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ABSTRACT

Recent advancements in single-cell RNA sequencing (scRNA-seq) have revolutionized tran-

scriptomic research by enabling the study of gene expression at unprecedented resolution,

revealing intricate cellular heterogeneity and dynamics. Despite these advancements, ana-

lyzing scRNA-seq data poses significant challenges, including normalization biases, excessive

zeros, and donor effects, which can confound differential expression (DE) analysis. This

thesis addresses these challenges through innovative methodologies.

Chapter 2 critically evaluates existing DE analysis methods, highlighting limitations such

as normalization biases and the impact of excessive zeros on statistical models. To overcome

these issues, we introduce a novel paradigm using a generalized linear mixed model (GLMM)

that leverages raw unique molecular identifier (UMI) counts for robust DE analysis.

In Chapter 3, we adopt the HIPPO framework, a clustering algorithm that prioritizes

zero proportion as a primary indicator. We examine the potential of higher order counts

(proportions) to extract additional information beyond zero proportion, aiming to enhance

the HIPPO algorithm. To achieve this, we introduce the k-inflation test for identifying

k-inflated genes and develop a Poisson proportion t-test for further analysis.

Chapter 4 shifts focus to cell-type specific differential methylation analysis, recognizing

RNA methylation, particularly N6-methyladenosine (m6A), as pivotal in RNA regulation.

Building on the RADAR framework, a novel methodology is proposed using a mixture Pois-

son GLMM to analyze methylation data integrated with scRNA-seq. This approach utilizes

cellular composition estimates to uncover differential methylation patterns across cell types

without direct measurement of cell-type specific methylation.

This dissertation proposes novel frameworks for DE and methylation analysis in scRNA-

seq data, enhancing our understanding of cellular diversity and gene regulation. These

methodologies contribute to advance biological research and pave the way for new discoveries

in precision medicine and therapeutic development.
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CHAPTER 1

INTRODUCTION

1.1 Technological advancements in single cell RNA sequencing

Over the past decade, the field of transcriptomics has been revolutionized by the emergence

of single-cell RNA sequencing (scRNA-seq) technologies. These advancements have enabled

researchers to analyze and break down cellular heterogeneity with unprecedented resolution,

revealing the complex landscape of gene expression within individual cells. Unlike traditional

bulk RNA sequencing, which averages gene expression profiles across thousands of cells,

scRNA-seq allows for the examination of transcriptomic variations at the single-cell level.

This capability is crucial for understanding diverse biological processes, such as development,

differentiation, and disease progression, where cell-to-cell variability plays a critical role.

The transition from bulk RNA sequencing to single-cell RNA sequencing marks a sig-

nificant leap in the resolution and depth of transcriptomic analysis. Bulk RNA sequencing

methods, while powerful, provide only an average expression profile across a population of

cells, which may mask the underlying heterogeneity and obscure the contributions of individ-

ual cell types. This limitation is particularly problematic in tissues composed of diverse cell

populations, where significant differences between cell types can drive biological functions

and disease mechanisms. In contrast, scRNA-seq allows for obtaining detailed information

of these complex tissues, enabling the identification of distinct cell types and states. This

detailed analysis not only improves our understanding of cellular diversity but also helps find

new biomarkers and therapeutic targets.

1.2 Differential expression in different cell types

One of the key applications of scRNA-seq is the identification of differentially expressed

genes (DEGs) across different cell types or conditions. Differential expression analysis helps
1



to uncover the molecular signatures that define specific cell populations and their functional

states.

However, traditional differential expression methods are not well suited for scRNA-seq

data. Some methods are adapted from approaches originally designed for bulk RNA se-

quencing data, which do not utilize the unique characteristics of scRNA-seq. Most methods

rely on normalization procedures that may introduce biases. For scRNA-seq data, gene ex-

pression levels are likely to have a higher proportion of zeros compared to traditional bulk

RNA-seq data, so scRNA-seq data sets have been analyzed mostly through zero-inflated

models or normalized procedures that may introduce biases. In state-of-the-art protocols,

unique molecular identifiers (UMIs) provide a more accurate measure of transcript abun-

dance by mitigating the effects of amplification biases. Studies have shown that cell-type

heterogeneity is the major driver of zeros observed in 10X UMI data. Pre-processing the data

with normalization procedures may discard an important feature for differential expression

analysis between different cell types.

1.3 Outline

This thesis aims to address several critical aspects of differential expression and methylation

analysis in single-cell data.

Chapter 2 discusses the problems and limitations of existing methods for differential ex-

pression analysis. We dissect four major challenges in single-cell DE analysis: normalization,

excessive zeros, donor effects, and cumulative biases. These challenges highlight the limita-

tions and conceptual pitfalls in current workflows. In response, we propose a novel approach

to address several of these issues—a generalized linear mixed model (GLMM) for differential

expression analysis in single-cell RNA data. This model utilizes raw UMI counts without

normalization, thus preserving the integrity of the original data and avoiding potential biases

introduced by normalization procedures. The GLMM framework includes random effects to

2



account for the inherent variability among donors, offering a robust and flexible approach to

identify DEGs.

In Chapter 3, we adopt the HIPPO framework, a clustering algorithm that prioritizes

zero proportion as a primary indicator. We explore the potential of higher order counts

(proportions) to extract additional information beyond zero proportion, aiming to enhance

the HIPPO algorithm. To achieve this, we introduce the k-inflation test for identifying

k-inflated genes and develop a Poisson proportion t-test for further analysis.

Chapter 4 explores cell-type specific differential methylation analysis. RNA methyla-

tion, particularly N6-methyladenosine (m6A), is a critical post-transcriptional modification

influencing RNA metabolism and function. Integrating methylation data with scRNA-seq en-

hances our understanding of gene regulation at the single-cell level. Building on the RADAR

framework, we propose a novel methodology for cell-type specific differential methylation

analysis using a mixture Poisson generalized linear mixed model. This approach utilizes

estimates of cellular compositions to identify differential methylation patterns without the

requirement for direct experimental measurement of cell-type specific methylation.

3



CHAPTER 2

THE CURSES OF PERFORMING DIFFERENTIAL

EXPRESSION ANALYSIS USING SINGLE-CELL DATA

2.1 Introduction

Differential expression (DE) analysis in single-cell transcriptomics provides essential insights

into cell-type–specific responses to internal and external stimuli (Saliba et al. [2014], Green-

wald et al. [2019], Grubman et al. [2019], Lawlor et al. [2017]). While many methods are

available to identify differentially expressed genes from single-cell transcriptomics, recent

studies raise important concerns about the performance of state-of-the-art methods, includ-

ing both methods tailored to single cell data and techniques that work well in bulk (Squair

et al. [2021] , Das et al. [2021], Das et al. [2022]). As population-level single-cell studies

rapidly become more feasible, powerful and accurate analytical methods will be essential for

obtaining meaningful results. In this context, we discuss the four “curses” that currently

plague the differential expression analysis of single-cell data: normalization, zeros, donor

effects, and cumulative biases, highlighting the various limitations and conceptual flaws in

the current workflows. We demonstrate these limitations using real data from 10X single-

cell RNA-seq (sRNA-seq) data from post-menopausal fallopian tubes (Lengyel et al. [2022]).

Finally, we present a new paradigm that offers a potential solution to some of these issues

and illustrate its performance using two case studies.

2.1.1 The curse of normalization

The term “normalization” has been used to denote multiple distinct approaches in genomics

(Li et al. [2015], Zyprych-Walczak et al. [2015]). For example, it can refer to the process

of correcting PCR amplification biases introduced during sequencing library preparation (li-

brary size normalization) (Dillies et al. [2013], Robinson and Oshlack [2010], Lytal et al.
4



[2020]), the process of harmonizing data across different experimental batches (batch nor-

malization) (Leek et al. [2010], Korsunsky et al. [2019], Chen and Zhou [2017], Chen et al.

[2021], Hu et al. [2022], or to the process of transforming the data to adhere to a nor-

mal distribution (data distribution normalization) (Schmid et al. [2010]). All three have

been introduced to handle both bulk and single cell RNA-seq data, aiming to minimize un-

wanted technical variations. Choosing appropriate normalization techniques for DE analysis

of scRNA-seq data is clearly important to maintain the integrity of the data, but the field

has yet to establish a definitive gold standard outlining the circumstances for which different

normalizations should be performed.

Library size normalization is critical in bulk RNA-seq analysis, as it is impossible to track

the absolute abundance of RNA molecules in typical bulk RNA-seq protocols due to an un-

known fold of amplification introduced by PCR during library construction. Normalization,

in this instance, focuses on estimating and subsequently correcting for a sample-specific size

factor. This process allows bulk RNA-seq to estimate relative RNA abundances. Post-

normalization, samples are calibrated against a common reference, resulting in most genes

displaying similar expression levels across samples. When performing differential expres-

sion analysis with bulk RNA-seq data, genes are classified as either up-regulated or down-

regulated, based on the assumption that the majority remain unchanged across groups.

While this size-factor based normalization technique is suitable for bulk RNA-seq, it does

not translate effectively to scRNA-seq. Protocols in scRNA-seq, such as the 10X, employ

unique molecular identifiers (UMIs) which discern between genuine RNA molecules and those

generated via PCR. This enables the absolute quantification of RNA levels. Unfortunately,

size-factor–based normalization methods, like counts per million reads mapped (CPM) con-

vert data into relative abundances erasing useful data provided by the UMIs. Furthermore,

CPM-normalized data does not account for competition among genes for cellular resources

because the uniform number of molecules found in CPM-normalized data does not accurately

5



represent true expression levels, which ultimately leads to suboptimal DE analysis results.

In batch effect normalization, dimension reduction methods pinpoint genes with con-

sistent expression patterns across various batches; these genes act as anchors, guiding the

alignment and integration of data (Tran et al. [2020]). However, in scRNA-seq analysis,

only highly expressed or highly variable genes are retained for estimating batch effects and

subsequent integration. As a result, gene numbers in integrated scRNA-seq datasets are

noticeably reduced compared to the raw UMI data.

For data distribution normalization, the field offers both straightforward (e.g., log-transfo-

rmation) and advanced strategies (e.g., variance stabilizing transformation, or VST). A no-

table implementation for scRNA-seq of VST is sctransform (Hafemeister and Satija [2019]),

which employs a regularized negative binomial regression model, preserving the Pearson

residuals for future analytical steps, including DE analysis (Lause et al. [2021]). However,

if the underlying data distribution deviates significantly from the assumed model, the appli-

cation of VST may introduce bias into the analysis.

To demonstrate the effects of various normalization methods on single-cell data, we com-

pared the raw UMI counts of 10x scRNA-seq data obtained from post-menopausal fallopian

tubes (see Methods) with data normalized using one of three methods: 1) CPM; 2) integrated

log-normalized counts after removing batch effects using the Seurat CCA model (Argelaguet

et al. [2020]); and 3) VST data using sctransform (Hafemeister and Satija [2019]). As a

result, we see the total UMI counts revealed substantial variations in library sizes across

different cell types; notably macrophages (MP) and secretory epithelial (SE) cells exhibited

significantly higher RNA content than other cell types (Fig. 2.1a). Furthermore, SE cells

exhibited larger mean library sizes than mast (MA) cells across all donors. These findings

align with the understanding that the main active cell types in post-menopausal fallopian

tubes are MP and SE cells, with other cell types remaining dormant post-menopause. How-

ever, in the integrated data, the disparities in library size distribution were mitigated, even

6



within cell types (Fig. 2.1a). While integration reduced differences across donors, it came

at the cost of diminishing variation across cell types. It is worth mentioning that CPM nor-

malization equalizes library sizes across all cell types; such normalizations may potentially

obscure differences between cell types that are vital for understanding their unique biological

functions.

(a)

(b)

Figure 2.1: Effects of normalization on library size and zero frequency. a) Violin plots display
library sizes based on raw UMI counts (top) and after data integration (bottom), categorized
by cell types and donors. b) Violin plot illustrating the frequency of gene expression (non-
zero counts) in raw UMI data.
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2.1.2 The cures of zeros

Bulk RNA-seq provides the average transcriptional output of each gene expressed within

a population of heterogenous cell types (Wang et al. [2019], Yang et al. [2021]). Even a

moderate sequencing depth can yield information about many thousands of different genes.

In comparison, scRNA-seq data is much sparser in comparison, with fewer genes expressed

per sample and a high proportion of genes with zero UMI counts. Zeros in UMI counts for a

gene can arise from three scenarios: a genuine zero, indicating that the gene is not expressed,

or a sampled zero, indicating that the gene is expressed at a low level, or a technical zero,

indicating that the gene is expressed at a high level but not captured by the assay. Despite

an increasing body of evidence suggesting that cell-type heterogeneity is the major driver

of zeros observed in 10X UMI data (Kim et al. [2020], Qiu [2020], Svensson [2020]), the

prevailing notion within the single-cell community is that zeros are largely uninformative

technical artifacts caused by “drop-out” genes (i.e., technical zeros).

Accordingly, many single-cell DE studies include pre-processing steps aimed at removing

so-called zero inflation. Several popular pre-processing methods include: 1) performing

feature selection by aggressively removing genes based on their zero detection rates, such

as requiring non-zero values in at least 10% of total cells and restricting DE analysis to a

smaller gene set; 2) imputing zeros and performing DE on imputed values (Gong et al. [2018],

Li and Li [2018], Tracy et al. [2019], Chen and Zhou [2018]); or 3) modeling zeros explicitly

as an extra component and essentially performing DE on non-zero values only (Pierson and

Yau [2015], Finak et al. [2015]).

However, if zeros are in fact biological zeros due to no expression or very low expres-

sion, dismissing or correcting for zeros in scRNA-seq is equivalent to discarding a significant

portion of information in the dataset before any analysis. By failing to account for cell-

type heterogeneity, zero-inflation pre-processing steps such as normalization and imputation

become inappropriate and can introduce unwanted noise into downstream analyses, includ-

8



(a)

(b)

(c)

Figure 2.2: Effects of normalization on library size and zero frequency. a) Histograms rep-
resenting the distribution of non-zero counts in raw UMI data across various data transfor-
mations. b) Histograms detailing the zero counts in raw UMI data, comparing VST with
integrated data where zeros are imputed or converted to non-zeros. c) Histograms showing
the distribution of gene RUNX3 across different data transformations.
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ing DE. Ironically, the most desired markers in single-cell DE analysis—e.g., genes that are

exclusively expressed in a rare cell type that accounts for less than 5% of the total popula-

tion—may be obscured by current pre-processing steps for handling zeros.

In the fallopian tube dataset, we observed that distinct cell types display varied gene

expression patterns in UMI counts. However, these differences become less apparent in im-

puted or certain transformed datasets (Fig. 2.1a). Gene expression frequency differs among

cell types (Fig. 2.1b). However, normalization processes can substantially alter the distribu-

tion of both non-zero UMI (Fig. 2.2a) and zero UMI counts (Fig. 2.2b) counts. For example,

while the frequency of genes exponentially decline as raw UMI counts increase, VST data

forms a more bell-shaped curve with a mode around 1.5 for non-zero raw UMI counts. Non-

zero CPM-normalized data, (scaled by 1000) peaks near 0.2 and is more right-skewed than

the VST data. Following batch integration, UMI counts primarily fall below 5 and are not as

strongly right-skewed. It is noteworthy that zero UMI counts can be given non-zero values

via normalization (except with CPM normalization); for example, zeros in VST data are ad-

justed to negative values and are left-skewed (Fig. 2.2b). Conversely, the integration process

transforms original zeros to values clustered closely around zero. We further examined the

distributions of gene expression from one gene. Using the gene RUNX3 as an example (Fig.

2.2c), the distributions in raw UMI counts and CPM data remain right-skewed. In contrast,

the VST and integrated data showcase broader, bell-shaped distributions. The handling of

zeros in these latter datasets (VST and integrated) intrinsically sets them apart from the

former. This variability, combined with shifts in distribution skewness, may raise concerns

when performing DE analysis with normalized values.

2.1.3 The curse of donor effects

Recent reviews have highlighted that many single-cell DE analysis methods are susceptible

to generating false discoveries (Squair et al. [2021]). This is mainly due to failing to account

10



for variations between biological replicates, commonly referred to as "donor effects". In

single-cell studies, donor effects are always confounded with batch effects since cells from

one biological sample are typically processed in the same experimental batch. While single-

cell studies that contain multiple samples will perform batch correction as pre-processing,

they usually do not correct for donor effects when performing DE tests in the downstream

analysis.

One question that arises is whether batch effect correction alone suffices to eliminate

donor-related effects. To address this, we investigated the contributions of variations from

different sources before and after batch correction. Using the same fallopian tube dataset,

we further separated 4553 T/NK cells into 20 subtypes using HIPPO (Kim et al. [2020])

(Fig. 2.3a, A.1). With the aid of canonical markers, we identified specific subtypes, including

NK, CD4+ T, CD8+ T and mature naive T cells. We then focused on subtypes that were

observed in all donors (Fig. 2.3bc).

To quantify the proportion of variation originating from different sources, we fit a linear

model, using cell types and donors as covariates, for each gene in several subtype pairs.

Through all pairs, the integration led to a reduction in donor variation (Fig. 2.3d, A.2).

However, in comparisons of two subtypes of the same cell type (12 vs.13) and two subtypes of

different cell types (13 vs. 19), we observed a decrease in the proportion of cell-type–related

variation. This underscores that integration not only mitigates batch effects but also impacts

the phenotypes of interest. Importantly, our analysis indicated that even after implementing

batch correction, a notable percentage of genes still exhibited donor-related effects (Fig. 2.3e).

As batch effects are often estimated from leading principal components, representing a con-

sensus from a subset of genes, it is quite possible that residual donor effects persist on some,

if not all, genes. Therefore, it is crucial to account for donor effects when performing DE

tests to avoid false discoveries and obtain accurate results, even after removing batch effects.

One popular solution to address the issue of donor effects in single-cell studies is the
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(a) (b)

(c) (d)

(e)

Figure 2.3: Cluster and Variation Analysis of Single-Cell Data from the Fallopian Tube in
Case Study 1. a) UMAP visualizing 20 clusters identified by HIPPO in case study 1. b)
Canonical markers delineate specific cell subtypes: clusters 9, 15, and 19 as NK cells; clusters
7, 10, 11, 14, 16, 18, and 20 as CD4+ T cells; clusters 4, 6, 12, and 13 as CD8+ T cells;
clusters 8 and 17 as mature naive T cells. c) Distribution of donors across the 20 identified
clusters. d) Comparative analysis of variation proportions attributable to donor and cell type
effects across different pairs and datasets. e) Scatter plots comparing variation proportions
due to donor and cell type effects across various pairings and data sources.
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use of pseudo-bulk analysis. This approach involves merging cells from the same donor and

treating the resulting data as bulk RNA-seq. DE analysis is then performed using tools such

as DESeq2 (Love et al. [2014]) or edgeR (Robinson et al. [2010]). However, this framework

ignores within-sample heterogeneity by treating donor effects as a fixed effect and assumes

that each cell from the same donor is equally affected. As a result, this type of analysis

can be overly conservative and potentially lead to missed discoveries (Squair et al. [2021]).

Moreover, bulk RNA-seq DE tools typically perform normalization by default, which may

have the same drawbacks mentioned earlier in the context of single-cell studies. Thus, caution

is advised when using pseudo-bulk analysis as it may not always provide an accurate solution

to the problem of donor effects in single-cell studies.

2.1.4 The curse of cumulative biases

In scRNA-seq analysis, it is common to follow a hierarchical, sequential workflow for clus-

tering and DE analysis. This approach can carry forward biases from one step to the next,

from batch correction through to normalization, imputation, and feature selection. Such

cumulative biases can ultimately diminish the power to detect differentially expressed genes.

Unsupervised learning, especially clustering analysis, is essential in single-cell studies. It

groups cells based on gene expression patterns, facilitating the cell-type annotation. While

clustering is effective with normalized values like CPMs, it essentially reweights gene features

based on their relative contributions. As a result, clustering provides a generalized perspec-

tive of variation in gene expression across cell types. The reliance on relative expression also

makes clustering fairly resilient to errors and biases introduced by the pre-processing steps.

On the other hand, DE analysis operates at the gene level, using group labels from the

clustering process. The effects of biases, whether from donors or batch processing, can vary

for each gene. Although DE analysis technically follows clustering—given its reliance on

group labels—the metrics used do not need to be identical for both. As we show later in the
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case studies with data that complete clustering and annotation successfully, if DE analysis

is performed using processed expression levels, the cumulative biases can still lead to false

discoveries or overlook of certain DEs.

2.1.5 An alternative paradigm - mixed effects model on UMI counts

To minimize the pre-processing biases discussed above, we proposed an approach that con-

ducts DE analysis on raw UMI counts prior to implementing batch correction, normalization,

imputation, or feature selection. This approach, which uses a generalized linear mixed model

(GLMM) (Clayton [1996]), preserves sample-specific structures and biological signals in the

data. Furthermore, our proposed approach can adjust for any potential confounding factors,

such as batch, age, sex, or ancestry, by incorporating them as covariates with fixed effects.

This framework enables us to explicitly account for the variation among biological replicates

in comparison to other effects (Fig. 2.4). The proposed procedures have been implemented

in software LEMUR (https://github.com/C-HW/LEMUR).

Unlike existing packages that utilize GLMMs, such as Muscat (Crowell et al. [2020]),

LEMUR treats group-of-interest as a fixed effect while accounting for donor-specific varia-

tions as random effects. In contrast, Muscat assigns a random effect term for each combi-

nation of donor and group-of-interest. Muscat’s approach treats certain aspects of group-

of-interest variability as random effects, potentially masking differences between groups.

Furthermore, Muscat’s GLMMs use library size as an offset to normalize counts, essentially

focusing on relative abundance rather than raw counts. Overall, Muscat’s GLMMs operate

similarly to pseudo-bulk methods, grouping counts within the same donor before performing

the normalization, which results in comparable performance, as demonstrated in the later

examples.
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Figure 2.4: Comparison of established workflows and proposed paradigm for single-cell anal-
ysis. Left: Under the current single-cell analysis pipeline, the raw UMI counts collected
from multiple donors are integrated to remove the batch effects and normalized for further
analysis. It is common to perform DE analysis on processed data. Right: Our new paradigm
directly performs a generalized linear mixed model on raw UMI counts. The random effect
can account for the batch effect due to samples. The annotated cell types can be obtained
from existing pipeline or HIPPO algorithm which clusters cells based on the zero proportions
of UMI counts.
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2.2 Results

To benchmark the performance of our new paradigm, we implemented eight distinct meth-

ods for DE analysis: two new paradigm methods, Poisson-glmm and Binomial-glmm; two

traditional pseudo-bulk methods DESeq2 and edgeR; and four existing single-cell–specific

methods, MAST34, Wilcox in Seurat, and two Muscat GLMMs (MMvst and MMpoisson).

Binomial-glmm fits a GLMM model on the zero proportion of each gene, adding donors

as random effect. Pseudo-bulk DESeq2 applies both VST and library size normalization.

EdgeR applies library size normalization. MAST adopts a zero-inflated negative binomial

model, using log-transformed CPM counts and incorporating the cellular detection rate as

covariates. The Wilcox test is non-parametric, using integrated normalized counts. The two

Muscat models, MMvst with VST counts and MMpoisson with raw UMI counts, account

for library size. Both Muscat models consider donor–group combinations as random effects.

See Section 2.3 for more details.

Each method was rigorously evaluated in two case studies (across cell types and across

cell states) and under different scenarios, such as variations in library size between groups

and pronounced heterogeneity within groups.

2.2.1 Case study 1 - DE analysis on different immune cell types in fallopian

tube

In this dataset, we examined the efficacy of various methods across three distinct scenarios:

homogeneous groups with differing library sizes, homogeneous groups with similar library

sizes, and heterogenous groups. For each scenario, we illustrate the overarching gene ex-

pression profile, describe the DE results using diagnostic plots, and conduct a gene ontology

(GO) analysis to investigate the biological foundations of our DE findings.
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Contrasting CD8+ T cell subgroups with marked library size differences

The first comparison is between groups of CD8+ T cells (clusters 12 and 13), where there are

notable differences in library sizes (Fig. 2.5a). This example illustrates the impact of library-

size–based normalization on single-cell data. Using a two-sample t-test, we compared gene

expression means between these groups with raw UMI counts and three other normalization

methods (Fig. 2.5b) using absolute t-scores. While t-scores from CPM mirror those from UMI

counts, albeit with minor shrinkage, both VST and integration show substantial shrinkage.

This normalization process dampens the gene expression differences between the groups

before deploying any DE detection techniques.

Each method applies its own filtering procedure in the implemented function, leading

to varying numbers of input genes. Poisson-glmm, Binomial-glmm, and MAST utilized

nearly 4600 genes as input (Fig. 2.5c), whereas pseudo-bulk DESeq2 employed default quality

control in both genes and cells, resulting in only 104 genes remaining. Pseudo-bulk edgeR

kept 9743 genes in CPM data as inputs. Muscat mixed models executed 6732 genes. Notably,

for Wilcox method from the Seurat package, no genes passed the default filtering procedure.

However, with a more relaxed filtering criterion, the impact on the differential expression

results remains minimal.

In the volcano plots, both Poisson-glmm and Binomial-glmm display heavily imbalanced

expression patterns, aligning with the observations in the density plots (Fig. A.3b). However,

the other methods do not reflect this observation, with fold change estimates appearing

evenly spread. The histograms of adjusted p-values for other methods are concentrated in

large values (Fig. A.3c). Pseudo-bulk methods and mixed models from the Muscat package,

in particular, exhibit p-values that are clustered around one. Despite observing imbalanced

expression patterns in density plots and volcano plots in this comparison, only our GLMM

methods identify a substantial number of differentially expressed genes (DEGs) (Fig. 2.5c).

The heatmaps of DEGs further emphasize that raw counts can better capture the differences
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(a) (b)

(c) (d)

(e)

Figure 2.5: DE analyses on CD8+ T cell subgroups. a) Density plot of the library size for
group 12 and 13. b) Scatterplot comparisons of t-scores from mean difference tests between
raw UMI counts and other transformed data. Each gene’s expression in two different groups
is compared, showcasing the pairwise absolute t-scores from various data sources. c) Counts
of input genes and DEGs in different DE methods. d) Heatmaps visualize Poisson-glmm
DEGs. Order: UMI counts (left), integrated data (middle), and genes not included in the
integrated data but shown in UMI counts (right). Heatmaps arrange genes by descending
Poisson-glmm fold change estimates and columns group cells by cell clusters and donors. e)
GO analysis of the DEGs identified by Poisson-glmm.
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between groups compared to integrated counts (Fig. 2.5d). Furthermore, 403 DEGs were

excluded from the integrated data before testing.

The DEGs prominently feature GO terms associated with actin cytoskeleton reorganiza-

tion and immune synapse formation (Fig. 2.5e). As T cells detect antigens on an antigen-

presenting cell, they establish an immunological synapse, necessitating substantial actin fil-

ament restructuring. Actin polymerization within this synapse aids the transit of receptors

and signaling molecules, crucial for T cell activation. Our results hint that among these two

CD8+ T cell groups, group 12 cells are actively recognizing antigens. Cell groups 12 and 13

had notable differences in library sizes. While the DEGs we identified contributed to the dis-

parity in measured RNA content between the two groups, genes that were not differentially

expressed had a much larger effect on library size; consequently, normalization erased the

contribution of the DEGs to differences in expression patterns. Accordingly, in this example,

only our GLMMs, which operate directly on UMI counts, successfully identified DEGs.

A Glimpse at CD4+ T Cells vs. NK Cells: No Striking Library Size Differences

The second comparison is between CD4+ T cells and NK cells (clusters 2 and 19). In the

density plot, we observed similar library sizes based on UMI counts for the two clusters across

donors except for donor 7 (Fig. 2.6a). The zero-proportions of genes in these two clusters fit a

Poisson distribution well, indicating relative homogeneity within each cell cluster (Fig. 2.6a).

The filtering procedure implemented by different methods leads to very different numbers

of input genes. Poisson-glmm, Binomial-glmm, and MAST utilized nearly 4000 genes as

input (Fig. 2.6b). Methods implemented in the Muscat package, including pseudo-bulk

methods DESeq2 and edgeR, as well as mixed models MMvst and MMpoisson, employed

1384, 9960, 5694, 5693 genes, respectively, in accordance with their filtering procedure.

Notably, the Wilcox method from the Seurat package includes only 47 genes as input due

to the filtering based on the log2 fold change between two groups of interest. The log2 fold
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(b)

(c)

Figure 2.6: DE analyses on CD4+ T Cells vs. NK Cells (part 1) a) Left: Density plot of
the library size for group 2 and 19. Middle: Density plot of the library size by different
donors. Right: Zero proportion plots for each group and combined groups. b) Counts of
input genes and DEGs across different differential expression methods. c) Volcano plots for
each method, highlighting DEGs in blue. The signs of log2 fold change are adjusted such
that positive signs represent higher expression in group 19.
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change in the package is calculated using the formula log2(1 + mean1) / log2(1 + mean2)

on the input data, which can be normalized/integrated data by Seurat or other packages.

This transformation attenuates the ratio of the two group means through the addition of 1

to each mean, resulting in the exclusion of a substantial number of genes. Wilcox, MAST,

pseudo-bulk methods, and MMvst each identified fewer than 100 DEGs. In contrast, the

methods that use UMI counts, Poisson-glmm, Binomial-glmm, and MMpoisson, identified

273, 319, and 317 DEGs, respectively (Fig. 2.6b).

In the volcano plots, there are more positive estimates of log2 fold change by Poisson-

glmm and Binomial-glmm, signifying that genes are more expressed in cluster 19 (Fig. 2.6c).

From the pairwise comparisons of log2 fold change (Fig. A.4b), MAST, Wilcox, and MMvst

exhibit smaller log2 fold change estimates, due to normalization processes that shrink the

values. Pseudo-bulk methods tend to yield more conservative p-values (Fig. 2.6c, A.4c), as

illustrated in the histograms (Fig. A.4d). While the log2 fold change estimates are consistent

across our GLMMs, pseudo-bulk methods, and MMpoisson, the presence of deviant p-values

leads to significant disparities in the identification of DEGs. Our GLMMs identified many

more DEG candidates, surpassing the thresholds of adjusted p-value and fold change.

In Figure 2.7a, we display gene expression from DEGs identified by Poisson-glmm along-

side heatmaps for VST, CPM, and integrated data. Notably, differences among these

heatmaps are subtler than those displayed in raw UMI counts. The integrated data dis-

plays elevated gene expression across groups, obscuring distinctions. The heatmaps of DEGs

from Poisson-glmm and Binomial-glmm show the validity of DEGs (Fig. A.4f), while most of

the DEGs identified by MMpoisson do not illustrate differential expressions in UMI counts

(Fig. A.4g). We performed gene ontology (GO) enrichment analysis on DEGs from Poisson-

glmm. The DEGs are enriched for GO terms related to leukocyte activation, cell activation,

and lymphocyte activation (Fig. 2.7b), suggesting NK cells represented by cluster 19 are

more active than the CD4+ T cells.
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(a)

(b)

Figure 2.7: DE analyses on CD4+ T Cells vs. NK Cells (part 2) a) Heatmaps of Poisson-
glmm DEGs shown in different data sources, with genes in integrated data featured in the
top block, and those absent in the lower block. b) GO analysis of the DEGs identified by
Poisson-glmm.
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In summary, in the comparison of two cell clusters of similar library sizes, normaliza-

tion continued to obscure informative differences between the two clusters and hindered the

identification of potential DEGs.

Deciphering the Complexities of Heterogeneous Groups: Mature T Cells vs.

CD4+ T Cells

Finally, by merging groups 8 and 17 and groups 2 and 19, we created two less homogenous

groups-of-interest: mature T cells and CD4+ T cells, respectively. The distribution of

library sizes between these clusters exhibits noticeable differences (Fig. 2.8a), and the zero

proportions of these groups deviate from a Poisson distribution (Fig. A.5a).

Poisson-glmm, Binomial-glmm, and MAST used approximately 3480 genes as input.

Pseudo-bulk DEseq2, edgeR, and mixed models utilized 1937, 10483, 7099 genes, respec-

tively. For Wilcox, 123 genes passed the filtering procedure. The volcano plots revealed

similar patterns to previous comparisons across various methods (Fig. A.5c). Our GLMM

methods exhibited predominantly positive estimates of fold change, suggesting higher ex-

pression of abundant genes in CD4+ T cells (group 2&19). MAST, and MMvstn showed a

somewhat similar tendency, but less imbalanced. However, pseudo-bulk methods and MM-

poisson provided evenly distributed estimates in both directions. The estimates of log2 fold

change are not quite identical among different methods (Fig. A.5e). Both pseudo-bulk meth-

ods exhibited a negative shift compared to Poisson-glmm, while MMpoisson had a positive

shift. MAST, Wilcox and MMvst showed shrinkage as before. Additionally, most input

genes for the Wilcox method displayed positive fold changes, albeit with small magnitudes.

This observation sheds light on how normalization and logarithmic transformation during

pre-processing influences the estimation of differences in gene expression.

When we examine the violin plots of gene expression frequency and log2 mean for the

DEGs identified by each method, it becomes apparent that MAST, Wilcox, and MMvst
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(a) (b)

(c) (d)

Figure 2.8: DE analyses on heterogeneous groups: Mature T Cells vs. CD4+ T Cells. a)
Density plots comparing library sizes for combined groups 8 & 17 and 2 & 19. b) Comparisons
of the gene expression frequency of the DEGs from different methods. c) Violin plot of log2
gene mean for DEGs from different methods. d) Heatmaps of DEGs from different methods.
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captured fewer DEGs with lower gene expression frequency and smaller gene means than the

remaining methods (Fig. 2.8b, 2.8c). It is worth noting that MAST is a zero-inflated model,

which incorporates excessive zeros as an additional component. However, MAST might

not effectively characterize the zeros, as demonstrated in previous studies on UMI counts.

Consequently, potential DEGs that are lowly expressed may be masked by the model. The

Wilcox method tends to filter out a substantial number of genes, which poses challenges in

identifying lowly expressed genes. MMvst, despite having a considerable number of input

genes (n=7099), only identified 35 DEGs.

The heatmap of DEGs in Poisson-glmm reveals distinct expression patterns between the

two groups (Fig. 2.8d (1)). However, in this example, the inherent heterogeneity within

each group impacts the fitness of Poisson model, potentially leading to false discoveries. To

evaluate the possibility of false discoveries by Possion-glmm, we examined DEGs identified by

other methods, but not by Poisson-glmm (Fig. 2.8d (2)-(6)). The heatmaps make it evident

the DEGs that differentiate between the two groups are largely identified by Poisson-glmm

only; the other methods did not contribute additional valid DEGs that differentiate the

two groups. Conversely, most of the DEGs detected by Poisson-glmm exhibit differential

expression despite the heterogeneity within each group.

Notably, MMpoisson mainly detected DEGs with small means (Fig. 2.8c), not showing

clear differences between different groups (Fig. 2.8d (6)). And the DEGs are mutually

exclusive to those identified by Poisson-glmm. Although Poisson-glmm and MMpoisson both

use UMI counts, MMpoisson includes group information as a random variable and involves

library size as an offset; our result underscores the significance of using an appropriate

random effect in a mixed model and suggests that the cell group information should be

excluded from the random component.

The DEGs are enriched for GO terms related to peptide metabolic process and cytoplas-

mic translation, indicating lower ribosomal RNA activities in mature T cells (Fig. A.5g).
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Indeed, mature T cells exhibit lower levels of ribosomal RNA activity compared to their im-

mature counterparts, mainly due to the state of activation and the metabolic requirements

of the cells. On the other hand, mature T cells, which are not rapidly proliferating, have less

need for protein synthesis and thus exhibit lower levels of rRNA activity. However, upon

antigen recognition and activation, mature T cells can rapidly upregulate rRNA activity

and protein synthesis to support clonal expansion and effector function. This differential

regulation of rRNA activity is one of the many ways in which cells regulate their metabolic

activities to adapt to different physiological conditions.

In this example, Poisson-glmm detected more valid DEGs for heterogenous cell popu-

lations than other methods. Normalization still diminished measurable differences between

groups. We also raise concerns about the masking of lowly expressed genes by the improper

treatment of zeros, as seen in MAST method and VST data.

2.2.2 Case study 2 – DE analysis on different states of B cells

In this case study, we applied our proposed DE framework to data collected by Kang et al.

[2018]; this dataset consists of 29,065 cells and 7,661 genes from eight distinct cell types,

collected from peripheral blood mononuclear cells of eight lupus patients. Within each

cell type, the cells are evenly split into two groups for perturbation: unstimulated control

and IFN-β stimulated (Fig. A.6a). UMAP plots (Fig. 2.9a) highlight that gene expression

patterns are more differentiated between stimulation states than between cell types. The

zero-proportion plots fit better to Poisson distribution when separated by stimulation states

than only by cell types (Fig. A.6b). This observation motivated us to focus on DEGs between

the cell states rather than between the cell types.

Like the previous case study, we found that the distribution of library sizes underwent

significant changes after normalization (Fig. 2.9b). Raw UMI counts show that each cell type

has a unique library size distribution. However, these differences became less pronounced
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(a)

(b)

Figure 2.9: Overview of case study 2 and DE analyses on different states in B cells. (part
1) a) UMAP showing groups and cell types for case study 2. b) Library size comparisons
before (raw UMI counts) and after normalization (log-normalized data) by cell type.
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(b)

Figure 2.10: Overview of case study 2 and DE analyses on different states in B cells. (part
2) a) Left: Donor distribution among B cells. Middle: Density plot of library size in different
states. Right: Zero proportion plots for different states and combined states. b) Heatmaps
of DEGs identified from different methods.
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following normalization, while library sizes remained relatively consistent between states

within a single cell type. Normalization seems to predominantly affect differences across cell

types rather than between states.

For the remainder of our case study, we focused on B cells. The cells from each donor

were divided approximately equally between the control and stimulated groups (Fig. 2.10a

top), and the library size distribution in these two groups is similar (Fig. 2.10a middle).

The zero-proportion plot suggests that the data does not perfectly fit the expected curve

from the Poisson distribution, indicating the presence of a mixture of subtypes within B cells

(Fig. 2.10a bottom).

In our analysis of the subset comprising unstimulated and stimulated B cells, the majority

of DE methodologies used about 2,550 genes as inputs (Fig. A.7a). However, the Wilcox

approach within Seurat selected only 144 genes. The estimates of fold change for the two

states in B cells exhibit an even spread across all methods, as depicted in the volcano

plots (Fig. A.7b). MAST and MMvst struggled to identify differential patterns. Different

from previous examples, our GLMM approach flagged fewer DEGs than both pseudo-bulk

techniques and MMpoisson. Notably, the DEGs that were not shared between pseudo-

bulk DESeq2 or MMpoisson and Poisson-glmm predominantly belong to the extremely low

expression category (Fig. 2.10b (2), (3)).

We hypothesized that this result could be explained by using fold change as a DEG

criterion. In bulk RNA-seq, a gene is typically labeled as a DEG if its adjusted p-value is

below a certain threshold, often 0.05, and the fold-change estimate exceeds a predetermined

value, typically 1.5 or 2 (Fig. A.8a). Most single-cell DE methods use the same criteria.

However, in single-cell datasets, the mean counts for many genes are exceedingly close to

zero. Consequently, fold change may not be a reliable metric to differentiate nuances in

read counts. For instance, if gene means are 2−3 for one group and 3−3 for another, the

fold-change threshold of 1.5 is met, but the actual difference is a mere 0.0625, which does not
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(a)

(b)

Figure 2.11: Overview of case study 2 and DE analyses on different states in B cells. (part
3) a) GO analysis for up-regulated (left) and down-regulated genes (right). b) Violin plots
depicting the proportion of p-values below 0.05 for each method.
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convey a significant disparity in expression, especially when juxtaposed with genes having

larger means. Moreover, near-zero values can result in computational inaccuracies, causing

ratio deviated from the underlying true value.

To overcome the limitation of using fold-change ratios on small counts, we established

a new criterion for DEGs based on absolute differences. Specifically, we mandated that the

mean difference between two groups exceeds a set threshold, such as -1. In the volcano plot,

numerous genes would be designated as DEGs when relying on ratio-defined fold change.

Yet, as shown in the mean vs. mean difference plot that many genes that meet the p-

value criteria showcase only modest changes in absolute means (Fig. A.9a). This approach

emphasizes genes with significant absolute differences, yielding more biologically pertinent

results.

We performed GO enrichment analysis on up-regulated and down-regulated genes sepa-

rately (Fig. 2.11a). We found IFN-β stimulated B cells have increased activities in interac-

tion between organisms, defense response, defense response to virus and defense response to

symbiont, while their activities in translation and other metabolic processes are decreased.

Pseudo-bulk technique detected similar GO terms while MMpoisson was underpowered for

detection of down-regulated GOs (Fig. A.9).

In this example, we demonstrated that conventional metrics to detect DEGs, especially

fold change based on ratios, are ill-suited for low-count data where the large fold changes

reported by current methods may be attributed to the ratio of two very small gene means.

Careful post-processing is needed to prioritize signals and manage false discoveries.

2.2.3 False discovery rates assessed under the null setting using permutation

analysis

To assess p-value calibration in empirical data, a permutation analysis was conducted within

a null dataset focusing on a group of interest. We specifically conducted the analysis on three
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datasets: the control group of B cells, group 2, and group 13 in case study 1. Each underwent

random assignment to either the control or stimulus group. Subsequently, p-values for each

gene were computed employing various methods, with the gene set confined to those input

into the Poisson-glmm model. To mitigate potential gene filtering, the threshold for the

Wilcox method was relaxed. This process was iterated 20 times, and on each iteration the

proportion of p-values below 0.05 was calculated along with the corresponding false discovery

of differentially expressed genes.

The analysis of the violin plot (Fig. 2.11b, A.10) reveals that both our GLMM methods

and the Wilcox method exhibit consistently well-calibrated p-values among different choices

of null datasets. However, pseudo-bulk methods, and mixed models from Muscat appear ex-

cessively conservative, with an overall proportion considerably below 0.05. The performance

of MAST is conservative in B cells but not in case study 1. The histograms of p-values

across the 20 runs demonstrate a consistently flat distribution for our glmm methods and

the Wilcox method, indicative of adherence to the null setting (Fig. A.10). Conversely,

other methods display overestimated p-values, yielding conservative outcomes. Note that

even though Wilcox performed well in the permutation analysis, it is not powerful to de-

tect real DEGs as shown in previous case studies. Under both the existing criteria and our

newly established criteria for determining DEGs, each method detected, at most, one false

discovery in each run.

2.2.4 Discussion

In this Chapter, we examined existing DE approaches to pre-processing, input values and

test statistics, and fold-change definitions in the context of single-cell DE analysis. We

demonstrated through extensive real-data examples the limitations and drawbacks of current

practices. We showed that current normalization and pre-processing techniques may obscure

DEGs by an overreliance on relative RNA abundance and ignoring or correcting for biological
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zeros. We also illustrated how use of volcano plots in DE analysis, which also depends on

relative RNA abundance, leads to false discoveries in lowly expressed genes by prioritizing

fold changes in expression over absolute changes. We also argued that single-cell DE analysis

suffers from false discoveries due to the inappropriate handling of donor effects, as well as

from biases that accumulate as the consequence of sequential workflows.

We advocate a new paradigm, Poisson-glmm, which uses UMI counts as input and a

generalized Poisson mixed effect models to account for batch effects and within-sample vari-

ation. This framework’s use of UMI counts can significantly improve current practices by

leveraging absolute RNA expression. Poisson-glmm shows superior sensitivity and robust-

ness toward model misspecification when compared to current single-cell DE methods, which

should ultimately lead to new biological insights from single-cell data.

The use of UMI counts for DE analysis in scRNA-seq can significantly improve current

practices, potentially making some current practices (e.g., volcano plots as a diagnostic

DE tool) obsolete. However, relying on UMI counts as a representation of genuine RNA

content predicates that measurements are strictly single-cell based, underscoring the need

for meticulous doublet and triplet removal prior to DE analysis. Furthermore, seamlessly

implementing this new paradigm into existing popular tools remains a challenge. Given this

significant shift from current practices, a sustained effort will be required to educate and

train researchers on these new alternatives and to reshape existing practices accordingly.

2.3 Methods and materials

2.3.1 Datasets and pre-processing

In case study 1, a 10X scRNA-seq dataset of post-menopausal fallopian tubes, with 57,182

cells sourced from five donors, covering 29,382 genes was analyzed. We obtained 20 clusters

via HIPPO algorithm. We did not apply a pre-filtering procedure on this dataset, except for
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built-in filtering steps in each method. We used sctransform to get the VST data and the

integration workflow provided by Seurat to obtain the integrated data.

All integration or normalization processes were performed on the entire dataset, since

cell types are typically unknown during the pre-processing stage. In cross-batch integra-

tion, only the top 2,000 highly expressed genes were retained, which significantly reduced

the number of genes for downstream analysis. The dataset had already been fully ana-

lyzed and annotated with cell types. We utilized the annotations to examine the effects of

normalization/integration on distributions of library sizes across cells.

In case study 2, the dataset comprised 10X droplet-based scRNA-seq PBCM data from

eight Lupus patients obtained before and after 6h-treatment with IFN-β. After remov-

ing undetected and lowly expressed genes (less than 10 cells expressing more than 1), the

dataset consisted of 29065 cells and 7661 genes. The integrated data was replaced by log2-

transformed normalized expression values obtained via computeLibrarayFactors and log-

NormCounts functions in Muscat.

2.3.2 Poisson-glmm and Binomial-glmm

By default, we excluded any genes detected in fewer than 5% cells in the compared groups

from differential testing. The GLMMs were implemented with glmmPQL function of the

MASS package. We calculated adjusted p-values by using Benjamini-Hochberg correction.

Each model fitting was applied on one gene and the two compared groups.

We fit Poisson-glmm on UMI counts. Each count Xcgk sampled from cell c, donor k, and

gene g, was modeled by

Xcgk|λcgk ∼ Poisson(λcgk)

log(λcgk) = µg +Xcβg + ϵgk.
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We fit Binomial-glmm on the zero proportions. Each count Xcgk was modeled by

1Xcgk = 0|pcgk ∼ Bernoulli(pcgk)

log(pcgk/(1− pcgk)) = µg +Xcβg + ϵgk

where Xc is the indicator for groups (e.g. cell types in case study 1, control/stimulus in

case study 2), and ϵgk ∼ N (0, σ2g) represents the random effects for donor k. Our goal was

to test H0 : βg = 0.

For both methods, we provided “log2 fold change” computed by log2
(
exp

(
βg
))

. In

Poisson-glmm, this estimate indicates the increment of log2(λ2) against log2(λ1), which is

the conventional log2 fold change. However, this term in Binomial-glmm doesn’t represent

the same meaning. It is the difference between logit(p2) and logit(p1). The p-value and BH

adjusted p-value are provided.

2.3.3 Benchmarked methods

Pseudo-bulk DESeq2 and pseudo-bulk edgeR are aggregation-based methods used in our

comparison. The input counts were summed up for a given gene over all cells in each group

and by donor. The pseudo-bulk data matrix has dimensions GxS, where S denotes the

number of interactions of donors and groups. For example, if there are two groups and “a”

and “b” donors in each group, then “S” is equal to 2(a+ b). We used raw counts as the input

for DESeq2, while CPM counts were used for edgeR. The log fold change was converted to

log2 fold change in all the comparisons. We implemented these two pseudo-bulk methods

following the guided tutorial in Muscat package; https://www.bioconductor.org/packa

ges/devel/bioc/vignettes/muscat/inst/doc/analysis.html.

For MAST, we fitted a zero-inflated regression model (function zlm) for each gene and

applied a likelihood ratio test (function lrTest) to test for between-group differences in gene
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expression. Besides the labels of groups and the cellular detection rate, we also included

donor labels in the covariates. This method was run on log (CPM+1) counts. We followed

the tutorial https://github.com/RGLab/MAST.

Wilcox, a rank sum test, is the default DE method in the FindMarkers function in the

Seurat package. We used integrated data and log counts as input. We computed the log fold

change given in the output as log(1+mean1)/(1+mean2). We applied the default filter in

FindMarkers to only test genes with a log fold change greater than 0.25. We calculated the

adjusted p-value provided from the function based on Bonferroni correction. We followed

the guided tutorial found here: https://satijalab.org/seurat/articles/de_vignette.

MMvst and MMpoisson are mixed models implemented in the Muscat package. MMvst

fits linear mixed models on variance-stabilizing transformation data. MMpoisson fits Poisson

generalized linear mixed models with an offset equal to the library size factors. In both

models, we fit a ∼ 1 + group + (1|sample) model for each gene, where “sample” denotes the

experimental units (the interaction of donors and groups). We followed the tutorial found

at: https://www.bioconductor.org/packages/devel/bioc/vignettes/muscat/inst/d

oc/analysis.html.

2.3.4 The criteria to determine DEGs

For the benchmarked methods, we adhered to conventional criteria for the identification of

Differentially Expressed Genes (DEGs). Specifically, a gene was classified as a DEG if its

absolute log2 fold change exceeded a predefined threshold, and the adjusted p-value was

below a specified cutoff. Typically, DEGs are visually represented in volcano plots. In the

first dataset, the log2 fold change threshold was set at log2(1.5), whereas in the second

dataset, it was set at 1. The adjusted p-value threshold for both datasets was established at

0.05.

We proposed new criteria that are based on the convention plus the gene mean and the
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difference in mean. If the log2 gene mean in two groups is lower than a certain value (-2.25

in case study 1) and the log2 mean difference is smaller than a threshold (-1 in case study

1), the gene would not be considered as a DEG. These can also be used as a filter before any

DE analysis to speed up the computation. Both criteria are adjustable, depending on the

dataset’s performance and characteristics. An examination of heatmaps and mean difference

against mean plot in advanced can be helpful to determine the thresholds when analyzing a

new dataset (Fig. S8b, c).

2.3.5 Variation analysis

To gain a deeper understanding of the donor effect and cell type effect concerning various

types of counts, we conducted a variation analysis across multiple group comparisons. To

ensure the consistency of our results, we restricted our analysis to genes presented in all

datasets. For each gene, we employed linear models (lm(count ∼ donor + group)) and

computed the variances attributed to three components: donor, group, and the residual.

Logarithm transformation was applied to UMI counts and CPM data to address skewness.

The outcomes of this analysis were then presented and compared based on the proportion

of variation explained by the first two components across different count types and various

pairs. The results of the top 500 genes with the lowest residual variations were exhibited.

2.3.6 GO enrichment analysis

GO over-representation analyses were performed using the enrichGO function in the R pack-

age clusterProfiler with default parameters and the functional category for enrichment anal-

ysis set to the GO “Biological Processes” category.
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CHAPTER 3

INVESTIGATION ON THE HIGHER COUNTS PROPORTION

IN SINGLE CELL RNA DATA TO IMPROVE HIPPO

ALGORITHM

3.1 Introduction

3.1.1 Zero-inflation test in HIPPO

In the study by Kim et al. [2020], extensive UMI data sets were analyzed, revealing crucial

insights into the data processing workflow. The analysis indicated that clustering should be

conducted prior to pre-processing steps such as normalization or imputation to effectively

address the issue of excessive zeros in the data. This pre-clustering approach is essential

for resolving cell-type heterogeneity, which in turn reduces the high proportion of drop-outs

observed in the data. Specifically, once the heterogeneity among cell types is accounted

for, the incidence of drop-outs significantly decreases within the smaller, more homogeneous

clusters (See Fig. 3.1). Furthermore, the study’s findings suggest that gene expression within

a homogeneous cell population tends to follow a Poisson distribution. Otherwise, the presence

of heterogeneity among cell types may lead to a finite Poisson mixture model, reflecting the

complexity of gene expression patterns across diverse cell populations.

In that study, the authors proposed that the zero proportion of each gene should not

be excluded but instead utilized as a feature to identify the heterogeneity among the cells.

By leveraging the information contained in the zero proportions, they demonstrated a more

effective approach to understanding and resolving cell-type heterogeneity. This method ,

named HIPPO, allows for a more accurate clustering process, leading to better normaliza-

tion and imputation outcomes, and ultimately provides deeper insights into the underlying

biological processes.
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Figure 3.1: UMAP plots of CD34+ cells in ZhengZheng et al. [2017] data, and relationship
between zero proportions and gene means before (black) and after (colors) clustering of
CD34+ cells.

Here we briefly formulate the zero-inflation test used in the study. Consider a gene by

cell matrix of UMI counts X for gene g = 1, . . . , G and cell c = 1, . . . , C. A natural estimator

for the true zero proportion of gene g across all cells can be defined as the follows,

p̂
(0)
g =

C∑
c=1

1Xgc=0

C
.

Under Poisson model and with this statistic, the expected zero proportion of gene g with

mean λg is e−λg . And hence consider the hypotheses for each gene g as below.

H0 : p
(0)
g = e−λg , HA : p

(0)
g =

Kg∑
k=1

πke
−λkg

In practice, the total number of Poisson mixture Kg and the proportion of each group πk

are not estimated explicitly. By Jensen’s inequality, p(0)g under alternative hypothesis is

always greater than that under the null. Instead, the alternative hypothesis was revised to
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HA : p
(0)
g > e−λg . It can be interpreted that zero inflation indicates there is cell heterogeneity

across the samples. The genes detected with zero inflated property are then selected as the

features in HIPPO clustering algorithm.

For gene g, the gene mean is estimated as the average counts X̄g = 1
C

∑C
c=1Xgc and is

treated as a fixed number here.

3.1.2 Feature selection

They provided two methods for feature selection: the zero-inflation test and the deviance

test. In this chapter, we will focus on the zero-inflation test and modify its formula to

account for higher counts proportions. The goal of this project is to investigate whether

we can identify more significant features beyond the zero proportion, thereby enhancing our

ability to detect and analyze cell-type heterogeneity.

With the estimates plugged in,

p̂
(0)
g ∼ N

(
e−X̄g ,

e−X̄g(1− e−X̄g)

C

)
.

And the z-score test can be used to compute one-tailed p-value.

However, the gene mean is a random variable that follows a log-normal distribution,

whose inference is not trivial. Further discussion is in the Supplementary of Kim et al.

[2020].

3.1.3 Potentials in higher order counts

In addition to examining the zero proportion, we further analyzed the proportions of ones,

twos, threes, and fours within the same data set. As shown in Fig. 3.2, the plots reveal

that these observed proportions align more closely with the expected proportion lines after

clustering. This observation suggests that there is valuable information to be extracted from
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(a) One proportion (b) Two proportion

(c) Three proportion (d) Four proportion

Figure 3.2: Proportion plots
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these counts. Inspired by these findings, we propose to extend our analysis by systematically

investigating the proportions of ones, twos, threes, and fours. Specifically, we aim to test

whether the observed proportions of these counts deviate significantly from the expected

lines. This approach could provide a deeper understanding of the data and help identify

additional significant features beyond the zero proportion, thereby enhancing our ability to

characterize cell-type heterogeneity.

3.2 Methods

3.2.1 k-inflation test

valid range

Followed by the concept of zero-inflation test, the simpler alternative hypothesis can be

inferred by Poisson mixture model when Jenson’s inequality is valid. For proportion of

k = 1, 2, 3, 4, the expected proportion of k under null hypothesis is

fk(λg) =
1

k!
λkge

−λg .

To keep the validity of Jenson’s inequality, we need convexity of fk. For different k, the

valid ranges of λg are different (See Table. 3.1). In these regions, we can relax the alternative

hypothesis to HA : p
(k)
g > fk(λg). This also coincides with Fig. 3.2. Genes with observed

proportion above the expected line have sample means lying in the convex range of fk(λg).

For hypothesis testing purpose, we might filter the genes with sample means in valid region.
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k convex region
1 λg > 2

2 λg > 2 +
√
2

3 λg > 3 +
√
3

4 λg > 6

Table 3.1: Convex region for each k

k-inflation test

As the previous setting, we compute the estimator p̂(k)g for each k.

p̂
(k)
g =

C∑
c=1

1Xgc=k

C
.

Similarly, compute one-tailed p-value with z-score

z =
p̂
(k)
g − fk(X̄g)√
fk(X̄g)(1−fk(X̄g))

C

3.2.2 Feature selection

Currently, we offer user-defined threshold values for feature selection use. The gene would

be selected if at least one of the z value of its count proportions is greater than the threshold

value. The hypothesis testing is

H0 :
3⋂

k=0

{p(k)g = fk(λg)}, HA :
3⋃

k=0

{p(k)g > fk(λg)}

By incorporating higher order counts, we called the modified clustering procedure HIP-

POx.
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3.2.3 Differential expression analysis

Poisson mean t-test

In Kim et al. [2020], the author proposed a t-test on means. The hypothesis is H0 : λ1 =

λ2, HA : λ1 ̸= λ2. While under the null hypothesis, the combined estimator of λ1 = λ2

should be the pooled sample mean. The t-statistic given in the paper should be modified as

follows.

Assumptions:

1. Each Xcg are independent samples.

2. Validity of CLT.

Xcg|c ∈ C1 ∼ Poisson(λ1)

Xcg|c ∈ C2 ∼ Poisson(λ2)

X̄C1g ∼ N(λ1,
λ1
|C1|

)

X̄C2g ∼ N(λ2,
λ2
|C2|

)

We want to test H0 : λ1 = λ2

t-statistic:
X̄C1g − X̄C2g√

X̄pooled,g(
1

|C1|
+ 1

|C2|
)

Poisson proportion t-test

The sample mean of gene expression can be significantly influenced by particular outliers,

leading to varied and potentially misleading outcomes. In contrast, the zero proportion can

be considered a more robust and stable measure. To address the limitations of the sample
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mean t-test, we propose a Poisson proportion t-test based on the zero proportion. And

similar to mean t-test, the pooled proportion is used in the t-statistic.

Assumptions:

1. Each Xcg are independent samples

2. Validity of CLT

Xcg|c ∈ C1 ∼ Poisson(λ1)

Xcg|c ∈ C2 ∼ Poisson(λ2)

p̂C1g ∼ N(e−λ1 ,
e−λ1(1− e−λ1)

|C1|
)

p̂C2g ∼ N(e−λ2 ,
e−λ2(1− e−λ2)

|C2|
)

We want to test H0 : e−λ1 = e−λ2

t-statistic:
p̂C1g − p̂C2g√

p̂pooled,g(1− p̂pooled,g)(
1

|C1|
+ 1

|C2|
)

Poisson GLMM

For each count Xcgk sampled from cell c, donor k, and gene g,

Xcgk|λcgk ∼ Poisson(λcgk)

log λcgk = µg +Xcβg + ϵgk

where Xc is the indicator for different cell types, and ϵgk ∼ N(0, σ2g) represents the random

effects for donor k. We want to test H0 : βg = 0.
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Binomial GLMM

1Xcgk=0|pcgk ∼ Bernoulli(pcgk)

log
pcgk

1− pcgk
= µg +Xcβg + ϵgk

where Xc is the indicator for different cell types, and ϵgk ∼ N(0, σ2g) represents the

random effects for donor k. We want to test H0 : βg = 0.

3.3 Results

3.3.1 Application on different immune cell types in fallopian tube

In this study, the k-inflation test was utilized to identify and select features based on the

proportions of zero counts and other small integer counts (ones, twos, threes, and fours).

This approach allowed us to include more features that might be missed in original HIPPO.

We applied the k-inflation test and the corresponding feature selection process on the

immune cells in the fallopian tube, as detailed in Section 2.2.1. HIPPOx was configured

to run 20 iterations, resulting in 20 distinct clusters. During the 20 runs of HIPPOx, each

iteration helped refine the clustering process, ensuring that the observed proportions of zeros

and small counts were better aligned with the expected distribution lines post-clustering.

By employing the k-inflation test and running multiple iterations of HIPPOx, we aimed to

thoroughly explore the data and extract significant features that might have been overlooked

by conventional methods. This comprehensive approach ensures a deeper understanding of

the biological variability and heterogeneity present in the immune cells under study.

From Fig. 3.3 and Fig. A.11, it is shown that the number of selected genes decreases

gradually due to the increasing homogeneity achieved with each round of clustering. Among
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(a) Zero proportion

(b) One proportion

Figure 3.3: The percentage of k-proportion of selected features in each round of HIPPOx.
The numbers in red indicate the number of selected features, and the percentage represents
the contribution of selected genes passing the k-th inflation test.
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all the selected features, almost all genes are zero inflated, contributing to more than 90

percent of the selected features. Additionally, higher order inflated genes, which include

ones, twos, threes, and fours, contribute about up to 20 percent in some runs, especially

fewer contribution in higher counts. This might due to the valid region restriction discussed

in Sec. 3.2.1. However, these higher order inflated genes are also zero-inflated, indicating

that the zero proportion remains a dominant and robust characteristic even as the count

values increase.

This observation highlights the importance of zero-inflated genes in identifying and un-

derstanding cell-type heterogeneity. The gradual reduction in the number of selected genes

suggests that as clustering refines the grouping of cells, the homogeneity within clusters

increases, leading to fewer genes being identified as significant features. Despite this re-

duction, the persistent presence of zero-inflated genes across different runs highlights their

crucial role in the feature selection process and their impact on the robustness and accuracy

of the clustering results.

In summary, the analysis from Fig. 3.3 confirms that zero-inflated genes are a key factor

in distinguishing cell types and that the k-inflation test effectively captures these critical fea-

tures, contributing significantly to the understanding of gene expression patterns in immune

cells within the fallopian tube.

3.3.2 Simulation study for DE analysis

Data generation

In this simulation, we generated 1200 genes and 500 cells from Poisson glmm. And it was

repeated for 100 times. The cells came from five donors, and each of them provided 100

cells. We simulated the random effect ϵgk from N(0, σ2g). The standard deviation σg were

sampled from N(1, 0.22), which is similar to what we observed from real data. Each cell was

then randomly assigned to 2 cell types. The distribution of σg and the distribution of each
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sampled donor effect are shown in Fig. 3.4.

Type 1 error rate design

To compare the type 1 error rate among different methods, the first 600 βg were set to

zero. That is, there’s no cell-type effect for these genes (Fig. 3.5(a)). To generate counts

for different expressed levels, every 200 µg were sampled from logU0.05, logU0.1 and logU5

respectively, where Uα means exponential distribution with mean α. We then assorted the

final gene counts into three classes. If the gene mean is less then 2, we would consider the

gene as lowly expressed. If the gene mean is more than 2 but less than 5, we would say the

gene is moderately expressed. And a gene is highly expressed if the gene mean is greater

than 5. Under this classification, there would be around 450 low, 50 moderate, 100 high in

each simulation.

After the analysis from each method, we used benjamini hochberg correction on the p-

values. If the adjusted p-value is lower than 0.05, it would be consider a type 1 error. The

type 1 error rate was computed by the mean of type 1 error in each class.

We compared the performance of Poisson GLMM, Binomial GLMM, pseudobulk-DESeq2,

and MAST under this simulation setting. As we see the p-values in Chapter 2, pseudobulk

methods and MAST are both too conservative, hence resulting over controlled type 1 error

rate (Fig. 3.5 (b)) and under-powered result (Fig. 3.6(b))

Power design

For the last 600 βg, we assigned different levels of effect size on them. All the 600 µg were

sampled from logU0.05, and every 200 βg were set to be log 0.05, log 0.2 and log 5 respectively.

The genes were then classified into three classes based on the level of effect size (Fig. 3.6).

If the adjusted p-value is lower than 0.05, it would be consider a true discovery. The

power was computed by the mean of type 1 error in each class.
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(a) Distribution of σg

(b) Distribution of exp ϵgk

Figure 3.4: Donors effects
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(a) Distribution of gene mean for the first 600
genes (b) Type 1 error rate

Figure 3.5: Simulation result for type 1 error rate.

(a) Distribution of gene mean for the last 600
genes (b) Power

Figure 3.6: Simulation result for power.
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3.4 Discussion

3.4.1 Potentials for the k proportion

The analysis in this chapter, as well as in the previous chapter, has provided substantial

evidence that k proportions of the genes are powerful features in single-cell RNA data.

Our next step is to apply this robustness in data that does not strictly follow a Poisson

distribution. If we can extend this robustness to handle data modeled by a negative binomial

distribution, or even non-identified distributions, we can leverage the proportion information

in the data to perform differential expression analysis and further downstream analyses.

The negative binomial distribution, which accounts for overdispersion relative to the

Poisson distribution, is sometimes used for modeling count data in single-cell RNA sequenc-

ing due to its ability to handle variability among cells. By adapting our methods to this

distribution, we might be able to improve the robustness and accuracy of the analyses.

Furthermore, focusing on proportion information allows us to reduce the impact of out-

liers and extreme values that can distort mean-based measures. This approach enhances the

stability of our statistical tests and makes them more reliable across various types of data

distributions.

3.4.2 Contribution of higher order counts

After applying HIPPOx on real data, the additional contribution from higher order counts

appears less promising. The restriction on the valid range for the k-inflation test limits

the number of genes considered, especially for k greater than 1. As shown in Fig. 3.3, the

percentage of exclusive genes identified from one proportion can be as high as 10 percent.

Although the majority of significant features are identified through the zero proportion, the

one proportion still has the potential to contribute valuable and informative features.

The results indicate that while zero-inflated genes are the primary source of significant
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features, genes with higher order counts (such as ones) can also provide unique insights,

which is exclusive to zero proportion. This observation suggests that, despite the limitations,

examining proportions beyond zeros can enrich our understanding of the data.

Our next step involves applying HIPPOx to additional datasets to determine if it can help

identify further subclusters. By exploring a broader range of data, we hope to validate the

utility of higher order counts and assess whether HIPPOx can consistently reveal informative

features across different contexts.

3.4.3 p-value accuracy

We performed bootstrap simulations and found that the p-values were too conservative.

Several factors could contribute to this observation.

First, many genes have proportions that are very close to 1 or 0. In these cases, the

normal approximation performs poorly, leading to inaccuracies. Second, as discussed in

Kim et al. [2020], the sample mean itself is random. The standard error and the expected

mean could differ from those calculated using the true λ. This discrepancy is illustrated in

Fig. 3.7, which shows the distribution of z-scores for zero proportions. The figure highlights

the overestimation of the standard error when the sample mean X̄g is used in place of the

true λg. Third, the p-value of the k-inflation test for k ≥ 1 may require adjustment because

we filter out genes whose sample means do not fall within the valid region. This filtering

could skew the distribution and lead to conservative p-values.
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(a) Distribution of Z-score calculated
with true λg

(b) Distribution of Z-score calculated
with sample mean X̄g

Figure 3.7: Distribution of z-score
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CHAPTER 4

MIXTURE POISSON GENERALIZED LINEAR MODEL FOR

ANALYZING DIFFERENTIAL METHYLATION

4.1 Introduction

4.1.1 m6A modification

While transcriptional regulation—the synthesis of messenger RNA (mRNA)—is crucial and

has been studied broadly, it is protein expression that ultimately determines biological pheno-

types. The production of proteins is influenced by a variety of post-transcriptional regulatory

mechanisms, such as the structure of mRNA, the action of microRNAs, and the processes

governing mRNA translation (Fabian et al. [2010], Chekulaeva and Filipowicz [2009], Zhao

et al. [2017], Glisovic et al. [2008]). These post-transcriptional regulations play a fundamen-

tal role in controlling protein levels and their localization within the cell, thereby impacting

all biological processes.

In 2011, Chuan He’s lab uncovered a fundamental mechanism that broadly controls pro-

tein expression at the post-transcriptional level: reversible and dynamic modifications of

mRNA and long non-coding RNA (lncRNA) (Jia et al. [2011], Liu et al. [2014], Fu et al.

[2014]). This discovery has sparked extensive research into profiling various mRNA mod-

ifications, such as N6-methyladenosine and pseudouridine, using antibodies and chemical

reactions respectively (Zhao et al. [2017]).

Among various RNA modifications, N6-methyladenosine (m6A) has obtained significant

attention due to its prevalence and critical regulatory roles in mRNA metabolism (Lan et al.

[2019], Yang et al. [2020], Livneh et al. [2020], He and He [2021], Schaefer [2021]). The

m6A modification affects almost every phase of mRNA metabolism and function, impacting

diverse biological processes. Thus, m6A studies symbolize the concept of the “epitranscrip-
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tome.”

The functional significance and implementation of m6A are carried out by three groups

of proteins: "writers" that install the modification, "erasers" that remove it, and "readers"

that bind or recognize m6A to determine the cellular fate of the modified mRNA/lncRNA.

This dynamic interplay between writers, erasers, and readers ensures precise regulation of

gene expression at the RNA level, highlighting the complexity and importance of post-

transcriptional modifications in cellular biology.

4.1.2 Statistical methods for differential methylation

MeRIP-seq, or Methylated RNA Immunoprecipitation Sequencing, is a powerful technique

used to study RNA modifications, particularly m6A (Meyer et al. [2012], Dominissini et al.

[2012], Dominissini et al. [2016]). This method combines immunoprecipitation of methylated

RNA fragments with high-throughput sequencing to identify and quantify RNA methylation

sites across the transcriptome. The process enables researchers to analyze differential methy-

lation effectively. The analysis involves two main applications: (1) MeRIP-seq samples from

specific phenotypes or experimental conditions are analyzed to determine the locations of

RNA modifications. This involves using peak calling algorithms to identify regions enriched

in m6A modifications by comparing immunoprecipitated RNA (IP) samples with input RNA

controls. (2) MeRIP-seq samples from different phenotypical or experimental groups are com-

pared to identify differentially methylated loci. This involves quantifying the methylation

levels in identified peaks for both IP and input samples, then performing statistical tests to

find significant differences in methylation between conditions.

Several methods have been developed and applied to analyze differential methylation in

MeRIP-seq data. ExomePeak uses Fisher’s exact test to identify differentially methylated

regions (Meng et al. [2014], Meng et al. [2013]). The later version incorporates a likelihood

ratio test based on the binomial distribution, known as “bltest”. employs a beta-binomial
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model to infer differential peaks, accounting for overdispersion in the count data. MeTPeak

employs a beta-binomial model to infer differential peaks, accounting for overdispersion in

the count data (Cui et al. [2016]. MeTDiff, DRME and QNB use models based on the

negative binomial distribution (Cui et al. [2015], Liu et al. [2016], Liu et al. [2017]).

In 2019, Zhang et al. [2019] raised some existing problems in previous methods. For

example, current methods designed for small sample sizes do not account for confounding

factors like age and gender. Differential gene expression (DE) tools like edgeR (Robinson

et al. [2010], DESeq2 (Love et al. [2014]), and Sleuth (Pimentel et al. [2017]) are compatible

with complex study designs but are not tailored for MeRIP-seq data. QNB combines local

read counts from both INPUT and IP libraries to estimate expression levels, which can con-

found pre-IP and post-IP measurements. This can lead to biased expression level estimation,

resulting in substantial false discoveries in DM analysis.

Alternatively, Zhang et al. [2019] proposed a Poisson random effect model to combat the

limitation mentioned above. They model the post-IP enrichment counts Yi in i-th samples

as follows:

Yi ∼ Poi (λi) log (λi) = µ+Xiβ + ei = µ+Xi0 β0 +
∑k

j=1
Xij βj + ei

where λi is the mean of a Poisson distribution, µ is a gene-specific intercept, Xi is a vector

including the indicator of the groups of interest Xi0 and covariates Xij(j = 1, ..., k) for i-th

sample, β represent associated coefficients and ei is a random effect following a Log-Gamma

distribution with a scale parameter ψ and mean equal to 1, i.e., ei ∈ logGamma(ψ,ψ). This

novel prior leads to closed-form solutions to the Poisson random effect model and accelerates

the computation. The differential analysis is equivalent to test against the null hypothesis

β0 = 0. This generalized linear model framework allows the inclusion of covariates in β.
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4.1.3 Cell type-specific differential methylation analysis

Like gene expression, RNA methylation is differentially regulated across cell types and de-

velopmental stages, reflecting its crucial role in cellular and developmental processes. Some

studies on m6A have observed that RNA methylation patterns can vary significantly be-

tween different cell types (Zhou et al. [2017], Molinie et al. [2016], Perlegos et al. [2024]).

Specific methylation marks can define the identity and function of a cell, influencing gene

expression and cellular behavior. In addidtion, RNA methylation can affect RNA stability,

splicing, translation, and localization. By regulating these processes, RNA methylation plays

a critical role in fine-tuning gene expression in a context-dependent manner.

Based on the RADAR framework, we have proposed a mixture Poisson generalized lin-

ear mixed model for conducting cell type-specific differential methylation analysis. This

approach leverages the estimates of cellular compositions derived from the INPUT library,

enabling us to test for cell type-specific differential methylation without the need for di-

rect experimental measurement of cell type-specific methylation. This methodology not

only facilitates hypothesis generation on biological functions but also does so cost-effectively,

presenting new opportunities for advancing research in the field. We will provide detailed

explanations of the model formulation, algorithm, and simulation results for the framework

in the following sections.

4.2 Methods and materials

4.2.1 Mixture Poisson generalized linear model

In this chapter, we assume that the relative proportions of cell types are known. Given

the estimated relative proportions of different cell types α̂jk(j = 1, ..., p) for each individual

sample k, we assume m6A enrichment in k-th sample is a mixture of m6A enrichment levels

across all cell types: Zk =
∑p
j=1 α̂jkZjk, where Zs represent read counts and the enrichment
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level in a particular cell type Zjk is not observed.

Zk | ek ∼ Poisson(λk) k = 1, ..., n

λk =

p∑
j=1

α̂jkλjk =

p∑
j=1

α̂jk exp(µ+ βjXk + ek) =

p∑
j=1

qjk

f(γ,θ)(ek) =
e
θek− eek

γ

γθΓ(θ)
choose γ = e−ψ(θ)

Zk represents read counts in the k-th sample, and α̂jk(j = 1, ..., p) are given estimated

relative proportions of different cell types for each sample k. The over-dispersion is captured

by ek following a Log-Gamma distribution with shape θ and rate 1
γ such that ek has zero

mean. Xk is the indicator of group of interest for the k-th sample.

Due to the specific choice of distribution (Log-Gamma) for the random effect, we are able

to compute the exact form of the likelihood function L(µ,β, θ; zk).

L(µ,β, θ; zk) =

∫
f(zk | ek)f(ek)dek

=
1

zk!

∫
(e−∆k)e

ek
∆
zk
k e

ekzk+θek− 1
γ e

ek 1

γθΓ(θ)
dek

=
1

zk!

(∆k + 1/γ)−(θ+zk)Γ(θ+zk)

γθΓ(θ)
∆
zk
k

Taking the logarithm of the likelihood function transforms it into a summation of func-

tions of µ,β, θ and Z. This transformation simplifies the expression, making it more man-

ageable for analytical and computational purposes.

l(µ,β, θ;Z) =
n∑
k=1

− log(Zk!) + Zk log∆k − (θ + Zk) log(∆k +
1

γ
) + log Γ(θ + Zk)

− θ log γ − log Γ(θ)

where γ =e−ψ(θ),∆k =

p∑
j=1

α̂jk exp(µ+ βjXk)

(4.1)
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4.2.2 Algorithm

To find the optimizer, we need to start the optimization process from a set of close initial

values. To obtain a good initial guess, we attempt to create fake counts Yjk to mimic the

Zjk by fitting a linear regression model

Zk = a+

p∑
j=1

bjα̂jkXk + ϵk.

We then use the estimated coefficients to create:

Yjk = max{0, (â+ b̂jXk) ·Wk}+ 1,

where Wk
iid∼ Gamma(θ, e−ψ(θ)). This process helps to generate initial values that are close

to the expected values, thereby improving the efficiency and accuracy of the optimization

process.

Algorithm 1: Maximize log-likelihood
Input: X ∈ Rn, Z ∈ Rn, α̂ ∈ Rp×n, θ0
Output: MLE (µ∗,β∗, θ∗) of (4.1) and l(µ∗,β∗, θ∗;Z)

1 Fit linear regression models Zk = a+
∑p
j=1 bjα̂jkXk + ϵk.

2 Set Yjk = max{0, (â+ b̂jXk) ·Wk}+ 1, where Wk
iid∼ Gamma(θ, e−ψ(θ)).

3 Fit linear regression models log Yjk = µ+ βjXk + ϵjk.
4 Set µ0 = µ̂; βj0 = β̂j to be the initial values.
5 Optimize the log-likelihood (4.1) from initial valued (µ0,β0, θ0)
6 (µ∗,β∗, θ∗) = argmaxµ,β,θ l(µ,β, θ;Z)
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4.2.3 Likelihood ratio test

The ultimate goal is to perform differential methylation analysis to identify cell type-specific

methylation patterns. To test H0 : βj = 0, consider likelihood ratio

LR = −2 ln

[
supµ,θ,βj=0 L(µ,β, θ)
supµ,θ,β L(µ,β, θ)

]

which follows asymptotic χ21-distribution under the null hypothesis. Then we reject H0 if

LR > χ21,1−α

4.3 Simulation results

n this section, we present the simulation results to validate the accuracy and robustness of

our algorithm. We begin by examining the initial guesses for (µ, β) across various scenarios

to assess the reliability of the starting points in our optimization process. Subsequently, we

provide a comprehensive analysis of the final estimates obtained from our algorithm, demon-

strating their convergence and consistency. The effectiveness of the algorithm is further

evaluated through the likelihood ratio test under the null setting. Additionally, we analyze

the statistical power and false discovery rate (FDR) to ensure the algorithm’s sensitivity

and specificity in detecting true differential expression. Overall, these results confirm the

efficacy of our algorithm in various testing conditions, highlighting its potential application

in real-world single-cell RNA sequencing data analysis.

4.3.1 Initial values and estimates

In our algorithm, we first fit linear models to obtain reasonable initial values for optimizing

the log-likelihood function. To evaluate the fairness of these initial values, we set up two

scenarios. The first scenario is µ = 5, β = (0,−0.5, 0.5), and θ = 10, which mimics a small
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effect size on the coefficients (Fig. 4.1, Fig. 4.2). The second scenario is µ = 5, β = (0, 1, 3),

and θ = 10, representing a larger effect size (Fig. 4.3). These setups allow us to examine if

the initial values provide a fair starting point for the optimization process.

The results show that both the initial values and the final estimates are bell-shaped and

centered around the true parameters. Despite the relatively large variation in the initial

values, they still provide a reasonable starting point for the optimization procedure, leading

to satisfactory performance. This indicates that our algorithm is robust and capable of

producing accurate estimates even with a diverse range of initial guesses.

Figure 4.1: Histograms of initial guess for the parameters under small effect.

4.3.2 LRT for null settings

We further tested the p-values of the likelihood ratio test under the null settings with param-

eters p = 2, n = 1000, µ = 5, β = (0, 0), and θ = 10, specifically testing the null hypothesis

H0 : β1 = 0. As shown in Fig. 4.4, the histogram of the p-values is fairly flat, indicating

that the likelihood ratio test behaves as expected under the null hypothesis, providing valid

p-values and demonstrating the appropriateness of our approach.
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Figure 4.2: Histograms of estimates for the parameters under small effect.

Figure 4.3: Histograms of initial guess for the parameters under larger effect.
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Figure 4.4: Histograms of p-values under the null setting.

4.3.3 Power, FDR, accuracy, type1 error

The following results in Fig. 4.5 are based on simulations with µ = 5, θ = 10, and the sample

size ranges from n = 50, 100, 200, 400. For each n, we sampled 500 times. Each time for all

βs, we randomly generated the proportion α̂jk and indicators Xk. The count data was then

generated by our model assumption.

As the sample size increases, the power, FDR, accuracy, and type I error all improve

visibly. The power reaches almost 1 when n is only 500, demonstrating the effectiveness

of the test in detecting true effects with relatively small sample sizes. The FDR is well-

controlled under 0.05 across all scenarios, ensuring that the rate of false discoveries remains

low. While the type I error is slightly elevated, it remains under 0.06, indicating a reasonable

balance between sensitivity and specificity. The estimates for µ and θ are close to the

true parameters, suggesting that the model accurately captures these aspects of the data.

However, the accuracy of β appears to be off for larger effect sizes, indicating that further

investigation into the distribution or the likelihood function may be necessary to address

this discrepancy.
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Figure 4.5: Power, FDR, accuracy and type1 error under different scenarios.
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APPENDIX A

SUPPLEMENTARY FIGURES

A.1 Supplementary Figures for Chapter 2

Figure A.1: Zero proportion plots for each cluster obtained by HIPPO for case study 1.
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(a)

(b)

Figure A.2: Additional variation proportion analysis results. a) Boxplots of donor variation
and cell type variation grouped by quartiles of residual variation, displayed in different pairs
and different data sources. b) Scatter plots of variation proportions for donor effects and
cell type effects in different pairs and different data sources.
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(a)

(b)

Figure A.3: Additional diagnostic plots for group 12 and 13. a) Left: Donor composition
in each group. Middle: Zero proportion plot for each group and combined. Right: Density
plot of library size grouped by donors. b) Volcano plots for each method. Wilcox method is
not applicable in this pair because the filtering procedure in Seurat excludes all genes. The
signs of log2 fold change are adjusted such that positive signs represent higher expressions
in group 13. c) Histogram of p-value and adjusted p-value for each method. d) Pairwise
comparisons of log2 fold changes from other methods against LEMUR Poisson-glmm. e)
Pairwise comparisons of p-values from other methods against LEMUR Poisson-glmm.
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(c)

(d)

Figure A.3 continued
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(e)

Figure A.3 continued
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(a)

Figure A.4: Additional diagnostic plots for group 2 and 19. a) Comparisons of t scores of
mean difference test for raw UMI counts vs. other transformed data. b) Pairwise compar-
isons of log2 fold changes from other methods against LEMUR Poisson-glmm. c) Pairwise
comparisons of p-values from other methods against LEMUR Poisson-glmm. d) Histogram
of p-value and adjusted p-value for each method. e) Left: Violin plot of log2 gene mean for
DEGs from different methods. Right: Comparisons of the gene expression frequency of the
DEGs from different methods. f) Left: Heatmaps of DEGs from LEMUR Poisson-glmm.
Right: Heatmaps of DEGs from LEMUR Binomial-glmm g) Left: Heatmaps of DEGs from
MMpoisson but not identified by LEMUR Poisson-glmm. Right: Heatmaps of DEGs from
LEMUR Poisson-glmm but not identified by MMpoisson.
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(b)

(c)

Figure A.4 continued
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(d)

(e)

Figure A.4 continued
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(f)

(g)

Figure A.4 continued
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(a)

(b)

Figure A.5: Additional diagnostic plots for group 8_17 and 2_19. a) Left: Donor compo-
sition in each group. Middle: Zero proportion plot for each group and combined. Right:
Density plot of library size grouped by donors. b) Counts of input genes and DEGs in
different DE methods. c) Volcano plots for each method. The signs of log2 fold change
are adjusted such that positive signs represent higher expressions in group 2_19. d) His-
togram of p-value and adjusted p-value for each method. e) Pairwise comparisons of log2
fold changes from other methods against LEMUR Poisson-glmm. f) Pairwise comparisons of
p-values from other methods against LEMUR Poisson-glmm. g) GO analysis of the DEGs
identified by Poisson-glmm.
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(c)

(d)

Figure A.5 continued
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(e)

(f)

Figure A.5 continued
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(g)

Figure A.5 continued
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(a)

(b)

Figure A.6: Additional data summary for case study 2. a) Left: Donor composition in
each cell type. Right: Group composition in each cell type. b) Left: Zero proportion plots
separated by cell types. Right: Zero proportion plots separated by cell types and group
conditions.
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(a)

(b)

Figure A.7: Additional diagnostic plots for B cells. a) Numbers of inputs and DEGs from
different methods. Note that the input genes are all restricted to the input of Poisson-glmm
b) Volcano plots for each method. The signs of log2 fold change are adjusted such that
positive signs represent higher expressions in the stimulated group.
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(a)

Figure A.8: Diagnostic plots for determining DEGs. a) Left: Volcano plot for current
criteria. Right: Gene mean vs. mean difference plot. b) Heatmaps illustrating the removed
genes with small mean. c) Left: Volcano plot for new criteria. Right: Gene mean vs. mean
difference plot. The DEGs selected by new criteria are annotated.
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(b)

(c)

Figure A.8 continued
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(a)

Figure A.9: GO analysis of B cells by different DE methods. a) Poisson-glmm method. b)
pb-DESeq2 method. c) MMpoisson method.
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(b)

Figure A.9 continued
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(c)

Figure A.9 continued
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(a)

(b)

Figure A.10: Permutation analysis under null setting on a dataset. a) Group 2 of case
study 1. Left: Violin plots depicting the proportion of p-values below 0.05 for each method.
Right: Histogram of p-values. b) Group 13 of case study 1. Left: Violin plots depicting
the proportion of p-values below 0.05 for each method. Right: Histogram of p-values. c)
Histogram of p-values under null setting on B cells of case study 2.
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(c)

Figure A.10 continued

A.2 Supplementary Figures for Chapter 3
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(a) Two proportion

(b) Three proportion

Figure A.11: The percentage of k-proportion of selected features in each round of HIPPOx.
The numbers in red indicate the number of selected features, and the percentage represents
the contribution of selected genes passing the k-th inflation test.
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APPENDIX B

SUPPLEMENTARY TABLES

B.1 Supplementary Tables for Chapter 2

Table B.1: Comparison of statistical approaches for differential expression analysis in single-
cell RNA sequencing studies.
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