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ABSTRACT

All of our choices and all that sets us apart are governed by what we can do, what we want to do,

and what we know. This dissertation aims to quantify two of these channels to better understand

why we differ.

The first two chapters focus on what we know and how it shapes societal gaps. The first chapter

attacks the question of how much of the gap in choices across social groups is driven by differences

in outcomes of choices or by differences in the quality of information these groups have about their

respective outcomes. I study this question in the context of the college enrollment gap between

white and Hispanic high school students. To assess how much of the gap can be attributed to each

channel, I introduce a novel decomposition approach and show how we can use a structural model

to operationalize and quantify the role of each component. I find that the main driving force behind

the college enrollment gap is differences in potential returns, while differences in information quality

across the two groups contribute to narrowing the gap.

The second chapter tackles the question of whether informational asymmetries among firms can

account for all observed wage gaps across social groups. I build a common-value auction model in

the labor market with unspecified information structures. In this model, firms meet heterogeneous

workers with unobserved productivity and extend wage offers based on their information about worker

productivity and competing offers. Using the American Community Survey data, I show that wage

disparities among Black and white men and women can arise in an economy where different social

groups have identical productivity distributions, but firms have different types of information on

these different workers, such that the only driving force behind the wage gap is the information.

Finally, the last chapter departs from the notion of what we know and turns to discuss what

we can do through the lens of intergenerational mobility. It focuses on two common measures of

xi



intergenerational mobility—the Intergenerational Elasticity (IGE) and Rank-Rank coefficients. In

it, I employ Yitzhaki’s theorem to express these coefficients as weighted averages of the underlying

causal mechanisms driving mobility. The chapter highlights the challenges of interpreting cross-

country comparisons using IGE or Rank-Rank coefficients due to the regression weighting scheme.

It shows that while the Rank-Rank coefficient is more interpretable for positional mobility, it lacks

insights into the underlying mechanisms driving mobility across countries.
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CHAPTER 1

BRIDGING THE GAP: INFORMATION, RETURNS AND CHOICES

1.1 Introduction

In social systems, where individuals’ life trajectories are shaped by choices, understanding the deter-

minants of these choices is crucial, particularly in the pursuit of equality. Standard economic models

assume that individuals weigh the costs against the benefits of their decisions. However, it is rarely

the case that individuals can perfectly predict the outcomes of their choices. In reality, they operate

under significant uncertainty and have limited predictive capabilities about the consequences of their

actions. This gap in information and prediction abilities affects the choices different people make,

potentially widening or narrowing societal inequities. Therefore, it is essential to assess the extent

to which these frictions contribute to differences in decision-making processes and choices.

In this paper, we focus on quantifying how differences across social groups in their ability to predict

outcomes contribute to the choice gap across these groups in a binary choice setting. To answer this

question, we use a simple choice model framework (Roy (1951)), where individuals facing a binary

choice opt in if they perceive the potential returns to be higher than their threshold. We assume that

individuals receive informative signals prior to making the decision and use them to form beliefs that

guide their choice. We focus on the difference in choice behavior across two groups that stems from

members of the two groups having access to different quality signals, which affects the quality of their

predictions. Specifically, we measure the quality of information each group has by quantifying the

share of variance in returns that can be explained by the signals observed by each group. We then

say that one group has better information than the other if that group can explain a larger share of

variance in their returns. In our analysis, we model the total returns variance as stemming from both

1



the actual uncertainty in returns, which is driven by the underlying data-generating process and the

model uncertainty regarding this underlying data-generating process.

In our model, differences in choice are driven by, first, the underlying distribution of returns, and

second, the quality of information on these returns. This bifurcation of the choice problem motivates

us to adopt a decomposition method akin to that of Kitagawa (1955), Blinder (1973), and Oaxaca

(1973) to explore what drives the choice gap. Our approach breaks the choice discrepancy into

two channels: the information channel and the returns channel. The information channel quantifies

how much of the gap is driven by the fact that the two groups have access to different information

sources. It does so by equalizing the information quality across the two groups, holding the returns

distribution fixed, and examining how the choice gap changes. The residual difference, as captured by

the returns channel, examines what the choice gap would be if we equalized the net returns between

the two groups while maintaining their distinct information qualities on those returns.

We apply a decomposition approach to examine the 8% gap in college attendance rates between

Hispanic and White students in Texas. To do so, we use administrative data from Texas, which

includes information on whether individuals attend a 4-year college and their post-high school earn-

ings. We assume that these high school students observe informative signals on the monetary returns

to college, drawn from a Gaussian distribution, which they use to form beliefs on returns. They are

then self-select into college based on their posterior beliefs about the monetary returns from college,

opting in if their beliefs are higher than their threshold.

Although in our analysis we impose a Gaussian structure, key components of the model are

nonparametrically identified. In our model, beliefs dictate choice patterns, this allows us to use choice

data to nonparametrically identify the distribution of beliefs and earnings for each group. Specifically,

building on the marginal treatment effect literature (Heckman and Vytlacil (2005)) we show how in

2



our model the beliefs distribution is identified. We assume that we have a continuous instrument

that shifts the cost of attendance. In our empirical exercise, this instrument is the distance to a

4-year college. We assume that, conditional on a set of controls, distance to college is independent

of both information and earnings and affects only the cutoff value (Card (1995), Carneiro et al.

(2011), Nybom (2017), Kapor (2020), Walters (2018), Mountjoy (2022)). We then trace how small

changes in the instrument change the conditional expectation of earnings. A small increase in the

cost of attendance pushes out those individuals whose new cost is higher than their beliefs. Using the

assumption of rational expectations, tracking these changes in the expected earnings tells us about

the beliefs of these marginal individuals who are responding to the small cost change. Similarly,

tracking how these changes affect the propensity of attending college reveals the share of individuals

with these beliefs.

Using our decomposition approach as outlined above, and estimated parameters of the Gaussian

model, we find that differences in the information quality across the group contributed to shrinking

the choice gap. Specifically, the information channel shows that equating the information quality

across groups would increase the choice gap by approximately 7.7% (around 97% of the original

choice gap). The decomposition exercise also shows that most of the current gap in choice is driven

by differences in the returns distribution faced by Hispanics and Whites. Specifically, we find that

the potential returns for college for Whites are much larger than those of Hispanics, and that these

differences drive most of the choice gap.

We focus in our analysis on the differences in the choice gap that are driven by differences in

the quality of information. This is not the only approach to measuring the effect of information

differences. In the Appendix, we introduce an additional decomposition approach, where instead

of equating the information quality across groups, we equate the information structure. This de-

3



composition approach, which builds on tools from the robust mechanism (Bergemann et al. (2022),

Bergemann and Morris (2016), Bergemann and Morris (2013)) literature, allows us to bound the full

set of counterfactuals nonparametrically and enables us to depart from the Gaussian distribution

assumption.

In the second part of the paper we turn to ask how parity in choice can be achieved by considering

a policymaker that wants to close the gap by providing Hispanics with additional new information.

We postulate that this policymaker, acting as a statistician with access to information on earnings

for individuals who attend college and those who do not, could provide an informative signal to each

high school student about their potential income. We then ask how accurate must this additional

information be? Our findings suggest that to effectively close the gap, this new information must be

able to explain either 24% of the variance in college earnings or 49% of the variance in non-college

earnings. We explore the feasibility of achieving this level of information accuracy using data avail-

able to schools. Our administrative data is utilized to predict earnings 12 to 14 years after high school

graduation for both college attendees and non-attendees. We show that, at most, we can explain

10% of the quarterly earnings variance. This suggests that closing the attendance gap through the

provision of information necessitates the development of more accurate sources for earnings prediction.

Related Literature. This paper contributes to an extensive body of literature on human capital

investment decisions, anchored by the foundational work of Ben-Porath (1967). Our study intersects

with research focused on the impact of monetary returns on such choices, as explored in studies by

Willis and Rosen (1979), Cunha and Heckman (2007b), Walters (2018), Abdulkadiroğlu et al. (2020),

and Freeman (1971). These papers typically make assumptions about what information is used by

individuals to beliefs about returns—often measured based on observable factors—and analyze how

4



these beliefs factor into decision-making processes. Our approach differs from them by examining

how differences in the quality of information to individuals influence their choices and drive the gap

across groups. Focusing on the the quality of information and not the specific beliefs, or variables

used in the inference process.

Another significant aspect of our research aligns with studies that investigate the nature of indi-

viduals’ beliefs, such as those by1 Manski (2004), Wiswall and Zafar (2015), Zafar (2011), Wiswall

and Zafar (2021), and Diaz-Serrano and Nilsson (2022). These works delve into systemic differences

and biases in beliefs among groups defined by socio-economic status. Our paper extends this inquiry,

utilizing these findings to illuminate not just the distribution of beliefs but also the quality and extent

of information available to these groups.

As discussed above, methodologically, our study builds upon the Marginal Treatment Literature,

particularly the work of Heckman and Vytlacil (2005). This approach has previously been employed

to examine the marginal treatment effects on returns to schooling, as demonstrated by Carneiro

et al. (2011), Carneiro and Lee (2009) and Mountjoy (2022). Similar to some of these studies, we

link the marginal treatment effect to beliefs. Eisenhauer et al. (2015) employed this structure to

conduct a cost-benefit analysis of programs, focusing on agents’ ex-post and ex-ante costs—closely

paralleling our usage. Canay et al. (2020) and d’Haultfoeuille and Maurel (2013), in the context of

college decisions and discrimination, demonstrate how the Roy model can identify ex-ante beliefs and

preferences, aligning with our methodological approach.

Our work related to recent research by Bohren et al. (2022) on systemic discrimination. Their

study, akin to ours, identifies two main sources of systemic differences between social groups. The first,

termed ’technological systemic discrimination’, aligns with our focus on differences in return distribu-

1. See overview of the literature on beliefs elicitation in Giustinelli (2022)
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tions and captures disparities across groups in certain outcome variables. The second, ’informational

discrimination’, pertains to disparities arising from varied information available to decision-makers

across groups. Our research differs in its concentration not on discrimination towards individuals but

on the decisions individuals make about themselves and how these systemic forces shape it, with a

specific focus on the quality of information rather than its structure. We further explore a distinct

measure related to this in our Appendix.

While our primary focus is on educational decisions, our decomposition approach has broader

applications. It can illuminate how information asymmetries contribute to decision-making dispar-

ities across various contexts. Recent studies, including those by Arnold et al. (2018), Arnold et al.

(2022), and Canay et al. (2020), have explored the influence of judicial preferences and biases in

decision-making. There is a growing interest in understanding how decision-making signals con-

tribute to these disparities. Our decomposition methodology seeks to address these nuanced aspects

of decision-making processes.

The remainder of the paper proceeds as follows. Section 1.2 describe our framework and de-

composition approach. Section 1.3 describe the data and some descriptive statistics. Section 1.4

describes some empirical patterns on earnings and information. Section 1.5 discuss the estimation

results. Section 1.6 discuss counterfactual effects of providing additional information and section 1.7

concludes.

1.2 Framework

We consider a population of high school graduates, indexed by i. At the end of high school, each

graduate must decide whether or not to attend college. The objective of individual i is to maximize
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earnings. Denote by Y i
1 earning for an individual i who attends college and by Y i

0 their earnings if

they do not attend. We assume that earnings are generated according to

Y i
1 = αi1 + ui1,

Y i
0 = αi0 + ui0,

where αid, d ∈ {0, 1}, is the structural component of earnings and uid is an unpredictable component

of earnings, satisfying E[uid|α
i
1, α

i
0] = 0. Before deciding whether to attend college, each student i

observes an informative signals on the their individual structural component of earnings. Specifically,

we denote by Si ∈ S the vector of realized signals that individual i observes and assume that S ⊥

uid|α
i
1, α

i
0. Our model separates earnings into two components. The first is a structural component,

α1 and α0, which agents can know and form beliefs about. The second component is ud, which is

unknowable at the time of the decision. These components of earnings include idiosyncratic shocks

that can only be known ex-post. Henceforth, αi1 and αi0 will be treated as earnings, and the index i

will be omitted for clarity when its presence is self-evident.

In our model, signals link outcomes to beliefs; thus, we need to determine how individuals use

signals to form beliefs. We adopt the standard approach in economics and model individuals as

Bayesian agents. Being Bayesian implies that individuals observe signals, know the correct likeli-

hood function, and update their prior beliefs to form new posterior beliefs over the outcomes. Let

π(α1, α0,S) be the joint distribution of outcomes and signals. We assume that this distribution is

parameterized by a set of parameters, some of which are perfectly known to the individuals, denoted

by θk, while on others the individuals may have priors over, denoted by θu. We denote by H(θu) and

h(θu) the prior cumulative distribution function (CDF) and the corresponding probability density
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function (PDF) the set of unknown parameters.

After observing the signal realization, S, individuals form beliefs on their returns, based on their

posterior beliefs H(θu|s) and information in the models. Specifically, denote by R = α1 − α0 the

structural part of the returns, by E [.|s] the individuals posterior beliefs, which incorporates the model

uncertainty, and E[.|s] the standard expectation operator then we have that the individuals posterior

beliefs over their returns is given by

E(Y1 − Y0|S) =
∫

E[Y1 − Y0|S; θu, θk]dH(θu|S)

=

∫
E[α1 − α0|S; θu, θk]dH(θu|S),

where we used the fact that the unpredictable errors are independent from the signal and have mean

zero.

Finally, We assume that individuals incur some cost when attending college, that is a function

of observables. We denote by X observed variables, by c(x) the cost of attendance and by then

individual i’s decision rule is given by

D = 1 [E [Y1 − Y0|S] ≥ c(x)] = 1 [E [R|S] ≥ c(x)] .

Our decision rule suggests that individuals derive risk-neutral utility from earnings but allows

high school graduates to possess any utility function that strictly increases with expected returns

(Vytlacil (2006)). Modeling utility as an increasing function of returns includes also the standard

linear indirect utility function, that has been used in models of school and education choices (Willis

and Rosen (1979), Walters (2018), Abdulkadiroğlu et al. (2020)) In our framework, we standardize

this utility function to be the identity function. Therefore, c(x) serves as a composite of individual
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preferences, known monetary and non-monetary costs, and other barriers to college attendance, such

as credit constraints, social norms, and additional limitations.

It’s also important to keep in mind that although we model here the decision process as a result

of one individual’s choice, it is likely that the decision to go to college or not is made in conjunction

with other parties, such as parents, guardians, or advisors. In this case, the observed signals are all

the signals observed by all parties, and the cost is an agglomeration of all members who participate

in the decision.

1.2.1 What information may high school students have on their returns

It is worth considering what signals high school students observe prior to deciding about college. Some

signals are pieces of information that students receive throughout their lives. For example, students

may hear from various media sources about the potential returns to college for different types of

students, learn about their ability from test scores, or consult with their parents or high school

counselors about their prospects. The quality of this information depends on how well it correlates

with the individual’s unique characteristics and the future labor market. For instance, educated

parents may be better informed about potential jobs for college graduates and their children’s unique

skill sets. Consequently, they might provide accurate information on post college earnings for college

graduates based on their familiarity with different career paths and their children’s suitability for

these paths.

The above examples are instances of information that decision-makers may be exposed to prior to

making their choice. Another source of information may come from the way the labor market itself

operates. In section 1.12.1, we discuss in detail two simple examples, demonstrative the richness of

information used in the decision process. The first example considers the case where individuals have
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perfect knowledge of a structural component to wages. For instance, individuals are likely to know

their ability. Ability plays a role in determining the potential earnings, but in our model, knowing

your own ability is also a piece of information in and of itself. Accordingly, some components in

the economy hold two simultaneous roles. First, they affect the actual returns of the individual;

separately, they are also used as a signal about earnings.

The second example considers the case where two individuals may observe the same signal real-

ization, but how informative these signals are may differ due to the labor market structure. In this

example, we consider two groups that can go to college and become either lawyers or accountants.

Each group member observes a signal on whether they will be a high-earning lawyer or a low-earning

lawyer. The two groups differ in the share of people who end up becoming lawyers after college. This

difference in the labor market for the two groups implies that the same signal may carry different

information on returns, which is the thing the decision makers care about.

These examples illustrate the complex and multifaceted nature of information available to high

school students as they contemplate their educational futures. The signals they receive come from

a variety of sources, each with its own level of reliability and relevance. This also motivates our

approach to decomposition, which focuses not on specific pieces of information, but rather on the

overall information quality, which is a crucial element in the choice gap.

1.2.2 Gaussian Model

In this section, we restrict the general model we presented above and impose a Gaussian structure.

This has two main advantages. First, imposing a Gaussian structure on the signals implies that we

can rank information based on the Blackwell Ordering. In general, the Blackwell order (Blackwell

(1953)) is a partial order on information structures, where one information structure is said to be
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Blackwell more informative than another if it leads to better decision-making outcomes for every

decision problem. In the Gaussian case, there is a total order over information. Therefore, imposing

the Gaussian structure implies that we can meaningfully say that one group has better information

than the other (Chan et al. (2022)). The second advantage is that the Gaussian distribution is fully

determined by the first and second moments. This implies that we can fully characterize the beliefs

distribution and counterfactual distribution we need for analysis ahead by the mean and our measure

of information quality, which we discuss below.

We assume that the signals, S, and the structural components of earnings, α1 and α0, are jointly

distributed as Gaussian. We denote by µ1, µ0, σ1, σ0, and ρ the means, standard deviations, and

the correlation between α1 and α0, respectively. We further assume that individuals have "partial

rational expectations,", where they know the parameters that govern the marginal distribution of α1

and α0, and the correlation between signals and potential earnings. On the other hand we take the

more realistic approach that high school students do not know the correlation parameter, ρ, between

α1 and α0. We denote the individuals prior over ρ, by H(ρ), with expected value given by µρ.

This modeling captures the notion that agents, similar to econometricians, may know how signals

are linked to the marginal distribution of earnings, but cannot learn from data and observation on

the correlation between potential outcomes. Specifically, in our model the signal realization S, does

not provide any information on the correlation structure.2

The fact that individuals can not learn about correlation from observation also implies also that

2. To see this, notice that

π(ρ|S) = π(S|ρ)h(ρ)
π(S)

=

∫
π(S, α1, α0|ρ)dα1α0h(ρ)

π(S)
=

π(S)h(ρ)

π(S)
= h(ρ)

where the second equality is simply the law of total probability and the third equality stems from the fact that for
each ρ, the marginal of π with respect to s is always the same
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individuals beliefs on returns are aligned with the true conditional expectations on returns, in the

sense that3.

E [α1 − α0|S] = E [α1 − α0|S]

This implies that the beliefs on the the expected returns are correct, notice that the beliefs on higher

moments of the conditional returns distribution may differ from the true underlying distribution of

returns.

Next we derive the distribution of beliefs and the share of high school students who opt into

college. Given that potential earnings and signals are jointly Gaussian, it follows that returns and

signals are also jointly Gaussian distributed:

S
R

 |x ∼ N


µS,x
µR,x

 ,

 ΣS,x ΣS,R,x

ΣS,R,x σ2R,x


 .

Where σ2R,x = σ21 + σ20 − 2ρσ1σ0 denote the variance of returns, ΣS,x denotes the covariance matrix

of the signals, ΣS,R,x is the covariance between signals and returns, and µS,x and µR,x are the mean

values of signals and returns, respectively. We let all variables to be conditional on x. As signals

and returns are jointly Gaussian, individuals who observe the signals realization S form the following

3. To see this, notice that

E [α1|S] =
∫
ρ

∫
α1

α1π(α1|ρ,S)dα1dH(ρ|S)

=

∫
ρ

∫
α1

α1
π(α1,S|ρ)
p(S|ρ)

dα1dH(ρ|S)

=

∫
ρ

∫
α1

α1
π(α1,S)

p(S)
dα1dH(ρ|S)

= E[α1|S]

where we used the fact the marginal of π for any value of ρ is the same and that S ⊥⊥ ρ. We can similarly show that
E [α0|S] = E[α0|S], which implies the desired result
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posterior beliefs on their returns:

E[R|S, x] = µR,x + ΣT
S,R,xΣ

−1
S,x(S − µS,x). (1.1)

We now can write explicitly the decision rule for an individual with cost c(x) and signal realization

S in our Gaussian model as:

D = 1 [E[R|S, x] ≥ c(x)] = 1

[
µR,x + ΣT

S,R,xΣ
−1
S,x(S − µS,x) ≥ c(x)

]
.

Owing to the linearity of the joint Gaussian distribution, we can derive the proportion of students

who opt to attend college. To do so, we first notice that the share of individuals who would opt to

go to college depends on the share of individuals whose prediction of the returns is higher than the

cost. We therefore first derive the distribution of beliefs in the population from the posterior beliefs

in equation 1.1.

E[R|S, x] ∼ N
(
µR,x,Σ

T
S,R,xΣ

−1
S,xΣS,R,x

)
,

where we used the linearity of the posterior beliefs. By knowing how beliefs are distributed in the

population, we easily derive the share of individuals with cost c(x), who would go to college:

P (D = 1|c(x)) = Φ

 µR,x − c(x)√
ΣT
S,R,xΣ

−1
S,xΣS,R,x

 ,

where Φ denotes the standard normal CDF. Henceforth, we will omit x in our discussion, except in

cases where it contributes significantly to the analysis.
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1.2.3 Information Quality

In our framework, individual choice is influenced by two factors: the net returns R − c(x) and the

individuals’ ability to predict these returns. Our analysis seeks to understand how these elements

impact decision-making across different social groups. To do so, we need to define formally how we

can measure the individuals’ prediction ability. In this section, we define a measure of information

quality that captures the prediction quality of the individuals. Specifically, we quantify the quality of

information individuals have by the coefficient of determination, often denoted by R2 (R-Squared).

This metric measures the proportion of the variance in returns that can be explained by their signals,

relative to the total variance in returns, from the high school perspective.

R2 =
Var(E[R|S])
Vartotal(R)

.

The total variance of returns, Vartotal(R), is influenced by two sources of uncertainty. The first

is individual uncertainty regarding their specific returns, as discussed above. The second source of

uncertainty is model uncertainty, stemming from the fact that individuals can not know ρ.

We can also derive an explicit expression for the total variance of returns as follows:

Vartotal(R) = Vartotal(α1 − α0) = E[Var(α1 − α0|ρ)] + Var(E[α1 − α0|ρ])

= σ21 + σ20 − 2σ1σ0µρ,

where the first equality follows from the law of total variance. Using this expression we have that

information quality is given by

R2 =
Var(E[R|s])

σ21 + σ20 − 2σ1σ0µρ
(1.2)
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This R2 differs from the standard coefficient of determination, as it accounts for both fundamental

uncertainty and subjective uncertainty over the underlying data generating process. Similar to the

standard R2, this measure ranges from 0, implying that the information available does not reduce

any uncertainty, to 1, implying that the information and the way it’s correlated with the potential

earnings resolves all objective and subjective uncertainties.4

As we discuss further in Section 1.2.5, the prior distribution H(ρ) is not directly identifiable from

the data. This means that we cannot determine the exact shape or parameters of the distribution

solely by observing the data. However, we can partially identify the support of H(ρ), taking into

account the restrictions implied by the covariance matrix between the signals and the potential

earnings. This partial identification allows us to make more informed guesses about the possible

distribution H, even if we do not know the precise distribution.

In our main analysis, we impose the assumption that µρ = 0, implying that individuals hold a

symmetric prior over the full set of ρs, [−1, 1]. Under this assumption, the ex-ante uncertainty in

returns is determined by the variance in the marginal distribution, as captured by σ21 and σ20.

One motivation for this assumption is the concept of equi-ignorance. If the individuals lack any

information about the correlation of potential outcomes, similar to econometricians, they would assign

equal weight to each correlation value, implying a uniform prior over the possible data-generating

processes, this would result in a uniform distribution, centered around 0. Another motivation comes

from ex-post inference. If individuals have a degenerate prior distribution with ρ = 0, observing

one realization of the potential outcomes would not enable them to infer the other. This is akin

4. To see that the R2 in equation 1.2 is always less or equal than 1, note that the set of feasible ρs must satisfy at
least Var[α1−α0|s] ≤ σ2

1 +σ2
0 − 2σ1σ0ρ, as explained in more detail in 1.2.6. Therefore, as the denominator integrates

over the set of ρs such that the variance of returns is higher than the variance of beliefs, the value of the R2 is always
less than 1. Further, the value 1 is achieved in the case where Var(R|s) = σ2

1 + σ2
0 + 2σ1σ0. This occurs when there is

only one possible ρ feasible, ρ = −1, and agents have full information.
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to econometricians who cannot use observed realized outcomes to infer the value of the unobserved

ones.

How does the quality of information and returns affect the decision on going to college? Our

measure for information quality implies that higher quality of information implies higher dispersion

of beliefs among individuals. Intuitively, if individuals have access to better quality, more accurate,

information, then they would respond to it more, and rely on it more when updating their beliefs,

instead of relying on the mean returns. Therefore, better information would result in an increasing be-

lief dispersion. Whether higher beliefs dispersion implies that more individuals would attend college

is contingent upon the relationship between the cost of attendance and the mean returns in the popu-

lation, µR. Figure 1.1 illustrates the interaction between the mean returns, µR, information quality,

and cost and how they affect choices. The black line represents the cost. The two red lines represent

the survival functions for priors lower than the cost, while the two blue lines represent the survival

functions for priors higher than the cost. Dashed lines indicate the posterior beliefs distribution for

an agent with high-quality information, and solid lines represent the posterior mean distribution with

low-quality information. The figure shows that if the cost is lower than µR, increasing the precision

of the signal—or enhancing information quality—would reduce college attendance. Conversely, if the

mean returns exceed the cost, a reduction in information quality could prove actually increase the

share of individuals who opt in to college.

Furthermore, examining the cross-derivative of the share of people who go to college with respect

to the difference between the prior mean and the cost shows that when µR − c ≤ 0, widening the

negative difference increases the effect of better information.

∂2Φ

(
µR−c√

Var(E[R|S])

)
∂
√
Var(E[R|S])∂(µR − c)

= − 1

Var(E[R|S])

[
−ϕ

(
µR − c√

Var(E[R|S])

)
µR − c√

Var(E[R|S])
+ ϕ

(
µR − c√

Var(E[R|S])

)]
,
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where we can see that the terms inside the bracket are positive in the case where µR− c ≤ 0. In the

case where µR − c > 0, the term in the brackets can be either negative or positive, but tends to be

negative as µR − c → ∞. Therefore, we can see that providing better information in the case where

µR − c < 0, would have a stronger effect if the difference between the prior mean and the cost is

larger. It is worth noting also that we can flip the perspective and notice that the effect of increasing

the difference between µR and c —by raising the cost or altering the average returns—would be more

significant if beliefs are more dispersed.
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Figure 1.1: Cost, information and Beliefs interaction
Note: This figure illustrates how the interaction between the prior, information quality, cost affect choices.
The black line represents the cost. The two red lines represent the survival functions for priors lower than
the cost, while the two blue lines represent the survival functions for priors higher than the cost. Dashed
lines indicate the posterior beliefs distribution for an agent with high-quality information, and solid lines
represent the posterior mean distribution with low-quality information. The figure demonstrates that if the
priors are higher than the cost, providing additional information reduces the share of participants from 98%
to 0.84%. Conversely, if the prior is lower than the cost, improving the quality of information increases the
share of individuals who opt in.
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1.2.4 Decomposing the Choice Gap

To quantify the role of information in exploring the gap, we suggest using a decomposition method

à la Kitagawa (1955), Blinder (1973), and Oaxaca (1973). In it, we decompose the differences in

choices into two components, stemming from the differences in information quality and differences

and differences in the returns distribution themselves between two groups. Specifically, we investigate

what proportion of individuals would choose to attend college if individuals from different groups,

with the same observables, had access to the same quality of information.

Before introducing our decomposition, we define some notation. Let R2
g be the quality of informa-

tion of group g. Let µgρ denote the mean beliefs on ρ for group g, and similarly, we denote the group

components of the returns distribution of group g as µg, σ1,g, and σ0,g. Finally, let Varg,g′(E[R|S])

be the counterfactual variance of beliefs for group members g, with the information quality of group

g′ and the earning distribution of group g.

Varg,g′(E[R|S]) = R2
g′ × (σ21,g + σ20,g − 2σ1,gσ0,gµ

g
ρ).

This expression captures the beliefs variance if group g had the same quality of information as group

g′, but faced the an unchanged returns distribution. We then suggest to decompose the choice gap
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between group a and b as follows:

P (D = 1|Group b)− P (D = 1|Group a) =∫
X
Φ

 µR,b,x − cb(x)√
Varb,b(E[R|S, x])

 dFb(x)−
∫
X
Φ

 µR,b,x − cb(x)√
Varb,a(E[R|S, x])

 dFb(x)

︸ ︷︷ ︸
Information Channel

+

∫
X
Φ

 µR,b,x − cb(x)√
Varb,a(E[R|S, x])

 dFb(x)−
∫
X
Φ

(
µR,a,x − ca(x)√
Vara,a(E[R|S, x])

)
dFa(x)

︸ ︷︷ ︸
Returns Channel

(1.3)

Where we denote the CDF of X for group g by Fg(x). In our decomposition, the information channel

quantifies the extent to which the gap in choices arises from individuals of different groups having

access to different qualities of information. These differences may increase or decrease the gap,

depending on the relation between the mean returns and costs and the quality of information each

group has, as discussed above.

How can we equate predictive ability across two groups? It’s instructive to consider cases where

members of groups a and b use different models to predict the outcomes of their choices. These

models may differ in their set of explanatory variables; one group might use a larger set of variables

to explain outcomes, while the other may have a smaller set, potentially resulting in poorer model

performance. In our setting, the exact set of variables used is less crucial, as these variables only

affect choices through the information they contain about outcomes.

In our decomposition exercise, we focus on equating the quality of prediction across groups, which

doesn’t necessarily mean equalizing the signals they observe. As discussed in section 1.2.1, such an

approach may be impractical. Instead, we can conceptualize this as a counterfactual world where we
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either provide more variables to the group with the smaller set or remove some explanatory variables

from the group with better information. Since the exact nature of these variables is unimportant for

the decision rule, we disregard them and focus solely on the quality of information.

It is important to recognize that our analysis is a partial equilibrium exercise, where we use

comparative statics to equalize the information quality between the two groups. Typically, informa-

tion quality is determined endogenously within an equilibrium framework (Coate and Loury (1993),

Lundberg and Startz (1983)), and is driven by choices individuals make that form the information

environment and what agents can know. Furthermore, the information quality that individuals pos-

sess could be influenced by the effort they invest in acquiring it, a concept central to the standard

rational inattention model (Caplin et al. (2022); Maćkowiak et al. (2023)). In this decomposition

exercise, we do not explore the underlying factors that drive these information discrepancies; rather,

we take them as given and investigate the extent of their contribution to the observed disparity.

Finally, we do recognize that our counterfactual choices shares relies on the the second moment of

both returns and beliefs. In more general settings, with unrestricted data-generating processes, with

more nuisance information structure, equalizing R2 does not yield a unique counterfactual. In many

cases, different joint distributions of signals and outcomes may produce the same R2 but induce

complex choice patterns that contribute to gaps in choices influenced by information. In section

1.12 in the Appendix, we discuss another decomposition approach that equalizes the information

structure across groups. This approach does not equalize the ability to predict across groups, but

rather equalizes the signals that individuals with similar outcomes receive.

We now examine the second channel, which we call the returns channel. This residual component

addresses the inverse question: By how much would the share of high school graduates from group

a change if we maintained their information quality at R2
a, but adjusted their returns and costs to
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match those of group b? This component reveals the extent to which the gap is driven by differ-

ences in the outcome distribution itself, rather than information quality. Consequently, we interpret

this component as quantifying the portion of the gap attributable to the underlying labor market

fundamentals that drive differences in choice.

The two components of the distribution carry distinct policy implications. If the majority of

the gap is driven by differences in predictive ability and information, policymakers aiming to close

the choice gap should consider providing additional information to group b. This can be done by

either "transferring" the superior information from group b to group a or providing additional new

information to group a members. This could involve educational interventions, information dissem-

ination, or providing improved prediction tools for group a. Conversely, if the gap primarily stems

from variations in the outcome distribution, policymakers concerned with narrowing the disparity in

choice should focus on policies that directly influence this distribution. This could include measures

such as altering tax structures, providing targeted subsidies, or implementing regulatory changes that

affect the underlying returns and costs for both groups. Identifying the primary driver of the gap

not only enhances our understanding of its structural roots but also provides actionable insights for

policymakers committed to fostering equal opportunities across different groups.

1.2.5 Model Identification and Empirical Specification

This section outlines the key components required for our decomposition exercise. While Appendix

1.10.2 provides a comprehensive nonparametric identification argument based on Marginal Treat-

ment Effect (Heckman and Vytlacil (2005)) and the discrete choice model identification (Matzkin

(1992),Matzkin (1993)) literature, here we focus on the essential assumptions we need and demon-

strate the identification argument using our simplified Gaussian model.
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Our identification hinges on three sets of assumptions. The first set of assumptions pertains to

the validity of an instrumental variable. The second set of assumptions regards the heterogeneity

of the individuals, and the last set of assumptions focuses on the utility function and the usage of

partial rational expectations.

The assumptions needed for our instrumental variable are the standard instrumental variable

assumptions (Angrist and Imbens (1995), Vytlacil (2002), Heckman and Vytlacil (2005)). As we

detailed in section 1.10.2, we require that the instrument satisfy the exclusion and relevance assump-

tions. In terms of our models, these assumptions imply that our instrument Z is used as a cost

shifter that shifts c(Z,X) (relevance) and satisfies the exogeneity requirement, α1, α0 ⊥⊥ Z|X and

S ⊥⊥ Z|α1, α0, X.5 The first independence condition requires that a shift in the instrument, condi-

tional on observables, does not change the distribution of potential outcomes. The second condition

implies that, conditional on the set of covariates and the individual potential earnings, the instrument

is independent of the signals individuals observe. In other words, we require that two individuals

with the same observables, X, and the same potential earnings should draw signals from the same

distribution.

As we detail in the next section, in our empirical analysis we use the distance from the student

high school to the nearest 4 years college as our instrument. Distance to college has been first used

by Card (1995) to estimate college returns and was then used extensively as in instrument to study

various outcomes of schooling (e.g Carneiro et al. (2011), Nybom (2017), Kapor (2020), Walters

(2018), Mountjoy (2022), Kling (2001),Kane and Rouse (1995),Cameron and Taber (2004)). The

main idea behind this instrument is that distance to college should affect the psychic and monetary

costs of attending college, but should not be correlated with labor market outcomes. The exogeneity

5. Combining these two assumptions also gives us the classic monotonicity assumption in Angrist and Imbens (1995)
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of distance instruments has been assessed in Cameron and Taber (2004) and Mountjoy (2022). These

studies highlight the importance of accounting for demographics, family background, and region of

residence, factors we include in our analysis. In addition, we also provide suggestive evidence in

section 1.4 supporting this assumption by showing that distance to college and high school test

scores are uncorrelated, conditional on a set of controls for individual, high school, and neighborhood

characteristics.

The exogeneity assumption does not only require that the instrument be independent from the

potential earnings but also independent from the information high school students observe, condi-

tional on the set of covariates and the potential earnings. Although this assumption is not typically

discussed in the economics of education literature, it is implicitly required for the validity of the

instrument. This assumption is more challenging to assess and requires us to believe that two indi-

viduals who differ only in their distance from college, but share all other observables and potential

earnings, are drawing signals from the same distribution. The fact that we need the instrument to

be independent from the instrument, conditional on the potential earnings, may seem reasonable if

we consider that the type of information individuals observe is a function of their ability and ability

is fully captured by the potential earnings of the individuals. On the other hand, this assumption

may not hold if, for example, we believe that universities have outreach programs explicitly based on

the distance from the college, or that information is correlated with distance from college through

neighborhood components not captured in our neighborhood controls.

In addition to the requirement that the instrument satisfy the exogeneity and relevance assump-

tions, we also requires from our instrument to have enough variation to be able to identify the entire

beliefs distribution, conditional on our set of controls. This assumption is hard to satisfy in reality

and is not satisfied in our data. The variations in distance are not large enough to assure us that
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we can identify the entire beliefs distribution for each X. In practice, we relax this assumption and

follow other papers (Carneiro et al. (2011), Carneiro and Lee (2009), Brave and Walstrum (2014),

Heckman and Vytlacil (2005)) that estimate marginal treatment effects and assume that the set of

covariates only operates as a mean shifter, shifting the mean of α1 and α0. We make this additional

assumption explicit in section 1.2.5.1.

The next set of assumptions we need for identification focuses on the heterogeneity in the cost

function and beliefs. As discussed at the beginning of section 1.2, conditional on the set of observables,

all of our heterogeneity in choice stems from differences in the signals individuals obtain. Therefore,

we assume that all heterogeneity in the cost function is observable. This assumption allows us

to separate beliefs and costs in order to perform our decomposition analysis. In general, without

this assumption, separating beliefs and preferences/costs from choice data is not feasible Manski

(2004). To do so requires additional data directly on either beliefs, obtained from belief elicitation,

or preferences, which can be measured by elaborate surveys that separate beliefs and preferences

Adams-Prassl and Andrew (2019)6. Our decomposition analysis relies on observing both beliefs

about the long-term outcomes and the realization of long-term outcomes. The requirement to observe

long-term outcomes makes it difficult to obtain beliefs and realization. Therefore, we opt here to rely

on the restricted heterogeneity assumption discussed here. In general, if one has access to data on

beliefs they can incorporate it, as discussed in section 1.12.2.3, and allow them to better separate the

cost and beliefs, at the cost of imposing another assumption.

The final key assumption our identification argument builds upon is the assumption we impose

on individuals’ utility and decision rule, and how they utilize the information they have. Specifically,

we impose that the utility functions of individuals are strictly increasing in the expected returns and

6. We discuss briefly what additional assumptions can be used to estimate cost heterogeneity if one has access to
belief elicitation data in section 1.12.2.3 in the Appendix.
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that individuals have partial rational expectations, as discussed in section 1.2.2.

First, we impose that individuals have partial rational expectations to be able to measure the

expectations for measured conditional expectations in the data, as we discuss below. Two things are

important to keep in mind. First, imposing rational expectations implies that individuals’ beliefs are

not systematically detached from the underlying economy and that their beliefs correspond system-

atically to the underlying economy. We may want to relax this assumption, but then we would need

to be precise on how beliefs are behaving in the counterfactual world where we change the underlying

returns distribution, as we do in our decomposition. We also need to decide on how we measure the

quality of information in this setup, and take a stance on whether this relies on incorrect beliefs or the

beliefs these people would hold if they update their beliefs correctly given their available information.

Therefore, relaxing the rational expectation assumptions introduces a set of decisions without a clear

guideline on how to make them. We leave exploration of this to future research. Second, it’s impor-

tant to emphasize that for our analysis, we do not need individuals’ beliefs to be correct, but we need

to assume that individuals with higher expected returns also have higher beliefs. If individuals have

wrong beliefs, but maintain order, such that individuals with higher beliefs do have higher returns,

then then these biases are absorbed in the cost component, c, as we demonstrate below.

Next, we impose the assumption that utility of individuals is increasing in the expected returns,

which allows us to pin down the belief distribution in the population by using the law of iterated

expectations and the Marginal Treatment Effect curve. Specifically, consider a more general setup

that allows for arbitrary utility functions. Let u(E[Y1−Y0]) be a utility function. u can be a function

of preferences, but can also include biases as discussed above. We assume that individuals opt in

if u(E[Y1 − Y0]) ≥ 0. If u is strictly increasing, then we have an equivalent decision rule in which

u(E[Y1 − Y0]) ≥ 0 ⇐⇒ u−1(u(E[Y1 − Y0])) ≥ u−1(0) ⇐⇒ E[Y1 − Y0] ≥ c. Now, using our
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instrument, we can identify the marginal treatment effect curve that maps the expected returns to

each quantile of the selection variable. Specifically, denote by F the CDF of beliefs, E[R|S], and by

V the random variable that corresponds to the quantile of E[R|S]. Then we can obtain, using our

instrument, the Marginal Treatment Effect curve, E[R|V = v]. Using the law of iterated expectation,

we also have:

E [R|V = v] = E
[
R|F−1(V ) = F−1(v)

]
= E

[
R|E[R|s] = F−1(v)

]
= F−1(v)

This allows us to pin down the beliefs distribution F . If individuals’ preferences are not strictly

increasing in the returns, then the quantiles of the selection variables do not necessarily correspond

to a unique set of beliefs, which prevents us from using the argument above.

In what follows we briefly go over the identification of the simpler Gaussian model, and it’s

important components for our analysis. Discussion on estimation is in Appendix 1.11.

1.2.5.1 Identifying the Gaussian Model Parameters

We assume we observe a set of covariates X, a continuous instrument Z and outcomes Y . Although

it’s not imperative for identification argument, we parametrize the cost function as a linear function

of covariates

c(x, z) = zbz + xbx.

We assume that the distribution of α1|X,D = 1 and α0|D = 1, X is observed. In the Appendix

we discuss how it can be identified using panel data and additional assumptions on the wages. For

our discussion α1 and α0 can be thought of as fixed effects, and are identified using panel data on
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earnings. We also assume that α1 and α0 are linear in covariates

α1 = Xβ1 + U1,

α0 = Xβ0 + U0.

Following our discussion on the Gaussian model, we assume that beliefs and residuals U1 and U0 are

jointly normal, X operates only as a mean shifter and Z is independent from the potential outcomes,

and Z,X ⊥⊥ U1, U0 and information S ⊥⊥ Z,X|U1, U0
U1

U0

E[R|S, x]

 ∼ N




0

0

X(β1 − β0)

 ,


σ21 ρσ1σ0 σ1,E

ρσ1σ0 σ20 σ0,E

σ1,E σ0,E σ2E


 .

where σE is the standard deviation of beliefs, and σd,E is the covariance between beliefs and potential

earnings Ud. The decision rule is then given by

D = 1 [E[α1 − α0 | S, x] ≥ c(z, x)] = 1 [E[U1 − U0 | S, x] ≥ c(x, z)− x(β1 − β0)] .

Using the fact that beliefs and U1 and U0 are jointly normal, we have that the choice probability is

given by

P (D = 1|x, z) = Φ

(
x(β1 − β0)− zbz − xbx

σE

)
. (1.4)

Notice that in general this is not enough to identify the cost function of parameters, as all parameters

are identified up to scale. In addition, covariates can play a dual role, both affecting the outcome

variable and controlling the cost. Therefore, we need to identify the scale parameter and the coef-

ficients β1 and β0. To identify β1 we use the standard Heckman Correction argument for Gaussian
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selection model (Heckman (1979)). Specifically, using the fact that U1, U0 and beliefs are jointly

Gaussian, we have that

E[α1|D = 1, X] = E[α1 + U1] = E[α1 + U1] = Xβ1 + E[U1|D = 1, X],

where E[U1|D = 1, X] =
σ1,E
σE

ϕ(Φ−1(1−P (D=1|x,z)))
1−Φ(Φ−1(1−P (D=1|x,z))) . We can follow the same argument to identify

β0, and using the fact that E[α0|D = 0, X] =
σ0,E
σE

×−ϕ(Φ−1(1−P (D=1|x,z)))
Φ(Φ−1(1−P (D=1|x,z))) . Denote the coefficient

of the inverse mills ratio as γ1 =
σ1,E
σE

and γ0 =
σ0,E
σE

, and notice that we can identify σ1 and σ0 using

the joint distribution of choice and earnings

f(D = 1, α1, z, x) =

1− Φ

Φ−1 (1− P (D = 1|x, z))− γ1
σ21

(α1−xβ1
σ1

)√
(1− (γ1σ1 )

2))

ϕ

(
α1 − xβ1

σ1

)
1

σ1
.

(1.5)

and similarly for σ0. Finally, in order to get σE, we can use two facts. First, notice that that the

covariance of beliefs and returns equal to the variance of returns, Cov(U1 − U0,E[U1 − U0|S, x]) =

Var(E[U1 − U0|S, x]). To see that notice that we can decompose returns as

U1 − U0 = E[U1 − U0|S, x] + r,

where r is the residual from projecting U1−U0 on S, X, and satisfies Cov(E[R|S, x], r) = 0. Second,

we have that Cov(U1 − U0, E[R|S, x]) = Cov(U1, E[R|S, x]) − Cov(U0, E[R|S, x]) = σ1,E − σ0,E.

Combining these two facts we have from the two coefficients on the control function in the potential
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earnings regression

γ1 − γ0 =
σ1,E − σ0,E

σE
=

σ2E
σE

= σE.

which concludes the identification argument for all the component we need for our decomposition.

1.2.6 What can be learned on the prior beliefs on the correlation ρ

The data we use in our empirical application and the restrictions the choice model outlined above

implies, do not allow us to identify the prior distribution individuals have over the correlation pa-

rameter ρ. In this section, we discuss what can be learned on the prior beliefs given our model and

data. Our main results here shows that given our identification results above, we can bound the set

of feasible ρs, from the individuals’ perspective. To show this, we first start by showing how the vari-

ance of beliefs introduces some restrictions on the set of feasible ρs. We then continue to show how

we can identify the set of feasible ρs under an additional assumption on the quality of information

individuals have on the marginal distribution. Finally, we demonstrate how we can bound on the

quality of information parameter in equation 1.2.

1.2.6.1 Restrictions on the Correlation Parameter

Our theoretical framework implies some constraints on the correlation between U1 and U0, that is

informed by our model that implies some selection on returns. First, as it well known, the variance

of beliefs about returns is bounded from above by the actual variance of returns (e.g Gentzkow and

Kamenica (2016)), which implies that the following inequality must hold:

Var(E[R|s] ≤ σ21 + σ20 − 2ρσ1σ0.
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This restriction is a generalization of the known fact in the standard Roy model (Roy (1951)) with

complete outcome information, where the joint distribution of potential outcomes is point-identified

(Heckman and Robb (1985)). If we assume agents have complete information, the inequality holds

with equality and we can identify the joint distribution of potential earnings. If we maintain that

agents select based on outcomes but have incomplete information, we can use the above inequality

to bound the correlation between potential outcomes.

We can further restrict the bounds using the fact that we can identify the covariance between

beliefs, E[α1 − α0|s, x] and U1 and U0. To do so we use the fact that the covariance matrix must

remain positive semi-definite, we therefore restrict the set of possible ρ to values that keep the

following covariance matrix positive semi-definite,

Cov(α,E) =


σ21 ρσ1σ0 σ1,E

ρσ1σ0 σ20 σ0,E

σ1,E σ0,E σ2E

 .

1.2.6.2 Identifying the Set of Feasible ρs from the High School Students’ Perspective

Our measure of information quality depends on the set of feasible values of ρ taken from the per-

spective of high school graduates. One way to identify this set is to assume that the set of feasible

correlations obtained using our bounding method above is the same as the set of feasible ρs from

the high school students’ perspective. This would be the case if, for example, high school graduates

observe only a scalar signal, such that their beliefs are an injective function of their signal. This

assumption might be very restrictive, and in general, individuals are likely to have access to various

sources of information and observe multiple signals. Without additional assumptions, our model is

not restrictive enough to pin down the set of feasible ρs a high school student may consider, as the
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correlation between the signals and potential earnings can induce additional restrictions on ρ that

are not captured by the argument above. To overcome this, we first show that with an additional

assumption on the quality of information individuals have on the marginal U1, we can identify the

set of feasible ρs from the high school graduates’ perspective.

We start by defining what is the set of feasible ρs from the high school student perspective. We

then define the set of feasible set of ρs from the the econometrician’s perspective, under an additional

assumption on the quality of information on the marginals. Let S be a vector of signals high school

students have. The set of feasible ρs is the set of ρs that keep the covariance matrix of S, U1, U0

positive semi-definite (PSD). We say that a ρ is feasible from the perspective of high school graduates

if the covariance matrix between S, U1, U0, where the correlation between U1 and U0 is ρ, is also

PSD.

Next, we consider what may be potentially known to the econometrician. Denote by R2
1 the

quality of information high school students have on U1, i.e., R2
1 =

Var(E[U1|S])
Var(U1)

. The next lemma

shows that the covariance matrix between U1, U0, E[U1|s], and E[U0|s] is identified, up to ρ, for a

given R2
1.

Assume R2
1 is known, then all components of the covariance matrix between U1, U0, E[U1|S], and

E[U0|S] are identified up to ρ. The proof is in Appendix 1.10.1 and builds on the identification

results of the model, as discussed above, and the fact that the conditional expectation E[Ud|S] in the

Gaussian model is linear. Finally, we then say that ρ is feasible from the econometrician’s perspective,

for a given value of R2
1 the implied covariance matrix between U1, U0, E[U1|s], and E[U0|s] is PSD.

The following proposition shows that if ρ is feasible from the econometrician’s perspective, with

the assumption on R2
d, then it is also feasible from the high school graduates’ perspective.

Proposition 1. Fix R2
1. A ρ is feasible from the high school graduate perspective if and only if it is
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feasible from the econometrician’s perspective.

The proof is in section 1.10.1 in the Appendix, and builds on the linearity and of the normal

conditional expectation and properties of PSD matrices. Proposition 1 demonstrates that, given an

assumption on the quality of information individuals have on one of the marginals, we can identify

the set of feasible ρs from the high school graduate perspective. Furthermore, we also note that the

set of feasible ρ is a closed interval.7 Therefore, we can describe the set by its boundaries ρmin and

ρmax. Finally, Proposition 1 shows that we can identify the set of feasible ρs, from the perspective of

high schools students, under an assumption on the quality of information they hold on the U1, R2
1.

Since we do not know the R2
1, in the results section, when we use the support to inform our choice

of prior of ρ, we construct bounds on the information quality, R2, from equation 1.2, by exploring

all values of R2
1 ∈ [0, 1].

7. To see that, remember that covariance matrix

C =

 ΣS ΣS,1 ΣS,0

ΣT
S,1 σ2

1 ρσ1σ0

ΣT
S,0 ρσ1σ0 σ2

0


is positive semi-definite (PSD) if and only if ΣS is PSD and the Schur complement of ΣS in C is also PSD. ΣS is PSD
by construction. The Schur complement, denoted as SC, is given by

SC =

(
σ2
1 ρσ1σ0

ρσ1σ0 σ2
0

)
−
[
ΣT

S,1 ΣT
S,0

]
Σ−1

S

[
ΣS,1

ΣS,0

]
.

The SC is PSD, if uTSCu ≥ 0 for any vector u. We can demonstrate that this holds if k2x2+(k1−ρ)x+k0 ≥ 0, where
k0, k1, and k2 are constants determined by the SC elements and x = u1

u0
. To ensure that this expression is always

positive, we can use the quadratic formula and require that (k1−ρ)2−4k2k0 ≤ 0. This expression is a convex parabola
in ρ, that intersects with the constant 4k2k0 at at most two intersection points. Any ρ between these two intersection
points satisfies the requirement and maintain that matrix C is PSD. Consequently, it is sufficient to describe the set of
feasible ρ values by these two boundary points. If the parabola does not intersect with 4k2k1 then there is no ρ that
keeps matrix C a PSD matrix.
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1.3 Data

Our empirical application investigates the factors contributing to the college attendance gap between

Hispanic and White students. We concentrate on Texas, where there are large and comparable His-

panic and White populations, but they differ substantially in their choices. Utilizing the methods

described in Sections 1.2.4, we decompose the attendance choices and assess the influence of informa-

tional differences. We start by describing the data and then discuss the model results. The following

section describes the data and variables we use throughout our analysis

1.3.1 Data Sources and Sample Construction

Our empirical study leverages a series of confidential administrative databases from the state of Texas,

the second most populous in the U.S. with a sophisticated higher education system that engages a

substantial portion of its populace, including over one million high school students (Agency (2023)).

Additionally, Texas have a significant Hispanic demographic, comprising around 12 million individuals

in 2022, or about 40% of the state’s total population, matched by a 40% representation of White

population.

The study combines data from several Texas agencies. The primary dataset is procured from

the Texas Education Agency (TEA), offering demographic details of all Texan high school students.

This dataset is enriched with school characteristics from the National Center for Education Statis-

tics (NCES), which provides a broader picture of Texas high schools. We incorporate assessments

from the Texas standardized testing program, which evaluates public primary and secondary school

students’ competencies in various grades and subjects. Further, we integrate data concerning college

enrollment decisions from the Texas Higher Education Coordinating Board (THECB), supplemented
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by information from the Integrated Postsecondary Education Data System (IPEDS). Finally, the

Texas Workforce Commission (TWC) supplies data on post-high school earnings, completing our

comprehensive dataset.

In constructing our control variables, we follow the approach used by Mountjoy (2022), utilizing

three types of covariates: student-level demographics, school characteristics, and neighborhood char-

acteristics. For student-level demographics, we include categorical variables for gender, eligibility for

free or reduced price lunch as a proxy for economic disadvantage, and an indicator for graduation

under one of three programs: the Distinguished Achievement Program, Recommended High School

Program, or the Minimum High School Program, which reflect the various graduation tracks in Texas.

In some of our analyses, we use test scores from Texas Assessment of Knowledge and Skills (TAKS)

tests. We consider test scores from the exit exams in English-Language-Arts (ELA), which capture

language skills, and Math test scores, these tests were held consistently across our three cohorts of

interest. We then create a single measure of test scores by combining them in a one-factor model

separately by cohort and normalize this factor to within-cohort percentiles. These high-stakes tests,

which imply that they are likely to be indicative of student ability .Passing these exit-level test is a

graduation prerequisite for Texas high school seniors in their junior and senior years.

For high school-level controls, we utilize NCES Common Core data, which incorporates the geo-

graphic locale code. This code categorizes urbanization into twelve detailed categories using Census

geospatial data. Additionally, we include the distance to two-year colleges and an indicator denoting

whether the school is classified as a Vocational Education School. Vocational schools are identified

as those that provide formal training for semi-skilled, skilled, technical, or professional occupations

to students of high school age who may opt to enhance their employment prospects, possibly instead

of preparing for college admission. Controls also account for the local influence of the oil and gas
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industry, by measuring the long-term share of oil and gas employment at the high school level, em-

ploying NAICS industry codes from TWC workforce data. We normalize this measure of oil and gas

employment by ranking it and control for its effects using a third-degree polynomial in our analysis

of school characteristics.

Neighborhood characteristics include the 62 Texas commuting zones using the year-2000 mapping

provided by the U.S. Department of Agriculture’s Economic Research Service. We also construct an

index of neighborhood quality, akin to the test score measure: We combine the tract-level Census

measures of median household income and the percentage of households below the poverty line with

the high school-level percentage eligible for free/reduced-price lunch into a one-factor model, then

normalize this neighborhood factor to the within-cohort percentile. When controlling for neighbor-

hood characteristics in the following discussion, we control for the third-degree polynomial of the

neighborhood factor.

As outlined in section 1.10.2 in the Appendix, nonparametric identification necessitates an in-

strument. We employ the measure of proximity to the nearest 4-year colleges, calculating ellipsoidal

distances between the coordinates of all Texas public high schools (sourced from NCES CCD) and

those of all Texas postsecondary institutions (from IPEDS). We determine the minimum distances

within 4-year sectors for each high school. To supplement some missing distances, we refer to Moun-

tjoy (2022), which involved manual collection of location data by verifying each college’s institutional

profile. We adopt the same methodology for the variable of distance to 2-year colleges.

We limit our sample to cohorts from 2003 to 2005 to ensure a long time horizon. This approach,

leveraging our earnings data, allows us to observe outcomes 16 (for the cohort of 2003 and 2004) and

15 years (for the cohort of 2005) into the future, thus better understanding the incentives faced by

these students. Additionally, the Texas Higher Education Coordinating Board (THECB) has provided
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data on students attending four-year colleges, including both private and public institutions, starting

from 2003. We further narrow our sample to high school students who are not enrolled in special

education programs, are between the ages of 17 and 18 in the 12th grade, and have graduated from

high school with at least the minimum requirements. As with any study focused on a specific state,

there is a risk of out-migration; however, Texas has one of the lowest out-migration rates in the U.S.

(Times (2014)). Following Mountjoy (2022), we also limit our test factor to individuals with grades

below the 80s percentile. As Mountjoy (2022) discusses, high school students with a test score factor

higher than the 80th percentile are more likely to enroll in out-of-state colleges. Figure 1.10 in the

Appendix further illustrates that these individuals are more likely to have missing earnings data.

1.4 Summary Statistics and Empirical Patterns

Table 1.5 in the Appendix presents summary statistics for the analysis cohorts. The table shows

substantial disparity in socio-economic backgrounds among the groups. A significant proportion of

Hispanics originate from low-income families, necessitating reduced-price or free meals. They also

live in census tracts with higher unemployment rates and a greater proportion of families below

the poverty line. Over 58% of Hispanics attend Title I schools, markedly more than their White

counterparts. Conversely, regarding the programs offered at these schools, there is no substantial

difference in the distribution. Similarly, there is no significant difference in how schools inform

students about the oil industry; the proportion of high school graduates working in the oil and

gas industries over the long term is similar. Geographically, Hispanics are more likely to reside in

urban areas, while Whites predominantly live in suburban and rural areas. Furthermore, in terms of

proximity to colleges, Hispanics tend to live nearer to both four-year and two-year colleges compared

to non-Hispanic Whites.
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In what follows, we delve deeper to describe the college attendance gap and the two driving

mechanisms: earnings and information.

1.4.1 College Attendance

The first row of Table 1.5 in the Appendix shows that the choice gap in the decision to attend a four-

year college in the first year after high school graduation between Hispanics and Whites is 9%. Table

1.11 in the Appendix examines the extent to which observable factors contribute to this disparity.

The first row adds control for individual characteristics. Controlling for neighborhood characteristics

increases the average choice gap to 13%, implying that the choice gap between Hispanics and Whites

who reside in similar neighborhoods is larger than the average choice gap in the population. Con-

trolling for individual characteristics reduces the remaining gap back to 8.6%, controlling for school

characteristics does not change the gap by much and reduces it to around 7.6%. Finally, controlling

also for test scores reduces the gap to 4.28%, implying that test scores help explain a large portion

of the choice gap.

Figures 1.2 and 1.3 illustrate that there is high dispersion in both Whites’ and Hispanics’ likelihood

of attending college. These figures plot histograms of the propensity scores for Hispanics and Whites

attending college, estimated using a Probit model with our control set and the distance to a four-year

college. Firstly, they reveal a large overlap in propensity scores, as required for our identification

argument, as discussed in Section 1.2.5 and Appendix 1.10.2. Furthermore, the figures demonstrate

that Whites are more likely to attend college, ex-ante, based on their characteristics, as for both

college-goers and non-college goers, the distribution of propensity scores for Whites is more skewed

to the right.
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Figure 1.2: Propensity Scores - Hispanics
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Figure 1.3: Propensity Scores - Whites

1.4.2 Earnings

We now turn to focus on the differences in earnings distributions between Hispanics and Whites.

Tables 1.6 and 1.7 in the Appendix show the average quarterly earnings for Whites and Hispanics

at various intervals post-graduation. Generally, wages are on an upward trend over time, albeit at a

decreasing rate. The tables show that mean earnings of Whites are higher than those of Hispanics for

any period after high school graduation. When splitting the earnings by college goers and non-college

goers, we can see that after 15 years, Whites’ earnings for both college goers and non-college goers

are higher. The table also shows that in the first years after high school graduation, the differences

between Hispanics’ and Whites’ earnings are small.

For our discussion, the most important component is the differences in earnings between college

attenders and non-college attenders, across Hispanics and Whites. Figure 1.4 explores this difference.

The figure plots the coefficient for attending a four-year college for both Hispanics and Whites,

controlling for cohort fixed effects. The figure shows that the gap in earnings between first-year
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college goers and non-college goers increases over time for both Hispanics and Whites. Notably, this

difference widens in the first five years post-graduation and then stabilizes at around $500, which

is approximately 6% of the average quarterly earnings for Hispanics 14-16 years after graduation.

Figure 1.5 introduces our set of individual, school level, and neighborhood level controls. The figure

shows that adding these controls reduces the levels but does not affect the gap, demonstrating that

the gap in earnings is not fully explained by these controls.

2 4 6 8 10 12 14 16
Year

1500

1000

500

0

500

1000

1500

2000

2500
Hispanic
whites
Difference

Figure 1.4: Raw difference in Mean Wages,
w/out controls
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Figure 1.5: Raw difference in Mean Wages, with
controls

Note: Figure 1.4 plots the coefficient for attending a four-year college for both Hispanics and Whites, control-
ling only for cohort fixed effect. The Coefficient for 16 years after college is using only two cohort, 2003-2004.
Figure 1.5 plots the same coefficient, with all the added controls, as discussed in section 1.3

Within the framework of our model, these differences suggest that Hispanic high school graduates

may have less incentive to attend college compared to their White counterparts. However, this

observed gap could be attributable to selection bias rather than reflecting the actual returns faced by

the high school graduates. To overcome this selection effect, we utilize the distance to college from

high school as an instrument in a Two-Stage Least Squares (TSLS) analysis.8

8. The use of distance to college as an instrumental variable has been prevalent in the literature that estimates
returns to education. See Card (1995) and its subsequent application in works such as Carneiro et al. (2011), Carneiro
and Lee (2009), Kapor (2020), Abdulkadiroğlu et al. (2020), Mountjoy (2022).
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First, to examine the instrument’s validity, we explore its relation with test scores. As we discuss

below, test scores are both associated with potential outcomes and with the decision to go to college.

Therefore, if the exclusion restriction holds, we do not expect that distance to college should be

correlated with test scores, conditioned on our set of controls. Table 1.8 in the Appendix examines the

correlation between the instrument and test scores. Initially, without our set of controls, test scores

show a significant correlation with the instrument. After including individual characteristics, this

correlation persists, which might indicate that spatial sorting is non-random and likely tied to other

factors that influence both outcomes and information. Subsequent rows in the table introduce more

controls for school and neighborhood characteristics, which largely account for the initial correlation,

rendering the coefficient on distance nearly null, indicating that the instrument may be valid.

We next examine the relevance assumption needed for the instrumental variable. Table 1.9 in

the Appendix shows a strong first stage: the influence of distance to college on the likelihood of

attending a four-year college immediately after graduation. Controlling for our set of controls, we see

that an increase of one mile in distance to college decreases the likelihood of college attendance by

0.2% for Hispanics and 0.1% for Whites. The magnitude of this effect remains relatively stable upon

the inclusion of different controls. Keep our discussion in section 1.2.3 in mind. The fact that the

effect of the distance to college is stronger for Hispanics indicates that either their beliefs are more

dispersed, which implies that they have better information quality, or that the difference µR − C is

higher.

Table 1.1 presents the results from the TSLS regression that instruments the treatment effect

using the distance to college instrument and includes all controls. It shows that, after adjusting for

selection, the average effect for Hispanics is negligible, persisting up to 16 years post-high school

graduation. For Whites, on the other hand, there is a gradual effect that mirrors the earnings
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dynamics depicted in Figure 1.5. These findings suggest that the returns for Hispanics are generally

much lower, potentially diminishing the incentive to pursue higher education.

All Hispanics Whites

Avg. Wage 8-10 245.0 707.0 -1108.62
(1194.0) (1237.0) (2028.0)
245206 103198 142008

Avg. Wage 10-12 875.0 305.0 521.0
(1436.0) (1468.0) (2295.0)
239307 101284 138023

Avg. Wage 12-14 1552.0 255.0 2380.0
(1531.0) (1550.0) (2370.0)
233091 99428 133663

Avg. Wage 14-16 2605.0 377.0 5156.0
(1632.0) (1745.0) (2424.0)
149498 63271 86227

Table 1.1: Returns - Two Least Squares

Note: This table presents the results from a Two-Stage Least Squares (TSLS) regression of college at-
tendance on earnings. Earnings are measured in periods of 8-10, 10-12, 12-14, and 14-16 years after the
students’ high school graduation. We instrument college attendance using the distance to the nearest college
and control for individual, school, and neighborhood characteristics, as discussed in Section 1.3. For the 8-14
year period post-graduation, we include cohorts from 2003-2005. For the 14-16 year period, we include only
the 2003-2004 cohorts due to data limitations.

Finally, our measures of quality focus on the amount of variance in earnings that information

can explain. Table 1.6 demonstrates that Whites have higher variability in earnings compared to

Hispanics at each point in time after graduating, hinting that more information is needed to better

predict Whites’ earnings than Hispanics’. We explore this notion further in Figure 1.13 in the

Appendix, where we demonstrate that not only are wages more variable, but there is also higher

variability in the industries in which Whites work. The figure plots Shannon’s entropy for the 2-

digit NAICS industry codes in which Hispanics and Whites are employed each year after high school

graduation. The figure shows that, throughout their lives, Whites are less concentrated in specific

industries compared to Hispanics. This also supports that it’s harder to predict Whites’ later-life
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outcomes compared to Hispanics.

1.4.3 Information

To get a sense of the quality of information is challenging, as we do not observe in the data the pieces of

information high school students have access to. We therefore consider specific signals we can observe

in our data, or in auxiliary data sets. Specifically, we first examine how informative the information

contained in school performance measures is. This is information we can observe in our data, and

students are likely to hold and use when making decisions on whether or not to attend college. We

then continue to describe survey results that demonstrate that Hispanic and White students utilize

similar sources of information in their decisions related to career and education choices.

Test scores and school performance provide important information for high school students for

their decision-making process. Grades act as sources of information and signals available to students

before making a decision. From this perspective, agents receive grades and use them to form pro-

jections about the utility of these grades. Consequently, we also examine whether grades convey

informative signals about returns and whether there exists disparities in quality between Whites and

Hispanics.

Table 1.5 reveals a notable gap in academic readiness between Hispanics and Whites, as evidenced

by exit exam grades. To what extent does this gap contribute to the overall disparity? We first show

that grades and test scores are likely to affect choices, as discussed above. The final row in Table

1.11 in the Appendix demonstrates that when we account for our measure of test scores, the gap

narrows to 4.8%, implying that at least some of the gap is driven by differences in test scores. As the

decision to attend college is made after test scores are known, this suggests that test scores themselves

are used in the decision process. Furthermore, Table 1.15 demonstrates that grades are significant
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in explaining choices. In a Probit model predicting these choices, the inclusion of grades increases

the Area Under the Curve (AUC) from 0.74 to 0.77 for Whites and from 0.75 to 0.8 for Hispanics.

This magnitude of increase is comparable to that observed when adding school and neighborhood

characteristics to individual characteristics, rising from 0.68 to 0.75 for Hispanics and from 0.67 to

0.74 for Whites. These findings again imply that high school graduates likely consider exit exam

grades and their informational value in their college enrollment decisions.

Are grades informative on returns? We first explore whether grades are likely to contain infor-

mation about returns. To ascertain whether grades predict earnings and returns, Figure 1.11 in the

Appendix illustrates the relationship between earnings and grades for both college attendees and

non-attendees. The figure shows that for both Hispanics and Whites, higher grades correlate with

increased earnings, irrespective of college attendance. Additionally, as grades increase, the earnings

gap widens between those who attend college in their first year and those who do not. This is sup-

ported by the regression in Table 1.12 in the Appendix, which reveals that a one-unit increase in test

scores raises the raw gap by approximately $16, controlling for our set of controls. Both figures and

the regression table suggest that the difference in informativeness of test scores across the two group

is relatively small.

The relationship between school informativeness is further examined in Table 1.2, which we discuss

further in Section 1.5. This table presents the out-of-sample R2 from a model that employs Extreme

Gradient Boosting to predict earnings based on students’ course-taking patterns and the pass-fail

indicator for Hispanics and Whites. The R2 values are remarkably similar for both groups. This

implies that the quality of information from school performance measures is comparable for Whites

and Hispanics.

Finally, to explore what other sources of information are used by high school students, we use a
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In Sample R2 Out of Sample R2

Fixed Effects No College All 0.19 0.11
Hispanic 0.17 0.09
Whites 0.18 0.10

College All 0.15 0.09
Hispanic 0.14 0.09
Whites 0.11 0.06

W/O Fixed Effects No College All 0.20 0.10
Hispanic 0.18 0.09
Whites 0.20 0.09

College All 0.15 0.10
Hispanic 0.16 0.09
Whites 0.13 0.08

Table 1.2: School Informativeness - R2

Note: This table displays the in-sample and out-of-sample R2 values for a model predicting average earn-
ings 12-14 years post high school graduation. The No-FE rows ("No Fixed Effect" ) incorporates individual
characteristics (as detailed in Section 1.3), test scores from exit exams in math and English comprehension,
and indicators for each course taken during the three years of high school, including pass/fail status, taken
from the Texas Education Agency data. The FE rows ("Fixed Effect") additionally includes a high school
indicator variables, controlling for the impact of different high schools. Estimation is conducted using XG-
Boost, with parameter selection via Parallelizable Bayesian Optimization, as implemented in the R package
"Parallelizable Bayesian Optimization."

survey conducted by the Texas Higher Education Opportunity Project9. Table 1.13 in the Appendix

shows that Hispanic high school students are slightly more likely than their White peers to approach

and discuss with the school counselor about education and career decisions. Specifically, 56% of

Hispanics discuss their school counselor about career options vs. only 45% of Whites. Similarly,

61% of Hispanics discuss with their school counselor about college options, vs. 58% of Whites.

Furthermore, Table 1.14 shows that the number of yearly interactions with the school counselor

on these and other matters is almost the same across both Hispanics and Whites, indicating that

the nature of interaction across the two groups is similar. Table 1.15 in the Appendix shows that

Hispanics are slightly more likely to seek advice from their parents about educational and career

9. A more detailed description of Texas Higher Education Opportunity Project can be found in 1.13 in the Appendix.
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decisions. These indicators together demonstrate that Hispanics and Whites turn to the same type

of information sources for information.

These results indicate that Hispanics and Whites encounter varying distributions of returns.

However, the quality of information available to them through the school system does not significantly

differ. This motivates the utilization of our model to gain a deeper understanding of how these

differences contribute to the choice gap.

1.5 Model Results

In this section, we estimate the model outlined in section 1.2.2 and discuss the implications of the

estimated parameter for the role of information in determining the gap. Our analysis assumes that

individuals are primarily concerned with their quarterly earnings 12-15 years post-graduation. As

demonstrated in table 1.1, positive returns to college education starts approximately after 12 years.

Consequently, we average the quarterly earnings within this 12-15 year period. This approach enables

us to use data from our three cohorts and effectively capture the structural components, averaging

over a long period. Detailed discussion on the estimation method is in Appendix 1.11.

We start our analysis by examining the relationship between the perceived cost of attending

college and beliefs among Hispanic and White students. Figures 1.7 and 1.6 present histograms of

the estimated costs for these groups, revealing that Hispanic students generally face lower attendance

costs. As discussed in section 1.2, these costs encompass barriers to entry, such as credit constraints

or discrimination, and are also influenced by preferences shaped by social norms and other factors.

Table 1.3 further shows that the average cost for Hispanic students corresponds to $1,199 of their

quarterly earnings, compared to $2,879 for White students. In addition the to cost, figures 1.6 and

1.7 also explore the distribution of conditional returns E[α1−α0|x], which represent the mean beliefs
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about returns for individuals with characteristic x. The two figures demonstrate that White students

exhibit significantly higher expected returns than Hispanic students.

Table 1.3 further complements this analysis, showing that the average beliefs on returns are lower

than the actual average return for both groups. Specifically, the gap between the mean costs and

mean beliefs about returns is narrower for White students ($949) than for Hispanic students ($2256).

This implies that to achieve parity in choice across groups, the information quality of Hispanics have

should be much better than those of Whites, as discussed in section 1.2.

7500 5000 2500 0 2500 5000 7500 10000
0.0000

0.0001

0.0002

0.0003

0.0004
Costs
E[ 1 0|X]

Figure 1.6: Hispanics Costs and Beliefs
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Figure 1.7: Whites Costs and Beliefs
Note: Figures 1.7 and 1.6 present histograms of the estimated costs and conditional priors E[α1 − α0|X] for
Hispanics and Whites, respectively. These estimates are derived according to the model discussed in Section
1.2. The parameters α1 and α0 represent the average quarterly earnings of high school students 12-15 years
after graduation.

We now turn to look at the estimated distributions of beliefs on U1 − U0. Table 1.3 presents the

estimated variance of α1, α0 residuals, and beliefs for the two groups. The variance in beliefs among

Hispanics is notably higher than that among Whites, and the variances for the residuals of α1 and α0

the means are generally higher among Whites, although we can’t rule out statistically that they are
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equal. These differences suggest that the quality of information, as measured by R2, is the same or

lower for Whites than it is for Hispanics. If the residual variance of returns for Whites is higher or the

same as that for Hispanics, this implies that choice outcomes are less predictable for Whites. In both

cases, the quality of information on returns hinges on the covariance structure of U1 and U0. Figure

1.14(a) in the Appendix shows plots the estimated CDF of the beliefs distribution, conditioned on

the average covariates, and figure 1.14(b) shows the CDF where we fix all covariates and constant

to zero. The figure shows that for both Hispanics and Whites, the beliefs are systematically higher

for the average White high school student. Concentrating on the CDF’s shape when X = 0, we can

again see that for White and Hispanics Students with the same observables, the beliefs of Whites are

less dispersed.

P(D=1) σE σ0 σ1 Avg. Cost E[α1] E[α0] E[α1 − α0]

Hispanics 0.21 2381 4490 6264 1199 6658.0 7715 -1057
(657.0) (125.0) (818.0) [889] (1795.0) (1843.0) [2573.0]

Whites 0.29 1414 5577 6316 2879 10871 8942.0 1930.0
(873.0) (155.0) (491.0) [693] (2149.0) (2211.0) [3083.0]

Table 1.3: Model Parameters

Note: The table displays model parameters estimated using average quarterly earnings 12-15 years after
high school graduation. Standard errors for these parameters are presented in round parentheses ( ). Standard
deviations of the costs and beliefs are indicated in square brackets [ ].

1.5.1 Measuring the Contribution of Information Differences to the Choice Gap

In this section we explore the decomposition results. We first consider the analysis of our results for

the case in which µρ = 0, we then explore how robust our results, under different assumptions on

the the prior distribution.
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1.5.1.1 Main Results

Our objective is to explain the almost 8% gap in college attendance decisions between Hispanics

and Whites. Table 1.4 explores the decomposition exercise, focusing on how much of the gap is

explained by differences in information quality between the two groups. Row 1 of the table shows

the information and returns channel, under our main assumption that µρ = 0. The table shows

that most of the choice gap is driven by the returns channel. Specifically, the information channel

constitutes −97% of the choice gap, which implies that eliminating the differences in information

would result in increasing the gap by 7.7 percentage points. On the other hand, the returns channel

consittute 197% of the gap, and eliminating it reduces reduces the choice gap by 15.6 percentage

points. Therefore the finding shows that fully eliminating the differences in returns would eliminate

the choice gap and reverse it, causing the Hispanic share to surpass the share of Whites who choose

to enroll.

The decomposition shows that most of the choice gap is driven by differences in returns, with

information playing a small role in shaping the gap. Moreover, current differences in information help

to mitigate the gap, and if both groups had the same quality of information, the gap is likely to double

in size. Therefore, the results indicate that a policy aimed at reducing differences in information

quality is likely to be less effective in reducing the gap than a policy that targets differences in the

returns to college for the two groups.

1.5.1.2 Robustness Analysis

Our decomposition results are partially based on the assumption we have on the prior beliefs on

ρ. In this section, we explore the robustness of our results concerning this assumption. To do so,

we consider two approaches. First, we relax the assumption that we know the support of feasible
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Information Channel Returns Channel

1) µρ = 0 -0.077 (-97.116%) 0.156 (197.0%)

2) All Possible R2
1

LB, CF= 0.41 -0.121 (-152.532%) 0.2 (253.0%)
UB,CF= 0.243 0.046 (57.807%) 0.033 (42.193%)

3) R2
1 ≤ 0.3

LB, CF= 0.369 -0.079 (-100.15%) 0.159 (200.0%)
UB,CF= 0.342 -0.053 (-66.8%) 0.132 (167.0%)

4) R2
1 ≤ 0.5

LB, CF= 0.378 -0.089 (-112.35%) 0.169 (212.0%)
UB,CF= 0.325 -0.036 (-45.38%) 0.115 (145.0%)

5) Unrestricted Mean Beliefs
LB, CF= 0.456 -0.167 (-209.918%) 0.246 (310.0%)
UB,CF= 0.189 0.1 (126.0%) -0.021 (-25.952%)

Table 1.4: Main Decomposition

Note: This table shows the main decomposition results. Row 1 shows our main results, the decomposition
of the choice gap into the information channel and returns channel. Rows 2-4 show the upper bound (UB)
and lower bound (LB) of the information channel under the different assumptions on the quality of infor-
mation individuals have on their college earnings (R2

1), as discussed in the main text. The bounds on the
Counterfactual (CF) share of Whites who would go to college if they had the information quality of Hispanics
are shown for each case. Row 5 shows the lower and upper bounds of the information channel and returns
channel in the case where we only restrict the mean prior beliefs to lie on the feasible set ρ.

ρ’s but maintain the assumption that the beliefs are centered in the middle of the support, from

the individual perspective, as discussed in section 1.2. Next, we relax the assumption that mean

priors are at the middle of the support and explore how this may affect the returns and information

channels.

We start by imposing our insight on what can be learned about the support of ρ from the per-

spective of the individuals. Row 2 in Table 1.4 shows the upper and lower bounds on the information

and returns channels without any restrictions on individuals’ feasible support of ρ. As we can see,
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without any restrictions, the bounds are wide, ranging from the information channel share being

between for −153% to 58% to the current gap. As shown in Table 1.17 in the Appendix, these upper

and lower bounds are achieved when the quality of information on college earnings, R2
1, of either

Whites or Hispanics is at its highest value (60% of variance can be explained for Hispanics and 75%

for Whites), and is at it’s lowest value for the other group (10% of variance can be explained for

Hispanics for Hispanics and 1% for Whits). As we discuss more in the next section, these extreme

values are unlikely to be feasible, as they imply that individuals can explain a large share of their

variance in future earnings. To make more realistic assumptions, we consider the case in which we

restrict the quality of information agents have on their marginals, to be not more than a certain level.

This type of restriction is similar to other restrictions which impose constraints on what variables

are contained in the information set (e.g., Willis and Rosen (1979)). In our setup, the exact variables

that individuals have do not matter, but what is important is how informative they are. Therefore,

we take this new approach of restricting the predictive power individuals have.

Row 3 in Table 1.4 imposes a more realistic assumption on the quality of information. We restrict

the share of explained variance of college attenders earnings, for both groups, to be less than 30%.

Under this constraint, we can see that the information channel now contributes between -100% to

-66% of the gap, which is close to our main results. Row 4 considers that individuals may explain

up to 50% of the variance of their college earnings, and we can see that the bounds we get are wider,

but still, information differences contribute to reducing the choice gap.

Next, we take a different approach, by relaxing the assumption that the prior mean is at the

center of the support, and allow it to be anywhere on the feasible support. Row 5 in Table 1.4 shows

the lower and upper bounds of the information channel and returns channel in the case where we

only restrict the beliefs to lie on the feasible set. As we can see, these bounds are extremely wide,
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allowing for the information channel to go from reducing the gap by 16.7 percentage points (209% of

the current gap) to increasing it by 10 percentage points (126% of the current gap size), where the

returns channel can go from reducing the gap by 24 percentage points to increasing it by 2 percentage

points.

As seen in Table 1.17, these two extreme bounds are achieved in the case where the beliefs are

degenerate and are the polar opposite of the feasible set of ρ’s support. Specifically, the lower bound

of the decision to go to college is when Whites’ µρ,Hispanics = 0.89 and Hispanics’ µρ,Whites = −0.9,

and the upper bound where the two are switched. This implies that the bounds are achieved in the

case where the two groups have very different beliefs on how earnings behave, and they face no model

uncertainty on the correlation between potential outcomes. We, therefore, consider a more realistic

case, where we allow the mean priors to differ between the two groups by a small amount. Figure 1.8

shows the information channel weight and size for different mean priors. First, the black line shows

the case where the two correlation values are the same. We can see that in this case, information only

contributes to decreasing the gap. For most values of µρ,Whites, we observe the gap increasing by

approximately 7-8 percentage points, suggesting that providing Whites with the information quality

available to Hispanics would double the size of the gap, similar to our main result. The shaded area

around the black line considers the case where we allow the mean beliefs values to differ between

the two groups by a certain amount. The red shaded area considers the case where the differences

between beliefs are allowed to differ by no more than 0.05. For all values considered, the gap suggests

that reducing the information disparities between Hispanics and Whites contributes to narrowing

the choice gap, thereby contributing to equality in choice. The other shaded regions show how the

bounds widen as we allow the values to differ by up to 0.15.

The results in this section suggest that disparities in information quality between Whites and
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Figure 1.8: Information Channel for Different µρ

Hispanics contribute to narrowing the choice gap, with a significant portion of this gap attributed to

differences in returns. Should the disparities in information quality be eliminated, it would lead to

an approximate 50-80% increase in the choice gap.

1.6 Assessing the Impact of Additional Information on Narrowing the

Choice Gap

In the previous section we found that information differences contribute to reducing the choice gap

between Hispanics and Whites. In this section we ask how can a policy maker use information in

order to close the choice gap between Hispanics and Whites. We consider a policy maker with access

to some information in the form of database that includes information on students characteristics,

demographics, test scores, other relevant information and students outcomes labor market outcomes.

This policy maker can then use this information and provide additional signal for students to better
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inform them on their consequences of their choices. We take the extreme case where the policy maker

provide additional information only for Hispanics and ask how accurate should that information be

in order to achieve parity in choice. Here, “additional information” refers to new signals that are

orthogonal to an agent’s existing information set; that is, we focus exclusively on previously unknown

information that a policymaker could introduce. In practice, a policymaker is likely to disseminate

information that correlates with what individuals already know, potentially overlapping with their

private information. Therefore, in our thought exercise, we consider the case in which individuals

first residualize the policymaker’s signal and use only their existing information and the additional

residualized information to inform their beliefs. We then examine how the information quality of

this additional information affects the choice gap. Specifically, we engage in three thought exercises

for this purpose. First, we consider providing information that is solely informative about earnings

if the individual chooses to go to college. Second, we examine the opposite scenario where the

additional information is informative only about earnings if they opt not to go to college. Finally, we

consider providing information that is relevant to both types of earnings. In our thought experiments,

we assume that the policymaker, akin to an econometrician, can only provide information on the

marginal distributions of U1 and U0, as she cannot know their joint distribution. For example, the

policymaker could offer students a series of tests, then provide predictions on potential earnings

depending on whether they attend college or not. To measure the precision of this additional new

information, we quantify it by its ability to explain the marginals of U1 and U0, therefore we describe

these additional signals in terms of R2 on the marginals.

To formally introduce the idea of new information, let sn be the additional signal that a policy-

maker provides to Hispanics, after it has been partialled out from the agent’s existing information.

We assume that the signals are drawn from a Gaussian distribution and are correlated with α1 and
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α0. The fact that the signal is partialled out implies that sn ⊥⊥ S, i.e. we assume that this new

information is information that individuals were not able to predict given their current information

set. Furthermore, as the signals and state are jointly Gaussian, the agent’s beliefs are additive.

Specifically, we can write the individuals’ counterfactual beliefs, given their current signals and the

additional information, as

E[U1 − U0|S, sn] = E[U1 − U0|S] +
Cov(U1 − U0, sn)

Var(sn)
sn.

where we used the linearity of the Gaussian distribution and the independence assumption. Next,

to understand how the additional information affects choice we need to derive the variance of the

counterfactual beleifs distribution. Denote by R2
1,n and R2

0,n the information quality of the new

signals on U1 and U0, respectively. Thenwe can express the additional component in the variance of

beliefs as follows:

Var

(
Cov(sn, Ud)

Var(sn)
sn

)
=

Cov2(sn, αd)

Var(sn)
= σ2dR

2
d,n

Without loss of generality, we can fix Var(sn) = 1 and then set Cov(sn, Ud)
2 to meet the required

R2
d value. Then, using the fact that sn ⊥⊥ S, we can derive the variance of the counterfactual beliefs,

with the additional information:

Var(E[U1 − U0|S, sn]) = Var (E[U1 − U0|S]) + Cov2(U1, sn) + Cov2(U0, sn)− 2Cov(U1, sn)Cov(U0, sn)

= Var(E[U1 − U0|S]) + σ21R
2
1,n + σ20R

2
0,n − 2

√
R2
1,nR

2
0,nσ1σ0.

(1.6)

Given the cost function and µR, we can calculate the counterfactual share of students who would

attend college if they were provided with this additional new information. Notice that in order to

calculate the counterfactual shares we do not need to know the correlation between U1 and U0, as
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we consider how the new information is informative on the marginals, but not on the difference.

1.6.1 The Effect of Additional Information

We start by focusing on adding information exclusively to either U1 or U0, but not both. To achieve

parity, we consider additional information previously unknown to the agent about earnings if he opts

for college, which necessitates that the quality of this signal be at R2 = 24%. This implies that the

additional information must independently explain almost 25% of the variance in U1. In a similar

vein, for a signal on U0 that aims to achieve parity in choices between Whites and Hispanics, it must

be capable of explaining 49% of the total variance in U0.

Figure 1.9 explores further the counterfactual college attendance changes rate for different quality

levels of additional information on U1 and U0, as quantified by R2
1,n and R2

0,n. This figure illustrates

that focusing the information predominantly on one outcome tends to enhance participation more

effectively than offering a signal informative about both U1 and U0. This is due to the fact that

information on both U1 and U0 reduces the variance in beliefs, as shown in equation 1.6.

Can policymakers achieve the level of accuracy as discussed above? Our analysis, detailed in Table

1.2, shows the proportion of earnings variance explained for Hispanic and White groups using our

administrative data. The table presents out-of-sample R2 values from an Extreme Gradient Boosting

model, which predicts earnings 12-14 years post high school graduation. This model incorporates

students’ characteristics, exit exam scores, course selections in high school, and pass-fail for each

course, for both Hispanics and Whites. Such an analysis simulates the data a policy maker might

want to utilize in advising students about college decisions. The table shows that approximately only

10% of the variance in earnings for both college attendees and non-attendees in our sample can be

explained using this information. This is much lower than the needed level of information quality
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to achieve equality of choice. Introducing fixed effects for schools into the model does not markedly

improve prediction accuracy. We preform a similar exercise using the National Longitudinal Survey

of Youth 1997 (NLSY97), as shown in Table 1.16 in the Appendix. Here, due to to a smaller sample

size, we employed linear regression to estimate earnings for individuals aged 34 or 35, both college

attendees and non-attendees. The NLSY97 dataset provides extensive individual data, covering

aspects like gender, cohort, urbanicity, abilities (measured via ASVAB tests), parental education and

income, and high school performance. Most importantly, the direct measures of ability and parental

income, are typically not available in administrative datasets, thus set a potential upper limit on the

prediction quality a policy maker can make. Our analysis using adjusted R210 reveals that up to

17% of earnings variance for non-college Hispanic and and less than 10% for other groups, can be

accounted for. It’s important to note that in our counterfactual exercise above, we consider providing

new information to students. A large share of the information schools can provide is already known

to students and, therefore, is even less likely to generate significant changes in behavior.

Other research has noted the limitations of current models, measurements, and approaches in

explaining variations in outcome variables of interest in social science (Salganik et al. (2020),Garip

(2020)). Specifically, similar to our study, other papers examined how different pre-college measure-

ments of ability, such as IQ, achievement tests, high school grades, or personality tests, explain the

variance in earnings and other metrics (Murnane et al. (2000), Watts (2020), Borghans et al. (2016)).

They found that these measurements explain up 20%.11 These results collectively suggest that our

10. We use in-sample adjusted R2 due to the smaller sample size. This approach, while not ideal, is frequently em-
ployed in literature discussing the prediction of earnings based on high school performance (Murnane et al. (2000),Watts
(2020),Borghans et al. (2016)).

11. It’s important to note that these measures usually use in-sample R2, or adjusted R2. which are usually higher
than the out-of-sample ones (Hastie et al. (2009)). The out-sample R2 is the one we care about as it do not suffer the
over fitting
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standard data, which are likely to use in any recommendation systems for college, is not informa-

tive enough in order to explain future earnings. Therefore, achieving equality through informational

interventions might be challenging.
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Figure 1.9: The effect of additional information on Earnings

Note: Figure 1.9 shows the counterfactual share of Hispanics who would attend college after providing

them with an additional signal of information quality on U1 of R2
1 and information quality on U0 of R2

0. For

both figures, the quality of information is measured based on the ability to explain quarterly earnings 12-15

years after high school graduation.

1.7 Conclusions

Individuals from diverse backgrounds have unique upbringings that significantly shape their later life

and subsequent choices. Such experiences are pivotal in defining the constraints and opportunities

they encounter, along with the outcomes and their information on these outcomes. This project

explores how differences in returns and information affect different groups’ college-going decisions.
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In this context, differences in the outcomes and information can be driven by disparities that take

place prior to the time the decision is made (Neal and Johnson (1996)). For example, information

differences can arise when affluent groups have access to better information on college outcomes

compared to less fortunate ones. Similarly, growing up in wealthier backgrounds can also lower

college costs for children. More generally, differences in information and potential returns are likely

to rise in dynamic models, where past decisions affect the current decision environment. For instance,

Cunha and Heckman (2007a) and Cunha et al. (2021) illustrate three ways through which early life

disparities can shape future opportunities: through affecting the choice set, the dynamic incentives,

and the information individuals possess about the outcomes of investments. Better understanding

how these past disparities affect future disparities is crucial to understand what drives disparities.

In this project, we focused on the gaps in the quality of information. Differences in quality are

not solely a byproduct of past decisions and disparities but are also driven by the future. This is par-

ticularly evident when considering the challenges associated with predicting labor market outcomes.

Earnings for different groups can vary widely due to factors like industry sector trends, geographic

economic conditions, and social biases. These disparities affect not only the returns distribution but

also the ability to predict future returns. For example, minorities may suffer from discrimination

that results in them earning lower wages, but this outcome is easier to predict than the case where

some earn low wages and some high wages. If there is less uncertainty in future earnings, it may

be easier to predict the future. Therefore, focusing on information quality allows measures through

which both the past and the future affect current disparities.

This paper introduces a new approach to analyze how differences in information and potential

returns across groups impact choice disparities. Therefore, we take a more systematic approach

(Bohren et al. (2022),Small and Pager (2020)) not focusing on a specific channel or variable that
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affects choice but focusing on the cumulative effect of past and future disparities on the current

choice gap. In our empirical exercise, we find that the information differences between Hispanics and

Whites help to mitigate the choice gap, implying that future and past disparities contribute to the

gap mainly through incentives and not through information on these incentives. In the second part

of the paper, we find that achieving parity in choice through policy interventions that provide addi-

tional information to Hispanics may be extremely difficult, as the amount and quality of additional

information Hispanics need is extremely high. This suggests that while information-based initiatives

may have limited effectiveness, strategies directly targeting outcomes may be more effective in the

long term to achieve parity in choices.

Finally, the approach proposed in this paper could be applied to other scenarios where it may be

interesting to quantify drivers of choice gaps, such as cases of discrimination, healthcare, and other

decisions related to investing in human capital and skill development. The central idea we present

here is that in order to comprehend the drivers of behavioral differences and choices, as well as why

these disparities persist, we must put a spotlight on the information environment in which people

make decisions. Understanding the informational environment in which people operate is essential

for understanding why and how differences across groups are formed and persist.
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1.8 Additional Figures
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(a) Relation between test scores and missing
Earnings for earnings 10-15 years after high school
graduation
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(b) Relation between test scores and missing
Earnings for earnings 12-15 years after high school
graduation

Figure 1.10: Relation Between test scores and Missing Earnings

Notes: The above figures plot the share of missing earnings by test score factor, as described in Section

1.3. The first figure presents the missing earnings for the period of 10-15 years after high school graduation.

Figure (b) illustrates the share of missing earnings for the period of 12-15 years after high school graduation.

The red line indicates the expected trend line.
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(a) Relation between test scores and earnings
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(b) Relation between test scores and earnings,
by college attendance
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(c) Relation between test scores and earnings,
by college attendance - Hispanics
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(d) Relation between test scores and earnings,
by college attendance - Whites

Figure 1.11: Relation Between Test Scores and Earnings

Notes: This figure illustrates the relationship between test score percentile, as calculated in Section 1.3,

and the expected average earnings 10-15 years after high school graduation. Figure (a) depicts the correlation

between test scores and earnings for all individuals. Figure (b) presents this relationship, separated for

individuals who attended college (red line) and those who did not (blue line). Figure (c) displays the same

data but specifically for Hispanic individuals, while figure (d) focuses exclusively on White individuals.
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(a) Counterfactuals share of Whites with His-
panic Information

-0.
98 -0.

8
-0.

62
-0.

43
-0.

25
-0.

07 0.1
1

0.2
9

0.4
7

0.6
6

0.8
4

1, 0, Whites

0.9

0.72

0.54

0.35

0.17

-0.01

-0.19

-0.37

-0.56

-0.74

-0.92

1,
0,

H
is

pa
ni

c

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y 
of

 A
tte

nd
in

g

(b) Counterfactuals share of Hispanics with
Whites Information

Figure 1.12: Counterfactuals share

Notes: The figures illustrate the counterfactual share of White and Hispanic college attendance for various

potential earnings correlation values. Figure (a) depicts the share of White individuals under the scenario

where they are provided with the same quality of information as Hispanics, with information quality measured

across different correlation values. Figure (b) presents the counterfactual shares of Hispanic college atten-

dance, assuming they received the information quality of Whites, as gauged by varying correlation values.
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Figure 1.13: Shannon’s Entropy for NAICS Industries

Notes:The figure displays the entropy of 2-digit NAICS code industries in which Hispanics and Whites,

who attended 4 year college and who did not, are employed, plotted against the number of years post-high

school graduation on the x-axis. Confidence intervals are at 95%.
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Figure 1.14: Beliefs Cumulative Distribution for Whites and Hispanics

Note: The figure displays the Cumulative Distribution Function of beliefs on α1 and α0 for both Hispanics

and Whites. The shaded area represents the 95% Confidence Interval. Figure (a) illustrates these beliefs

for the case where covariates are set to their mean. Figure (b) depicts the same graphs with all covariates,

including the constant, set to zero.

64



1.9 Additional Tables

All Hispanic Whites

College Attendance 0.23 (0.42) 0.18 (0.38) 0.27 (0.44)
Test Factor Percentile 43.18 (22.02) 36.37 (22.02) 48.11 (20.67)
Math Score 45.62 (23.88) 40.29 (24.12) 49.49 (22.94)
Reading Score 47.5 (25.41) 40.11 (25.41) 52.87 (24.03)
No Disadvantage 0.7 (0.46) 0.41 (0.49) 0.91 (0.29)
Elig. Free Meals 0.22 (0.41) 0.44 (0.5) 0.06 (0.24)
Elig. Reduced Price Meals 0.06 (0.23) 0.09 (0.29) 0.03 (0.16)
Other Disadvantage 0.03 (0.16) 0.06 (0.23) 0.0 (0.05)
Distiguish 0.06 (0.24) 0.07 (0.25) 0.05 (0.23)
Minimal 0.22 (0.41) 0.19 (0.39) 0.24 (0.43)
Required 0.72 (0.45) 0.74 (0.44) 0.7 (0.46)
CT Median Income 44027.0 (21371.0) 36265.0 (15939.0) 49663.0 (22986.0)
CT Families Below Poverty Line 14.5 (10.82) 20.08 (12.19) 10.44 (7.42)
CT Share of Employed 63.21 (9.97) 59.92 (10.01) 65.6 (9.23)
Title I schools 0.34 (0.47) 0.58 (0.49) 0.17 (0.38)
No Participation in Tech Program 0.24 (0.43) 0.22 (0.41) 0.26 (0.44)
Enroll in Career Tech Elective (6-12) 0.23 (0.42) 0.2 (0.4) 0.24 (0.43)
Participate in Tech Prep Prog (9-12) 0.32 (0.47) 0.33 (0.47) 0.32 (0.47)
Participate in Tech Prep Prog 0.21 (0.41) 0.25 (0.43) 0.18 (0.38)
Share in Oil Industry 52.73 (28.53) 49.21 (29.14) 55.29 (27.79)
City 0.37 (0.48) 0.52 (0.5) 0.25 (0.44)
Suburb 0.32 (0.47) 0.24 (0.43) 0.38 (0.49)
Town 0.11 (0.31) 0.11 (0.31) 0.1 (0.31)
Rural 0.2 (0.4) 0.13 (0.34) 0.26 (0.44)
Distance to 4-Year College 19.82 (18.8) 18.19 (20.5) 21.04 (17.25)

Table 1.5: Summary Statistics

Note: The Columns include 12th-grade analysis cohorts from 2003-2005. NCES geographic categories are
condensed into four types (city, suburb, town, rural). Distance from College is measured using the geodesic
distance from the student high school to near by college. CT stands for the School Census Tract. Distinguish,
minimal and required are the share of studnets with the Distinguished Achievement Program, Recommended
High School Program, or the Minimum High School Program, respectivly. College Attendacne capture the
share of high school students who attended college in the first year after high school graduation year
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All Hispanic Whites Difference (Whites - Hispanic)

Wage 8-10 7117.0 (4533.0) 6393.0 (3974.0) 7627.0 (4823.0) 1234.0 (6249.3)

Wage 10-12 8215.0 (5194.0) 7348.0 (4509.0) 8852.0 (5558.0) 1504.0 (7157.0)

Wage 12-14 9079.0 (5808.0) 8046.0 (4952.0) 9823.0 (6249.0) 1777.0 (7973.2)

Wage 14-16 9838.0 (6280.0) 8721.0 (5383.0) 10658.0 (6748.0) 1937.0 (8632.0)

Wage 12-15 9214.0 (5807.0) 8209.0 (4993.0) 9959.0 (6239.0) 1750.0 (7990.9)

Table 1.6: Wages Summary Statistics

Note: The table presents the mean earnings for Hispanics and Whites across various periods, spanning

8-16 years after high school graduation. For the period of 14-16 years post-graduation, data is exclusively

from the 2003-2004 cohort. For all other time frames, data includes all cohorts from 2003-2004. Standard

deviations are provided in parentheses.
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Hispanics Whites

No College College No College College

Wage 1-2 2807.0 1904.0 2717.0 1693.0

(1785.0) (1351.0) (1910.0) (1340.0)

Wage 3-4 3903.0 2903.0 3935.0 2862.0

(2465.0) (2070.0) (2808.0) (2248.0)

Wage 5-7 4880.0 5027.0 5388.0 5983.0

(2984.0) (3128.0) (3550.0) (3693.0)

Wage 8-10 6234.0 7238.0 7237.0 8775.0

(3973.0) (4209.0) (4757.0) (4961.0)

Wage 10-12 7066.0 8468.0 8299.0 10285.0

(4403.0) (4762.0) (5364.0) (5808.0)

Wage 12-14 7750.0 9424.0 9201.0 11452.0

(4804.0) (5258.0) (5918.0) (6512.0)

Wage 14-16 8360.0 10180.0 9973.0 12447.0

(5236.0) (5736.0) (6441.0) (7211.0)

Wage 12-15 7862.0 9596.0 9327.0 11618.0

(4849.0) (5325.0) (5978.0) (6616.0)

Table 1.7: Wages Summary by College Statistics

Note: The table presents the mean and standard deviation earnings for Hispanics and Whites across

various periods after high school graduation For the period of 14-16 years post-graduation, data is exclusively

from the 2003-2004 cohort. For all other time frames, data includes all cohorts from 2003-2004. Standard

deviations are provided in parentheses.
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All Hispanic Whites

No Controls -0.0156 -0.0232 -0.0436

(0.0054) (0.0053) (0.0038)

Ind. Controls -0.0277 -0.0151 -0.0392

(0.0044) (0.0066) (0.0045)

+ School Char. -0.0061 0.0074 -0.0177

(0.004) (0.0057) (0.004)

+ Neighborhood Char. -0.0014 0.0009 -0.0036

(0.0018) (0.0022) (0.0021)

Table 1.8: Instrument Diagnostics

Note: The table displays coefficients on distance to a 4-year college, derived from a regression of test

score factors, as defined in section 1.3, on distance to college. Each row introduces additional controls for

individual student characteristics, school characteristics, and neighborhood characteristics. Standard errors,

provided in parentheses, are clustered at the school-cohort level.
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All Hispanic Whites

No Controls -0.0008 -0.0007 -0.0013

(0.0001) (0.0002) (0.0001)

317278 136581 180697

Ind. Controls -0.0008 -0.0006 -0.0011

(0.0001) (0.0001) (0.0001)

317278 136581 180697

+ School Char. -0.0014 -0.001 -0.0019

(0.0002) (0.0002) (0.0002)

317278 136581 180697

+ Neighborhood Char. -0.0016 -0.0023 -0.0012

(0.0002) (0.0003) (0.0002)

317278 136581 180697

Table 1.9: First Stage

Note: The table presents the first-stage regression results, analyzing the effect of distance to a 4-year

college on college attendance in the first year post-graduation. Each row adds additional controls for individual

student characteristics, school characteristics, and neighborhood characteristics, as defined in section 1.3.

Standard errors are given in parentheses and are clustered at the school-cohort level.
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All Hispanic Whites

Wage Avg 8-10 10-12 12-14 14-16 8-10 10-12 12-14 14-16 8-10 10-12 12-14 14-16

No Controls 7.2078 3.1346 -0.6775 -3.4851 6.7659 4.1617 1.9655 1.4303 3.362 -3.329 -9.8946 -15.7508

(1.5094) (1.4327) (1.4515) (1.8191) (1.5053) (1.2071) (1.1988) (1.5494) (1.2177) (1.4513) (1.6605) (2.2097)

Obs. 245206 239307 233091 149498 103198 101284 99428 63271 142008 138023 133663 86227

Ind. Controls 4.9314 0.5937 -3.5101 -6.5359 5.8931 3.3429 1.2646 0.7636 4.1198 -2.1051 -8.4963 -14.2128

(1.0258) (0.946) (1.0365) (1.4211) (1.4953) (1.2306) (1.1954) (1.5131) (1.1556) (1.3397) (1.5095) (1.9959)

Obs. 245206 239307 233091 149498 103198 101284 99428 63271 142008 138023 133663 86227

+ School Char. -1.7881 -2.9513 -4.1313 -5.7861 -1.7207 -1.0352 -0.8267 -0.6872 -1.758 -4.7777 -7.6157 -11.5689

(1.2276) (1.2815) (1.3991) (1.8907) (1.384) (1.4014) (1.5289) (2.0046) (1.4649) (1.7076) (1.8884) (2.5429)

Obs. 245206 239307 233091 149498 103198 101284 99428 63271 142008 138023 133663 86227

+ Neighborhood Char. -0.504 -1.7866 -3.2171 -5.9322 -1.9984 -0.8557 -0.7281 -1.1675 1.6792 -0.7804 -3.5928 -8.7372

(1.6783) (1.9833) (2.2052) (2.8903) (2.4266) (2.8765) (3.114) (4.094) (2.1061) (2.4762) (2.7454) (3.6005)

Obs. 245206 239307 233091 149498 103198 101284 99428 63271 142008 138023 133663 86227

Table 1.10: Reduced Form

Note: The table presents the reduced-form results of regressing the distance to a 4-year college on earnings

for the periods 8-10, 10-12, and 14-16 years after high school graduation. Each row incorporates additional

controls for individual student characteristics, school characteristics, and neighborhood characteristics, as

defined in Section 1.3. For all periods, the data includes the three cohorts from 2003-2005. Specifically for

the 14-16 year period, only the 2003-2004 cohorts are used. Standard errors, provided in parentheses, are

clustered at the school-cohort level.
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Hispanics Coefficient

0 Baseline -0.0891 (0.0092)

1 + Neighborhood Char. -0.1317 (0.0046)

2 + Individual Chars. -0.0867 (0.0039)

3 + School Char. -0.0776 (0.0038)

4 + Test Score -0.0428 (0.0035)

Table 1.11: College Attendance Gap

Note: The table displays the coefficient for Hispanics from a regression analysis, where the dependent

variable is an indicator of first-time college attendance and the independent variable is the indicator of being

Hispanic. Each row adds additional controls. The first row represents the raw difference with a cohort fixed

effect. Subsequent rows include additional controls for individual student characteristics, school characteris-

tics, and neighborhood characteristics, as defined in Section 1.3. Standard errors are shown in parentheses

and are clustered at the school-cohort level.
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Grades X College R2 N

Wage 12-14 All 15.88 0.17 236092

(1.35)

Wage 12-14 Hispanics 12.59 0.15 100140

(1.89)

Wage 12-14 Whites 14.98 0.15 135952

(1.92)

Wage 14-16 All 16.16 0.18 151336

(1.8)

Wage 14-16 Hispanics 11.26 0.16 63734

(2.58)

Wage 14-16 Whites 15.56 0.16 87602

(2.61)

Wage 12-15 All 15.74 0.17 240692

(1.36)

Wage 12-15 Hispanics 12.74 0.15 101854

(1.91)

Wage 12-15 Whites 14.86 0.16 138838

(1.89)

Table 1.12: Relation Between Earnings and Grades

Note: The table displays the coefficient on the interaction term for Exit Exam Grades and College Atten-

dance in the first year after high school graduation. Standard errors, presented in parentheses, are clustered

at the school-cohort level.
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All Hispanics Whites

Ind Chr. 0.7 0.68 0.67

+ School Char. 0.72 0.71 0.71

+ Neighberhood Char. 0.75 0.75 0.74

+ Test Scores 0.78 0.8 0.77

N 321411 137551 183860

Figure 1.15: Area Under the Curve Analysis of Predicting College Attendance Decisions

Note: This table presents the Area Under The Curve (AUC) from a Probit model, predicting college

attendance in the first year after high school among graduates. Each row progressively includes additional

controls. The first row incorporates individual characteristics, the second includes school characteristics, the

fourth integrates neighborhood characteristics, and the final row additionally accounts for the test score factor.

For a detailed description of these controls, refer to section 1.3.

school matters? personal matters? career options? college options? high school rank? Top 10% rule?

Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites

Yes 0.65 0.63 0.26 0.23 0.56 0.45 0.61 0.58 0.48 0.54 0.26 0.33
(0.006) (0.007) (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) (0.007) (0.007) (0.006) (0.007)

No 0.21 0.19 0.42 0.36 0.31 0.33 0.29 0.26 0.40 0.33 0.55 0.45
(0.005) (0.006) (0.006) (0.007) (0.006) (0.007) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007)

Have not needed 0.13 0.17 0.31 0.41 0.12 0.22 0.09 0.15 0.10 0.12 0.17 0.21
(0.004) (0.006) (0.006) (0.007) (0.004) (0.006) (0.004) (0.005) (0.004) (0.005) (0.005) (0.006)

No response 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002)

Weighted Obs 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774
Unweighted Obs 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621

Table 1.13: Sources of Information

Note: This table displays responses from Senior and Sophomore cohorts participating in the Texas Higher

Education Opportunity Project regarding the dissemination of information by school counselors on the subjects

indicated in the header. It quantifies the proportions of Hispanic and White students who answered "Yes,"

"No," "Not needed," or did not respond. Standard errors are in parentheses.
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course selection personal problems school discipline jobs educational plans choosing a college college applications letters of rec. college essays financial aid job interviews

Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites

Three or more times 0.14 0.10 0.02 0.02 0.01 0.01 0.01 0.01 0.08 0.07 0.10 0.07 0.10 0.09 0.06 0.05 0.03 0.03 0.07 0.04 0.01 0.00

(0.005) (0.004) (0.002) (0.002) (0.001) (0.001) (0.002) (0.002) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.002) (0.002) (0.003) (0.003) (0.001) (0.001)

Twice 0.29 0.28 0.04 0.03 0.04 0.02 0.04 0.03 0.13 0.12 0.07 0.07 0.07 0.07 0.04 0.05 0.03 0.03 0.05 0.04 0.01 0.01

(0.006) (0.007) (0.002) (0.003) (0.002) (0.002) (0.003) (0.003) (0.004) (0.005) (0.003) (0.004) (0.003) (0.004) (0.002) (0.003) (0.002) (0.002) (0.003) (0.003) (0.001) (0.001)

Once 0.28 0.32 0.09 0.08 0.08 0.05 0.13 0.12 0.23 0.26 0.10 0.11 0.11 0.12 0.07 0.09 0.06 0.06 0.11 0.10 0.02 0.01

(0.006) (0.007) (0.004) (0.004) (0.004) (0.003) (0.004) (0.005) (0.006) (0.006) (0.004) (0.005) (0.004) (0.005) (0.003) (0.004) (0.003) (0.004) (0.004) (0.004) (0.002) (0.002)

Never 0.19 0.21 0.82 0.85 0.84 0.89 0.80 0.81 0.50 0.51 0.15 0.19 0.14 0.17 0.25 0.26 0.30 0.33 0.18 0.25 0.38 0.42

(0.005) (0.006) (0.005) (0.005) (0.005) (0.005) (0.005) (0.006) (0.007) (0.007) (0.005) (0.006) (0.005) (0.006) (0.006) (0.006) (0.006) (0.007) (0.005) (0.006) (0.006) (0.007)

No response 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Weighted Obs 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774 139644 212774

Unweighted Obs 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621 11114 12621

Table 1.14: Number of Interactions with School Councilor

Note: This table presents responses from Senior and Sophomore cohorts involved in the Texas Higher

Education Opportunity Project, detailing the frequency of their interactions with the school counselor in the

past year regarding the topics listed in the header. It quantifies the proportions of Hispanic and White students

who indicated their interactions as "Three or more times," "Twice," "Once," "Never," or did not respond.

Standard errors are provided in parentheses.
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Education Important Issues Job Relationships Finance

Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites Hispanic Whites

Often 0.42 43.00 0.39 47.00 0.39 37.00 0.36 28.00 0.27 43.00

(0.50) (0.36) (0.49) (0.37) (0.49) (0.31) (0.48) (0.22) (0.45) (0.34)

Sometimes 0.44 58.00 0.39 61.00 0.43 67.00 0.51 67.00 0.56 54.00

(0.50) (0.49) (0.49) (0.48) (0.50) (0.56) (0.51) (0.53) (0.50) (0.42)

Never 0.13 18.00 0.22 20.00 0.17 16.00 0.13 32.00 0.18 31.00

(0.34) (0.15) (0.42) (0.16) (0.38) (0.13) (0.34) (0.25) (0.39) (0.24)

Num Obs 58.00 144 54.00 155 56.00 141 55.00 123 49.00 140

Table 1.15: Number of Interactions with Parents

Note: This table presents data from the National Longitudinal Survey of Youth 1997 (NLSY97), focusing on

participants’ responses to questions regarding the frequency with which they discuss the topics listed in the

header with their mother or father. It illustrates the proportion of times participants reported discussing

these topics "often" with at least one parent, "sometimes" with at least one parent, or "never" with both

parents. Standard errors are provided in parentheses.
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Baseline Ability Ability + Parental Income Ability + Parental Income + Parental Educ Ability + Parental Income + Parental Educ+ Grades

R2 R2 −Adj. N R2 R2 −Adj. N R2 R2 −Adj. N R2 R2 −Adj. N R2 R2 −Adj. N

All 0.139 0.137 3568.0 0.153 0.150 2965.0 0.163 0.159 2092.0 0.158 0.151 1490.0 0.135 0.117 910.0

Whites 0.129 0.126 2554.0 0.137 0.134 2192.0 0.150 0.145 1578.0 0.147 0.138 1185.0 0.123 0.102 749.0

Hispanics 0.131 0.125 1014.0 0.183 0.174 773.0 0.204 0.189 514.0 0.234 0.202 305.0 0.289 0.205 161.0

Whites- No College 0.085 0.081 1404.0 0.106 0.100 1171.0 0.122 0.112 848.0 0.132 0.115 587.0 0.148 0.097 284.0

Whites - College 0.046 0.041 1150.0 0.057 0.050 1021.0 0.080 0.068 730.0 0.093 0.076 598.0 0.105 0.073 465.0

Hispanics- No College 0.083 0.076 757.0 0.116 0.105 569.0 0.145 0.124 382.0 0.180 0.135 215.0 0.300 0.172 104.0

Hispanics - College 0.048 0.025 257.0 0.113 0.081 204.0 0.104 0.038 132.0 0.177 0.061 90.0 0.250 -0.050 57.0

Table 1.16: NLSY97 - R2

Note: This table uses data from the National Longitudinal Survey of Youth 1997 (NLSY97), focusing on

students who were 16 and 17 years old in 1997, to show the prediction quality of their income in 2015 using

pre-decision variables. It presents the R2 and adjusted R2 values, from regression for All, Hispanics and

whites and by college attendance. The "Baseline" column accounts for social group, gender, birth year, and

college attendance. Subsequent columns incrementally introduce additional variables: the "Ability" columns

include ASVAB test results; the third column incorporates household income data; the fourth column integrates

information on parental education levels; and the final column incorporates high school grade information.
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Information Channel Returns Channel

1) µρ = 0 -0.077 (-97.116%) 0.156 (197.0%)

2) All Possible R2
1

LB, CF= 0.41 -0.121 (-152.532%) 0.2 (253.0%)
Whites Support, R2

1 = 0.01 [−0.9, 0.89]
Hispanics Support, R2

1 = 0.6 [0.62, 0.73]
UB, CF= 0.243 0.046 (57.807%) 0.033 (42.193%)
Whites Support, R2

1 = 0.75 [0.8, 0.87]
Hispanics Support, R2

1 = 0.1 [−0.9, 0.89]
3) R2

1 ≤ 0.3
LB, CF= 0.369 -0.079 (-100.15%) 0.159 (200.0%)
Whites Support, R2

1 = 0.01 [−0.9, 0.89]
Hispanics Support, R2

1 = 0.24 [−0.56, 0.89]
UB, CF= 0.342 -0.053 (-66.8%) 0.132 (167.0%)
Whites Support, R2

1 = 0.25 [−0.42, 0.89]
Hispanics Support, R2

1 = 0.1 [−0.9, 0.89]
4) R2

1 ≤ 0.5
LB, CF= 0.378 -0.089 (-112.35%) 0.169 (212.0%)
Whites Support, R2

1 = 0.01 [−0.9, 0.89]
Hispanics Support, R2

1 = 0.34 [−0.27, 0.89]
UB, CF= 0.325 -0.036 (-45.38%) 0.115 (145.0%)
Whites Support, R2

1 = 0.41 [−0.06, 0.89]
Hispanics Support, R2

1 = 0.1 [−0.9, 0.89]

5) Unrestricted Mean Beliefs
LB, CF= 0.456 -0.167 (-209.918%) 0.246 (310.0%)
Whites µρ 0.89
Hispanics µρ -0.9
UB, CF= 0.189 0.1 (126.0%) -0.021 (-25.952%)
Whites µρ -0.9
Hispanics µρ 0.89

Table 1.17: Main Decomposition - Extended
Note: This table provides additional information on the support and R2

1 that achieve the bounds in Table
1.4. Row 1 shows our main results, the decomposition of the choice gap into the information channel and
returns channel. Rows 2-4 show the upper bound (UB) and lower bound (LB) of the information channel
under the different assumptions on the quality of information individuals have on their college earnings (R2

1),
as discussed in the main text. In each row, the table shows the support of ρ’s that are induced by the R2

1 for
whites and Hispanics for both the UB and LB. The bounds on the Counterfactual (CF) share of whites who
would go to college if they had the information quality of Hispanics are shown for each case. Row 5 shows the
lower and upper bounds of the information channel and returns channel in the case where we only restrict
the mean prior beliefs to lie on the feasible set ρ, without restriction on R2

1. For both the LB and UB, the
table shows the mean µρ for each group that attained these bounds.
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1.10 Identification

1.10.1 Proof of Proposition 1

In this section we prove proposition 1 in the main text text. We note that that the proof here is for

the empircal specifciation, introduced in section 1.2.5, but the proof can trivially be extended to the

non-parametric case outlined in 1.10.2.

Proposition 1 Fix R2
1. A ρ is feasible from the high school graduate perspective if and only if

it is feasible from the Econometrician’s perspective.

Before proving the main proposition, we first show the following lemma. Let R2
1 be fixed. Consider

the covariance matrix CE(ρ) associated with the random variables U1, U0, E[U1|S], and E[U0|S].

The matrix CE(ρ) is defined as:

CE(ρ) =



σ2U1
ρσU1

σU0
σU1,E[U1|S] σU1,E[U0|S]

ρσU0
U1 σ2U0

σU0,E[U1|S] σU0,E[U0|S]

σE[U1|S],U1
σE[U1|S],U0

σ2E[U1|S] σE[U1|S],E[U0|S]

σE[U0|S],U1
σE[U0|S],U0

σE[U1|S],E[U0|S] σ2E[U0|S]


, (1.7)

where σ2X denotes the variance of X, σX,Y denotes the covariance between X and Y , and ρ is the

correlation coefficient between U1 and U0. All elements of CE(ρ) are identified except for ρ.

Proof. The identification of σ1 and σ0, Var(E[U1 − U0|S]), Cov(Ud, E[U1 − U0|S]) are shown in the

main text. We proceed in showing identification of the other components. Identification of σ2
E[U1|S]
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stems from the equality σ2
E[U1|S] = R2

1σ
2
1. Then, notice that

Cov(U1,E[U1 − U0|S]) = Cov(U1,E[U1|S])− Cov(U1,E[U0|S])

= σ21R
2
1 − Cov(U1, E[U0|S])

where the second equality follows from the fact that Cov(U1,E[U1|S]) = Var(E[U1|S]) = σ21R
2
1. We

therefore can identify Cov(U1, E[U0|S]). Next, we show that Cov(E[U1|S], E[U0|S]) is identified.

Notice that agents in the model utilize identical signals in predicting both U1 and U0 and that within

the Gaussian model, the posterior mean is a linear function of the signals, which leads us to the

following:

Cov(U1,E[U0|S]) = Cov(E[U1|S] + ν,E[U0|S]) = Cov(E[U1|S],E[U0|S]),

where ν is the the residual from projecting U1 on S and satisfy Cov(ν,S) = 0 Next, to identify R2
0,

notice that we can write the identified beliefs variance, σ2E , as:

σ2E = Var(E[U1 − U0|S])

= Var(E[U1|S]) + Var(E[U0|S])− 2Cov(E[U1|S], E[U0|S])

= σ21R
2
1 + σ20R

2
0 − 2Cov(E[U1|S], E[U0|S]).

which also allows us to identify σ2
E[U0|S]. Next, using an equivalent argument to the identification

of Cov(U1, E[U0|S), and R2
0, we identify Cov(U0, E[U1|S]). Finally to identify Cov(Ud,E[Ud|S]) we
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have the following equality:

Cov(Ud,E[Ud|S]) = Var(E[Ud|S]) = σ2dR
2
d.

which concludes the proof.

We now proceed to prove proposition 1.

Proof. Fix ρ, and let CS(ρ) be the implied covariance matrix of the signal vector S and potential

earnings U1 and U0

CS(ρ) =



σS1,S1 · · · σS1,Sn σS1,U1
σS1,U0

... . . . ...
...

...

σSn,S1 · · · σSn,Sn σSn,U1
σSn,U0

σU1,S1 · · · σU1,Sn σ21 ρσ0σ1

σU0,S1 · · · σU0,Sn ρσ0σ1 σ20


,

and let CE(ρ) be the covariance matrix between marginal beliefs, E[U1|s], E[U0|s] and potential

earnings, U1 and U0

CE(ρ) =



σ2E1
σE1,E0

σE1,U1
σE1,U0

σE0,E1
σ1E0

σE0,U1
σE0,U0

σU1,E1
σU1,E0

σ21 ρσ1σ0

σU0,E1
σU0,E0

ρσ1σ0 σ20


.

We next demonstrate that CS(ρ) is positive semi-definite (PSD) if and only if CE(ρ) is PSD. Without

loss of generality, we focus on scenarios where signals are independent and possess unit variance.

This approach is without loss, as for any feasible ρ, we can always residualize and rescale the signals,

thereby maintaining their information content unchanged. We start by showing that if CE(ρ) is PSD,
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then matrix CS(ρ) is also PSD. We consider the contrapositive case and show that if matrix CS(ρ)

is not PSD, then CE(ρ) is not PSD. Assume CS(ρ) not PSD. Then, there exists a vector t such that

t′CS(ρ)t < 0. Denote tsi the value in vector t that corresponds to signal si. and by t1 and t0 the

value in vector t that correspond to U1 and U0. Using the fact that signals are uncorrelated, we can

write

t′CS(ρ)t =
∑
i

t2si + t1

(∑
σsi,1tsi

)
+ t0

(∑
σsi,0tsi

)
+ σ21t

2
1 + σ20t

2
0 + 2ρσ0σ1t1t0 < 0 (1.8)

We now show that there must exists a vector k, such that k′CE(ρ)k < 0. Denote kEd
, k1 and k0,

similar to before, then

k′CE(ρ)k = 2k1(σ
2
E1

kE1
+ σE1,E0

kE0
)

+ 2k0(σ
2
E0

kE0
+ σE1,E0

kE1
)

+ (2σ1,0kE1
kE0

+ σE1
k2E1

+ σE0
k2E0

)

+ σ21k
2
1 + σ20k

2
0 + 2ρσ1σ0k1k0

As we restricted attention to the case where signals are uncorrelated and unit variance, and the con-

ditional distribution of Gaussian model is linear function of signals, we can rewrite these expressions
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as
k′CE(ρ)k = 2k1(kE1

∑
si

σ2si,1 + kE0

∑
si

σsi,1σsi,0)

+ 2k0(kE0

∑
si

σ2si,0 + kE1

∑
si

σsi,1σsi,0)

+ (2kE1
kE0

∑
si

σsi,1σsi,0) + k2E1

∑
si

σ2si,1 + k2E0

∑
si

σ2si,0)

+ σ21k
2
1 + σ20k

2
0 + 2ρσ1σ0k1k0

= 2k1(
∑
si

σsi,1(σsi,1kE1
+ σsi,0kE0

))

+ 2k0(
∑
si

σsi,0(σsi,0kE0
+ σsi,1kE1

))

+
∑
si

(σsi,1kE1
+ σsi,0kE0

)2

+ σ21k
2
1 + σ20k

2
0 + 2ρσ1σ0k1k0

We now show how to find values of the vector k that makes this expression negative. We set k1 = t1

and k0 = t0. We use the additional two values of k to equate the remaining values such that

k′CE(ρ)k = t′CS(ρ)t < 0. To do so, we notice we have two equation for two parameters

2
∑
si

(σsi,1kE1
+ σsi,0kE0

))(k1σsi,1 + k0σsi,0) =
∑
si

tsi(k1σsi,1 + k0σsi,0) (1.9)

and ∑
si

(σsi,1kE1
+ σsi,0kE0

)2 =
∑
i

t2si (1.10)
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Using the first equation, we can then solve for kE1
in terms of known values and kE0

kE1
=

1
2

∑
si
tsi(k1σsi,1 + k0σsi,0)− kE0

(k1σsi,1 + k0σsi,0)∑
si
σsi,1

plug this back into equation 1.10, we see that we have continuous function of kE0
. This function

goes from from 0 to infinity, the right hand side is a finite and positive expression, then by the

Intermediate value theorem there exists a solution, which implies that there exists a vector for which

k′Bk < 0 and B is not PSD. To show the reverse, we can follow the steps in reverse, and show that

that if CE(ρ) is not PSD then CS(ρ) is not PSD as well, which concludes the proof.

1.10.2 Nonparametric Identification of the Choice Model

We explore the non-parametric identification of choices. First, we identify the distribution of struc-

tural components, α1 and α0, by leveraging panel data, an instrumental variable, and specific wage

structure assumptions. Next, we establish the identification of both the cost function and the beliefs

distribution. While panel data aids in identifying α1 and α0. This step can be skipped if one assumes

that outcomes are observed without measurement error.

In our analysis, we work under the assumption that the researcher has access to a random,

independently and identically distributed sample of observations, each denoted by (Ya,i, Di, Xi, Zi).

All analyses are conditional on the covariates vector X, so we omit the X notation for simplicity.
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1.10.2.1 Identification of P (α1,E[α1−α0|S]), P (α0,E[α1−α0|S]) and the Threshold

Function

We impose the following assumptions on the wage data generating Process. Wages are set according

to

Yi,a = Di(α1 + ϵ1i,a) + (1−Di)(α0 + ϵ0i,a))

where Yi,a is individual i’s income at age a, Di is a dummy variable indicating whether the HG i

attended four years college or not. One can think of αd as individual fixed effect, if that individual

goes to college or not. We further impose the following assumptions on the wage process

Assumption 1. (1) for all a we have E[ϵDi,a|αD] = 0 (2) α1, α0 ⊥⊥ ϵDi,a and (3) there exist at least

two periods aD, a′D for each D ∈ {0, 1} such that ϵDi,a ⊥⊥ ϵDi,a′

Denote by P (Z) = E[D = 1|Z] the propensity score conditional on Z. We then employ the

following assumption

Assumption 2. The characteristic functions of the conditional distribution α1|D = 1, P (Z) = p,

α0|D = 1, P (Z) = p, ϵDi,a|D = 1, P (Z) = p and ϵDi,a′|D = 1, P (Z) = p are non vanishing

The first part of Assumption 1 is standard and implies that any constant is absorbed into αD,

ensuring that deviations from the structural component are independent of the fixed effects. The

second restriction mandates the existence of at least two periods in which the shocks are mutually

independent, given the covariates X. While this condition is restrictive, it accommodates complex

correlation structures, such as finite moving averages or other forms of multi-period correlations.

The Assumption 2 stipulates that the characteristic functions of the conditional distributions for

α1|D = 1, P (Z) = p, α0|D = 1, P (Z) = p, ϵDi,a|D = 1, P (Z) = p, and ϵDi,a′ |D = 1, P (Z) = p are
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non-vanishing12. This is a standard assumption that is used for nonparametric identification of factor

models and assures us that we can use the characteristic functions to back-out the distribution of αd.

Next, we impose restrictions on the agent information set. In the spirit of rational expectations,

we assume that there are two parts to wages; a structural component, on which individuals have

information on, and an unpredictable shock component that is not known to the high school gradutes.

Assumption 3 (Information Restriction). The signals individuals obtain do not contain any infor-

mation on the non structural part of the wage, ϵ1i,a, ϵ
0
0.

Si ⊥⊥ ϵ1i,a, ϵ
0
i,a|α1, α0

This implies that individuals can only receive information on the structural component of the

wage, but may not have information on time varying shocks. Finally we impose the following as-

sumptions on the instrument Z

Assumption 4 (Instrument Restrictions). We assume that the instrument satisfies the following

conditions

1. ϵ1i,a, ϵ
0
i,a, α1, α0 ⊥⊥ Z

2. S ⊥⊥ Z|α1, α0

3. Z is continuously distributed on Z ⊆ R

4. E[α1 − α0|s] continuously distributed

5. c(Z) is differentiable with respect to z and covers the entire support of E[α1 − α0|S]

12. The non vanishing assumption can be further relaxed, as shown in Evdokimov and White (2012)
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The assumptions are akin to standard Instrumental Variable (IV) assumptions (Heckman and

Vytlacil (2005)), but they incorporate additional structure through the modeling of the choice equa-

tion. The first assumption establishes the instrument’s independence from the outcome variables. The

second dictates that information is independent of the instrument, conditioned on the structural com-

ponents. Notably, these first two assumptions collectively imply that Y1, Y0, E[α1(ti)−α0(ti)|S] ⊥⊥ Z,

aligning with standard IV assumptions where the selection variable is uncorrelated with the instru-

ment. The final part of Assumption 4 is a technical requirement ensuring that we can recover the

cost function by monitoring the derivative, as demonstrated in the proof.

Denote E[α1 − α0|S] = E. We show the following proposition.

Proposition 2. Under assumptions (1)-(4), P (α1,E) ,P (α0,E) and the cost function c(z) are iden-

tified

Proof. Let a, a′ be two periods such that ϵDi,a ⊥⊥ ϵDi,a. We start by showing how to identify P(αd|E)

First, using assumption 1, 3, and 4 we have that ϵDi,a ⊥⊥ α1|p(Z) = p,D = 1 as

P(ϵDi,a, α1|p(Z) = p,D = 1) = P(ϵDi,a, α1|p(Z) = p,E ≥ c(z))

= P(ϵDi,a|α1, p(Z) = p,E ≥ c(z))P(α1|p(Z) = p,E ≥ c(z))

= P(ϵDi,a|p(Z) = p,E ≥ c(z))P(α1|p(Z) = p,E ≥ c(z))

= P(ϵDi,a|p(Z) = p,D = 1)P(α1|p(Z) = p,D = 1)

where the first equality stems from the choice model, the second stems from Bayes rule, and the third

equality is due to the contraction rule and the decomposition rule of conditional Independence. We

have an equivalent result for α0 and ϵi,a′ . Last, notice that as ϵi,a ⊥⊥ ϵi,a′ , ϵi,a, ϵi,a′ ⊥⊥ mR(s) and

ϵi,a, ϵi,a′ ⊥⊥ Z we have that ϵi,a ⊥⊥ ϵi,a′|p(Z) = p,D = 1
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Therefore ϵDi,a and ϵDi,a′ and αD are mutually independent, conditional on D and P , and we can now

utilize Kotlarski’s Lemma (1967) to identify the conditional distribution of α1 and α0. We first show

how to identify the conditional distribution of α1. Let Ψ(ya, ya′) be the conditional characteristic

function of (Yi,a, Yi,a′) given (P (z) = p,D = d). Let Ψα1(t),Ψϵa(t) and Ψϵ′a
(t) be the conditional

characteristic functions of α1, ϵi,a, ϵi,a′ , given (P (z) = p,D = d), then we can show that (Rao (1992),

page 21 and Gilraine et al. (2020))

logΨα1(t) = iE[α1|D = 1, P (Z) = p]t+

∫ t

0

∂

∂ya

(
log

Ψ(ya, ya′)

Ψ(ya, 0)Ψ(0, ya′)

)
ya=0

dya′

Noticing that

∂

∂ya

(
log

Ψ(ya, ya′)

Ψ(ya, 0)Ψ(0, ya′)

)
ya=0

=

∂Ψ(0,ya′)
∂ya

Ψ(0, ya′)
− iE[Yi,a|D = 1, P (Z) = p]t

and that by assumptions 1 and 3 we have iE[Yi,a|D = 1, P (Z) = p]t = iE[α1|D = 1, P (Z) = p] we

then get

log Ψα1(t) =

∫ t

0

∂Ψ(0,ya′)
∂ya

Ψ(0, ya′)
dya′

as the characteristic function fully defines the distribution and Ψ(ya, ya′) is observed in the data,

we have identified P(α1|D = 1, P (z) = p). Similar argument shows that we can identify P(α0|D =

0, P (z) = p).

Next, denote by Fα1(·|D = 1, P (Z) = p) the conditional CDF of α1. Denote by V = FE(E) the

quantile of the beliefs in the beliefs distribution. Then following the arguments in Carneiro and Lee
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(2009) we have that for all k on the support of α1 we have that

Fα1(k|P (z), D = 1) = E[1{α1 ≤ k}|P (Z) = p,D = 1] = E[1{α1 ≤ k}|P (Z) = p, V > p(Z)]

=
1

p

∫ 1

1−p
E[1{α1 ≤ k}|V = v]dv

rewriting the equation gives us

pE[1{α1 ≤ k}|P (Z) = p,D = 1] =

∫ 1

1−p
E[1{α1 ≤ k}|V = v]f(v)dv

Using assumption 4 we can take derivative from both sides, with respect to p, and get

E[1{α1 ≤ k}|V = 1− p] = E[1{α1 ≤ k}|P (Z) = p,D = 1] + p
E[1{α1 ≤ k}|P (Z) = p,D = 1]

∂p

Therefore we have that P(α1|V ) is identified. Following similar steps we have that P(α0|V ) is

also identified

E[1{α0 ≤ k}|V = 1− p] = E[1{α0 ≤ k}|P (Z) = p,D = 0]− (1− p)
E[1{α0 ≤ k}|P (Z) = p,D = 0]

∂p

Next, observe that we can construct the probabilities P (α1|E) and P (α0|E) using the law of

iterated expectations we have

e = E[α1 − α0|E = e] = E[α1 − α0|FE(E) = V ] =

∫
α1P (α1|V )dα1 −

∫
α0P (α0|V )dα0. (1.11)

Therefore we can identify the inverse, F−1
E (V ), and consequently the CDF of beliefs, FE(e). As

the CDF is strictly increasing and therefore invertible, by assumption 4 we can also identify P (α1|E)
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and P (α0|E) as needed. Therefore we’ve identified the joint P (α1,E) and P (α0,E). Finally, to

identify the cost function, observe that

P (z) = Pr(E > c(z)) = 1−F (c(z)) =⇒ F−1
E (1−P (z)) = F−1

E (F (c(z))) =⇒ F−1
E (1−P (z)) = c(z).

Finally, in order to identify the cost function, we notice that

P (z) = P(E > c(z)) = 1− F (c(z)) =⇒ F−1
E (1− P (z)) = F−1

E (F (c(z))) =⇒ F−1
E (1− P (z)) = c(z)

which concludes the proof.

1.10.2.2 A Testable Implication

As discussed in Canay et al. (2020) and in Hull (2021), the choice model implies that the Marginal

Treatment effect (Heckman and Vytlacil (2005)) estimated using the instruments, should be decreas-

ing. To see that notice that we use 1.11 to identify the CDF of V , therefore, if we get that this is

not increasing function of v, this implies that our model is mispecificed. In the Gaussian model we

estimate in the text this amounts to requiring that

σE = γ1c − γ0c ≥ 0,

as σE standard error.
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1.11 Estimation

We now turn to describe how we estimate the Gaussian choice model. We first start by estimating

α1 and α0 by averaging wages over periods of time

α̂di =
1

T − t

T∑
a=t

Y d
i,a

Then, given our α̂1 and α̂0, we estimate the model in three steps. In the first step, we estimate

the propensity score using a Probit model, the covariates X, and the instrument Z. In the second

step, we use the Heckman control function approach (Heckman (1979)) to estimate β1 and β0. As

discussed in the previous section, we obtain the standard deviation of beliefs from the coefficients

on the control function. Next, we show how we can estimate the cost function. Using equation

1.4, we see that the Probit regression coefficients, standardized by the standard deviation of beliefs,

are impacted by both beliefs and costs. To adjust for this, we rescale the coefficients and add the

conditional expectations, estimated using the control function approach:

ĉ(x, z) = σ̂η × (zb̂z + xb̂x) + x(β̂1 − β̂0).

Finally, to get σ1 and σ0, we solve the maximum likelihood function as shown in equation 1.5.

To our measure of information contribution to the gap we simply calculate the R̂2, as discussed

in 1.2.3 for both groups. We then estimate the information channel as

P̂ (D = 1|b, x)︸ ︷︷ ︸
Observed

− 1

N

∑
i

Φ

x(β̂1 − β̂0)− ĉ(xi, zi)√
σ̂2RR̂2

a


︸ ︷︷ ︸

Counterfactual

,
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where the first part is just the observed share and the second part is the counterfactual share of

individuals who choose to attend, if they had the same R2 as group a. To estimate this part we

simply average over Φ

(
x(β̂1−β̂0)−ĉ(xi,zi)√

σ̂2RR̂2
a

)
for all the observation of group b. Estimation of the

composition channel is done the same.

1.12 Another Measure for Information Differences - Equating

Information Structure Across Groups

1.12.1 Decomposition - The Role of Differences in Information Structures

In the main text we considered two ways to measure the role of information frictions on choice.

We now consider an additional one that aims to equate the information structure across groups.

Information structure is a tuple S = (P (s|R), S) containing a set of conditional density function,

that describes the probability of observing signal s, for an individual with return R, and the support

of these signals S. Information structures are widely used in economics and captures the mapping

between the the state variables and beliefs (Bergemann and Morris (2016),Bergemann and Morris

(2019)). In the following exercise we want to understand how the fact that different groups have

access to different information structures, affect the choice gap. We therefore consider equating the

information structure across the two groups. We then preform similar decomposition exercise as we

did in section 1.2.4. In this decomposition exercise we decompose the choice gap to differences in

choice that are attributed to differences arising from differences in the information structure and
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differences in the returns distribution:

P (D = 1|Group b)− P (D = 1|Group a)︸ ︷︷ ︸
Total Effect

=

P (D = 1|Group b)− P (D = 1|Group b with information structure of Group a)︸ ︷︷ ︸
Information Channel

+P (D = 1|Group b with information structure of Group a)− P (D = 1|Group a)︸ ︷︷ ︸
Composition Channel

=

∫
R×c

P(Eb,b(s) ≥ c|R, c, b)πb(R, c)dRdc−
∫
R×c

P(Ea,b(s) ≥ c|R, c, a)πb(R, c)dRdc︸ ︷︷ ︸
Information Channel

+

∫
R×c

P(Ea,b(s) ≥ c|R, c, a)πb(R, c)−
∫
R×c

P(Ea,a(s) ≥ c|R, a)πa(R, c)dRdc︸ ︷︷ ︸
Composition Channel

,

where

Ea,a(s) =

∫
R
R P (s|R, a)× πa(R)∫

R̃ P (s|R̃, a)× πa(R̃)dR̃
dR

is simply the beliefs of group b, when they have access to information of group b and prior of group

b,13 and

Ea,b(s) =

∫
R̃
R̃

Information︷ ︸︸ ︷
P (s|R̃, a) ×

earnings︷ ︸︸ ︷
πb(R̃)∫

P (s|R̃, a)πb(R̃)dR̃
dR̃

is a counterfactual beliefs for group of members b, is they have the information structure of group a,

but returns distribution of group b.

The information channel measures the extent to which the gap in choices would change if both

groups had access to the same information structure as group a. Disparities in information structure

13. Remember that we assume rational expectations, hence the prior is the true distribution of returns
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can arise from various environmental factors affecting the decision-maker. For instance, if members

of group b typically have more academically inclined parents than those in group a, they are likely

to receive more accurate information about the benefits of college for an individual, thus providing

clearer signals about potential earnings post-college. Additionally, if the social networks of group

b members are closely connected to a specific industry that requires certain information, this could

create differences in individuals’ abilities to predict returns. Therefore, the information channel

quantifies the extent of the gap in choices that is attributable to individuals in the two groups

receiving different signals, despite having equal potential returns.

It’s essential to note two things. First, the information structure captures not only ’measurement’

type signals, of the form Signal = True value + Measurement Error, as commonly seen in the liter-

ature, but also incorporates more sophisticated cases, that incorporate what individuals know and

understand about the data-generating process. Second, in our decomposition exercise, we impose

that individuals update their beliefs correctly. They use the new signals and their correct priors to

adjust their understanding. In other words, we examine how they would update their beliefs knowing

that the distribution of signals they receive comes from a new source.

The following examples demonstrate two points. First, how information structure incorporates

the underlying data generating process that govern the returns, and is not simply a "measurement

error" type signals. Second, the example shows that what’s important is not equating the access to

signals, but equating the meaning that these signals have, captured by the information structure.

Example 1.12.1 (Occupation and Earnings). The informational content of the signals individuals

might be more dependent on the structure of the economy itself. For instance, consider the case

where the earnings of non-college-goers are zero for both members of groups a and b, and there are

two occupations in the economy: lawyers and accountants. Both lawyers and accountants are paid
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either a high or low wage, H > 0 > L, with equal probability. Prior to deciding to go to college,

individuals receive an informative signal on their potential returns if they end up being lawyers.

Denote these signals as H̃law and L̃law. The distributions of occupations, earnings, and the signal

for each group are given below.

Group b Group a

H L

Lawyer
H̃law

6
20 × 5

6
6
20 × 1

6

L̃law
6
20 × 1

6
6
20 × 5

6

Accountant
H̃law

4
20 × 1

2
4
20 × 1

2

L̃law
4
20 × 1

2
4
20 × 1

2

H L

Lawyer
H̃law

4
20 × 5

6
4
20 × 1

6

L̃law
4
20 × 1

6
4
20 × 5

6

Accountant
H̃law

6
20 × 1

2
6
20 × 1

2

L̃law
6
20 × 1

2
6
20 × 1

2

Table 1.18: Demonstration of Information Structure

In this economy, the share of high earners and low earners is 1
2 for both groups. The share

of individuals in both groups with signals H̃law and L̃law is also 1
2 . Moreover, for both groups,

individuals who end up as lawyers and received a high signal have a 5
6 probability of having high

earnings. The only difference between the two groups is the share of individuals who end up being

lawyers, versus those ending up being accountants. This difference implies that the signals each

individual from each group receives have different information content, generating differences in the
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distribution of beliefs. For members of group b, the information structure is given by

P (H̃|H) = P (H̃|Lawyer, H)P (Lawyer|H) + P (H̃|Acc, H)P (Acc|H) =
7

10
(1.12)

P (H̃|L) = P (H̃|Lawyer, L)P (Lawyer|L) + P (H̃|Acc, L)P (Acc|L) = 3

10
(1.13)

Similarly, for members from group a we have

P (H̃|H) = P (H̃|Lawyer, H)P (Lawyer|H) + P (H̃|Acc, H)P (Acc|H) =
19

30
(1.14)

P (H̃|L) = P (H̃|Lawyer, L)P (Lawyer|L) + P (H̃|Acc, L)P (Acc|L) = 11

30
(1.15)

which implies that even when the marginal distribution of the signal and returns is the same, the

implied beliefs given the same signal are different

mR⟨b,b⟩(H̃) = H × 7

10
+ L× 3

10
(1.16)

mR⟨a,a⟩(H̃) = H × 19

30
+ L× 11

30
(1.17)

Therefore, although the marginal distribution of signals and returns is the same in the economy,

the information structure is different, and the same signal would be interpreted differently in both

cases. What does it mean to switch the information structure between group a and group b in

this environment? In the thought experiment we perform here, we ask what would be the observed

behavior if we provided a signal with the same informational content on the returns as the other group.

In this sense, our decomposition approach is "reduced form" in spirit, as we do not describe what

drives the differences in information. Instead, we explore the ways in which systemic differences in

information on earnings are provided to individuals and how they affect the observed gaps in behavior.
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These differences can arise from various channels, some due to the way the economy is structured,

others might be due to differences in individuals, such as the ability to process information or the

financial ability to acquire information.

The following example shows that the same component can play a role as both a piece of infor-

mation and part of the data generating process of the outcomes.

Example 1.12.2 (Knowledge of some structural components). In some cases, individuals may know

specific parts of the data-generating process of earnings. For example, assume that the earnings are

determined by a function with a known component to the decision-maker, x, and some unknown

component νd:

α1 = m1(x, ν1) (1.18)

α0 = m0(x, ν0) (1.19)

Here, x could represent known ability, latent cost of effort, or parental connections in the labor

market. In this case, the information structure is simply the probability of observing x, given the

earnings P (x|α1, α0). This assumption is common in economic models where we believe that some

variables affecting the outcomes are known to the decision-makers while making choices, and they

use them to form beliefs about the outcomes. Therefore, in our thought experiment of switching

the information structure between groups, we separate the two roles of x. Specifically, we fix the

distribution of x in the population, thereby keeping the distribution of earnings fixed. But we ask

what would happen if the agent did not know x, but instead had access to a similar information

environment as group a, and how that would change choice patterns.

We now proceed to explore the second component of decomposition - the composition channel.
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We can express this channel as:

P⟨a|b⟩ − P⟨a|a⟩︸ ︷︷ ︸
Composition Channel

=

∫
α1,α0

P (mR⟨a,b⟩(s) ≥ 0|R, a)
π(R|b)
π(R|a)

π(R|a) (1.20)

−
∫
R
P (mR⟨a,a⟩(s) ≥ 0|R, a)π(R|a)dα1dα0 (1.21)

In the composition channel, we maintain the information structure of group a, yet re-weight the

population of group a to align with the distribution of group b. This thought experiment explores

how the share of college attenders from group a would change if we modified the composition of the

group, so that their distribution of earnings would align with that of group b. In this counterfactual,

we are not breaking the connection between information and earnings, as we did in example 2.3,

but merely shifting the proportion of individuals at certain earnings levels, ensuring that they take

the change into account while forming their beliefs. As we alter the distribution of earnings, while

keeping the information structure fixed, we also modify the marginal distribution of signals within

the population. This means that if, for instance, we increased the proportion of potential students

with high R, we are also enlarging the population’s share of those receiving signals tied to higher

earnings. Consequently, maintaining the information structure fixed means that we are transforming

the distribution of signals in the population, but keep it’s meaning.

Example 1.12.3 (Knowledge of some structural components-Continued). In this example, the com-

position channel involves adjusting the share of members in group a with specific earnings levels,

to align with those from group b. It’s important to note that we are not necessarily equalizing the

share of variable x between the two groups. If x represents, for example, ability, and the function

m(., ν) varies between groups, our hypothetical scenario doesn’t balance the share of high and low
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ability across both groups. If m differs, matching the share of high and low ability could result in

significantly different distributions. Since the HGs are not concerned with ability itself but as an

indicator of their returns, aligning individual parts across groups doesn’t provide insight into how

the distribution of outcomes influences choice.

Similar to our discussion in the main text, it’s crucial to understand that our analysis offers a

partial equilibrium perspective on changing information structure. The information structure in many

cases changes endogenously.For example, individuals may exert effort to generate better information

in response to the distribution of returns. It also may be that differences in information could

arise due to selection and equilibrium effects. For example, if information influences labor market

selection patterns, and employers respond to these patterns, our counterfactuals won’t address this.

Our analysis assumes that the existing information structure is a given and demonstrates further

details in the appendix.
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1.12.1.1 Gaussian Scalar Interpretation

In the scalar Gaussian case we can write the decomposition explicitly as

P (D = 1|b)− P (D = 1|a) =
∫
X
Φ

µR,b,x − cb(x)√
σ4R,b,x

σ2R,b,x+σ2ϵ,b,x

 dFb(x)−
∫
X
Φ

µR,b,x − cb(x)√
σ4R,b,x

σ2R,b,x+σ2ϵ,a,x

 dFb(x)

︸ ︷︷ ︸
Information Channel

+

∫
X
Φ

µR,b,x − cb(x)√
σ4R,b,x

σ2R,b,x+σ2ϵ,a,x

 dFb(x)−
∫
c
Φ

µR,a,x − ca(x)√
σ4R,a,x

σ2R,a,x+σ2ϵ,a,x

 dFa(x)

︸ ︷︷ ︸
Composition Channel

Therefore, in the scalar Gaussian case, equating information structure across two groups essentially

means equalizing the level of uncertainty surrounding true returns.

Remark. Notice that in our discussion here we fixed the information structure, as signals conditional

on returns. We did this, as returns are what agents care about, and for the decision process they are

indifferent between two pairs of earnings with the same difference. Therefore from the perspective

of the agents, the payoff relevant value for the decision is the difference. Another approach can

be to define the information structure on earnings. This would imply a different interpretation of

information.

In the following parts we discuss how this decomposition measure can identified under different

assumption on the data or the type of fundamentals and information.
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1.12.2 Nonparametric point Identification of the Decomposition Components

Fix two groups g ∈ {a, b}. In the subsequent sections, we demonstrate how to identify the quantity

P⟨a,b⟩ =
∫
R×c

P(Ea,b(s) ≥ c|R, c, a)πb(R, c) (1.22)

required for decomposition. As outlined in Section 1.10.2, the primary challenge lies in constructing

the distribution of posterior means that incorporates both the counterfactual distribution of signals

and returns. This must be achieved despite having access only to the conditional expectations

distribution, rather than the complete information structure available to agents. We first establish

conditions for point identification, then extend our analysis to more general cases for identifying this

quantity. Throughout the analysis we assume that π(c) is identified, and implicitly condition on the

cost.

1.12.2.1 Point Identification Under Increasing Beliefs Function

We start by showing that if we are willing to assume that the information is scalar, and that beliefs

are increasing function of that signal, then the quantity in 1.22 is identified.

Proposition 3. Let E[R|s] be a strictly increasing function of s, then equation 3 is identified.

Proof. The claim follows trivially from the fact that a strictly monotonic transformation is merely

a renaming of the signal but does not alter its information content. Therefore, individuals update

beliefs in the same manner, using either the information structure’s likelihood functions P (s|R) with

support S or P (E[R|s]|R) with support given by the posterior means, for any prior. To illustrate
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this in our continuous density of signals case, we have

Ea,b(s) =

∫
R Pa(s|R)πb(R)∫

Pa(s|R)πb(R)dR
dR =

∫
R

∣∣∣∣ 1
∂Ea
∂s

∣∣∣∣Pa(Ea|R)πb(R)∣∣∣∣ 1
∂Ea
∂s

∣∣∣∣ ∫ Pa(Ea|R)πb(R)dR
dR = E[R|Ea(s); b]

where Ea denotes the beliefs of group a, with their information structure and prior, and E[R|Ea(s); b]

is the belief induced by observing the signal Ea(s) and prior πb. As demonstrated in section 1.10.2,

for a given correlation between α1 and α0, we can identify the joint distribution of E[R|s] and R for

groups a and b. Therefore, as each signal corresponds to a unique belief, we can calculate the implied

counterfactual beliefs distribution directly from the identified distribution of beliefs. Consequently,

P (Ea,b(s)|R) is identified, and equation 1.22 is trivially identified.

Under what conditions can we expect the conditional expectation to be a strictly increasing

function of returns? A sufficient condition for this is that the joint distribution of R and s satisfies

the Monotone Likelihood Ratio Property (MLRP). The following corollary formalizes this claim. Let

P (R, s) satisfy the strict Monotone Likelihood Ratio Property,

∀s > s′, x > x′ P (R|s)P (R′|s′) > P (R′|s)P (R|s′) (1.23)

then the quantity in equation 3 is identified.

Proof. The corollary follows from the preceding proposition and the fact that MLRP implies First-

Order Stochastic Dominance,

Fs(R) ≤ Fs′(R) (1.24)
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which implies that the conditional expectation is strictly increasing,

E[R|s] =
∫
R
(1− Fs(R)) dR >

∫
R
(1− Fs′(R)) dR = E[R|s′].

Here, Fs denotes the CDF of R, conditional on s.

1.12.2.2 Identification Under the General Gaussian Model

We reintroduce the Gaussian model as in section 1.2. Throughout the discussion, we fix the cost c

and make the identification argument conditional on c. Again, we assume that individuals observe

a scalar signal S, and the structural components of earnings α1, α0 are drawn from a joint normal

distribution 
S

α1

α0

 ∼ N



µs

µ1

µ0

 ,


ΣS ,ΣS,1,ΣS,0

ΣS,1, σ1, σ1,0

ΣS,0, σ1,0, σ0




Using the properties of the normal distribution, we can write the joint distribution of the signals and

the returns, where R = α1 − α0, as

S

R

 ∼ N


 µs

µ1 − µ0

 ,

 ΣS ΣS,R

ΣT
S,R σ21 + σ20 − 2σ1,0




Where ΣS,R = ΣS,1 − ΣS,0. Given a signal realization S, the information structure, Pr(S|R),

is then given by

Pr(S|R) = N
(
µS + ΣS,Rσ−2

R (R− µR),ΣS − ΣS,Rσ−2
R ΣT

S,R

)
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An individual with signal realization S forms the following posterior mean:

E[R|S] = µR + ΣT
S,RΣ

−1
S (S − µS)

This implies that individuals i with cost c and signal realization S would choose to go to college if

D = 1 [E[α1 − α0|S] ≥ c] = 1

[
µR + ΣT

S,RΣ
−1
S (S − µS) ≥ c

]

We can calculate the share of students who attend college with cost c. First, we note that the beliefs

distribution is given by

E[R|S] ∼ N
(
µR,ΣT

S,RΣ−1
S ΣS,R

)
Therefore, the share of individuals who would go to college is given by

P (D = 1|c) = Φ

(
µR − c

ΣT
S,RΣ−1

S ΣS,R

)

Now, again, we assume that individuals are divided into two groups g ∈ {a, b}. Fixing a copula

parameter between α1 and α0 for each group, and using results from section 1.10.2, we know we can

identify the joint distribution of returns and beliefs for groups a and b, Pa(R, E(s)) and Pb(R, E(s)).

We now show that this is sufficient to identify the quantity in 3 and solve for the decomposition.

Given the information structure of group a, we can derive the counterfactual joint distribution of
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signals and returns as follows14

Sa

Rb

 ∼ N


ka +maµSa

µRb

 ,

maσ
2
bma

T + ΣSa
−maΣ

T
Sa,Rb

maσ
2
Rb

ma
Tσ2Rb

σ2Rb




where ka = µSa − ΣSa,Rb
σ−2
Rb

µRb
and ma = ΣSa,Rb

σ−2
Rb

and subscript g ∈ {a, b} indicates that the

parameters are from the distribution of group g.

We can now derive the counterfactual posterior mean belief, given a signal realization S.

Ea,b = µb +mT
a σ

2
Rb

(
ΣSa,Ra

σ−2
Ra

σ2Rb
σ−2
Ra

ΣT
Sa,Ra

+ ΣSa
− ΣSa,Ra

σ−2
Ra

ΣT
Sa,Ra

)−1(
Sa − ka −maµSa

)

and the counterfactual belief distribution is given by

Ea,b ∼ N

(
µb, σ

4
Rb

mT
a

((
maσ

2
bm

T
a + ΣSa

−maΣ
T
Sa,Ra

)−1)T

ma

)

Denote by OVa the identified variance of beliefs for group a

OVa = ΣT
Sa,Ra

Σ−1
Sa

ΣSa,Ra

The following proposition assert that we can identify the variance of the counterfactaul beliefs

distribution

Proposition 4. Let R and signal vector S be jointly Gaussian-distributed, conditional on the cost

14. We slightly abuse notation here setting Rb to denote that returns are distributed as in group b
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c, for members of both group a and b. Then we we can point identify the counterfactual quantity

∫
R×c

P(Ea,b(s) ≥ c|R, c, a)πb(R|c)p(c)dRdc

Proof. The proof follows from the following derivation:

Var(Ea,b) = σ4Rb
mT

a

((
ΣSa,Ra

σ−2
Ra

σ2Rb
σ−2
Ra

ΣT
Sa,Ra

+ ΣSa
− ΣSa,Ra

σ−2
Ra

ΣT
Sa,Ra

)−1
)T

ma

=
σ4Rb

σ4Ra

ΣT
Sa,Ra

(
ΣSa,Ra

ΣT
Sa,Ra

(σ2Rb

σ4Ra

− 1

σ2Ra

)
+ ΣSa

)−1)T

ΣSa,Ra

=
σ4Rb

σ4Ra

ΣT
Sa,Ra

(
Σ−1
Sa

−
(
σ2Rb

σ4Ra

− 1
σ2Ra

)Σ−1
Sa

ΣSa,Ra
ΣT
Sa,Ra

Σ−1
Sa

1 + (
σ2Rb

σ4Ra

− 1
σ2Ra

)ΣT
Sa,Ra

Σ−1
Sa

ΣSa,Ra

)T

ΣSa,Ra

=
σ4Rb

σ4Ra

(
OVa −

(
σ2Rb

σ4Ra

− 1
σ2Ra

)OV 2
a

1 + (
σ2Rb

σ4Ra

− 1
σ2Ra

)OVa

)

=
σ4Rb

σ2Rb
+

σ2Ra
(σ2Ra

−OVa)

OVa

where in the third row we used the Sherman-Morrison formula and the definition of OVb.

Remark. Notice that in the normal case, where both the returns distribution and signals are normally

distributed, there is no loss of generality in assuming that high school graduates receive only a scalar

noise of the form

s = R+ ϵ
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where ϵ ∼ N (0, σ2ϵ ). Following the same steps as before, we can show that the observed variance of

beliefs is given by

OV =
σ4R

σ2R + σ2ϵ

which implies that the information structure P (S|R) = N (R, σ2ϵ ) is identified by

σ2ϵ =
σ2R(σ2R −OV )

OV

Given the information structure, the counterfactual distribution is simply given by

σ4a

σ2a −
σ2R,b(σ

2
R,b+OVb)

OVb

which aligns with the counterfactual quantity when agents have a richer signal structure.

1.12.2.3 Identification of the Information Structure Decomposition with Data on the

Full Belief Distribution

In some cases, researchers may hope to elicit information on the probabilities that an agent put on

each outcome realization (Manski (2004), Wiswall and Zafar (2015), Zafar (2011), Wiswall and Zafar

(2021), Diaz-Serrano and Nilsson (2022)). We now turn to show that this information is sufficient

for point identification of our choice gap decomposition, with respect to the information structure.

We assume that individuals from group b have earnings distribution πb and access to the in-

formation structure (P(S|b,R),S), and for group a have returns distribution πa and access to the

information structure (P(S|a,R),S). Denote by qs,g ∈ ∆(R) the posterior beliefs induced by a signal

realization s ∈ S and prior πg. We let qs,g(R) be the assigned density that this posterior puts on
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state R. Furthermore, we assume that we observe for each group the joint distribution, ϕ(R, qs), of

returns R and the posterior beliefs qs.

We start by noting that within the framework, knowing beliefs allows us to identify a richer notion

of costs. Specifically, denote by Bi =
∫
RRqi(R)dR the measured posterior mean for individuals with

beliefs qi and notice that

P (D = 1|x,B) = E[1[Bi ≥ c(x, ν)]] (1.25)

where ν is additional cost heterogeneity, not included in our identifying discussion in section 1.2.5.

Under some regularity conditions and the assumption B ⊥⊥ ν|X, we can identify the distribution

of c(x, ν) for each x and B, using variation in B. The identification here relies on B as a “special

regressor” needed for identification, as discussed in (Lewbel (2012)). From now on we assume we

know the joint distribution of P (qi, ci|x), and omit the cost c.

To identify the outcomes distribution, we can use two approaches. The first is simply be able to

observe the realization distribution if possible. The other is to use the measured beliefs and simply

integrate over beliefs, i.e.

πg(R) =

∫
i
qi(R)di (1.26)

Under the assumption that rational expectations are held, this should provide the initial prior.

We start by showing the following lemma that shows that for a fixed information structure, there’s

a mapping from the posterior, given prior π′g to a posterior under a different prior. Let πg and πg′ be

two priors with the same support, then for each s, information structure P (s|α) prior πg and implied

posterior qs, the counterfactual posterior with prior πg′ is given by qs,g′ =
qs(R)
π(R)

πg′(R)∫
R

qs(R)
π(R)

πg′(R)dR
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Proof.

qs,g′(R) =
P (s|R)πg′(R)∫

R p(s|R)πg′(R)dR

=

P (s)qs(R)
π(R)

πg′(R)∫
R

P (s)qs(R)
π(R)

πg′(R)dR

=

qs(R)
π(R)

πg′(R)∫
R

qs(R)
π(R)

πg′(R)dR

Lemma 1.12.2.3 demonstrates that the counterfactual posterior can be calculated from the known

posterior πg and the counterfactual distribution πg′ , without requiring explicit knowledge of the

information structure. Given the counterfactual posteriors, one can also derive the counterfactual

means and thus identify all components of the decomposition. We proceed to establish that all parts

of the decomposition are identified.

Recall that for our decomposition we needed to identify the distribution of counterfactual posterior

mean, if the returns were drawn according to group b, information according to group a and updated

correctly in this new counterfactual world.

P⟨a,b⟩ =
∫
R
P(Ea,b(s) ≥ 0|R, a), πb(R)dR

Proposition 5. Assume we know ϕa(qs,a,R) and ϕb(qs,a,R) then the conditional distribution

P(Ea,b(s)|R, a) is identified and so is P⟨a,b⟩ in 1.22

Proof. The proof follows from Lemma 1.12.2.3. Notice that according to Lemma 1.12.2.3, every

two signals that generate the same posterior for group a, also generate the same posteriors in the
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counterfactual case where R is distributed according to πb; therefore, it’s enough to know the pos-

terior without requiring the information structure. Further, using Lemma 3, we can identify the

distribution of the counterfactual posteriors by calculating the implied distribution of the compo-

sition

(
qs(R)
π(R)

)
πg′(R)∫

R

(
qs(R)
π(R)

)
πg′(R)dR

. Finally, to obtain P (Ea,b|R), we only need to map each posterior to its

implied mean. As P (Ea,b|R) is identified, P⟨a,b⟩ is trivially identified, along with the decomposition

components values.

One implication of Proposition 5 is that in the case where we have binary outcomes Y ∈ {1, 0}

, and we know the joint distribution of ϕ(E[Y |s], Y ), the decomposition is point identified using

simply the conditional mean beliefs. If outcomes are binary Y ∈ {1, 0} and we observe the joint

ϕ(E[Y |s], Y ), then P⟨a,b⟩ in 1.22 is point identified

Proof. Simply follows from proposition 5 and the fact that in the bianry case E[Y |s] is the posterior

distribution.

The case of binary outcomes is prevalent in many applications within the discrimination litera-

ture. For instance, in bail decisions, judges are often modeled as agents attempting to predict the

likelihood of reoffense (e.g., Arnold et al. (2018)), Researchers may wish to quantify the extent to

which disparities in decisions made for Black and White defendants are driven by the information

available to judges or by the underlying distribution of reoffending rates. The above corollary demon-

strates that we can decompose this gap and precisely identify the role each component plays. Similar

arguments can be extended to other contexts, such as hiring decisions (Bertrand and Mullainathan

(2004),Kline et al. (2022)) or treatment allocation in medical settings (Chan et al. (2022)).
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1.12.3 Nonparametric Partial Identification

Researchers often have data on outcomes and posterior mean beliefs, accessible via the identification

strategy outlined in Section 1.10.2 or through surveys querying individual beliefs. However, access

to this data alone in general does not suffice for the point identification of the counterfactual beliefs

distribution. Building on insights from the empirical information robustness literature(Bergemann

and Morris (2019, 2013, 2016); Bergemann et al. (2022) Syrgkanis et al. (2017) Gualdani and Sinha

(2019) Magnolfi and Roncoroni (2023)) we demonstrate a methodology to identify the counterfactual

distribution of beliefs. Our proof in this section relies on Bergemann et al. (2022).

Our objective is to describe the identified set of the first and second parameter of interest. Fol-

lowing the last section, we assume that everything is conditioned on x, z, and subsume x and z for

brevity, and assume to know the joint distribution ϕ(R,E), for both grouaps a and b. Throughout the

discussion we introduce and omit group membership when it’s needed. Before we start, we redefine

and define some of the notation we would be using in the discussion. We assume that individuals

have access to information structure S, with support s and density function f(s|R) and the corre-

sponding CDF F (s|R). We denote by µ ∈ ∆(supp(R)) the prior distribution. The posterior mean

beliefs, given information structure S and prior µ is given by E[R|s;S, µ]. Throughtout most of the

discussion we would fix S, and indicate it only when it matters. We further define the conditional

distribution of beliefs, that are generated for a given prior and information structure, conditioned on

R as

P
µ
S (E|R) =

∫
s:E[R|s;S,µ]=E

dF (s|R)

Before moving to the main identification argument we show the following two trivial claims.
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Claim 1. Let E(s, µ) be

E(s, µ) = argmin
E

∫
R
(R− E)2

µ(R)f(s|R)∫
R µ(R)f(s|R)dR

dR (1.27)

then E(s, µ) = E[R|s;µ]

Proof. The results are simply implied by the first order conditions.

Claim 2. Fix two prior distributions, µ, µ′ ∈ ∆(R), where µ is absolute continuous with respect to

µ′ and let E(s) and E ′(s) be

E(s) = argmin
E

∫
R
(R− E)2

µ(R)f(s|R)∫
R µ(R)f(s|R)dR

dR (1.28)

and

E ′(s) = argmin
E

∫
R

[
(R− E)2

µ(R)

µ′(R)

]
µ′(R)f(s|R)∫

R µ′(R)f(s|R)dR
dR (1.29)

Let Γ(R, E) be the joint distribution of R and E(s), where Γ(R, E ;µ) = µ(R)
∫
{s:E(s)=E} dF (s|R),

and let Γ̃(R, E) be the joint distribution of R and E ′(s), where Γ̃(R, E) = µ′(R)
∫
{s:E ′(s)=E} dF (s|R),

then

Γ(R, E) = µ(R)

µ′(R)
Γ̃(R, E) (1.30)

Furthermore,

P
µ
S (E|R) =

Γ̃(R, E)
µ′(R)

(1.31)
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Proof. Notice that for each signal realization s ∈ S we have

E ′(s) = argmin
E

∫
R
(R− E)2

µ(R)

µ′(R)

µ′(R)d(s|R)∫
R µ′(R)d(s|R)dR

dR (1.32)

= argmin
E

∫
R
(R− E)2µ(R)f(s|R)dR (1.33)

= E(s) (1.34)

Therefore,
∫
{s:E ′(s)=E} dF (s|R) =

∫
{s:E(s)=E} dF (s|R), for all E, which implies

Γ(R, E) = µ(R)

∫
{s:E(s)=E}

dF (s|R) (1.35)

= µ(R)

∫
{s:E ′(s)=E}

dF (s|R) (1.36)

=
µ(R)

µ′(R)
Γ̃(R, E) (1.37)

Finally, notice that E ′(s) = E(s) = E[R|s;S, µ], therefore we have that

P
µ
S (E|R) =

∫
s:E[R|s;S,µ]=E

dF (s|R) =

∫
s:E(s)=E

dF (s|R) =

∫
s:E ′(s)=E

dF (s|R) =
Γ̃(R,E)

µ′(R)
(1.38)

We can now proceed to the identification argument. We want to describe the identified set

of the information channel. The first component, which is observed share, is clearly identified,

we therefore need only to show that the counterfactual share is identified. Fix an observed joint

distribution of beliefs and states, induced by an unknown information structure S and µ′, ϕ(R, E) =

µ′(R)P
µ′

S (E|R). We want to characterize the set of possible joint distributions of beliefs and states
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for the counterfactual case where we change the state distribution to µ, but leave the information

structure S unchanged. Throught the discussion we assume that both priors have common support

and that ∀Rµ(R) ≫ 0 ⇐⇒ µ′(R) ≫ 0, such that our counterfactual would be well defined.

Denote by C(ϕ(R,E), µ′) the set of joint distributions, ϕ̃(R,E), that can be induced by the

information structure S, which induces ϕ(R,E), and the returns distribution µ. i.e.

C(ϕ(R,E), µ) =

{
ϕ̃(R,E) ∈ ∆(supp(R), cl(supp(R)))

∣∣∣∣
∃S s.t µ′(R)P

µ′

S (E|R) = ϕ(R,E), µ(R)P
µ
S (E|R) = ϕ̃(R,E)

}

where cl(supp(R)) is the support of beliefs. Our objective is to find a tractable characterization of

this set. Let π(R,Eµ′ ,Eµ) ∈ ∆(R, cl(R), cl(R)) be a joint distribution that satisfies

∫
Eµ

π(R,E,Eµ)dEµ = ϕ(R,E) (1.39)

∀Eµ′ ,Eµ Eµ′ = argmin
E

∫
R
(R− E)2π(R,Eµ′ ,Eµ)dR (1.40)

∀Eµ′ ,Eµ Eµ = argmin
E

∫
R
(R− E)2

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dR (1.41)

and denote the set of implied joint distribution of R and Eµ as

M(ϕ(R,E), µ) =

{
ϕ̃(R,E) ∈ ∆(supp(R), cl(supp(R)))

∣∣∣∣
ϕ̃(R,E) =

∫
Eµ′

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dEµ′ , π satisfies (1.39), (1.40), (1.41)

}

Claim 3. For any observed distribution ϕ(R,E) ∈ ∆(supp(R), cl(supp(R))) and µ ∈ ∆(supp(R))
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that is absolute continuous with respect to µ′, we have

C(ϕ(R,E), µ) = M(ϕ(R,E), µ) (1.42)

Proof. We start by showing that M(ϕ(R,E), µ) ⊆ C(ϕ(R,E), µ). Let ϕ̃(R,E) ∈ M(ϕ(R,E), µ)

and let π(R,Eµ′ ,Eµ) be the corresponding joint distribution that satisfies (1.39),(1.40),(1.41). Then

define the the information structure SEµ′ ,Eµ
as

P (Eµ′ ,Eµ|R) =
π(R,Eµ′ ,Eµ)∫

π(R,Eµ′ ,Eµ)d(Eµ′ ,Eµ′)
=

π(R,Eµ′ ,Eµ)

µ′(R)
(1.43)

where the denominator follows from condition (1.39). Notice that as π satisfies condition (1.40),

claim 1 and claim 2 implies

P
µ′

SEµ′ ,Eµ
(E|R) =

∫
Eµ

P (E,Eµ|R)dEµ (1.44)

hence, using constraint (1.39), we have

µ′(R)P
µ′

SEµ′ ,Eµ
(E|R) = µ′(R)

∫
Eµ

P (E,Eµ|R)dEµ = ϕ(R,E) (1.45)

Next, notice by constraint (1.41) and claim 2 we know that

∫
Eµ′

π(R,Eµ′ ,Eµ)dEµ′

µ′(R)
= P

µ
SEµ′ ,Eµ

(E|R),

then

ϕ̃(R,E) =

∫
Eµ′

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dEµ′ = µ(R)P

µ
SEµ′ ,Eµ

(E|R) (1.46)

therefore, we showed that there exist an information structure as needed, which implies ϕ̃(R,E) ∈
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C(ϕ(R,E), µ)

To see the reverse inclusion, C(ϕ(R,E), µ) ⊆ M(ϕ(R,E), µ). Fix ϕ̃(R,E) ∈ C(ϕ(R,E), µ) and let

S be the information structure that satisfies

µ′(R)P
µ′

S (E|R) = ϕ(R,E) (1.47)

µ(R)P
µ
S (E|R) = ϕ̃(R,E) (1.48)

Define the functions Eµ : S → cl(Supp(R)),E′
µ : S → cl(Supp(R)) as

Eµ′(s) = argmin
E

∫
R
(R− E)2µ′(R)f(s|R)dR (1.49)

Eµ(s) = argmin
E

∫
R
(R− E)2

µ(R)

µ′(R)
µ′(R)f(s|R)dR (1.50)

and define the joint probability π(R,Eµ′ ,Eµ) as

π(R,Eµ′ ,Eµ) = µ′(R)

∫
s:Eµ′(s)=Eµ′ ,Eµ(s)=Eµ

dF (s|R) (1.51)

Next, using claim 2 we know that E′
µ(s) = E[R|s;S, µ′] and therefore

∫
Eµ

π(R,E,Eµ)dEµ = µ′(R)

∫
Eµ

π(E,Eµ|R)dEµ = µ′(R)π(E|R) = µ′(R)P
µ′

S (E|R) = ϕ(R,E)

(1.52)
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To see that π satisfies condition (1.40), we can use the law of iterated expectations

∀Eµ′ ,Eµ argmin
E

∫
R
(R− E)2π(R,Eµ′ ,Eµ)dR (1.53)

= argmin
E

∫
R
(R− E)2

∫
s
π(R,Eµ′ ,Eµ, s)dsdR (1.54)

= argmin
E

∫
s:Eµ′(s)=Eµ′ ,Eµ(s)=Eµ

∫
R
(R− E)2π(R,Eµ′ ,Eµ, s) (1.55)

= Eµ′ (1.56)

where we used the fact that E′
µ minimizes the expression by construction. A similar argument shows

that (1.41) also holds. Finally, by claim 2, condition (1.41), and the way π is constructed, we have

that ∫
Eµ′

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dEµ′ = µ(R)P

µ
S (E|R) = ϕ̃(R,E) (1.57)

which implies that ϕ̃(R,E) ∈ M(ϕ(R,E), µ)

To conclude the identification argument, we introduce the following assumption:

Assumption 5. µa is absolutely continuous with respect to µb.

We fix cost c, and denote the set of the possible probabilities

P⟨a,b⟩(c) = P(Ea,b ≥ c|R, c, a)πb(R|c) (1.58)
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as

I(ϕa(R,E)) =

{
p ∈ [0, 1]

∣∣∣∣p =

∫
R

∫
E≥c

ϕ̃(R,E)dEdR

s.t ϕ̃(R,E) ∈ C(ϕa(R,E), µb(R))

}

The following claim shows an easy characterization of this set

Claim 4. The identified set is given by

I(ϕa(R,E)) =

{
p ∈ [0, 1]

∣∣∣∣p =

∫
R

∫
E≥c

ϕ̃(R,E)dEdR

s.t = ϕ̃(R,E) ∈ M(ϕ(R,Eηa), µb(R))

}

Proof. Follows from claim 3 and assumption 5.

Proposition 6. The quantity in 1.22 is partially identified given the distribution of ϕ(R, c,E)

Proof. follows trivially from claim 4.

Notice that we can further simplify the characterization of the identified set by using the fact that

constraint (1.40) and (1.41) are satisfied if and only if the first order conditions hold. Therefore, we

can rewrite the constraints (1.40) and (1.41) as

∀Eµ′ ,Eµ Eµ′ =

∫
R
(R− E)π(R,Eµ′ ,Eµ)dR (1.40a)

∀Eµ′ ,Eµ Eµ =

∫
R
(R− E)

µ(R)

µ′(R)
π(R,Eµ′ ,Eµ)dR (1.41a)
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Now, as the constraints (1.39), (1.40a) and (1.41a) are linear, the identified set is convex, and we

can define it as an interval bounded between [p, p], such that

p, p = min
π

,max
π

∫
z
ha(z)

∫
R

∫
Ea

∫
Eb≥c(z)

π(R,Ea,Eb)
µb(R)

µa(R)
d(R,Ea,Eb, z) (1.59)

s.t

∀E,R ϕ(R,E) =

∫
π(R,E,Eb)dEb (1.60)

∀Ea,Eb Ea =

∫
(R− Ea)π(R,Ea,Eb)dR (1.61)

∀Ea,Eb Eb =

∫
(R− Eb)

µb(R)

µa(R)
π(R,Ea,Eb)dR (1.62)

1.13 The Texas Higher Education Opportunity Project (THEOP)

The Texas Higher Education Opportunity Project (THEOP) is a comprehensive study designed to

evaluate college planning and enrollment patterns in the context of Texas’s policy granting automatic

admission to public colleges and universities for students graduating in the top decile of their high

school class. Collecting data from nine diverse Texas colleges and universities, including both public

and private institutions, THEOP encompasses administrative records on applications, admissions,

and enrollments, alongside a longitudinal survey of students from two cohorts in 2002. The admin-

istrative data set includes College Application Data, tracking demographics, academic profiles, and

admission outcomes from before and after the 1998 implementation of the top 10% law, and College

Transcript Data, detailing academic performance and progress of enrolled students. Efforts to ensure

data quality and confidentiality have been meticulously undertaken, involving the removal of personal

identifiers and the adjustment of data to prevent identification, thus ensuring a high level of privacy
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and data integrity. For our purpose we use questions asked about the interaction between high school

students and their school councilor.
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CHAPTER 2

IT’S NOT WHO YOU ARE, IT’S WHAT THEY KNOW: WAGE GAPS

AND INFORMATIONAL FRICTIONS

2.1 Introduction

Firms can rarely, if ever, hire a worker after obtaining complete information on the worker’s pro-

ductivity and their outside options. These informational frictions can arise from various sources,

including an inefficient hiring process, imperfect information on the firm’s own production technol-

ogy, attention costs of the interviewer, or cognitive biases on their part. These frictions have proven

to be of great importance in countless theoretical results (e.g., Aigner and Cain (1977), Phelps (1972),

Spence (1978), Bergemann et al. (2021b), Bergemann and Morris (2019a)). However, while we would

like to take these into account both in modeling firms’ decisions and in empirical exercises, this has

proven to be fairly difficult. There are many informational environments in which firms operate that

are not observable by researchers. Despite the crucial place information holds in theoretical research,

most of the empirical literature on wage gaps has focused on other differences between groups. These

differences are brought on by the structure of the labor market. The first type of fundamental dif-

ferences is driven by the workers’ productivity distribution. As many papers argue (for example,

Altonji and Blank (1999), Blau and Kahn. (2017), Goldin (2014)), differences in workers’ abilities

between groups can drive differences in observed wages. These differences can stem from various

sources, such as pre-market conditions, which generate differences in workers’ productivity. Other

sources that have been considered extensively include firms’ taste-based discrimination, which can

affect firms’ willingness to pay for workers of different groups, or self-selection of workers into dif-

ferent occupations and industries due to differences in preferences, to name a few. The second type
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of mechanism that has been thoroughly explored in the literature and can be used as a cause for

differences in wages is market frictions, such as search costs, probability of finding a job, differences

in bargaining power, and differences in outside options.

In contrast to these explanations, this paper explores whether differences in wage distributions can

stem from differences in firms’ information about workers’ productivity and their potential outside

options. These differences can potentially be significant, affecting the wage distributions of different

groups in various way, creating different in wage prospect for workers who are productively equivalent.

To gauge the potential importance of information frictions, we construct a static, parsimonious,

common-value auction model of the labor market. This model assumes that heterogeneous workers

receive job offers from identical firms that differ only in the information available to them. We then

explore how this varies across markets with different levels of search frictions, captured by the number

of wage offers a single worker receives. Since we are interested in examining the impact of information

on the labor market, we leave unspecified the information firms have. We then ask how much of the

wage gap between workers can be explained by the correlation between gender and race and the other

information firms observe before making a wage offer. To form this test, we leverage an equivalence

result from the robust prediction literature and information design (Bergemann and Morris (2013),

Bergemann and Morris (2016)). This result shows that the set of distribution outcomes that can

arise under a Bayes Nash Equilibrium (BNE) with some information structure corresponds to a set

of joint distributions of actions and states, known as Bayes Correlated Equilibrium (BCE). We use

this equivalence result to partially identify the set of possible productivity distributions which, with

some signal structure possibly correlated with race and gender, can give rise to the observed wage

gaps.

We find that information can potentially have a very large effect on the wage distribution, creating
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a significant divergence between workers’ marginal product and their wage. For example, without any

assumptions on the information available to firms, and in markets with relatively low search frictions,

we can bound the mean productivity of white male workers to be between approximately $48,000

per year, which is roughly their mean wage, and $128,500. Moreover, we find that we can explain all

of the wage gaps between white men, white women, and black men and women without needing to

assume differences in productivity. More specifically, we find that the entire wage gap in our sample

can be attributed to information frictions and can be supported by a productivity distribution with

a mean bounded between approximately $48,000 and $132,800 per year in an economy with large

search frictions, and between $48,000 and $93,600 in an economy with low search frictions.

This paper contributes to the vast literature on discrimination and, specifically, on statistical

discrimination (Arrow (1973), Phelps (1972), Aigner and Cain (1977), Altonji and Pierret (2001),

Lange (2007)). These early papers show that different information can give rise to differences in wage

distributions but, as we argue in section 2.2, fail to explain differences in average wage. To address

this issue, follow-up papers by Lundberg and Startz (1983) and Coate and Loury (1993) offer models

in which minority workers end up investing less in human capital, generating equilibrium differences

in workers’ productivity available to firms. Unlike previous papers that attempt to explain wage gaps

using statistical discrimination, we ask whether gaps can be explained without needing to change

the underlying distribution of workers’ productivity, but by relaxing the assumptions on the types of

information firms have and allowing for firms to act based on private information. While our model

does not exclude taste-based discrimination, it assumes that it’s another force that affects the pro-

ductivity distribution of workers as seen from the firms’ perspective. A recent paper, by Chambers

and Echenique (2021), also spotlight information frictions. They explore whether wage gaps and

discriminatory policies can potentially arise from differences in information in an environment where
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the same worker can generate varying productivity for different firms possessing distinct information.

Theoretically, they find that such an environment invariably supports an information structure capa-

ble of creating wage differences. In contrast to their work, our paper focuses on an empirical exercise

involving homogeneous firms with different information on workers, all of whom can generate the

same surplus for these firms. Our findings underscore that a key driver of divergent wage policies is

the may be information itself, rather than the underlying productivity distribution, which remains

constant in our exercise.

As discussed above, this paper builds on recent results from the robust prediction literature (Berge-

mann and Morris (2013), Bergemann and Morris (2016), Bergemann et al. (2017)) that explore the

range of outcomes that can arise in a game with an unspecified information structure. These results

are being used for informationally robust identification in a growing number of papers. Syrgkanis

et al. (2021) is the most similar paper to ours; it explores how to achieve identification in a model

of general second and first-price auctions without specifying the information available to individuals.

They then use their identification results to analyze second-price auctions in the BingeAds sponsored

auction marketplace and the OCS auction dataset to infer the underlying valuation distributions.

Magnolfi and Roncoroni (2017) uses the BCE in an entry game with binary actions to identify the

set of parameters on the utility function that are robust to the information firms have. Gualdani and

Sinha (2019) employs the BCE framework we work with in this paper to identify the set of parameters

and distributions governing an agent in a discrete choice model without specifying the information

structure. Finally, Bergemann et al. (2021a) consider how to perform counterfactual analysis while

holding the information fixed.

Additionally, this paper contributes to the recent empirical literature that emphasizes the role of

workers’ outside options in wage gaps. Caldwell and Danieli (2021) uses a two-sided matching model
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with transfers, based on Shapley and Shubik (1971), where heterogeneous workers and firms have

idiosyncratic preferences for each other. They then calculate their outside option index for workers in

Germany and find that it can explain roughly 25% of the wage gap. Black (1995) constructs a search

model where some discriminatory employers reduce workers’ outside options, thereby generating a

wage decrease. In our model, the distribution of outside options is not generated by assuming workers

have different preferences or due to monopolistic power, but because of the information firms have on

workers and other firms’ willingness to pay. Compared to previous papers, we allow for uncertainty

over workers’ outside options.

The paper proceeds as follows: Section 2 introduces the model. Section 3 discusses identification

and how to test for the potential role of information in shaping the wage gap. Section 4 focuses on

inference and computation, Section 5 presents our data and results, and Section 6 concludes.

2.2 A Simple Common-Value Auction Model of the Labour Market

2.2.1 The model

Let J be the set of firms in the market. Let I be the set of workers. There are |G| groups of workers.

Workers have heterogeneous productivity, v ∈ V ⊂ R+, drawn from a distribution µ(v|g) ∈ ∆(V).

A job offer from firm j to worker i consists of a wage wi
j ∈ W . We assume that workers receive

N ≤ |J | jobs offers. We denote as wi ∈ W = WN the vector of wage offers worker i receives. We

further assume that both firms and workers are risk neutral and that the firms’ production function is

additive in the number workers. Therefore, if a firm succeeds in hiring a worker, that firm’s marginal

profit is given by v−w. We assume firms don’t have a cost of making a wage offer. Worker i’s utility

from a vector of wage offers wi is u(w) = maxj wi. Implying workers choose to worker at the firm

131



who offers the highest wage. In the case of a tie, the worker selects at randiom one of the firms who

offers the highest wage.

Before extending a wage offer, we assume that all firms observe both the worker’s group, gi ∈ G,

and a public signal, xi ∈ X , observed by all firms and by the econometrician. We do not restrict the

correlation between the public signal and the workers’ productivity. In addition to these signal, firms

may observe additional signal, possibly private, tj ∈ Tj , prior to making a wage offer to the worker.

The signal vector t = (t1, ..., tJ ) can be arbitrarily correlated with both the worker’s productivity

and the public signals. We also do not put any restriction on the correlations between the different

firms’ signals. We denote the augmented signal structure (G,X , T ,P(g, x, t|v)) by S ∈ S. Let

ki(w) = argmaxj w be the set of firms that offer the highest wage to worker i, then the worker is

allocated to firm j with probability

qij(w) =


1

|k(w)| if j∈ k(w)

0 otherwise

Finally, firms’ j interim-expected marginal profit from offering a wage wj to worker i, after observing

the worker’s public signals xi, gi and the private signal tj is

E

[
(vi − wj)q(w)|tj , xi, gi

]
∝∑

v

∑
t−j

∑
w−j

(vi − wj)q
i
j(w)

[ ∏
k ̸=j

βk(wk|tk, xi, gi)
]
p(t|vi, xi, gi)µ(vi|xi, gi)p(gi, xi)

where βk(w|.) is the wage policy functions of firm k, given the firm’s signals. A Bayes Nash Equi-

librium (BNE) in this model is a mapping βk : S → ∆(Wk) for each firm j, such that the firm
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maximizes its expected profit, conditional on their signals, and that workers choose to work at the

firm that offered the highest wage.

In the model above, heterogeneity in wage offers stems from firms having access to different

information. Specifically, information in the model plays two key roles in determining wage. The

first is by affecting the firm’s evaluation of worker productivity. Firms having different information

structures implies that different firms evaluate the worker productivity differently, affecting their

willingness to pay. The second channel through which information affects wages is firms’ belief on

the worker’s outside option. Within the model, firms are asking themselves what other firms know

about the worker and try to guess what other firms would be willing to pay for the worker.

To see the importance of these two channels, consider a simple setup with two firms, in which

worker productivity is distributed uniformly between 0 and 1. Assume that that the two firms’ signals

are perfectly correlated. In that case, each firm knows that the other firm observes the same signal,

then they would end up conducting a Bertrand competition, where wages would be the expected

worker’s productivity, given the common signal the average wage would be the worker’s average

productivity, as discussed in section 2.2.2. On the other hand, consider the polar opposite case, in

which we have two firms, one is uninformed while the other one is perfectly informed.1 An equilibrium

in this setup would be that the informed firm would offer a wage of v
2 , while the uninformed firm would

randomize between 0 and 0.5 and the average wage would be 1
3 . To see this, notice that the uninformed

firm would never make an offer higher than 1
2 , as it has negative ex-ante surplus. Next, notice that

for any wage offer wUI ∈ [0, 0.5] the uninformed firm makes, the workers productivity, conditioned on

the uniformed making the higher offer, is distributed uniformly between [0, 2wUI ], and therefore, the

expected surplus of the uninformed firm is E[v − wUI |UI wins] = 0 for any wUI ∈ [0, 0.5]. Finally,

1. This example is taken from Milgrom and Weber (1982)
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the informed firm surplus from offering wage wI is given by (v − wI)P (wI > wUI) = (v − wI)
wI
0.5 .

which is maximized at wI = v
2 . Given these two equilibrium strategies, the worker’s average wage

would be 1
3 ,2 which is lower than the average wage under first case, or under complete information.

Therefore, we can see that simply changing the firms’ access to information may have a large effect

on the realized wage distribution and on the relation between workers productivity and their wages.

2.2.2 Relation To Phelps (1972)

Before moving forward and considering a whether a general information structure might be needed to

explain wage gaps, we can first ask whether there exists a public signal, available to all firms, which can

induce the observed wage distributions of workers from two groups. In his seminal paper on statistical

discrimination, Phelps (1972) considers a model similar to ours, but restricts attention to public and

normal signals. In his model, there exist incomplete information on the worker productivity, and all

firms observe the same public signal. Therefore, due to Bertrand competition, wages are set by the

expected productivity of workers. Specifically, let v, the productivity of workers from group g, be

distributed normally with mean αg and variance σv,g. Firms cannot observe the worker productivity,

but they have access to a public noisy signal

y = v + u

2. To see this, notice that both firms make a wage offer uniformly on [0, 0.5], and the winning wage offer is distributed
with the CDF F (x) = ( w

0.5 )
2 and the PDF f(w) = 8w. Therefore, the observed average workers wage is∫ 0.5

0

w × 8wdw =
1

3
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where the noise distributed normally u ∼ N (0, σu,g). Given the signal, the expected value of a

worker’s productivity is given by

E[v|y] = (1− γ)αg + γy

where γ =
σv,g

σv,g+σu,g
. As discussed in Phelps (1972) and Aigner and Cain (1977), the resulting

wage distribution for two groups of workers would be different if either the noisy signal or the

underlying productivity are distributed differently across different groups. Specifically, we can see

that as employers get a more precise signal, they will put higher weight on the signal in determining

the wage, and rely less on the group mean. As Aigner and Cain (1977) note, with risk-neutral firms,

the Phelps model implies that differences in average wages can only be explained by differences in

workers’ average productivity, which implies that in this statistical discrimination model, information

is not enough to induce the observed wage gaps between groups and we need to assume that there

exist differences in the underlying productivity distribution to rationalize the observed wage gaps.

As it turns out, this observation is more general than in the case of the normal distribution.

Under the assumption that the market is competitive, and that firms are risk neutral, the differences

in mean wages must be driven by differences in the underlying distribution, and cannot be explained

by public signals, as shown in the claim below

Claim 5. Let g1 and g2 be two groups of workers. Assume that firms are risk neutral and observe

the worker’s group membership and a public signal tgi ∈ Tgi , drawn from a conditional distribution

π(t|v, gi) ∈ ∆(T ). Assume that the observed mean wages of workers from group 1 and 2 are different,

w̄g1 ̸= w̄g1 , then it must be the case that E[v|g1] ̸= E[v|g2]

Proof. First, notice that as all firms observe the same signal and are competing for the same worker,

they are engaging in a Bertrand competition. As firms are risk neutral, this implies that all firms
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offer a wage that is equal to the expected value w(t) = E[v|t, gi]. Then, notice

E[v|gi] = E[E[v|t, gi]|gi] = E[w|gi] = w̄gi

Which implies that w̄g1 ̸= w̄g2 =⇒ E[v|g1] ̸= E[v|g2]

As we know that averages of wages across gender and race are different, we know that in the setup

shown in our model, it is not enough to assume that there is a set of signals, available to all firms,

that can explain wage gaps, while holding the underlying productivity distributions the same across

groups. Therefore, to examine the potential importance of information in explaining the wage gaps,

we make the relaxation in our model that different firms may observe different signals on workers.

This introduces an additional component to the strategic wage setting. Namely, firms need to make

a guess on the worker’s outside option. This additional strategic consideration can create a divergent

between workers’ productivity and their marginal output and as a result, generate wide wage gaps

across groups with otherwise identical productivity distributions.

2.3 Partial Identification of Productivity Distribution and Inference

Our objective in this paper is to examine how much of the observed wage gap between different

groups can be explained by differences in information access. We therefore can ask whether there

exists a single distribution of workers productivity, µ ∈ ∆(V), that can induce the observed wage

gaps, with some information structure. More formally, let H(w|gi) be the observed wage cumulative

distribution function (CDF) of workers from group i,3 let κk(w|tk, gi) =
∫ w
0 βk(w|tk, gi) be the CDF

of firm k wage offers, conditioned on the firms’ signals. Finally, let κ(w|t, gi) =
∏J

k=1 κk(w|tk, gi) be

3. From here on, we suppress x for clarity
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the predicted CDF for workers from group g, and some signal t. We want to examine whether the

distribution of worker’s productivity for workers of the two groups is the same. Specifically, we ask

whether there exist two information structures and a distribution of workers productivity, such that,

µ(v|g1) = µ(v|g2) = µ(v), and can generate the observed wage distributions, i.e.

H(w|gi) =
∫
v,t

κ(w|t, g)P(t|v, g)µ(v)dvdt (2.1)

As we are interested in the set of possible distributions µ that can generate the observed data,

we now turn to explore how we can identify this set, within the basic model in section 2.2. First,

throughout our analysis, we assume that the econometrician has access to data on wages, worker

demographics and worker characteristics, such as education level or experience.

Assumption 6. The econometrician observes the joint distribution H(w, g, x), and their induced

conditional probabilities. H(w|g, x) ∈ ∆(W).

This assumption on the data available to the researcher is true for a large share of the empirical

labor literature, which uses data on workers’ wages but does not have access to data on workers’ wage

offers or productivity. Next, we define the set of model predictions to be the set of wage distributions

that can result from the auction game with some information structure.4

Definition 2.3.1. The set of BNE predictions, H ∈ ∆(W), for a given information structure S and

productivity distribution µ, is the of wage distribution induced by a BNE in the auction game

Q(S, µ) = {H : H(w) = κ(w|s)P(s|v)µ(v)}

4. For clarity, we omit the group g indicator and add it when needed.
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We also make the following assumption on the data generating process

Assumption 7. The observed wage distribution is a result of a Bayes Nash Equilibrium in the

labor-market auction game

This assumption is quite strong, as the model we consider here is fairly restrictive. It does not

allow workers to choose where to work based on job characteristics, other than wage. The model

also assumes that all firms are homogeneous in their production technology and can extract the same

output from workers. Although these are restrictive assumptions, they stress how - in an economy

with almost no firm heterogeneity - information differences alone can generate a wide range of diverse

outcomes. Finally, we can define the identified set of workers productivity distribution as

QBNE(H) = {µ : ∃S ∈ S such that H(w) ∈ Q(S.µ)}

This definition of the identified set may not seem useful because we need to iterate over all

productivity distributions in ∆(V). For each distribution, we must find an information structure

that induces the observed wage distribution. However, seminal results by Bergemann and Morris

(Bergemann and Morris (2013), Bergemann and Morris (2016), Bergemann and Morris (2019b))

in information design and non-parametric estimation provide methods that transform this into a

computationally feasible problem.

Before jumping to the result, it is worth introducing some notation. A game-form is a tuple

G = (W , µ) of the possible actions and prior distribution over the workers productivity. We define

the a game to be the pair (G,S).

Definition 2.3.2 (Bayes Correlated Equilibrium). A joint distribution π ∈ ∆(V × W) is a Bayes

Correlated Equilibrium of the basic form game G, if for each firm j and wage offer wj and deviation
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w′
j we have

∑
v

∑
w−j

[
(v − wj)q(wj ,w−j)− S(v − w′

j)q(w
′
j ,w−j)

]
π(v, wj ,w−j) ≥ 0 (Obedience Constraint)

and the marginal of π with respect to the states is preserved

∑
w∈W

π(v,w) = µ(v) (prior consistency)

Bergemann and Morris, shows that the set of distribution of actions and states, π ∈ ∆(v,w),

that can be induced by BNE of (G,S ′), under some information structure S ′, is equivalent to the set

of Bayes Correlated Equilibrium (BCE).

Theorem 1 (Bergemann and Morris (2016)). A distribution π ∈ ∆(V × W) that can arise as an

outcome of a Bayes-Nash Equilibrium, under some information structure S, if and only if it is a

Bayes Correlated Equilibrium of the basic game G

Next, we define the set of BCEs that can induce the observed wage distribution. Let π be a BCE,

and let

BCE(H) =

{
π :

∑
max(w)≤w

∑
v

π(v,w) = H(w)

}
Similarly, we define set of productivity distributions, implied from the BCE, as the set of marginals

over v

QBCE(H) = {µ : π ∈ BCE(H),
∑
w

π(v,w) = µ(v)}

Using Theorem 1, we have the following proposition

Proposition 7. The set of productivity distributions from a Bayes-Nash Equilibrium in the auction
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game is equal to the set of productivity distributions from a Bayes-Correlated Equilibrium in the

basic game:

QBCE = QBNE

Proof. The proof follows trivially from the fact that that the set of BCEs is a convex set and Theorem

1.

Therefore, proposition 7 shows us that it’s enough to look for all the joint distributions of wage

offers and workers productivity that can induce the observed wage distribution and satisfy the obe-

dience and prior consistency constraints. In Appendix 2.8.2 we provide an illustrative example to

show the identifying power of BCE in the case of one bidder.

2.3.1 Testing for the potential distorting effect of informational frictions

As discussed in the previous section, we want to see how much of the differences in the wage distribu-

tion can be attributed to information frictions. Following our discussion above, we can test whether

a distribution µ can induce the observed wage distribution, with some information structure, by

examining all the joint distributions π that have a marginal µ and satisfy the following constraints

For every g we have

∀j, w, w′ :
∑

w−j ,v

π(v,w|g)
[
(v − w)q(w,w−j)− (v − w′)q(w,w−j)

]
≥ 0 (Obedience)

∀j :
∑
v

∑
w:w=max(w)

π(v,w|g) = h(w) (Data-Match )
(2.2)

where h(w) is the density function of H. The first constraint is the obedience constraint, which,

together with the third constraint, assures us that the resulting joint distribution of actions and
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states is a BCE, and therefore, there exists some BNE, with some information structure, that can

induce it. The data match constraint, makes sure that the BCEs we consider can induce the observed

wage distributions in the data.

As we are interested in the extent in which information, and not other underlying differences

across groups, drives the size of the wage gap, we can first check whether there exist π(v,w|g1) and

π(v,w|g2), that satisfy the linear constraint in 2.2 and

∑
w

π(v,w|g1) =
∑
w

π(v,w|g2) ∀v ∈ V (2.3)

Finding π(v,w|g1) and π(v,w|g2) that satisfies (2.2) and (2.3) assures us that there exists a single

distribution µ that, with some information structure, can induce the wage distributions of the two

groups. If such a distribution exists, then we cannot rule out the possibility that the observed wage

gap between the two groups is induced by differences in the information firms have before making

a job offer. If we cannot find a distribution that satisfies 2.2 and 2.3, then the differences in wages

across groups are not driven solely by information frictions, but must be driven also by differences

in the underlying productivity distribution.

Further more, we can also quantify the potential distorting effect of informational frictions in the

labor market by finding the distribution of workers’ productivity, implied by π, satisfying (2.2) that

has the smallest mean and compare it to the observed mean wage. This would give us an upper

bound on the potential size of information in shaping the wage distribution. Specifically, we want to

measure
max

∑
v

v
∑
w

π(v,w|g)−
∑
w

wh(w|g)

s.t (2.2)

(2.4)
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The size of 2.4 gives us a bound on how much wages can diverge from the workers productivity and

how much rents firms can extract from workers by utilizing their information.

2.3.1.1 Relation to other measures on discrimination

In the economics, discrimination is broadly categorized into statistical and taste-based paradigms,

grounded in seminal works by Arrow (1973) and Becker (1957). Statistical discrimination involves

decision-makers, commonly employers, using observable characteristics—such as race or gender—as

heuristic proxies for unobservable attributes like skill or reliability, thereby generating biased out-

comes (Phelps, 1972). Taste-based discrimination, by contrast, is rooted in the decision-maker’s

intrinsic preferences or prejudices against certain groups (Becker, 1957). Although these forms of

discrimination have disparate motivations, both yield equivalently adverse impacts on marginalized

populations.

Within the framework of our model, discrimination is entirely subsumed into the productivity

distribution, µ. Specifically, if employers possess disutility in hiring from disadvantaged groups,

this will manifest as a shift left in the distribution of productivity ν. Our metric for evaluating

disparity is designed to answer the following question: In a setting where firms only have access

to group membership information—assuming this constraint is also known to be shared by other

firms—would wage offers be identical for individuals belonging to different groups?

Consequently, the model serves as a diagnostic tool: if we were to conclusively rule out the

existence of a common productivity distribution across groups, it would imply that firms are incor-

porating race or group identity in their decision-making processes. Conversely, the identification of a

parameter µ in line with our assumptions would suggest that the observed disparities between social

groups could be attributed, at least partially, to additional information that firms possess either
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about individual productivity or competitive firms.

2.4 Computation and Inference

The set of joint distributions that satisfy (2.2) gives a tractable way to characterize the identified set

of productivity distributions. Unfortunately, the size of π, the joint distribution, grows exponentially

with the number of firms making a wage offer to the worker. For example, for a grid of size 15 and

10 firms, we need to keep track of 1511 variables. Therefore, If we represent the joint distribution as

a vector of floats we would need around 35Gb of memory, and if we want to solve for the test for 2.3,

we would need to hold twice as much memory. This clearly makes an analysis for a large number of

players infeasible. Instead, we can use certain characteristics of the auction setup in order to reduce

the dimensions of the problem.

We start by defining the set of identified productivity means to be

M = {m = E[v;µ] : µ ∈ QBNE(H)}

In Appendix 2.8.1 we show that this set is convex. This implies that it’s enough to identify max(M)

and min(M) to describe this set. Next, we show that we can restrict attention to a set of bi-mass

distributions, that puts a positive mass only on 0, the lower bound of the support of the wage

distribution, and w̄ = max(Wi), the upper bound.

Claim 6. Let µ ∈ QBCE(H), then there exists a µ̃ with two mass points on 0 and w̄ and mean

E[v; µ̃] = E[v;µ] such that µ̃ ∈ QBCE(H)

The proof of this claim, as all other claims in this section is in Appendix 2.8.1. Next, we show that

in order to check whether there exists a single distribution that can induce the wage distributions
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of two groups, then, it is sufficient to only check whether the set of means that can generate the

wage distribution of one group, Mg1 , intersects with the set of means that can generate the wage

distribution of the second group, Mg2 .

Claim 7. Let Mgi , i ∈ {1, 2} be the set of identified means that can induce the wage distribution of

group gi. Then, there exists a distribution of worker productivity µ such that µ ∈ QBCE(Hgi) for i ∈

{1, 2} if and only if Mg1 ∩Mg2 ̸= ∅. Also, the set of distribution means in QBCE(Hg1)∩QBCE(Hg2)

is contained in [max{mg1 ,mg2},min{mg1 ,mg2}] where mgi = max(Mgi) and mgi = min(Mgi).

Claim 6 and 7 and the fact that M is convex, implies that instead of characterising the entire set

of possible distributions, we can just focus on finding Mg1 and Mg2 while restricting our search to

a family of bi-mass distributions. This reduces the computational burden by, first, reducing the size

of the joint distribution we need keep track of, and second, it allows us to solve the linear problem

separately for each group and compare the set of identified means instead of solving the two problems

together and require that (2.3) hold.

Finally, notice that the problem is grown exponentially with the number of players. We therefore

want to solve a smaller problem, that takes advantage of our setup. We do it by taking advantage

of the anonymous game structure of the auction game, and noticing that firms only care about

the productivity of the worker, the highest wage offer, and the second highest wage offer. To take

advantage of this we start by defining the object p(w,w1, n1, w2, n2, v) which is the joint probability

of a firm making a wage offer w, while the highest wage offer is w1, the number of people who bid

w1 is n1, the second highest wage offer is w2 and n2 is the number of firms who bid w2. Notice

that p(w,w1, n1, w2, n2, v) has all the information needed to calculate the obedience and data match
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constraints. 5

Furthermore, p(w,w1, n1, w2, n2, v) does not grow exponentially with the number of players and

therefore it is easier to work with, for larger set of players. We therefore, want to show that we can

express the set of QBCE(H) in terms of this object.

To do so, we start by requiring that p(w,w1, n1, w2, n2, v) satisfy the obedience constraint

∑
w1,n1,w2,n2,v

p(w,w1, n1, w2, n2, v)((v−w)q(w,w1, n1, w2, n2)−(v−w′)q(w′, w′1, n′1, w′2, n′2)) ≥ 0 ∀w,w′

(2.6)

where (w′1, n′1, w′2, n′2) is the first and second order statistics of the modified distribution, if a firm

changes it’s action from w to w′. We also require that it satisfy the data match constraint

∑
w,n1,w2,n2,v

p(w, w̃, n1, w2, n2, v) = h(w̃) (2.7)

The next set pf constraints assures that we have enough players to play against w1 and w2, in a

5. Notice that by defining p(w,w1, n1, w2, n2, v) to be a distribution over the order statistics, we have also impose
the following trivial constraints

w1 ≥ w

w1 ≥ w2

if w1 = w2 then n1 = n2 > 1

if w1 > w2 then n1 = 1, n1 + n2 ≤ N

if n1 = n2 = N then w = w1

if n1 + n2 = N then w ∈ {w1, w2}
if w1 > w2 then w ̸∈ [w2, w1]

(2.5)
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symmetric BCE6. The first constraint considers the case in which w1 > w2 and n1 + n2 = N

p(w1, w1, n1, w2, n2, v)(N−1
n1−1

)(N−n1

n2
) =

p(w2, w1, n1, w2, n2, v)(N−1
n2−1

)(N−n2

n1
) (2.8)

when w1 > w2, and n1 + n2 < N we also require

p(w1, w1, n1, w2, n2, v)(N−1
n1−1

)(N−n1

n2
) =

∑
w<w2

p(w,w1, n1, w2, n2, v)(N−1
n1
)(N−1−n1

n2
) (2.9)

Finally, when w1 = w2, and n1 = n2 < N , we require that

p(w1, w1, n1, w1, n1, v)(N−1
n1−1

) =
∑

w<w1

p(w,w1, n1, w1, n1, v)(N−1
n1
) (2.10)

Denote by BCEM(H) the set of marginals p(w,w1, n1, w2, n2, v) that satisfy the above constraints

for a given observed wage distribution H

BCEM(H) =

{
p(w,w1, n1, w2, n2, v) : p(w,w1, n1, w2, n2, v) satisfies (2.5)− (2.10)

}

and let QBCEM (H) be the implied set of productivity distributions

QBCEM (H) =

{
µ ∈ ∆(V) :

∑
w,w1,n1,w2,n2

p(w,w1, n1, w2, n2, v) = µ(v) and p ∈ BCEM(H)

}

The next claim shows that the set of productivity distributions implied by any marginal in BCEM(H)

is the same as the set of productivity distribution we that can be rationalize with a BCE.

6. Claim 10 in the appendix shows that we can symmetrize any BCE when we use data only on the winning bids
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Claim 8. QBCE(H) = QBCEM (H)

Therefore, instead of traversing the space of BCEs, we can use the restricted space of BCEM .

This space does not grow exponentially with the number of players; rather, it grows quadratically,

subject to additional constraints.

2.4.1 Inference

The identification arguments presented above assumed that we know the wage distribution H. How-

ever, when doing empirical analysis, we actually observe a an i.i.d sample from the joint distribution

H(w, x, g), and therefore the analysis should take into account the sample variation. To do so, we

follow the inference method suggested by Fang et al. (2020) for inference on linear systems with

known coefficients. In what follows, we briefly describe the statistical test.

Given a i.i.d sample of wages {w}ni with w distributed according to P ∈ P Fang et al. (2020)

show how to test the following hypothesis

H0 : P ∈ P0 H1 : P ∈ P\P0

where

P0 ≡ {P ∈ P : β(P ) = Ax for some x ≥ 0}

where A ∈ Rp×d, with p as the number of constraints and d is the number of variables.7 Fang et al.

(2020) shows that in order to test whether x satisfies the linear problem, we can use the test statistics

7. It is known that any linear program with inequality constraints can be turned into a linear problem in standard
form, in which all the inequalities are be written as equalities, with added slack variables. In our implementation we
rewrite the linear problem in section 2.4 in its standard form
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Tn

Tn ≡ max

 sup
s∈V̂e

n

√
n
〈
s, β̂n − Ax̂⋆n

〉
, sup
s∈Ṽ i

n

√
n
〈
A†s, x̂⋆n

〉
where β̂n is an estimator for β(P ), which in our case is the density of the wage distribution and x∗n

is A†β̂n, in which A† is the Moore-Penrose pseudoinverse of A. The test statics checks two types of

violation - the first is whether β̂n is in the range of A and the second is whether there exists x ≥ 0,

that solves the linear system. Fang et al. (2020) show how to calculate the critical value of the test

by bootstrapping the sample β̂ and solving a linear program at each iteration. The critical value they

derive depends on a tuning parameter λ. We choose λ using the data-driven method they suggest.8

2.5 Data and Results

2.5.1 Data

We use the American Community Survey (ACS) 2010 sample to construct the wage distributions.

We restrict our sample to individuals between the ages 21 and 65, who are in the labor force and are

employed in the private sector. We remove self employed workers and restrict attention to workers

who work full-time. We also remove people who earn at the top 1%. Figure 2.2 plots the wage

distributions for white men, white women, black men and black women, and table 2.1 shows some

descriptive on the workers from different groups. It is quite apparent from both the figure and the

table that the two distributions are very different, where the distributions of women and black workers

are more concentrated at low values.

Finally, to solve the linear program in (2.3) we normalize we normalize the wage distribution to

8. It seems that different values of λ do not change the results by much
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be between [0, H × 2
3 ] and discretize the set of bids as {0, .., H × 2/3}. We let H = 15 which implies

that we allow the highest value worker to be 1.5 times the maximum wage in our sample ($240,000).

2.5.2 Results

2.5.2.1 Market Frictions

Figure 2.1 shows the upper and lower bound on the average productivity of workers in dollars, per

year, by demographic group, and under the assumption that there N firms who make a job offer to

the worker.9 The figure shows that the upper bounds on the productivity of white men is higher than

that for the other groups. The lower bound for all groups is given simply by the mean wage (since

under complete information, the observed wage distribution is the productivity distribution).10 The

figure also shows that as the number of firms who are making a wage offer increases, and therefore,

the competition among firms intensifies, the set of productivity distributions that can induce the

wage distribution shrinks. Table 2.3 shows the difference between the upper and lower bounds for

each group and under the assumption that there are N firms offering wage. Notice that as the lower

bound is given by the mean wage, this table presents the results to (2.4) and gives information on

the potential distorting effect of information. We can see that as the number of firms who compete

for workers is smaller, the potential role information can play is larger. For example, the difference

between the mean productivity of white men and their average wage can go up to $114,000, if each

worker only receives two wage offers. On the other hand, if there are less search frictions in the

economy and each worker receives 50 wage offers, then the average wage can differ from the average

9. The bounds are showing the upper bound and lower bound of the confidence interval construct as described in
section 4.1 and were calculated from the value of N = {2, 3, 5, 7, 10, 20, 50}

10. The small decline in driven by sample noise and our inference method
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productivity level by roughly $80,000. These bounds are not very tight, as the 90% of the wage

distribution for white men is $96,000. But these bounds capture the large role information can have

in shaping the wage distribution.

The shaded area in figure 2.1 describes the set of bi-mass productivity distribution that can

explain all four wage distributions. As discussed above, the set of these distribution decreases as the

number of firms increases. Therefore, we can conclude that without imposing additional assumptions

on the information set of the firms, we can’t rule out that information frictions alone can explain all

of the wage gap in the data.

Next, we turn to make a set of assumptions on the information set of the agent. First, we assume

that workers sort into occupations and that it is common knowledge among all firms what is each

worker’s occupation. Tables 2.6, 2.7, 2.8 show the bounds on the mean productivity across different

occupations, for different groups. First, we can see that the set of possible mean productivity for each

occupation is wide. For example, the productivity for white men working at management, business,

science and arts occupations can generate, on average between $76,525 and $208,894 and on the other

side, workers in production can generate on average between $38,514 and $133,732. Interestingly,

we find that we cannot rule out that workers in all occupations have the same average productivity.

In our setup, information can give rise to differences in workers’ wage across occupations, even

if the distribution of workers productivity is the same across all occupations. For example, firms

might find it much harder to assess whether a worker is going to be a good manager or not than

it would assessing whether a worker would do a good job in the assembly line. These differences

in the available information to firms can generate the observed differences in wages, rather than

self-selection of different quality workers or the role of each occupation in the production process.

Next, we impose the assumption that all firms observe the workers’ experience and education
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level.11 We divide the education level to three categories - High school dropouts, high-school gradu-

ates/have some college education, and workers with college degree. Similarly, we divide the experience

level into three groups - 0-6, 6-12 and more than 12 years. This partition captures the shape of the

wage schedule, as discussed in Rubinstein and Weiss (2006).

A common practice in the empirical labor literature is to condition wages on both experience and

education. This goes back to Mincer (1958), who rationalized the linear structure of the wage equation

using compensation differential arguments. Later papers justify the inclusion of these variables in

wage equation based on a human capital rationale (Heckman et al. (2005)), implying that workers’

ability changes as they acquire education and experience on-the-job training. In most of these

models, workers are being compensated by firms, which are assumed to observe the investments

workers are making in human capital. In the framework we present, this amounts to an assumption

on the information available to the firms. Specifically, we assume that all firms observe the workers

investment in education and the experienced they gained.

Table 2.4 and 2.5 estimate the bounds on the mean productivity, under the assumption that

firms observe a public signal on the workers education level and experience. Interestingly, we find

that for relatively low level of competition, wage disparities between highly educated and experienced

white men and uneducated and inexperienced white men cannot be explained by a single productivity

distribution and different signals observed by the firms. This implies that, under the assumption that

all firms observe workers’ education level and experience, workers’ ability differs between experienced

educated workers and non experienced educated workers. We again cannot rule out that there are

no differences between the four groups of workers.

In our latest exercise, we examine whether all the information frictions are driven by different

11. Following the convention, we define experience to be Age− 6− School Years
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selection patterns. In our model, selection and sorting into different industries can be thought of

as components of the signal and information firms possess. For instance, when not conditioning on

industry, part of the information firms hold may include the industry in which they operate, and

the informational content of the industry is influenced by the varying selection patterns within these

sectors. Consider a simplified model where both men and women are know their latent productivity.

Further assume that women are discouraged from pursuing STEM fields before entering the labor

market. In this scenario, the women who do choose STEM are likely to have higher latent abilities. In

our framework, different market structures can be interpreted as signals. Consequently, we may wish

to tighten the conditions of our test to exclude cases where selection is not informative, conditional

on group membership. This would imply that µ(v|g, Industry) = µ(v|Industry). In such a world,

agents may choose industries differently, but these variances in selection are not stratified by group.

Table 2.9, 2.10, 2.11 present results on mean average productivity. Our findings suggest that we

cannot dismiss the possibility that differences in average wages are influenced by factors other than

selection. Thus, we demonstrate that information frictions can account for wage gaps even when

selection patterns are consistent across industries.

To further strengthen the test, we investigate whether wage disparities can persist in the absence

of selection across all industries and groups. For this, we require that µ(v|g, Industry) = µ(v).

In scenarios with two competing firms, the bounds on the mean wage distribution remain largely

unchanged, falling between (481266, 1318475), implying that other informational factors can continue

to influence the observed wage gap.
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2.6 Conclusion

In this paper, we explored the potential role information frictions play in shaping the wage gaps.

We found that differences in average wages across white men, white women, black men and black

women can be explained only by information frictions. This result differs from previous results in the

statistical discrimination literature that argued that incomplete information is not enough to explain

average wage gaps between groups of workers. We find that the simple model can generate the

observed wage distribution without the need to argue for differences in the underlying productivity

distribution of workers. This paper stresses the potential importance that information may have on

the wage setting process. It implies that additional research is needed to understand what firms

know about their job applicants and the applicants’ outside option. Within the framework we use

here, it will be interesting to explore further what assumptions we need to impose on the accuracy

of the information firms have, to be certain that information frictions are not the sole reason for

observed wage gaps. Also, leveraging the results from Bergemann et al. (2017) for the lowest possible

revenue, over all information structures, we can try and see what is the largest wage gap possible

that can be driven solely by differences in information. Finally, throughout the paper we make a

strong assumption that firms know the number of competitive wage offers. Following Bergemann

et al. (2021b) we can try and relax this assumption and see how this affects the set of identified

distributions.
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2.7 Tables and Figures

0 10 20 30 40 50
Number of firms offering wage

20000

40000

60000

80000

100000

120000

140000

160000

W
or

ke
r p

ro
du

ct
iv

ity
 in

 $
20

10

White Men
White Women
Black Men
Black Women

Figure 2.1: Upper and Lower bound on the average productivity of workers
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Figure 2.2: The four groups wage density
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WM WW BM BW

Mean 48563.17 37554.15 36432.41 31341.16
Max 240000 240000 240000 240000
Min 100 10 160 270
5% 10000 8600 6011 6400
10% 14400 12000 11000 10000
25% 24000 20000 19200 16800
50% 40000 30000 30000 26000
75% 63000 48000 46996 40000
90% 96000 71000 70000 60000
95% 120000 90000 86000 74000

Table 2.1: Descriptive Statistics

Number of firms

making wage offer WM WW BM BW

2 [47987,162073] [37179,140853] [35573,138985] [30766,132775]

3 [47988,146452] [37188,121794] [35199,119605] [30718,111444]

5 [47988,136953] [37188,112263] [34881,109901] [30707,100821]

7 [47988,132665] [37188,109088] [34596,106686] [30056,97281]

10 [47988,129968] [37188,106971] [34193,104542] [29736,94920]

20 [47988,128291] [37188,106100] [32577,103624] [28301,93431]

50 [47988,128493] [34368,106859] [28620,104303] [25384,93569]

Table 2.2: The potential effect of information frictions - Lower and upper bound on mean productivity
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Number of firms making a wage offer

2 3 5 7 10 20 50

[47987,132775] [47988,111444] [47988,100821] [47988,97281] [47988,94920] [47988,93431] [47988,93569]

Table 2.3: The potential effect of information frictions - Lower and upper bound on the mean
productivity of distribution who can explain the four wage distributions

2 Firms

Education Level Experience WM WW BM BW
High School Dropout 0-6 [15319,92703] [11081,87987] [9011,96062] [7092,94718]

7-12 [20342,96624] [16152,94052] [16435,103435] [14517,94652]
> 12 [28838,122783] [20210,92011] [24767,117984] [19899,95538]

High School Graduate 0-6 [21256,99727] [18746,90545] [17669,93798] [16549,92353]
7-12 [31603,126274] [26236,111052] [25679,119453] [22478,102406]
> 12 [45527,148205] [34188,129723] [35864,133170] [29737,125400]

Colledge Degree 0-6 [40168,144552] [35318,131746] [31989,136923] [30233,129410]
7-12 [62895,181397] [52576,164796] [45543,158272] [45392,148662]
> 12 [82479,212782] [62469,184971] [63189,190784] [54328,171938]

7 Firms

High School Dropout 0-6 [14029,66141] [10583,57881] [7281,65979] [6608,62251]
7-12 [19533,73363] [15407,67793] [14517,79088] [11659,67656]
> 12 [27643,89631] [19345,68390] [22643,89364] [18391,71701]

High School Graduate 0-6 [21025,76537] [18745,65859] [17669,68383] [15921,66302]
7-12 [30797,92048] [25448,84638] [24225,88884] [21381,80770]
> 12 [45530,120607] [34196,96999] [34821,101871] [28827,89957]

Colledge Degree 0-6 [38983,116040] [34111,100075] [28947,104308] [28086,95252]
7-12 [62879,148784] [52584,130671] [41184,126222] [42260,123713]
> 12 [82479,176048] [62481,151496] [61468,155905] [51629,135734]

Table 2.4: Bounds on workers average productivity, conditional on education level and potential
experience
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10 Firms

Education Level Experience WM WW BM BW
High School Dropout 0-6 [13402,64374] [9210,55929] [5595,63972] [6352,60087]

7-12 [18774,71814] [14893,66074] [13406,77559] [10829,65936]
> 12 [27146,87215] [18788,66823] [21884,86833] [17799,70146]

High School Graduate 0-6 [20880,74991] [18745,64213] [17669,66683] [15599,64571]
7-12 [30210,89768] [25181,82102] [23488,86375] [20952,79312]
> 12 [45530,117837] [34196,94823] [34379,99804] [28420,87588]

Colledge Degree 0-6 [37989,114158] [33622,97962] [27790,102131] [27246,92988]
7-12 [60372,145800] [52582,128350] [38531,123631] [40364,120912]
> 12 [82479,174027] [62481,148403] [58411,153232] [50631,133584]

20 Firms

High School Dropout 0-6 [11840,63242] [7294,54182] [3492,62351] [4524,58341]
7-12 [17532,71316] [12464,65073] [9429,76783] [7855,64738]
> 12 [26031,85318] [17814,65963] [18931,84802] [16250,69312]

High School Graduate 0-6 [19643,74645] [17464,63243] [14190,65654] [13672,63339]
7-12 [29067,88216] [24222,79797] [21368,84287] [19135,78954]
> 12 [45530,115852] [34197,93631] [33062,98990] [27361,85758]

Colledge Degree 0-6 [35849,112219] [32144,97114] [23457,101523] [21664,91743]
7-12 [56893,143332] [52569,127208] [31380,121825] [35756,118823]
> 12 [82479,171734] [62481,145958] [52517,150815] [45987,132912]

Table 2.5: Bounds on workers average productivity, conditional on education level and potential
experience
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2 Firms

Occupation Group WM WW BM BW
Management, Business, Science, and Arts Occupations [76625,208894] [57573,181048] [58336,187206] [48810,168396]
Business Operations Specialists [65573,186839] [52541,164298] [48725,176692] [43796,151843]
Financial Specialists [71936,199559] [52686,162749] [52865,178582] [43615,143603]
Computer and Mathematical Occupations [74141,196949] [63720,181718] [60328,179537] [52433,166268]
Architecture and Engineering Occupations [71872,192156] [55976,172515] [62691,185354] [53822,165105]
Life, Physical, and Social Science Occupations [67111,196682] [52802,175720] [44551,171823] [41623,154256]
Community and Social Services Occupations [37646,138424] [37043,130940] [33372,132875] [31944,125830]
Legal Occupations [88543,235467] [56902,174134] [60966,225476] [48260,181602]
Education, Training, and Library Occupations [47662,163162] [32599,132008] [37783,157180] [28892,132628]
Arts, Design, Entertainment, Sports,
and Media Occupations [53833,176646] [44932,154469] [44734,166339] [41846,176973]
Healthcare Practitioners and Technical Occupations [66053,197836] [49731,156613] [52702,179129] [45163,153952]
Healthcare Support Occupations [27874,130456] [24848,100183] [24823,121753] [23327,100108]
Protective Service Occupations [32309,139368] [28109,131308] [28286,133987] [24715,120371]
Food Preparation and Serving Occupations [20828,97493] [17492,88966] [19136,98924] [16585,87479]
Building and Grounds Cleaning and
Maintenance Occupations [26093,116161] [18498,89078] [22015,105658] [17688,89980]
Personal Care and Service Occupations [30939,132934] [21914,103643] [23918,119923] [20125,97484]
Sales and Related Occupations [50945,168246] [33413,140368] [35719,143231] [23720,115050]
Office and Administrative Support Occupations [36085,136175] [31668,123477] [29733,127330] [28946,122347]
Farming, Fishing, and Forestry Occupations [27890,127262] [39127,152968] [25718,149189] [39177,153329]
Construction and Extraction Occupations [37479,138066] [30028,136089] [32630,135689] [24688,144758]
Extraction Workers [44358,157283] [21782,152090] [26276,163722] NA
Installation, Maintenance, and Repair Workers [42828,139650] [37730,142002] [37729,136710] NA
Production Occupations [38514,133732] [26918,111167] [32992,130707] NA
Transportation and Material Moving Occupations [33802,131167] [24511,111238] [29967,127651] NA

Table 2.6: Bounds on workers average productivity, conditional on workers occupation
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7 Firms

Occupation Group WM WW BM BW
Management, Business, Science, and Arts Occupations [76625,169777] [57577,145076] [54116,153555] [45329,135079]
Business Operations Specialists [65448,154220] [52099,131696] [42098,138651] [39345,122227]
Financial Specialists [71918,163953] [52485,130089] [48050,142737] [39945,117936]
Computer and Mathematical Occupations [74051,156648] [61596,146183] [56233,147102] [47310,131507]
Architecture and Engineering Occupations [70479,154077] [54610,138489] [55688,150741] [46836,132635]
Life, Physical, and Social Science Occupations [65720,160237] [51258,138811] [39839,133847] [37862,119501]
Community and Social Services Occupations [33007,109672] [34161,101851] [26580,104162] [29032,93117]
Legal Occupations [88496,200619] [56878,144154] [53748,190271] [38300,145431]
Education, Training, and Library Occupations [45377,127190] [31392,98486] [33176,124857] [26541,97419]
Arts, Design, Entertainment,
Sports, and Media Occupations [52800,139921] [44850,127186] [36617,131619] [36937,138408]
Healthcare Practitioners and Technical Occupations [65886,162302] [48325,123964] [45033,150164] [42621,122434]
Healthcare Support Occupations [24961,98421] [23822,79817] [22091,88241] [22076,78861]
Protective Service Occupations [29757,105633] [24337,97460] [26597,99728] [21001,93328]
Food Preparation and Serving Occupations [19804,74132] [17088,63444] [17599,75130] [15758,61597]
Building and Grounds Cleaning and
Maintenance Occupations [25176,88096] [17906,64631] [20791,83971] [16728,65258]
Personal Care and Service Occupations [28405,98663] [20846,81088] [22266,85450] [19376,73986]
Sales and Related Occupations [50911,138401] [32574,105960] [32731,111553] [21909,91027]
Office and Administrative Support Occupations [36063,104420] [30972,89282] [27728,91958] [27952,86430]
Farming, Fishing, and Forestry Occupations [25201,99290] [35471,123528] [21461,112086] [30778,126935]
Construction and Extraction Occupations [36623,107669] [26634,101684] [29600,102368] [24274,108122]
Extraction Workers [40273,125597] [18606,120786] [14447,119779] NA
Installation, Maintenance, and Repair Workers [42799,113402] [37258,113339] [35077,107657] NA
Production Occupations [38518,104185] [25519,88313] [30712,97642] NA
Transportation and Material Moving Occupations [33793,98113] [23298,86653] [28609,92708] NA

Table 2.7: Bounds on workers average productivity, conditional on workers occupation
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20 Firms

Occupation Group WM WW BM BW
Management, Business, Science,
and Arts Occupations [76625,166430] [57577,141935] [45345,148821] [37079,131489]
Business Operations Specialists [58736,149263] [46327,128267] [29731,135836] [31570,117638]
Financial Specialists [71885,159846] [45646,126686] [33171,140255] [33936,112715]
Computer and Mathematical Occupations [68836,153449] [56905,141257] [46843,141379] [38030,129238]
Architecture and Engineering Occupations [67924,150277] [46086,136264] [45065,146401] [34522,131654]
Life, Physical, and Social Science Occupations [55480,155727] [40652,135961] [28514,130594] [21564,115947]
Community and Social Services Occupations [24490,107272] [28945,99429] [16578,102073] [22298,90054]
Legal Occupations [88496,195748] [47229,140724] [53748,184538] [31877,142224]
Education, Training, and Library Occupations [38981,123319] [28460,95193] [17513,120517] [22330,94152]
Arts, Design, Entertainment,
Sports, and Media Occupations [47738,136981] [37656,122293] [24753,128216] [26116,135459]
Healthcare Practitioners and Technical Occupations [58297,157688] [45870,119938] [32726,146931] [36208,117997]
Healthcare Support Occupations [20014,94702] [22574,78217] [16147,83810] [19959,77462]
Protective Service Occupations [24897,102426] [18697,93604] [20706,95901] [15724,88592]
Food Preparation and Serving Occupations [18077,71971] [15925,60509] [15409,73057] [14335,58548]
Building and Grounds Cleaning
and Maintenance Occupations [23477,83498] [16375,61965] [18349,78770] [14886,62529]
Personal Care and Service Occupations [24228,95010] [19357,79344] [19014,80651] [17723,71946]
Sales and Related Occupations [47882,134475] [30151,102301] [25232,108178] [18490,85934]
Office and Administrative Support Occupations [36060,101409] [29988,85300] [24901,88066] [26061,82214]
Farming, Fishing, and Forestry Occupations [20928,94898] [30530,118689] [11645,108258] [18845,122541]
Construction and Extraction Occupations [34674,105381] [18908,98501] [24187,99302] [8308,101214]
Extraction Workers [31598,120985] [11504,117622] [12112,114695] NA
Installation, Maintenance, and Repair Workers [39817,108685] [26796,109516] [30595,105905] NA
Production Occupations [35848,101749] [23603,83685] [27117,94170] NA
Transportation and Material Moving Occupations [30841,94733] [20671,81744] [25467,88790] NA

Table 2.8: Bounds on workers average productivity, conditional on workers occupation
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2 Firms

Industry WM WW BM BW
Manufacturing [51603,165744] [41228,147681] [37974,140989] [32236,135136]
Agriculture, Forestry, Fishing and Hunting [26349,121153] [20759,114528] [20276,114465] [13559,117558]
Mining, Quarrying, and Oil and Gas Extraction [58573,182287] [49893,174495] [42515,171245] [43006,180193]
Utilities [68786,188346] [55564,171634] [52700,179344] [45394,164217]
Construction [41245,145932] [38722,136342] [32555,133411] [34464,161730]
Wholesale Trade [50023,161877] [40677,146380] [34408,134032] [31644,139270]
Retail Trade [38702,144191] [29245,121394] [29409,132853] [23726,109194]
Transportation and Warehousing [44925,151051] [34796,130588] [35069,135860] [31672,128256]
Information [59357,182527] [48665,163438] [47853,164229] [40560,145176]
Finance and Insurance [68880,198556] [45656,150463] [48799,168783] [38032,136619]
Real Estate and Rental and Leasing [45301,157944] [38286,141775] [31590,135128] [28701,126959]
Professional, Scientific, and Technical Services [73554,204013] [50989,163977] [54941,182658] [45757,160898]
Management of Companies and Enterprises [76108,221525] [50109,178051] [38003,209860] [30729,161417]
Administrative and Support and Waste
Management and Remediation Services [34711,142735] [30748,135058] [27053,127743] [25166,119261]
Educational Services [44992,155291] [34927,132773] [35322,143380] [33985,132721]
Health Care and Social Assistance [50806,170414] [36929,137531] [34237,138185] [30027,129365]
Arts, Entertainment, and Recreation [34991,142072] [27996,126447] [26216,129311] [22568,116629]
Accommodation and Food Services [25733,115601] [20555,100725] [22556,113567] [17749,97714]
Other Services (except Public Administration) [35504,134105] [23456,108539] [27857,132699] [20734,99251]

Table 2.9: Bounds on workers average productivity, conditional on workers industry
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7 Firms

Industry WM WW BM BW
Manufacturing [51612,134608] [41231,118723] [36726,110687] [30235,101586]
Agriculture, Forestry, Fishing and Hunting [24607,92681] [18941,90768] [17736,89932] [8749,93443]
Mining, Quarrying, and Oil and Gas Extraction [55265,148578] [45856,141418] [32556,129821] [27710,140728]
Utilities [66263,149144] [51783,136749] [48326,145166] [38776,126950]
Construction [41239,117385] [35609,107135] [29524,100374] [29389,127405]
Wholesale Trade [48910,133800] [38893,117560] [31052,102648] [25541,105761]
Retail Trade [38710,113214] [28570,95350] [27410,97872] [22440,87595]
Transportation and Warehousing [44052,123077] [32990,98875] [32898,105019] [29800,95238]
Information [59334,148093] [46611,132647] [43232,127500] [35926,117606]
Finance and Insurance [68880,162241] [45670,124398] [42958,136879] [35404,107319]
Real Estate and Rental and Leasing [43829,131150] [35568,111745] [25634,100984] [24940,91391]
Professional, Scientific, and Technical Services [73558,165286] [50963,133384] [52721,146898] [42123,128791]
Management of Companies and Enterprises [68437,184609] [44744,140143] [38003,188899] [18735,114030]
Administrative and Support and
Waste Management and Remediation Services [33106,109539] [29329,99664] [24243,96567] [23813,90303]
Educational Services [43031,125904] [33431,101282] [32062,114458] [30621,101375]
Health Care and Social Assistance [50829,139442] [36207,106364] [30652,105565] [28557,96175]
Arts, Entertainment, and Recreation [34464,109715] [25202,94023] [22697,91891] [19824,88929]
Accommodation and Food Services [24510,92875] [19695,76858] [20192,90335] [16580,72427]
Other Services (except Public Administration) [33874,102865] [22392,86758] [24614,97725] [19042,76866]

Table 2.10: Bounds on workers average productivity, conditional on workers industry
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20 Firms

Industry WM WW BM BW
Manufacturing [51612,130834] [37980,116419] [32591,108308] [26179,98146]
Agriculture, Forestry, Fishing and Hunting [21109,88130] [14737,85484] [13076,84088] [3480,91745]
Mining, Quarrying, and Oil and Gas Extraction [48265,145092] [33985,138430] [24853,127153] [27710,134493]
Utilities [61672,144757] [44739,134383] [33646,139736] [28042,122922]
Construction [38744,114453] [31312,104486] [24550,97369] [17793,123590]
Wholesale Trade [45915,129799] [35197,115140] [24300,99105] [17443,102681]
Retail Trade [36154,110269] [26704,90931] [23412,93794] [18857,84367]
Transportation and Warehousing [41544,118305] [29460,95778] [28707,102418] [25914,92120]
Information [53656,144592] NA [34904,123931] NA
Finance and Insurance [68880,157830] [42065,119983] [32769,133746] [30948,105078]
Real Estate and Rental and Leasing [37659,127280] [31054,109052] [18259,97315] [18567,87449]
Professional, Scientific, and Technical Services [73558,161522] [46587,129410] [41286,143796] [35427,124724]
Management of Companies and Enterprises [57786,180154] [30070,137348] [38003,187760] [16930,106873]
Administrative and Support and Waste
Management and Remediation Services [29293,106325] [25667,95805] [19796,92246] [19712,85836]
Educational Services [36777,121483] [30639,98317] [23872,110801] [25647,98710]
Health Care and Social Assistance [43814,135558] [34379,103685] [24682,102088] [26470,92274]
Arts, Entertainment, and Recreation [26851,106333] [21969,89930] [16239,87826] [14144,83966]
Accommodation and Food Services [22004,87941] [17967,74770] [17136,85375] [13866,69803]
Other Services (except Public Administration) [31306,100058] [19250,83238] [17398,93708] [16398,75103]

Table 2.11: Bounds on workers productivity, conditional on workers industry

2.8 Appendix

2.8.1 Proofs

Claim 9. The set of identified means,

M = {m = E[v;µ] : µ ∈ QBNE(H)}

is convex.

Proof. fix m∗,m∗∗ ∈ M and choose m ∈ [m∗,m∗∗] and λ such that λm∗+(1−λ)m∗∗ = m. We want
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to show that there exists a joint distribution π with marginal
∑

w π(v, w) = µ(v) and E[v;µ] = m

such that µ is part of the identified set of distributions. Let π∗ and π∗∗ be two BCEs that induce

H and have marginals µ∗ and µ∗∗ with the corresponding means. We can then define define π to be

λπ∗(v,w) + (1− λ)π∗∗(v,w). Notice that for each v we have

∑
w

π(v, w) =
∑
w

λπ∗(v,w) + (1− λ)π∗∗(v,w) = µ(v)

Similarly, π satisfies the data match constraint

∑
v

∑
w:max(w)=w

π(v,w) =
∑
v

∑
w:max(w)=w

λπ∗(v,w) + (1− λ)π∗∗(v,w)

= λH(w) + (1− λ)H(w)

= H(w)

and also the obedience constraint

∑
v

∑
w−j

π(v,w)∆(wj , w
′, w−j , v) =

∑
v

∑
w−j

λπ∗(v,w) + (1− λ)π∗(v,w)∆(wj , w
′, w−j , v) ≥ 0

Therefore π is a BCE that induces the wage distribution H and m ∈ M
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2.8.1.1 Proof of Claim 6

Proof. Let µ ∈ QBCE(H) and fix a π such that
∑

w π(v,w) = µ(v) and π induces H. Then notice

0 ≤
∑
v,w−i

π(v,w)

[
(v − wk)q(wk,w−k)− (v − w′

k)q(wk,w−k)

]
=

∑
v,w−i

p(w)F (v|w)

[
v(q(wk,w−k)− q(wk,w−k)) + (wkq(wk,w−k)− w′

kq(w
′
k,w−k)

]
=

∑
w−i

p(w)

[
E[v|w](q(wk,w−k)− q(wk,w−k)) + (wkq(wk,w−k)− w′

kq(w
′
k,w−k)

]

We can therefore construct the following π̃ by equating the marginals
∑

v π(v,w) =
∑

v π(v,w) and

defining

π̃(w̄|w) = p s.t p× w̄ = E[v|w]

π̃(0|w) = 1− π(w̄|w)

∀v /∈ {0, H}, π̃(v|w) = 0.

Notice that by construction π̃ satisfies both the obedience constraint and data match constraint and

therefore π̃ ∈ QBCE(H). Finaly, let µ̃ =
∑

w π̃(v,w), and notice that due to the law of iterated

expectations we have that E[v; µ̃] = E[v;µ] as needed.

2.8.1.2 Proof of claim 7

Proof. The first direction is easy. If Mg1∩Mg2 ̸= ∅ then we know that QBCE(Hg1)∩QBCE(Hg2) = ∅.

We prove the reverse direction by construction. Let µg1 ∈ QBCE(Hg1), µg2 ∈ QBCE(Hg2) and

have the same mean mg1 = mg2 . We want to show that there exist at least one distribution that

can rationalize both distributions. From claim 6, we know that we can construct a distribution
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µ̃gi ∈ QBCE(Hgi), with two mass points on the edges of the support and mgi = E[v; m̃]. Therefore

we can construct two such distributions µ̃g1 and µ̃g2 . But as E[v; m̃ug1 ] = E[v; m̃ug2 ], then it must

be µ̃g1
d
= µ̃g2 , as needed. Further notice that we can do this for each mean value in the interval

[max{mg1 ,mg2},min{mg1 ,mg2}], which concludes the proof.

2.8.1.3 Proof of claim 8

Before proving claim ??, we show that if we only have access to wages, and not wage offers, it is

without loss to restrict attention only to a symmetric (i.e. exchangeable) BCEs

Claim 10. For any π ∈ BCE(H), there exists a symmetrized π̃ that is also in BCE(H).

Proof. We want to show that there exist and exchangable BCE π̃(v,w) that can induce the same

winning bid. We show this by construction. Let Ξ be the set of permutations of {1, ...N} and we

associate each permutation with a mapping from WN → WN where ξ(w) is a permuted profile of

wage offers, in which ξi(w) = wξ(i). First, notice that any permuation of the players in a BCE is

also a BCE. Then, fix π ∈ BCE(H), and define define π̃ to be

π̃(v,w) =
1

N !

∑
ξ∈Ξ

π(v, ξ(w))

and notice that π̃ satisfies the obedience constraint and the prior consistency constraint and therefore
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a BCE. Further notice that it can generate the winning bid distribution

∑
v

∑
w:max(w)=w

π̃(v,w) =
∑
v

∑
w:max(w)=w

1

N !

∑
ξ∈Ξ

π(v, ξ(w))

=
1

N !

∑
ξ∈Ξ

∑
v

∑
ξ(w):max(ξ(w))=w

π(v, ξ(w))

=
1

N !
N !H(w)

= H(w)

as needed.

We can now show the proof for claim 8.

Proof. We start by showing that QBCEM (H) ⊆ QBCE(H). let µ ∈ QBCEM and choose a

p(w,w1, n1, w2, n2, v) ∈ BCEM(H) that satisfies
∑

w,w1,n1,w2,n2 p(w,w
1, n1, w2, n2, v) = µ(v). We

want to show that we can construct a symmetric BCE, π, which satisfies all i ∈ N

∑
π:wi=w,w1=w̃1,w2=w̃2,

n1=ñ1,n2=ñ2

π(v,w) = p(w̃, w̃1, ñ1, w̃1, ñ1, v) (2.11)

Notice that such a BCE would clearly satisfy the obedience constraint and the data match constraint.

Let
Πi(w̃, w̃

1, ñ1, w̃2, ñ2) =

{
w : wi = w̃,w1 = w̃1,w2 = w̃2,

|{i : wi = w̃1} = ñ1|{i : wi = w̃2} = ñ2,wi ∈ {w : p(w, w̃1, ñ1, w̃2, ñ2) > 0)},
}

be the set of wage offers vectors in which firm i offers wage w̃, the other wage offers generate

a distribution that satisfy the order statistics and includes only wage offers that are played with
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positive probability. Consider the case in which w1 > w2, n1 + n2 = N . Without loss of generality,

we fix firm 1 and set for every joint probability of v, and w ∈ Π1(w
1, w1, n1, w2, n2), the following

π(v,w) =
p(w1, w1, n1, w2, n2, v)(N−1

n1−1

)(N−n1

n2
)

and for every v, w ∈ Π1(w
2, w1, n1, w2, n2) set

π(v,w) =
p(w2, w1, n1, w2, n2, v)(N−1

n2−1

)(N−n2

n1
)

The notice that that for each i and v and w = w1 we have

∑
w:wi=w1,w1=w̃1n1=ñ1w2=w̃2n2=ñ2

π(v,w)

=
∑

w:w1=w1,wi=w1,w1=w̃1n1=ñ1w2=w̃2n2=ñ2

π(v,w) +
∑

w:w1=w2,wi=w1,w1=w̃1n1=ñ1w2=w̃2n2=ñ2

π(v,w)

=
∑

w:w1=w1,wi=w1,w1=w̃1n1=ñ1w2=w̃2n2=ñ2

p(w1, w1, n1, w2, n2, v)(N−1
n1−1

)(N−n1

n2
)

+
∑

w:w1=w2,wi=w1,w1=w̃1n1=ñ1w2=w̃2n2=ñ2

p(w2, w1, n1, w2, n2, v)(N−1
n2−1

)(N−n2

n1
)

=
∑

w:w1=w1,wi=w1,w1=w̃1n1=ñ1w2=w̃2n2=ñ2

p(w1, w1, n1, w2, n2, v)(N−1
n1−1

)(N−n1

n2
)

+
∑

w:w1=w2,wi=w1,w1=w̃1n1=ñ1w2=w̃2n2=ñ2

p(w1, w1, n1, w2, n2, v)(N−1
n1−1

)(N−n2

n1
)

=
p(w1, w1, n1, w2, n2, v)(N−1

n1−1

)(N−n1

n2
) (

N − 1

n1 − 1

)(
N − n1

n2

)
= p(w1, w1, n1, w2, n2, v)
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where the third equality comes from constraint (2.8). An equivalent argument shows that this holds

for every i and w2. Next, consider the case in which w1 > w1 and n1 + n2 < N . Let W =

{
w : w <

w2, p(w,w1, n1, w2, n2) > 0

}
and define for each v and w ∈ ∪w∈WΠ1(w,w

1, n1, w2, n2)

π(v,w) =
p(w,w1, n1, w2, n2, v)(N−1

n1
)(N−1−n1

n2
)

Set again, for every v, and w ∈ Π1(w
1, w1, n1, w2, n2), the following probability

π(v,w) =
p(w1, w1, n1, w2, n2, v)(N−1

n1−1

)(N−n1

n2
)

and for every v, w ∈ Π1(w
2, w1, n1, w2, n2) set

π(v,w) =
p(w2, w1, n1, w2, n2, v)(N−1

n2−1

)(N−n2

n1
)

Now, consider a firm i, making a wage offer w ∈ W and notice that

∑
w:wi=w,w1=w̃1n1=ñ1

w2=w̃2n2=ñ2

π(v,w) =

∑
w:w1=w1,wi=w,w1=w̃1,n1=ñ1,

w2=w̃2,n2=ñ2

π(v,w) +
∑

w:w1=w2,wi=w,w1=w̃1n1=ñ1

w2=w̃2n2=ñ2

π(v,w)

+
∑
w∈W

∑
w:w1=w,wi=w,w1=w̃1n1=ñ1

w2=w̃2n2=ñ2

π(v,w)

=
p(w,w1, n1, w2, n2, v)(N−1

n1
)(N−1−n1

n2
) (

N − 1

n1

)(
N − 1− n1

n2

)
= p(w,w1, n1, w2, n2, v)
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where again we used the (2.8) and (2.9). An analogous argument would show that for each i the

marginalization of our constructed BCE satisfies 2.11 for each firm which plays w1 and w2.

Next, consider the case in which w1 = w2 and n1 = n2 < N . define again W =

{
w : w <

w2, p(w,w1, n1, w2, n2) > 0

}
and set for each v and each w ∈ Π(w1, w1, n1, w1, n1)

π(v,w) =
p(w1, w1, n1, w1, n1, v)(N−1

n1−1

)
similarly for each w ∈ ∪w∈WΠ1(w,w

1, n1, w2, n2), and for each v define

π(v,w) =
p(w,w1, n1, w1, n1, v)(N−1

n1
)

A similar argument to the previous ones would show that marginalizing over these distribution satisfy

2.11. Finally, for the case in which w1 = w2 and n1 = n2 = N define

π(v,w) = p(w1, w1, N, w1, N, v)

which clearly satisfy 2.11. Notice that by construction π satisfies data match and the obedience

constraints and therefore π ∈ BCE(H). Further notice that by construction
∑

w π(v,w) = µ(v)

and therefore µ ∈ QBCE(H) which shows QBCEM (H) ⊆ QBCE(H)

Next, we turn to show that QBCE(H) ⊂ QBCEM (H). The argument are similar to the argu-

ment made to show the reverse direction, but we keep the proof here for completion. Fix µ ∈ QBCE .

Let QBCESYM (H) = {µ : ∃π ∈ BCE(H),
∑

w π(v, w) = µ(v), and π symmetric }. By claim 10 we

know that µ ∈ QBCESYM (H) we can then show that QBCESYM (H) ⊂ QBCEM (H). Fix a symmet-
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ric BCE π ∈ BCE(H) such that
∑

w π(v, w) = µ(v)∀v ∈ V . We can construct a p(w,w1, n1, w2, n2)

by marginalizing over π for a specific player. i.e. we define

p(w̃, w̃1, ñ1, w̃2, ñ2, v) =
∑

w:w1=w,w1=w̃1,n1=ñ1,w2=w̃2,n2=ñ2

π(v,w)

Notice that this construction immediately satisfies (2.6) and (2.7) and that the marginal of∑
w̃,w̃1,ñ1,w̃2,ñ2 p(w̃, w̃

1, ñ1, w̃2, ñ2, v) = µ(v). To conclude the proof we need to show that p(w,w1, n1, w2, n2)

satisfies (2.8) - (2.10). To see that 2.8 is satisfied, let X(w1, n1, x2, n2) ⊂ {w1, w2,w}N be the set

of vectors indicating which firm make a wage offer w1, which make wage offer w2 and who makes

lower wage offer w < w2, such that each vector satisfy |{i : xi = w1}| = n1, |{i : xi = w2}| = n2 and

|{i : xi = w}| = N−n1−n2. Consider the case where w1 > w2 and n1+n2 = N . Notice that due to

symmetry we have that for each x ∈ X(w1, n1, x2, n2) we have that
∑

w:wi=w1∀i:xi=w1

wi=w2∀i:xi=w2

π(v,w) = c,

where c is a constant. Then, notice that

p(w1, w1, n1, w2, n2, v) =
∑

w:
w1=w1,w1=w1,n1=n1,

w2=w2,n2=n2

=

(
N − 1

n1 − 1

)(
N − n1

n2

)
c

p(w2, w1, n1, w2, n2, v) =
∑

w:
w1=w2,w1=w1,n1=n1,

w2=w2,n2=n2

=

(
N − 1

n2 − 1

)(
N − n2

n1

)
c

which together implies (2.8). Similar line of arguments can show that this 2.9 and 2.10 are satisfied

as well. Therefore, we show p(w,w1, n1, w2, n2, v) ∈ BCEM(H) and therefore µ ∈ QBCEM (H)

which concludes the proof.
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2.8.2 Illustrative Example

To get a better intuition on the information contained in the observed wage distribution and the

obedience constraints, we consider a simple illustrative example, with only a single firm making wage

offers to workers. We assume that the worker productivity distribution lies on the finite support

V = {5, 10, 15} and that the firm also offers wages from a finite set of wage offers W = {5, 10, 15}.

The marginal-profit for the firm from hiring a worker of type v, at wage w is v − w. Finally, we

assume that workers accept the job offer, at wage w, only if the offered wage is w >= v− 5. Workers

with v = 5 are willing to work for the firm at any wage w ∈ W .12 Let p(10) and p(5) be the share

of workers who earn 10 and 5 in the data.13 Before extending a wage offer, the firm observes certain

signals on the worker productivity, t ∈ T , which is unobserved by the analyst. Therefore the firm’s

interim-expected profit, by offering a wage W , is given by π(w) = E[1{w > v − 5}(v − w)|t]. Let

F (w|t) be the wage setting rule for the firm, given the observed signal t, then a BNE satisfies that is

F , such that for each w with F (w|t) > 0 we have π(w) ≥ π(w′),∀w′ ∈ W .

Using theorem 1, we can consider the set of possible distributions of v, by looking for a distribution

of v, which satisfies the obedience and the data-match constraint. Specifically, let P(v, w) be the

joint probability of observing a wage offer, w and a worker with productivity v, then the obedience

12. This reservation wage assumption assures us that the firm has an incentive to make wage offers higher than 5

13. Notice that offering a wage of 15 is a dominated strategy, and therefore we don’t expect to see workers with wage
15
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constraint gives us the following four inequalities

P(15, 10) ≥ P(10, 10) + P(5, 10) (10 → 5)

P(10, 5) + P(5, 5) ≥ P(15, 5) (5 → 10)

P(15, 10) + P(10, 10) + P(5, 10) ≥ 0 (10 → 15)

P(10, 5) + P(5, 5) ≥ 0 (5 → 15)

(2.12)

where only the first two constraints bind. Now, consider that we want to derive bounds on the first

moment of the workers productivity distribution. let P(v|w) be the probability of the state being v,

given that the agent received a signal w. Then, using Bayes rule we can re-write these constraints as

P(15|10) ≥ P(10|10) + P(5|10)

P(10|5) + P(5|5) ≥ P(15|5)

To derive the upper bound we can solve for

max
µ(v)

¯E[v] = 15× P(15) + 10× P(10) + 5× P(5)

= 15× (P(15|5)p(5) + P(15|10)p(10))

+ 10× (P(10|5)p(5) + P(10|10)p(10))

+ 5× (P(5|5)p(5) + P(5|10)p(10))

Given the obedience constraint above and
∑

v P(v|w) = 1 for each w. Notice that in order to

maximize the above expression, we want to push as much weight onto P(15|w). However, The second

obedience constraint constrains us from doing so, while still having the firm bid 10. For the firm to bid
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10, the probability of gaining positive profit must be larger then the probability of losing. Therefore,

to solve the maximization problem, we can set P(15|10) = 1, P(15|5) = 0.5 and P(10|5) = 0.5, and

get the following upper bound

E[v] = 12.5p(5) + 15p(10) = 15− 2.5p(5)

Using a similar line of reasoning, and the first obedience constraint will give us the lower bound

E(v) = 5p(5) + 10p(10) = 10− 5p(5)

From these bounds we can see that the data shows that only a small share of workers is earning high

wages, then the distribution of workers cannot have too much weight on high values. And similarly, if

the share of workers earning low wages is small, then it must be that there is a large share of workers

with high productivity. Figure 2.3 below plots the upper and lower bound as a function of the p(5).

Finally, notice that in this example we consider only one firm. In the general model introduced

in section 2.2, the worker reservation wage was set by the other firms. This implies that actions on

the part of one firm could not induce a profitable deviation in other firms. For example, consider

an extreme case, in which we observe that the wage distribution is a degenerate distribution with

point mass on 10. This can only be result of an equilibrium where both firms know that state is 10

with certainty, and therefore Bertrand competition pushes prices to 10. On the other hand, in the

single firm example E[v] ∈ [10, 15]. The intuition for this is that in the reservation wage example,

the reservation wage does not “react optimally" to the firms actions, and therefore, the set of possible

outcomes is large. On the other hand, in the competitive environment, the firm can’t only take into

consideration the value of the worker but also needs to consider what the other firms will be willing
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Figure 2.3: Upper and Lower bounds on the mean worker productivity in the single firm game

to offer to the worker.
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CHAPTER 3

ON THE INTERPRETATION OF THE INTERGENERATIONAL

ELASTICITY AND THE RANK-RANK COEFFICIENTS FOR CROSS

COUNTRY COMPARISON

3.1 Introduction

Numerous studies have examined the relationship between parental income and child income. Two

prominent methods for summarizing the joint distribution of these incomes are the Intergenerational

Elasticity (IGE) coefficient and the Rank-Rank coefficient (Mogstad and Torsvik (2023)). This

paper explores how these measures summarize the joint income distribution and their subsequent

connections to the underlying mechanisms that link parental and child income.

Let Ic and Ip denote child and parent income, respectively. The IGE coefficient is the slope

coefficient obtained by regressing the logarithm of child income on the logarithm of parent income

as follows:

log Ic = αIGE + βIGE log Ip + ϵ. (3.1)

This regression coefficient captures the persistence between child log income and the parent log

income, with higher values indicating stronger persistence.1 A popular alternative to this method

is the Rank-Rank regression, which assesses the correlation between parent and child ranks within

their respective income distributions. Assuming a continuous income distribution for both parents

and children, let Rc = Fc(Ic) and Rp = Fp(Ip) represent the parent and child ranks in their respective

income distributions, where Fc(x) and Fp(x) are the cumulative distribution functions of child and

1. In many cases, the level of intergenerational mobility is reported using (1-βIGE)
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parental income, respectively. Researchers then measure the Rank-Rank relationship by estimating

the following regression:

Rc = αr + βrRp + ε. (3.2)

The regression slope coefficient quantifies how the child position in the income distribution relates

to their parent position in the corresponding income distribution.

The IGE coefficient has been extensively employed in empirical studies to describe intergenera-

tional persistence, dating back to the 1980s (Becker and Tomes (1986), Atkinson (1980)). However,

the Rank-Rank coefficient has gained popularity more recently, after Chetty et al. (2014b) applied

it to measure social mobility over time in the United States. While both coefficients are used to

describe intergenerational mobility, each conveys distinct information about the joint distribution

of parental and child income. As demonstrated below, the IGE provides a weighted average of the

expected change in child logarithmic income in relation to a change in parent logarithmic income.2

Consequently, the IGE coefficient is influenced by both the marginal distributions and the depen-

dency structure between parental and child income. In contrast, the Rank-Rank coefficient measures

positional mobility across generations, only summarizing the copula while isolating the dependency

structure between the incomes and disregarding changes in marginal distributions (Deutscher and

Mazumder (2023), Mogstad and Torsvik (2023), Aloni and Krill (2017)). From a practical perspec-

tive, the Rank-Rank coefficient has shown to more robust to sample restrictions (Chetty et al. (2014a),

Chetty et al. (2014b), Dahl and DeLeire (2008)). In some countries (although not all; Bratberg et al.

(2017), Acciari et al. (2022)), the Rank-Rank relation between parental and child income is almost

2. Mitnik and Grusky (2020) illustrates that the IGE can be considered as the elasticity of the conditional geometric
mean, i.e., the expected percentage change in the geometric mean of the child’s income with respect to the percentage
change in the parental income.
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perfectly linear. On the other hand, the conditional expectation function, E[log Ic| log Ip], demon-

strates significant nonlinearity (Chetty et al. (2014a), Deutscher and Mazumder (2023)). Moreover,

the Rank-Rank coefficient allows researchers to include individuals with no income. This could be

important since, as observed by Chetty et al. (2014a), the IGE demonstrates significant sensitivity

to the substitution of zeros with ones or 1, 000s.

This paper examines the challenges that are inherent to using IGE and Rank-Rank coefficients

for cross-country mobility comparisons. We express these coefficients as weighted averages of causal

factors affecting intergenerational mobility using Yitzhaki’s theorem (Yitzhaki (1996)), demonstrat-

ing that these coefficients assign varying weights across the parental income distribution. This helps

to explain certain properties that were shown in the existing literature. We further explore how

the parental income distribution influences the IGE and Rank-Rank coefficients, complicating cross-

country comparisons, particularly when mobility occurs in different segments of the parental income

distribution in each country. A related study (Maasoumi et al. (2022)) also employs Yitzhaki’s

theorem, framing the IGE coefficient weighting scheme as a special case within a broader class of

intergenerational mobility measures that captures different preference relations over income distri-

butions. The authors show that the IGE coefficient corresponds to a specific case of a preference

relations that places higher weight on the mobility of wealthier households. In contrast, our study

focuses on interpreting the coefficients as a weighted average of the underlying causal mechanisms

and examines how these interpretations are important for cross-country comparison.

3.2 Decomposing the IGE coefficient

We begin by examining the βIGE coefficient. Let us assume that (Ic, Ip) are i.i.d, E[| log Ic|], E[| log Ip|] <

∞, and E[log Ic| log Ip = t] exists and is differentiable for all t. According to Yitzhaki’s theorem, we
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can express βIGE as a weighted average of the derivative of the conditional expectations:

βIGE =
Cov(log Ic, log Ip)

Var(log Ip)
=

∫ ∞

−∞

∂E[log Ic| log Ip = t]

∂t
w(t)dt,

where

w(t) =
E
[
log Ip − µIp | log Ip > t

]
P(log Ip > t)

Var(log Ip)
,

∫ ∞

−∞
w(t)dt = 1, µIp = E[log Ip].

We can then interpret the IGE coefficient as a summary statistic of the underlying function E[log Ic| log Ip],

where the weights depend on the distribution of parental income. Specifically, these weights are max-

imized at E[log Ip] and approach zero at the boundary of the support (Yitzhaki (1996), Heckman et

al. (2006)). Thus, βIGE assigns higher weight to households with the mean parental log income3 and

lower weights to households at the top and bottom of the parental log income distribution.

The fact that the IGE coefficient assigns lower weights to households at the extremes may be

concerning in cases in which a significant portion of mobility occurs for children from very poor

or very rich families. This can potentially occur as a result of policies aimed at reducing poverty

or simply through regression to the mean. The fact that the weights depend on the underlying

parental log income distribution implies that comparisons of the IGE coefficients that are cross-

country or over time can be difficult to interpret. For instance, without knowing the exact weights,

differences between two countries may simply arise from differences in the weighting schemes used

by the IGE coefficient, even if the conditional expectation function E[log Ic| log Ip] is the same across

both countries.

Notably, the fact that the IGE coefficient assigns higher weights to mobility around the mean

3. Note that this is generally not the same as families with mean income.
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may explain why the IGE is considered sensitive to sample definitions and restrictions. Some sample

restrictions, such as excluding households with zero income or those with very high income, can

significantly impact the mean of the distribution. As a result, households that receive higher weights

change and the IGE coefficient also changes.

To better understand how the IGE coefficient relates to the Rank-Rank coefficient and underlying

income elasticity,4 we aim to decompose the integrand into the expected parent-child income elasticity

and additional correlative mechanisms. Let the causal model governing child income be given as

follows:

Ic = h(Ip, u), (3.3)

where u represents other unobserved factors that affect child income. Let ϵIc,Ip(u) =
∂ log Ic
∂ log Ip

be the

elasticity of child income with respect to parent income for given unobserved factors, u, evaluated

at Ip. Let Ip(t) = exp(t) denote the inverse of log Ip, where log Ip = t. We can then rewrite the

integrand as follows:

∂E[log Ic| log Ip = t]

∂t
=

∫ ∞

−∞

∂ log h
(
Ip (t) , u

)
P (u| log Ip = t)

∂t
du

= E

[
ϵIc,Ip(t)(u)

∣∣∣∣ log Ip = t

]
︸ ︷︷ ︸

Causal IGE

+

∫ ∞

−∞
log h

(
Ip (t) , u

) ∂P (u| log Ip = t)

∂t
du︸ ︷︷ ︸

Other Factors

,
(3.4)

where the second equality follows from the product rule. The first component captures the conditional

expected causal IGE, while the second component captures how changes in income are associated with

4. As noted by Mitnik and Grusky (2020), the IGE coefficient does not actually provide information about the

parent-child income elasticity, which is evident in our setup, as ∂E[log Ic| log Ip]
∂ log Ip

̸= E

[
∂ log Ic
∂ log Ip

| log Ip
]
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changes in other factors that affect income.5 Therefore, βIGE can be expressed as a summation of

the weighted causal intergenerational elasticities (causal IGE) and an additional term that captures

how parental income is correlated with other factors that affect child income. In most studies of

intergenerational mobility, both terms are crucial as researchers are interested in measuring how

parent income is associated with child income, through either the causal effect of parental income or

the association between parental income and other factors such as neighborhood quality, quality of

schools, inherited human capital, and peer effects.

3.3 Decomposing the Rank-Rank coefficient

We now turn our attention to the Rank-Rank coefficient. Using Yitzhaki’s theorem once more, we

have the following:

βr =
Cov(Rc, Rp)

Var(Rp)
=

∫ 1

t=0

∂E[Rc|Rp = t]

∂t
w(t)dt,

where, using the fact that the rank distribution is uniform, the exact weighting scheme is as follows:

w(t) =
12(1− t)t

2
,

∫ 1

0
w(t)dt = 1.

Comparing the weights of the IGE coefficient to the Rank–Rank coefficient, the Rank–Rank

weights place most of the weight on households at the median of the parental income distribution.

In contrast, the IGE assigns most of the weight to households closer to the mean of the distribution.

In addition, weights decline symmetrically as we move further away from the median and toward

the extremes. Thus, similar to the βIGE coefficient, the Rank–Rank coefficient assigns lower weights

5. This decomposition of the βIGE can be thought of as an omitted variable bias. In this case, bias is taken with
respect to the Ordinary Least Squares weighted causal effects of log parental income, as implied in Yitzhaki’s theorem.
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to households closer to the top and bottom of the parental income distribution. Notably, since

the median is usually less sensitive to changes in sample restrictions at the top and bottom of

the distributions, this weighting scheme might explain why the Rank–Rank coefficient has been

documented to be more robust for different sample restrictions (Dahl and DeLeire (2008), Chetty et al.

(2014b)). Finally, compared with the IGE coefficient, the weights for cross-country comparisons are

more consistent, assigning similar weights to households at the same rank of the income distribution.

Note that, if the marginal distributions differ across countries, this implies that the Rank–Rank

weighting scheme assigns different weights to households with the same income levels. Whether this

is desirable depends on the researcher’s questions and objectives.

As we did for the IGE coefficient, we can express the Rank-Rank coefficients in terms of the

underlying parent-child income elasticities. Let ϵc and ϵp be the elasticities of rank with respect to

income for the child and parents, respectively. Let Rcϵc = Rc
∂Rc
∂Ic

Ic
Rc

and Rpϵp = Rp
∂Rp
∂Ip

Ip
Rp

represent

the semi-elasticities of rank with respect to income. These quantities measure how the rankings of

parents and child change in response to a percentage variation in their respective incomes. We can
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then rewrite, with a slight abuse of notation, the integrand as follows:6

∂E[Rc|Rp = t]

∂t
=

∂E[Fc
(
h
(
F−1
p (t), u

))
|Rp = t]

∂t

=

∫ ∞

−∞

∂Fc
(
h
(
F−1
p (t) , u

))
P (u|Rp = t)

∂t
du

= E

[
∂Rc

∂h

∂h

∂Ip

1
∂Rp
∂Ip

∣∣∣∣Rp = t

]
+

∫ ∞

∞
Fc(h(F

−1
p (t), u))

∂P (u|Rp = t)

∂t
du

= E

[
∂Ic
∂Ip

∂Rc
∂Ic
∂Rp
∂Ip

Ic
Ic

Ip
Ip

Rc

Rc

Rp

Rp

∣∣∣∣Rp = t

]
+

∫ ∞

∞
Fc(h(F

−1
p (t), u))

∂P (u|Rp = t)

∂t
du

= E

[
Rc

Rp

ϵc
ϵp
ϵIc,Ip(u)

∣∣∣∣Rp = t

]
︸ ︷︷ ︸

Re-Scaled Causal IGE

+

∫ ∞

∞
Fc(h

(
F−1
p (t), u)

) ∂P (u|Rp = t)

∂t
du︸ ︷︷ ︸

Other factors

,

(3.5)

where the third equality is due to the product rule and the chain rule. The fourth equality results

from dividing and multiplying by parents and child income and ranks and the definition of the parents

and child ranks.7 The final equality follows from the definition of semi-elasticities. Expressing the

integrand in this way reveals the similarities and differences between the IGE coefficient and the

Rank-Rank coefficient. First, as child income cumulative distribution function is monotonic, similar

to the log function, the effects of other factors on income have remained the same, except that we

use child marginal income distribution to transform the income instead of log. Likewise, the Rank-

Rank coefficient is also affected by the causal effects of the IGE, but now the IGE is multiplied by a

“translation” term that converts the income elasticities to rank elasticities.

6. Maasoumi et al. (2022) expresses the Rank-Rank coefficient as a weighted average of ∂E[log Ic| log Ip=t]
∂t , with

weights that are generally positive but do not necessarily sum to 1. In contrast, we express the Rank-Rank coefficient
as a weighted average of ∂E[Rc|Rp=t]

∂t with weights that sum to 1.

7. For the sake of clarity, we slightly abuse notation and denote Ic = h
(
F−1
p (t), u

)
, Rc = Fc

(
h
(
F−1
p (t), u

))
,

Ip = F−1
p (t), and Rp = t.
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If we are using the Rank–Rank coefficient for cross-country comparisons, the decomposition we

derived above explicitly demonstrates that the Rank–Rank coefficient is only useful for comparisons

of positional mobility. However, It cannot speak to how similar or different the mechanisms driving

this mobility are across countries.8 For example, consider two countries with the same underlying

causal mechanisms h(Ip, u) and assume that Ip ⊥⊥ u, which implies that the second term is zero. If

the parental income distributions differ across the two countries, the Rank-Rank coefficient would

still be different for two reasons. The first reason is that, although the weighting scheme is the same

for households with the same income rank, the regression weighting scheme weights households with

the same income level differently. The second and more substantial reason is that the way that

the causal mechanisms affect rank would differ between the two countries as the semi-elasticities

are different in the causal IGE term in equation 3.5. Therefore, although we might motivate the

use of the Rank-Rank coefficient as a means to abstract away from the marginals, we cannot avoid

considering the marginals if we want to use the Rank-Rank coefficient to think about differences in

the driving mechanisms of mobility between two countries.

3.4 Discussion

This paper employs Yitzhaki’s theorem to express IGE and Rank-Rank coefficients as weighted av-

erages of the causal mechanisms driving income and positional mobility. We demonstrate that inter-

preting cross-country comparisons using the IGE coefficient can be challenging due to the regression

weighting scheme. Additionally, we establish that the Rank-Rank coefficient is readily interpretable

only when researchers focus on positional mobility, without providing insights into the similarities or

8. In theory, the Rank–Rank coefficient can be more informative on causal mechanisms that operate directly from
parent income rank to child income rank, bypassing income levels. We leave this observation for future research.
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differences in the underlying mechanisms driving mobility across countries.

We highlight the potential drawbacks of using linear regression coefficients as summary statistics.

Linear regression may be preferred in certain cases for its efficiency and stability, even with a small

number of observations. However, it seems that in the context of intergenerational mobility compar-

isons, this is not always warranted. Recent research has shifted to using large administrative datasets

that can provide precise estimates of the relation between parent and child income. Consequently,

the practice of reporting regression coefficients over estimates from more flexible and transparent

methods may not always be well justified.
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