q in any of these cases is −1, the optimal q is the constant function

q(p) = −1, which is feasible for (P1). If the optimal q is 1, (P2) boils down to
(P1).

• Case I: Ev = 0. In this case, in program (A.1), (A.3) can be ignored as long
as (A.2) is satisfied. Therefore the problem boils down to:
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max
p0,q(.)

∫
P
χ(p)q(p)dp (A.4)

s.t. q ∈ [−1, 1], q non - decreasing

q − 1 ≤
∫
P

q(p)dp ≤ q + 1. (A.5)

Suppose none of the constraints (A.5) binds. Then the solution solves the
following “standard” screening problem:

max
p0,q(.)

∫
P
χ(p)q(p)dp

s.t. q ∈ [−1, 1], q non - decreasing

We know its solution is given by either a constant q(.), or one with a single step,
of the form q(p) = −1 + 2 × 1(p ≥ p∗) for some p∗ ∈ (0, 1). If it’s the latter,
q = −1, q = 1. Therefore this solution satisfies (A.5) – and therefore solves
(A.4) – if and only if p∗ = 1

2 . Therefore in this case both the constraints in (A.5)

hold with equality. By Claim A.4.2.2, in this case q(p) = −1 + 2× 1
(
p ≥ 1

2

)
solves (P2), which is a relaxed version of (P ). But q(p) = −1 + 2× 1

(
p ≥ 1

2

)
satisfies the constraints of (P ), and is therefore a solution to (P ).

Clearly, if either of the constraints in (A.5) binds, (A.4) boils down to either
(P ) or (P ).

• Case II: Ev > 0. In this case, clearly the constraint U(p0) ≤ min

{
1−

∫
p≥p0

q(p)dp, 1 +
∫

p≤p0

q(p)dp

}
in (A.3) must bind. Therefore the problem boils down to:
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max
p0,q(.)

min

1−
∫

p≥p0

q(p)dp, 1 +

∫
p≤p0

q(p)dp

+

∫
P
χ(p)q(p)dp

s.t. q ∈ [−1, 1], q non - decreasing

q − 1 ≤
∫
P

q(p)dp ≤ q + 1.

1+
∫

p≤p0

q(p)dp ⪌ 1−
∫

p≥p0

q(p)dp ⇐⇒
∫
P

q(p)dp ⪌ 0. Hence the solution to the

above program is given by the solution to one of the following programs – one
assuming

∫
P

q(p)dp ≥ 0 and the other
∫
P

q(p)dp ≥ 0 – whichever gives higher

value.

Ev + max
p0,q(.)

∫
P
(χ(p)− Ev(p ≥ p0))q(p)dp

s.t. q ∈ [−1, 1] (P+
1 )

q non-decreasing ,

q − 1 ≤
∫
P

q(p)dp ≤ 0. (A.6)

Ev + max
p0,q(.)

∫
P
(χ(p) + Ev(p ≤ p0))q(p)dp

s.t. q ∈ [−1, 1] (P+
2 )

q non-decreasing ,

0 ≤
∫
P

q(p)dp ≤ q + 1. (A.7)

Suppose the solution is given by the solution to (P+
1 ).

Suppose, fist, that no side of the constraint (A.6) binds. The only way such
a solution can satisfy (A.6) is if it is either constant or given by q(p) = −1 +

2 × 1
(
p ≥ 1

2

)
. In the latter case, by arguments similar to those in Case I,

q(p) = −1 + 2× 1
(
p ≥ 1

2

)
is a solution to (P ).

Note that both sides of (A.6) cannot bind (though both can hold with equality,
of course.)

Next, suppose the constraint q − 1 ≤
∫
P

q(p)dp binds. Then (P+
1 ) boils down

to (P ).
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Finally, suppose the constraint
∫
P

q(p)dp ≤ 0 binds. In that case (P+
1 ) is equiv-

alent to the following relaxed program:

Ev + max
p0,q(.)

∫
P
(χ(p)− Ev(p ≥ p0))q(p)dp

s.t. q ∈ [−1, 1] (P+
1,R)

q non-decreasing ,∫
P

q(p)dp ≤ 0. (A.8)

Consider the following further relaxed problem:

Ev + max
p0,q(.)

∫
P
(χ(p)− Ev(p ≥ p0))q(p)dp

s.t. q ∈ [−1, 1] (P+
1,RR)

q non-decreasing .

∫
P

q(p)dp ≤ 0 in (P+
1 ) binds only if the solution to (P+

1,RR) is q1,R(p) = −1 +

2 × 1
(
p ≥ p∗1,R

)
for some p∗1,R ∈

[
p,

p+p
2

)
. Therefore any solution to (P+

1,R)
– say q∗1,R – is a convex combination of q1,R and an extreme point of the
feasible set of (P+

1,RR) – say q1,RR – which remains feasible with the constraint
(A.8) (Needs linear programming citation). Hence we must have q1,RR(p) =

−1 + 2× 1
(
p ≥ p∗1,RR

)
for some p∗1,RR ∈

[
p+p
2 , p

]
.

If p∗1,R = p and p∗1,RR = p, the solution to (P+
1,R) and – therefore (P+

1 ) –
must be the equally weighted convex combination of q1,R and q1,RR, i.e. the
constant function q∗1,R(p) = 0.

If p∗1,R ∈
(
p,

p+p
2

)
or p∗1,RR ∈

[
p+p
2 , p

)
, the convex combination q∗1,R must
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have either q∗1,R(1) = 1 or q∗1,R(0) = −1.

Note that (P+
1,R) is a relaxed version of (P ), because

∫
P q(p)dp = q̄−1 and q ≤

1 =⇒
∫
P

q(p)dp ≤ 0. Therefore q∗1,R is not a solution to (P ) only if it does

not satisfy the constraint
∫
P q(p)dp = q̄ − 1, i.e. only if q̄ < 1. (Recall that∫

P

q∗1,R(p)dp = 0 by assumption.) In this case we must have q∗1,R(0) = −1.

Under our assumptions, (P+
1 ) is equivalent to the following program:

Ev + max
p0,q(.)

∫
P
(χ(p)− Ev(p ≥ p0))q(p)dp

s.t. q ∈ [−1, 1] (P+
0 )

q non-decreasing ,∫
P

q(p)dp = 0. (A.9)

Recall that the value of (P+
0 ) is weakly higher than that of (P+

2 ), by assump-
tion. But (P+

0 ) is (P+
2 ) with the constraint

∫
P

q(p)dp ≥ 0 binding. Therefore

any solution to (P+
0 ) must be a solution to (P+

2 ) as well. Any solution to (P )
is clearly a solution to (P+

2 ) with the additional constraint
∫
P

q(p)dp ≤ q + 1

- i.e. with one side of (A.7) binding. But the value of (P+
2 ) is given by the

value of (P+
0 ), as we just argued. Therefore at any solution to (P ) we must

have
∫
P

q(p)dp = 0, i.e. q = −1. Therefore if q∗1,R < 1, the solution to (P+
1 )

and therefore (??) is given by the solution to (P ).

Almost identical arguments show that if the solution is given by the solution
to (P+

2 ), it is also either constant or given by the solution to either (P ) or (P ).

• Case III: Ev < 0. Analogously as in Case II, in this case the constraint

max

{
−q +

∫
p≤p0

q(p)dp, q −
∫

p≥p0

q(p)dp

}
≤ U(p0) in (A.3) must bind.
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Therefore the problem boils down to:

max
p0,q(.)

max

−q +

∫
p≤p0

q(p)dp, q −
∫

p≥p0

q(p)dp

Ev +
∫
P
χ(p)q(p)dp (A.10)

s.t. q ∈ [−1, 1], q non - decreasing

q − 1 ≤
∫
P

q(p)dp ≤ q + 1. (A.11)

Note that in this case the objective is convex in q. Therefore the maximum
cannot be attained in the interior of the feasible region, and hence constraints
which do not bind at the optimum can be removed.

Suppose the constraint
∫
P

q(p)dp ≤ q + 1 binds at the optimum (similarly as

in Case II, both sides of (A.11) cannot bind). In this case the problem boils
down to:

max
q(.),q

−qEv +
∫
P
(χ(p) + Ev(p ≤ p0))q(p)dp

s.t. q(.) ∈ [q, 1]

q non-decreasing∫
P
q(p)dp = q + 1

q ∈ [−1, 1].

Replacing −q in the objective with 1−
∫
P q(p)dp – using the equality constraint

– gives us (P ). Analogous reasoning shows that when, in the solution to (A.10),
the constraint q − 1 ≤

∫
P

q(p)dp binds instead, the problem boils down to (P ).

Suppose none of the constraints bind. Using the same extreme points based
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reasoning as before, this can happen only if the solution is a constant q or
q(p) = −1 + 2× 1

(
p ≥ 1

2

)
. In the latter case the solution is a solution to the

following problem:

max
p0,q(.)

Ev

1−
∫

p≥p0

q(p)dp

+

∫
P
χ(p)q(p)dp

s.t. q ∈ [−1, 1]

q non-decreasing ,∫
P

q(p)dp = 0.

Similarly as in Case II, in this case both the constraints in (A.11) hold with
equality at the optimum, so the solution is given by the solution to both of (P )
and (P ).

Proof of Proposition A.2.1. By Claim A.4.2.1 we know that when the optimal
mechanism is not constant, it is given by the solution to either (P ) or (P ). The
proof strategy is as follows: We first show that the solution could feature at most
two thresholds and unless the solutions to (P ) and (P ) coincide, the solution to
either is given by a single threshold q. If the solution solves (P ), this threshold must
be below one half, and if it solves (P ) it must be above one half. These correspond
to the first and third cases in (A.1) respectively. The solution could feature two
thresholds only if the solutions to (P ) and (P ) coincide,

∫
P

q(p)dp = 0 and these

thresholds average to one half. This corresponds to the second case in (A.1).

Claim A.4.2.3. The solution q to (Problem) is a step function featuring at most
two steps.

Proof. By Claim A.4.2.1, the solution is either constant – in which case it is a step
function featuring zero steps – or given by the solution to (P ) or (P ).
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Consider (P ). For any fixed q ∈ (−1, 1], (P ) is a linear programs in q, with
the constraint that q is non-decreasing, and one additional equality constraint. By
Proposition 2.1, Winkler (1988), all extreme points of the set S = {q ∈ [0, q]P :

q non-decreasing} are of the form q(p) = −1 + (q + 1)1(p ≥ p∗) for some p∗ ∈ [0, 1].
Therefore those of the set F = {q ∈ [0, q]P : q non-decreasing,

∫
P

q(p)dp = q − 1} -

which is the subset of S satisfying that one additional linear constraint – must be
given by the (possibly degenerate) convex combination of two extreme points of S. In
case the solution q∗ to (P ) is given by an extreme point of F which is a proper convex
combination of two extreme points of S, say qi(p) = −1+(q+1)1(p ≥ p∗i ), i ∈ {1, 2}
such that p∗i ∈ (0, 1) for i ∈ {1, 2}, q∗ features two steps.

A.4.3 Proof of Proposition 1: The two characterizations of regularity

Claim A.4.3.1. The problem is regular if and only if, for all signal realizations,
t ∈ [0, 1], the following holds:

m1(t)

(
m′

1(t)

m1(t)
−

ϕ′′1(t)
ϕ′1(t)

)
> m0(t)ϕ1(t)

(
m′

0(t)

m0(t)
−

ϕ′′0(t)
ϕ′0(t)

)
(Reg)

Proof. The problem is regular – i.e. χ(p) is increasing iff χ′(p) > 0. Hence we need,

π((1− p)v1′(p)− 2v1(p))− (1− π)(pv0′(p) + 2v0(p)) > 0

=⇒ πv1(p)

(
(1− p)

v1′(p)
v1(p)

− 2

)
− (1− π)v0(p)

(
p
v0′(p)
v0(p)

+ 2

)
> 0 (A.1)

As defined earlier, v0(p) = m0(µ
−1(p;π))

µ′(µ−1(p;π))
. Let t be such that µ(t) = p. Recall that

t is unique for any given p, owing to strict increasingness of µ. Differentiating v0 and
some algebra shows that:
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v0′(p)
v0(p)

=

(
m′

0(µ
−1(p; π))

m0(µ−1(p; π))
− µ′′(µ−1(p; π))

µ′(µ−1(p; π))

)(
1

µ′(µ−1(p; π))

)
⇐⇒ pv0′(p)

v0(p)
=

(
m′

0(t)

m0(t)
− µ′′(t)

µ′(t)

)(
µ(t)

µ′(t)

)
(A.2)

Let µc(t) := 1 − µ(t) for all t. Therefore 1 − p = µc(t). Then, analogously as
above we have:

(1− p)v1′(p)
v1(p)

=

(
m′

1(t)

m1(t)
− µ′′c (t)

µ′c(t)

)(
−µc(t)

µ′c(t)

)
(A.3)

Hence, recalling that vω(p) =
mω(t)
µ′(t) , where p = µ(t), ω ∈ {0, 1}, by (A.1) we

need,

π
m1(t)

µ′(t)

[(
m′

1(t)

m1(t)
− µ′′c (t)

µ′c(t)

)(
−µc(t)

µ′c(t)

)
− 2

]
> (1− π)

m0(t)

µ′(t)

[(
m′

0(t)

m0(t)
− µ′′(t)

µ′(t)

)(
µ(t)

µ′(t)

)
+ 2

]
=⇒ π

(
−µc(t)m1(t)

µ′c(t)

)[
m′

1(t)

m1(t)
− µ′′c (t)

µ′c(t)
+ 2

µ′c(t)
µc(t)

]
> (1− π)

(
µ(t)m0(t)

µ′(t)

)[
m′

0(t)

m0(t)
− µ′′(t)

µ′(t)
+ 2

µ′(t)
µ(t)

]

Let ϕ0(t) =
f0(t)

f1(t)
. ∴ µ(t) = 1

1+(1−π
π )ϕ0(t)

. Differentiating both sides of that

last equation twice we get, µ′′(t)
µ′(t) − 2

µ′(t)
µ(t)

=
ϕ′′0(t)
ϕ′0(t)

. Similarly, letting ϕ1(t) = 1
ϕ0(t)

,
µ′′c (t)
µ′c(t)

− 2
µ′c(t)
µc(t)

=
ϕ′′1(t)
ϕ′1(t)

. Hence - also recalling that −µ′c(t) = µ′(t)- the above is
equivalent to:

m1(t)

(
m′

1(t)

m1(t)
−

ϕ′′1(t)
ϕ′1(t)

)
> m0(t)

(
1− π

π

)(
µ(t)

µc(t)

)(
m′

0(t)

m0(t)
−

ϕ′′0(t)
ϕ′0(t)

)

Note that
(
1−π
π

)(
µ(t)
µc(t)

)
= ϕ1(t). Using this in the above expression we have

the desired result.
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Claim A.4.3.2. V1 is concave if and only if (Reg) holds.

Proof. Clearly,
dV1
ds1

=
dV1
dt
ds1
dt

Differentiating both sides of the above equation w.r.t. s1 we have:

d2V1

ds21
=

d2V1
ds1dt
ds1
dt

From the above equation the numerator of d2V1
ds21

is
(
ϕ′1(t)

d2V1(ϕ1(t))
d2t

− ϕ′′1(t)
dV1(ϕ1(t))

dt

)
.

It’s denominator is strictly positive. Therefore V1 is concave in s1 if and only if:(
ϕ′1(t)

d2V1(ϕ1(t))

d2t
− ϕ′′1(t)

dV1(ϕ1(t))

dt

)
> 0 ∀ t (A.4)

From the main text,

V1(ϕ1(t)) = π

ϕ1(t)

 t∫
0

m0(t)dt− v+0

+

1∫
t

m1(t)dt

+ (1− π)v+0

Differentiating the above twice w.r.t. t and using the expressions of dV1(ϕ1(t))
dt

and d2V1(ϕ1(t))
d2t

in (A.4) we get back (Reg).

Claim A.4.3.3. V1 is concave if and only if V0 is concave.

Proof. Using equations (A.1) and (A.2) and analogous expressions for the principal’s
value from single-threshold tests as a function of threshold when the undistorted state
is 0, we have, after some algebra:

V0(s0)− πV +
0 =

(
1− π

π

)
s0

(
V1

(
1

s0

)
− (1− π)v+0

)
(A.5)

Differentiating both sides twice w.r.t. s0 we have:
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v
′′
0(s0) =

(
1− π

π

)(
1

s30

)
v
′′
1

(
1

s0

)
(A.6)

Clearly, v
′′
0(s0) ⋛ 0 ⇐⇒ v

′′
1

(
1
s0

)
⋛ 0, which establishes the claim.

A.4.4 Proofs for Section 2.5.2, Main characterization

Note that under any pass-if-correct or fail-if-incorrect test, as defined in the main
text, the passing rate in at least one of the states is undistorted on the intensive
margin, i.e. takes values only in {0, 1}. Depending on which state’s passing rate
is undistorted in this sense, we further divide pass-if-correct or fail-if-incorrect tests
into two categories each, and give the following short names to them, for ease of
notation.

• F0: A fail-if-incorrect test with state 0 undistorted (F stands for fail, 0 in the
subscript captures the undistorted state, and so on for the following tests.)

• F1: A fail-if-incorrect test with state 1 undistorted

• P0: A pass-if-correct test with state 0 undistorted

• P1: A pass-if-correct test with state 1 undistorted

Going forward, we refer the above four categories as types of single threshold
tests. The following result would help us further consolidate these categories into
just two.

Claim A.4.4.1. Pass-if-correct (respectively fail-if-incorrect) tests are optimal only
if the market is lemon-dropping (respectively cherry-picking).

Proof. The value from the F and P tests of a given signal threshold are as follows:
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V F
− (t) = π

1∫
t

m1(t
′)dt′ + (1− π)

(
µ(t; π)

1− µ(t; π)

) t∫
0

m0(t
′)dt′

= π

 1∫
t

m1(t
′)dt′ + ϕ1(t)

t∫
0

m0(t
′)dt′

 (A.1)

V P
− (t) = π

1∫
t

m1(t
′)dt′ + (1− π)

 t∫
0

m0(t
′)dt′ +

(
1− µ(t; π)

1− µ(t; π)

) 1∫
t

m0(t
′)dt′


= π

1∫
t

(
m1(t

′)− ϕ1(t)m0(t
′)
)
dt′ + (1− π)

1∫
0

m0(t
′)dt′ (A.2)

Comparing the two with the same threshold,

V P
− (t) ≥ V F

− (t)

⇐⇒ π

 1∫
t

m1(t
′)dt′ + ϕ1(t)

t∫
0

m0(t
′)dt′

 ≥ π

1∫
t

(
m1(t

′)− ϕ1(t)m0(t
′)
)
dt′ + (1− π)

1∫
0

m0(t
′)dt′

⇐⇒ πϕ(t)

1∫
0

m0(t
′)dt′ ≥ (1− π)

1∫
0

m0(t
′)dt′

Now,
1∫
0
m0(t

′)dt′ = V0. Therefore if we are in a lemon-dropping market, i.e.

α < 1, V P
− (t) ≥ V F

− (t) ⇐⇒ ϕ1(t) ≥ 1−π
π , which is impossible over the range of t for

which the belief is below one half, unless this inequality holds with equality, i.e. the
belief-threshold is one half and the pass-if-correct and fail-if-incorrect tests coincide.

On the other hand if we are in a cherry-picking market, i.e. V0 < 0 V P
− (t) ≥

127



V F
− (t) ⇐⇒ ϕ1(t) ≤ 1−π

π , which holds for every t in the domain of V P
− and V F

− .
The proof is similar for F+ and P+ tests.

Claim A.4.4.2. Suppose the problem is regular. The principal’s maximized value is
given by the following:

In a cherry-picking market: V = max

{
max

{t:ϕ1(t)≤1−π
π }

V F
− (t), max

{t:ϕ1(t)≥1−π
π }

V F
+ (t), 0

}

In a lemon-dropping market: V = max

{
max

{t:ϕ1(t)≤1−π
π }

V P
− (t), max

{t:ϕ1(t)≥1−π
π }

V P
+ (t), V0

}
Proof. If the problem is regular, optimal tests have a single threshold. The expres-
sions then follow from the fact that V F

− (t) gives the principal’s value from a fail-if-
incorrect test with threshold t only if t is such that the agent’s belief at t is below one
half, and similarly for the other expressions. Note that setting ϕ1(t) =

1−π
π gives the

simple T-F test, which is always feasible. Finally, if the maximized value from all
single-threshold tests falls below the principal’s expected value without screening -
which is 0 in a cherry-picking market and V0 in a lemon-dropping market, she chooses
not to screen. Putting these together we get the above expressions.

Claim A.4.4.3. Under regularity, V F
− , V F

+ , V P
− and V P

+ are qausiconcave.

Proof. We show first show V F
− is qausiconcave by showing that V F ′′

−(t) < 0 whenever
V F ′

−(t) = 0.

V F ′
−(t) = 0 =⇒ −m1(t) + ϕ1(t)m0(t) + ϕ′1(t)

t∫
0

m0(t
′)dt′ = 0

=⇒
t∫

0

m0(t
′)dt′ =

m1(t)− ϕ1(t)m0(t)

ϕ′1(t)
(A.3)
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V F ′′
−(t) = −m′

1(t) + ϕ1(t)m
′
0(t) + 2ϕ′1(t)m0(t) + ϕ′′1(t)

t∫
0

m0(t
′)dt′

= −m′
1(t) + ϕ1(t)m

′
0(t) + 2ϕ′1(t)m0(t) + ϕ′′1(t)

(
m1(t)− ϕ1(t)m0(t)

ϕ′1(t)

)
= ϕ1(t)m0(t)

(
m′

0(t)

m0(t)
−

ϕ′′1(t)
ϕ′1(t)

+ 2
ϕ′1(t)
ϕ1(t)

)
−m1(t)

(
m′

1(t)

m1(t)
−

ϕ′′1(t)
ϕ′1(t)

)

Note that ϕ0(t) = 1
ϕ1(t)

, ∴
ϕ′′0(t)
ϕ′0(t)

=
ϕ′′1(t)
ϕ′1(t)

− 2
ϕ′1(t)
ϕ1(t)

. Using this in the above
expression we have,

V F ′′
−(t) = ϕ1(t)m0(t)

(
m′

0(t)

m0(t)
−

ϕ′′0(t)
ϕ′0(t)

)
−m1(t)

(
m′

1(t)

m1(t)
−

ϕ′′1(t)
ϕ′1(t)

)
(A.4)

The above expression is negative by regularity. Therefore V F
− cannot have a local

minima. Therefore it can have at most a single local maxima, which must then be
its global maxima. In other words, V F

− is qausiconcave.

Now we show that V P
− is quasiconcave as well.

V P ′
−(t) = 0 =⇒ −m1(t) + ϕ1(t)m0(t)− ϕ′1(t)

1∫
t

m0(t
′)dt′ = 0

=⇒
1∫
t

m0(t
′)dt′ = −m1(t)− ϕ1(t)m0(t)

ϕ′1(t)
(A.5)
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V P ′′
−(t) = −m′

1(t) + ϕ1(t)m
′
0(t) + 2ϕ′1(t)m0(t)− ϕ′′1(t)

1∫
t

m0(t
′)dt′

= −m′
1(t) + ϕ1(t)m

′
0(t) + 2ϕ′1(t)m0(t) + ϕ′′1(t)

(
m1(t)− ϕ1(t)m0(t)

ϕ′1(t)

)
= ϕ1(t)m0(t)

(
m′

0(t)

m0(t)
−

ϕ′′0(t)
ϕ′0(t)

)
−m1(t)

(
m′

1(t)

m1(t)
−

ϕ′′1(t)
ϕ′1(t)

)

The last line, again, comes from the fact that ϕ′′0(t)
ϕ′0(t)

=
ϕ′′1(t)
ϕ′1(t)

− 2
ϕ′1(t)
ϕ1(t)

. The above

expression is the same as V F ′′
−(t) (The t is, of course, not the same as in that case,

as the derivatives vanish at different points), which is negative by regularity.

Now we show that V F
+ is qausiconcave as well.

V F
+ (t) = (1− π)

ϕ0(t)

1∫
t

m1(t
′)dt′ +

t∫
0

m0(t
′)dt′

 (A.6)

V F ′
+(t) = 0 =⇒ m0(t)− ϕ0(t)m1(t) + ϕ′0(t)

1∫
t

m1(t
′)dt′ = 0

=⇒
1∫
t

m1(t
′)dt′ = −m0(t)− ϕ0(t)m1(t)

ϕ′0(t)
(A.7)
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V F ′′
+(t) = m′

0(t)− ϕ0(t)m
′
1(t)− 2ϕ′0(t)m1(t) + ϕ′′0(t)

1∫
t

m1(t
′)dt′

= m′
0(t)− ϕ0(t)m

′
1(t)− 2ϕ′0(t)m1(t) + ϕ′′0(t)

(
−m0(t)− ϕ0(t)m1(t)

ϕ′0(t)

)
= ϕ1(t)m0(t)

(
m′

0(t)

m0(t)
−

ϕ′′0(t)
ϕ′0(t)

)
−m1(t)

(
m′

1(t)

m1(t)
−

ϕ′′1(t)
ϕ′1(t)

)
The second line comes from substituting (A.7). The third line, comes from the

fact that ϕ′′1(t)
ϕ′1(t)

=
ϕ′′0(t)
ϕ′0(t)

− 2
ϕ′0(t)
ϕ0(t)

. The above expression is the same as V F ′′
+(t) (The

t is, of course, not the same as in that case, as the derivatives vanish at different
points), which is negative by regularity. The proof for V P

+ is similar.

Claim A.4.4.4. Either the optimal mechanism is to always or never pass, or there
exist tij ∈ (0, 1) such that V i

j (t) is maximized at tij , i ∈ {P, F}, j ∈ {+,−}.

Proof. From the expressions for V F ′
j(t) above, j ∈ {+,−}, it is clear that for low

enough t it is positive, and for t = 1 it is negative. Hence by continuity of V F ′
j(t)

– which follows from our assumption of continuous differentiability of the signal
densities – there exists tFj ∈ (0, 1) such that V F ′

j(t) = 0.
Now consider V P ′

−(t). Note that V P ′
−(1) < 0. Suppose there does not exist

tP− ∈ (0, 1) such that V P ′
−(t) = 0. Hence V P ′

−(t) < 0 for all t ∈ (0, 1). Hence the
optimal test of type P− has a signal threshold of t = 0. Under this test there is
no screening – everyone is passd in state 1 and everyone is passd with probability(
1−

(
π

1−π

)
ϕ1(0)

)
in state 0. But because P− can be optimal only if V0 ≤ 0, in

this case the principal is weakly better off passing everyone with probability one in
both states. Hence in this case the optimal test is to never pass. Similarly it can be
shown that the same is true for the test of type P+.

Claim A.4.4.5. Unless the optimal mechanism is to always or never pass, in a
cherry-picking market tF− > tF+ and in a lemon-dropping market tP− > tP+, where tij’s
are as defined in Claim A.4.4.4, i ∈ {P, F}, j ∈ {+,−}.
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Proof. We prove the lemma first for the case when V0 ≤ 0.
Suppose the test is not constant for some π. By Claim A.4.4.2, the maximized

value of the principal when using a non-constant test, V ≤ max{V F
− (tF−), V

F
+ (tF+)}.

Hence, if the optimal test is not constant, max{V F
− (tF−), V

F
+ (tF+)} > 0. Note that:

V F
+ (t) =

(
1− π

π

)
ϕ0(t)V

F
− (t)

Since ϕ0(t) > 0 for all t, V F
− (tF−) > 0 =⇒ V F

+ (tF−) > 0, ∴ V F
+ (tF+) ≥ V F

+ (tF−) >

0. Similarly, V F
+ (tF+) > 0 =⇒ V F

− (tF−) > 0. i.e. If the optimal test is not constant,
min{V F

− (tF−), V
F
+ (tF+)} > 0.

V F ′
+(t) =

(
1−π
π

)
[ϕ0(t)V

F ′
−(t)+ϕ′0(t)V

F
− (t)]. Recall that V F ′

−(t
F
−) = 0, ϕ′0(t) <

0 for all t and V F
− (tF−) > 0. Therefore V F ′

+(t
F
−) =

(
1−π
π

)
ϕ′0(t)V

F
− (tF−) < 0. By

single-peakedness of V F
+ , as shown in Claim A.4.4.3, this means tF+ < tF−.

Now we consider the case V0 > 0. Some algebra shows:

V P
+ (t)− πV0 =

(
1− π

π

)
ϕ0(t)

(
V P
− (t)− (1− π)V0

)
(A.8)

At any t, V P
+ (t) > πV0 ⇐⇒ V P

− (t) > (1−π)V0. Since the problem is regular, the
optimal test is not constant for some π and α < 1, this must hold for t ∈ {tP+, tP−}.

Differentiating both sides of (A.8),

V P ′
+(t)

1− π
=

1

π

(
ϕ0(t)V

P ′
−(t) + (V P

− (t)− (1− π)V0)ϕ
′
0(t)
)

At t = tP− we know V P
− (t)− (1− π)V0 > 0 and V P ′

−(t) = 0. ϕ′0 < 0 and ϕ0 > 0,
so V P ′

+(t
P
−) < 0. Hence, by quasiconcavity of V P

+ , tP+ < tP−.

Define the following:

π :=
1

ϕ1(1) + 1
and π :=

1

ϕ1(0) + 1
(A.9)

Claim A.4.4.6. For π ∈ (0, π] (respectively, π ∈ [π, 1)) the optimal test is of type
F− (respectively, F+), regardless of regularity.
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Proof. For π < π, F+ tests are infeasible, since ϕ1(t) < 1−π
π for all t. Therefore

for π ∈ (0, π] the optimal test is of type F−, since, as argued in the proof of Claim
A.4.4.2, if it is not constant, V F

− (tF−) > 0. Clearly, this does not depend on regularity,
because for π < π, all beliefs are strictly below one half, and hence no other type
of test – including those with two thresholds – are feasible. (By Theorem A.2.1, a
two threshold optimal test must have exactly one belief threshold on each side of one
half.)

Similarly the bracketed parts follow.

Completing the proof. Again, we provide the proof for V0 ≤ 0. The proof for
V0 > 0 is identical. Since we consider V0 ≤ 0 and assume regularity, by Proposition
2 the only types of tests we need to consider are F− and F+.

Suppose the there exists some π ∈ (0, 1) such that the optimal test is not constant
for π.

Note that
{
t : ϕ1(t) ≥ 1−π

π

}
is an interval, by strict increasingness of ϕ1. By

single-peakedness of V F
+ as shown by Claim A.4.4.3, for π ∈

[
π, 1

ϕ1(t
F
+)+1

]
, V F

+ is

strictly decreasing in t over
{
t : ϕ1(t) ≥ 1−π

π

}
. By Claim A.4.4.5, tF+ < tF−. Hence

the same holds for π ∈
[
π, 1

ϕ1(t
F
−)+1

]
⊊
[
π, 1

ϕ1(t
F
+)+1

]
. Therefore max

{t:ϕ1(t)≥1−π
π }

V F
+ (t) =

V F
+ (t̂(π)) = π

1∫
t̂(π)

m1(t
′)dt′+(1− π)

t̂(π)∫
0

m0(t
′)dt′ = V F

− (t̂(π)) < V F
− (tF−). Therefore

for π ∈
[
π, 1

ϕ1(t
F
−)+1

]
, F− is optimal. Combining with Claim A.4.4.6, it is optimal

for all π ∈
(
0, 1

ϕ1(t
F
−)+1

]
.

Similarly F+ is optimal for all π ∈
[

1
ϕ1(t

F
+)+1

, 1

)
.

Similarly as in the previous paragraph, by Claim A.4.4.3, for π ∈
[

1
ϕ1(t

F
−)+1

, π

]
,

V F
− is strictly increasing in t over

{
t : ϕ1(t) ≤ 1−π

π

}
, so its maximum is achieved at
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t = t̂(π). Hence for π ∈
(

1
ϕ1(t

F
−)+1

, 1
ϕ1(t

F
+)+1

)
, arg max

{t:ϕ1(t)≤1−π
π }

V F
− (t) = arg max

{t:ϕ1(t)≥1−π
π }

V F
+ (t) =

t̂(π), i.e. both optimal F+ and F− tests coincide to the simple T-F test.

A.4.5 Proofs for Section 2.5.2, Distortions

In Theorem 3.B, t = min{tfb0 , t
fb
1 , t∗} and t = max{tfb0 , t

fb
1 , t∗}, where t∗ is the

unique signal threshold of the optimal test. Recall that there can be a maximum of
one threshold, by regularity.

Define:

f(t|ω, v)
f(t|1, 0)

= gω(t|v, 0) ∀ ω, t, v (A.1)

Claim A.4.5.1. Under MLRP, m1 is increasing (m0 is decreasing) whenever it is
positive. Moreover, both m1 and m0 cross 0 only once.

Proof.

m1(t) =

∫
v

vg(t|1, v)dν(v)

 f(t|1, 0)

Differentiating,

m′
1(t) =

∫
v

vg1(t|v, 0)dν(v)

 f ′(t|1, 0) +

∫
v

vg′(t|1, v)dν(v)

 f(t|1, 0)

Note that by definition of the g1(t|v, 0)’s and MLRP, g′1(t|v, 0) ⋛ 0 ⇐⇒ v ⋛ 0.

Hence
(∫
v
vg′(t|1, v)dν(v)

)
> 0. Hence m′

1(t) > 0 if
(∫
v
vg1(t|v, 0)dν(v)

)
> 0,

i.e. m1(t) > 0. Therefore once m1(t) reaches zero from below it cannot turn back
negative, which shows the “moreover” part for m1(t).

Identically as above, the results for m0(·) follow.
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Let afbω : T → [0, 1] denote the first-best allocation, ω ∈ {0, 1}. By Claim A.4.5.1,
there exist t

fb
0 ∈ (0, 1) and t

fb
1 ∈ (0, 1) such that Let a

fb
0 (t) = 1(t ≤ t

fb
0 ), a

fb
1 (t) =

1(t ≥ t
fb
1 ). In particular, tfbω solves mω(t

fb
ω ) = 0, ω ∈ {0, 1}.

Claim A.4.5.2. tF− > min{tfb0 , t
fb
1 }.

Proof. By Claim A.4.5.1, m0(t) > 0 ∀ t ∈ [0, t
fb
0 ] ⊇ [0,min{tfb0 , t

fb
1 }] and m1(t) <

0 ∀ t ∈ [0, t
fb
1 ] ⊇ [0,min{tfb0 , t

fb
1 }], i.e. m0(t) > 0 > m1(t) ∀ t ≤ min{tfb0 , t

fb
1 }.

Therefore each term in V F ′
−(t) = −m1(t)+ϕ1(t)m0(t)+ϕ′1(t)

t∫
0
m0(t

′)dt′ is positive

for all t ≤ min{tfb0 , t
fb
1 }, ∴ V F ′

−(t) > 0 ∀ t ≤ min{tfb0 , t
fb
1 }. By qausiconcavity of

V F
L (t) the result follows.

Let us assume π < π where π is as defined in Theorem 2.A. Therefore the optimal
test is of type F− with threshold tF−.

The case for π > π is reciprocal.

Claim A.4.5.3. Suppose π < π, where π as defined in Theorem 2.A. Then, the
following table gives all possible distortions.

The first column in each of the tables below captures intervals of types, and the
table entries capture whether those types are better off (+), worse off (−) or face no
distortions (0), compared to first-best.

Cherry-picking, tfb1 > t
fb
0 Lemon-dropping, t

fb
1 ≤

t
fb
0

[0, t
fb
0 ] − 0

[t
fb
0 ,max{tfb1 , tF−}] +

[max{tfb1 , tF−}, 1] 0 +

Table A.1: Distortions for various types in a competitive market
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Cherry-picking, tfb1 > t
fb
0 Lemon-dropping, t

fb
1 ≤

t
fb
0

[0, t
fb
1 ] − 0

[t
fb
1 ,min{tfb0 , tF−}] −

[min{tfb0 , tF−},max{tfb0 , tF−}] +/− ⇐⇒ tF− ≷ t
fb
0

[max{tfb0 , tF−}, 1] 0 +

Table A.2: Distortions for various types in an uncompetitive market

Proof. By Claim A.4.5.2, the above table captures all possible cases.
For π < π, in a cherry-picking market, the optimal test with screening takes the

form â0(t) =
(

π
1−π

)
ϕ1(t

F
−) × 1(t ≤ tF−), â1(t) = 1(t ≥ tF−). We prove the claims in

the above tables for a cherry-picking market. The arguments for a lemon-dropping
are almost identical, keeping in mind the fact that the optimal test with a threshold
at tF−, in that case, is given by â0(t) = 1(t ≤ tF−) +

(
1− π

1−πϕ1(t
F
−)
)
× 1(t ≥

tF−), â1(t) = 1(t ≥ tF−).
Let us first consider the case when t

fb
1 > t

fb
0 . Clearly, the types t ≤ t

fb
0 are worse

off under screening, as they are passed only in state 0 - as under the unconstrained
solution - but with lower probability. Simiarly t ∈ [t

fb
0 , t

fb
1 ] are better off under

screening, as they are never passed under first-best. If tF− > t
fb
1 , t ∈ [t

fb
1 , tF−] are

passed with probability 1 in state 1 and 0 in state 0 under the unconstrained solution.
But given the test (â1, â0) as described above, they can still choose this allocation,
but choose not to, as the test is incentive compatible. Therefore they are better off
with their allocation under screening. Hence t ∈ [t

fb
0 ,max{tfb1 , tF−}] are better off.

t ≥ max{tfb1 , tF−} obviously face no distortion - they are passed for sure, only in state
1, under both.

If tfb1 ≤ t
fb
0 ., naturally all t ∈ [t

fb
1 , t

fb
0 ] are worse off, as they are passed for sure

under first-best. Naturally, in a cherry-picking market, so are all t ≤ t
fb
1 , as they are

passed only in state 0 under both screening and first-best, but with lower probability
under screening. If tF− > t

fb
0 , analogously as argued in the previous paragraph for

the competitive case, t ∈ [t
fb
0 , tF−], they are passed with probability one in state

0 - an option they have available under the screening test, but don’t choose, due
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to incentive compatibility. Therefore they are better off under screening. Types
t ≥ max{tfb0 , tF−} again face no distortion, as in the previous case.

A.4.6 Proofs for Section 2.5.3, Admission of uncertainty

For ease of defining objects to be introduced shortly, particularly for this subsec-
tion, we also define the notation πω, denoting the prior probability of state ω ∈ {0, 1}.
Therefore in terms of our standard notation π for the prior, π1 = π, π0 = 1− π.

The structure of dual threshold tests

Consider a two-threshold IC mechanism with signal-thresholds t and t > t.
Let the corresponding thresholds of normalized likelihood ratios be denoted by
s1, s1, s0, s0 respectively. In particular, let:

s1 := ϕ1(t), s1 := ϕ1(t), s0 :=
1

s1
= ϕ0(t), s0 :=

1

t
= ϕ0(t). (A.1)

Let the belief thresholds corresponding to t and t be p and p respectively. Hence:

p

1− p
=

(
π

1− π

)
ϕ1(t) =

s1
ŝ1

=
ŝ0
s0

,

p

1− p
=

(
π

1− π

)
ϕ1(t) =

s1
ŝ1

=
ŝ0
s0

.

(A.2)

Let the passing rates for the “middle region” of signals in our two threshold
mechanism – t ∈ [t, t] – be x and y in states 1 and 0 respectively. In other words,
our two threshold mechanism is given by:

a(t) := (â1(t), â0(t)) =


(0, 1) for t < t

(x, y) for t ∈ [t, t]

(1, 0) for t > t.

(A.3)
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Type 1 and Type 0 tests

Let Sω = ϕω([0, 1]), ω ∈ {0, 1}. Clearly, Sω is an interval for each ω. Let sω

denote a typical element of Sω.
Fix a prior π. To maintain notational parity – as would be apparent shortly – we

use the following notation:

ŝ1 :=
1− π

π
and ŝ0 :=

1

ŝ1
=

π

1− π

By Claim A.4.4.1 we can combine the pass and fail type tests with each undis-
torted state – 0 and 1 – into one, as follows. Let χω : Sω → [0, 1]2

Sω , ω ∈ {0, 1}
denote the operator that maps each Normalized likelihood ratio (NLR, as defined in
the main text, Section 2.5.3) to the optimal single threshold test (a pair of passing
probabilities as a function of the reported signal) with that NLR as its threshold
and undistorted state ω. Letting the first and second component denote â1 and â0

respectively:

χ1(s1) =

(
1(t ≥ ϕ−1

1 (s1)),

(
s1
ŝ1

)
1(t ≤ ϕ−1

1 (s1)) +

(
1− s1

ŝ1

)
v+0

)
χ0(s0) =

((
s0
ŝ0

)
1(t ≥ ϕ−1

0 (s0)) +

(
1− s0

ŝ0

)
v+0 , 1(t ≤ ϕ−1

0 (s0))

) (A.4)

We call χ1 and χ0 as Type 1 and Type 0 tests respectively.
Two points are worth emphasizing here. First, χω, so defined, need not be feasible

for all ω and sω ∈ Sω, as we shall see shortly. Second, for any ω and sω ∈ Sω, χω(sω)

so defined is optimal – not globally, but – under the restrictions of the fixed threshold
sω and keeping ω the undistorted state.

We can also define the principal’s value from each type of test as a function of
its NLR-threshold as follows:

V1(s1) = π
(
s1

(
M0(ϕ

−1
1 (s1))− v+0

)
+M1(ϕ

−1
1 (s1)) + ŝ1v

+
0

)
V0(s0) = (1− π)

(
s0

(
M1(ϕ

−1
1 (s1))− v+0

)
+M0(ϕ

−1
0 (s0)) + ŝ0v

+
0

) (A.5)
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The proof

We call a test χω(sω) IC if it, as defined by (A.4), satisfies the IC constraints
(IC), and feasible if it satisfies (Feas). Note that all IC tests need not be feasible.

Claim A.4.6.1. For any sω < sω and πω such that 1−πω
πω

∈ (sω, sω), the following
is the same mechanism for both ω ∈ {0, 1}, and it is feasible and IC:(

sω − ŝω
sω − sω

)
χω(sω) +

(
ŝω − sω
sω − sω

)
χω(sω)

Proof. We show this by showing that any dual threshold feasible IC test can be
expressed as a convex combination of two single threshold IC tests – as shown above
– exactly one of which is feasible.

The threshold types of the dual threshold test – with beliefs p and p – must be
indifferent between reporting their “left” and “right” messages. This gives us:

y(1− p) + xp = 1− p =⇒ x =

(
1− p

p

)
(1− y),

y(1− p) + xp = p =⇒ (1− x) =

(
1− p

p

)
y.

(A.6)

Solving the equation system (A.6) simultaneously we have:

x =
s1 − ŝ1
s1 − s1

, y =
s0 − ŝ0
s0 − s0

. (A.7)

The mechanism a can be written as:

â1(t) = x1(t ≥ t) + (1− x)1(t ≥ t),

â0(t) = (1− y)1(t ≤ t) + y1(t ≤ t)

= x

(
p

1− p

)
1(t ≤ t) + (1− x)

(
p

1− p

)
1(t ≤ t).

(A.8)

The last line comes from using (A.6).
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Note that:

x

(
1−

p

1− p

)
+ (1− x)

(
1− p

1− p

)
= 0. (Vanishing)

The above comes from the expressions of x and y in (A.7).
Combining (A.8) and (Vanishing), a can be written as:

a = xχ1(t) + (1− x)χ1(t) (A.9)

Because of (Vanishing), the
(
1− µ(t0)

1−µ(t0)

)
1(ω = 0, V0 ≥ 0) term in χ0 plays no

role, even when V0 ≥ 0.
Similarly as (Vanishing), we also have, from the expression for y in (A.7), (1 −

y)
(
1− 1−p

p

)
+ y

(
1− 1−p

p

)
= 0.. Using this we also have:

a = (1− y)χ0(t) + yχ0(t)

Let V D : T × T → R denote the principal’s value from a dual threshold test as
a function of its two signal-thresholds.

Claim A.4.6.2. The principal’s value from a two-threshold IC test with signal thresh-
olds t < t is given by:

V D(t, t) = xV1(ϕ1(t)) + (1− x)V1(ϕ1(t))

= yV0(ϕ0(t)) + (1− y)V0(ϕ0(t)).
(A.10)

where x and y are given by (A.7).

Proof. Follows directly from Claim A.4.6.1.

Claim A.4.6.3. If π ≤ 1
ϕ1(t

∗
1)+1

or π ≥ 1
ϕ1(t

∗
0)+1

, the optimal mechanism must have
a single threshold.

Proof. By Claim A.4.6.2, the value from any dual threshold IC test is equal to some
convex combination of two single threshold tests of each type. Therefore it is weakly
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lower than the maximum value of each of the two types of tests, i.e. for any dual
threshold test with signal thresholds t < t, by (A.10),

V D(t, t) ≤ min{V1(ϕ1(t∗1)), V0(ϕ0(t
∗
0))}

If π ≤ 1
ϕ1(t

∗
1)+1

, the type 1 test with signal threshold t∗1 is feasible and if π ≥
1

ϕ1(t
∗
0)+1

the type 0 test with signal threshold t∗0 is feasible. Using one of these
the principal can do weakly better than any dual threshold test. Hence the claim
follows.

The following two corollaries follow.

Corollary A.4.6.1. If t∗0 ≥ t∗1, the optimal mechanism must have a single threshold
for all priors.

Corollary A.4.6.2. If t∗0 < t∗1, the optimal mechanism must have a single threshold
for all priors π /∈

(
1

ϕ1(t
∗
1)+1

, 1
ϕ1(t

∗
0)+1

)
.

By the above corollaries, going forward we assume t∗0 < t∗1 and consider the case
π ∈

(
1

ϕ1(t
∗
1)+1

, 1
ϕ1(t

∗
0)+1

)
.

Next we show that the principal’s value is given by the maximium of her values
from the monotone concave envelope of her value functions from the two types of tests
– 1 and 0. The monotone concave envelope of a function is the lowest monotone and
concave function which lies weakly above it everywhere. Specifically, the monotone
concave envelope of vω, ω ∈ {0, 1}, ̂̂vω : ϕω([0, 1]) → R, is defined as ̂̂vω : sω 7→
max
s̃ω≤sω

v̂ω(s̃ω).

Claim A.4.6.4. For any prior π, the principal’s maximized value is given by:

max

{̂̂v1(1− π

π

)
, ̂̂v0( π

1− π

)}
(Monotone Concave Envelope)

Proof. Note that if the best single-threshold test of either type is feasible then it is
optimal.
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We first find the principal’s maximized value from each type of test - 1 and 0 - of
a given threshold. We provide the proof for type 1 tests. The proof for type 0 tests
is identical.

Clearly, if the prior is low enough, i.e. if ϕ1(t∗1) ≤ ŝ1, t∗1 is feasible as the threshold
of a type 1 test. Therefore for ϕ1(t

∗
1) ≤ ŝ1, the principal-optimal single threshold

test of type 1 is one with signal threshold t∗1.
For ϕ1(t∗1) > ŝ1, by Claim A.4.6.2, the maximized value from type 1 tests is given

by:

max
s1,s1,ŝ1∈[s1,s1]

(
s1 − ŝ1
s1 − s1

)
V1(s1) +

(
ŝ1 − s1
s1 − s1

)
V1(s1)

This is clearly the expression for v̂1(ŝ1) – the concave envelope of V1 evaluated
at ŝ1 = 1−π

π .
Combining both cases – ϕ1(t

∗
1) ≤ ŝ1 and ϕ1(t

∗
1) > ŝ1 – the principal’s maximized

value from a test of type 1 as a function of ŝ1 is given by:

V ∗
1 (ŝ1) :=

 V1(ϕ1(t
∗
1)), ϕ1(t

∗
1) ≤ ŝ1,

v̂1(ŝ1), ϕ1(t
∗
1) > ŝ1.

Note that the above is the expression for the monotone concave envelope of
V1, ̂̂v1 : ϕ1([0, 1]) → R, defined as ̂̂v1 : s1 7→ max

s̃1≤s1
v̂1(s̃1).

Similarly as above, the principal’s maximized value from a test of type 0 as a
function of ŝ0 is also given by the monotone concave envelope of v̂0:

(ŝ0) :=

 V0(ϕ0(t
∗
0)), ϕ0(t

∗
0) ≤ ŝ0,

v̂0(ŝ0), ϕ0(t
∗
0) > ŝ0.

Since the principal can choose any of the types of tests – 1 or 0 – her maximized
value is given by (Monotone Concave Envelope).
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Completing the proof. The equivalence of the first and second bullet points is
clear from (A.10) and the fact that if t ∈ (t∗0, t

∗
1), when ϕ1(t) = 1−π

π , V1(ϕ1(t)) =

V0(ϕ0(t)) = the principal’s value from the simple True-False test, which, for this prior,
is the bang-bang test with belief-threshold = 1

2 . Hence, v̂1(ϕ1(t)) > V1(ϕ1(t)) ⇐⇒
v̂0(ϕ0(t)) > V0(ϕ0(t)). Consequently, by Claim A.4.6.4 and Corollary A.4.6.2 the
result follows.

A.4.7 Proofs for Section 2.6: Endogenous topic selection

Proposition 14. The principal’s maximized value is concave in the prior.

Let us denote the principal’s maximized value for prior π as V (π). Fix s1 ∈ (0, 1)

and π1, π2 ∈ [0, 1]. We have to show that,

V (s1π1 + (1− s1)π2) ≥ s1V (π1) + (1− s1)V (π2) (A.1)

Let π := s1π1 + (1− s1)π2.
Consider the problem where the principal’s prior is π and she has access to a fixed

binary experiment – one that produces two posteriors, π1 and π2, with probability
s1 and s2 = 1 − s1 respectively. She can commit to implement the mechanism
(âi1, â

i
0) : T → [0, 1] if her posterior is πi, i ∈ {1, 2}. Her payoff under this mechanism

is:

=
∑

i∈{1,2}
si

πi

1∫
0

m1(t)â
i
1(t)dt+ (1− πi)

1∫
0

m0(t)â
i
0(t)dt


= π

1∫
0

m1(t)ã1(t)dt+ (1− π)

1∫
0

m0(t)ã0(t)dt

where ã1(t) =

∑
i∈{1,2}

siπiâ
i
1(t)

π , and ã0(t) =

∑
i∈{1,2}

si(1−πi)â
i
0(t)

1−π .
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Hence, she solves the following problem:

max
â11,â

1
0,â

2
1,â

2
0∈[0,1]4

π

1∫
0

m1(t)ã1(t)dt+ (1− π)

1∫
0

m0(t)ã0(t)dt (A.2)

s.t. â11, â
1
0, â

2
1, â

2
0 ∈ [0, 1], and ∀ t, t′ ∈ T,∑

i∈{1,2}
si

(
µ(t; πi)â

i
1(t) + (1− µ(t; πi))â

i
0(t)
)
≥

∑
i∈{1,2}

si

(
µ(t; πi)â

i
1(t

′) + (1− µ(t; πi))â
i
0(t

′)
)
,

(IC)

where ã1(t) =

∑
i∈{1,2}

siπiâ
i
1(t)

π
, and ã0(t) =

∑
i∈{1,2}

si(1− πi)â
i
0(t)

1− π
.

In the above problem, note that if we restrict the principal to use (â11, â
1
0) =

(â21, â
2
0) = (ã1, ã0), we get back the (signal-based version of the) original problem,

(Primal). Hence, since (Primal) allows the principal to choose from a subset of
the mechanisms that (A.2) allows, the value of (Primal) is weakly less than that of
(A.2). But by the revelation principle, the value of (A.2) is weakly less than that of
(Primal). Hence their values are equal.

Now consider the alternative case where the principal is restricted to revealing
her signal to the agent. In this case she solves:

max
â11,â

1
0,â

2
1,â

2
0∈[0,1]4

π

1∫
0

m1(t)ã1(t)dt+ (1− π)

1∫
0

m0(t)ã0(t)dt (A.3)

s.t. â11, â
1
0, â

2
1, â

2
0 ∈ [0, 1], and ∀ t, t′ ∈ T, i ∈ {1, 2},

µ(t; πi)â
i
1(t) + (1− µ(t; πi))â

i
0(t) ≥ µ(t; πi)â

i
1(t

′) + (1− µ(t; πi))â
i
0(t

′).

(IC-restricted)

Clearly, any mechanism which satisfies (IC-restricted) satisfies (IC). Let the value
of (A.3) be denoted by Vrestr. Then, we must have Vrestr ≤ V (π).
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Now consider a third case where the principal must reveal her posterior to the
agent, like the previous case, but in addition, cannot pre-commit to mechanisms as
a function of her posteriors. Hence, she must choose a mechanism after observing
her posterior. We call the principal who observes posterior πi, the principal’s i-th
interim self.

Vrestr is the principal’s ex-ante value when the mechanism (â11, â
1
0, â

2
1, â

2
0) is chosen

by her ex-ante self subject to (IC-restricted). Hence her ex-ante value from it must be
weakly higher than her value, if, each of the mechanisms (â11, â

1
0) and (â21, â

2
0) were

chosen by her corresponding interim self, with posteriors π1 and π2 respectively,
because they would be facing the same IC constraints, (IC-restricted).

The i-th interim self of the principal solves:

max
âi1,â

i
0∈[0,1]2

πi

1∫
0

m1(t)â
i
1(t)dt+ (1− πi)

1∫
0

m0(t)â
i
0(t)dt

s.t. âi1, â
i
0 ∈ [0, 1], and ∀ t, t′ ∈ T,

µ(t; πi)â
i
1(t) + (1− µ(t; πi))â

i
0(t) ≥ µ(t; πi)â

i
1(t

′) + (1− µ(t; πi))â
i
0(t

′).

The principal’s ex-ante value from each interim self choosing its optimal mecha-
nism is, therefore:

max
â11,â

1
0,â

2
1,â

2
0∈[0,1]4

∑
i∈{1,2}

si

πi

1∫
0

m1(t)â
i
1(t)dt+ (1− πi)

1∫
0

m0(t)â
i
0dt

 (A.4)

s.t. â11, â
1
0, â

2
1, â

2
0 ∈ [0, 1], and ∀ t, t′ ∈ T, i ∈ {1, 2},

µ(t; πi)â
i
1(t) + (1− µ(t; πi))â

i
0(t) ≥ µ(t; πi)â

i
1(t

′) + (1− µ(t; πi))â
i
0(t

′).

Clearly, the feasible set of mechanisms for (A.3) and (A.4) are the same, but the
objectives are (potentially) different. The principal’s ex-ante self therefore prefers
the one where the objective is the principal’s ex-ante value, i.e. (A.3). That is,
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Vrestr ≥
∑

i∈{1,2}
siV (πi)

Proof of Theorem 4. We prove the claims for the cherry-picking case. The proofs
for the lemon-dropping case are similar.

First bullet point. Clearly, the principal’s value is linearly increasing (decreasing)
in π for (π ∈ [0, π]) (π ∈ [π, 1]). Therefore her optimal π’s must lie in [π, π]. Below
we show that they lie in (π, π).

Note that the principal’s maximized value for all π ∈ (π, π), is given by V(π) =

V F
− (t̂(π)) = V F

+ (t̂(π)). Denoting V F
− (t) = πV F

−,0(t) where V F
−,0(t) := ϕ1(t)

t∫
0
m0(t

′)dt′+

t∫
0
m1(t

′)dt′, we have, for π ∈ [π, π]:

V′(π) = πV F ′
−,0(t̂(π))t

′(π) + V F
−,0(t̂(π))

At π = π, t(π) = tF−, ∴ V F ′
−,0(t(π)) = 0, V F

−,0(t(π)) > 0 since we assumed the
solution is not constant. Hence V(π) is strictly increasing at π = π. Similarly, using
the formulation V(π) = V F

+ (t̂(π)) it can be shown that it is strictly decreasing at
π = π. The claim follows.

Second bullet point. Follows directly from the first and Theorem 2.A for the
regular case.

For the general case, note that the principal’s value from a two-threshold test
with signal thresholds t and t are given by:(

πϕ1(t)− (1− π)

ϕ1(t)− ϕ1(t)

)
V F
− (t) +

(
(1− π)− πϕ1(t)

ϕ1(t)− ϕ1(t)

)
V F
− (t)

The above is linear in π. Hence the optimum is achieved at one of the extremes,
making the optimal test of the simple T-F type.

Third bullet point. Total passing probability under the simple T-F mechanism:
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= π

∫
µ(t;π)≥1

2

f1(t)dt+ (1− π)

∫
µ(t;π)≤1

2

f0(t)dt

=

∫
πf1(t)≥(1−π)f0(t)

πf1(t)dt+

∫
πf1(t)≤(1−π)f0(t)

(1− π)f0(t)dt

=

1∫
0

max{πf1(t), (1− π)f0(t)}dt

≥ max

π

1∫
0

f1(t), (1− π)

1∫
0

f0(t)

 dt

= max{π, 1− π}

≥ 1

2
.

Fourth bullet point. Follows directly from symmetry and Proposition 14.

A.4.8 Proofs for Section 2.6, Other equilibria of the informed
principal game

Proof of Theorem 5. Define M0,M1 : [0, 1] → R as M0(t) :=
t∫
0
m0(t

′)dt′ and

M1(t) :=
1∫
t
m1(t

′)dt′ for all t. Further, let γ :=
(

π
1−π

)(
1−πP
πP

)
.

Note that Claim A.4.4.1 goes through even in this case. Hence, the expression for
the principal’s value from a test with a belief threshold below one half – the analog
of (A.1) – is given by:
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V−(t) := πP

1∫
t

m1(t
′)dt′ + (1− πP )

( πA
1− πA

)(
µ(t; π)

1− µ(t; π)

) t∫
0

m0(t
′)dt′

+

(
1−

(
πA

1− πA

)(
µ(t; π)

1− µ(t; π)

))
V +
0

]
= πP

(
M1(t) + γϕ1(t)(M0(t)− V +

0 )
)
+ (1− πP )V

+
0 (A.1)

where V +
0 = max{0, V0}.

Differentiating,

V ′
−(t) = πP

(
−m1(t) + γ

(
ϕ1(t)m0(t) + ϕ′1(t)(M0(t)− V +

0 )
))

(A.2)

The first-order condition, analogous to (A.3), is given by:

ϕ′1(t)(M0(t)− V +
0 ) + ϕ1(t)m0(t)

m1(t)︸ ︷︷ ︸
=:L(t)

=
1

γ
(A.3)

Let us call the LHS of (A.3) L(t), as shown. Let us also denote the numerator
as a function of t by N−(t).

Recall that t
fb
ω was defined as mω(t

fb
ω ) = 0, ω ∈ {0, 1}.

Claim A.4.8.1. For all γ ∈ [0,∞), (A.3) has exactly one solution.

Proof. First we show that for each γ ∈ [0,∞), (A.3) has at most one solution.
Analogously as (A.4), if t is such that V F ′

−(t) = 0, V F ′′
−(t) < 0 by strong

regularity, regardless of γ. Hence V−(·) is single-peaked, as in the baseline case.
Hence (A.3) has at most one solution for each γ ∈ (0,∞).

Now we show that for any γ ∈ [0,∞) there exists t ∈ (0, 1) such that (A.3) is
satisfied.

First, consider the case when N−(t
fb
1 ) = 0, i.e. the numerator and denominator

of L(t) vanish at the same point. In this case, by (A.2), V ′
−(t

fb
1 ) = 0 for all γ and
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we are done. Hence for the rest of the proof we assume N−(t
fb
1 ) ̸= 0. Hence lim

t→tfb1
does not exist.

First, consider the case when V0 ≤ 0. Clearly, for t sufficiently close to 0, m1(t) <

0 and similarly m0(t
′) > 0 for all t′ ≤ t. Hence M0(t) > 0. Hence from (A.2),

V F ′
−(t) > 0. Similarly, at t = 1, M0(t) = V0 ≤ 0, m0(t) < 0, m1(t) > 0. By

continuity of ϕ′1(t) and each of the other terms in the expression for V F ′
−(t), V

F ′
−(t)

is continuous and therefore attains the value 0 for some t ∈ (0, 1), for each γ.
Now consider the case when V0 > 0. At t = 1, (M0(t) − V0) = 0,m0(t) <

0,m1(t) > 0, hence V ′
−(1) < 0. At t = t

fb
0 , M0(t) attains its maximum. Hence

(M0(t)− V0) > 0. By definition of tfb0 , m0(t
fb
0 ) = 0. Hence N−(t

fb
0 ) > 0.

First consider the case when m1(t
fb
0 ) > 0. In this case L(t

fb
0 ) > 0. This case also

implies tfb1 < t
fb
0 , hence m1(t) > 0 for all t ≥ t

fb
0 . Therefore by continuity of L(t) in

[t
fb
0 , 1] we are done.

Now consider the case when m1(t
fb
0 ) < 0. In this case t

fb
1 > t

fb
0 and L(t

fb
0 ) < 0.

By assumption, N−(t
fb
1 ) ̸= 0. If N−(t

fb
1 ) > 0, lim

t↓tfb1
= ∞, hence L(t+) = 0 for some

t+ ∈ (t
fb
1 , 1) and we are done. If N−(t

fb
1 ) < 0, lim

t↑tfb1
= ∞, hence L(t−) = 0 for some

t− ∈ (t
fb
0 , t

fb
1 ) and we are done.

By Claim A.4.8.1, for every γ ∈ (0,∞) there exists exactly one t such that (A.3)
holds. Hence we can define the function t∗−(γ) which solves (A.3), as a function of γ.

Claim A.4.8.2. Either t∗−(γ) = t
fb
1 for all γ ∈ [0,∞), or exactly one of the following

statements holds:

• lim
t↑tfb1

L(t) = ∞, lim
t↓tfb1

L(t) = −∞, there exists t− ∈ (0, t
fb
1 ) such that L(t) is

strictly positive and monotonically increasing for t ∈ (t−, t
fb
1 ) and L(t) < 0 for

all t > t
fb
1 .

• There exists t+ ∈ (t
fb
1 , 1) such that L(t+) = 0, lim

t↓tfb1
L(t) = ∞, lim

t↑tfb1
L(t) =
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−∞, L(t) is strictly positive and monotonically decreasing for t ∈ (t
fb
1 , t+) and

L(t) < 0 for all t < t
fb
1 .

Proof. If N−(t
fb
1 ) = 0, the first case arises – t∗−(γ) = t

fb
1 for all γ ∈ [0,∞) – and we

are done. Hence for the rest of the proof we assume N−(t
fb
1 ) ̸= 0.

Since t
fb
1 is the only point of discontinuity of L(t), this means we cannot have

lim
t↑tfb1

L(t) = lim
t↓tfb1

L(t) = −∞, because in that case, L(t) cannot take all values in

[0,∞) for t ∈ [0, t
fb
1 )∪(t

fb
1 , 1], in violation of Claim A.4.8.1. Hence either lim

t↑tfb1
L(t) =

∞ or lim
t↓tfb1

L(t) = ∞ or both.

Suppose lim
t↑tfb1

L(t) = lim
t↓tfb1

L(t) = ∞. Hence for a large enough L0 > 0, there exist

t < t
fb
1 and t′ > t

fb
1 such that L(t) = L(t′) = L0, contradicting Claim A.4.8.1.

Therefore, either lim
t↑tfb1

L(t) = ∞ or lim
t↓tfb1

L(t) = ∞ but not both. Since, N−(t
fb
1 ) ̸=

0 by assumption, either lim
t↑tfb1

L(t) = ∞ and lim
t↓tfb1

L(t) = −∞ or lim
t↑tfb1

L(t) = −∞ and

lim
t↓tfb1

L(t) = ∞. Strict monotonicity of L(t) on opposite sides of tfb1 are ensured by

Claim A.4.8.1, due to the fact that L takes all non-negative values exactly once.

Claim A.4.8.3. Case II from Claim A.4.8.1 arises if and only if N−(t
fb
1 ) > 0.

Proof. Obvious given Claim A.4.8.2.

In the rest of the proof, we show that Case II from Claim A.4.8.2 must arise
under our assumptions.

Claim A.4.8.4. If max
t∈[0,1]

min{m1(t),m0(t)} ≥ 0, Case II from Claim A.4.8.2 must

arise.

Proof. First consider the case V0 ≤ 0.
If max

t∈[0,1]
min{m1(t),m0(t)} ≥ 0 – and therefore M0(t) > 0 – for all t ≤ t

fb
1 .

Therefore the numerator of L(t) is strictly positive at t = t
fb
1 . Hence, by continuity,
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there exists ϵ > 0 such that it is strictly positive for all t ∈ (t
fb
1 , t

fb
1 + ϵ). m1(t) < 0

for t < t
fb
1 and m1(t) > 0 for t > t

fb
1 . Hence lim

t↑tfb1
L(t) = −∞ and lim

t↓tfb1
L(t) = ∞,

i.e. Case II from Claim A.4.8.2 must arise.
Next, suppose V0 > 0.
If max

t∈[0,1]
min{m1(t),m0(t)} ≥ 0, m1(t

fb
0 ) > 0 and t

fb
1 < t

fb
0 . As argued for Claim

A.4.8.1, in this case L(t
fb
0 ) > 0. By the fact that t

fb
1 < t

fb
0 , this violates the last

part of Case I of Claim A.4.8.2. Hence case II must arise.

Completing the proof. When Case II arises, t∗−(γ) is increasing in γ, and therefore
in πA, for a fixed πP . As we showed earlier, t(πA) is decreasing in πA. Hence
the arguments in the “completing the proof” part of the proof of Theorem 2.A go
through and the expression for π(πP ) is derived accordingly. Similar arguments as
above show that the “upper” signal threshold, analogous to tP+ and tF+ – let us call it
t∗+(γ) – is also increasing in γ. This gives us the existence and expression for π(πP ).

Proof of Prop 8. We have to show that under the optimal mechanism for πP = π,
the principal’s value in each state is at least as much as the maximum value she can
obtain if she reveals the state. In the latter case, there is no screening, so her
maximum value is = max{0, V0}. Hence we have to show the following:

min

{∫
m1(t)â1(t)dt,

∫
m0(t)â0(t)dt

}
≥ max{0, V0} ∀ πP ∈ [0, 1]. (A.4)

where (â1, â0) is the optimal mechanism with πP = π.
We consider two cases - when the optimal mechanism is constant, when it has a

single threshold.
Case I: There exists an optimal mechanism which is constant. In this case the

maximized value is equal to max{0, V0}, which is equal to the principal’s maximum
value if she discloses the state. Hence she cannot do strictly better by disclosing the
state, in any of the states. Hence such a mechanism is a core mechanism.

For the rest of the cases we assume there does not exist a constant mechanism
which is optimal, i.e. the principal’s optimal mechanism for πP = π gives her strictly

151



greater value than any constant mechanism.
Case II: The optimal mechanism has a single threshold.
We show this for the case when the optimal test is of type F−. The proofs for

the other three cases are similar. Consider a F− test with a belief threshold p. We
must have p ≤ 1

2 . Letting (ã1, ã0) denote the corresponding mechanism in terms of
beliefs, and letting q = ã1 − ã0, we have:

q(p) =

(
−

p

1− p

)
1(p ≤ p) + 1(p > p)

=

(
p

1− p

)
× (−1(p ≤ p) + 1(p ≥ p))︸ ︷︷ ︸

q1

+

(
1−

p

1− p

)
× 1︸︷︷︸

q2

If F− is optimal we must have V0 ≤ 0. Hence the optimal q solves either (A.4) or
(A.10). In both cases the objective function is quasiconvex in q. Hence the optimized
value is dominated by the maximum of its values evaluated at q1 and q2, where q1

and q2 are as shown above. As we see above, q is a convex combination of q1 and
q2. Clearly, q2 corresponds to a feasible, IC mechanism which is constant. Hence
by our assumption, the optimized objective must be strictly greater than under that
mechanism. Hence it must be weakly dominated by the objective under the (non-IC)
mechanism corresponding to q1 - the bang-bang mechanism with a threshold at p.
Letting t ∈ [0, 1] be such that µ(t; π) = p, that is equivalent to:

π

1∫
t

m1(t)dt+ (1− π)

(
p

1− p

) t∫
0

m0(t)dt ≤ π

1∫
t

m1(t)dt+ (1− π)

t∫
0

m0(t)dt

⇐⇒
t∫

0

m0(t)dt ≥ 0.

This shows there is no profitable deviation for the principal, to disclosing the
state, when the state is 0.
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Now we show that such a deviation does not exist even when the state is 1,
under optimal mechanism of type F−. If t is such that m1(t) ≥ 0, by Claim A.4.5.1,

m1(t) ≥ 0 for all t > t. Therefore
1∫
t
m1(t)dt ≥ 0 and we are done. Therefore for the

rest of the proof we assume m1(t) < 0.
Let π and π be as defined in Theorem 2.A. We know when V0 ≤ 0, the optimal test

is of type F− for π ≤ π. Now consider the same problem, but for π ≥ π. By theorem
2.A, in this case the optimal test is of type F+, with a corresponding signal threshold

of, say t. By identical reasoning as above,
1∫
t

m1(t)dt ≥ 0. By Claim A.4.4.5, t < t.

By Claim A.4.5.1, for all t′ > t such that m1(t
′) ≤ 0,

1∫
t′
m1(t)dt ≥

1∫
t

m1(t)dt ≥ 0.

Hence
1∫
t
m1(t)dt ≥ 0.
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APPENDIX B
APPENDICES FOR CHAPTER 3

B.1 Preliminaries

K = # of quality levels. f = max
e,(r,l)∈E

fe(r, l). v := max
e

|ve|. λ denotes the

Lebesgue measure.

B.2 Proof of Theorem 6

Fix m. We first prove Theorem 6 under the assumption that v
(m
2 ,

m
2

)
̸= 0. We

later relax it.

B.2.1 Preliminary observations

Claim B.2.1.1. The following programs have the same value:

• Original program

• Only one a(r, l) and half the no. of constraints.

Going fwd just using a(r, l) for state R:
By Claim B.2.1.1, the principal’s payoff is:

∫
(r,l)∈E

v(r, l)a(r, l)

Define:

(r1, r2) := max arg max
(r̃1,r̃2)

∫
(r,l)∈E

v(r, l)a(r, l)

s.t. a(r, l) = 1(r ≥ r̃1)(1(r > l) + 0.5× 1(r = l)) + 1(r ≥ r̃2) ∀ (r, l) ∈ E. (B.1)
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Note that by (B.1), it is without loss to set r1 ≤ r2 – if not, we must have {r ≥
max{r̃1, l}} ⊊ {r ≥ r̃2}, hence a∗(r, l) = 1(r ≥ max{r1, l})+ 1(r ≥ r̃2) = 1(r ≥ r2).

Define v1, v2 : R → R as v1 : r 7→
∫

l≤r,
(r,l)∈E

v(r, l)dl, v2 : r 7→
∫

l≥r,
(r,l)∈E

v(r, l)dl. Hence

the principal’s value from the mechanism (r̃1, r̃2) is given by:

V (r̃1, r̃2) :=

∫
r≥r̃1

v1(r)dr +

∫
r≥r̃2

v2(r)dr

First order conditions which any interior (r1, r2) must satisfy are ∂v
∂r̃i

= 0 =⇒
−vi(ri) = 0, i ∈ {1, 2}. Note that v1(r) < 0 for all r is not possible unless rR(l) (define
before) never crosses the {r+l = m} line, in which case first best is achievable, which
is to hire no-one. Hence we assume away this trivial case.

Hence we must have:

r1 = 0 if v1(r) > 0 ∀ r, v1(r1) = 0 otherwise, (FOC-1)

r2 = max
{
r1,

m

2

}
if v2(r) < 0 ∀ r, r2 = 0 if v2(r) > 0 ∀ r, v2(r2) = 0 otherwise.

(FOC-2)

Claim B.2.1.2. r2 ∈
(
0, m2

)
=⇒ r1 < r2.

Proof. As we showed above, it is without loss to set r1 ≤ r2. Suppose, BWOC,
r1 = r2 = r0 ∈

(
0, m2

)
.

Summing the above FOC’s, we must have,
∫

(r0,l)∈E
v(r0, l)dl = 0. Combining this

with monotonicity of rR(l), there exists l0 ∈ (0,m − r0) such that v(r0, l) ⋛ 0 ⇐⇒
l ⋛ l0. Now, if l0 ≥ r0 =⇒ v1(r0) > 0 and if l0 ≤ r0 =⇒ v2(r0) < 0. Hence
FOC’s cannot be satisifed, which is a contradiction.

Claim B.2.1.3. If v
(m
2 ,

m
2

)
> 0, r2 < m

2 .

Proof. If v
(m
2 ,

m
2

)
> 0, by continuity of v, there exists δ > 0 such that v(r, l) > 0 for

all (r, l) ∈ Bδ

(m
2 ,

m
2

)
, which denotes the open ball of radius δ, centered at

(m
2 ,

m
2

)
.

Setting r2 = m
2 − δ makes the principal better off than any r2 ≥ m

2 .
155



Claim B.2.1.4. v(r, l) ⋛ v(l,r)
γ(r,l)

⇐⇒ r ⋛ l.

Proof.

Define E10 := {(r, l) ∈ E : r ≥ max{r1, l}, l ≤ r2} and Er
10 = {r : (r, l) ∈

E10 for some l}.
Define v10, V

10
: Er

10 → R as:

v10 : r 7→
∫

(r,l)∈E10

v(r, l)dl,

V
10

: r 7→
∫

(r′,l′)∈E10,
r′≤r

v(r′, l′) =
∫

r′≤r

v10(r)dr.

Claim B.2.1.5. If {r : v10(r) < 0} ≠ ∅, inf
v10(r)<0

V
10
(r) > 0.

Proof. If there exists v(r) < 0, define x := inf
v(r)<0

V (r). Note that by optimality of r1

ther must exist r′1 > r1 such that v(r) ≥ 0 for all r ∈ [r1, r
′
1]. Clearly, x = V (r0) for

some r0 such that v(r) crosses 0 from below at r0. Hence, if x = 0, we can redefine
the optimal mechanism by bringing r1 up to r0, and have the same value. We have
assumed r1 is the highest possible r1 for which this mechanism is optimal, so this is
not possible. Hence x > 0. (Show this properly later.)
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B.2.2 Discretization

Let B denote the Borel sigma algebra on E. Let µe,ω : B → R denote the
probquality measure induced on E by the density fe,ω. Clearly, µe,ω : B 7→∫
(r,l)∈B

fe,ω(r, l)dλ(r, l) for all B ∈ B.

Fix n ∈ N – gridsize. Sn =
{
m
n ,

2m
n · · · , mn

n

}
.

En =
{
(r, l) ∈ S2

n, r + l ≤ m
}
. Clearly, E = Cl

∞⋃
n=1

En.

For each quality level e and state ω, define:

fne,ω(r, l) :=
fe,ω (r, l)

max
e,ω

∑
(r,l)∈En

fe,ω (r, l)
∀ (r, l) ∈ En, 0 otherwise.

Let the corresponding measure µne,ω : B → R be defined by µne,ω : B 7→
∑

(r,l)∈B∩En

fne,ω(r, l), B ∈

B. Note that µne,ω is not necessarily a probquality measure.

Claim B.2.2.1. µne,ω =⇒ µe,ω.

Proof. Define:

fe,ω(r, l) :=
fe,ω (r, l)∑

(r,l)∈En

fe,ω (r, l)
∀ (r, l) ∈ En, 0 otherwise.

Let the corresponding measure µ̃ne,ω : B → R be defined by µne,ω : B 7→
∑

(r,l)∈B∩En

fe,ω(r, l), B ∈

B. Note that µ̃ne,ω is a probquality measure. Hence we can define the corresponding
CDF F̃n

e,ω : E → [0, 1] as F̃n
e,ω : (r, l) 7→

∑
(r′,l′)∈En,
(r′,l′)≤(r,l)

fe,ω(r
′, l′).

We will first show that µ̃ne,ω =⇒ µe,ω. We do this by showing F̃n
e,ω → Fe,ω,

pointwise.
Fix (r, l) ∈ E. We will show that F̃n

e,ω(r, l) → Fe,ω(r, l).
Define r0 = l0 = 0. Inductively define ri = ri−1 +

1
n and li = li−1 +

1
n for all

i ∈ {1, · · · , n}.
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There exist some i∗n, j
∗
n ∈ {0, · · · , n − 1} such that r ∈ [ri∗n , ri∗n+1] and l ∈

[lj∗n , lj∗n+1].

F̃n
e,ω(r, l) =

∑
(r′,l′)∈En,
(r′,l′)≤(r,l)

fe,ω(r
′, l′)

∑
(r,l)∈En

fe,ω (r, l)

=

∑
(1,1)≤(i,j)≤(i∗n,j

∗
n)

fe,ω(ri, lj)∑
(1,1)≤(i,j)≤(n,n),

ri+lj≤m

fe,ω(ri, lj)

=

∑
(1,1)≤(i,j)≤(i∗n,j

∗
n)

fe,ω(ri, lj)× m2

n2∑
(1,1)≤(i,j)≤(n,n),

ri+lj≤m

fe,ω(ri, lj)× m2

n2

=

∑
(1,1)≤(i,j)≤(i∗n,j

∗
n)

fe,ω(ri, lj)(ri − ri−1)(lj − lj−1)∑
(1,1)≤(i,j)≤(n,n),

ri+lj≤m

fe,ω(ri, lj)(ri − ri−1)(lj − lj−1)

Hence,

lim
n→∞

F̃n
e,ω(r, l) =

lim
n→∞

∑
(1,1)≤(i,j)≤(i∗n,j

∗
n)

fe,ω(ri, lj)(ri − ri−1)(lj − lj−1)

lim
n→∞

∑
(1,1)≤(i,j)≤(n,n),

ri+lj≤m

fe,ω(ri, lj)(ri − ri−1)(lj − lj−1)

By definition of the Riemann integral,
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lim
n→∞

∑
(1,1)≤(i,j)≤(i∗n,j

∗
n)

fe,ω(ri, lj)(ri − ri−1)(lj − lj−1) =

r∫
r′=0

l∫
l′=0

fe,ω(r
′, l′)dr′dl′,

lim
n→∞

∑
(1,1)≤(i,j)≤(n,n),

ri+lj≤m

fe,ω(ri, lj)(ri − ri−1)(lj − lj−1) =

m∫
r=0

m−r∫
l=0

fe,ω(r, l)drdl = 1.

Hence, lim
n→∞

F̃n
e,ω(r, l) =

r∫
r′=0

l∫
l′=0

fe,ω(r
′, l′)dr′dl′ = Fe,ω(r, l). This shows, µ̃ne,ω =⇒

µe,ω.

Let xne,ω =

∑
(r,l)∈En

fe,ω(r,l)

max
e,ω

∑
(r,l)∈En

fe,ω(r,l)
. Hence, µe,ω = µ̃ne,ω × xne,ω.

Below, we will show that xne,ω → 1 for all e, ω.

xne,ω =

∑
(r,l)∈En

fe,ω (r, l)

max
e,ω

∑
(r,l)∈En

fe,ω (r, l)
=

∑
(r,l)∈En

fe,ω (r, l)× m2

n2

max
e,ω

∑
(r,l)∈En

fe,ω (r, l)× m2

n2

Similarly as in the proof of lim
n→∞

F̃n
e,ω(r, l) = Fe,ω(r, l) above, lim

n→∞
∑

(r,l)∈En

fe,ω (r, l)×

m2

n2
= 1 for all e, ω. Hence, lim

n→∞
max
e,ω

∑
(r,l)∈En

fe,ω (r, l)× m2

n2
= 1. Hence,

lim
n→∞

xne,ω =

lim
n→∞

∑
(r,l)∈En

fe,ω (r, l)× m2

n2

lim
n→∞

max
e,ω

∑
(r,l)∈En

fe,ω (r, l)× m2

n2

= 1

Fix B ∈ B such that µe,ω(∂B) = 0. µ̃ne,ω(B) → µe,ω(B). ∴ µne,ω(B) → µe,ω(B)

because µne,ω(B) = xne,ωµ̃
n
e,ω(B).
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Define vnω : E → R, vnω(r, l) :=
∑
e
vef

n
e,ω(r, l)νe, vω : E → R and vω(r, l) :=∑

e
vefe,ω(r, l)νe, ω ∈ {R,L}.

The principal’s problem:

max
(aR,aL)∈IC

∫
(r,l)∈E

(
π

1− π

)
vR(r, l)aR(r, l) +

∫
(r,l)∈E

vL(r, l)aL(r, l),

where IC =
{
(aR, aL) ∈ [0, 1]2E ,

aR(r, l)γ(r, l) + aL(r, l) ≥ aR(r
′, l′)γ(r, l) + aL(r

′, l′),

∀ (r, l), (r′, l′) ∈ E s.t. (r′, l′) ≤ (r, l)
}

(P )

The discretized problem:

max
(anR,a

n
L)∈ICn

∑
(r,l)∈En

(
π

1− π

)
vnR(r, l)a

n
R(r, l) +

∑
(r,l)∈En

vnL(r, l)a
n
L(r, l),

where ICn =
{
(anR, a

n
L) ∈ [0, 1]2E ,

anR(r, l)γ(r, l) + anL(r, l) ≥ anR(r
′, l′)γ(r, l) + anL(r

′, l′),

∀ (r, l), (r′, l′) ∈ En s.t. (r′, l′) ≤ (r, l)
}

(Pn)

Clearly,

IC ⊆
∞⋂
n=1

ICn ∀ n. (B.1)

Let the solution sets of P and Pn be denoted by P ∗ and P ∗
n respectively. That

is, P ∗ ⊆ IC, P ∗
n ⊆ ICn, and:
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P ∗ = max
(aR,aL)∈IC

∫
(r,l)∈E

(
π

1− π

)
vR(r, l)aR(r, l) +

∫
(r,l)∈E

vL(r, l)aL(r, l),

P ∗
n = argmax

(anR,a
n
L)∈ICn

∑
(r,l)∈En

(
π

1− π

)
vnR(r, l)a

n
R(r, l) +

∑
(r,l)∈En

vnL(r, l)a
n
L(r, l).

Proposition 15 (Analog of the Maximum Theorem). For each n ∈ N, if (a∗nR , a∗nL ) ∈
P ∗
n , ∃ (ã∗nR , ã∗nL ) ∈ P ∗

n∩IC such that (ã∗nR , ã∗nL ) = (a∗nR , a∗nL ) on En. If lim
n→∞

(ã∗nR , ã∗nL )

exists, lim
n→∞

(ã∗nR , ã∗nL ) ∈ P ∗ and V∗
n → V∗.

In order to prove Proposition 15, we first prove two preliminary lemmas.

Lemma 7. For all measurable a : E → [0, 1],∫
E

adµne,ω →
∫
E

adµe,ω

Proof. Fix δ > 0. By Lusin’s theorem, there exists E′ ∈ B, λ(E \E′) < δ
2 , such that

a is continuous on E′.
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Define v : E → R, v(r, l) :=
∑
e
vefe(r, l)νe. and vn : E → R, vn(r, l) :=∑

e
vef

n
e (r, l)νe.

By Claim B.2.1.1, in the symmetric case, the principal’s problem:

max
a∈ICs

∫
(r,l)∈E

v(r, l)a(r, l),

where ICs =
{
a ∈ [0, 1]E ,

a(r, l)γ(r, l) + a(l, r) ≥ a(r′, l′)γ(r, l) + a(l′, r′),

∀ (r, l), (r′, l′) ∈ E, s.t. r ≥ l, (r′, l′) ≤ (r, l)
}

(P -symm)

The discretized problem:

max
an∈ICn

s

∑
(r,l)∈En

vn(r, l)an(r, l),

where ICn
s =

{
an ∈ [0, 1]E ,

an(r, l)γ(r, l) + an(l, r) ≥ an(r′, l′)γ(r, l) + an(l′, r′),

∀ (r, l), (r′, l′) ∈ En, s.t. r ≥ l, (r′, l′) ≤ (r, l)
}

(Pn-symm)

Again, clearly,

IC ⊆
∞⋂
n=1

ICn
s (B.2)

Define V∗
n := max

an∈ICn
s

∑
(r,l)∈En

vn(r, l)an(r, l) and V∗ := max
a∈ICs

∫
(r,l)∈E

v(r, l)a(r, l).
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Define:

Vn(r̃1, r̃2) =
∫

(r,l)∈E,
r≥r̃2

vn +

∫
(r,l)∈E,
r≥r̃1,
r>l

vn + 0.5

∫
(r,l)∈E,
r≥r̃1,
r=l

vn,

V(r̃1, r̃2) =
∫

(r,l)∈E,
r≥r̃2

v +

∫
(r,l)∈E,
r≥r̃1,
r>l

v + 0.5

∫
(r,l)∈E,
r≥r̃1,
r=l

v

Let V̂∗
n := max

(r̃1,r̃2)
Vn(r̃1, r̃2) and V̂∗ := max

(r̃1,r̃2)
V(r̃1, r̃2).

Claim B.2.2.2. Every convergent sequence (rn1 , r
n
2 ), such that (rn1 , r

n
2 ) ∈ arg max

(r̃1,r̃2)
Vn(r̃1, r̃2),

converges in arg max
(r̃1,r̃2)

V(r̃1, r̃2). Moreover,

V̂∗
n → V̂∗

Proof. Define the finite positive measures:

gne (r, l) =

 fne (r, l) if r ̸= l,

0.5fne (r, l) otherwise.
ge(r, l) =

 fe(r, l) if r ̸= l,

0.5fe(r, l) otherwise.

Clearly, gne =⇒ ge for all e.

Define G
n
1,e : [0,m] → R as G

n
1,e : r 7→

∑
r′≥max{r,l′}

gne (r
′, l′), and analogously

F 1,e : [0,m] → R as F 1,e : r 7→
∫

r′≥max{r,l′}
ge(r

′, l′), i.e. each computes the

corresponding measure of the set {(r′, l′) : r′ ≥ max{r, l′}}. Similarly, define
G
n
2,e : [0,m] → R as G

n
2,e : r 7→

∑
r≤r′≤l′

gne (r
′, l′), and analogously F 2,e : [0,m] → R

as F 2,e : r 7→
∫

r≥r′≥l′
ge(r

′, l′), i.e. each computes the corresponding measure of the

set {(r′, l′) : r ≤ r′ ≤ l′}.
By weak convergence of gne to ge, G

n
1,e → F 1,e and G

n
2,e → F 2,e pointwise. Each of

G
n
1,e and G

n
2,e is monotone (decreasing) for each n. F 1,e and F 2,e are also monotone
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(decreasing) and continuous. Pointwise convergence of monotonic functions to a
continuous function is uniform, hence G

n
1,e converges uniformly to F 1,e and G

n
2,e

converges uniformly to F 2,e, which we write as G
n
1,e ⇒ F 1,e and G

n
2,e ⇒ F 2,e.

Define ṽ1,n : [0,m] → R, ṽ1,n(r) :=
∑
e
veG

n
1,e(r)νe and ṽ1 : [0,m] → R, ṽ1(r) :=∑

e
veF 1,e(r)νe.

Take rn1 ∈ argmax ṽ1,n(r) such that the sequence {rn1 } converges (Such sequences
exist by compactness etc.). We will show that rn1 → r1 for some r1 ∈ argmax ṽ1(r).
Let max

r
ṽ1(r) = ṽ∗1.

By G
n
1,e ⇒ F 1,e, ṽ1,n ⇒ ṽ1.

Take δ > 0. For large enough n, |ṽ1,n(r)− ṽ1(r)| < δ
2 for all r. Hence, ṽ1,n(r) <

ṽ∗1−
δ
2 for all r ∈ {r : ṽ1(r) ≤ ṽ∗1−δ} and ṽ1,n(r1) > ṽ∗1−

δ
2 for all r1 ∈ argmax ṽ1(r).

ṽ1,n(r
n
1 ) ≥ ṽ1,n(r1) > ṽ∗1 − δ

2 , hence rn1 /∈ {r : ṽ1(r) ≤ ṽ∗ − δ}. Hence, lim
n→∞

rn1 ∈⋂
δ↓0

{r : ṽ1(r) > ṽ∗1 − δ} = argmax ṽ1(r).

Identically as above, we can define ṽ2,n : [0,m] → R, ṽ2,n(r) :=
∑
e
veG

n
2,e(r)νe

and ṽ2 : [0,m] → R, ṽ2(r) :=
∑
e
veF 2,e(r)νe and, using ṽ2,n ⇒ ṽ2, show that rn2 → r2

for some r2 ∈ argmax ṽ2(r).

Proof of the “moreover” part. Take a subsequence of the sequence {ṽ1(rn1 )} which
converges. Let us call the corresponding subsequence of {rn1 }, {r

nk
1 }. Now, by the

previous part, every convergent subsequence of {rnk1 } converges in argmax
r

ṽ1(r).

Hence the corresponding subsequence of {ṽ1(r
nk
1 )} must converge to max

r
ṽ1(r), by

continuity of ṽ1. By assumption, {ṽ1(r
nk
1 )} itself is convergent, so it must converge

to the same limit as any of its subsequences. Therefore {ṽ1(r
nk
1 )} must converge to

max
r

ṽ1(r).
Fix r1 ∈ argmax

r
ṽ1(r). We have shown above that every convergent subsequence

of {ṽ1(rn1 )} converges to max
r

ṽ1(r). Hence ṽ1(r
n
1 ) → ṽ1(r1).

Fix ϵ > 0. By ṽ1,n ⇒ ṽ1, there exists N ∈ N such that for all n > N , |ṽ1,n(r)−
ṽ1(r)| < ϵ

2 for all r. Therefore |ṽ1,n(rn1 ) − ṽ1(r
n
1 )| <

ϵ
2 for all n > N . By the fact

that ṽ1(r
n
1 ) → ṽ1(r1), for large enough n, |ṽ1(r1)− ṽ1(r

n
1 )| <

ϵ
2 , because we already

showed in the previous part that rn1 → r1. Therefore, for large enough n,
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|ṽ1(r1)− ṽ1,n(r
n
1 )|

= |ṽ1(r1)− ṽ1(r
n
1 ) + ṽ1(r

n
1 )− ṽ1,n(r

n
1 )|

≤ |ṽ1(r1)− ṽ1(r
n
1 )|+ |ṽ1(rn1 )− ṽ1,n(r

n
1 )|

≤ ϵ

2
+

ϵ

2
= ϵ.

The above shows that ṽ1,n(rn1 ) → ṽ1(r1). Similarly we can show that ṽ2,n(rn2 ) →
ṽ2(r2), after which the “moreover” part is immediate.

(Before the following claim we have shown V∗
n = V̂∗

n for all n.)

Claim B.2.2.3. V∗
n → V∗.

Proof. Suppose not. Clearly, V̂∗ ≤ V∗. Claim (1) (V∗
n = V̂∗

n for all n) combined with
Claim B.2.2.2 shows that, lim

n→∞
V∗
n = lim

n→∞
V̂∗
n = V̂∗. Hence, V∗

n ↛ V∗ implies that,
for some δ > 0:

V̂∗ < V∗ − δ (B.3)

Fix a∗ ∈ arg max
a∈ICs

∫
(r,l)∈E

v(r, l)a(r, l). By Lusin’s theorem, there exists E′ ⊆ E

such that a∗ is continuous on E′ and λ(E \ E′) < δ
8vf

.∫
(r,l)∈E\E′

v(r, l)a∗(r, l)dλ(r, l) < δ
8 .
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Proof. ∫
(r,l)∈E\E′

v(r, l)a∗(r, l)dλ(r, l)

=

∫
(r,l)∈E\E′

a∗(r, l)

(∑
e

ve(r, l)fe(r, l)νe

)
dλ(r, l)

≤
∫

(r,l)∈E\E′

a∗(r, l)

(∑
e

|ve(r, l)|fe(r, l)νe

)
dλ(r, l)

≤
∫

(r,l)∈E\E′

(∑
e

|ve(r, l)|fe(r, l)νe

)
dλ(r, l)

≤
∫

(r,l)∈E\E′

(∑
e

vfe(r, l)νe

)
dλ(r, l)

≤ v

∫
(r,l)∈E\E′

(∑
e

fe(r, l)νe

)
dλ(r, l)

≤ vf

∫
(r,l)∈E\E′

(∑
e

νe

)
dλ(r, l)

= vf

∫
(r,l)∈E\E′

dλ(r, l) = vfλ(E \ E′) <
δ

8
.

∫
(r,l)∈E′

v(r, l)a∗(r, l)dλ(r, l) > V̂∗ + δ
2 .
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Proof.∫
(r,l)∈E′

v(r, l)a∗(r, l)dλ(r, l) =
∫

(r,l)∈E

v(r, l)a∗(r, l)dλ(r, l)−
∫

(r,l)∈E\E′

v(r, l)a∗(r, l)dλ(r, l)

> V∗ − δ

8
(By Claim B.2.2)

> V̂∗ + δ − δ

8
(By (B.3))

= V̂∗ +
7δ

8
.

For large enough n,

∑
(r,l)∈E′

a∗(r, l)vn(r, l) > V̂∗ +
δ

4

Proof. a∗ is continuous on E′. Therefore, by the fact that vn =⇒ v,
∑
E′

a∗vn →∫
E′

a∗v. Hence, for large enough n, |
∑
E′

a∗vn −
∫
E′

a∗v| < δ
4 . Hence,

∑
E′

a∗vn >

∫
E′

a∗v − δ

4

> V̂∗ + δ − δ

4
(By (B.3))

= V̂∗ +
3δ

4
.

Let the maximized value of V be denoted by V∗.
Fix δ > 0. Pick (r′1, r

′
2) ∈ V−1[V∗ − δ,V∗]. Vn(r′1, r

′
2) → V(r′1, r

′
2), by vn =⇒ v.

Hence,
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lim
n→∞

Vn(r′1, r
′
2) ≤ V∗ − δ ∀ (r′1, r

′
2) ∈ V−1[V∗ − δ,V∗],

Vn(r′1, r
′
2) → V(r′1, r

′
2), by vn =⇒ v, i.e. for large enough n, Vn(r′1, r

′
2) <

V(r′1, r
′
2) +

δ
10 ≤ V∗ − δ + δ

10 = V∗ − 9δ
10 . But we know that for large enough n,

again, by vn =⇒ v, Vn(r1, r2) > V(r1, r2)− δ
2 . Therefore Vn(rn1 , r

n
2 ) ≥ Vn(r1, r2) >

V(r1, r2)− δ
2 .
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Claim B.2.2.4. If there exist {λ̂(r, l), λ⃗(r, l)}(r,l)∈{r≥l,l≤r2}∪{r∈[r2,l]} ≥ 0 such that
the following system of equastions and inequalities are satisfied, then Claim (2) holds.

For (r, l) ∈ {r ≥ max{r1, l}, l ≤ min{r, n−r, r2}},

 γ(r + 1, l)λ̂(r + 1, l) + γ(r, l + 1)λ⃗(r, l + 1)− γ(r, l)λ̂(r, l)− γ(r, l)λ⃗(r, l) ≤ v(r, l)

λ̂(r + 1, l) + λ⃗(r, l + 1)− λ̂(r, l)− λ⃗(r, l) ≥ v(l, r)

(Region 10 conditions)

For (r, l) ∈ {l ≤ r ≤ r1, l ≤ min{r, n−r, r2}},

 γ(r + 1, l)λ̂(r + 1, l) + γ(r, l + 1)λ⃗(r, l + 1)− γ(r, l)λ̂(r, l)− γ(r, l)λ⃗(r, l) ≥ v(r, l)

λ̂(r + 1, l) + λ⃗(r, l + 1)− λ̂(r, l)− λ⃗(r, l) ≥ v(l, r)

(Region 00 conditions)

For (r, l) ∈ {r2 ≤ r ≤ l}},

 γ(r + 1, l)λ̂(r + 1, l) + γ(r, l + 1)λ⃗(r, l + 1)− γ(r, l)λ̂(r, l)− γ(r, l)λ⃗(r, l) ≤ v(r, l)

λ̂(r + 1, l) + λ⃗(r, l + 1)− λ̂(r, l)− λ⃗(r, l) ≤ v(l, r)

(Region 11 conditions)
(Need to include the diagonal constraints also in this last one, 11.)
If (r, l) /∈ En, λ̂(r, l) = λ⃗(r, l) = 0. (Might need to add stuff.)

Define z : E → R as z : (r, l) 7→ v(r, l)− v(l,r)
γ(r,l)

.

Define V :=
∫

(r,l)∈E
v(r, l)+. Note that,

V =

∫
(r,l)∈E

v(r, l)+ =

∫
(r,l)∈E

(fG(r, l)− αfB(r, l))
+

≤
∫

(r,l)∈E

fG(r, l) ≤ 1.

Define ϵn = V × sup
r,l∈En,
r≥l

(
γ((r+1)/n,l/n)

γ(r/n,l/n)
− 1
)
.

Claim B.2.2.5. (This is a claim about En not E. Correct notations accordingly.)
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For any t ∈
[
0, V − v(l, r)

)
:

z(r, l) ≥ ϵn =⇒ v(r, l) + γ(r, l)t

γ(r + 1, l)
≥ v(l, r) + t

Proof.

z(r, l) ≥ ϵn

=⇒ z(r, l) ≥ V

(
γ((r + 1)/n, l/n)

γ(r/n, l/n)
− 1

)
≥ (v(l, r) + t)

(
γ((r + 1)/n, l/n)

γ(r/n, l/n)
− 1

)
Some algebra gives the required inequality.

Let (rn1 , r
n
2 ) be the r1 and r2 for the problem defined by distributions {fne }e (i.e.

optimal within that class.). Analogously as above, define vn(r) :=
∑

(r,l)∈En
10

v(r, l)

and V
n
(r) :=

∑
(r′,l′)∈En

10,
r′≤r

v(r′, l′) =
∑
r′≤r

vn(r). Clearly, there exists N such that

min
vn(r)<0

V
n
(r) > x

2 for all n ≥ N . (Need to show (rn1 , r
n
2 ) → (r1, r2).)

Take δx > 0 such that
∫

r−l∈[0,δ]
v(r, l)+ < x

2 . We have assumed v
(m
2 ,

m
2

)
̸= 0. If

v
(m
2 ,

m
2

)
< 0 (respectively, > 0), by continuity of v, there exists δ′ > 0 such that

v(r, l) < 0 (respectively, > 0) for all (r, l) ∈ Bδ

(m
2 ,

m
2

)
, which denotes the open ball

of radius δ′, centered at
(m
2 ,

m
2

)
.

If r2 ∈
(
0, m2

)
, by (FOC-2), ∃ l > r2 such that v(r2, l) > 0. By monotonicity of

rR(·), v(r2, r2) > 0. By continuity of v, for small enough δ′′ > 0, v(r, l) > 0 for all
(r, l) ∈ Bδ′′ (r2, r2).

Define:

δ =

 min{δx, δ′/2, δ′′/2} if r2 ∈
(
0, m2

)
,

min{δx, δ′/2}, otherwise.
(δ)
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Let min
(r,l)∈E10,
r−l≥δ

z(r, l) = z > 0, by Claim B.2.1.4, which shows z(r, l) ̸= 0 for r ̸= l.

Claim B.2.2.6. For δ defined by (δ) and large enough n,
∑

(r,l)∈En,
r−l∈[0,δ]

v(r, l) < x,

v(m2n ,
m
2n − δ) has the same sign as v(m2 ,

m
2 ) and ϵn < min

(r,l)∈En,r−l≥δ
z(r, l). (Again,

these are statements about En not E, so need to correct notation.)

Proof. First we show that ϵn → 0. Note that ϵn ≤ sup
r,l∈En,
r≥l

(γ((r + 1)/n, l/n)− γ(r/n, l/n)) ,∵

γ((r + 1)/n, l/n) > 1,∵ r ≥ l. By continuity of fe on the compact set E and the
fact that mint∈E maxe fe(t) > 0, γ is a uniformly continuous function on E. Hence
sup
t,t′∈E

|γ(t)− γ(t′)| → 0 as ∥t− t′∥ → 0. As n → ∞, ∥
(
r+1
n , l

n

)
−
(
r
n ,

l
n

)
∥ = 1

n → 0.

Hence sup
r,l∈En,
r≥l

(γ((r + 1)/n, l/n)− γ(r/n, l/n)) → 0. Therefore ϵn → 0.

Clearly, for large enough n,
∑

(r,l)∈En,
r−l∈[0,δ]

v(r, l) < x and v(m2n ,
m
2n − δ) has the same

sign as v(m2 ,
m
2 ). (These notations are not exactly correct because we defined r, l as

natural numbers... technically these should be r/n, l/n).
Note that En ⊂ E for all n, so min

(r,l)∈En,r−l≥δ
z(r, l) ≥ z.

By the previous three statements we can assume, without loss, that n is large
enough so that

∑
(r,l)∈En,
r−l∈[0,δ]

v(r, l) < x and ϵn < min
(r,l)∈En,r−l≥δ

z(r, l). (We can modify

the defn of ϵn later if needed.)

B.2.3 Construction of multipliers for (Region 10 conditions)

Define l : Sn → Sn, l(r) := min{r, n− r, r2}.
Let En

10 = {r ≥ max{r1, l}, l ≤ min{r, n − r, r2}. (∩En but where and how to
put that? In clm stmt or here?)

Using (Region 10 conditions), the following must be satisfied for all (r, l) ∈ En
10:

For (r, l) ∈ En
10, l ∈ {1, · · · , l(r)− 1}:
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γ(r + 1, l)λ̂(r + 1, l) + γ(r, l + 1)λ⃗(r, l + 1)− γ(r, l)λ̂(r, l)− γ(r, l)λ⃗(r, l) ≤ v(r, l)

λ̂(r + 1, l) + λ⃗(r, l + 1)− λ̂(r, l)− λ⃗(r, l) ≥ v(l, r)

(B.1a)
For (r, 0) ∈ En

10, r ∈ {r1 + 1, · · · , n}:

γ(r + 1, 0)λ̂(r + 1, 0) + γ(r, 1)λ⃗(r, 1)− γ(r, 0)λ̂(r, 0) ≤ v(r, 0)

λ̂(r, 0) + λ⃗(r, 1)− λ̂(r, 0) ≥ v(0, r)
(B.1b)

For (r, l) ∈ En
10, l = n− r:

− γ(r, l)λ̂(r, l)− γ(r, l)λ⃗(r, l) ≤ v(r, l)

− λ̂(r, l)− λ⃗(r, l) ≥ v(l, r)
(B.1c)

For (r, l) ∈ En
10, l = l(r) < n− r:

γ(r + 1, l)λ̂(r + 1, l)− γ(r, l)λ̂(r, l)− γ(r, l)λ⃗(r, l) ≤ v(r, l)

λ̂(r + 1, l)− λ̂(r, l)− λ⃗(r, l) ≥ v(l, r)
(B.1d)

For (r, l) = (n, 0) (note that (n, 0) ∈ En
10):

− γ(r, l)λ̂(r, l) ≤ v(r, l)

− λ̂(r, l) ≥ v(l, r)
(B.1e)

For (r, l) = (r1, r1):

γ(r + 1, l)λ̂(r + 1, l)− γ(r, l)λ⃗(r, l) ≤ v(r, l)

λ̂(r + 1, l)− λ⃗(r, l) ≥ v(l, r)
(B.1f)

For (r, l) = (r1, 0):

γ(r + 1, l)λ̂(r + 1, l) + γ(r, l + 1)λ⃗(r, l + 1) ≤ v(r, l)

λ̂(r + 1, l) + λ⃗(r, l + 1) ≥ v(l, r)
(B.1g)
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For (r, l) = (0, 0), if (0, 0) ∈ En
10:

γ(r + 1, l)λ̂(r + 1, l) ≤ v(r, l)

λ̂(r + 1, l) ≥ v(l, r)
(B.1h)

Claim B.2.3.1. There exist
{
λ̂(r′, l′), λ⃗(r′, l′)

}
(r′,l′)∈En

10

≥ 0, satisfying (Region 10 conditions).

Fix r > r1. Assume {λ̂(r′, l′), λ⃗(r′, l′)}(r′,l′)∈En
10,r

′≤r−1 and {λ̂(r, l)}(r,l)∈En
10

have
been defined such that:

[label=(0), ref=(0)]Inequalities (B.1a)-(B.1h) are satisfied for all (r′, l′) ∈ En
10, r

′ ≤

r − 1. λ̂(r, l) = 0 if v(r, l) < 0 or r + l ≥ n or l > l(r − 1).
l(r)∑
l=0

(v(r, l) +

γ(r, l)λ̂(r, l)) ≥
∑

(r′,l′)∈En
10,r

′≤r

v(r′, l′)

Let v̂r : {0, · · · , l(r)} → R, v̂r : l 7→ v(r, l)+γ(r, l)λ̂(r, l) and V̂r : {0, · · · , l(r)} →

R as V̂r : l 7→
l(r)∑
l′=l

v̂r(l
′).

There exists l ∈
{
0, · · · , l(r)

}
such that v̂r(l) ≥ 0 ⇐⇒ l ≤ l and l such that

V̂r(l) ≥ 0 for l ≤ l and V̂r(l) ≤ 0 for l > l.

1.2.3. Proof. Suppose, by way of contradiction, v̂r(l) ≥ 0 but v̂r(l
′) < 0 for some l′ < l.

By property 1, λ̂(r, l′) ≥ 0, therefore v(r, l′) < 0. By monotonicity of rR(·) (define
this earlier), v(r, l) < 0. Hence, by property 2, λ̂(r, l) = 0. Hence, v̂r(l) < 0, which
is a contradiction.

By property 3, V̂r(0) > 0. By the definition of l and property 3, there exists
l ∈ {0, · · · , l} such that V̂r(l) ≥ 0 for l ≤ l and V̂r(l) ≤ 0 for l > l.

If l(r) > r − δ, l(r) = r.
If v(r, l(r)) < 0 and l(r) > r − δ, l(r) = r.

Proof. Case 1 : r2 ∈
(
0, m2

)
.

In this case, by (FOC-2), ∃ l > r2 such that v(r, l) > 0. By monotonicity of rR(·),
v(r2, r2) > 0. By continuity of v, for small enough δ′′ > 0, v(r2 − δ′′, r2 + δ′′) > 0.
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Therefore, again, by monotonicity of rR(·), v(r, l) > 0 for all {(r, l) ∈ E : r ≥
r2 − δ′′, l ≤ r2 + δ′′}. Hence, for large enough n, v(r, l) > 0 for all {(r, l) ∈ En : r ≥
rn2 , l ≤ rn2 }, hence v(r, r) ≥ 0 for all r ∈ E

r,n
10 , r ≥ rn2 .

Case 2: r2 = max
{
r1,

m
2

}
.

By Claim B.2.1.3, in this case v
(m
2 ,

m
2

)
≤ 0. Combined with our assumption

that v
(m
2 ,

m
2

)
̸= 0, we have v

(m
2 ,

m
2

)
< 0.

In this case r2 = m
2 , hence for large enough n, rn2 = m

2 . (Have to show (rn1 , r
n
2 ) →

(r1, r2).) Suppose r ∈ E
r,n
10 , v(r, l(r)) < 0 and l(r) ̸= r. In this case r2 = m

2 , hence
l(r) = m − r (Might have to slightly modify if we use a more general function of
(r, l) to denote the boundary.) By construction of δ, as in (δ), and by Claim B.2.2.6,
v(r, l) < 0 for all (r, l) ∈ En

10 such that l ≥ r−δ. By definition of l(·), if v(r, l(r)) < 0,
v(r, l(r)) > 0. Hence, in this case, l(r) < r − δ.

If v(r, l(r)) ≥ 0 and l(r) > r − δ, l(r) = r, therefore v(l(r), r) > 0.

Proof. Note that if v(r, l(r)) ≥ 0, l(r) = l(r). Therefore l(r) > r−δ ⇐⇒ l(r) > r−δ.
l(r) ∈ {r, rn2 ,m− r}. If l(r) = r, the statement is vacuously satisfied. Hence, let us
consider the cases l(r) ∈ {rn2 ,m− r}.

Case 1 : r2 ∈
(
0, m2

)
.

By (δ), δ < δ′′
2 . Hence, for large enough n, min{v(r, rn2 ), v(r

n
2 , r)} > 0 for all

r ∈ E
r,n
10 ∩ [rn2 , r

n
2 + δ). Hence the statement holds if l(r) = rn2 .

By definition of δ′′, δ < m
2 − r2, hence δ < m

2 − rn2 for large enough n. Hence if
l(r) = m− r, l(r) < r − δ.

Case 2 : r2 = max
{
r1,

m
2

}
.

In this case v
(m
2 ,

m
2

)
< 0. By the assumption that δ < δ′

2 , as defined by (δ), if
l(r) = m− r, l(r) < r − δ.

Define:

174



lib(r, l) =

 max{l′ : γ(r + 1, l′) ≤ γ(r, l)} if {l′ : γ(r + 1, l′) ≤ γ(r, l)} ≠ ∅,

l(r + 1), otherwise.

Define {λ⃗(r, l)}(r,l)∈En
10

and {λ̂(r + 1, l)}(r+1,l)∈En
10

as follows:

• λ⃗(r, l) = − 1
γ(r,l)

l(r)∑
l′=l

v̂(r, l′) for all l > l(r),

• λ
(r+1,lib(r,l))
(r,l)

= 1
γ(r+1,lib(r,l))

v̂(r, l) for all l ∈ [r − δ, l(r)) ∩ Sn,

• λ̂(r + 1, l) = 1
γ(r+1,l)

v̂(r, l) for all l ≤ min{l(r), r − δ}.

Now we will verify that {λ⃗(r, l)}(r,l)∈En
10

and {λ̂(r+1, l)}(r+1,l)∈En
10

defined above,
taken together with the λ’s defined before, also satisfy properties 1− 3 listed above.

There exists l ∈ {0, · · · , l(r)} such that:

• λ⃗(r, l) ≥ 0 and λ̂(r + 1, l) = 0 for all l > l such that (r, l) ∈ En
10.

• λ⃗(r, l) = 0 and λ̂(r + 1, l) ≥ 0 for all l ≤ l.

Proof. Define vr : {0, · · · , l(r)} → R as vr : l 7→
l(r)∑
l′=l

(v(r, l′) + γ(r, l′)λ̂(r, l′)).

By property 3, vr(0) > 0. By Claim B.2.3 and property 3, there exists l ∈
{0, · · · , l} such that vr(l) ≥ 0 for l ≤ l and vr(l) ≤ 0 for l > l.

• l > l: λ⃗(r, l) ≥ 0 and λ̂(r + 1, l) = 0 by construction of {λ⃗(r, l)}l>l.

• l ≤ l: By construction, λ⃗(r, l) = 0 and λ̂(r+1, l) = max

{
v(r,l)+γ(r,l)λ̂(r,l)

γ(r+1,l)
, v(l, r) + λ̂(r, l)

}
or 0, for all l ≤ l. By definition of l, v(r, l) + γ(r, l)λ̂(r, l) ≥ 0 – and hence
λ̂(r + 1, l) ≥ 0 – for all l ≤ l.
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{λ⃗(r, l)}(r,l)∈En
10

and {λ̂(r+ 1, l)}(r+1,l)∈En
10

so defined satisfies properties 1 and
2.

Proof. We first show that {λ⃗(r, l)}(r,l)∈En
10

and {λ̂(r + 1, l)}(r+1,l)∈En
10

so defined
satisfies (B.1a)-(B.1h), i.e. satisfy property 1.

For (r, l) ∈ En
10, l > l this construction sets:

γ(r, l + 1)λ⃗(r, l + 1)1
(
l < l(r)

)
− γ(r, l)λ⃗(r, l) = v(r, l) + γ(r, l)λ̂(r, l), (B.2)

λ̂(r + 1, l) = 0.

Hence, by (Region 10 conditions), we must show that for all l > l:

0λ̂(r + 1, l) + λ⃗(r, l + 1)1
(
l < l(r)

)
− λ⃗(r, l) ≥ v(l, r) + λ̂(r, l) (B.3)

Multiplying both sides of (B.3), we must show that for all l > l:

γ(r, l)λ⃗(r, l + 1)1
(
l < l(r)

)
− γ(r, l)λ⃗(r, l) ≥ γ(r, l)v(l, r) + γ(r, l)λ̂(r, l) (B.4)

Comparing (B.4) with (B.2), the LHS of (B.2) is weakly greater than that of
(B.4), because γ(r, l+ 1) < γ(r, l+ 1). The LHS of (B.2) is weakly less than that of
(B.4) by Claim B.2.1.4.
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APPENDIX C
APPENDICES FOR CHAPTER 4

C.1 Preliminaries

C.2 Proof of Theorem 8

C.2.1 Preliminaries

C.2.2 Discretization

C.2.3 The multipliers

The discretized linear program

By exchangeability of the signal densities for each quality-type, the problem is
symmetric. Therefore without loss, we can fix any default state and express the
problem in terms of the odds ratio of each state w.r.t. that default state. Without
loss, we fix default state 1.

Fix n ∈ N.
Define vn : r × Ω → R as:

vn(r, ω) =
∑
v∈V

eνefn(r|ω, v)

Define the problem (note that we can omit the prior from the maximand, because
it is uniform):

max
a∈RTn×Ω

∑
t∈Tn

vn(t, ω)a(t, ω),

subject to:
∑
ω∈Ω

a(t, ω)pω(t) ≥
∑
ω∈Ω

a(t′, ω)pω(t), ∀ t, t′ ∈ Tn,

a(t, ω) ∈ [0, 1] ∀ t ∈ Tn, ω ∈ Ω.

(Pn)
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Necessary and sufficient conditions on multipliers

Constructing the multipliers

with equality here

Verifying the other necessary inequalities

Claim C.2.3.1. Suppose t ∈ T and i, j ∈ Ω are such that f(t|i, v) > f(t|j, v) for
some v ∈ V . Then,

vi(t)

pi(t)
>

vj(t)

pj(t)

Proof. We introduce an ordering on the types, which would help us show the claim
using induction.

Let v1 > · · · > vm−1 > 0 ≥ vm > vm+1 · · · > vM . Note that vm is the highest
non-positive value.

Define:

(v̂l, ν̂l) =

 (vm+1−l, νm+1−l), for l ∈ {1, · · · ,m},

(vl, νB), for l ∈ {m+ 1, · · · ,M}.

For ω ∈ {i, j}, define:

χ1ω(t) = v̂1, p
1
ω(t) = ν̂1f(t|ω, v̂1);

plω(t) = pl−1
ω (t) + ν̂lf(t|ω, v̂l) and χlω(t) =

χl−1
ω (t)pl−1

ω (t) + v̂lν̂lf(t|ω, v̂l)
plω(t)

,

With this notation, we have to prove that:

χMi (t) > χMj (t)

178



We prove the weak inequality by induction and then show that the inequality is,
in fact, strict.

Base case. Clearly, χ1i (t) ≥ χ1j (t), because χ1i (t) = χ1j (t).

Induction hypothesis. Assume χli(t) ≥ χlj(t) for some l ≥ 1.

Induction step. We will show that the above implies χl+1
i (t) ≥ χl+1

j (t), as long
as l + 1 ≤ M .

We have to show that,

χl+1
i (t) ≥ χl+1

j (t),

i.e.,
χli(t)p

l
i(t) + v̂l+1ν̂l+1f(t|i, v̂l+1)

pli(t) + ν̂l+1f(t|i, v̂l+1)
≥

χlj(t)p
l
j(t) + v̂l+1ν̂l+1f(t|j, v̂l+1)

plj(t) + ν̂l+1f(t|j, v̂l+1)
,

i.e., pli(t)p
l
j(t)

(
χli(t)− χlj(t)

)
+ ν̂l+1f(t|j, v̂l+1)p

l
j(t)

((
v̂l+1 − χlj(t)

) f(t|i, v̂l+1)

f(t|j, v̂l+1)

−
(
v̂l+1 − χli(t)

) pli(t)

plj(t)

)
≥ 0.

(C.1)

By our induction hypothesis, χli(t) ≥ χlj(t). Hence the first term in (C.1) is
non-negative.

Now we show that the second is as well.(
v̂l+1 − χlj(t)

)
f(t|i,v̂l+1)
f(t|j,v̂l+1)

−
(
v̂l+1 − χli(t)

)
pli(t)

plj(t)
≥ 0.

Proof. First, consider the case where l + 1 ≤ m.
We first want to show that v̂l+1 > χli(t).
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v̂l+1 − χli(t)

= v̂l+1 −

∑
l′≤l

v̂l′ ν̂l′f (t | i, v̂l′)∑
l′≤l

ν̂l′f (t | i, v̂l′)

=

∑
l′≤l

(v̂l+1 − v̂l′)ν̂l′f (t | i, v̂l′)∑
l′≤l

ν̂l′f (t | i, v̂l′)

> 0.

The last line follows from the fact that for l+1 ≤ m, v̂l+1 > v̂l′ for all l′ < l+1.
This also means,

f(t | i, v) > f(t | j, v) for some v =⇒
(
f(t|i, v̂l+1)

f(t|j, v̂l+1)
− f(t|i, v̂l′)

f(t|j, v̂l′)

)
≥ 0, ∀ l′ < l + 1.

Note that, plω(t) =
∑
l′≤l

ν̂lf (t | ω, v̂l) , ω ∈ {i, j}.

We further want to show that,

f(t|i, v̂l+1)

f(t|j, v̂l+1)
≥

pli(t)

plj(t)
,

i.e.,
f(t|i, v̂l+1)

f(t|j, v̂l+1)
≥

∑
l′≤l

ν̂lf (t | i, v̂l′)∑
l′≤l

ν̂lf (t | j, v̂l′)
,

i.e.,
∑
l′≤l

ν̂lf (t | i, v̂l+1) f (t | j, v̂l′) ≥
∑
l′≤l

ν̂lf (t | j, v̂l+1) f (t | i, v̂l′) ,

i.e.,
∑
l′≤l

ν̂lf (t | i, v̂l+1) f (t | j, v̂l′)
(
f(t|i, v̂l+1)

f(t|j, v̂l+1)
− f(t|i, v̂l′)

f(t|j, v̂l′)

)
≥ 0.
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This holds because
(
f(t|i,v̂l+1)
f(t|j,v̂l+1)

− f(t|i,v̂l′)
f(t|j,v̂l′)

)
≥ 0, ∀ l′ < l + 1.

By our induction hypothesis, χli(t) ≥ χlj(t). Hence, v̂l+1 > χli(t) =⇒ v̂l+1 −
χlj(t) ≥ v̂l+1 − χli(t) > 0. Combining this with the fact that v̂l+1 > 0 for l + 1 ≤ m,

and f(t|i,v̂l+1)
f(t|j,v̂l+1)

≥ pli(t)

plj(t)
, we have the desired result for l + 1 ≤ m.

On the other hand, if l+1 > m, v̂l+1 < vl′ for all l′ < l+1. Therefore, exactly as
before, we can show that v̂l+1 < χlj(t), which implies 0 > v̂l+1−χlj(t) ≥ v̂l+1−χli(t).

Hence, v̂l+1 − χlj(t) is a negative number with a weakly smaller absolute value than

v̂l+1−χli(t), which is also negative. Again, as before, f(t|i,v̂l+1)
f(t|j,v̂l+1)

≤ pli(t)

plj(t)
. Hence, also

in this case,

(
v̂l+1 − χlj(t)

) f(t|i, v̂l+1)

f(t|j, v̂l+1)
−
(
v̂l+1 − χli(t)

) pli(t)

plj(t)
≥ 0

Claim C.2.3 completes the induction step.
To complete the proof, note that f(t|i, v) > f(t|j, v) for some v ∈ V . This implies

f(t|i,v̂l+1)
f(t|j,v̂l+1)

>
f(t|i,v̂l′)
f(t|j,v̂l′)

for all l′ < l + 1 ≤ m by our assumption. This establishes the
claim.

C.2.4 Approximation

C.2.5 The proof
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