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Understanding the genesis of shared trial-to-trial variability in neuronal population
activity within the sensory cortex is critical to uncovering the biological basis of
information processing in the brain. Shared variability is often a reflection of the
structure of cortical connectivity since it likely arises, in part, from local circuit inputs.
A series of experiments from segregated networks of (excitatory) pyramidal neurons in
the mouse primary visual cortex challenge this view. Specifically, the across-network
correlations were found to be larger than predicted given the known weak cross-
network connectivity. We aim to uncover the circuit mechanisms responsible for
these enhanced correlations through biologically motivated cortical circuit models.
Our central finding is that coupling each excitatory subpopulation with a specific
inhibitory subpopulation provides the most robust network-intrinsic solution in
shaping these enhanced correlations. This result argues for the existence of excitatory–
inhibitory functional assemblies in early sensory areas which mirror not just response
properties but also connectivity between pyramidal cells. Furthermore, our findings
provide theoretical support for recent experimental observations showing that cortical
inhibition forms structural and functional subnetworks with excitatory cells, in contrast
to the classical view that inhibition is a nonspecific blanket suppression of local
excitation.

excitatory–inhibitory assemblies | trial-to-trial variability | inhibition-stabilized network |
cortical connectivity

Determining a structure–function relationship in a cortical circuit is a central goal in
many neuroscience research programs. While the trial-averaged responses of a network
to a fixed stimulus or repeated behavior give some information about the underlying
circuit, the dynamic or trial-to-trial fluctuations of neuronal activity provide another
important glimpse into how network structure determines network activity (1). Indeed,
any correlations in the trial-to-trial fluctuations of a pair of neurons are thought to reflect,
in part, their common synaptic inputs (2–6). Because correlated response variability is
a salient feature of cortical responses (7), incorporating it into cortical models can offer
an important constraint when choosing model parameters that allow model responses to
best match those from experiment. This framework has been typically used to explore
local circuit structure where pyramidal neurons are only labeled by their stimulus tuning.
In this study, we use established circuit-based theories to make targeted predictions about
cortical circuits where pyramidal neurons are distinguished by the foci of their synaptic
projections.

Our modeling is heavily motivated by a series of studies that measure the pairwise
trial-to-trial covariability of pyramidal neuron activity in layer 2/3 of the mouse primary
visual cortex (V1). In a heroic set of combined in vivo and in vitro experiments, Ko
et al. (8) and Cossell et al. (9) report that the magnitude of the pairwise correlations
between two pyramidal cells (both trial-averaged and trial-variable) increases with their
probability of synaptic connection. This observation is consistent with a Hebbian network
where synaptic wiring is functionally aligned; i.e., neuron pairs showing coordinated
activity (through tuning or trial-to-trial fluctuations) have stronger connections.
However, these same researchers later investigated the functional properties of two
distinct subpopulations of pyramidal cells in mouse V1 that project to separate
downstream higher visual areas (10). These subpopulations are interconnected with
lower probability than that of randomly sampled pyramidal cells within V1. Despite
this weak connectivity, it was found that the correlations between these distinct
subpopulations were much higher than predicted by their sparse interconnectivity. In
fact, the magnitude of the correlated variability across the two subpopulations was
comparable to the correlation between any randomly chosen pair of excitatory neurons.

Significance

The structure of recurrent
connectivity within cortical
networks has important
implications for their activity.
Previous work has found neurons
preferentially interconnect to
form clustered assemblies.
Traditionally, such assemblies of
neurons showed strong, positive
within-population correlations
and strong, negative
cross-population correlations.
Our work is motivated by recent
experimental results that stand
in stark contrast to these
observations. Specifically, it was
found that neurons in the mouse
visual cortex exhibited highly
correlated activity but with a
small probability of connection.
Using theoretical analyses, we
find that the most robust solution
involves inhibitory neurons being
equally segregated in their
interactions with excitatory
neurons. That is, inhibition should
strongly cocluster with excitation,
a result that aligns with recent
experimental observations.
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In this same vein, another experiment examining callosal pro-
jection neurons in mouse V1 found that these cells also cluster
and connect more strongly as a class (11), yet their correlated
variability is similar when comparing within-class and out-of-
class neuron pairs. In total, these data illustrate that significant,
positive correlations can persist in the absence of direct strong
connections.

In this work, we apply established circuit modeling techniques
(3–5, 12–14) to characterize the neural circuit properties which
could explain the significant positive shared variability across
segregated cortical subpopulations observed in Kim et al. (10).
With the use of mean field circuit models, we show that popu-
lation variability depends on the dynamical regime of the circuit
and relies on how recurrent inhibition aligns with the functional
segregation of pyramidal neurons. In a weakly coupled regime,
correlations can be characterized through inheritance from
outside sources, or increased through shared inhibitory inputs. By
contrast, in a strongly coupled regime, shared inhibition largely
acts to anticorrelate activity across the populations. Critically, we
show that this anticorrelation can be mitigated if inhibition is
similarly clustered with excitation, forming instead functionally
defined excitatory–inhibitory assemblies. This regime of strongly
coupled dynamics with clustered inhibition provides the most
robust solution space to explain the elevated correlations reported
in Kim et al. (10), without a dependence on inherited positive
correlations from outside sources.

Our model prediction claims that inhibitory interactions
with excitation should be as precise and selective as excitatory–
excitatory interactions. Experimental validation would likely
involve a combination of careful tracing and patch experiments,
however recent experimental results support a looser version
of our conclusions, having observed that murine visual cortex
exists in an inhibition-stabilized regime (15) and that excitation
and inhibition form functional clusters (16). Our modeling

results highlight the fact—which has been growing in recognition
recently—that to understand neural processing inhibition must
be considered as much a key component as excitation.

Results

Segregated Synaptic Wiring Does Not Produce Segregated
Functional Responses. Our work is motivated by an apparent
inconsistency in a series of experimental studies exploring the
relation between the recurrent circuitry and functional responses
of neuronal populations in the sensory neocortex. Ko et al. (8)
and Cossell et al. (9) used a combination of in vivo population
imaging and in vitro electrophysiology to show that the activity
correlations between pairs of pyramidal neurons in the mouse
primary V1 increase monotonically with the probability of there
existing synaptic connections between them. Later work from the
same group (10) investigated two excitatory populations in mouse
V1: neurons that are either anterolateral (AL)- or posteromedial
(PM)-projecting. Despite being in close spatial proximity to each
other, these neuronal subpopulations exhibit high within-group
connectivity (prob. AL↔ AL connection ∼ 0.21, prob. PM↔
PM connection ∼ 0.18) and low between-group connectivity
(prob. AL → PM connection ∼ 0.04, prob. PM → AL
connection ∼ 0.05). To streamline our presentation we will
label these two populations E1 and E2 (Fig. 1A). Given the low
connection probability between E1 and E2 and the established
relation between connectivity and activity correlations shown
in Ko et al. (8) and Cossell et al. (9), one would predict that
the degree of correlations between the activities of E1 and
E2 would be negative (Fig. 1B, held out light purple square;
from ref. 10, we estimate this value to lie in an interval
approximately [−0.05,0]). However, Kim et al. (10) reported
substantially higher than predicted mean E1 − E2 correlations
(Fig. 1B, darker green off-diagonal squares; Kim et al. (10)
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Fig. 1. Mean field model of segregated E populations. (A) Illustration of experimentally observed connectivity motif; the red (E1) and orange (E2) populations
interconnect with lower probability than average. (B) Schematic of main experimental observations: E1 − E2 correlations were higher than would be predicted
from their low connectivity. (C) Model schematic. Black traces and arrows denote noise sources. Red arrows indicate excitatory recurrent connections, where the
dashed line connotes weakened connection strength. Feedforward stimulus drive omitted for clarity. (D) Example realization of network activity to a sustained,
fixed stimulus. Colors as in (A). (E) E1 autocorrelation function and (F ) E1 − E2 cross-correlation function for the illustrated rate traces. For panels D–F : c = 0.5.
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measured it to be about 0.027). Additionally, these correlations
were observed to lie close to the within-group correlation (e.g.,
E1 − E1) values (Fig. 1B, dark green diagonal squares; Kim
et al. (10) reported approximately 0.035 to 0.04). In total,
while pyramidal neurons in mouse V1 projecting to distinct
targets show segregated synaptic connectivity, the degree of
functional segregation between these subpopulations is below
what is expected.

The central goal of our study is to put forth a circuit-based
model framework that can robustly and self-consistently account
for both of these experimental observations. It is important to
note that Kim et al. (10) only considered total correlations (of the
raw neural activity traces) in computing this expected correlation
value. However, given the similarities observed in the signal
and noise correlation structure in both this and previous studies
(8, 10, 11), we focus here on noise correlations which relate more
directly to the underlying structure of connectivity (3).

A Circuit Model of Fluctuations in Segregated Subpopulations.
To study the structure of correlations in anatomically segregated
networks and investigate the possible mechanisms responsi-
ble for the unexpectedly enhanced correlations between these
subnetworks, we consider a phenomenological dynamic mean
field model for the aggregate activity of each neural population
(12, 17, 18). Assuming that the network has a steady-state
solution (rss), the linearized dynamics of population A around
this equilibrium are given by (see Materials and Methods for
additional details):

�A
dΔrA
dt

=− ΔrA +
∑
B

WABΔrB

+ �A
[√

1− c · �A(t) +
√
c · �S(t)

]
, [1]

where ΔrA = rA − rss,A, �A is a time constant, and WAB is
the effective strength of connections from population B to A.
For the purely excitatory network, A and B range over E1 and
E2; when inhibitory connections are included in later sections,
A and B will include those as well. The stochastic processes
�A(t) and �S(t) represent private and shared global fluctuations,
respectively, modeling stochastic inputs that are external to the
network. �A(t) and �S(t) are taken to be independent Gaussian
processes with 〈�(t)〉 = 0 and 〈�(t)�(t ′)〉 = �(t − t ′). The
parameter c ∈ [0, 1] scales the proportion of shared noise relative
to private noise (Fig. 1C ) while �A > 0 represents the total
intensity of the external fluctuations given to population A.

We make two assumptions: 1) the network has a stable
solution rss about which the population dynamics fluctuate
(Fig. 1D), and 2) connections within and inputs to the network
are symmetric across the two E populations, with WE1E1 =
WE2E2 = WEE , WE1E2 = WE2E1 = �WEE , and �E1 = �E2 = �.
Note that parameter 0 < � � 1 represents the degree to
which the interpopulation connections are weaker than the
within-population connections (Fig. 1C ). Since the system of
recurrently coupled stochastic differential equations in Eq. 1
is a multidimensional Ornstein–Uhlenbeck (OU) process, one
can derive (Materials and Methods) an analytical formula for its
stationary autocovariance function

C̃(h) = 〈Δr(t),Δr(t + h)〉,

which agrees well with numerical simulations (Fig. 1 E and F ).
Further, and of particular interest in this work, is the long-time
covariance matrix defined as

C :=
∫
∞

−∞

C̃(h)dh.

This may be expressed (Materials and Methods) as

C = (I−W)−1D
[
(I−W)−1D

]> , [2]

where W is a matrix of effective connection strengths and D
is a matrix that scales the input fluctuations. We define the
correlations between E1 and E2 as

Corr(E1, E2) :=
CE1E2√

CE1E1CE2E2

=
CE1E2

CE1E1

, [3]

where CAB is an element of C and the second equality follows by
the assumed symmetry in the system. This framework enables us
to formalize the motivating question of our study: what are the
mechanisms that enable higher than expected correlations across
anatomically segregated populations? For the sake of specificity,
we choose the threshold Corr(E1, E2) > 0.6 as an approximation
of the ratio of mean across-population to within-population noise
correlations in Kim et al. (10).

Inheritance Model of Correlations between Weakly Coupled
Excitatory Populations. We begin by exploring how the strength
of recurrent excitation (WEE ) and the proportion of fluctuations
that are shared (c) shape correlations between the segregated E
populations. In this section, to ensure that the network admits
a stable activity solution we require WEE < 1, else recurrent
excitation would lead to runaway activity. Note that while we
allow WEE to vary, we maintain segregated populations by
keeping � small and fixed. We find that while increasing WEE
leads to moderate increases in Corr(E1, E2) (Eq. 3), a much more
significant increase occurs by increasing c (Fig. 2A).

To better understand the underlying mechanisms responsible
for these higher correlations within this parameter regime (i.e.,
to the right of the pink line in Fig. 2A), we perform a pathway
expansion of the covariance matrix Eq. 2. Since the steady state
emitted by the system in Eq. 1 is stable, the term (I−W)−1 can
be expanded as a series. This allows us to write Eq. 2 as (Materials
and Methods)

C =
∞∑
n=0

[ n∑
i=0

Wn−iDD>
(
W>

)i]
, [4]

where each term in the inner sum corresponds to an nth-order
path through the network. Writing out the first three terms of
this sum for the cross-covariance yields

CE1E2 = �2 [c + (2c + 2�)WEE + (3(1 + �2)c + 6�)W 2
EE
]

+O(W 3
EE).

Rewriting this equation as

CE1E2 = �2[c · (1 + 2WEE + 3(1 + �2)W 2
EE)︸ ︷︷ ︸

(1)

+ � · (2WEE + 6W 2
EE)︸ ︷︷ ︸

(2)

] +O(W 3
EE), [5]

reveals that each term contributing to this cross-covariance can be
thought of as arising from one of two sources: 1) inherited from
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Fig. 2. Highly correlated regime in weakly coupled excitatory network relies on correlated feedforward inputs. (A) Corr(E1 , E2) as a function of WEE and the
magnitude of shared input noise c. The dashed pink line indicates Corr(E1 , E2) = 0.6, approximating the value reported in ref. 10. (B) Schematic of example
synaptic paths through the network, along with their contribution to the cross-covariance, relating to the path expansion Eq. 4. The inherited row refers to
correlated paths stemming from correlations in the feedforward input, while the recurrence row arises from the recurrent connections across the populations.
(C) Contributions of paths of given order to networks (Left) and the total correlation (Right) for the parameters WEE = 0.25 and c = 0.65 (star from panel A). All
panels: � = 0.1.

the shared correlated input and dependent on the parameter
c (Fig. 2 B, Top), and 2) purely arising from the recurrent
connections and dependent on the parameter� (Fig. 2B,Bottom).
We note that the “propagation” of the inherited contribution
to higher-order paths does not only rely on the E1 ↔ E2
connections (proportional to �nc). This is because the correlated
activity is fed directly into each subpopulation at the 0th order,
from which it can propagate into higher-order paths via self-
loops contained within each population. We emphasize that
eliminating the 0th order term (i.e., setting c = 0) eliminates
all contributions from the inherited global source.

We now utilize this pathway expansion to compare the
contributions from feedforward and recurrent mechanisms to
the net cross-covariance for an example point lying in the highly
correlated regime (Fig. 2A, star; WEE = 0.25 and c = 0.65).
We first note that this series converges quickly and only a few
paths significantly contribute to the total correlation (Fig. 2C ).
The convergence of this series depends directly on the largest
eigenvalue of W (Materials and Methods), namely

�max = WEE · (1 + �),

which is small for our choice of parameters. Our numerical results
also illustrate that the contribution from the inherited source
largely dominates at each order (Fig. 2 C, Left), and contributes
∼90% of the total cross-correlation (Fig. 2 C, Right). These
results hold qualitatively across this parameter regime, and lead us
to conclude that it corresponds to a model in which large shared
input fluctuations explain the heightened correlations between
the separate E populations. Taken together, we characterize
this solution which exhibits enhanced E1 − E2 correlations as
a feedforward inheritance model.

However, under the condition where the shared input fluctua-
tions are small, we still lack a potential mechanism for significant
positive correlations. To surmount this shortcoming, we first
need to extend our model to also include inhibitory populations.

Weak Recurrent Excitation with Global Inhibition. Parsimo-
niously, we begin by modeling inhibition as a single global
population, consistent with observations that inhibition simply
connects densely and nonspecifically within the cortex (19, 20)
(Fig. 3A). To understand the effect of inhibition in this
circuit, we explore how the strength of recurrent inhibitory

connections (WEI < 0 andWIE > 0) shape correlations between
the excitatory populations in the case when c = 0. Assuming
WEE remains weak (i.e., WEE < 1), we find a large portion
of the parameter regime yields negative cross-correlations (Fig.
3B; purple region). However, there is a region that satisfies
our correlation condition, namely the dark green region that
corresponds to strong I → E and weak E → I connections.

We again make use of a pathway expansion of Eq. 2 to help
decipher this observation, this time accounting for the new
inhibitory pathways (Fig. 3C ). Writing out the expansion to
second order in W yields

CE1E2 = �2[2�WEE + 6�W 2
EE︸ ︷︷ ︸

exc. paths

+ 2WEIWIE + W 2
EI︸ ︷︷ ︸

inh. paths

]

+O(W 3), [6]

where we have noted the terms involving only the excitatory
components and terms which involve paths through the in-
hibitory population. We first observe that contributions to the
cross-covariance due to the excitatory subnetwork at each order
are the same as the previous network without the inhibitory
connections (Eq. 5 for c = 0). This leads us to decompose the
total covariance into an excitatory component and an inhibitory
component (neglecting the O(W 3) terms in Eq. 6)

CE1E2 = C exc
E1E2

+ C inh
E1E2

. [7]

As Eq. 6 suggests, depending on the strength of the underlying
inhibitory connections, C inh

E1E2
can either be positive (positively

correlating the excitatory subpopulations; Fig. 3B, along WEI
axis) or negative (anticorrelating the subpopulations; Fig. 3B,
purple region). By contrast, C exc

E1E2
is clearly bounded below by

zero.
Specifically, Eq. 6 reveals a “tug of war” that can arise early

on in the pathway expansion between the E → I → E (i.e.,
WEIWIE < 0) and the I → E (i.e., W 2

EI > 0) inhibitory
pathways. Choosing |WEI | > WIE ≈ 0, we find that the
positive term dominates, and the inhibitory population acts as a
strong correlator of excitatory activity (Fig. 3D). We term this
an inhibitory inheritance model by analogy to the feedforward
inheritance model described above.
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Fig. 3. Weakly coupled network. (A) Network model schematic as in Fig. 1C. Blue lines indicate recurrent inhibitory connections. (B) Corr(E1 , E2) as a function
of |WEI | and WIE . (C) Illustrations of first- and second-order paths. (D and E) (Left) Contributions of E (red outlined bars) and I (blue outlined bars) to
the net Corr(E1 , E2). (Right) Schematic of dominant correlating pathway. Colored stars denote locations in B. Red star: WEI = −1, WIE = 0.07; blue star:
WEI = −0.05, WIE = 2. For all panels � = 0.15.

On the other hand, when WIE > |WEI | ≈ 0, the negative
term dominates, leading the inhibitory population to weaken the
strength of cross-correlations. In this case, the primary correlating
source across the excitatory populations is the weak E1 ↔ E2
connections (Fig. 3E). But as we noted previously (Fig. 2), this
pathway alone is incapable of yielding high cross-correlations
without strongly correlated feedforward input.

The regime of weakly coupled neural populations thus permits
two solutions for correlating E1 and E2 to a sufficiently high
degree, both of which can be characterized in terms of inheritance
models. Namely, enhanced positive correlations can be inherited
from outside sources or from local recurrent inhibition. Never-
theless, the ambiguity in the former solution and the fine-tuning
required to achieve the latter solution push us to uncover a more
robust mechanism.

Strong Recurrent Excitation with Global Inhibition. Up to this
point, our assumption that the recurrent excitatory coupling is
weak ensured that the stability of the equilibrium point was

independent of the inhibitory currents. Such a network is com-
monly referred to as a non-inhibition-stabilized network (non-
ISN) (21–23) (see SI Appendix for additional details). However,
recent experimental evidence suggests that the mouse cortex
operates in the ISN regime, where strong recurrent excitation
is tracked and balanced by strong inhibitory feedback (15, 24).
Since the ISN regime is known to exhibit sometimes perplexing
dynamics, such as the well-studied paradoxical effect where a
depolarizing input to inhibitory neurons results in a lowering of
their firing rate (21, 22), it is initially unclear how shifting into
this parameter regime will shape the E1 − E2 correlations.

We now strengthen the recurrent excitatory connections WEE
such that our model network lies in the ISN regime. Performing a
similar analysis as before (i.e., fixing WEE and WII , while varying
WEI and WIE ) and assuming that the feedforward inputs are
uncorrelated (c = 0), we find results that at first glance appear
familiar (Fig. 4A). Namely, a portion of the parameter regime
results in negative correlations (purple region), with a narrow
parameter regime yielding positive correlations (green region).
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However, unlike the previous network, these correlations are
much larger across this band of parameter values, approaching
unity as the system loses stability due to the inhibitory feedback
becoming too weak to be able to balance out the strong excitation
(gray and red-hatched region).

Unlike the non-ISN regime, where the weak recurrent excita-
tory connections corresponded with small eigenvalues and quick
convergence in our path-expansion, here the eigenvalues of the
system lie much closer to the boundary separating stability from
instability, with a subset of parameter values producing a spectral
radius of W greater than one. As a result, even when the series
in Eq. 4 converges, it does so much more slowly and requires
many more terms than before, complicating its interpretation.
Instead, we seek to understand the mechanism driving these high
correlations calculating directly them only with Eq. 3 and by
exploring their apparent connection to the system’s stability.

We start by considering the slice of the parameter space
where |WEI | = WIE that captures the system’s transitions
from negative correlations to positive correlations and then to
instability (Fig. 4A, yellow line; Fig. 4 B, Top). Analysis of
the eigenvalues of W reveals a pair of eigenvalues (�1 and
�2) that depend on the strength of inhibitory connections and
another eigenvalue that remains constant (and close to one) along

this parameter slice (�3 = WEE(1 − �)) (Fig. 4 B, Bottom).
Interestingly, we find that decay for the stationary autocovariance
function for the inhibitory population (Fig. 4 D and E, Bottom;
see Eq. 9 in Materials and Methods) is well approximated by

 = max(Re(�1),Re(�2)) .

From this link, we see that when |WEI | = WIE is large, then
 is small, meaning the timescale of inhibition is fast. This
allows the inhibitory population to rapidly and effectively cancel
the net excitatory inputs (Fig. 4 C, Top). We observe that in
this parameter regime, ΔrI remains small while ΔrE1 ≈ −ΔrE2 ,
leading to strong negative correlations between E1 and E2. As
|WEI | = WIE decreases,  increases toward one, which slows
down the inhibitory timescale (Fig. 4 D, Top). This slower
cancelation of the excitatory currents allows for larger deviations
away from baseline for all neuronal populations. However, since
the system is still stable, we observe that the populations covary
together, leading to correlated excursions in the rates.

In total, the ISN regime yielded a more robust set of
parameter values corresponding to high correlations across the
segregated excitatory populations than the non-ISN regime
observed previously. However, even in this improved scenario,
the viable parameter regime is still limited to a relatively thin
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Fig. 4. Global inhibition in ISN regime. (A) Corr(E1 , E2) as a function of WEI , WIE with c = 0. (B) Top: Corr(E1 , E2) along the yellow path in A. Gray region: unstable;
green region: positive correlations; purple region: negative correlations. Bottom: eigenvalues of the circuit along the yellow path in A. (C and D) Top: example
rate traces (colors as in Fig. 3B). Bottom: auto- and cross-correlation functions computed numerically (black) and theoretically for the dominant timescale (blue
dashed). Stars indicate parameter values shown in B. Here, � = 0.2.
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band, and further, this band lies precariously close to regions of
instability.

Strong Recurrent Excitation with Clustered Inhibition. The
fine-tuning required to capture large Corr(E1, E2) despite having
weak E1 ↔ E2 coupling (� � 1) for both the purely excitatory
and global inhibitory networks places doubt on these mechanisms
being operative in real neuronal circuits. In this section, we
hypothesize that a larger stable region of Corr(E1, E2) > 0
may be permitted if the sources of inhibition for each excitatory
subpopulation are similarly clustered. The intuition is that
clustered inhibition will limit the effects of the anticorrelating
E1 → I → E2 and E2 → I → E1 pathways.

We implemented inhibition that is coclustered with the
excitatory subpopulations by separating the inhibitory popula-
tion into two subpopulations with I1 and I2 corresponding to
the respective excitatory populations E1 and E2 (Fig. 5A). In
this case, each Ei/Ii cluster constitutes an ISN (i = 1, 2). At this
point, the model contains no interpopulation connections except
those between E1 and E2 and assumes no source of shared input
correlations (c = 0). We have again assumed symmetry in the
connection strengths such that the pairs (E1, I1) and (E2, I2) are
identical in their connectivity and dynamics.

We fix WEE and WII and proceed by exploring the space of
WEI and WIE connections. We find that this network structure
now yields a robust region in which the network is stable and the
E1 − E2 correlations are strong and positive (Fig. 5B, green). In

fact, we can mathematically prove that with this given network
configuration, network stability implies Corr(E1, E2) > 0 (SI
Appendix). This result emphasizes three important points. First,
there exists a large space of connection parameters in which
our criteria (large Corr(E1, E2) and � � 1) may be met.
Given the heterogeneity of neural circuits and plasticity of
connections within the cortex, this parametric result is much
more satisfying than a fine-tuned solution like that required
in the model with global inhibition (Fig. 4). Second, this
result does not depend on the presence of external correlated
fluctuations. Third, this result is robust to the presence of
external correlated input noise as it would only further increase
Corr(E1, E2).

To supplement our mathematical proof with a clear intuition
for the result we start by considering the single E1/I1 ISN unit
unconnected from E2/I2 (i.e., � = 0). In this parameter regime,
despite receiving inputs from independent noisy processes, E1
and I1 are known to covary together (21, 22). The activity in E1
will therefore correlate with an incoming excitatory “signal,” as
this signal will drive an increase in activity for both E1 and I1.
This is exactly what happens for � > 0, as E2 sends an excitatory
signal into E1 (and vice versa for E1 into E2). We note that such
an argument cannot be applied for the three-population model
with a global inhibitory population we considered in the previous
section; in that case, you do not have separate ISN units. There,
I covaries with respect to the joint E1 + E2 activity, as opposed
to each of them separately (as seen in Fig. 4C ).
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Fig. 5. Segregated I subpopulations produce robust positive correlations. (A) Model schematic. Input structure is consistent with Fig. 3A but omitted for clarity.
(B) Corr(E1 , E2) as a function of WEI , WIE with c = 0. (C) Corr(E1 , E2) as a function of added connections between I1 , I2 (Left); I1 → E2 and I2 → E1 (Middle); E1 → I2
and E2 → I1 (Right). Added connections Wij are initialized to the same as elsewhere in the network, and scaled by � , I↔ I; �, I→ E; 
 , E → I. The dashed turquoise
line denotes � , �, 
 = 0, WEI = WIE = 1.
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Using this intuition, we then ask whether any of the other
interpopulation connections (i.e., Ei ↔ Ij or Ii ↔ Ij) would
support large and positive Corr(E1, E2). Using the same logic
as before but for inhibitory inputs, we anticipate that adding
Ij → Ei connections would decrease correlations. More specif-
ically, as the E2/I2 unit increases in activity, the inhibitory
I2 → E1 pathway would decrease activity in the E1/I1 unit, thus
leading E1 and E2 to become anticorrelated. The same reasoning
can almost be applied to the addition of Ii ↔ Ij connections,
except one must keep in mind the paradoxical effect that is a
hallmark of the ISN regime (21, 22). Namely, an inhibitory
current into the inhibitory population paradoxically leads to an
increase in the inhibitory and excitatory populations. As a result,
after following the same logic as before but with this effect in
mind, we predict that adding Ii ↔ Ij connections would increase
E1/E2 correlations. Last, since the paradoxical effect also needs
to be considered for the Ei → Ij connections, one predicts that
this connection would decrease E1/E2 correlations.

To test these predictions, we now consider fixed values of
WEI ,WIE , and WII , and introduce scaling parameters �, 
 , � ,
respectively, to adjust the between-population strengths of each
connection (see schematics in Fig. 5 C, Bottom). Consistent
with our predictions, we find that only � > 0 further enhances
correlations above the value we found when � = 0 (Fig. 5C,Left),
while any nonzero values of �, 
 only reduce correlations (Fig.
5 C, Middle and Right). Further, this same relationship also held
when �, 
 , � were covaried. Specifically, only I ↔ I connections
served as a correlating force; all others induced a reduction in cor-
relations (SI Appendix, Fig. S2). Hence, we conclude that while
inhibition in mouse V1 can be promiscuously connected with
other inhibitory units, it must be strongly coclustered with ex-
citatory subpopulations and sparse in its connectivity with other
excitatory subpopulations to yield the significant positive inter-
population excitatory correlations observed in Kim et al. (10).

Discussion

In this study, we sought to uncover possible neural circuit mech-
anisms underpinning the observation that pyramidal neurons in
the primary visual cortex that project to different downstream
targets connect with a much lower probability than random pairs
of excitatory neurons, yet still exhibit correlated variability that
is almost as large as the rest of mouse V1 (10). Notably, the
magnitude of these correlations is much stronger than would
be predicted given their weak connectivity. We found that
a model with global inhibition resulted in highly constrained
regions in which the data could be matched, encompassing two
distinct solutions. In the case of weak network coupling, positive
correlations resulted from two forms of an inheritance model:
either I → E connections induced increased correlated activity
through I affecting both excitatory populations in the same way
or an unobserved external source of strong correlations fed these
fluctuations across both E units. For the case of strong recurrent
coupling where the circuit is in an inhibition-stabilized network
(ISN) regime, the network connectivity needed to place the
network dynamics right at the edge of an instability to produce
positive correlations. By contrast, we found that a more generally
robust solution in the ISN regime could be achieved by splitting
the inhibitory population into two separate subpopulations
coclustered with one of the excitatory subnetworks. It bears
noting that only in the first model without inhibition did we
explicitly explore the effects of correlations in the external inputs.
In general, one could recapture the data simply by imposing
significant positive correlations on the excitatory subpopulations

in any of the models explored here. While possible, this solution is
dissatisfying insofar as it is another form of fine-tuning, requiring
some secondary source to generate the appropriate correlation
structure.

We therefore argue that, on the basis of this robustness,
our results predict that inhibition should cluster together with
excitation in the mouse sensory cortex with a specificity that
mirrors that of the excitatory connectivity. The other inferred
models by contrast depend upon narrow parameter regimes to
capture experimental observations. This fragility would require
significant constraints on the properties of neural circuits. Yet,
connections are plastic, connection strengths are heterogeneous,
and neuron properties are affected by neuromodulation (25, 26).
Given this stochasticity in the circuit structure itself, a fine-tuned
solution is unlikely to best explain the data.

Rigorous experimental validation of our model predictions
could be obtained through physiological or connectomics
experiments which specifically target the relationship between
excitatory projection neurons and local inhibitory neurons. In
this case, we would expect that inhibitory interneurons which
strongly connect to a given excitatory projection subclass would
also exhibit a lower probability of connection with excitatory
neurons of the other projection subclass. Given that our results are
agnostic as to the promiscuity with which inhibition connects to
other inhibitory cells, it would be interesting to learn the structure
of these interactions. While it is well appreciated that inhibitory
interneurons are very diverse in physiology and connectivity
(27), we did not explicitly model this diversity in our study.
Nevertheless, we anticipate that parvalbumin (PV)-positive cells
may display the identified signatures of our I units, as they appear
to play a critical role in stabilizing excitatory activity (28). Recent
experimental evidence appears to support this claim from the
perspective of stimulus tuning: While PV cells connect with most
nearby pyramidal neurons, they were found to more strongly
connect with those whose tuning properties they share (16).

Theoretical work has argued that E/PV assembly formation
requires plasticity from both E → PV and PV→ E connections
(29). This bidirectionality could result in local, winner-take-all
effects in E ↔ I connectivity as any discrepancies in functional
response properties between nearby pyramidal cells will bias
the PV connectivity. This could result in the more specific
coclustering of inhibition we predict. Motivated by these results,
a potential indirect way to differentiate between the global and
clustered inhibition models would be to record activity of AL- and
PM-projecting neurons together with inhibitory interneurons.
Comparison of their respective tuning functions could suggest
whether the inhibitory cell is biased in its connectivity (by
extension of ref. 16). Indeed, Najafi et al. (30) recently argued
for coclustered excitation–inhibition in the context of posterior
parietal cortex decision circuitry on the basis of neural response
properties. Furthermore, in the mouse visual cortex, it has been
shown that PM and AL exhibit distinct functional representations
with some overlap (31), consistent with the tuning properties of
V1 projection neurons (10).

Of course, it is possible that inhibitory–excitatory interactions
may span a continuum between the global and clustered motifs
identified here. This raises the possibility that heterogeneity
in inhibitory connectivity motifs at small spatial scales may
explain heterogeneity in pairwise covariance between AL- and
PM-projecting pyramidal cells. To this end, modern theoretical
tools enable the calculation of not just the mean covariance but
the distribution of pairwise covariability across networks with
disordered connectivity (37, 45). An interesting avenue for future
work would be to relate the distribution of correlations across
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different excitatory projection neurons to heterogeneity in their
connectivity to inhibitory interneurons, beyond simply the mean
correlations as we explored here.

A central issue in the extension of our results concerns the
dynamical regime of the cortex, a topic which has received a
significant amount of attention lately (32–34). One question
concerns whether intracortical interactions are strong enough to
require inhibition as a key stabilizer of activity, that is, whether
the sensory cortex is an ISN (21, 23). Theoretical work predicts
that in this regime the ratio of excitatory to inhibitory input
drive to a neuron decreases with increasing stimulus intensity
(35). Recent experimental evidence from recordings of the
mouse primary visual cortex supports this claim (15). Another
study used optogenetic perturbation of inhibitory neurons across
mouse cortex to test for inhibition-stabilization without sensory
stimulation, finding evidence that all considered cortical regions
operate as an ISN (24).

Given this evidence for an ISN regime, a second question
regards whether the network dynamics are poised near a network
instability. In our model, loss of stability would result in large
positive correlations through a slowing down of the dynamics
(Fig. 4). Analysis of array recordings in the primate motor cortex
has suggested that cortical dynamics may in fact be positioned
close to an instability (45). More recently, reexamination of large-
scale recordings in mice has suggested that other cortical regions,
including the primary visual cortex, exhibit dynamics with
dominant eigenvalues close to one (33). This could suggest that
either the global or clustered inhibition model in an ISN regime
may explain the data. Together with the foregoing evidence
that PV and E neurons sharing tuning properties connect
more strongly, we argue that this further supports a model of
coclustered inhibition.

Other mechanisms by which correlations can grow near
a change in stability have been identified in previous
studies. Ginzburg and Sompolinsky (36) observed that near a
bifurcation—in their case, a saddle node or Hopf—correlations
in a weakly connected network grow from O(1/N ) to near
O(1), where N is the network size, together with a slowing
down in the dynamics. Darshan et al. (37) derived conditions
on what they term the interaction matrix (similar to our
W matrix) under which correlations are amplified without
critical slowing down. These network models thus suggest
distinct mechanisms by which our results could be extended
to spatially distributed spiking network models. Additionally,
Litwin-Kumar and Doiron (38) studied the effect of clustered
connectivity in balanced spiking networks on the structure of
correlations; however, this work did not compare across-cluster
to within-cluster correlations. Rosenbaum et al. (39) did consider
a structure similar to our three-population global inhibition
motif, demonstrating that, consistent with our conclusions,
a spatially distributed spiking neural network with distinct
subpopulations would show close to zero correlations on average
due to strong positive correlations within a cluster and large
negative correlations between the two clusters. Yet it remains
for future work to determine the precise parametric values to
recapitulate our results in spiking neural network models.

Our work can be seen as a case study of a particular network
structure in the context of the theoretical investigation of dynam-
ics on graphs (that is, a collection of nodes and edges). In general,
graphical analysis has been used in a wide range of neuroscientific
applications, from the determination of fixed points of dynamics
(40) to network controllability (41). In relating connectivity
motifs (elements of W and their combinations) to correlation
structure in the circuit, our approach relates to a more general

mathematical concept of relating process motifs on networks to
underlying structure motifs of the graph (42).

Ultimately, our work demonstrates how ostensibly straight-
forward observations of connectivity and response properties
from cortical cells have the capacity to lend fruitful insight into
the structural and dynamical regimes of the cortex, which are
critical to further understanding of information processing in the
brain.

Materials and Methods

Firing Rate Model. As done previously (12, 18), we consider the firing rate
dynamics of neuronal populations A given by the following

�A
drA
dt

= −rA + fA
(
�A +

∑
B

JABrB + �̂A
[√

1− c · xA(t) +
√
c · xs(t)

])
,

where �A is the time constant, �A is a constant stimulus drive, and JAB is the
strength of connections from population B to A. The stochastic processes xA(t)
and xs(t) represent private and shared global fluctuations, respectively. Each is
taken to be the limiting process from

�x
dx
dt

= −x +
√
�x�x(t),

for �x → 0, with 〈�i(t)〉 = 0 and 〈�i(t)�i(t′)〉 = �(t − t′). Intuitively,
one may think of x(t) as a “smoothed” white noise process (12). The parameter
c ∈ [0, 1] scales the proportion of shared noise relative to private noise, while
�̂A represents the total intensity of the fluctuations.

We assume that the system of equations has an equilibrium point at rss, and
that the noise is weak enough so that the fluctuations about this equilibrium
(Δr := r − rss) can be approximated by

�A
dΔrA
dt

=− ΔrA + LA
∑
B

JABΔrB

+ LA�̂A
[√

1− c · xA(t) +
√
c · xs(t)

]
,

where LA = f ′A(rss) is the gain of population A at the equilibrium point.
We define the effective coupling as WAB := LAJAB and �A := La�̂A, and
approximate xA(t) and xs(t) as independent, zero-mean Gaussian processes
�A(t) and �s(t) satisfying 〈�(t)�(t′)〉 = �(t − t′). This yields Eq. 1, which in
matrix form can be written as

T
d�r
dt

= (W− I)Δr(t) + D�(t). [8]

For notational simplicity, throughout we will assume unit time constants
�A = 1, so that T = I. For example, in the case of two excitatory populations
and one inhibitory population {E1, E2, I} the matrices are

W =

WE1E1
WE1E2

WE1I
WE2E1

WE2E2
WE2I

WIE1
WIE2

WII

 ,

D =


√

(1− c) · �E1
0 0

√
c · �E1

0
√

(1− c) · �E2
0
√
c · �E2

0 0 �I 0

 .

The network structure is determined through the weight matrix W. Since we
are explicitly interested in segregated excitatory populations, we consider weak
cross-population connections and set

WE2E1
= �WE1E1

, WE1E2
= �WE2E2

,

for � ∈ (0, 1). The two excitatory populations, E1 and E2, are increasingly
disconnected as � → 0. To obtain analytical expressions and constrain the
searchable parameter space, we assume various symmetries in the network
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connectivity. Specifically, we consider the following forms for connectivity
matrices for the two (Fig. 1A), three (Fig. 3A), and four (Fig. 4A) population
models:

W =

[
WEE �WEE
�WEE WEE

]
,

W =

 WEE �WEE WEI
�WEE WEE WEI
WIE WIE WII

 ,

and

W =


WEE �WEE WEI �WEI
�WEE WEE �WEI WEI
WIE 
WIE WII �WII

WIE WIE �WII WII

 ,

where � , 
 , � ∈ (0, 1).

Covariance Calculation. The autocovariance function for the OU process
defined in Eq. 8 is given by

C̃(h) = 〈Δr(t)Δr(t + h)〉.

Let M = W− I and define � := C̃(0) = 〈Δr(t)Δr(t)〉 as the stationary
covariance matrix. Then,� is obtained as the solution to the Lyapunov equation
−MΣΣΣ +ΣΣΣ(−M)> = DD> (43). It follows that

C̃(h) =

{
e−Mh · �, h < 0,

� · eM>h, h ≥ 0.
[9]

Integrating C̃(h) in each element over long times h yields the following
compressed form for the long-time covariance matrix C

C =

∫
∞

−∞

C̃(h) dh

= M−1D
(
M−1D

)>
.

If CV =
√

diag(C), then the correlation matrix is obtained

� = C−1
V CC−1

V . [10]

Path Expansion. If the spectral radius s(W) = max{|�i|: �i is an eigenvalue
of W} < 1, then M−1 has a convergent series representation

−M−1 = (I−W)−1 =

∞∑
k=0

Wk

known as a Neumann series (44). Intuitively, one may think of the Neumann
series as a matrix analogue of the familiar geometric series. Under this
representation, the long-time covariance matrix is

C =

 ∞∑
j=0

Wj

DD>

 ∞∑
k=0

Wk

> .

It is useful to rewrite this expansion as

C =

∞∑
n=0

 n∑
i=0

Wn−iDD>
(
W>

)i ,

where the terms in the inner sum can be interpreted as contributions due to
nth-order paths through the network (5, 14).

If the outer sum converges quickly, the covariance matrix can be approxi-
mated as

C ≈
N∑

n=0

 n∑
i=0

Wn−iDD>
(
W>

)i .

The rate of convergence of this approximation depends on the magnitude of
s(W). In particular, the closer s(W) is to 0, the faster the terms shrink. Consider
the N-th order terms of this approximation,

N∑
i=0

WN−iDD>
(
W>

)i
.

If || · || is the operator norm, then∥∥∥∥∥∥
N∑
i=0

WN−iDD>
(
W>

)i∥∥∥∥∥∥ ≤
N∑
i=0

∥∥∥∥WN−iDD>
(
W>

)i∥∥∥∥ ,
and that each term in this sum can be bounded above by∥∥∥∥WN−iDD>

(
W>

)i∥∥∥∥ ≤ ∥∥∥WN−i
∥∥∥ · ‖D‖2

·

∥∥∥∥(W>)i∥∥∥∥ .

After diagonalizing W and writing W = P�P−1, where � is a diagonal matrix
of eigenvalues of W, it follows that∥∥∥WN−i

∥∥∥ ∥∥∥∥(W>)i∥∥∥∥ =

∥∥∥∥(P�P−1
)N−i∥∥∥∥ · ∥∥∥∥((P−1)>�P>

)i∥∥∥∥
=
∥∥∥P�N−iP−1

∥∥∥ · ∥∥∥(P−1)>�iP>
∥∥∥

≤ ‖P‖2
∥∥∥P−1

∥∥∥2
‖�‖N .

Thus,

N∑
i=0

∥∥∥∥WN−iDD>
(
W>

)i∥∥∥∥ ≤ N
(
‖P‖

∥∥∥P−1
∥∥∥ ‖D‖)2

‖�‖N

≤ N
(
‖P‖

∥∥∥P−1
∥∥∥ ‖D‖)2

s(W)N.

This bound shrinks quickly as N → ∞ if s(W) is small (� 1), as is the case
when the system is in the weakly coupled regime.
Path expansion for weakly coupled E1 ↔ E2. In Fig. 2B we illustrate this
quick convergence by showing the first three terms of this sum, namely

0th-order: DD>,

1st-order: WDD> + DD>W>,

2nd-order: W2DD> + WDD>W> + DD>
(
W>

)2
.

Using these terms, the cross-population covariance can be approximated by
Eq. 5 in the main text.

We note that for a nth-order path, we multiply on the left and right by
C−1
V to obtain path contributions to the correlation matrix. In particular, we are

interested in the contributions to �E1E2
(that is, the element �1,2 of Eq. 10).

Table 1. Strength of connections from pop
WAB E I

E 0.5 (1.15) 0.5 (0.8)
I 0.5 (0.8) 0.5 (0.5)
B (columns) to A (rows) for the weakly (strongly) coupled model.

10 of 11 https://doi.org/10.1073/pnas.2306800121 pnas.org

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 K
ir

st
en

 V
al

le
e 

on
 J

ul
y 

23
, 2

02
4 

fr
om

 I
P 

ad
dr

es
s 

99
.7

.2
.4

8.



Table 2. Default parameter values
Default

Parameter value Description

� 0.15 Interexcitatory population strength
�A 1 Total intensity of outside fluctuations
c 0 Scales the proportion of shared noise

relative to private noise
Changes to any parameter are indicated in the figure caption.

Parameters and Simulations. Simulations were performed using an Euler–
Maruyama scheme with time constants �E = �I = 15 ms, dt = 0.01 ms.
Remaining default parameters values can be found in Tables 1 and 2.

Data, Materials, and Software Availability. Jupyter notebooks that run
relevant simulations and reproduce the main figures of the paper can be
accessed via a publicly available Zenodo repository (https://doi.org/10.5281/
zenodo.11398126) (46).
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