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ABSTRACT

The virulence of infectious diseases is usually affected by a combination of a host and at least

one pathogen organism. Previous experiments have revealed that combining genetic information

from different organisms has enabled the identification of more relevant genetic variants than just

individually performing an association analysis on each organism. Hence, we are interested in

performing a joint association analysis to test for the interaction effect of each possible pair of a

host and pathogen genetic variant on the phenotypic trait relating to the infectious disease. Three

main issues may arise when performing this joint association analysis.

First, the presence of a non-trivial interaction effect between one of the genetic variants being tested

and some unaccounted factor - either observed or unobserved - can lead to heteroscedasticity in the

phenotypic trait. Failure to account for this heteroscedasticity may lead to overinflated type I error

rates when testing for an interaction effect between this genetic variant and any genetic variant

from the other organism. We compare different methods to test and account for the potential

heteroscedasticity in the phenotypic trait in the case where the genotype of the pathogen organism

is a binary variable.

Secondly, the fact that the phenotypic trait is held fixed while the interacting genotypes vary across

different interaction tests in a joint genome-wide association analysis means that the collection of

interaction test statistics corresponding to a fixed pathogen genetic variant may often display a

tangible departure from the known distribution of the interaction test statistic. Under the global

null hypothesis of no interaction, the collection of interaction p-values corresponding to a given

pathogen genetic variant might turn out to be consistently smaller than uniform, leading to a

phenomenon which has been called the "feast" effect, since we end up with excess false discoveries.

Similarly, the collection of interaction p-values corresponding to another fixed pathogen genetic

variant might turn out to be consistently larger than uniform, leading to a phenomenon which has

been called the "famine" effect, since it limits our ability to make any important discoveries.

This "feast or famine" effect has been shown to result from improper conditioning in the construction

of the interaction test statistic in a joint association analysis. The ordinary interaction test statistic

conditions on the pair of genetic variants being tested for interaction. Instead, we take the approach

ix



of conditioning on the phenotypic trait and a fixed pathogen genetic variant in order to construct

a corrected host-pathogen interaction test statistic which alleviates the feast or famine effect. We

focus our efforts on the case of diploid host organisms where an appropriate discrete correction

might be required to account for the binomially distributed host genotype. We present a diagnostic

tool to predict the prevalence of the feast or famine effect given only the information about a

phenotypic trait and a fixed pathogen genetic variant and demonstrate its relationship with the

commonly used genomic control inflation factor.

Lastly, accounting for population structure among patients infected with related strains of the same

pathogen presents a significant challenge, owing to the presence of genetic variants with differing

number of alleles within the pathogen genome. As the number of alleles in a genetic variant in-

creases, some of the alleles may be associated with excessively small observed allele frequencies,

which introduce numerical instabilities in the existing methods of constructing a pathogen genetic

relatedness matrix (GRM). We build upon previous work to develop a novel pathogen GRM for

organisms with multiallelic genetic variants which avoids filtering out genetic variants with exceed-

ingly small observed allele frequencies by introducing an adjusted weighting for rare alleles.

We validate the type I error control and rectification of the feast of famine effect by our correction

framework through a host of simulation studies. We demonstrate the applicability of our proposed

pathogen GRM and our correction framework by testing for interaction effects between human

SNPs and hepatitis C viral genetic variants on pre-treatment viral load in a cohort of HCV infected

patients from the BOSON clinical trial.
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CHAPTER 1

INTRODUCTION

1.1 Genetics Nomenclature

The genome is the collection of all the genetic material of an organism. The genome of most

species is divided into multiple chromosomes. Diploid organisms, such as humans, have 2 copies

of each chromosome - one inherited from the father and one inherited from the mother. On the

other hand, haploid organisms, such as bacteria and viruses, have only 1 copy of each chromosome.

Pathogen genomes also typically consist of only a single chromosome, whereas the human genome

is organized into 23 pairs of chromosomes - 22 pairs of autosomal chromosomes and one pair of

sex chromosomes. Each chromosome is composed of 2 DNA strands, which in turn each consist

of a sequence of nucleotides. A nucleotide contains one of the following 4 nitrogenous bases:

adenine (A), thymine (T), cytosine (C) or guanine (G). The nitrogenous bases of the 2 DNA strands

are bound together according to the following base pairing rules: adenine is paired with thymine

and cytosine is paired with guanine. The entire human genome comprises over 3 billion nucleotides.

The majority of the human DNA sequence is identical across the population with individuals sharing

about 99.5% of their DNA sequence. The remaining segments, which vary among individuals, are

called polymorphic. Changes in these sequences across individuals in a population are known as

genetic variants, while the different forms of these sequences are called alleles. An individual’s

genotype is the collection of alleles at specific positions in the genome. A common type of genetic

variant is the SNP (single nucleotide polymorphism): a mutation at a single base position that

differentiates individuals. Most SNPs are biallelic, meaning they have only two different alleles,

which can be arbitrarily labeled as "0" and "1", in the population. For such SNPs, the allele with the

lower frequency in the population is called the minor allele and its frequency is referred to as the

minor allele frequency (MAF). Genetic variants are classified as common or rare based on their

MAF. Genetic variants are said to be in linkage disequilibrium (LD) if certain combinations of

alleles occur together more or less often than expected by chance.Give me a list of 10 papers from

the last 7 years related to the construction of a genetic relatedness matrix based on genetic variants

with more than 2 alleles.
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Because diploid organisms have two copies of each autosomal chromosome, possible genotypes at

each SNP are "00", "01", "10" or "11". However, since the parental origin is usually not observed,

we encode the genotype at each SNP as 0, 1 or 2, depending on whether the individual has 0, 1

or 2 copies of allele "1" at that genetic variant. Genotypes 0 (state "00") and 2 (state "11") are

called homozygous, meaning they have identical alleles at the SNP, while genotype 1 (state "01"

or "10") is called heterozygous, indicating different alleles at the SNP. The number of SNPs in

an organism can be vast - the human genome consists of roughly 10 million SNPs.

Unlike the human genome, pathogen genomes typically include a "core" genome shared by all

strains and a "dispensable" genome present only in some strains. Accordingly, the genotype at

a pathogen SNP can be encoded as "0", "1" or "-" if it has three states with "-" representing the

"deletion" state. Furthermore, the genome of single-stranded RNA viruses consists of just

a single sequence of nucleotides containing one of the following 4 nitrogenous bases: adenine

(A), uracil (U), cytosine (C) or guanine (G). Adding that variation on top of insertion-deletion

polymorphisms may lead to viral genetic variants with up to 5 alleles. Finally, a group of 3

consecutive nucleotides in RNA specifies a single amino acid, giving rise to the 22 amino acids

which are incorporated into proteins. Amino acid genetic variants can display even more than 10

alleles. All things considered, the genotype at a pathogen genetic variant is generally treated as a

multilevel categorical variable.

A phenotypic trait is a measurable characteristic of an individual, which can be quantitative,

e.g. height or weight, or categorical, e.g. presence or absence of a disease. Many phenotypic traits

are influenced by both genetic and non-genetic factors. The proportion of phenotypic variance in

a population attributable to genetic factors is known as heritability. Heritability can be inferred

using family-based study designs or mixed-effects regression models.

1.2 Genetic Association Analysis

Genetic association analyses, crucial for uncovering the genetic basis of complex human traits,

measure both phenotypes and genotypes (typically SNPs) in a sample of individuals to test for

associations between traits and genetic variants. Modern biomedical technologies enable the simul-

2



taneous examination of millions of genetic variants or all polymorphic sites across the genome. The

goal of a genome-wide association study (GWAS) is to identify SNPs in the genome that are, if

not directly causal, at least statistically associated with the phenotype of interest. Typically, each

SNP is tested independently for association with the phenotype. It has been shown that the power

of single-SNP tests using linear or logistic regression increases with the proportion of phenotypic

variance explained by the tested SNP [1]. A common approach for testing the association between

phenotype (response) and genotype at a SNP (predictor) is regression analysis. Each test generally

involves a straightforward statistical method, such as linear, logistic or proportional hazards regres-

sion, depending on the type of measurement. These analyses have successfully identified thousands

of SNP associations, providing valuable insights into the genetic architecture of complex diseases.

Due to the large number of SNPs tested, a stringent significance threshold is used to correct for mul-

tiple testing. Additionally, the high interdependence among SNPs and hidden confounding factors

among the sampled subjects present significant challenges to traditional statistical methods.

For a typical diploid subject, the genotype at a biallelic SNP is a categorical variable with 3 levels.

However, when modeling the effect of a SNP on a trait, additional assumptions are often made

to reduce the degrees of freedom. For instance, in an additive trait model, we assume the effect

of genotype 2 on the trait is twice that of genotype 1 relative to the baseline effect of genotype 0.

This allows the encoded genotype to be treated as a quantitative variable with only 1 additional

degree of freedom beyond the intercept in the trait model. Other genotype encodings might be

used for recessive or dominant trait models. While different trait models reflect different modes of

gene action, the additive trait model is generally preferred because it has reasonably good power

even when the true model is dominant or recessive, which is not the case in reverse situations [2].

1.3 Relatedness and Population Structure

In genetic association analyses, a significant statistical challenge arises when sampled individu-

als are related, leading to dependencies among observations. This relatedness within a sample,

termed "population structure", encompasses both known and unknown relationships and is a com-

mon confounding factor. When population structure is present, the independence assumption of

many standard association testing methods can be violated, compromising their performance and

3



reliability.

Population structure is prevalent in genetic association data. Many studies include family members

with known pedigree relationships, as family-based designs have been popular in traditional genetic

research. These family samples are often included in contemporary association analyses because

they can increase the power to detect associations by enriching disease-associated SNPs among

relatives. Accounting for family structure is crucial to ensure properly controlled type I error rates

in association tests and can also improve power when familial correlation is carefully adjusted.

Another source of population structure is latent relatedness among sampled individuals without

known family relationships. From an evolutionary perspective, all humans are related to varying

degrees through a vast genealogy, though this structure is usually unobserved except in pedigree-

based studies. When some individuals in a sample are more closely related than others, this

relatedness can confound association tests. Relatedness introduces correlation in observed geno-

types and genome-wide variation, potentially producing phenotype correlation. If not accounted

for, this can create spurious association signals.

Population stratification is one form of latent relatedness, occurring when a sample includes individ-

uals from different population subgroups. In genetic case-control studies, association tests compare

genotype distributions between phenotype groups. If phenotypic and genotypic distributions vary

by subpopulation, unassociated SNPs can generate spurious associations without proper correction.

Admixed populations, where individuals are genetic mixtures of multiple ancestral populations with

varying proportions, can have similar confounding effects.

1.4 A Linear Mixed Model to Account for Population Structure

Linear mixed effects models are particularly effective in addressing various confounding factors,

including relatedness and population structure [3]–[6]. Linear mixed models incorporate structure

through random effects, whose covariance matrix reflects the dependencies within the sample.

For a sample of n individuals with either known or unknown structure and in the absence of major
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genes the trait value for individual i, denoted by Yi, is modeled as:

Yi = UT
i α+ vi + εi,

where Ui ∈ Rc is a vector of covariates including an intercept term, α ∈ Rc is a vector of unknown

fixed covariate effects, v = (v1, v2, . . . , vn)
T is a vector of random effects accounting for correlations

in phenotype values due to relatedness and εi are independent and identically distributed random

effects representing environmental influences for i = 1, 2, . . . , n. It is common for linear mixed

models to assume that Var(v) = σ2
vΦ, where Φ ∈ Rn×n is referred to as the kinship matrix.

This model can also be derived from Fisher’s polygenic model, which considers the effects of nu-

merous small, equal and additive genetic variants on the phenotype distribution [7]. Specifically,

for a set of m independent markers, the phenotype value of individual i is modeled as follows:

Yi = UT
i α+

m∑
j=1

wj
Gij − µj

σj
+ εi,

where Gij is the genotype of individual i at genetic variant j with mean µj and standard deviation

σj and w1, w2, . . . , wm are independent random effects with E (wj) = 0 and Var (wj) = 1
mσ2

w for

j = 1, 2, . . . ,m. When the number of genetic variants m is large, the distribution of
∑m

j=1wj
Gij−µj

σj

can be approximated by a N
(
0, σ2

wΨ
)

random variable, where:

Ψ =
1

m

m∑
j=1

(Gj − µj1n) (Gj − µj1n)
T

σ2
j

.

The matrix Ψ can be thought of as a covariance matrix which measures genetic similarities among

individuals in the sample based on whole-genome genotype data.

In practice, the number of independent SNPs is finite, making the exact matrix unknown, so

genotype data from numerous genetic variants can be used to empirically estimate the matrix. For

example, a commonly used estimate of Ψ based on genome-wide genotype data from a diploid

organism is given by:

K =
1

m

m∑
j=1

(
Gj − 2f̂j1n

)(
Gj − 2f̂j1n

)T

2f̂j

(
1− f̂j

) ,
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where f̂j =
1
2Gj is an unbiased estimator of the population allele frequency fj at genetic variant j

and we assume that the 2 alleles of individual i are independent draws from the same distribution,

so that Var (Gij) = 2fj (1− fj).

Another commonly used estimate of Ψ based on genome-wide genotype data from a haploid organ-

ism is given by:

K =
1

m

m∑
j=1

(
Gj − f̂j1n

)(
Gj − f̂j1n

)T

f̂j

(
1− f̂j

) ,

where f̂j = Gj is an unbiased estimator of the population allele frequency fj at genetic variant j.

Sample dependence can also be modeled using fixed effects, e.g. ancestry-informative covariates, or

a combination of fixed and random effects.
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CHAPTER 2

CORRECTION FRAMEWORK FOR INTERACTION TEST STATISTIC IN

ASSOCIATION ANALYSIS

2.1 Introduction

Previous studies have shown that the effect of a genetic variant on a phenotypic trait may depend

on genetic variants of another organism, such as host-pathogen interactions in infectious diseases

[8], [9], or on genetic variants of the same organism, i.e. epistatic effects [10]–[12]. The genetic

effect can alternatively depend on various environmental factors, such as age, sex, lifestyle or other

exposures [13]. Detecting these interaction effects can enhance the identification of genetic effects

that might otherwise be diminished or obscured [14]. They are often cited as reasons for the

difficulty in replicating results from marginal association studies [15], contribute significantly to

missing heritability [16], [17] and improve understanding of the genetic architecture of complex

traits and diseases [18], [19].

Despite the widespread popularity of genome-wide association analyses, simultaneous association

mapping between interacting species has been infrequent [20]–[23]. Integrating genomes from two

organisms into a GWAS could potentially reveal genomic regions indicative of co-evolution be-

tween species. Pathosystems, where pathogens and hosts co-evolve to determine disease status,

offer pertinent examples [24]–[27]. A lot of existing genome-wide association analysis methods [28],

[29] typically focus solely on host genomes [30] or stratify by pathogen strain [31], neglecting the

pathogen genome [32]. Other common strategies to examine the relationship between the host and

the pathogen genome include mapping one genome onto the other in a GWAS setting [9], [33]–[37],

performing a trans-species expression quantitative trait locus (ts-eQTL) analysis [38], [39] or con-

structing a host-pathogen protein interaction network [40], [41], all of which ignore how associations

between host and pathogen genotypes affect any infectious disease trait. As sequencing technology

advances, both host and pathogen genomes are increasingly accessible. Identifying genetic associa-

tions across both genomes could illuminate the genetic underpinnings of host-pathogen specificity

and enhance our understanding of their molecular interactions. Therefore, integrating statistical
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methods that encompass genomes from interacting species into genome-wide association analyses

stands to yield significant advancements.

Some efforts have been made to develop methods for detecting interactions in genome-wide as-

sociation analyses, focusing on improving computational efficiency, reducing false positives and

increasing power [42]–[47]. Previous studies have shown that replicating interactions in a GWAS

can be difficult [48]–[50]. Another critical issue is heteroscedasticity which can manifest in the

phenotypic trait if a true interaction effect exists between one of the genetic variants being tested

and another genetic variant not accounted for in the model. If not properly addressed, this het-

eroscedasticity can lead to overinflation of type I error rates [51]–[53]. Several approaches exist to

account for heteroscedasticity in the response variable of a linear regression model such as weighted

least squares (WLS) regression or the use a heteroscedasticity-consistent (HC) estimator for the co-

variance matrix of the least squares estimator [54]. We propose the use of an iteratively reweighted

least squares (IRLS) method which takes into account the special structure in the heteroscedasticity

of the quantitative trait as a function of the binary pathogen genetic variant Z in order to maximize

power while maintaining type I error control.

Systematically inflated or deflated p-values have been reported when testing for interactions in

GWAS settings based on both real and simulated data sets. Even under simplified conditions,

where the quantitative trait is simulated under the global null hypothesis of no interaction and

with no unaccounted covariates, relatedness or sample structure, type I error rates and genomic

control inflation factors have been shown to be highly variable across different simulation replicates

[52], [53], [55]. Under the global null hypothesis of no interaction, the collection of interaction p-

values corresponding to a given pathogen genetic variant might turn out to be consistently smaller

than uniform, leading to a phenomenon which has been called the "feast" effect, since we end up with

excess false discoveries. Similarly, the collection of interaction p-values corresponding to another

fixed pathogen genetic variant might turn out to be consistently larger than uniform, leading to

a phenomenon which has been called the "famine" effect, since it limits our ability to make any

important discoveries. This phenomenon has been shown to arise from the choice of variables to

condition on in the construction of the interaction test statistic, and it has been demonstrated that

modifying this conditioning choice can potentially resolve this issue [12]. We apply these findings to
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develop methods for correcting the feast or famine effect in the context of testing for host-pathogen

interaction effects. We present a diagnostic tool to predict the prevalence of the feast or famine

effect given only the information about a phenotypic trait and a fixed pathogen genetic variant and

demonstrate its relationship with the commonly used genomic control inflation factor.

Integrating information from a pathogen genome into a joint association analysis of an infectious

disease phenotypic trait usually entails special considerations with respect to the modeling of the

pathogen genetic variants. Contrary to host genetic variants which are commonly biallelic, there

are several mechanisms underlying the pathogen genome which can cause genetic variants to dis-

play more than 2 alleles. Pathogen genomes often display a large number of insertion-deletion

polymorphisms on top of the usual mutation polymorhpisms, which may lead to multiple triallelic

pathogen genetic variants. Additionally, single-stranded RNA viral genetic variants consist of a

single nucleobase which can be one of adenine (A), uracil (U), cytosine (C) or guanine (G). Adding

that variation, on top of insertion-deletion polymorphisms, may lead to viral genetic variants with

up to 5 alleles. Finally, a group of 3 consecutive nucleotides in RNA specifies a single amino acid,

giving rise to the 22 amino acids which are incorporated into proteins. Amino acid genetic variants

can display even more than 10 alleles. Triallelic bacterial genetic variants have previously been

handled by including 2 binary indicators for the mutation and deletion polymorphisms into the

joint association analysis model and performing score tests for interaction with 2 degrees of free-

dom [8]. However, handling multiallelic genetic variants with more than 3 alleles in the same way

would likely result in test statistics with no substantial power. Our current approach consists of

transforming multiallelic pathogen genetic variants into a set of binary allele indicators and testing

for interactions between each individual allele indicator and every host genetic variant.

2.2 Notation and Framework for Joint Assocation Analysis

Let Y ∈ Rn denote the vector of values for a quantitative trait measured on a sample of n individuals,

X ∈ Rn the genotype vector of a host genetic variant, Z ∈ Rn denote the genotype vector of a

pathogen genetic variant and U ∈ Rn×c denote a matrix of c covariates - including a column

corresponding to the intercept. Similarly, X and Z could denote the genotypes of 2 different

genetic variants belonging to the same organism or X could denote the genotype of a genetic
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variant and Z could denote the vector of values for an environmental variable. In what follows, we

are mostly going to focus on the case where Z is a binary variable, e.g. it represents the genotype

of a genetic variant belonging to a haploid organism or an environmental factor such as sex.

For two collections of genotypes X1, X2, . . . , Xmh
∈ Rn of mh host genetic variants and genotypes

Z1, Z2, . . . , Zmp ∈ Rn of mp pathogen genetic variants, let E (Xij) = µXj and E (Zik) = µZk

for i = 1, 2, . . . , n, j = 1, 2, . . . ,mh and k = 1, 2, . . . ,mp. In a joint association analysis of the

quantitative trait Y , we are interested in drawing inferences from the following model:

Yi = UT
i α+ βXij + γZik + δjk

(
Xij − µXj

)
(Zik − µZk

) + εi, (2.1)

where Ui ∈ Rc is the i-th row of the covariate matrix U and εi are independent with E (εi) = 0 and

Var (εi) = σ2
ε . After observing the genotype data, our first step is to estimate µXj by Xj and µZk

by Zk. Then, we use ordinary least squares (OLS) to fit the following linear regression models:

Y = Uα+ βXj + γZk + δWjk + ε, (2.2)

where Wjk = diag(HZk)HXj ∈ Rn is the interaction term between the genetic variants Xk and Zk,

H = In− 1
n1n1T

n is the projection matrix projecting any vector to its residuals after regressing it on

the intercept term and diag(HZk) ∈ Rn×n is the diagonal matrix whose diagonal elements are given

by the elements of the vector HZk ∈ Rn. Finally, we are interested in performing the hypothesis

tests Hjk
0 : δjk = 0 vs. Hjk

1 : δjk ̸= 0, i.e. testing whether there exists any significant interaction

effect between each possible pair of a host and pathogen genetic variant on the phenotypic trait.

The usual test statistic that one would employ in this scenario of a quantitative trait with no

relatedness or population structure among sampled individuals, would be the following interaction

t test statistic:

tjk =
δ̂jk

Sε

√[(
UT
XZWUXZW

)−1
]
c+3,c+3

, (2.3)

where δ̂jk is the least squares estimator of the interaction coefficient δjk, S2
ε = Y TPXZW Y

n−c−3 is an

unbiased estimator of the residual variance σ2
ε , UXZW ∈ Rn×(c+3) is the design matrix corresponding

to model 2.2 and PXZW = In −UXZW

(
UT
XZWUXZW

)−1
UT
XZW is the projection matrix projecting

10



a vector to its residuals after regressing it on U , Xj , Zk and Wjk. Under the null hypothesis of

no interaction effect and the additional assumption that ε ∼ Nn

(
0, σ2

εIn
)
, we normally know that

tjk ∼ tn−c−3. More generally, tjk constitutes a Wald test statistic and would asymptotically follow

the standard normal distribution under the null hypothesis of no interaction, even without the

additional assumption of normality of the error terms. Alternatively, one could choose to perform

an asymptotic score or likelihood ratio test for interaction and that test statistic would also be

subject to the same phenomena as the ones we are going to discuss in the following sections [12],

but we are going to focus on the interaction t test statistic for the purposes of this dissertation. Note

that the interaction test statistic would remain unchanged if the interaction term was substituted

by the simpler expression XijZik, but constructing the interaction term as (Xij − µX) (Zik − µZ)

reduces collinearity and leads to more interpretable parameter estimates.

Without loss of generality, we might choose to conduct a joint GWAS by fixing a pathogen genetic

variant Z1, testing for interactions with every host genetic variant X1, X2, . . . , Xmh
and repeating

for every other pathogen genetic variant Z2, Z3, . . . , Zmp . In this setting, we might also be interested

in performing a suitable global testing procedure [56]–[64] to determine whether there exists at least

one host genetic variant interacting with any fixed pathogen genetic variant Zk for k = 1, 2, . . . ,mv

- in a similar vein to the idea of testing for marginal epistasis [10], [11].

2.3 Heteroscedasticity Due to Latent Interaction Effect

Let X̃ ∈ Rn denote the genotype of an unobserved genetic variant or environmental factor sampled

on n individuals with E
(
X̃i

)
= µX and Var

(
X̃i

)
= σ2

X for i = 1, 2, . . . , n. Suppose that the true

model underlying the quantitative trait Y ∈ Rn is the following:

Yi = UT
i α̃+ β̃X̃i + γ̃Zi + δ̃

(
X̃i − µX

)
(Zi − µZ) + εi,

where εi ∼ N
(
0, σ̃2

ε

)
are independent. Then, we observe that:

Var (Yi | Ui, Zi) =
[
β̃ + δ̃ (Zi − µZ)

]2
σ2
X + σ̃2

ε

=
[
2β̃ + δ̃ (1− 2µZ)

]
δ̃σ2

XZi +
(
β̃ − δ̃µZ

)2
σ2
X + σ̃2

ε .

(2.4)
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In other words, the quantitative trait Y is conditionally heteroscedastic given the binary genetic

variant Z. Discounting this heteroscedasticity structure in the response variable when conducting

the interaction tests between the pathogen genetic variant Z and all available host genetic variants

X1, X2, . . . , Xmh
would often lead to excess type I error.

Several methods already exist to tackle the presence of heteroscedasticity in the response variable

of a linear regression model. Most notably, the use of heteroscedasticity-consistent (HC) estimators

for the covariance matrix of the least squares estimator has been shown to be quite effective in the

case of continuous covariates [54], [65]. This approach consists of first fitting the homoscedastic

linear regression models 2.2 by ordinary least squares and computing the residuals ε̂1, ε̂2, . . . , ε̂n.

Let UXZW ∈ Rn×(c+3) denote the design matrix corresponding to model 2.2. Then, one makes

the assumption that the random error terms ε1, ε2, . . . , εn in 2.2 are actually heteroscedastic and

estimates their covariance structure via one of the following diagonal covariance matrices:

Φ̂0 = diag
{
ε̂2i
}
, Φ̂1 =

n

n− c− 3
Φ̂0, Φ̂2 = diag

{
ε̂2i

1− Lii

}
, Φ̂3 = diag

{
ε̂2i

(1− Lii)
2

}
,

where Lii is the leverage of individual i, i.e. the i-th diagonal element of the hat (projection)

matrix L = UXZW

(
UT
XZWUXZW

)−1
UT
XZW corresponding to model 2.2. Thus, a heteroscedasticity-

consistent estimator for the covariance matrix of the least squares estimator ϑ̂ of the regression

coefficient vector ϑ = (α, β, γ, δ)T ∈ Rc+3 is given by:

V̂ar
(
ϑ̂
)
=
(
UT
XZWUXZW

)−1
UT
XZW Φ̂ℓUXZW

(
UT
XZWUXZW

)−1
,

where ℓ ∈ {0, 1, 2, 3}. The Φ̂3 estimator has been shown to have better overall performance com-

pared to the other mentioned HC estimators [54]. However, this approach has been shown to

perform rather poorly in the case where the covariates in the linear regression model are genotypes,

i.e. categorical variables, with fairly small minor allele frequencies [52].

Another popular approach for handling heteroscedasticity in the response variable of a linear re-

gression model is weighted least squares (WLS) regression. However, this approach highly depends

on accurate specification of the regression weights and is best suited only for scenarios where some
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information about the heteroscedasticity structure in the response variable is known a priori. Luck-

ily enough, in the special case of model 2.1 with binary pathogen genetic variant Z, we have already

derived formula 2.4 for the potential conditional variance of the quantitative trait given Z. Hence,

it would make more sense to exploit that heteroscedasticity structure instead of using the residuals

of the fitted homoscedastic model to estimate it.

Suppose that Yi = UT
i α + γZi + εi with εi | Zi ∼ N

(
0, σ2

Zi

)
independent for i = 1, 2, . . . , n. Let

n0 =
∑n

i=1 1{zi=0}, n1 =
∑n

i=1 1{zi=1} and rY |U,Z denote the vector of residuals of the quantitative

trait Y after we regress it on the matrix of covariates U and the binary pathogen genetic variant

Z. Then, we define the following conditional variance estimators of Y given that Z = 0 and Z = 1

respectively:

V0 =
1

n−c+1
n n0 − 1

∑
i:zi=0

(
riY |U,Z

)2
, V1 =

1
n−c+1

n n1 − 1

∑
i:zi=1

(
riY |U,Z

)2
. (2.5)

We observe that the total degrees of freedom shared across the two variance estimators are equal

to n− c− 1, which are exactly the residual degrees of freedom of the fitted linear regression model.

However, the n− c+1 degrees of freedom corresponding to the estimation of the coefficients of the

c − 1 covariates - excluding the intercept and the genetic variant Z - are distributed across the 2

variance estimators proportionally to the number of observations in each of the 2 groups defined

by the binary genetic variant Z, since information from both groups of observations is aggregated

towards the goal of estimating them. On the other hand, only the first group of observations

essentially contributes to the estimation of the intercept coefficient, whereas the second group

contributes to the estimation of the coefficient of the genetic variant Z. For i = 1, 2, . . . , n, we

define the following regression weights:

wi =


V −1
0 , Zi = 0

V −1
1 , Zi = 1

.

For j = 1, 2, . . . ,mh, we fit the weighted linear regression models corresponding to 2.2 and calculate

new residuals vectors rY |U,X1,Z , rY |U,X2,Z , . . . , rY |U,Xmh
,Z . Since the regression weights are not a

priori known and we have used a rough estimate of them based on the observed data, it would be
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good practice to iterate this procedure until convergence of the weighted least squares estimator.

Hence, we update our conditional variance estimators of Y given U , Xj and Z as follows:

V j
0 =

1
n−c+1

n n0 − 2

∑
i:zi=0

(
riY |U,Xj ,Z

)2
, V j

1 =
1

n−c+1
n n1 − 2

∑
i:zi=1

(
riY |U,Xj ,Z

)2
,

leading to corresponding updates of our regression weights. Owing to the special covariate and

weight structure of this model, it can be proven that the estimates of the regression coefficients

are going to remain unchanged after refitting the weighted least squares models using the updated

weights. Thus, this iteratively reweighted least squares (IRLS) procedure always converges after

just 1 step. We show through multiple simulation studies in Section 2.8 that this IRLS procedure

maintains type I error control in the presence of heteroscedasticity in the quantitative trait, con-

sistently higher power than the use of HC covariance matrices for the least squares estimator and

does not result in any significant loss in power compared to the ordinary interaction t test.

Even though it is strongly discouraged in the literature to perform heteroscedasticity tests in order

to decide whether or not to make use of a suitable heteroscedasticity-consistent method for a specific

data set [54], performing heteroscedasticity tests in the context of a joint association analysis might

still provide some information about the presence of some interaction effect between the pathogen

genetic variant currently being tested and some other observed or unobserved factor. In the case

where U = 1n, i.e. in the absence of covariates, a simple F test of equality of variances might be

employed to test for the conditional heteroscedasticity of the quantitative trait Y given a pathogen

genetic variant Z. In the more general case and under the null hypothesis of homoscedasticity,

one might choose to construct the following approximate generalized F test statistic of equality of

variances:

F ′ =
V0

V1
∼ Fn−c+1

n
n0−1,n−c+1

n
n1−1,

where V0 and V1 are given by equation 2.5. The validity of this test statistic under the null

hypothesis has been verified through simulations and its power is asymptotically comparable to

other heteroscedasticity tests such as a likelihood ratio test of equality of variances, the Breusch-

Pagan test [66], [67] and the Goldfeld-Quandt test [68].
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2.4 The Feast or Famine Effect

Under the null hypothesis of no interaction effect between the host genetic variant Xj and the

pathogen genetic variant Zk, we know that the interaction t test statistic given by equation 2.3

individually follows Student’s t distribution with n−c−3 degrees of freedom. It has been shown that

the collection of interaction t test statistics t1k, t2k, . . . , tmhk corresponding to a fixed quantitative

trait Y and a fixed pathogen genetic variant Zk is generally not going to be t distributed under the

global null hypothesis of no interaction [12]. This happens because this distributional result hinges

on the assumption that the response variable Y is random given fixed genetic variants Xj and Zk,

whereas Y and Zk are held fixed and the host genetic variant Xj is allowed to vary across different

interaction tests in this joint association analysis setting. In other words, a set of interaction test

statistics between fixed genetic variants Xj and Zk on a set of quantitative traits Y1, Y2, . . . , Ymt

would naturally be t distributed under the global null hypothesis, but this result breaks down as

soon as Y is fixed across different interaction tests instead of Xj .

The ordinary interaction t test statistic is constructed by first subtracting the conditional expec-

tation of δ̂ given fixed genetic variants Xj and Zk under the null hypothesis, which is equal to 0

for the test of statistical significance of the interaction effect, so that the test statistic is centered

around 0 and is correctly calibrated under the null hypothesis. Then, it is divided by the estimated

standard error of δ̂ given fixed Xj and Zk under the alternative hypothesis, so that the overall

variance of the test statistic is asymptotically equal to 1 and it is easy to compare its observed

value against the quantiles of the standardized t distribution in order to draw inferences. As soon

as Xj is allowed to vary across different interaction tests in place of Y , it is easy to imagine that

the overall sample mean and sample variance of the collection of interaction t test statistics corre-

sponding to fixed pathogen genetic variant Zk and quantitative trait Y would no longer necessarily

be the desired ones, which implies that the collection of test statistics may no longer be assumed

to be t distributed.

For a fixed quantitative trait Y and 3 candidate pathogen genetic variants Z1, Z2, Z3, we might

potentially observe under the global null hypothesis of no interaction that the sample variance

of the collection of interaction t test statistics is significantly larger than 1 for Z1, significantly
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smaller than 1 for Z2 and approximately equal to 1 for Z3. We need to highlight that this is not

an artifact of potential dependence among the interaction tests being performed [69], [70]. We

can keep simulating different sets of independent host genetic variants X1, X2, . . . , Xmh
and the

sample variances of the collections of interaction test statistics corresponding to Z1, Z2, Z3 are

going to consistently turn out in the same direction, even though the test statistics within each

collection are independent given fixed Y and Z [12]. As a result, we have an overabundance of

small interaction p-values corresponding to Z1, which we refer to as the "feast" effect, since we end

up making many more discoveries than what we would expect under the global null hypothesis,

resulting in an overinflated type I error rate. Similarly, we have a severe lack of smaller interaction

p-values corresponding to Z2, which we refer to as the "famine" effect, since our ability to make

any important discoveries would be grossly limited, leading to a significant loss in power. On

the other hand, the interaction p-values corresponding to Z3 are indistinguishable from a set of

uniformly distributed variates, meaning that our interaction test statistics are actually correctly

calibrated in this case. We demonstrate this phenomenon in more detail via multiple simulation

studies throughout Section 2.8.

Even though the overall type I error across different collections of interaction test statistics corre-

sponding to different pathogen genetic variants is going to be well controlled for, the variation of

type I error rates and genomic control inflation factors within each GWAS is probably going to be

staggering - much higher than what one would expect to see for a collection of marginal association

analyses. This "feast or famine effect" can possibly lead to a multitude of false discoveries and

complete failure to replicate previously identified interaction effects in a joint association analysis,

since the feast or famine effect completely depends on the pair of trait vector Y and pathogen

genotype vector Z that you happened to have observed in your obtained sample. It has previously

been shown that this phenomenon is a result of inappropriate conditioning in the construction of

the interaction test statistic and that an appropriate approach for correcting it would be to cal-

culate the conditional expectation and variance of the numerator of the interaction test statistic

with respect to a random host genetic variant X given fixed quantitative trait Y and pathogen ge-

netic variant Z, in order to properly standardize the interaction test statistic in a joint association

analysis [12]. We refer to this procedure as interaction test statistic correction. We develop this
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correction framework specifically in the context of testing for host-pathogen interaction effects and

present more details about it throughout the following sections.

It is important to understand why the "feast or famine" effect only appears when testing for in-

teractions in a joint GWAS setting but never in any ordinary marginal GWAS, even though the

phenotypic trait is also held fixed while the genetic variant is allowed to vary across different associ-

ation tests [12]. In order to gain a better understanding of this distinction, it is of vital importance

to take a closer look at the expression of the test statistic in both situations. In Section 2.10.1, we

explicitly derive the following useful expression for the interaction t test statistic corresponding to

the joint association model 2.2:

tjk =
WT

jkPXZY√
WT

jkPXZWjkY TPXZY−(WT
jkPXZY )

2

n−c−3

, (2.6)

where UXZ = [U,Xj , Zk] ∈ Rn×(c+2) is the design matrix corresponding to the covariates and the

additive effects of the 2 genetic variants, PXZ = In − UXZ

(
UT
XZUXZ

)−1
UT
XZ is the projection

matrix projecting any vector to its residuals after regressing it on U , X and Z, H = In − 1
n1n1T

n

is the projection matrix projecting any vector to its residuals after regressing it on the intercept

term, Wjk = diag (HZk)HXj ∈ Rn is the interaction term between the 2 genetic variants and

diag (HZk) ∈ Rn×n denotes the diagonal matrix whose diagonal elements are given by the elements

of the vector HZk ∈ Rn. Now, consider the marginal association analysis model Y = Uα+βjXj+ε

with ε ∼ Nn

(
0, σ2

εIn
)

for j = 1, 2, . . . ,mh. The usual t test statistic for the additive effect of the

genetic variant Xj on the phenotypic trait Y can similarly be written as follows:

tj =
XT

j PY√
XT

j PXjY TPY−(XT
j PY )

2

n−c−1

,

where P = In − U
(
UTU

)−1
UT is the complementary projection matrix corresponding to just the

covariate matrix U . We observe that the association test statistic treats the genetic variant Xj and

the quantitative trait Y symmetrically given fixed covariate matrix U , i.e. swapping Xj with Y

would yield exactly the same test statistic. Therefore, holding Y and allowing Xj to vary across
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marginal association tests, even though the association model assumes that Y is random given

fixed Xj , does not cause problems because we could equivalently rewrite the association model as

Xj = Uα+ βjY + ε and we would end up with exactly the same test statistic. Unfortunately, this

symmetry does not extend to the joint association model, since both the fitted interaction term

Wjk and the projection matrix PXZ in equation 2.6 explicitly depend on the genetic variants Xj

and Zk, whereas the phenotypic trait Y does not, leading to the conditioning issue we have already

discussed.

2.5 Interaction Test Statistic Correction

Let N = WTPXZY denote the numerator of the interaction t test statistic appearing in equation

2.6. Our goal is to construct a new interaction test statistic, which is correctly calibrated given fixed

quantitative trait Y and pathogen genetic variant Z, around this numerator. In order to achieve

this, we need to be able to calculate the conditional expectation and variance of N with respect

to a random host genetic variant X given fixed quantitative trait Y and pathogen genetic variant

Z. In order to simplify this procedure, it is important to first take an asymptotic approximation

of this numerator given Y and Z.

For any vectors A,B ∈ Rn, let S′
AB = ATPB ∈ R, where P = In−U

(
UTU

)−1
UT is the projection

matrix projecting any vector to its residuals after regressing it on the covariate matrix U . For

i, j, k, ℓ = 1, 2, . . . , n, we also define the following conditional moments of X given Y and Z:

µX|Y,Z = E (X | Y, Z) , ΣX|Y,Z = Var (X | Y, Z) ,

γijkX|Y,Z = E
[(

Xi − µi
X|Y,Z

)(
Xj − µj

X|Y,Z

)(
Xk − µk

X|Y,Z

)]
,

Kijkℓ
X|Y,Z = E

[(
Xi − µi

X|Y,Z

)(
Xj − µj

X|Y,Z

)(
Xk − µk

X|Y,Z

)(
Xℓ − µℓ

X|Y,Z

)]
.

First, we observe that:

N = S′
YW −

S′
ZZS

′
XY − S′

XZS
′
Y Z

S′
XXS′

ZZ − S′2
XZ︸ ︷︷ ︸

β̂0

S′
XW −

S′
XXS′

Y Z − S′
XZS

′
XY

S′
XXS′

ZZ − S′2
XZ︸ ︷︷ ︸

γ̂0

S′
ZW .
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Under the null hypothesis of no interaction effect, we consider the following strong law of large

numbers (SLLN) approximations of the least squares estimators β̂0 and γ̂0 of the additive effects

of the genetic variants X and Z respectively:

β∗ =
S′
ZZS

′
µX|Y,ZY − S′

µX|Y,ZZS
′
Y Z[

S′
µX|Y,ZµX|Y,Z

+ tr
(
PΣX|Y,Z

)]
S′
ZZ − S′2

µX|Y,ZZ

,

γ∗ =

[
S′
µX|Y,ZµX|Y,Z

+ tr
(
PΣX|Y,Z

)]
S′
Y Z − S′

µX|Y,ZZS
′
µX|Y,ZY[

S′
µX|Y,ZµX|Y,Z

+ tr
(
PΣX|Y,Z

)]
S′
ZZ − S′2

µX|Y,ZZ

.

Note that these asymptotic approximations are taken with respect to X given fixed Y and Z.

Lastly, let r = Y − γ∗Z ∈ Rn, Q = Hdiag(HZ)P ∈ Rn×n and QS = Q+QT

2 . In the case where

U = 1n, i.e. in the absence of covariates in the joint association model given by 2.1, note that

P = H, so it follows that Q = QT = QS = Hdiag (HZ)H. Then, an asymptotic approximation of

the numerator of the interaction t test statistic is given by:

N∗ = S′
YW − β∗S

′
XW − γ∗S

′
ZW = rTQTX − β∗X

TQSX, (2.7)

where diag (HZ) ∈ Rn×n denotes the diagonal matrix whose diagonal elements are given by the

elements of the vector HZ ∈ Rn. We observe that this asymptotic approximation of the numerator

of the interaction test statistic can be written as the sum of a linear function and a quadratic form

of the random host genetic variant X. By applying known properties for the expectation and the

covariance matrix of linear functions and quadratic forms of random vectors, we get the following

conditional moment results:

E (N∗ | Y, Z) = rTQTµX|Y,Z − β∗

[
µT
X|Y,ZQµX|Y,Z + tr

(
QSΣX|Y,Z

)]
, (2.8)

Var (N∗ | Y, Z) = rTQTΣX|Y,ZQr − 2β∗

n∑
i,j,k=1

Qij
S (Qr)k γijkX|Y,Z − 4β∗r

TQTΣX|Y,ZQSµX|Y,Z

+ β2
∗

n∑
i,j,k,ℓ=1

Qij
SQ

kℓ
S

(
Kijkℓ

X|Y,Z + 4γijkX|Y,Zµ
ℓ
X|Y,Z

)
+ 4β2

∗µ
T
X|Y,ZQSΣX|Y,ZQSµX|Y,Z − β2

∗
[
tr
(
QSΣX|Y,Z

)]2
.

(2.9)
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Therefore, we define the following corrected interaction t test statistic:

T∗ =
N − Ê (N∗ | Y, Z)√

V̂ar (N∗ | Y, Z)

, (2.10)

where the estimation of all the unknown parameters in E (N∗ | Y, Z) and Var (N∗ | Y, Z) pertaining

to the conditional distribution of X given Y and Z are discussed in the following section. Under

the null hypothesis of no interaction effect, this corrected interaction test statistic is going to

asymptotically follow the standard normal distribution. Detailed derivations of these asymptotic

approximations and conditional moment calculations are presented in Section 2.10.1. We observe

that the conditional expectation of the numerator of the interaction t test statistic given Y and

Z is just going to be equal to 0 in the special case where the random host genetic variant X is

independent of both the quantitative trait Y and the pathogen genetic variant Z. However, it is not

necessarily going be to equal to 0 in the general case. On the other hand, the conditional variance

of the numerator given Y and Z is going to highly depend on the induced conditional distribution

of X given Y and Z.

As is evident from these formulas, the calculation of the corrected interaction t test statistic hinges

on the derivation of the required conditional moments of X given Y and Z. These conditional

moments can easily be derived through use of Bayes’ theorem, but some additional assumption

about the conditional distribution of Xi given Zi for i = 1, 2 . . . , n is additionally required. Namely,

the conditional distribution of Xi given Yi and Zi is given by:

fXi|Yi,Zi
(x | y, z) ∝ fXi|Zi

(x | z)fYi|Xi,Zi
(y | x, z),

where the conditional density fYi|Xi,Zi
(y | x, z) is governed by the joint association model given in

equation 2.1. In the following subsections, we discuss 2 particularly useful choices for the conditional

distribution for Xi given Zi in the context of joint association analysis.

2.5.1 Gaussian Correction

The Gaussian correction framework [12] makes the assumption that (Xi | Zi = z) ∼ N
(
µX|z, σ

2
X

)
are independent for i = 1, 2, . . . , n. Even though X typically never stands for a quantitative variable
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in joint association analysis settings, we have found that the Gaussian distribution constitutes a

perfectly robust approximation - at least in the case where X represents the genotype of a diploid or-

ganism. Under the alternative hypothesis, we infer that (Xi | Yi = y, Zi = z) ∼ N
(
µi
X|Y,Z ,Σ

ii
X|Y,Z

)
,

where:

µi
X|Y,Z =

[
y − UT

i α− βµX|z − γz − δ
(
µX|z − µX

)
(z − µZ)

]
[β + δ(z − µZ)]σ

2
X

[β + δ(z − µZ)]
2 σ2

X + σ2
ε

+ µX|z,

Σii
X|Y,Z = σ2

X −
[β + δ(z − µZ)]

2 σ4
X

[β + δ(z − µZ)]
2 σ2

X + σ2
ε

.

Additionally, we know that Kijkℓ
X|Y,Z = Σij

X|Y,ZΣ
kℓ
X|Y,Z+Σik

X|Y,ZΣ
jℓ
X|Y,Z+Σiℓ

X|Y,ZΣ
jk
X|Y,Z and γijkX|Y,Z = 0

for i, j, k, ℓ = 1, 2, . . . , n. Therefore, the formula for the conditional variance of the numerator of

the interaction t test statistic given fixed quantitative trait Y and pathogen genetic variant Z is

greatly simplified in the context of the Gaussian correction framework with unrelated individuals

as follows:

Var (N∗ | Y, Z) = rTQTΣX|Y,ZQr − 4β∗r
TQTΣX|Y,ZQSµX|Y,Z

+ 2β2
∗tr
(
QSΣX|Y,ZQSΣX|Y,Z

)
+ 4β2

∗µ
T
X|Y,ZQSΣX|Y,ZQSµX|Y,Z .

2.5.2 Discrete Correction

Suppose that (Xi | Zi = z) are independent and follow some discrete distribution with support

S ⊆ N for i = 1, 2, . . . , n. Then, we know that:

pi(x | y, z) = P (Xi = x | Yi = y, Zi = z) ∝ P (Xi = x | Zi = z) fYi|Xi,Zi
(y | x, z) ,

µi
r(y, z) = E (Xr

i | Yi = y, Zi = z) =
∑
x∈S

pi(x | y, z)xr,

µi
X|Y,Z = µi

1(y, z), Σii
X|Y,Z = µi

2(y, z)−
[
µi
1(y, z)

]2
,

γiiiX|Y,Z = µi
3(y, z)− 3µi

1(y, z)µ
i
2(y, z)−

[
µi
1(y, z)

]3
,

Kiiii
X|Y,Z = µi

4(y, z)−4µi
1(y, z)µ

i
3(y, z)−6

[
µi
1(y, z)

]2
µi
2(y, z)−

[
µi
1(y, z)

]4
, Kiijj

X|Y,Z = Σii
X|Y,ZΣ

jj
X|Y,Z .
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Let γX|Y,Z =
[
γiiiX|Y,Z

]n
i=1

∈ Rn and KX|Y,Z =
[
Kiijj

X|Y,Z

]n
i,j=1

∈ Rn×n. All other conditional central

moments of X given Y and Z are equal to 0. Then, we conclude that:

Var (N∗ | Y, Z) = rTQTΣX|Y,ZQr − 2β∗r
TQTDg (QS) γX|Y,Z − 4β∗r

TQTΣX|Y,ZQSµX|Y,Z

+ 2β2
∗tr
(
QSΣX|Y,ZQSΣX|Y,Z

)
+ β2

∗ [diag (QS)]
T
[
Dg
(
KX|Y,Z

)
− 3Σ2

X|Y,Z

]
diag (QS)

+ 4β2
∗µ

T
X|Y,ZQSDg (QS) γX|Y,Z + 4β2

∗µ
T
X|Y,ZQSΣX|Y,ZQSµX|Y,Z ,

where Dg (QS) ∈ Rn×n is the diagonal matrix whose diagonal elements are given by the diagonal

elements of QS ∈ Rn×n and diag (QS) ∈ Rn is the vector whose elements are given by the diagonal

elements of QS .

This discrete correction framework is of particular interest in a joint association analysis, where

Xi might encode the genotype of a genetic variant on a haploid or diploid organism. In such

settings, one reasonable assumption to make would be that (Xi | Zi = z) ∼ Bernoulli
(
fX|z

)
or

(Xi | Zi = z) ∼ Binomial
(
2, fX|z

)
respectively, where fX|z encodes the allele frequency of Xi given

that Zi = z. Then, one might apply this discrete correction framework to calculate a corrected

interaction t test statistic.

2.6 Parameter Estimation in the Correction Framework

In order to understand how parameter estimation should be carried out in our proposed correction

framework, we first have to take a careful look at the construction of the ordinary t test statistic.

As previously discussed, the null conditional expectation of δ̂ given fixed genetic variants Xj and

Zk is first subtracted, so that the test statistic is centered around 0 under the null hypothesis of no

interaction. This ensures that the test statistic has correct type I error control. In the absence of

a true interaction effect, estimating the standard error of δ̂ under the null hypothesis rather than

under the alternative hypothesis would make no significant difference, since the interaction effect

only explains a negligible portion of the total variance of the quantitative trait in this case. In

the presence of a true interaction effect though, estimating the standard error of δ̂ under the null

hypothesis would significantly underestimate the true residual variance of the quantitative trait,
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leading to test statistics which are shrunk towards 0 with substantially less power to detect the

underlying interaction effect. This is one of the reasons why the use of a Wald test, in which the

standard error of δ̂ is estimated under the alternative hypothesis, might be preferred over the use

of a score test, in which the standard error of δ̂ is estimated under the null hypothesis.

We endeavor to mimic this construction for our corrected interaction t test statistic. Therefore,

we use a null model for the quantitative trait Y in order to estimate the conditional moments of

X required for the calculation of the conditional expectation of the numerator of the test statistic

given Y and Z. On the other hand, we use an alternative model for Y to estimate the conditional

moments of X required for the conditional variance of the denominator. The conditional moments

of X given Y and Z under the alternative hypothesis for the Gaussian correction framework are

given in Section 2.5.1, while the null conditional moments of X can be directly derived by just

setting the interaction coefficient δ to be equal to 0. We call this implementation the alternative

correction framework.

Even though the alternative correction framework properly mimics the construction of the ordinary

t test statistic, albeit with a shift in the conditioning being performed, we have observed that the

estimation of the interaction coefficient δ can prove to be highly unreliable in joint association

analysis settings, due to the discrete nature of the interacting genetic variants. As the observed

minor allele frequency of the pathogen genetic variant Z drifts away from 0.5 and towards 0, we

have less and less information available to accurately estimate the interaction effect δ, leading to

excess type I errors. We are currently considering some form of regularization or shrinkage to

address this behavior. It should be noted though that this estimation issue naturally diminishes as

the sample size increases. Therefore, we also propose the use of a null correction framework, where

the conditional variance of the numerator of the interaction t test statistic given Y and Z is also

estimated under the null hypothesis of no interaction. Even though this null correction framework

is naturally more conservative than the alternative one, it manages to maintain better type I error

control for observed Z minor allele frequencies below some threshold.

Additionally, we have to be aware of the potential heteroscedasticity in the quantitative trait due

to some unaccounted interaction between the pathogen genetic variant currently being tested and
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some unobserved factor. As we have previously discussed, this heteroscedasticity in the response

variable could lead to overinflated type I error rates if not handled properly. Therefore, we propose

combining our correction framework for the feast or famine effect with the IRLS procedure discussed

in Section 2.3 to account for heteroscedasticity in the quantitative trait. In this unified framework,

the joint association model given by 2.2 is always assumed to be heteroscedastic instead and we elect

to fit the resulting heteroscedastic model by using this implementation of the IRLS procedure which

always converges after just 1 step in the case of the alternative model. The null and alternative

conditional moments of X given Y and Z are finally calculated as previously discussed.

In the Gaussian correction framework, we regress X on the covariate matrix U and the pathogen

genetic variant Z to estimate the required parameters for the conditional distribution of X given

Z. In the discrete correction framework, we employ naive estimators, which are based on the

conditional sample mean of X given Z, for the theoretical allele frequencies fX|z in the conditional

distribution of X given that Z = z.

2.7 Diagnostic Ratio for the Feast or Famine Effect

For a fixed quantitative trait Y and given pathogen genetic variants Z1, Z2, . . . , Zmv , suppose that

we simulate independent host genetic variants X1, X2, . . . , Xmh
which are also independent of Y

and Z. As discussed in previous sections, we would expect that some pathogen genetic variants

are going to display the feast effect, some are going to display the famine effect and some are going

to produce roughly uniform interaction p-values. We could potentially perform this Monte Carlo

experiment every time we get access to new trait vectors and new pathogen genotype vectors for a

joint association analysis, but this procedure could prove to be potentially unreliable for a smaller

number of simulated host genetic variants and time consuming for a larger number of simulated host

genetic variants. Since we have already ascertained that the feast or famine effect is an intrinsic

property of the pair of Y and Z, we would ideally want to calculate an interpretable quantity which

only depends on these 2 observed vectors to predict this phenomenon. Then, we could potentially

decide to only correct the interaction t test statistics corresponding to the pathogen genetic variants

which have been predicted to display the most extreme feast or famine effects using our correction

framework.
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In order to correct for the feast or famine effect in a collection of interaction t test statistics

corresponding to a quantitative trait Y and a pathogen genetic variant Z, our correction framework

essentially entails the substitution of the squared denominator of the test statistic by the conditional

variance of the numerator of the test statistic given Y and Z. Therefore, we assume that the ratio

between these 2 quantities would prove to be a good predictor of the feast or famine effect. Whereas

the conditional variance of the numerator of the test statistic given Y and Z only depends on Y and

Z, the squared denominator of the test statistic also depends on the random host genetic variant

X. Hence, this approach would also require the calculation of the conditional expectation of the

squared denominator of the interaction t test statistic given Y and Z.

Suppose that X ⊥⊥ (Y, Z) with E(X) = µX1n and Var(X) = σ2
XIn. For any vectors A,B ∈ Rn,

we define S′
AB = ATPB and S′

ABZZ = ATPDg
(
HZZTH

)
PB ∈ R, where H = In − 1

n1n1T
n ,

P = In−U
(
UTU

)−1
UT and Dg

(
HZZTH

)
∈ Rn×n is the diagonal matrix whose diagonal elements

are given by the diagonal elements of HZZTH ∈ Rn×n. In this special case, we calculate that:

Var (N∗ | Y, Z) = σ2
X

S′2
ZZS

′
Y Y ZZ − 2S′

Y ZS
′
ZZS

′
Y ZZZ + S′2

Y ZS
′
ZZZZ

S′2
ZZ

.

Similarly to the calculations we have previously performed for the numerator of the interaction t

test statistic in the context of the correction framework, we first need to take an asymptotic approx-

imation of the denominator of the test statistic given Y and Z. Such an asymptotic approximation

is given by:

D2
∗ =

S′
Y Y S

′
ZZ − S′2

Y Z

(n− c− 3)S′
ZZ

[
S′
WW − tr (Q)

n− c
S′
XW

]
− N2

∗
n− c− 3

,

where N∗ is the asymptotic approximation of the numerator of the test statistic given by equation

2.7, Q = Hdiag(HZ)P , W = diag (HZ)HX and diag (HZ) ∈ Rn×n denotes the diagonal matrix

whose diagonal elements are given by the elements of the vector HZ ∈ Rn. Therefore, we conclude

that:

E
(
D2

∗ | Y, Z
)
=

σ2
X

n− c− 3

S′
Y Y S

′
ZZ − S′2

Y Z

S′
ZZ

(n− c)tr
(
QQT)− [tr (Q)]2

n− c
− Var (N∗ | Y, Z)

n− c− 3
.

25



We define the following ratio between the conditional variance of the numerator and the conditional

expectation of the squared denominator of the interaction t test statistic given Y and Z:

R =
Var (N∗ | Y, Z)

E (D2
∗ | Y, Z)

≈ (n− c− 3) (n− c)

(n− c)tr (QQT)− [tr (Q)]2
S′2

ZZS
′
Y Y ZZ − 2S′

Y ZS
′
ZZS

′
Y ZZZ + S′2

Y ZS
′
ZZZZ

S′
Y Y S

′2
ZZ − S′2

Y ZS
′
ZZ

.

(2.11)

In the special case where U = 1n, i.e. in the absence of covariates, we note that tr(Q) = 0 and

tr
(
QQT) = n−2

n S′
ZZ . Hence, these expressions simplify to the following:

E
(
D2

∗ | Y, Z
)
=

σ2
X

n− 4

n− 2

n

(
S′
Y Y S

′
ZZ − S′2

Y Z

)
− Var (N∗ | Y, Z)

n− 4
,

R ≈ n
S′2

ZZS
′
Y Y ZZ − 2S′

Y ZS
′
ZZS

′
Y ZZZ + S′2

Y ZS
′
ZZZZ

S′
Y Y S

′3
ZZ − S′2

Y ZS
′2
ZZ

. (2.12)

Detailed derivations of these asymptotic approximations and conditional moment calculations are

presented in Section 2.10.2. In both cases, we observe that the ratio between the conditional

variance of the numerator and the conditional expectation of the squared denominator of the

interaction t test statistic does not depend on σ2
X or X in general but only on Y and Z. If this ratio

is larger than 1, then the conditional variance of the numerator given Y and Z is on average larger

than the squared denominator, which implies that the interaction test statistics corresponding this

specific pathogen genetic variant are systematically larger than what they should normally be under

the global null hypothesis of no interaction, i.e. this pathogen genetic variant displays the feast

effect. Similarly, if this ratio is smaller than 1, the corresponding pathogen genetic variant displays

the famine effect. If the ratio is close to 1, then our proposed correction framework has little effect

on the distribution of the interaction t test statistic, which means that the original collection of

test statistics corresponding to this pathogen genetic variant is properly calibrated under the global

null hypothesis. According to this, we might surmise that this ratio fulfills a similar role to that

of the genomic control inflation factor in association analyses - informing us about the potential

overinflation or underinflation of a collection of association test statistics due to misspecification of

the association analysis model [71]. We have verified through simulations that there indeed exists
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a particularly strong linear relationship between this ratio and the genomic control inflation factor

of the collection of interaction t test statistics corresponding to the respective pathogen genetic

variant. Therefore, our proposed ratio constitutes an appropriate diagnostic tool to predict the

feast or famine effect in joint association analysis settings without the need to perform any Monte

Carlo experiments.

2.8 Simulation Studies in the Correction Framework

2.8.1 Gaussian Type I Error Study

Before investigating the behavior of the feast or famine effect and assessing the performance of our

correction framework with respect to alleviating this phenomenon, it is important to ascertain that

our corrected interaction test statistics achieve better type I control and display comparable power

to the uncorrected interaction t test statistic. For that reason, we design a couple of simulation

studies where we only simulate a few host genetic variants for every simulated quantitative trait

and pathogen genetic variant pair. In this setting, we can then evaluate the performance of different

interaction test statistics in terms of type I error rate and power across different fixed quantitative

traits and pathogen genetic variants, i.e. across a collection of observed interaction test statistics

where the feast of famine effect is not applicable, since they do not all correspond to the same fixed

quantitative trait and pathogen genetic variant.

We first simulate a pathogen allele frequency fZ ∼ Unif[0.1, 0.9]. Then, we set the sample size n

to be 1, 000 individuals and we simulate independent pathogen genotypes Zi ∼ Bernoulli (fZ) for

i = 1, 2, . . . , n. We set mh = 4 and simulate independent environmental variables Xij ∼ N (0, 1) for

j = 1, 2, . . . ,mh. We set the parameter values β =
(
0,
√
0.025,−

√
0.025,

√
0.05

)
, γ =

√
0.025 and

σ2
ε = 1−∥β∥2−γ2, so that the total variance of the simulated trait is equal to 1 and the proportion

of the total variation explained by each coefficient is prespecified. Lastly, we simulate the following

quantitative trait values:

Yi =
4∑

j=1

βjXij + γZ̃i + εi,

where εi ∼ N
(
0, σ2

ε

)
are independent and Z̃i =

Zi−fZ√
fZ(1−fZ)

is the standardized pathogen genotype.

We observe that there is no true interaction effect between the pathogen genetic variant Z and

27



any of the simulated environmental variables, meaning that there is no heteroscedasticity in the

simulated trait Y . We repeat this simulation 100, 000 times. Type I error rate calculations at

significance level 0.05 are shown in Table 2.1. Type I errors which are significantly different from

the nominal level of 0.05 at level 0.01 are displayed in bold text.

Type I Error
δ1 δ2 δ3 δ4

No Correction 0.04918 0.05109 0.04997 0.04964

HC3 0.04947 0.05066 0.05040 0.04984

IRLS 0.04915 0.05168 0.05048 0.04989

Null Gaussian Correction 0.04860 0.05064 0.04971 0.04956

Alternative Gaussian Correction 0.04960 0.05180 0.05079 0.05069

Table 2.1: Type I Error Rates in the Gaussian Case

We observe that the uncorrected interaction t test statistic maintains correct type I error control

in the absence of heteroscedasticity in the quantitative trait. Blanket use of the heteroscedasticity

correction methods described in Section 2.3 such as the heteroscedasticity-consistent (HC) estimator

corresponding to the covariance matrix Φ̂3, our proposed iteratively reweighted least squares (IRLS)

procedure and our entire correction framework have no significant impact on that type I error

control. It is also important to note that there inherently exists a severe model misspecification in

our fitted models for this joint association analysis, since only one Xj is taken into account at a

time, ignoring the significant additive effects of the rest on the simulated quantitative trait.

2.8.2 Gaussian Power Study

We first simulate a pathogen allele frequency fZ ∼ Unif[0.1, 0.9]. Then, we set the sample size n

to be 1, 000 individuals and we simulate independent pathogen genotypes Zi ∼ Bernoulli (fZ) for

i = 1, 2, . . . , n. We set mh = 4 and simulate independent environmental variables Xij ∼ N (0, 1)

for j = 1, 2, . . . ,mh. We set the parameter values β =
(
0,
√
0.025,−

√
0.025,

√
0.05

)
, γ =

√
0.025,

δ =
(
0, 0, 0,

√
0.025

)
and σ2

ε = 1−∥β∥2−γ2−∥δ∥2, so that the total variance of the simulated trait

is equal to 1 and the proportion of the total variation explained by each coefficient is prespecified.
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Lastly, we simulate the following quantitative trait values:

Yi =
4∑

j=1

βjXij + γZ̃i +
4∑

j=1

δjXijZ̃i + εi,

where εi ∼ N
(
0, σ2

ε

)
are independent and Z̃i =

Zi−fZ√
fZ(1−fZ)

is the standardized pathogen genotype.

We observe that there is one true interaction effect between the pathogen genetic variant Z and

the environmental variable X4, meaning that the quantitative trait Y is going to be heteroscedastic

when that interaction effect is not accounted for. We repeat this simulation 100, 000 times. Type

I error rate calculations at significance level 0.05 and power calculations at significance level 10−5

are shown in Table 2.2. Type I errors which are significantly different from the nominal level of

0.05 at level 0.01 are displayed in bold text.

Type I Error Power
δ1 δ2 δ3 δ4

No Correction 0.05510 0.05650 0.05467 0.78517

HC3 0.05036 0.05198 0.05011 0.77222

IRLS 0.05076 0.05208 0.05014 0.78514

Null Gaussian Correction 0.04963 0.05108 0.04933 0.74398

Alternative Gaussian Correction 0.05060 0.05224 0.05033 0.77951

Table 2.2: Type I Error Rates and Power in the Gaussian Case

We observe that the uncorrected interaction t test statistic displays significantly overinflated type I

error rates across the board in the presence of heteroscedasticity in the quantitative trait. Blanket

use of the heteroscedasticity correction methods described in Section 2.3 manage to attain better

type I error control. At the same time, we note that our proposed IRLS procedure achieves slightly

higher power than the existing HC3 covariance matrix approach, while also maintaining almost

the same power as that of the severely overinflated uncorrected interaction t test statistic. Our

proposed null and alternative Gaussian correction frameworks also attain better type I error control,

with the alternative Gaussian correction consistently exhibiting slightly more overinflated type I

error rates and higher power than the null Gaussian correction, as well as comparable power to the

severely overinflated uncorrected interaction test statistic. Again, we note that there inherently

exists an even more severe model misspecification in our fitted models for this joint association
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analysis, since only one Xj is taken into account at a time, ignoring the significant additive effects

of X2, X3, X4 as well as the significant interaction effect between X4 and Z on the simulated

quantitative trait.

2.8.3 Gaussian Feast or Famine Study

We first simulate a pathogen allele frequency fZ ∼ Unif[0.1, 0.9]. Then, we set the sample size

n to be 1, 000 individuals and we simulate independent pathogen genotypes Zi ∼ Bernoulli (fZ)

for i = 1, 2, . . . , n. We set mh to be equal to 10, 000 and simulate independent environmental

variables Xij ∼ N (0, 1) for j = 1, 2, . . . ,mh. Lastly, we simulate independent quantitative trait

values Yi ∼ N (0, 1) under the global null hypothesis of no interaction. We repeat this simula-

tion mv = 1, 000 times. At the same time as performing the pertinent joint GWAS testing for

interactions between each possible pair of simulated pathogen genetic variants and environmental

variables on the quantitative trait, we also perform a marginal association analysis of the simulated

environmental variables on the quantitative trait.

For the collection of mh interaction test statistics corresponding to each simulation replicate, we

calculate a list of diagnostic quantities relating to the feast or famine effect. Let F denote the cumu-

lative distribution function of the chi-squared distribution with 1 degree of freedom. Then, we cal-

culate a genomic control inflation factor for the collection of interaction p-values p1k, p2k, . . . , pmhk

for k = 1, 2, . . . ,mv as follows:

λk =
median

{
F−1(1− p1k), . . . , F

−1(1− pmhk)
}

F−1(0.5)
,

where F−1(0.5) ≈ 0.456 denotes the theoretical median of the chi-squared distribution with 1 degree

of freedom [71]. Under the global null hypothesis of no interaction, we ideally want this quantity

to take values close to 1. As previously discussed though, we expect to observe an unusually

high variation of genomic control inflation factors in this joint association analysis due to the

feast or famine effect. Additionally, we create a Q-Q plot for the collection of interaction p-values

p1k, p2k, . . . , pmhk with simultaneous confidence based on the equal local levels global test statistic

using the qqconf package [59] developed in R. A 2-sided Q-Q plot p-value can then be calculated
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as the maximum significance level at which we cannot reject the null hypothesis of uniformity

for the set of interaction p-values. We would expect these Q-Q plot p-values to follow the uniform

distribution under the global null hypothesis of no interaction. We also repeat these calculations for

each set of marginal GWAS p-values as well as each set of corrected interaction p-values. Lastly, we

calculate the value of our proposed diagnostic ratio for each pair of a simulated trait and pathogen

genetic variant.

First, we look at how the distribution of genomic control inflation factors around 1 based on the

joint GWAS compares against the one based on the marginal GWAS, shown in Figure 2.1. We

indeed observe a staggering amount of variation in the joint GWAS genomic control inflation factors

compared to what one would normally expect in an ordinary marginal GWAS. On the other hand,

the distribution of the genomic control inflation factors based on any of our proposed correction

frameworks closely matches the one based on the marginal GWAS, as shown in Figure 2.2.

Figure 2.1: Histograms of Uncorrected Joint vs. Marginal Genomic Control Inflation Factors in the
Gaussian Case

Then, we can take a look at the Q-Q plots of the interaction p-values corresponding to the pathogen

genetic variants with the largest and smallest uncorrected genomic control inflation factors, shown

in Figure 2.3. The deviation of these collections of interaction p-values from uniformity is astound-

ing, even though this simulation is performed under the global null hypothesis of no interaction.

More specifically, the left Q-Q plot represents the potential extremity of the feast effect in joint
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Figure 2.2: Histograms of Corrected Joint vs. Marginal Genomic Control Inflation Factors in the Gaussian
Case

association analyses, where an unbelievable amount of false discoveries would be committed by

using the uncorrected interaction t test statistic, while the right Q-Q plot represents the potential

extremity of the famine effect, where there would never be enough power to detect important in-

teraction signals. For reference, we compare these Q-Q plots against the Q-Q plots of the p-values

from the marginal association analyses corresponding to the largest and smallest marginal genomic

control inflation factors. We note that even the most extreme marginal association p-value distribu-

tions are essentially indistinguishable from the uniform distribution, since they do not necessarily

coincide with the marginal association p-value distributions with the smallest Q-Q plot p-values. In

comparison, the distributions of our corrected interaction p-values are also indistinguishable from

uniform in these cases, as shown in Figure 2.4, indicating that our correction frameworks manage

to correct for the extreme nature of both the feast as well as the famine effect.

Then, we look at the Q-Q plots of the 2-sided Q-Q plot p-values before and after correction, as

well as the the Q-Q plot of the 2-sided Q-Q plot p-values corresponding to the marginal GWAS, all

displayed in Figure 2.5. It should be noted that this Q-Q plot is fundamentally different compared

to the previously discussed Q-Q plots which were Q-Q plots of actual interaction and association

p-values. These Q-Q plots essentially serve as a meta-analysis for our collection of association

analyses corresponding to different quantitative trait and pathogen genetic variant pairs, hence we
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Figure 2.3: Q-Q Plots Displaying the Feast or Famine Effect in the Gaussian Case

Figure 2.4: Q-Q Plots Displaying the Correction of the Feast or Famine Effect in the Gaussian Case

sometimes refer to them as meta Q-Q plots. We observe that the uncorrected Q-Q plot p-values

tend to be much smaller than what one would expect under the uniform distribution. On the

other hand, the distribution of the Q-Q plot p-values based on our null correction framework are

practically indistinguishable from the uniform distribution and closely match those corresponding to

the marginal GWAS, which implies that the null correction performs perfectly in terms of correcting

the feast or famine effect. The alternative correction framework performs much better than the
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uncorrected interaction t test statistic in terms of the feast or famine effect, but consistently displays

slightly smaller than uniform Q-Q p-values, mostly owing to the unreliability in the estimation of

δ̂ discussed in Section 2.6.

Figure 2.5: Comparison of Q-Q Plots of Uncorrected, Corrected and Marginal 2-Sided Q-Q Plot P-Values
in the Gaussian Case

Finally, we evaluate the performance of our proposed diagnostic ratio. Plotting histograms of the

diagnostic ratio and the uncorrected genomic control inflation factors on top of each other - Figure

2.6 - reveals that the 2 distributions closely match each other, even though the distribution of the

diagnostic ratio displays slightly lighter tail behavior. A scatterplot of the uncorrected genomic

control inflation factors against the diagnostic ratio, shown in Figure 2.7, verifies the strong linear

relationship between them. We note that the sample correlation between these 2 quantities is

calculated to be 92.4%.

When performing a GWAS, rather than being interested in the median result, we are particularly

interested in the behavior of the smallest p-values. Therefore, we also consider the ability of our

diagnostic ratio to predict the tail behavior of the interaction p-values. To do this, we calculate

the 5% sample quantiles for each collection of uncorrected interaction p-values p1k, p2k, . . . , pmhk

and plot them on the − log10 scale against the diagnostic ratio, shown in Figure 2.8. We observe

that the diagnostic ratio performs fantastically in predicting the behavior of the smallest uncor-

rected interaction p-values. As a reference, the sample correlation between these 2 quantities was
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Figure 2.6: Histograms of Uncorrected Genomic Control Inflation Factors vs. Diagnostic Ratio in the
Gaussian Case

Figure 2.7: Scatterplot of Uncorrected Genomic Control Inflation Factors vs. Diagnostic Ratio in the
Gaussian Case

calculated to be equal to 94.97%. We note that performance of our proposed diagnostic ratio in

predicting the median and tail behavior of the uncorrected interaction p-values remains the same

even if the pathogen genetic variant has a significant effect on the simulated quantitative trait, since

the relationship between Z and Y is always taken into account in our computations and there are

absolutely no assumptions placed upon it.
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Figure 2.8: Scatterplot of 5% Quantiles of Uncorrected P-Values on the Log Scale vs. Diagnostic Ratio in
the Gaussian Case

2.8.4 Null Binomial Study

Consider the following 2-by-3 contingency table between a host SNP and a pathogen genetic variant:

Host
Counts 0 1 2

Pathogen
0 a b c

1 d e f

We define the minimum cell count of the contingency table and the minor allele count of the host

SNP as follows:

MCC = min

{
a+

b

2
, c+

b

2
, d+

e

2
, f +

e

2

}
,

MAC = min

{
a+ d+

b+ e

2
, c+ f +

b+ e

2

}
.

In other words, each host allele copy counts as 0.5. We first simulate a pathogen allele frequency

fZ ∼ Unif[0, 1]. Then, we set the sample size n to be 1, 000 individuals and we simulate independent

pathogen genotypes Zi ∼ Bernoulli (fZ) for i = 1, 2, . . . , n. We set the number of host genetic

variants mh to be equal to 1. We simulate a host allele frequency fX ∼ Unif[0, 1] and independent
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host genotypes Xi ∼ Binomial (2, fX). Lastly, we simulate independent quantitative trait values

Yi ∼ N (0, 1) under the global null hypothesis of no interaction. We repeat this simulation 1, 000, 000

times.

We are interested in ascertaining the behavior of our corrected interaction test statistics for small

allele counts and minimum cell counts. Since we are considering a diploid host organism, the

assumption that (Xi | Zi = z) ∼ Binomial
(
2, fX|z

)
makes sense in the context of our discrete

correction framework. Hence, we derive the null and alternative binomial correction framework,

whose performance we are going to evaluate in the following section on top of that of the established

Gaussian correction frameworks. First, we divide our interaction tests into 100 equally sized bins

with respect to their Z minor allele count, which ranges from 0 to 500. Plotting the type I error

rate of our uncorrected and corrected interaction test statistics as a function of the median Z

minor allele count of each bin, shown in Figure 2.9, reveals that the alternative binomial correction

becomes severely overinflated as the Z minor allele count approaches 0. Note that 95% Wald

confidence bands with multiple testing adjustment are drawn for reference. Therefore, we propose

to set a lower threshold of 80 on the Z minor allele count and only consider applying the alternative

binomial correction on pathogen genetic variants with a Z minor allele count above that threshold.

In contrast, Z minor allele count has no effect on the uncorrected interaction test statistic and the

null binomial correction.

Next, we repeat the same with respect to the X minor allele count. Contrary to the behavior of our

alternative binomial correction with respect to the Z minor allele count, we observe that the type

I error rate of the alternative binomial correction gets severely underinflated as the X minor allele

count approaches 0, as shown in Figure 2.10. Hence, we propose to set a threshold of 50 on the

X minor allele count and only consider applying the alternative binomial correction on pathogen

genetic variants with X minor allele counts above that threshold to avoid substantial loss of power.

In contrast, X minor allele count has no effect on the uncorrected interaction test statistic and the

null binomial correction.

Finally, we repeat the same with respect to the previously defined notion of a minimum cell count.

The behavior of the type I error rates of the alternative binomial correction with respect to minimum
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Figure 2.9: Uncorrected vs. Corrected Type I Error Rates Aggregated by Z Minor Allele Count in the
Null Binomial Case

Figure 2.10: Uncorrected vs. Corrected Type I Error Rates Aggregated by X Minor Allele Count in the
Null Binomial Case

cell count, displayed in Figure 2.11, is hard to disentangle because of the opposite effect that

X and Z minor allele counts have on it. However, we can observe that a minimum cell count

threshold of 10 should ideally be set on the alternative binomial correction to ensure that there

jointly exists enough information between the host and the pathogen genetic variant to accurately

estimate all the required parameters for the correction framework. Additionally, we believe that a
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minimum cell count threshold of 5 should be set on the null binomial correction and the uncorrected

interaction test statistic for the same reason. Further simulation studies, not included as part of

this dissertation, reveal that all of these thresholds do not depend on sample size, while also being

directly transferable to the null and alternative Gaussian correction frameworks. We are currently

considering the use of Fisher’s information as a more reliable measure of whether a specific pair of

host and pathogen genetic variants contain enough combined information for reliable testing of an

interaction effect between them on a quantitative trait of interest.

Figure 2.11: Uncorrected vs. Corrected Type I Error Rates Aggregated by Minimum Cell Count in the
Null Binomial Case

2.8.5 Correlated Binomial Study

We first set the number of host genetic variants mh to be equal to 1. We simulate a pathogen allele

frequency fZ ∼ Unif[0.1, 0.5], a host allele frequency fX ∼ Unif[0.1, 0.5] and a correlation level

ρ ∼ Unif[0, 0.2]. Then, we set the sample size n to be 1, 000 individuals. We simulate independent

pathogen genotypes Zi ∼ Bernoulli (fZ) and independent host genotypes Xi ∼ Binomial (2, fX)

with a correlation of ρ between them for i = 1, 2, . . . , n. Lastly, we simulate independent quanti-

tative trait values Yi ∼ N (0, 1) under the global null hypothesis of no interaction. We repeat this

simulation 1, 000, 000 times.

We are interested in ascertaining the behavior of our corrected interaction test statistics for corre-

39



lated host and pathogen genetic variants. We divide our interaction tests into 100 equally sized

bins with respect to their observed correlation level, which roughly ranges from 0 to 0.2. Plotting

the type I error rate of our uncorrected and corrected interaction test statistics as a function of

the median correlation level of each bin, shown in Figure 2.12, reveals that the type I error rates

of our correction frameworks get slightly underinflated as the correlation level increases. Note that

95% Wald confidence bands with multiple testing adjustment are again drawn for reference. This

phenomenon can be explained by the fact that as the correlation level between X and Z increases,

so does the minimum cell count between them decrease on average. A plot of the type I error rates

of our uncorrected and corrected interaction test statistics as a function of the median minimum

cell count of each bin, where this underinflation of type I error rates for smaller minimum cell

counts is evident, is given in Figure 2.13. Testing for interactions between highly correlated genetic

variants is generally hard to interpret in any case, so we propose to set an upper threshold of 0.1 on

correlation level and only consider applying the binomial correction framework on pathogen genetic

variants with a correlation level below that threshold.

Figure 2.12: Uncorrected vs. Corrected Type I Error Rates Aggregated by Correlation between X and Z
in the Correlated Binomial Case

2.8.6 Binomial Type I Error Study

We first simulate a pathogen allele frequency fZ ∼ Unif[0.1, 0.9]. Then, we set the sample size n

to be 1, 000 individuals and we simulate independent pathogen genotypes Zi ∼ Bernoulli (fZ) for
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Figure 2.13: Uncorrected vs. Corrected Type I Error Rates Aggregated by Minimum Cell Count in the
Correlated Binomial Case

i = 1, 2, . . . , n. We set the number of host genetic variants mh to be equal to 4. We simulate a

independent host allele frequencies fXj ∼ Unif[0.1, 0.9] and host genotypes Xij ∼ Binomial
(
2, fXj

)
for j = 1, 2, . . . ,mh. We set the parameter values β =

(
0,
√
0.025,−

√
0.025,

√
0.05

)
, γ =

√
0.025

and σ2
ε = 1 − ∥β∥2 − γ2, so that the total variance of the simulated trait is equal to 1 and the

proportion of the total variation explained by each coefficient is prespecified. Lastly, we simulate

the following quantitative trait values:

Yi =
4∑

j=1

βjX̃ij + γZ̃i + εi, X̃ij =
Xij − 2fXj√
2fXj

(
1− fXj

) , Z̃i =
Zi − fZ√
fZ (1− fZ)

,

where εi ∼ N
(
0, σ2

ε

)
are independent. We observe that there is no true interaction effect between

the pathogen genetic variant Z and any of the simulated host genetic variants, meaning that there

is no heteroscedasticity in the simulated trait Y . We repeat this simulation 100, 000 times. Type

I error rate calculations at significance level 0.05 are shown in Table 2.3. Type I errors which are

significantly different from the nominal level of 0.05 at level 0.01 are displayed in bold text.

We observe that the uncorrected interaction t test statistic maintains correct type I error control

in the absence of heteroscedasticity in the quantitative trait. Blanket use of the heteroscedasticity

correction methods described in Section 2.3 such as the heteroscedasticity-consistent (HC) estimator
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Type I Error
δ1 δ2 δ3 δ4

No Correction 0.04930 0.05043 0.04977 0.05031

HC3 0.04946 0.05080 0.05035 0.05121

IRLS 0.04978 0.05100 0.05041 0.05065

Null Gaussian Correction 0.04933 0.04991 0.04958 0.04986

Alternative Gaussian Correction 0.05018 0.05087 0.05057 0.05099

Null Binomial Correction 0.04919 0.05000 0.04972 0.05045

Alternative Binomial Correction 0.05062 0.05139 0.05087 0.05189

Table 2.3: Type I Error Rates in the Binomial Case

corresponding to the covariance matrix Φ̂3, our proposed iteratively reweighted least squares (IRLS)

procedure and our entire correction framework have no significant impact on that type I error

control. It is also important to note that there inherently exists a severe model misspecification in

our fitted models for this joint association analysis, since only one Xj is taken into account at a

time, ignoring the significant additive effects of the rest on the simulated quantitative trait.

2.8.7 Binomial Power Study

We first simulate a pathogen allele frequency fZ ∼ Unif[0.1, 0.9]. Then, we set the sample size n

to be 1, 000 individuals and we simulate independent pathogen genotypes Zi ∼ Bernoulli (fZ) for

i = 1, 2, . . . , n. We set the number of host genetic variants mh to be equal to 4. We simulate a

host allele frequency fX ∼ Unif[0.1, 0.9] and independent host genotypes Xij ∼ Binomial (2, fX)

for j = 1, 2, . . . ,mh. We set the parameter values β =
(
0,
√
0.025,−

√
0.025,

√
0.05

)
, γ =

√
0.025,

δ =
(
0, 0, 0,

√
0.025

)
and σ2

ε = 1−∥β∥2−γ2−∥δ∥2, so that the total variance of the simulated trait

is equal to 1 and the proportion of the total variation explained by each coefficient is prespecified.

Lastly, we simulate the following quantitative trait values:

Yi =
4∑

j=1

βjX̃ij + γZ̃i +
4∑

j=1

δjX̃ijZ̃i + εi, X̃ij =
Xij − 2fXj√
2fXj

(
1− fXj

) , Z̃i =
Zi − fZ√
fZ (1− fZ)

,

where εi ∼ N
(
0, σ2

ε

)
are independent. We observe that there is one true interaction effect between

the pathogen genetic variant Z and the host genetic variant X4, meaning that the quantitative
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trait Y is going to be heteroscedastic when that interaction effect is not accounted for. We repeat

this simulation 100, 000 times. Type I error rate calculations at significance level 0.05 and power

calculations at significance level 10−5 are shown in Table 2.4. Type I errors which are significantly

different from the nominal level of 0.05 at level 0.01 are displayed in bold text.

Type I Error Power
δ1 δ2 δ3 δ4

No Correction 0.05581 0.05559 0.05469 0.78594

HC3 0.05162 0.05067 0.05035 0.77295

IRLS 0.05171 0.05123 0.05014 0.78508

Null Gaussian Correction 0.05071 0.05018 0.04917 0.74506

Alternative Gaussian Correction 0.05181 0.05134 0.05015 0.78003

Null Binomial Correction 0.05128 0.05054 0.04935 0.74621

Alternative Binomial Correction 0.05250 0.05174 0.05081 0.78871

Table 2.4: Type I Error Rates and Power in the Binomial Case

We observe that the uncorrected interaction t test statistic displays significantly overinflated type I

error rates across the board in the presence of heteroscedasticity in the quantitative trait. Blanket

use of the heteroscedasticity correction methods described in Section 2.3 manage to attain correct

type I error control. At the same time, we note that our proposed IRLS procedure achieves slightly

higher power than the existing HC3 covariance matrix approach, while also maintaining almost the

same power as that of the significantly overinflated uncorrected interaction t test statistic. Our

proposed null and alternative correction frameworks also attain better type I error control, with

the alternative corrections consistently exhibiting slightly more overinflated type I error rates and

higher power than the null corrections, as well as comparable power to the severely overinflated

uncorrected interaction test statistic. Again, we note that there inherently exists an even more

severe model misspecification in our fitted models for this joint association analysis, since only one

Xj is taken into account at a time, ignoring the significant additive effects of X2, X3, X4 as well

as the significant interaction effect between X4 and Z on the simulated quantitative trait.
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2.8.8 Binomial Feast or Famine Study

We first simulate a pathogen allele frequency fZ ∼ Unif[0.1, 0.9]. Then, we set the sample size

n to be 1, 000 individuals and we simulate independent pathogen genotypes Zi ∼ Bernoulli (fZ)

for i = 1, 2, . . . , n. We set the number of host genetic variants mh to be equal to 10, 000. We

simulate independent host allele frequencies fX1 , fX2 , . . . , fXmh
∼ Unif[0.1, 0.9] and independent

host genotypes Xij ∼ Binomial
(
2, fXj

)
for j = 1, 2, . . . ,mh. Lastly, we simulate the following

quantitative trait values Yi ∼ N (0, 1) under the global null hypothesis of no interaction. We repeat

this simulation mv = 1, 000 times. At the same time as performing the pertinent joint GWAS

testing for interactions between each possible pair of simulated pathogen and host genetic variants

on the quantitative trait, we also perform a marginal GWAS of the simulated host genetic variants

on the quantitative trait.

For the collection of mh interaction test statistics corresponding to each simulation replicate, we

calculate the same list of diagnostic quantities relating to the feast or famine effect. In general, the

behavior of the feast or famine effect in the binomial setting is similar to the Gaussian setting in

terms of the uncorrected interaction test statistic. However, we can also evaluate the performance

of our proposed binomial correction frameworks compared to that of the Gaussian correction frame-

works in this setting. First, we look at how the distribution of genomic control inflation factors

around 1 based on the joint GWAS compares against the one based on the marginal GWAS, shown

in Figure 2.14. We indeed observe a staggering amount of variation in the joint GWAS genomic

control inflation factors compared to what one would normally expect in an ordinary marginal

GWAS. On the other hand, the distribution of the genomic control inflation factors based on any

of our proposed correction frameworks closely matches the one based on the marginal GWAS, as

shown in Figure 2.15.

Then, we can take a look at the Q-Q plots of the interaction p-values corresponding to the pathogen

genetic variants with the largest and smallest uncorrected genomic control inflation factors, shown

in Figure 2.16. The deviation of these collections of interaction p-values from uniformity is astound-

ing, even though this simulation is performed under the global null hypothesis of no interaction.

More specifically, the left Q-Q plot represents the potential extremity of the feast effect in joint
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Figure 2.14: Histograms of Uncorrected Joint vs. Marginal Genomic Control Inflation Factors in the
Binomial Case

Figure 2.15: Histograms of Corrected Joint vs. Marginal Genomic Control Inflation Factors in the Binomial
Case

association analyses, where an unbelievable amount of false discoveries would be committed by

using the uncorrected interaction t test statistic, while the right Q-Q plot represents the potential

extremity of the famine effect, where there would never be enough power to detect important in-

teraction signals. For reference, we compare these Q-Q plots against the Q-Q plots of the p-values

from the marginal association analyses corresponding to the largest and smallest marginal genomic
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control inflation factors. We note that even the most extreme marginal association p-value distribu-

tions are essentially indistinguishable from the uniform distribution, since they do not necessarily

coincide with the marginal association p-value distributions with the smallest Q-Q plot p-values. In

comparison, the distributions of our corrected interaction p-values are also indistinguishable from

uniform in these cases, as shown in Figure 2.17, indicating that our correction frameworks manage

to correct for the extreme nature of both the feast as well as the famine effect.

Figure 2.16: Q-Q Plots Displaying the Feast or Famine Effect in the Binomial Case

Figure 2.17: Q-Q Plots Displaying the Correction of the Feast or Famine Effect in the Binomial Case

Then, we look at the Q-Q plots of the 2-sided Q-Q plot p-values before and after correction, as
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well as the the Q-Q plot of the 2-sided Q-Q plot p-values corresponding to the marginal GWAS, all

displayed in Figure 2.18. It should be noted that this Q-Q plot is fundamentally different compared

to the previously discussed Q-Q plots which were Q-Q plots of actual interaction and association

p-values. These Q-Q plots essentially serve as a meta-analysis for our collection of joint association

analyses corresponding to different quantitative trait and pathogen genetic variant pairs, hence we

sometimes refer to them as meta Q-Q plots. We observe that the uncorrected Q-Q plot p-values

tend to be much smaller than what one would expect under the uniform distribution. On the

other hand, the distribution of the Q-Q plot p-values based on our null correction frameworks are

practically indistinguishable from the uniform distribution and closely match those corresponding

to the marginal GWAS, which implies that the null correction performs perfectly in terms of

correcting the feast or famine effect. The alternative binomial correction framework performs

much better than the uncorrected interaction t test statistic in terms of the feast or famine effect,

but consistently displays smaller than uniform Q-Q p-values. The alternative Gaussian correction

framework performs much better than both the uncorrected interaction t test statistic and the

alternative binomial correction in terms of the feast or famine effect, only displaying slightly smaller

than uniform Q-Q plot p-values

Figure 2.18: Comparison of Q-Q Plots of Uncorrected, Corrected and Marginal 2-Sided Q-Q Plot P-Values
in the Binomial Case

Finally, we evaluate the performance of our proposed diagnostic ratio. The behavior of the diag-
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nostic ratio in the binomial setting is practically identical to that of the Gaussian setting, but we

also present the same diagnostic plots in this case, which is of much greater interest in the context

of testing for interactions in joint GWAS settings. Plotting histograms of the diagnostic ratio and

the uncorrected genomic control inflation factors on top of each other - Figure 2.19 - reveals that

the 2 distributions closely match each other, even though the distribution of the diagnostic ratio

displays slightly lighter tail behavior. A scatterplot of the uncorrected genomic control inflation

factors against the diagnostic ratio, shown in Figure 2.20, verifies the strong linear relationship

between them. We note that the sample correlation between these 2 quantities is calculated to be

92.03%.

Figure 2.19: Histograms of Uncorrected Genomic Control Inflation Factors vs. Diagnostic Ratio in the
Binomial Case

When performing a GWAS, rather than being interested in the median result, we are particularly

interested in the behavior of the smallest p-values. Therefore, we also consider the ability of our

diagnostic ratio to predict the tail behavior of the p-values. To do this, we calculate the 5% sample

quantiles for each collection of uncorrected interaction p-values p1k, p2k, . . . , pmhk and plot them on

the − log10 scale against the diagnostic ratio, shown in Figure 2.21. We observe that the diagnostic

ratio performs fantastically in predicting the behavior of the smallest uncorrected interaction p-

values. As a reference, the sample correlation between these 2 quantities was calculated to be equal

to 94.51%.
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Figure 2.20: Scatterplot of Uncorrected Genomic Control Inflation Factors vs. Diagnostic Ratio in the
Binomial Case

Figure 2.21: Scatterplot of 5% Quantiles of Uncorrected P-Values on the Log Scale vs. Diagnostic Ratio
in the Binomial Case

2.8.9 Correlated Binomial Feast or Famine Study

We first set the number of host genetic variants mh to be equal to 10, 000. We simulate a pathogen al-

lele frequency fZ ∼ Unif[0.1, 0.5], independent host allele frequencies fX1 , . . . , fXmh
∼ Unif[0.1, 0.5]

and independent correlation levels ρ1, ρ1, . . . , ρ100 ∼ Unif[0, 0.1]. Then, we set the sample size n

to be 1, 000 individuals and ρj = 0 for j = 101, 102, . . . ,mh. We simulate independent pathogen
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genotypes Zi ∼ Bernoulli (fZ) and independent host genotypes Xij ∼ Binomial (2, fX) with a corre-

lation of ρj between them for i = 1, 2, . . . , n and j = 1, 2, . . . ,mh. Lastly, we simulate independent

quantitative trait values Yi ∼ N (0, 1) under the global null hypothesis of no interaction. We repeat

this simulation 1, 000 times.

In general, the behavior of the feast or famine effect in the correlated binomial setting is similar

to the uncorrelated binomial setting in terms of the uncorrected interaction test statistic. The

genomic control inflation factors based on any of our proposed correction frameworks are again

much more tightly concentrated around 1 compared to those based on the uncorrected interaction

test statistic, as shown in Figure 2.22. Looking at the Q-Q plots of the 2-sided Q-Q plot p-values

before and after correction, displayed in Figure 2.23, we notice that our alternative correction

frameworks perform much better in terms of ameliorating the feast or famine effect compared to

the uncorrelated binomial setting. This happens because the tendency of the alternative correction

frameworks to produce smaller than uniform Q-Q plot p-values is counteracted by the previously

discussed underinflation in the type I error rates of the corrected interaction test statistic in the

presence of tangible correlation between host and pathogen genetic variants.

Figure 2.22: Histograms of Uncorrected vs. Corrected Genomic Control Inflation Factors in the Correlated
Binomial Case
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Figure 2.23: Comparison of Q-Q Plots of Uncorrected and Corrected 2-Sided Q-Q Plot P-Values in the
Correlated Binomial Case

2.9 Discussion and Future Work

Identifying gene-gene and gene-environment interactions provides valuable insights into the genetic

architecture on complex traits and underlying biological mechanisms. Integrating genomes from

different organisms into a GWAS has the potential of revealing genomic regions indicative of co-

evolution between species, especially in the case of pathosystems, where pathogens and hosts co-

evolve to determine disease status. In the context of testing for interaction in GWAS settings, we

have verified the existence of the "feast or famine" effect, which drives collections of interaction p-

values corresponding to a fixed host or pathogen genetic variant to exhibit fundamentally different

null distributions from the known null distribution of the employed interaction test statistic [12].

This effect applies to all kinds of host-pathogen genetic variants or environmental variables and

affects standard testing methods such as the t test, the Wald test, the likelihood ratio test or the

score test for interaction. We clarify that this phenomenon specifically impacts interaction testing

in joint GWAS settings and not ordinary association testing in a marginal GWAS of just a single

organism.

When considering simulated quantitative traits without any interaction effect between host and

pathogen genetic variants, hence without any trait heteroscedasticity, standard interaction testing
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methods maintain correct type I error rates overall. However, certain fixed pathogen genetic variants

tend to consistently produce excess false discoveries, displaying the "feast" effect, while other fixed

pathogen genetic variants tend to consistently produce false negative results, displaying the "famine"

effect. The "feast or famine" effect invariably leads to excessive type I error rates, reduced power

and association results which are impossible to replicate [12].

This feast or famine effect is an intrinsic property of the fixed quantitative trait and the fixed

pathogen genetic variant in the conduction of interaction tests with all available host genetic vari-

ants and can be corrected by properly conditioning the interaction test statistic on the fixed quanti-

tative trait and pathogen genetic variant pair instead of conditioning on the pair of genetic variants

which are being tested for interaction [12]. This idea of changing the standard conditioning of the

interaction test statistic in a joint GWAS led us to the development of a correction framework

for the ordinary t test statistic in the context of testing for host-pathogen interaction effects. This

framework appropriately incorporates important covariates and accounts for heteroscedasticity aris-

ing from latent interaction effects between one of the genetic variants being tested for interaction

and some unaccounted factor. Multiple simulation studies demonstrate that the correction frame-

work significantly ameliorates the feast or famine effect while preserving correct overall type I error

and comparable power to the improperly calibrated interaction t test statistic.

Finally, we developed a diagnostic ratio which accurately predicts the prevalence of the feast or

famine effect given a fixed quantitative trait and pathogen genetic variant pair. This diagnostic

ratio is a natural byproduct of the procedure we utilize to adjust interaction t test statistic in the

presence of the feast or famine effect, depends only on the fixed quantitative trait and pathogen

genetic variant pair and is closely associated with the notion of the genomic control inflation factor

for a collection of interaction t test statistics. Therefore, our proposed ratio constitutes a fast and

interpretable diagnostic tool to predict the feast or famine effect in joint GWAS settings without

the need to perform any arduous Monte Carlo experiments.

Our efforts so far have revolved around fixing a binary variable, which might represent a pathogen

genetic variant or an environmental factor, and performing interaction tests between it and all other

available genetic variants. However, our correction framework would also be broadly applicable in
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studies for the detection of epistasis in diploid organisms, where all available genetic variants would

be binomially distributed instead. The induced heteroscedasticity structure in the quantitative

trait under the presence of latent interaction effects between genetic variants would be significantly

more complex in a setting such as this. It is entirely possible that our current approaches for

correcting heteroscedasticity in the trait might be too rudimentary in the presence of more complex

heteroscedasticity structures, requiring the development of more sophisticated heteroscedasticity

correction methods. More specifically, we think that construction of the correction framework on

the basis of an interaction test statistic which already accounts for heteroscedasticity might be

required, rather than solely addressing potential heteroscedasticity in the context of model fitting

and parameter estimation.

Our proposed alternative correction frameworks are still not entirely correcting the feast or famine

effect, which hinders attempts of employing a global testing procedure, such as ADELLE [56], to

test whether there exists at least one significant interaction between a fixed pathogen genetic variant

and any available host genetic variant. Since our correction framework would theoretically perform

perfectly at correcting the feast or famine effect in the absence of the need for parameter estimation

and it does normally perform better and better as the sample size increases, our understanding

is that this imperfect correction of the feast or famine effect is mostly due to unreliable estima-

tion of the interaction effect between genetic variants with fairly small minor allele frequencies by

conventional fitting procedures. We are currently considering the incorporation of some form of reg-

ularization, such as Lasso regression, or some sort of shrinkage for the conditional probabilities of

Xi given Yi and Zi towards the corresponding conditional probabilities given by the null correction

framework. Although hard to interpret or generalize, we believe that some form of regularization

or shrinkage might be able to address the parameter estimation issues of the alternative correction

frameworks.

Testing for interactions between different organisms belonging to the same species, e.g. interactions

between different strains of the same pathogen co-infecting the same host organism, or different

genetic variants belonging to the same organism, i.e. epistasis detection, also invites other con-

siderations. Electing to fix a pathogen genetic variant and test for interactions between it and

all available host genetic variants makes sense in the context of host-pathogen GWAS settings for
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reasons of computational efficiency and design of global testing procedures. However, selecting

which variable to condition on is not at all obvious when the 2 collections of genetic variants to

be tested for interactions are symmetric. Choosing which of the 2 genetic variants to condition on

will probably highly depend on their observed minor allele frequencies, but further investigation is

required to determine an appropriate approach. It might also be worth considering to not condition

on any of them, instead of simply having to choose one of them to be conditioned on, giving rise

to a completely new correction framework.

Testing for interaction between 2 genetic variants presents challenges of its own, even discounting

the joint GWAS setting where the feast or famine effect is prevalent, because of the joint distribution

of allele counts. We have focused on minor allele counts and the notion of a minimum cell count for

the contingency table of the allele counts in order to establish some required thresholds to determine

when a meaningful test of interaction can be performed between 2 genetic variants. However, we

are currently considering the derivation of a more formal measure based on Fisher’s information

to determine when a pair of genetic variants contains sufficient information for the purposes of

interaction testing.

2.10 Appendices

2.10.1 Appendix A

Let Y = Uα + βX + γZ + δW + ε with W = diag(HZ)HX ∈ Rn and ε ∼ N
(
0, σ2

εIn
)
, where

H = In − 1
n1n1T

n and diag(HZ) ∈ Rn×n is the diagonal matrix whose diagonal elements are given

by the elements of the vector HZ ∈ Rn. We define the following design matrices and corresponding

projection matrices:

U ∈ Rn×c, P = In − U
(
UTU

)−1
UT,

UX =

[
U X

]
∈ Rn×(c+1), PX = In − UX

(
UT
XUX

)−1
UT
X ,

UXZ =

[
U X Z

]
∈ Rn×(c+2), PXZ = In − UXZ

(
UT
XZUXZ

)−1
UT
XZ ,

UXZW =

[
U X Z W

]
∈ Rn×(c+3), PXZW = In − UXZW

(
UT
XZWUXZW

)−1
UT
XZW .
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Then, the least squares estimator of ϑ = (α, β, γ, δ)T ∈ Rc+3 is given by:

ϑ̂ =
(
UT
XZWUXZW

)−1
UT
XZWY =

UT
XZUXZ UT

XZW

WTUXZ WTW


−1 UT

XZ

WT

Y

=
1

WTPXZW

WTPXZW
(
UT
XZUXZ

)−1
+
(
UT
XZUXZ

)−1
UT
XZWWTUXZ

(
UT
XZUXZ

)−1 −
(
UT
XZUXZ

)−1
UT
XZW

−WTUXZ

(
UT
XZUXZ

)−1
1


UT

XZ

WT

Y

=
1

WTPXZW

WTPXZW
(
UT
XZUXZ

)−1
UT
XZY −WTPXZY

(
UT
XZUXZ

)−1
UT
XZW

WTY −WTUXZ

(
UT
XZUXZ

)−1
UT
XZY

 .

Thus, the least squares estimator of the interaction effect δ is given by:

δ̂ =
WTPXZY

WTPXZW
.

Next, we observe that:

PXZW = In − UT
XZ

(
UT
XZUXZ

)−1
UT
XZ +

UT
XZ

(
UT
XZUXZ

)−1
UT
XZWWTPXZ −WWTPXZ

WTPXZW

= PXZ − PXZWWTPXZ

WTPXZW
.

Similarly, we infer that:

PXZ = PX − PXZZTPX

ZTPXZ
, PX = P − PXXTP

XTPX
.

Hence, an unbiased estimator of the residual variance σ2
ε is given by:

S2
ε =

Y TPXZWY

n− c− 3
=

WTPXZWY TPXZY −
(
WTPXZY

)2
(n− c− 3)WTPXZW

.

Therefore, the interaction t test statistic is given by:

T =
δ̂
Sε√

WTPXZW

=
WTPXZY√

WTPXZWY TPXZY−(WTPXZY )2

n−c−3

.
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For any vectors A,B ∈ Rn, we define S′
AB = ATPB ∈ R. Then, we calculate that:

PXZ = P − PXXTP

XTPX
−

(
P − PXXTP

XTPX

)
ZZT

(
P − PXXTP

XTPX

)
ZT
(
P − PXXTP

XTPX

)
Z

= P − PXXTP

S′
XX

−
S′2

XXPZZTP − S′
XXS′

XZP
(
XZT + ZXT)P + S′2

XZPXXTP

S′
XX

(
S′
XXS′

ZZ − S′2
XZ

)
= P −

S′
ZZPXXTP + S′

XXPZZTP − S′
XZP

(
XZT + ZXT)P

S′
XXS′

ZZ − S′2
XZ

.

Let N = WTPXZY denote the numerator of the interaction t test statistic. Then, we observe that:

N = S′
YW −

S′
ZZS

′
XWS′

XY + S′
XXS′

ZWS′
Y Z − S′

XZ (S′
XWS′

Y Z + S′
ZWS′

XY )

S′
XXS′

ZZ − S′2
XZ

= S′
YW −

S′
ZZS

′
XY − S′

XZS
′
Y Z

S′
XXS′

ZZ − S′2
XZ

S′
XW −

S′
XXS′

Y Z − S′
XZS

′
XY

S′
XXS′

ZZ − S′2
XZ

S′
ZW .

Under the null hypothesis of no interaction effect, we observe that:

γ̂0 =
ZTPXY

ZTPXZ
=

ZTPY − ZTPXXTPY
XTPX

ZTPZ − ZTPXXTPZ
XTPX

=
S′
XXS′

Y Z − S′
XZS

′
XY

S′
XXS′

ZZ − S′2
XZ

.

By symmetry, we also infer that:

β̂0 =
S′
ZZS

′
XY − S′

XZS
′
Y Z

S′
XXS′

ZZ − S′2
XZ

.

For i, j, k, ℓ = 1, 2, . . . , n, we define the following conditional moments of X given Y and Z:

µX|Y,Z = E (X | Y, Z) , ΣX|Y,Z = Var (X | Y, Z) ,

γijkX|Y,Z = E
[(

Xi − µi
X|Y,Z

)(
Xj − µj

X|Y,Z

)(
Xk − µk

X|Y,Z

)]
,

Kijkℓ
X|Y,Z = E

[(
Xi − µi

X|Y,Z

)(
Xj − µj

X|Y,Z

)(
Xk − µk

X|Y,Z

)(
Xℓ − µℓ

X|Y,Z

)]
.

According to the strong law of large numbers, we know that:

1

n
S′
XY ∼ 1

n
Y TPµX|Y,Z =

1

n
S′
µX|Y,ZY ,

1

n
S′
XZ ∼ 1

n
ZTPµX|Y,Z =

1

n
S′
µX|Y,ZZ ,
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1

n
S′
XX ∼ 1

n

[
µT
X|Y,ZPµX|Y,Z + tr

(
PΣX|Y,Z

)]
=

1

n

[
S′
µX|Y,ZµX|Y,Z

+ tr
(
PΣX|Y,Z

)]
.

Hence, we infer that:

β̂0 ∼ β∗ =
S′
ZZS

′
µX|Y,ZY − S′

µX|Y,ZZS
′
Y Z[

S′
µX|Y,ZµX|Y,Z

+ tr
(
PΣX|Y,Z

)]
S′
ZZ − S′2

µX|Y,ZZ

,

γ̂0 ∼ γ∗ =

[
S′
µX|Y,ZµX|Y,Z

+ tr
(
PΣX|Y,Z

)]
S′
Y Z − S′

µX|Y,ZZS
′
µX|Y,ZY[

S′
µX|Y,ZµX|Y,Z

+ tr
(
PΣX|Y,Z

)]
S′
ZZ − S′2

µX|Y,ZZ

.

Thus, an asymptotic approximation of the numerator of the interaction t test statistic is given by:

N∗ = S′
YW − β∗S

′
XW − γ∗S

′
ZW = (Y − γ∗Z)T Pdiag(HZ)HX − β∗X

THdiag(HZ)PX.

Let Q = Hdiag(HZ)P ∈ Rn×n and r = Y − γ∗Z ∈ Rn. Then, we observe that:

Q =
Q+QT

2
+

Q−QT

2
, XTQTX = XTQX ∈ R.

Hence, we define QS = Q+QT

2 and conclude that:

N∗ = rTQTX − β∗X
TQSX.

In the case where U = 1n, note that P = H, so it follows that Q = QT = QS = Hdiag (HZ)H.

Next, we calculate that:

E (N∗ | Y, Z) = rTQTµX|Y,Z − β∗

[
µT
X|Y,ZQµX|Y,Z + tr

(
QSΣX|Y,Z

)]
,

Var
(
rTQTX

)
= rTQTΣX|Y,ZQr,

Cov
(
XTQSX, rTQTX

)
=

n∑
i,j,k=1

Qij
S (Qr)k

(
γijkX|Y,Z +Σik

X|Y,Zµ
j
X|Y,Z +Σjk

X|Y,Zµ
i
X|Y,Z

)
=

n∑
i,j,k=1

Qij
S (Qr)k γijkX|Y,Z + 2rTQTΣX|Y,ZQSµX|Y,Z ,
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Var
(
XTQSX

)
=

n∑
i,j,k,ℓ=1

Qij
SQ

kℓ
S

(
Kijkℓ

X|Y,Z + 4γijkX|Y,Zµ
ℓ
X|Y,Z + 4Σik

X|Y,Zµ
j
X|Y,Zµ

ℓ
X|Y,Z − Σij

X|Y,ZΣ
kℓ
X|Y,Z

)
=

n∑
i,j,k,ℓ=1

Qij
SQ

kℓ
S

(
Kijkℓ

X|Y,Z + 4γijkX|Y,Zµ
ℓ
X|Y,Z

)
+ 4µT

X|Y,ZQSΣX|Y,ZQSµX|Y,Z −
[
tr
(
QSΣX|Y,Z

)]2
.

Therefore, we conclude that:

Var (N∗ | Y, Z) = rTQTΣX|Y,ZQr − 2β∗

n∑
i,j,k=1

Qij
S (Qr)k γijkX|Y,Z − 4β∗r

TQTΣX|Y,ZQSµX|Y,Z

+ β2
∗

n∑
i,j,k,ℓ=1

Qij
SQ

kℓ
S

(
Kijkℓ

X|Y,Z + 4γijkX|Y,Zµ
ℓ
X|Y,Z

)
+ 4β2

∗µ
T
X|Y,ZQSΣX|Y,ZQSµX|Y,Z − β2

∗
[
tr
(
QSΣX|Y,Z

)]2
.

Gaussian Correction

Suppose that (Xi | Zi = z) ∼ N
(
µX|z, σ

2
X

)
are independent for i = 1, 2, . . . , n. Under the null

hypothesis of no interaction effect, we assume that Yi = UT
i α+ βXi + γZi + εi with εi ∼ N

(
0, σ2

ε

)
.

According to Bayes’ theorem, we calculate that:

fXi|Yi,Zi
(x | y, z) ∝ fXi|Zi

(x | z)fYi|Xi,Zi
(y | x, z)

∝ exp

{
− 1

2σ2
X

(x− µX|z)
2

}
exp

{
− 1

2σ2
ε

(y − UT
i α− βx− γz)2

}
∝ exp

{
− 1

2σ2
X

x2 +
µX|z

σ2
X

x− β2

2σ2
ε

x2 +
(y − UT

i α− γz)β

σ2
ε

x

}
= exp

{
−
β2σ2

X + σ2
ε

2σ2
Xσ2

ε

x2 +
(y − UT

i α− γz)βσ2
X + µX|zσ

2
ε

σ2
Xσ2

ε

x

}

= exp

{
−
β2σ2

X + σ2
ε

2σ2
Xσ2

ε

[
x2 − 2

(y − UT
i α− βµX|z − γz)βσ2

X +
(
β2σ2

X + σ2
ε

)
µX|z

β2σ2
X + σ2

ε

x

]}
.

Therefore, we infer that:

(Xi | Yi = y, Zi = z) ∼ N

(
y − UT

i α− βµX|z − γz

β2σ2
X + σ2

ε

βσ2
X + µX|z, σ

2
X −

β2σ4
X

β2σ2
X + σ2

ε

)
.

Under the alternative hypothesis, we assume that Yi = UT
i α+βXi+γZi+δ(Xi−µX)(Zi−µZ)+εi

with µX = E (Xi), µZ = E (Zi) and εi ∼ N
(
0, σ2

ε

)
. According to Bayes’ theorem, we calculate
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that:

fXi|Yi,Zi
(x | y, z) ∝ exp

{
− 1

2σ2
X

x2 +
µX|z

σ2
X

x− [β + δ(z − µZ)]
2

2σ2
ε

x2 +

[
y − UT

i α− γz + δµX(z − µZ)
]
[β + δ(z − µZ)]

σ2
ε

x

}

= exp

{
−
[β + δ(z − µZ)]

2 σ2
X + σ2

ε

2σ2
Xσ2

ε

x2 +

[
y − UT

i α− γz + δµX(z − µZ)
]
[β + δ(z − µZ)]σ

2
X + µX|zσ

2
ε

σ2
Xσ2

ε

x

}
.

Therefore, we infer that:

(Xi | Yi = y, Zi = z) ∼ N
(
[y−UT

i α−βµX|z−γz−δ(µX|z−µX)(z−µZ)][β+δ(z−µZ)]σ2
X

[β+δ(z−µZ)]2σ2
X+σ2

ε
+ µX|z, σ

2
X − [β+δ(z−µZ)]2σ4

X

[β+δ(z−µZ)]2σ2
X+σ2

ε

)
.

For i, j, k, ℓ = 1, 2, . . . , n, we know that Kijkℓ
X|Y,Z = Σij

X|Y,ZΣ
kℓ
X|Y,Z + Σik

X|Y,ZΣ
jℓ
X|Y,Z + Σiℓ

X|Y,ZΣ
jk
X|Y,Z

and γijkX|Y,Z = 0. Therefore, we conclude that:

Var (N∗ | Y, Z) = rTQTΣX|Y,ZQr − 4β∗r
TQTΣX|Y,ZQSµX|Y,Z

+ β2
∗

n∑
i,j,k,ℓ=1

Qij
SQ

kℓ
S

(
Σij
X|Y,ZΣ

kℓ
X|Y,Z +Σik

X|Y,ZΣ
jℓ
X|Y,Z +Σiℓ

X|Y,ZΣ
jk
X|Y,Z

)
+ 4β2

∗µ
T
X|Y,ZQSΣX|Y,ZQSµX|Y,Z − β2

∗
[
tr
(
QSΣX|Y,Z

)]2
= rTQTΣX|Y,ZQr − 4β∗r

TQTΣX|Y,ZQSµX|Y,Z

+ 2β2
∗tr
(
QSΣX|Y,ZQSΣX|Y,Z

)
+ 4β2

∗µ
T
X|Y,ZQSΣX|Y,ZQSµX|Y,Z .

Discrete Correction

Suppose that (Xi | Zi = z) are independent and follow some discrete distribution with support

S ⊆ N for i = 1, 2, . . . , n. Then, we know that:

pi(x | y, z) = P (Xi = x | Yi = y, Zi = z) ∝ P (Xi = x | Zi = z) fYi|Xi,Zi
(y | x, z) ,

µi
r(y, z) = E (Xr

i | Yi = y, Zi = z) =
∑
x∈S

pi(x | y, z)xr,

µi
X|Y,Z = µi

1(y, z), Σii
X|Y,Z = µi

2(y, z)−
[
µi
1(y, z)

]2
,

γiiiX|Y,Z = µi
3(y, z)− 3µi

1(y, z)µ
i
2(y, z)−

[
µi
1(y, z)

]3
,
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Kiiii
X|Y,Z = µi

4(y, z)−4µi
1(y, z)µ

i
3(y, z)−6

[
µi
1(y, z)

]2
µi
2(y, z)−

[
µi
1(y, z)

]4
, Kiijj

X|Y,Z = Σii
X|Y,ZΣ

jj
X|Y,Z .

Let γX|Y,Z =
[
γiiiX|Y,Z

]n
i=1

∈ Rn and KX|Y,Z =
[
Kiijj

X|Y,Z

]n
i,j=1

∈ Rn×n. All other conditional central

moments of X given Y and Z are equal to 0. Then, we conclude that:

Var (N∗ | Y, Z) = rTQTΣX|Y,ZQr − 2β∗r
TQTDg (QS) γX|Y,Z − 4β∗r

TQTΣX|Y,ZQSµX|Y,Z

+ 2β2
∗tr
(
QSΣX|Y,ZQSΣX|Y,Z

)
+ β2

∗ [diag (QS)]
T
[
Dg
(
KX|Y,Z

)
− 3Σ2

X|Y,Z

]
diag (QS)

+ 4β2
∗µ

T
X|Y,ZQSDg (QS) γX|Y,Z + 4β2

∗µ
T
X|Y,ZQSΣX|Y,ZQSµX|Y,Z ,

where Dg (QS) ∈ Rn×n is the diagonal matrix whose diagonal elements are given by the diagonal

elements of QS ∈ Rn×n and diag (QS) ∈ Rn is the vector whose elements are given by the diagonal

elements of QS .

2.10.2 Appendix B

Suppose that X ⊥⊥ (Y, Z). Then, we observe that µX|Y,Z = µX1n and ΣX|Y,Z = σ2
XIn, which

implies that S′
µX|Y,ZA = µX1T

nPA = 0 for any vector A ∈ Rn. Hence, we infer that β∗ = 0 and

γ∗ =
S′
Y Z

S′
ZZ

. For any vectors A,B ∈ Rn, we define S′
ABZZ = ATPDg

(
HZZTH

)
PB ∈ R. Since

HP = PH = P , we observe that:

Pdiag (HZ)Hdiag (HZ)P = P

[
Dg
(
HZZTH

)
− 1

n
ZZT

]
P.

Therefore, we conclude that:

Var (N∗ | Y, Z) = σ2
XrTQTQr

= σ2
X

[(
S′
Y Y ZZ − 1

n
S′2

Y Z

)
− 2

S′
Y Z

S′
ZZ

(
S′
Y ZZZ − 1

n
S′
Y ZS

′
ZZ

)
+

S′2
Y Z

S′2
ZZ

(
S′
ZZZZ − 1

n
S′2

ZZ

)]

= σ2
X

S′2
ZZS

′
Y Y ZZ − 2S′

Y ZS
′
ZZS

′
Y ZZZ + S′2

Y ZS
′
ZZZZ

S′2
ZZ

.
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Additionally, we observe that:

Y TPXZY = S′
Y Y − β̂0S

′
XY − γ̂0S

′
Y Z ∼ S′

Y Y −
S′
Y Z

S′
ZZ

S′
Y Z =

S′
Y Y S

′
ZZ − S′2

Y Z

S′
ZZ

,

WTPXZW = S′
WW −

S′
ZZS

′
XW − S′

XZS
′
ZW

S′
XXS′

ZZ − S′2
XZ

S′
XW −

S′
XXS′

ZW − S′
XZS

′
XW

S′
XXS′

ZZ − S′2
XZ

S′
ZW .

According to the strong law of large numbers, we know that:

1

n
S′
XZ ∼ 1

n
µX1T

nPZ = 0,
1

n
S′
ZW ∼ 1

n
µX1T

nQZ = 0,

1

n
S′
XX ∼ 1

n

[
µ2
X1T

nP1n + σ2
Xtr (P )

]
=

n− c

n
σ2
X ,

1

n
S′
XW ∼ 1

n

[
µ2
X1T

nQ1n + σ2
Xtr (Q)

]
=

1

n
σ2
Xtr (Q) .

Thus, we infer that:

S′
ZZS

′
XW − S′

XZS
′
ZW

S′
XXS′

ZZ − S′2
XZ

∼ tr (Q)

n− c
,

S′
XXS′

ZW − S′
XZS

′
XW

S′
XXS′

ZZ − S′2
XZ

∼ 0,

WTPXZW ∼ S′
WW − tr (Q)

n− c
S′
XW .

Hence, an asymptotic approximation of the squared denominator of the interaction t test statistic

is given by:

D2
∗ =

S′
Y Y S

′
ZZ − S′2

Y Z

(n− c− 3)S′
ZZ

[
S′
WW − tr (Q)

n− c
S′
XW

]
− N2

∗
n− c− 3

.

Furthermore, we calculate that:

E
(
S′
WW | Y, Z

)
= µ2

X1T
nQQT1n + σ2

Xtr
(
QQT

)
= σ2

Xtr
(
QQT

)
,

E (N∗ | Y, Z) = µX1T
nQ

Tr = 0.

Therefore, we conclude that:

E
(
D2

∗ | Y, Z
)
=

σ2
X

n− c− 3

S′
Y Y S

′
ZZ − S′2

Y Z

S′
ZZ

(n− c)tr
(
QQT)− [tr (Q)]2

n− c
− Var (N∗ | Y, Z)

n− c− 3
.
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We define the following ratio between the conditional variance of the numerator of the interaction

t test statistic given Y and Z and the conditional expectation of the squared denominator of the

interaction t test statistic given Y and Z:

R =
Var (N∗ | Y, Z)

E (D2
∗ | Y, Z)

≈ (n− c− 3) (n− c)

(n− c)tr (QQT)− [tr (Q)]2
S′2

ZZS
′
Y Y ZZ − 2S′

Y ZS
′
ZZS

′
Y ZZZ + S′2

Y ZS
′
ZZZZ

S′
Y Y S

′2
ZZ − S′2

Y ZS
′
ZZ

,

where we drop any terms of order O
(
1
n

)
.

In the case where U = 1n, we observe that tr (Q) = 0 and tr
(
QQT) = n−2

n S′
ZZ , so we infer that:

E
(
D2

∗ | Y, Z
)
=

σ2
X

n− 4

n− 2

n

(
S′
Y Y S

′
ZZ − S′2

Y Z

)
− Var (N∗ | Y, Z)

n− 4
,

R ≈ n
S′2

ZZS
′
Y Y ZZ − 2S′

Y ZS
′
ZZS

′
Y ZZZ + S′2

Y ZS
′
ZZZZ

S′
Y Y S

′3
ZZ − S′2

Y ZS
′2
ZZ

.
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CHAPTER 3

PATHOGEN GENETIC RELATEDNESS MATRIX

3.1 Introduction

Accounting for population structure among subjects infected with related strains of the same

pathogen presents a significant challenge, owing to the presence of genetic variants with differ-

ing number of alleles within the pathogen genome. Furthermore, as the number of alleles in a

genetic variant increases, some of the alleles may be associated with excessively small observed

allele frequencies, which introduce numerical instabilities in the existing methods of constructing a

pathogen genetic relatedness matrix (GRM). Pathogen GRMs have previously been constructed by

first converting multiallelic genetic variants into binary allele indicators, treating all resulting allele

indicators as independent genetic variants and computing a regular GRM for a haploid organism on

the basis of these allele indicators [9]. Any binary allele indicators with observed allele frequencies

above or below some threshold are filtered out to preserve numerical stability. However, treating

the binary allele indicators which correspond to the same multiallelic genetic variant as independent

genetic variants does not seem like a compelling strategy to adopt.

A previously proposed weighted pathogen GRM for organisms with multiallelic genetic variants

makes the assumption that the random effects due to mutation and deletion polymorphisms on the

phenotypic trait are independent and integrates information from pathogen genetic variants with

differing number of alleles [8]. Nevertheless, construction of this pathogen GRM requires that any

genetic variant with at least one observed allele frequency below some prespecified threshold be

discarded in order to preserve numerical stability, resulting in highly unreliable sample structure

estimates in the case of extremely mutable viral genomes with a large number of rare alleles. We

build upon this work to develop a novel pathogen GRM for organisms with multiallelic genetic

variants which avoids filtering out genetic variants with exceedingly small observed allele frequencies

by introducing an adjusted weighting for rare alleles. This allows the genetic variants to which the

rare alleles correspond to still contribute to the estimation of the genetic relationship between

different pathogen strains.
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3.2 Genetic Relatedness Matrix Based on Multiallelic Genetic Variants

For a sample of n subjects with unknown population structure due to infection with different strains

of the same pathogen, suppose that the infectious disease trait value Yi for individual i is modeled

as follows:

Yi = UT
i α+ vi + εi, (3.1)

where Ui ∈ Rc is a vector of covariates including an intercept term, α ∈ Rc is a vector of unknown

fixed covariate effects, v = (v1, v2, . . . , vn)
T is a vector of random effects accounting for correlations

in trait values due to relatedness between pathogen strains with Var(v) = σ2
vΦ, εi are independent

and identically distributed random errors representing environmental influences for i = 1, 2, . . . , n

and Φ ∈ Rn×n is the pathogen kinship matrix. Our goal is to develop a framework for the estimation

of the unknown pathogen kinship matrix Φ on the basis of pathogen genome-wide data, i.e. on the

basis of multiallelic pathogen genetic variants.

For the purposes of association mapping, we elect to estimate the unknown pathogen kinship matrix

Φ using a pathogen GRM K ∈ Rn×n which satisfies the following properties:

(I) It aggregates information across genetic variants with differing number of alleles;

(II) The contribution of each genetic variant to the overall trait variance is the same, regardless

of its number of alleles and their frequencies;

(III) Consider the kinship coefficient ϕij between pathogen strains i and j, which quantifies the

probability that the genotypes at 2 randomly selected homologous genetic variants from

pathogen strains i and j are identical by descent (IBD). Then, it holds that E (Kij) = ϕij

for i, j = 1, 2, . . . , n, where Kij is the (i, j)-th element of the pathogen GRM K.

Note that property (II) makes more sense in the context of association mapping where a pathogen

GRM might be required to control for confounding due to population structure and improve effect

size estimates by accounting for the effects of genetic variants other than the one being tested

on the phenotypic trait. If the purpose for the computation of a pathogen GRM is to instead

reconstruct a phylogenetic tree for the pathogen strains, then a different property which ensures
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that the contribution of each genetic variant to the overall trait variance is weighed proportionally

to its effective number of alleles might be required.

Suppose that δℓ denotes the number of alleles at pathogen genetic variant ℓ for ℓ = 1, 2, . . . ,m

and ηℓ = (ηℓ1, ηℓ2, . . . , ηℓδℓ)
T ∼ Nδℓ

(
0, 1

mσ2
vVℓ

)
denotes a vector of random effects, where ηℓr is the

random effect of allele r on the phenotypic trait, Vℓ ∈ Rδℓ×δℓ is the covariance matrix between

different allelic effects and m is the total number of pathogen genetic variants. Additionally, we

assume that the vectors of random effects η1, η2, . . . , ηm corresponding to different genetic variants

are independent. Then, it follows that:

vi =
m∑
ℓ=1

δℓ∑
r=1

ηℓr1{Giℓ=r}, (3.2)

Cov (vi, vj | G) = σ2
v ·

1

m

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

Vℓrs1{Giℓ=r,Gjℓ=s}︸ ︷︷ ︸
Kij

, (3.3)

where G ∈ Rn×m denotes the pathogen genotype matrix, Giℓ denotes the genotype of pathogen

strain i at genetic variant ℓ and Vℓrs denotes the (r, s)-th element of the covariance matrix Vℓ.

Let fℓ = (fℓ1, fℓ2, . . . , fℓδℓ)
T denote the vector of allele frequencies at genetic variant ℓ. Then, we

observe that:

E (Kij) = ϕij ·
1

m

m∑
ℓ=1

fT
ℓ diag (Vℓ) + (1− ϕij) ·

1

m

m∑
ℓ=1

fT
ℓ Vℓfℓ,

where diag (Vℓ) ∈ Rδℓ denotes the vector whose elements are given by the diagonal elements of

the matrix Vℓ. More details about these derivations are given in Section 3.6. Note that ϕii = 1

for i = 1, 2, . . . , n by definition, so fT
ℓ diag (Vℓ) constitutes the contribution of genetic variant ℓ to

the overall trait variance. In order for property (II) to hold true for the pathogen GRM K, the

quantity fT
ℓ diag (Vℓ) must be the same for all genetic variants ℓ = 1, 2, . . . ,m. Combining that with

the requirement of property (III), which states that E (Kij) = ϕij , we deduce that the following 2

constraints must be placed on the covariance matrix Vℓ:

fT
ℓ diag (Vℓ) = 1, fT

ℓ Vℓfℓ = 0, ℓ = 1, 2, . . . ,m. (3.4)
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3.3 Weighted Pathogen Genetic Relatedness Matrix

In order to specify a suitable covariance matrix Vℓ for the random effects of different alleles at

genetic variant ℓ, we first need to make an additional assumption about these allelic effects. Hence,

we require that our desired pathogen GRM K satisfies the following additional property:

(IV) The variance of an allelic effect is inversely proportional to its allele frequency.

In other words, this property ensures that allelic effects carry more uncertainty the rarer they are,

while the contribution of a common allele tends towards 0 as its allele frequency tends towards 1.

We should note that this specification forces us to discard all genetic variants with at least one allele

below some prespecified threshold, in order to ensure that the variance of all included allelic effects

does not blow up. This property again makes more sense in the context of association mapping,

where rares alleles play a much less important role than common alleles, since one would generally

only be interested in the highest level of structure among pathogen strains in this setting. On the

other hand, a different property which ensures that all different allelic effects at a genetic variant

have the same variance might be more suitable for the reconstruction of a phylogenetic tree for the

pathogen strains.

Let 1√
fℓr

ξℓr denote the random effect of allele r at genetic variant ℓ, where ξℓr ∼ N
(
0, 1

m(δℓ−1)σ
2
v

)
are independent for ℓ = 1, 2, . . . ,m and r = 1, 2, . . . , δℓ. Then, the average allelic effect at genetic

variant ℓ conditional on ξℓ = (ξℓ1, ξℓ2, . . . , ξℓδℓ)
T is equal to

∑δℓ
s=1

√
fℓsξℓs. Hence, we define the

centered random effect of allele r at genetic variant ℓ as follows:

ηℓr =
1√
fℓr

ξℓr −
δℓ∑
s=1

√
fℓsξℓs.

This specification of allelic effects leads to the following covariance structure:

Cov (ηℓr, ηℓs) =
1

m
σ2
v ·

1

δℓ − 1

(
1

fℓr
1{r=s} − 1

)
︸ ︷︷ ︸

Vℓrs

.

We can easily verify that this construction of a covariance matrix Vℓ among the different allelic

effects at genetic variant ℓ satisfies the 2 constraints placed on it in the previous section, so the
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resultant pathogen GRM K satisfies the 3 properties also set forth in the previous section. The

(i, j)-th element of this weighted pathogen GRM is specified as follows:

Kij =
1

m

m∑
ℓ=1

1

δℓ − 1

(
δℓ∑
r=1

1

fℓr
1{Giℓ=Gjℓ=r} − 1

)
. (3.5)

More details about these derivations are given in Section 3.6. We observe that this weighted

pathogen GRM coincides with the previously proposed pathogen GRM constructed on the basis of

genetic variants with differing number of alleles [8]. The contribution of a biallelic genetic variant

to the estimation of the genetic relatedness between pathogen strains obviously reduces to the

contribution of a genetic variant to an ordinary GRM based on a haploid organism, as described in

Section 1.4. Our goal is to build upon this derivation to propose a novel weight-adjusted pathogen

GRM which takes into account rare alleles by placing an upper bound on the variance of individual

allelic effects.

3.4 Weight-Adjusted Pathogen Genetic Relatedness Matrix

In order to avoid discarding all genetic variants with at least one allele frequency below some

prespecified threshold, we first need to make some additional assumptions about the random effects

of rare alleles. Hence, we require that our novel pathogen GRM K satisfies the following additional

properties:

(V) There exists some prespecified allele frequency threshold τ , e.g. τ = 0.05, such that alleles

with frequencies below that threshold are called rare and alleles with frequencies above that

threshold are called common;

(VI) An upper bound is placed on the variance of the random effects of rare alleles, so that they

can contribute to the estimation of the genetic relatedness between pathogen strains without

causing numerical instabilities.

In this specification setting, we would only be required to discard genetic variants for which δℓ >
1
τ

or maxr fℓr > 1 − τ , i.e. only genetic variants with an exceedingly large number of alleles or

genetic variants with only one common allele with an exceedingly large observed allele frequency.

67



At least in the case of highly mutable genetic variants, this specification amounts to discarding a

much smaller proportion of genetic variants to preserve numerical stability in the pathogen GRM

computation compared to the previously proposed weighted pathogen GRM.

We define the thresholded allele frequencies f+
ℓr = max (fℓr, τ) for ℓ = 1, 2, . . . ,m and r = 1, 2, . . . , δℓ.

In other words, any allele frequency below the prespecified threshold τ is truncated to τ . We

let Bℓ =
∑δℓ

r=1 1{fℓr⩾τ} represent the number of common alleles at pathogen genetic variant ℓ,

Pℓ =
∑δℓ

r=1 fℓr1{fℓr<τ} represent the sum of all rare allele frequencies at genetic variant ℓ and

qℓ =
∑δℓ

r=1
f2
ℓr

f+
ℓr

. We define the "effective" number of alleles at genetic variant ℓ as cℓ = Bℓ− qℓ+
1
τ Pℓ.

In the case where there are no rare alleles at genetic variant ℓ, we observe that Bℓ = δℓ, Pℓ = 0

and qℓ = 1, so cℓ reduces to δℓ − 1. However, in the presence of a rare allele at a pathogen genetic

variant, its contribution to the "effective" number of alleles reduces linearly from 1 to 0 as its allele

frequency moves from the threshold value τ towards 0.

Let
√

1
f+
ℓr

ξℓr denote the random effect of allele r at genetic variant ℓ, where ξℓr ∼ N
(
0, 1

mcℓ
σ2
v

)
are

independent for ℓ = 1, 2, . . . ,m and r = 1, 2, . . . , δℓ. We observe that the use of the thresholded

allele frequency f+
ℓr in the weighting of the allelic effect places an upper bound of 1

mcℓτ
σ2
v on its

variance. Then, the average allelic effect at genetic variant ℓ conditional on ξℓ = (ξℓ1, ξℓ2, . . . , ξℓδℓ)
T

is equal to
∑δℓ

s=1

√
1
f+
ℓs

fℓsξℓs. Hence, we define the centered random effect of allele r at genetic

variant ℓ as follows:

ηℓr =

√
1

f+
ℓr

ξℓr −
δℓ∑
s=1

√
1

f+
ℓs

fℓsξℓs.

This specification of allelic effects leads to the following covariance structure:

Cov (ηℓr, ηℓs) =
1

m
σ2
v ·

1

cℓ

(
1

f+
ℓr

1{r=s} −
fℓr

f+
ℓr

− fℓs

f+
ℓs

+ qℓ

)
︸ ︷︷ ︸

Vℓrs

.

We can easily verify that this construction of a covariance matrix Vℓ among the different allelic

effects at genetic variant ℓ satisfies the 2 constraints placed on it in Section 3.2, so the resultant

pathogen GRM K satisfies the 4 properties set forth in the previous sections. The (i, j)-th element
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of this weight-adjusted pathogen GRM is specified as follows:

Kij =
1

m

m∑
ℓ=1

1

cℓ

(
δℓ∑
r=1

1

f+
ℓr

1{Giℓ=Gjℓ=r} −
fℓGiℓ

f+
ℓGiℓ

−
fℓGjℓ

f+
ℓGjℓ

+ qℓ

)
. (3.6)

More details about these derivations are given in Section 3.6. In the case where there are no rare

alleles at genetic variant ℓ, we observe that cℓ = δℓ − 1, f+
ℓr = fℓr and −fℓGiℓ

f+
ℓGiℓ

−
fℓGjℓ

f+
ℓGjℓ

+ qℓ = −1,

so the contribution of genetic variant ℓ to the weight-adjusted GRM reduces to being the same as

that of the previously proposed weighted pathogen GRM. Additionally, the weight adjustment of

this novel pathogen GRM ensures that the contribution of rare alleles at a genetic variant reduces

to 0 as their allele frequencies tend towards 0, i.e. the limiting model for the genetic variant would

be the same as that of a genetic variant without the presence of these rare alleles.

3.5 Discussion and Future Work

The computation of a pathogen GRM for the estimation of the population structure across different

pathogen strains presents challenges due to the highly mutable nature of pathogen genomes, leading

to large numbers of multiallelic genetic variants with more than 2 alleles and allele frequencies which

decrease as the number of alleles in a genetic variant increases. Previous efforts in the calculation of

pathogen GRMs have either required the conversion of all multiallelic genetic variants into binary

allele indicators, which are then treated as independent genetic variants from a haploid organism,

leading to a binary GRM whose validity is hard to theoretically justify, or the discarding of all

genetic variants with at least one rare allele, leaving only a tiny proportion of the pathogen genome

available for the computation of a weighted pathogen GRM, leading to unreliable estimation of the

genetic relationship between 2 pathogen strains.

We proposed the construction of a novel weight-adjusted pathogen GRM which avoids filtering out

genetic variants with exceedingly small observed allele frequencies by placing an upper bound on the

random effects of rare alleles. This allows the genetic variants to which the rare alleles correspond

to still contribute to the estimation of the genetic relationship between different pathogen strains.

This newly proposed pathogen GRM is constructed on the basis of a linear mixed model, which

properly weights the random effect of all alleles within each genetic variant, and is suitable for

69



the purposes of association mapping where a pathogen GRM might be required to control for

confounding due to population structure and improve effect size estimates by accounting for the

effects of genetic variants other than the one being tested on the phenotypic trait. Furthermore,

this weight-adjusted pathogen GRM is constructed in such a way that its expectation with respect

to the pathogen genotype matrix is equal to the pathogen kinship matrix, which measures the

probability that the genotypes at 2 randomly selected homologous genetic variants belonging to 2

different pathogen strains are identical by descent (IBD).

Construction of this weight-adjusted pathogen GRM is based on specific modeling choices relating

to the relative contribution of genetic variants with differing number of alleles to the overall trait

variance and the variability of allelic effects with varying allele frequencies. Our modeling choices

have been tailored to the setting of estimating pathogen population structure for the purposes of

association mapping rather than the reconstruction of phylogeny among pathogen strains, which

might require modeling assumptions. Further investigation is required into the effect of different

modeling choices in the construction of a pathogen GRM as well as the suitability of these modeling

choices for different purposes of a GRM computation.

3.6 Appendix

Suppose that δℓ denotes the number of alleles at pathogen genetic variant ℓ for ℓ = 1, 2, . . . ,m

and ηℓ = (ηℓ1, ηℓ2, . . . , ηℓδℓ)
T ∼ Nδℓ

(
0, 1

mσ2
vVℓ

)
denotes a vector of random effects, where ηℓr is the

random effect of allele r on the phenotypic trait, Vℓ ∈ Rδℓ×δℓ is the covariance matrix between

different allelic effects and m is the total number of pathogen genetic variants. Additionally, we

assume that the vectors of random effects η1, η2, . . . , ηm corresponding to different genetic variants

are independent. For a sample of n individuals with unknown structure due to infection with dif-

ferent strains of the same pathogen, suppose that the infectious disease trait value Yi for individual

i is modeled as follows:

Yi = UT
i α+ vi + εi,

where Ui ∈ Rc is a vector of covariates including an intercept term, α ∈ Rc is a vector of unknown

fixed covariate effects, v = (v1, v2, . . . , vn)
T is a vector of random effects accounting for correlations
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in trait values due to relatedness between pathogen strains with Var(v) = σ2
vΦ, εi are independent

and identically distributed random errors representing environmental influences for i = 1, 2, . . . , n

and Φ ∈ Rn×n is the pathogen kinship matrix. Then, it follows that:

vi =

m∑
ℓ=1

δℓ∑
r=1

ηℓr1{Giℓ=r},

Cov (vi, vj | G) = Cov

(
m∑
ℓ=1

δℓ∑
r=1

ηℓr1{Giℓ=r},
m∑
ℓ=1

δℓ∑
s=1

ηℓs1{Gjℓ=s}

∣∣∣∣∣G
)

=
m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

Cov (ηℓr, ηℓs)1{Giℓ=r,Gjℓ=s}

=

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

1

m
σ2
vVℓrs1{Giℓ=r,Gjℓ=s}

= σ2
v ·

1

m

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

Vℓrs1{Giℓ=r,Gjℓ=s}︸ ︷︷ ︸
Kij

,

where G ∈ Rn×m denotes the pathogen genotype matrix, Giℓ denotes the genotype of pathogen

strain i at genetic variant ℓ and Vℓrs denotes the (r, s)-th element of the covariance matrix Vℓ.

For r, s = 1, 2, . . . , δℓ, we calculate that:

P (Giℓ = r,Gjℓ = s) = ϕijfℓr1{r=s} + (1− ϕij) fℓrfℓs.

For i, j = 1, 2, . . . , n, we conclude that:

E (Kij) =
1

m

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

VℓrsP (Giℓ = r,Gjℓ = s)

=
1

m

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

Vℓrs

[
ϕijfℓr1{r=s} + (1− ϕij) fℓrfℓs

]
= ϕij ·

1

m

m∑
ℓ=1

δℓ∑
r=1

Vℓrrfℓr + (1− ϕij) ·
1

m

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

Vℓrsfℓrfℓs

= ϕij ·
1

m

m∑
ℓ=1

fT
ℓ diag (Vℓ)︸ ︷︷ ︸

1

+(1− ϕij) ·
1

m

m∑
ℓ=1

fT
ℓ Vℓfℓ︸ ︷︷ ︸

0

= ϕij ,
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where fℓ = (fℓ1, fℓ2, . . . , fℓδℓ)
T denotes the vector of allele frequencies at genetic variant ℓ.

Weighted Pathogen Genetic Relatedness Matrix

Let 1√
fℓr

ξℓr denote the random effect of allele r at genetic variant ℓ, where ξℓr ∼ N
(
0, 1

m(δℓ−1)σ
2
v

)
are independent for ℓ = 1, 2, . . . ,m and r = 1, 2, . . . , δℓ. Then, the average allelic effect at genetic

variant ℓ conditional on ξℓ = (ξℓ1, ξℓ2, . . . , ξℓδℓ)
T is equal to

∑δℓ
s=1

√
fℓsξℓs. Hence, we define the

centered random effect of allele r at genetic variant ℓ as follows:

ηℓr =
1√
fℓr

ξℓr −
δℓ∑
q=1

√
fℓqξℓq.

This specification of allelic effects leads to the following covariance structure for r ̸= s:

Var (ηℓr) = Var

 1√
fℓr

ξℓr −
δℓ∑
q=1

√
fℓqξℓq


=

(
1√
fℓr

−
√

fℓr

)2

Var (ξℓr) +
∑
q ̸=r

fℓqVar (ξℓq)

=

[
(1− fℓr)

2

fℓr
+ 1− fℓr

]
1

m (δℓ − 1)
σ2
v

=
1

m
σ2
v ·

1

δℓ − 1

(
1

fℓr
− 1

)
︸ ︷︷ ︸

Vℓrr

,

Cov (ηℓr, ηℓs) = Cov

 1√
fℓr

ξℓr −
δℓ∑
q=1

√
fℓqξℓq,

1√
fℓs

ξℓs −
δℓ∑
t=1

√
fℓtξℓt


= −

(
1√
fℓr

−
√
fℓr

)√
fℓrVar (ξℓr)−

(
1√
fℓs

−
√
fℓs

)√
fℓsVar (ξℓs) +

∑
q ̸=r,s

fℓqVar (ξℓq)

=
fℓr − 1 + fℓs − 1 + 1− fℓr − fℓs

m (δℓ − 1)
σ2
v =

1

m
σ2
v ·

−1

δℓ − 1︸ ︷︷ ︸
Vℓrs

.

We verify that this construction of a covariance matrix Vℓ among the different allelic effects at

genetic variant ℓ satisfies the 2 constraints placed on it as follows:

fT
ℓ diag (Vℓ) =

δℓ∑
r=1

fℓr
δℓ − 1

(
1

fℓr
− 1

)
=

1

δℓ − 1

δℓ∑
r=1

(1− fℓr) = 1,
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fT
ℓ Vℓfℓ =

δℓ∑
r=1

f2
ℓr

δℓ − 1

(
1

fℓr
− 1

)
−

δℓ∑
r=1

∑
s ̸=r

fℓrfℓs
δℓ − 1

=
1

δℓ − 1

δℓ∑
r=1

fℓr

1− fℓr +
∑
s ̸=r

fℓs

 = 0.

The (i, j)-th element of the resulting weighted pathogen GRM is specified as follows:

Kij =
1

m

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

Vℓrs1{Giℓ=r,Gjℓ=s}

=
1

m

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

1

δℓ − 1

(
1

fℓr
1{r=s} − 1

)
1{Giℓ=r,Gjℓ=s}

=
1

m

m∑
ℓ=1

1

δℓ − 1

(
δℓ∑
r=1

1

fℓr
1{Giℓ=Gjℓ=r} − 1

)
.

Additionally, we verify that the contribution of a biallelic genetic variant to this weighted pathogen

GRM reduces to its contribution to an ordinary GRM based on a haploid organism as follows:

∑
r∈{0,1}

1

fℓr
1{Giℓ=Gjℓ=r} − 1 =



1−fℓ1
fℓ1

, Giℓ = Gjℓ = 1

−1, Giℓ ̸= Gjℓ

fℓ1
1−fℓ1

, Giℓ = Gjℓ = 0

=
(Giℓ − fℓ1) (Gjℓ − fℓ1)

fℓ1 (1− fℓ1)
.

Finally, we verify that the weighted pathogen GRM satisfies the properties set forth in Section 3.2

as follows:

E (Kij) =
1

m

m∑
ℓ=1

1

δℓ − 1

[
δℓ∑
r=1

1

fℓr
P (Giℓ = Gjℓ = r)− 1

]

=
1

m

m∑
ℓ=1

1

δℓ − 1

[
δℓ∑
r=1

ϕijfℓr + (1− ϕij) f
2
ℓr

fℓr
− 1

]

=
1

m

m∑
ℓ=1

δℓϕij + 1− ϕij − 1

δℓ − 1
= ϕij ,
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Var

(
δℓ∑
r=1

ηℓr1{Giℓ=r}

)
= Var

[
E

(
δℓ∑
r=1

ηℓr1{Giℓ=r}

∣∣∣∣∣Giℓ

)]
+ E

[
Var

(
δℓ∑
r=1

ηℓr1{Giℓ=r}

∣∣∣∣∣Giℓ

)]

= Var

 δℓ∑
r=1

E (ηℓr | Giℓ)︸ ︷︷ ︸
0

1{Giℓ=r}

+ E

[
δℓ∑
r=1

Var (ηℓr | Giℓ)1{Giℓ=r}

]

=

δℓ∑
r=1

1

m
σ2
vVℓrrP (Giℓ = r) =

1

m
σ2
v f

T
ℓ diag (Vℓ)︸ ︷︷ ︸

1

=
1

m
σ2
v .

Weight-Adjusted Pathogen Genetic Relatedness Matrix

We define the thresholded allele frequencies f+
ℓr = max (fℓr, τ) for ℓ = 1, 2, . . . ,m and r = 1, 2, . . . , δℓ.

We let Bℓ =
∑δℓ

r=1 1{fℓr⩾τ} represent the number of common alleles at pathogen genetic variant

ℓ, Pℓ =
∑δℓ

r=1 fℓr1{fℓr<τ} represent the sum of all rare allele frequencies at genetic variant ℓ and

qℓ =
∑δℓ

r=1
f2
ℓr

f+
ℓr

. We define the "effective" number of alleles at genetic variant ℓ as cℓ = Bℓ− qℓ+
1
τ Pℓ.

Let
√

1
f+
ℓr

ξℓr denote the random effect of allele r at genetic variant ℓ, where ξℓr ∼ N
(
0, 1

mcℓ
σ2
v

)
are independent for ℓ = 1, 2, . . . ,m and r = 1, 2, . . . , δℓ. Then, the average allelic effect at genetic

variant ℓ conditional on ξℓ = (ξℓ1, ξℓ2, . . . , ξℓδℓ)
T is equal to

∑δℓ
s=1

√
1
f+
ℓs

fℓsξℓs. Hence, we define the

centered random effect of allele r at genetic variant ℓ as follows:

ηℓr =

√
1

f+
ℓr

ξℓr −
δℓ∑
q=1

√
1

f+
ℓq

fℓqξℓq.

This specification of allelic effects leads to the following covariance structure for r ̸= s:

Var (ηℓr) = Var

√ 1

f+
ℓr

ξℓr −
δℓ∑
q=1

√
1

f+
ℓq

fℓqξℓq


=

(1− fℓr)
2

f+
ℓr

Var (ξℓr) +
∑
q ̸=r

f2
ℓq

f+
ℓq

Var (ξℓq)

=

(
1− 2fℓr + f2

ℓr

f+
ℓr

+ qℓ −
f2
ℓr

f+
ℓr

)
1

mcℓ
σ2
v

=
1

m
σ2
v ·

1

cℓ

(
1

f+
ℓr

− 2fℓr

f+
ℓr

+ qℓ

)
︸ ︷︷ ︸

Vℓrr

,
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Cov (ηℓr, ηℓs) = Cov

√ 1

f+
ℓr

ξℓr −
δℓ∑
q=1

√
1

f+
ℓq

fℓqξℓq,

√
1

f+
ℓs

ξℓs −
δℓ∑
t=1

√
1

f+
ℓt

fℓtξℓt


= −(1− fℓr) fℓr

f+
ℓr

Var (ξℓr)−
(1− fℓs) fℓs

f+
ℓs

Var (ξℓs) +
∑
q ̸=r,s

f2
ℓq

f+
ℓq

Var (ξℓq)

=

(
−fℓr

f+
ℓr

+
f2
ℓr

f+
ℓr

− fℓs

f+
ℓs

+
f2
ℓs

f+
ℓs

+ qℓ −
f2
ℓr

f+
ℓr

−
f2
ℓs

f+
ℓs

)
1

mcℓ
σ2
v

=
1

m
σ2
v ·

1

cℓ

(
−fℓr

f+
ℓr

− fℓs

f+
ℓs

+ qℓ

)
︸ ︷︷ ︸

Vℓrs

.

We verify that this construction of a covariance matrix Vℓ among the different allelic effects at

genetic variant ℓ satisfies the 2 constraints placed on it as follows:

fT
ℓ diag (Vℓ) =

δℓ∑
r=1

fℓr
cℓ

(
1

f+
ℓr

− 2fℓr

f+
ℓr

+ qℓ

)

=
1

cℓ

(
δℓ∑
r=1

fℓr

f+
ℓr

1{fℓr⩾τ} +

δℓ∑
r=1

fℓr

f+
ℓr

1{fℓr<τ} − 2qℓ + qℓ

)

=
Bℓ +

1
τ Pℓ − qℓ

cℓ
= 1,

fT
ℓ Vℓfℓ =

δℓ∑
r=1

f2
ℓr

cℓ

(
1

f+
ℓr

− 2fℓr

f+
ℓr

+ qℓ

)
+

δℓ∑
r=1

∑
s ̸=r

fℓrfℓs
cℓ

(
−fℓr

f+
ℓr

− fℓs

f+
ℓs

+ qℓ

)

=
1

cℓ

δℓ∑
r=1

f2
ℓr

(
1

f+
ℓr

− 2fℓr

f+
ℓr

+ qℓ

)
+

1

cℓ

δℓ∑
r=1

fℓr

[
−fℓr (1− fℓr)

f+
ℓr

− qℓ +
f2
ℓr

f+
ℓr

+ qℓ (1− fℓr)

]

=
1

cℓ

δℓ∑
r=1

f2
ℓr

(
1

f+
ℓr

− 2fℓr

f+
ℓr

+ qℓ −
1

f+
ℓr

+
fℓr

f+
ℓr

+
fℓr

f+
ℓr

− qℓ

)
= 0.

The (i, j)-th element of the weight-adjusted pathogen GRM is specified as follows:

Kij =
1

m

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

Vℓrs1{Giℓ=r,Gjℓ=s}

=
1

m

m∑
ℓ=1

δℓ∑
r=1

δℓ∑
s=1

1

cℓ

(
1

f+
ℓr

1{r=s} −
fℓr

f+
ℓr

− fℓs

f+
ℓs

+ qℓ

)
1{Giℓ=r,Gjℓ=s}

=
1

m

m∑
ℓ=1

1

cℓ

(
δℓ∑
r=1

1

f+
ℓr

1{Giℓ=Gjℓ=r} −
fℓGiℓ

f+
ℓGiℓ

−
fℓGjℓ

f+
ℓGjℓ

+ qℓ

)
.
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Finally, we verify that the weight-adjusted pathogen GRM satisfies the properties set forth in

Section 3.2 as follows:

E (Kij) =
1

m

m∑
ℓ=1

1

cℓ

[
δℓ∑
r=1

1

f+
ℓr

P (Giℓ = Gjℓ = r)−
δℓ∑
r=1

fℓr

f+
ℓr

P (Giℓ = r)−
δℓ∑
s=1

fℓs

f+
ℓs

P (Gjℓ = s) + qℓ

]

=
1

m

m∑
ℓ=1

1

cℓ

[
δℓ∑
r=1

ϕijfℓr + (1− ϕij) f
2
ℓr

f+
ℓr

− qℓ

]

=
1

m

m∑
ℓ=1

ϕij

(
Bℓ +

1
τ Pℓ

)
+ (1− ϕij) qℓ − qℓ

cℓ
= ϕij .
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CHAPTER 4

JOINT ASSOCIATION ANALYSIS OF HEPATITIS C PRE-TREATMENT

VIRAL LOAD

4.1 Description of the Data Set

To investigate the capability of our proposed correction framework to detect interaction effects

between two genetic variants on a phenotypic trait, we carried out a joint association analysis of

pre-treatment viral load (PTVL) on HCV-infected patients from the BOSON clinical trial [72].

Complete clinical and genomic information was available for a total of 540 out of 568 HCV-infected

patients. Out of these patients, 450 were of self-reported white ethnicity, 485 were infected with

HCV genotype 3a, and 409 were of self-reported white ethnicity while also infected with HCV

genotype 3a. Since the vast majority of infected patients in the sample belonged to this last category,

we chose to focus on analyzing this subset of patients for reasons of population homogeneity.

4.2 Imputation and Alignment of Genome Sequences

Viral nucleotide and amino acid sequences were downloaded from GenBank under accession codes

KY620313-KY620880. These nucleotide and amino acid sequences for each patient were initially

aligned using MAFFT version 7 with default settings [73]. The sequences were subsequently filtered

according to the viral genotype and the self-reported ethnicity of the infected patient, so that only

the 409 sequences corresponding to patients of self-reported white ethnicity and infected with HCV

genotype 3a were used for any subsequent analysis.

Human genotype data were sequenced using the Affymetrix UK Biobank array and are deposited

in the European Genome-Phenome Archive under accession code EGAS00001002324. Access to the

human genotype and clinical data was granted to us by the STOP-HCV consortium. The human

genotype data set was first divided into chromosomes and transformed to VCF format using PLINK

version 1.9 [74]. Missing human genotypes were then imputed using Beagle version 5.4 [75] with

the 1000 Genomes Project phase 3 reference panel [76] and the HapMap GrCh38 human genetic

map [77].
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Human SNPs on chromosome 6 from coordinates 20 Mbp to 40 Mbp - flanking the HLA region -

were extracted using PLINK version 1.9. The extracted SNPs were submitted to the Michigan Im-

putation Server for genotype imputation using Minimac4 [78] with the 1000G Phase 3 v5 reference

panel and the Eagle version 2.4 phasing algorithm [79]. The phased and imputed genotypes were

converted from vcf.gz format to Oxford HAPS/SAMPLE format using bcftools version 1.17 [80].

The converted genotypes were used to impute HLA class I and II haplotypes using HLA*IMP:03

[81]. Finally, HLA amino acids and SNPs were imputed using the Michigan Imputation Server with

the Four-digit Multi-ethnic HLA reference panel [82].

4.3 Estimation of the Population Structure

All of the aligned viral nucleotide sequences were employed to produce a maximum likelihood tree

using RAxML version 8.2 with a general time reversible model of nucleotide substitution under the

gamma model of rate heterogeneity [83]. The resulting tree, displayed in Figure 4.1, was rooted

at the midpoint and colored by HCV genotype. We notice the prevalence of HCV genotype 3a,

colored in cyan, as well as the great performance of the phylogenetic tree at distinguishing between

different HCV genotypes.

Figure 4.1: HCV Phylogenetic Tree
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In what follows, we solely focus on the 409 patients of self-reported white ethnicity infected with

HCV genotype 3a. Out of the total number of 9, 775 aligned nucleotides corresponding to the

HCV coding region, we filtered out 708 nucleotides with a deletion rate above 90%, 4, 108 which

displayed no variation within the patient cohort and 2, 207 with major allele frequency above 95%,

resulting in a remaining number of 2, 752 nucleotide variants with number of alleles ranging from 2

to 5, based on which we constructed our weight-adjusted pathogen GRM. In contrast, we note that

the restriction imposed by the previously proposed weighted pathogen GRM [8] would amount to

discarding 4, 026 nucleotide variants with minor allele frequency below 5%, resulting in a remaining

number of just 933 nucleotide variants for the computation of the viral GRM. Plotting the scores

of the top 2 eigenvectors of our proposed weight-adjusted pathogen GRM, shown in Figure 4.2,

unveiled signs of a 3-subpopulation structure within this patient subcohort. The top 2 eigevalues

of the weight-adjusted GRM were approximately equal to 7.91 and 5.59, whereas the rest of the

eigenvalues were smaller than 3.

Figure 4.2: Top Eigenvector Scores of HCV Weight-Adjusted GRM Based on Patients with Self-Reported
White Ethnicity Infected with HCV Genotype 3a

Comparing the diagonal and off-diagonal elements of the weight-adjusted GRM against those of the

pathogen GRM constructed on the basis of binary nucleotide allele indicators and the previously
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proposed weighted pathogen GRM, shown in Figures 4.3 and 4.4, we observe that the weight-

adjusted GRM is in close agreement with the binarized GRM. On the other hand, the previously

proposed weighted pathogen GRM displays much higher variation due to having to discard a much

larger proportion of nucleotide variants before its computation. For reference, we also do the same

GRM calculations based on the entire sample of patients. A plot of the top eigenvectors of the

corresponding weight-adjusted GRM is shown in Figure 4.5. Comparisons of the diagonal and

off-diagonal elements of the different viral GRMs under consideration are displayed in Figures 4.6

and 4.7.

Figure 4.3: Comparison of Diagonal Elements of Different HCV GRMs Based on Patients with Self-
Reported White Ethnicity Infected with HCV Genotype 3a

Out of the total number of 332, 954 human SNPs, we filtered out 7, 616 SNPs with a minor allele

frequency smaller than 5% and 297 SNPs with a chi-square goodness of fit p-value for Hardy-

Weinberg equilibrium smaller than 5 ·10−8. Then, we performed LD pruning on the human genome

using PLINK version 1.9, in order to obtain a subset of SNPs with pairwise correlation coefficients

smaller than 0.5. This procedure resulted in 184, 937 SNPs being pruned, so we constructed a

human GRM based on the remaining 140, 104 SNPs. Plotting the scores of the top 2 eigenvectors

of the human GRM, displayed in Figure 4.8, unveiled some heterogeneity within the patient cohort
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Figure 4.4: Comparison of Off-Diagonal Elements of Different HCV GRMs Based on Patients with Self-
Reported White Ethnicity Infected with HCV Genotype 3a

Figure 4.5: Top Eigenvector Scores of HCV Weight-Adjusted GRM Based on Entire Sample of Patients
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Figure 4.6: Comparison of Diagonal Elements of Different HCV GRMs Based on Entire Sample of Patients

Figure 4.7: Comparison of Off-Diagonal Elements of Different HCV GRMs Based on Entire Sample of
Patients
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of self-reported white ethnicity. Nevertheless, the top eigenvectors of the human GRM explained a

negligible portion of the total variation in the trait and the marginal GWAS on the human genome

was well-calibrated with a genomic control inflation factor of 1.003 despite lack of adjustment

for population structure. For reference, we also provide a plot of the top eigenvectors of the

corresponding human GRM based on the entire sample of patients, shown in Figure 4.9.

Figure 4.8: Top Eigenvector Scores of Human GRM Based on Patients with Self-Reported White Ethnicity
Infected with HCV Genotype 3a

4.4 Marginal Association Analyses

Since the distribution of PTVL was heavily skewed and displayed extremely high variation, we

chose to log-transform it and use log-PTVL as our phenotypic trait. Additionally, the patients’ age

and sex had a negligible effect on the trait, so they were ignored. Out of the total number of 332, 954

human SNPs, we filtered out 77 SNPs whose genotype was partially missing after imputation of

the human genome, 1 SNP with a minor allele frequency smaller than 1% and 309 SNPs with a

chi-square goodness of fit p-value for Hardy-Weinberg equilibrium smaller than 5 · 10−8, resulting

in a remaining number of 332, 567 human SNPs. A Manhattan plot of the human association

analysis p-values is displayed in Figure 4.10. We identified 3 human SNPs in chromosome 19 with

a genome-wide significant association to log-PTVL: rs8103142 (position 39735106) in the IFNL3
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Figure 4.9: Top Eigenvector Scores of Human GRM Based on Entire Sample of Patients

gene
(
p-value 2.11 · 10−8

)
, rs12979860 (position 39738787) in the IFNL4 gene

(
p-value 1.85 · 10−8

)
and rs8099917 (position 39743165) close to the IFNL4 gene

(
p-value 1.44 · 10−8

)
. The first two

SNPs displayed a correlation of 0.99 in our cohort, while the third one displayed correlations of

0.73 and 0.72 with each of the first two SNPs respectively. SNP rs12979860 had previously been

strongly associated with sustained virological response in a GWAS [84] of 1, 137 chronically infected

European-American, African-American and Hispanic individuals with HCV genotype 1 who were

part of the IDEAL study [85]. This association had been replicated
(
p-value 5.9 · 10−10

)
on the

infected patients with HCV genotype 3a from the BOSON clinical trial [9].

Out of the total number of 3, 281 aligned HCV amino acids, we filtered out 260 amino acids with

a deletion rate above 90% - leading to a total of 3, 021 amino acids - and 1, 378 which displayed no

variation within the patient cohort, resulting in a remaining number of 1, 643 amino acid variants

with number of alleles ranging from 2 to 18. Next, we turned each of these amino acid variants

into binary amino acid allele indicators, resulting in 4, 843 allele indicators. We filtered out 2, 722

allele indicators with a minor allele frequency smaller than 1%, resulting in a remaining number of

2, 121 allele indicators. A Manhattan plot of the viral amino acid association analysis p-values is
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Figure 4.10: Manhattan Plot of Human GWAS on log-PTVL

displayed in Figure 4.11. The HCV chromosome is divided into the structural proteins Core, E1, E2

and the non-structural proteins P7, NS2, NS3, NS4A, NS4B, NS5A, NS5B. The marginal GWAS

on the amino acid allele indicators, adjusting for the top 2 eigenvectors of the weight-adjusted viral

GRM, yielded a few moderate association signals with the top among them being the following: the

serine indicator (allele count 320) of the HCV amino acid at position 2, 422 in the NS5A protein(
p-value 1.75 · 10−5

)
and the glycine indicator (allele count 26) of the HCV amino acid at position

1, 831 in the NS4B protein
(
p-value 7.49 · 10−5

)
. The NS5A protein is known to contribute to

HCV pathogenesis, replication, propagation, modulation of cell signaling pathways and response

to interferon treatment [86].

4.5 Feast or Famine Simulation

Before moving on to a joint association analysis of log-PTVL, we first evaluate the prevalence of the

feast or famine effect with respect to log-PTVL and the observed HCV amino acid allele indicators.

We set the number of simulated host genetic variants mh to be equal to 10, 000. For each amino acid

allele indicator, we simulate independent host allele frequencies fX1 , fX2 , . . . , fXmh
∼ Unif[0.1, 0.9]

and independent host genotypes Xij ∼ Binomial
(
2, fXj

)
for j = 1, 2, . . . ,mh.

Focusing on HCV amino acid allele indicators with a minor allele count of at least 80, the aspartate
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Figure 4.11: Manhattan Plot of HCV Amino Acid Allele Indicator GWAS on log-PTVL

indicator (allele count 86) of the HCV amino acid at position 578 in the E2 protein displayed

the highest genomic control inflation factor of 1.2, while the phenylalanine indicator (allele count

308) of the HCV amino acid at position 586 in the E2 protein displayed the lowest genomic control

inflation factor 0.77. Q-Q plots of the corresponding interaction p-values before and after correction

are displayed in Figure 4.12. We observe that all of our proposed correction methods perform

similarly in terms of correcting the feast or famine effect in these instances.

Furthermore, we evaluate the performance of our proposed diagnostic ratio on the HCV data set. A

scatterplot of the uncorrected genomic control inflation factors against the diagnostic ratio, shown

in Figure 4.13, verifies the strong linear relationship between them even based on real HCV amino

acid allele indicators. We note that the sample correlation between these 2 quantities is calculated

to be 94.78%. This linear relationship does not appear as strong as the one observed based on

simulated pathogen genetic variants, but that mostly comes down to the prevalence of smaller Z

minor allele counts in the viral genome, leading to the discarding of a substantial proportion of

tested pairs with minimum cell counts below 5 and the calculation of genomic control inflation

factors on the basis of fewer than mh = 10, 000 observed test statistics. We also calculate the

5% sample quantiles for each collection of uncorrected interaction p-values p1k, p2k, . . . , pmhk and

plot them on the − log10 scale against the diagnostic ratio, shown in Figure 4.14. We observe

86



that the diagnostic ratio performs even better than previous studies with simulated quantitative

traits and pathogen genetic variants in predicting the tail behavior of the uncorrected interaction

p-values, partly owing to the prevalence of smaller Z minor allele counts. As a reference, the sample

correlation between these 2 quantities was calculated to be equal to 99.29%.

Figure 4.12: Q-Q Plots Displaying the Correction of the Feast or Famine Effect Given Real HCV Amino
Acid Allele Indicators

Figure 4.13: Scatterplot of Uncorrected Genomic Control Inflation Factors vs. Diagnostic Ratio Given
Real HCV Amino Acid Allele Indicators
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Figure 4.14: Scatterplot of 5% Quantiles of Uncorrected P-Values on the Log Scale vs. Diagnostic Ratio
Given Real HCV Amino Acid Allele Indicators

4.6 Joint Association Analysis

We filtered out pairs of human SNPs and binary HCV amino acid allele indicators with a minimum

cell count smaller than 5, resulting in a remaining number of 257, 144, 224 pairs for the purposes of

joint association mapping, adjusting for the top 2 eigenvectors of the weight-adjusted viral GRM.

For any pair with a human SNP minor allele count larger than or equal to 50, a binary HCV amino

acid indicator minor allele count larger than or equal to 80 and a minimum cell count larger than

or equal to 10, we calculated a corrected interaction test statistic based on our proposed alternative

binomial correction. The number of such pairs was calculated to be equal to 58, 259, 674, which

accounted for 22.66% of the total number of performed interaction tests. For any other pair, we

calculated a corrected interaction test statistic based on our proposed null binomial correction. The

top results of the joint GWAS, are displayed in Tables 4.1 through 4.3. The same procedure was

also carried out for the 182 HLA haplotype indicators provided by HLA*IMP:03, the 3, 209 HLA

amino acid indicators provided by the Michigan Imputation Server and the 10, 351 imputed SNPs

flanking the HLA region also provided by the Michigan Imputation Server.

In Tables 4.1 and 4.2, we have listed the top interaction signals between binary HCV amino acid

allele indicators and human genetic variants. For each amino acid indicator, we have listed the HCV
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protein to which it belongs and its observed alleles in the patient cohort with the corresponding allele

counts in parentheses. The alleles to which the identified interaction signal correspond are displayed

in bold text. Next to each identified amino acid indicator, we have listed the human genetic

variants to which the strongest interaction signals correspond with their chromosomal coordinates

in parentheses. For each associated variant, we have listed the closest identified human gene

and the corresponding interaction p-values. The uncorrected interaction p-values are displayed in

parentheses, while the corrected interaction p-values based on the alternative binomial correction

framework displayed in bold text. Lastly, we have listed the minimum cell count for the pair of

amino acid indicator and its associated variant with the minor allele count of the associated variant

in parentheses.

SNPs in the MICB gene displayed multiple strong to moderate interactions with HCV amino acid

indicators - the top among those were that of SNP rs3131638 with the glycine indicator of the

HCV amino acid at position 398 in the E2 protein
(
corrected p-value 3.83 · 10−8

)
, that of SNP

rs2507971 with the threonine indicator of the HCV amino acid at position 400 in the E2 protein(
corrected p-value 7.87 · 10−6

)
and that of SNP rs2507971 with the methionine indicator of the

HCV amino acid at position 330 in the E1 protein
(
corrected p-value 8.84 · 10−6

)
. The MICA and

MICB genes have proven to be induced on dendritic cells by IFN-α treatment and to be capable

of activating natural killer cells in a cohort of Japanese HCV-infected patients and control cases

[87]. The MICB gene has been identified to be among 5 genes within the MHC class III - class

I boundary which are strongly associated with HCV-related dilated cardiomyopathy in a cohort

of Japanese patients with HCV-related dilated cardiomyopathy and control cases [88]. The MICB

gene has also been shown to be a strong predictive factor for sustained virological response to

pegylated interferon plus ribavirin therapy in a cohort of Japanese HCV-infected patients [89].

Genetic variants corresponding to MHC class I and II displayed multiple moderate interactions

with HCV amino acid indicators - the top among those were that of SNP rs562289 in the HLA-

DRB1 gene with the asparagine indicator of the HCV amino acid at position 529 in the E2 protein(
corrected p-value 1.11 · 10−6

)
, that of amino acid 97 in the HLA-A gene with the methionine

indicator of the HCV amino acid at position 635 in the E2 protein
(
corrected p-value 1.22 · 10−6

)
and that of SNP rs3897530 in the HLA-B gene with the serine indicator of the HCV amino acid at

89



AA HCV AA Alleles Associated Variants Associated P-Values MCC

Pos. Prot. (Counts) (Position) Genes (Uncorrected) (MAC)

398 E2

A(15), E(1),

rs3131638 (31475127) MICB 3.83 · 10−8
(
1.3 · 10−7

)
46 (101.5)F(4), G(221),

I(4), K(6), L(3),

M(9), N(1),

HLA_B*07:02 (31321650) HLA-B 2.89 · 10−3
(
4.53 · 10−3

)
28.5 (63.5)R(31), S(59),

T(43), V(10)

529 E2

A(2), D(9),
rs562289 (32577046)

HLA-DRB1

1.11 · 10−6
(
5.72 · 10−6

)
20 (74)

E(3), G(3), K(4),

N(100), Q(4), R(4),
HLA_DQA1*03:01 (32605197) 9.11 · 10−4

(
1.4 · 10−3

)
18 (67)

S(21), T(257)

635 E2 A(1), M(26), V(382) AA_A_97_29911063_exon3 HLA-A 1.22 · 10−6
(
2.58 · 10−7

)
8 (174)

1099 NS3
A(236), D(1), F(2), rs3129771 (32597202) HLA-DRB1 4.72 · 10−6

(
1.29 · 10−5

)
59.5 (146)

I(3), T(5), V(161) HLA_DRB4*01:03 (3830849) HLA-DRB4 7.53 · 10−6
(
2.18 · 10−5

)
29.5 (82)

2154 NS5A

A(6), I(3),
rs1264368 (30771612) HCG20 4.78 · 10−6

(
9.31 · 10−7

)
39.5 (103.5)

K(4), L(6),

M(265), S(7),
AA_B_77_31324506_exon2 HLA-B 1.87 · 10−3

(
1.11 · 10−3

)
12.5 (31.5)

T(88), V(35)

541 E2

A(7), D(18), E(183),
AA_DRB1_37_32552051_exon2 HLA-DRB1 5.38 · 10−6

(
1.49 · 10−5

)
43.5 (124)

G(7), H(2), K(128),

N(14), P(1), Q(18),
HLA_DQB1*03:01 (32627257) HLA-DQB1 2.17 · 10−3

(
2.14 · 10−3

)
18.5 (63)

R(10), S(1), T(18)

384 E2

−(5), A(17), D(25),

rs3909115 (30993188) MUC21 6.1 · 10−6
(
3.43 · 10−5

)
13.5 (94.5)

E(87), G(29), H(14),

I(1), K(4), N(39),

Q(20), R(4), S(61),

T(97), V(1), Y(4)

2076 NS5A
C(4), G(62), rs3897530 (31323469) HLA-B 6.2 · 10−6

(
3.43 · 10−5

)
8.5 (56.5)

S(343) HLA_C*04:01 HLA-C 1.18 · 10−3
(
2.12 · 10−3

)
8 (41)

3001 NS5B
H(270), R(1), AA_DRB1_37_32552051_exon2 HLA-DRB1 6.77 · 10−6

(
1.54 · 10−5

)
52.5 (147.5)

Y(138) HLA_A*11:01 HLA-A 5.22 · 10−3
(
5.28 · 10−3

)
9.5 (28)

614 E2 I(6), L(91), M(312) AA_B_114_31324150_exon3 HLA-B 7.36 · 10−6
(
8.89 · 10−6

)
45.5 (195)

400 E2

A(137), F(5), G(1),
rs2507971 (31461372) MICB 7.87 · 10−6

(
2.96 · 10−5

)
66.5 (163)

H(1), K(1), L(3),

M(2), N(3), S(24),
HLA_C*07:02 (31236654) HLA-C 7.19 · 10−3

(
1.01 · 10−2

)
27.5 (69.5)

T(179), V(46), Y(5)

879 NS2
A(88), F(4), I(33), rs2261033 (31603591) PRRC2A 8.37 · 10−6

(
7.13 · 10−5

)
39.5 (168)

T(2), V(282) HLA_DQA1*01:02 (32605186) HLA-DQA1 7.56 · 10−4
(
2.47 · 10−3

)
16.5 (92)

330 E1
A(19), I(2), L(8),

rs2507971 (31461372) MICB 8.84 · 10−6
(
2.71 · 10−4

)
5.5 (163)

M(13), V(367)

Table 4.1: Top Interaction Signals between HCV Amino Acid Allele Indicators and HLA Variants on log-
PTVL.

position 2, 076 in the NS5A protein
(
corrected p-value 6.2 · 10−6

)
. Multiple HLA haplotypes have

previously been linked with either spontaneous clearance or poor prognosis of HCV infection [90].
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SNPs adjacent to the HCG20 gene within the HLA complex displayed a few moderate inter-

actions with HCV amino acid indicators - the top among those was that of SNP rs1264368

with the methionine indicator of the HCV amino acid at position 2, 154 in the NS5A protein(
corrected p-value 4.78 · 10−6

)
. The HCG20 gene has been identified to be among 8 hub differen-

tially expressed long non-coding RNAs in a cohort of 373 patients with hepatocellular carcinoma

and 50 control cases from the Cancer Genome Atlas [91].

SNPs adjacent to the MUC21 gene within the HLA complex displayed a few moderate interactions

with HCV amino acid indicators - the top among those was that of SNP rs3909115 with the serine

indicator of the HCV amino acid at position 384 in the E2 protein
(
corrected p-value 6.1 · 10−6

)
.

Expressions levels of the MUC15, MUC13 and MUC21 genes have been individually associated

with survival for digestive cancers in a cohort of patients from the Cancer Genome Atlas [92].

SNPs in the PRRC2A gene within the HLA complex displayed a few moderate interactions with

HCV amino acid indicators - the top among those was that of SNP rs2261033 with the alanine

indicator of the HCV amino acid at position 879 in the NS2 protein
(
corrected p-value 8.37 · 10−6

)
.

High expression of the PRRC2A gene has been associated with poor prognosis in Chinese patients

with hepatocellular carcinoma [93], [94].

SNPs adjacent to the NAV2-AS4 gene in chromosome 11 displayed a few strong interactions with

HCV amino acid indicators - the top among those was that of SNP rs10082600 with the valine indi-

cator of the HCV amino acid at position 1, 651 in the NS3 protein
(
corrected p-value 2.95 · 10−8

)
.

The NAV2-AS4 gene has been found to be significant in predicting overall survival for a cohort of

371 patients with hepatocellular carcinoma from the Cancer Genome Atlas platform [21].

SNPs adjacent to the ZWINT gene in chromosome 10 displayed a few strong interactions with HCV

amino acid indicators - the top among those was that of SNP rs7091063 with the alanine indicator

of the HCV amino acid at position 1, 882 in the NS4B protein
(
corrected p-value 4.13 · 10−8

)
. The

ZWINT gene has been found to be significant in predicting overall survival and making prognostic

risk assessments for a cohort of patients with hepatocellular carcinoma from the Cancer Genome

Atlas and the International Cancer Genome Consortium [95].
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AA HCV AA Alleles Associated SNPs Associated P-Values MCC

Pos. Prot. (Counts) (Position) Genes (Uncorrected) (MAC)

628 E2
A(2), F(3), I(58),

rs11246973 (12:132671437) LINC02361 1.16 · 10−8
(
1.87 · 10−8

)
22 (135)

L(14), Q(1), V(331)

576 E2

−(2), A(7), D(8),

rs2304389 (9:101068580) GABBR2 1.25 · 10−8
(
1.33 · 10−7

)
18 (64)

E(98), G(255), H(1),

K(7), P(2), R(11),

S(4), T(6), V(5)

1435 NS3
A(181), G(1),

rs6024051 (20:53974654) RPL12P4 1.52 · 10−8
(
2.29 · 10−8

)
23.5 (53.5)

S(39), T(188)

1651 NS3 I(301), L(7), V(100) rs10082600 (11:20087893) NAV2-AS4 2.95 · 10−8
(
2.52 · 10−7

)
43.5 (173)

1882 NS4B
A(235), G(12),

rs7091063 (10:57739268) ZWINT 4.13 · 10−8
(
4.79 · 10−8

)
23 (52)

P(2), S(2), T(158)

433 E2
I(319), L(81),

rs964841 (12:62286036) TAFA2 5.84 · 10−8
(
1.58 · 10−6

)
37.5 (186)

M(1), T(1), V(5)

2339 NS5A I(363), L(2), V(43) rs4742488 (9:8371405) PTPRD 6.03 · 10−8
(
8.49 · 10−7

)
5 (67.5)

2804 NS5B

H(26), I(2), L(131),

rs2662464 (5:115356017) LVRN 6.07 · 10−8
(
1.66 · 10−7

)
55 (114)M(1), Q(38),

R(201), V(1), W(9)

501 E2

A(70), E(1), I(1),

rs6585043 (10:113010056) HEAT2 6.35 · 10−8
(
1.39 · 10−6

)
31 (120.5)

K(6), L(111), P(8),

Q(5), R(12),

S(180), T(8), V(5)

464 E2

A(8), D(7), F(201),

rs17815047 (12:71920906) LGR5 7.11 · 10−8
(
2.94 · 10−7

)
36.5 (115)

H(29), K(1), L(1),

N(1), Q(1), S(128),

T(1), Y(30)

2388 NS5A
E(60), G(328), I(1),

rs2242471 (4:76878716) SDAD1 7.52 · 10−8
(
6.37 · 10−7

)
30.5 (163)

R(12), S(2), V(3)

748 E2
A(9), S(327),

rs35563441 (3:84603909) LINC00971 8.21 · 10−8
(
2.45 · 10−6

)
16 (84.5)

T(70), V(1)

951 NS2 C(26), F(381), L(1) rs4239261 (17:5980100) WSCD1 8.25 · 10−8
(
9.17 · 10−7

)
5.5 (72)

208 E1
A(6), H(1), P(114),

rs357368 (7:137979927) RPS17P12 9.53 · 10−8
(
3.37 · 10−6

)
43.5 (143)

R(2), S(285)

386 E2

−(1), D(3), F(1),

rs4284283 (1:17796711) ARHGEF10L 9.54 · 10−8
(
1.9 · 10−7

)
46.5 (147.5)

G(1), H(142), I(2),

L(3), N(1), P(2),

Q(3), R(60), T(4),

V(2), W(1), Y(182)

Table 4.2: Top Interaction Signals between HCV Amino Acid Allele Indicators and Human SNPs on log-
PTVL.

SNPs in the PTPRD gene in chromosome 9 showed a few strong interactions with HCV amino

acid indicators - the top among those was that of SNP rs4742488 with the valine indicator of

the HCV amino acid at position 2, 339 in the NS5A protein
(
corrected p-value 6.03 · 10−8

)
. The

tumor suppressor PTPRD gene has proven to be impaired by HCV infection in hepatocellular
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carcinoma lesions. On the other hand, high PTPRD levels in liver tissue adjacent to tumor have

been associated with increased survival rate and reduced tumor recurrence in patients undergoing

surgical resection at the Gastroenterology and Hepatology outpatient clinic of the Basel University

Hospital, Switzerland, the Centre Hospitalier Universitaire de Reims, France and the Hôpitaux

Universitaires de Strasbourg, France [96].

SNPs in the LGR5 gene in chromosome 12 displayed a few strong interactions with HCV amino acid

indicators - the top among those was that of SNP rs17815047 with the serine indicator of the HCV

amino acid at position 464 in the E2 protein
(
corrected p-value 7.11 · 10−8

)
. High protein levels of

the LGR5 gene have been associated with poor prognosis in a cohort 66 hepatocellular carcinoma

patients who underwent curative surgery at Zhejiang Provincial People’s Hospital from 2008 to 2015

and another cohort admitted to the Division of General Surgery, Department of Surgery, Changhua

Christian Hospital, Taiwan between November 2013 and September 2017 [97], [98].

SNPs adjacent to the ARHGEF10L gene in chromosome 1 displayed a few strong interactions with

HCV amino acid indicators - the top among those was that of SNP rs4284283 with the histidine

indicator of the HCV amino acid at position 386 in the E2 protein
(
corrected p-value 9.54 · 10−8

)
.

Increased expression of the ARHGEF10L gene has been found to stimulate the tumor cell prolifer-

ation and cell migration in a cohort of patients with hepatocellular carcinoma from the Shandong

Provincial Qianfoshan Hospital [99].

Amino acid indicators in the E2 protein displayed multiple strong to moderate interactions with

human genetic variants - exactly half of the top interaction signals presented in tables 4.1 and 4.2

correspond to this HCV protein. The E2 protein contains two hypervariable regions - HVR1 and

HVR2 - which are the most mutable parts of the HCV genome. This heterogeneity can potentially

aid the virus in evading the host immune response and developing into chronic infection. The

HVR2 region has been shown to contribute to viral receptor binding, while the HVR1 region is the

most frequent target for neutralizing antibodies [86].

Lastly, the identified human SNP rs12979860 in the IFNL4 gene from the marginal human GWAS

displayed moderate interaction signals with the aspartate allele indicator of the HCV amino acid at

position 571 in the E2 protein
(
corrected p-value 3.15 · 10−4

)
and the leucine allele indicator of the
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AA Position List of Associated Variants

398 rs3131638, rs3095234, rs3130927, rs3134899, rs1065076, rs3130615, rs3132468, rs3131635

529 rs562289, rs9267951, rs1846190

635

rs376646, rs2975043, rs417162, rs2508037, rs9260112

AA_A_97_29911063_exon3, AA_A_114_29911114_exon3, AA_A_276_29912281_exon5,

AA_A_321_29912858_exon6, AA_A_152_29911228_exon3

1099 rs3129771, rs78017592, rs9273138, rs9272990

2076 rs3897530, rs2394986, rs7749442

2388 rs2242471, rs2273

Table 4.3: List of Identified Interaction Signals between HCV Amino Acid Allele Indicators and Human
Genetic Variants on log-PTVL.

HCV amino acid at position 1, 738 in the NS4B protein
(
corrected p-value 2.68 · 10−4

)
. The identi-

fied serine allele indicator of the HCV amino acid at position 2, 422 in the NS5A protein displayed

a moderate interaction signal with the rs10848105 SNP in the RIMBP2 gene in chromosome 12(
corrected p-value 1.12 · 10−7

)
. The RIMBP2 gene has been identifited to be among 8 differentially

expressed genes for a cohort of 120 patients with advanced hepatocellular carcinoma treated with

lenvatinib compared to sorafenib in the Second Hospital of Tianjin Medical University [100].

4.7 Discussion

We performed a joint GWAS testing for interaction effects between human SNPs and hepatitis

C viral genetic variants on pre-treatment viral load in a cohort of HCV infected patients from

the BOSON clinical trial, focusing on patients of self-reported white ethnicity infected with HCV

genotype 3a. We demonstrated that our newly proposed weight-adjusted pathogen GRM performs

much better than the previously proposed weighted pathogen GRM [8] in estimating the population

structure among different viral strains due to the high mutability of viral genomes leading to a very

large number of multiallelic viral genetic variants with rare alleles. We successfully replicated pre-

viously identified marginal associations between human SNPs, HCV genetic variants and hepatitis

C pre-treatment viral load. We verified through a simulation study the prevalence of the feast or

famine effect when testing for interaction effects between certain HCV amino acid allele indica-

tors and simulated human SNPs on pre-treatment viral load. We applied our binomial correction

framework to correct for the feast or famine effect and presented a list of the strongest corrected

interaction signals between human SNPs and HCV amino acid allele indicators, especially focusing
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on the human HLA region which is responsible for the regulation of the immune system. Many

of the identified human SNPs belong to human genes which have previously been associated with

sustained virological response to interferon therapy and spontaneous clearance or poor prognosis

of HCV infection or hepatocellular carcinoma. Many of the identified HCV amino acid allele in-

dicators belong to the E2 protein, which is a highly variable region of the HCV genome, aiding

the virus in evading the host immune response and developing into chronic infection, as well as

contributing to viral receptor binding.
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