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ABSTRACT

In genetic association analysis of complex traits, detection of interaction (either GxG or
GxE) can help to elucidate the genetic architecture and biological mechanisms underlying
the trait. Detection of interaction in a genome-wide association study (GWAS) can be
methodologically challenging for various reasons, including a high burden of multiple com-
parisons when testing for epistasis between all possible pairs of a set of genome-wide variants,
as well as heteroscedasticity effects occurring in the presence of GxG or GxE interaction.
In this paper, we address the problem of an even more striking phenomenon that we call
the “feast or famine” effect that occurs when testing interaction in a genome-wide context.
We show that, even in a simplified setting in which there is no interaction at all (and so no
heteroscedasticity) and all SNPs are assumed independent, in a GWAS to detect gene-gene
or gene-environment interactions with a fixed genetic variant or environmental factor, the
distribution of the genome-wide p-values under the null hypothesis of no interaction is not
the i.i.d. uniform one that is commonly assumed. Using standard methods, even if all SNPs
are independent, some GWAS’s will have systematically underinflated p-values (“feast”), and
others will have systematically overinflated p-values (“famine”), which can lead to false detec-
tion of interaction, reduced power, inconsistent results across studies, and failure to replicate
true signal. This is a surprising result that is specific to detection of interaction in a GWAS,
and it may partly explain why such detection has so far proved challenging and difficult to
replicate. We show theoretically that the key cause of this phenomenon is which variables
are conditioned on in the analysis, and this suggests an approach to correct the problem
by changing the way the conditioning is done. Using this insight, we have developed the
TINGA (Testing INteraction in GWAS with test statistic Adjustment) method to adjust the
interaction test statistics to make their p-values closer to uniform under the null hypothesis.
In simulations we show that TINGA controls type 1 error, improves power and reduces the
“feast or famine” effect. TINGA allows for covariates and population structure through use
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of a linear mixed model and accounts for heteroscedasticity. We apply TINGA to detection

of epistasis in a study of flowering time in Arabidopsis thaliana.



CHAPTER 1
INTRODUCTION

GWAS usually investigates the associations between genetic variants (or SNPs) and a partic-
ular phenotype, in a genome-wide scale. Apart from the ordinary genotype-trait associations,
we are also interested in the statistical problem of detecting interactions in a GWAS setting,
either gene by environment (GxE) interaction or epistasis, which is the interaction between
genes. It is well-known that the effects of a genetic variant can be different for individuals
with different environments, such as age [2; 3|, sex [4; 5; 6; 7; 8| , lifestyles [9] , cell type
[10] and other exposures [11]; the genetic effects can also depend on other variants, either
from the same genome [12; 13] or the genome of another species (such as pathogen and host
[14], mother and offspring [15]). The two types of interactions are very important in many
aspects. For example, detection of such interaction effects can enhance the ability to identify
genetic effects that would otherwise be reduced or masked [16]; they are considered as one of
the reasons why results of marginal association studies are sometimes hard to replicate [17];
they are believed to account for a large part of missing heritability [18; 19; 20]; and they
can lead to a better understanding of genetic architecture of complex traits and diseases
[21; 16; 22| and potentially benefit many areas such as public health [23] and agriculture
[24; 25|. Extensive prior research has been done to develop appropriate methods for detect-
ing interactions in GWAS, aiming to improve computational efficiency, reduce false positives

and increase power [6; 26; 27; 28; 29; 30; 31; 32].

One challenge specific to epistasis detection is that, because of the large number of tests,
an exhaustive search for epistatic effects in a GWAS context has a larger computational
burden and lower statistical power than an ordinary trait-variant GWAS. To deal with this
issue, researchers have developed various methods that corrects for multiple testing while still

remaining powerful [33; 34]. Another option is to reduce the number of tests by a two-stage
1



approach: first select a subset of SNPs that are more likely to be involved in interaction and
then test for interaction among them [26; 30; 35; 36; 37|.

Moreover, previous work found it hard to replicate interactions in GWAS [38; 39; 40].
This can occur for a variety of reasons. For example, in some cases, an apparent epistatic
effect that is detected could be due to an unsequenced causal variant [41; 42; 38|. Another
important issue that has been identified is heteroscedasticity [43; 44; 45| that can result
under the null model when, for example, interaction is present between one of the two tested
variables and some other variable not included in the model or when the null model is
misspecified in some other way. If not accounted for, this heteroscedasticity can lead to
excess type 1 error for testing interaction [43; 44; 45].

Many scenarios of testing for GxG or GxE in a GWAS context involve fixing one genetic
variant or environmental factor and performing an interaction GWAS by testing the fixed
variable for interaction with each genetic variant across the genome. The typical approach to
inference treats the phenotype as random and the environmental factors and/or genotypes
as fixed. Systematically inflated or deflated p-values in such an interaction GWAS have
been previously reported, based on both data and simulations [42; 43; 44]. Even under
simplified assumptions, in the absence of problems such as heteroscedasticity, it has been
noted that type 1 error rates and genomic control inflation factors are highly variable across
such interaction GWAS’s [43; 44].

In this paper, we develop a deeper and more detailed understanding of such unexpected
behaviour of interaction test results in a GWAS context, which we call the “feast or famine”
effect. We frame this problem as resulting from the choice of variables to condition on and
show how changing this choice has the potential to resolve the problem. Our framework also
explains clearly why the “feast or famine” effect only occurs in interaction GWAS, not in
ordinary association GWAS. We implement our ideas in a method we call TINGA (Testing

[Nteraction in GWAS with test statistic Adjustment), in which we adjust the t-statistic for



interaction by re-centering and re-scaling it using the null conditional mean and conditional
variance of its numerator, with a more appropriate choice of conditioning variables. In
simulations, we demonstrate the ability of TINGA to greatly reduce the “feast or famine”
effect while controlling type 1 error and increasing power. We apply TINGA to detect

epistasis in a GWAS for flowering time in Arabidopsis thaliana.



CHAPTER 2
PROBLEM DESCRIPTION AND INTERPRETATION

We consider the problem of testing for interaction, either G x E or G x G, in a GWAS context.
In a sample of n individuals, let Y be an n x 1 trait vector, and let G be an n X m matrix of
genotypes for a set of m genome-wide variants. Let Z be an n x 1 vector that, in the case of
G x F testing, represents the environmental variable that we wish to test interaction with
and in the case of G x G testing, represents the genotype at a particular variant that we
wish to test interaction with (where we assume that Z is removed from the matrix G in that
case). In addition, we can allow for an n x k matrix U of covariates (including intercept).
By “testing interaction in a GWAS context”, we mean that for each j in {1,...,m}, we test
for interaction between GGj and Z in a linear or linear mixed model for Y, where G is the
jth column of G.

In this section, we first describe what we call the “feast or famine” effect for testing
interaction in a GWAS context. We explain how the “feast or famine” effect can result in
some GWAS’s having systematically overinflated interaction p-values, reducing power, while
others have systematically underinflated p-values, resulting in excess type 1 error. In what
follows, we focus our exposition on the t-statistic for testing interaction, but the “feast or
famine” effect is very general and applies just as well to, e.g., the likelihood ratio chi-squared
test or the F-test for interaction. We show that the “feast or famine” effect does not occur in
ordinary GWAS for association between a trait and genetic variants, but only when testing
interaction in a GWAS context. After that we describe our TINGA method to correct the
interaction test statistic to greatly reduce this effect. We then show the performance of our
method via simulation results in the next section.

In the simplest setting in which there are no covariates and no population sub-structure,

we let T} denote the {-statistic for testing interaction between G; and Z, i.e., for testing



Hpy : 6 =0, in the following linear model:
Y =1lpa+GiB+2Zy+(GjoZ)d +e, (2.1)

where 1, is a vector of length n with every entry equal to 1, «, 3, v and ¢ are unknown
scalar parameters, € ~ N (0, 021,,), where ¢2 is unknown and I, is the n x n identity matrix,
and where, for any two vectors a and b, both of length n, we define a o b to be the vector
of length n with ith element (a; — @)(b; — b), where, e.g., @ = n~ 13" 1 a;. (Note that
the test statistics T; would remain exactly the same if we replaced G o Z in (2.1) by the
element-wise product of the vectors GGj and Z, but choosing to center the variables before

multiplying them has various advantages such as reducing potential collinearity and making

the coefficients more interpretable.)

2.1 The “feast or famine” effect: what we thought we knew about

testing interaction in a GWAS context was wrong

For simplicity, we first focus the exposition on G x E interaction testing. An essential feature
of testing G x E interaction in a GWAS context is that we obtain a set of m test statistics
Tj, j € {1,...,m}, where T; = Tj(G;,Z,Y), with the same Y and Z used in all the test
statistics and only Gj varying. As a thought experiment, imagine the simplest possible null
scenario in which Y, Z and the columns of G are mutually independent, with the elements
of Y drawn as i.i.d. N(u,0?), the elements of Z drawn as i.i.d. from some distribution Fy,
and the elements of G; drawn as 1.i.d. from some distribution Fgy, for j = 1,...,m. What
would be the distribution of (77, ..., Ty,) in this case? It is well-known that for any given j,
the distribution of T} in this case is the (central) Student’s ¢ distribution on n — 4 df, which

we denote by 7T,_4. Thus, it is tempting to assume that 77, ..., 7T}, must be approximately

i.i.d. draws from 7,4, but that is (perhaps surprisingly) incorrect.
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In this simple scenario, we show that it is most appropriate to think of T7,...,T}, as
ii.d. draws from some distribution whose mean is 0 and whose variance is a function of
(Y, Z). For some choices of (Y, Z), the variance of the resulting 7}’s is larger than 1 (where
1 is the approximate variance of 7, _4 for large n), while for other choices of (Y, Z), the
variance of the resulting 7}’s is smaller than 1. Thus, if we used 7,4 to calculate p-values
Py .., pm for T1,..., Ty, respectively, which would be the standard approach, then in one
GWAS these p-values might be systematically too big on average, in a second GWAS these
p-values might be systematically too small on average, and in a third GWAS, they might be
about right (where by “about right” we mean approximately i.i.d. uniform under the null).

This can easily be observed in simulations. Fig 2.1 shows four histograms, each of which
depicts the p-values pq,...,pm for a G x E GWAS obtained as described above, where n
is 1,000, m is 5,000, Fz is taken to be Bernoulli(.2), and Fg; is taken to be Bernoulli(f;)
for j = 1,...,m, where f1,..., fin are drawn as i.i.d. Unif(.1,.9), to mimic the genotypes
of a haploid organism or an inbred line. In Panel A of Fig 2.1, the p-values are seen to
be systematically overinflated, while in Panel B of Fig 2.1, the p-values are seen to be
systematically underinflated. The information in Table 2.1 supports this conclusion, where
we can see that for Panel A, the s.d. of the interaction t-statistics is < 1 and the genomic
control inflation factor is < 1, while for Panel B the opposite holds. We repeated this
experiment 400 times, and in each replicate, we tested whether the 5,000 p-values were i.i.d.
Uniform(0,1) distributed under the null hypothesis (which is equivalent to testing whether
the 5,000 interaction t-statistics are i.i.d. 7,_4 distributed) using the two-sided equal local
levels (ELL) test as implemented in qqconf [1] (See S1 R script to calculate p-values for the
two-sided equal local levels test for i.i.d. uniformity for an R script to perform the test).
In 190 out of 400, i.e., 47.5%, of the replicates, the two-sided ELL test for uniformity was
rejected at level .05, clearly showing that the t-statistics for interaction in a GWAS are not

i.i.d. 7,4 distributed under the null hypothesis.



This effect seems to be very general and also occurs when, e.g., F7 and F; are taken to
be Gaussian or Binomial, as we show later. Furthermore, if instead of a t-test for interaction,
we apply a likelihood ratio chi-squared test or F-test for interaction to the same simulated
data sets, we get essentially indistinguishable histograms to those in Fig 2.1 (which is perhaps
not surprising since they are asymptotically equivalent tests), and the same 190 replicates
out of 400 are rejected by the ELL test for uniformity of the p-values, showing that the
likelihood ratio chi-squared test and F-test for interaction are also subject to the “feast or
famine” effect.

Table 2.1: Summary statistics for the examples in Fig 2.1

Panel | T; mean | T} s.d. | genomic control A\ | ELL p-value
A .015 .93 .88 2.2e-10
B -.002 1.09 1.19 3.6e-12
C .013 94 92 9.5e-9
D -.010 1.09 1.16 3.5e-12

For each panel of Fig 2.1, T; mean is the mean and 7} s.d. is the s.d. of the interaction
t-statistics whose p-values are displayed in the panel. The genomic control A is based on
the squares of the interaction t-statistics in each panel. The ELL p-value is the p-value for
testing the null hypothesis that the interaction p-values are uniformly distributed under
the null hypothesis, as described in [1].



Figure 2.1: Histograms of p-values for t-tests for interaction in a GWAS when the
null hypothesis is true
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Each histogram is based on a replicate of (Y, Z) and 5,000 genotypes, G1, ..., Gsp00- In
each histogram, interaction is tested between Z and G in the linear model in (2.1) for

7 =1,...5,000, as described in the text, and the 5,000 p-values are computed using the
T, —4 distribution and are displayed in the histogram. Panels A and B represent two
different replicates of a null simulation as described in the text. In Panel C, the same

(Y, Z) replicate is used as in Panel A, and a new set of 5,000 genotypes is simulated and
used in the interaction tests. Similarly, in Panel D, the same (Y, Z) replicate is used as in

Panel B, and a new set of 5,000 genotypes is simulated and used in the interaction tests.
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2.2 A deeper understanding

We want to emphasize that we are not simply saying that pq, ..., py, are positively correlated.
A further key point is that for a particular G x E GWAS;, i.e., for a particular choice of
(Y, Z), it is, in principle, predictable based on (Y, Z) whether the p-values of py, ..., py will
be systematically too large, systematically too small or about right. For example, in Fig 2.1,
when we keep (Y, Z) the same as in Panel A and simulate a completely new and independent
set of genotypes G for testing interaction, as in Panel C, we again see over-inflation of the
p-values. Similarly, when we keep (Y, Z) the same as in Panel B and simulate a completely
new and independent set of genotypes G for testing interaction, as in Panel D, we again see
under-inflation of the p-values. This is further supported by the information in Table 2.1.

Thus, use of standard methods would be expected to result in loss of power (“famine”) in
some GWAS'’s (e.g., the (Y, Z) used in Panels A and C) and excessive type 1 (“feast”) error
in other GWAS’s (e.g., the (Y, Z) used in Panels B and D).

To understand why this happens, it is helpful to think about which variables we are
conditioning on. The ordinary t-statistic for interaction was developed in a non-GWAS
context in which it made sense to condition on GG; and Z and treat Y as random, and in that
case, the null conditional distribution of T} can be proven to be the same 7,4 distribution
for any values of G;,Z in the simple setting described above. As a direct consequence of
this, it is also true that the unconditional distribution of 7} is 7, 4. In other words, if we
randomly choose a G x E GWAS (i.e., randomly choose (Y, Z)), and then randomly choose
a null SNP j from that GWAS, then T} has distribution 7, 4. However, in any particular
G x E GWAS, Z and Y are fixed, and only G; is varying, so it is more appropriate to
consider the null conditional distribution of the ¢-statistic for interaction where we condition
on Z and Y and treat G; as random (see, e.g. [43]). We show that even in the simple
case described above, conditional on (Y, Z), the distribution of T; depends on (Y, Z) and is

not 7p,—4. In fact, in the slightly more general null hypothesis scenario when G; has some

9



marginal effect on Y but no interaction with Z, we show that not only the null conditional
variance of T} but even its null conditional mean depends on (Z,Y).

These same ideas apply to testing G x G interaction in a GWAS context if we think of
setting Z to be the genotype of one particular variant, we exclude Z from the columns of G,
and we consider a GWAS in which we test for interaction between Z and Gj for j = 1,...,m
in model (2.1) using a t-test for interaction. The upshot is that for some G x E or G x G
GWAS'’s, i.e., for some realizations of (Y, Z), use of a T,,_4 distribution to assess significance
of interaction will systematically overstate the evidence for interaction (“feast”), while for
other G x FE or G x G GWAS’s, it will systematically understate the evidence for interaction
(“famine”). Whether there is feast or famine will depend on the luck of what value of (Y, Z)
is observed. This statistical phenomenon could be an important explanation of the difficulty
in detecting and replicating epistasis and gene-environment interaction that has long been
observed.

With this conditioning explanation in mind, one way of thinking of the “feast or famine”
effect is that if we average across many interaction GWASs, then the t-statistic for interaction
has correct type 1 error, but its false positives are excessively concentrated in some GWASs,
and its false negatives are excessively concentrated in some other GWASs. The good news is
that our conditioning explanation implies that by doing conditional calculations, such as we

describe below, we should in principle be able to alleviate or entirely eliminate this effect.

2.3 Why doesn’t ordinary (non-interaction) GWAS have the

“feast or famine” phenomenon?

We have argued that when testing interaction in a GWAS context, we are actually con-
ditioning on Y and Z and letting G; be random, and that the t-statistic for interaction
does not have a t-distribution under the null hypothesis when we condition on (Y, 7). By a

similar argument, we could point out that in an ordinary (non-interaction) GWAS, we are
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conditioning on Y and letting Gj be random, rather than the reverse. Does this also cause a
problem for the t-statistic for association? The answer is no. The problem we describe does
not occur for ordinary (non-interaction) GWAS, but is specific to interaction GWAS, as we
now explain.

First, consider the t-statistic for association in an ordinary GWAS. We consider a slightly
more general scenario than before in which there may be additional covariates U in the model

(where U includes an intercept). Suppose the model we use for testing association is
Y=Ua+GjB+e (2.2)

where Y is n x 1, U is n x k, and G is n x 1, all as defined before, a is an (unknown)
k x 1 vector, 8 is the unknown scalar parameter of interest, and € ~ N(0, Jg]n), where 03
is unknown.
Define Py = I —U(UTU)~'UT, an n x n symmetric matrix. We note that the t-statistic
for testing Hy : 5 = 0 in the model in (2.2) can be written as
(GTPyY)Wn—k—1

v 2.3
J \/(YTPUY)(GfPUGj)—(G}“puy)Q (2.3)

(see the proof in section 2.4).

From this formula, it is clear that the t-statistic is symmetric in G; and Y. That is to
say, if we switch ¥ and G in 2.2 and regress G; on Y and U, we will get the same form of
t-statistic Sj. In other words, it is equivalent to testing for the marginal effect of ¥ on G;

in the model

Gj~ NUa+Y8B,0%) (2.4)

The symmetry between GGj and Y in the ordinary (non-interaction) t-statistic for association

means that in large samples, the distribution of the t-statistic under the null hypothesis of

11



no association would be approximately the same regardless of whether we conditioned on
G and let Y be random or conditioned on Y and let G; be random. The only difference
would be that G; would typically be a Binomial or Bernoulli random variable (genotype)
and Y might commonly be a conditionally normal random variable (phenotype). In very
small sample sizes, the difference between the underlying distributions of G; and Y would
change the conditional distribution of the t-statistic for association depending on which one
you conditioned on, but in typical GWAS sample sizes, the central limit theorem will take
effect, and the conditional distribution of the t-statistic for association will be approximately
the same in both cases.

This difference between ordinary (non-interaction) GWAS and interaction GWAS can be
seen in simulations. We performed r = 5,000 replicates of a null simulation similar to that
in section 2.1, except that instead of F; being Bernoulli(.2), we made F; Bernoulli(pyz;)
in replicate k, where py1,...,pgzp are ii.d. Unif(.1,.9). As before, frequencies of G are iid
draws from Unif(0.1,0.9), Y ~ N(p, 02) and is independent of Z and G’s. In replicate k, we
tested interaction between Z and Gj (Hq : 6 = 0 in Model (2.1)) for j = 1,...m, obtaining
interaction t-statistics T 1(k), e ,Tr(,f ). We also tested marginal association between G; and
Y in a model with no other covariates except intercept, obtaining ordinary association t-
statistics S%k), e Sy(rlf ) as in (2.3). We obtain the interaction p-values for Tj(k) using the

T—4 distribution and the ordinary association p-values for S ()

J using the 7,,_9 distribution.

In this simulation, when we apply the two-sided ELL test for uniformity at level .05 to the
interaction p-values from each replicate, we reject 29.3% of the 5,000 replicates as being
significantly non-uniform. In contrast, when we apply the same ELL test to the ordinary
association p-values from each replicate, we reject just 4.8% of the 5,000 replicates, which is
not significantly different from the nominal 5% rate. This verifies that the ordinary GWAS p-
values are showing the expected behavior, while the “feast or famine” effect is only showing

up in the interaction p-values. This can be seen also in Fig 2.2 Panel A which depicts
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a histogram of the genomic control inflation factors for each replicate for the interaction
GWAS’s in red and for the ordinary (non-interaction) GWAS’s in purple. The narrower
purple histogram reflects the expected sampling variability of the GCIF based on 5,000 i.i.d.
test statistics. In contrast, the wider red histogram reflects the additional spread due to
the “feast or famine effect”, i.e., the fact that conditional on (Y, Z) the p-values may be
systematically over- or under-inflated compared to uniform. Fig 2.2 Panel B is similar but
for a simulation in which F; is Binomial(2, py;.) in replicate k instead of Bernoulli(pz;.) and
Fj is Binomial(2, pg;) instead of Bernoulli(pg;). In Figure 2.3, a similar pair of histograms
can be seen for the case when both Z and GG are normally distributed.

For the case when Y follows a linear mixed model, i.e., the model is as in (2.2) except
that

e~ N(0,%), £ = 02K +olly,

where K is a GRM, it is also true that the Wald test statistic for association (i.e., the Wald
test for Hy : 8 = 0) is symmetric between G; and Y when ¥ is known. Thus, in this case
also, ordinary GWAS association testing is essentially not affected by whether we condition

on G j and let Y be random or condition on Y and let G j be random.

2.4 Proof of equation 2.3

For the linear model

Y ~ N(Ua + G;B,0%I), (2.5)

let 3 be the estimated value for 3. Let Py=1- U(UTU)_lUT, note that Py is a projection
matrix so it is symmetric and idempotent. FPrY is the residual of Y after regressing out
U; similarly, PyGj is the residual of G; after regressing out U. Then from the properties

of partial regression, we know that B is the same as the estimated coefficient for G; in the
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Figure 2.2: Marginal vs. interaction GCIF
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Y is simulated without GRM and under completely null. Purple: genomic control inflation
factors of the 5000 marginal association tests between G, ..., G5oop and Y; Red: GCIF of
the 5000 interaction tests between Z and G, ..., Gso00- (2). Both Z and G’s are Bernoulli
distributed; (b). Both Z and Gj’s are Binomial distributed with 2 trials.
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Figure 2.3: GCIF Z Normal, G; Normal
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Y is simulated without GRM and under completely null. Purple: genomic control inflation
factors of the 5000 marginal association tests between G1, ..., Gsoo0 and Y; Red: GCIF of
the 5000 interaction tests between Z and (7, ..., Gsop0. Both Z and Gj’s are Normal
distributed with mean ~ Unif(—10, 10) and variance 1
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following linear regression

PyY ~ N(P,G0,w?I),

which regress the residual of Y on the residual of G;. Then we can get

Then go back to our original model 2.5, the variance of /3 can be obtained by

2 T J2
'rG = ——
J J T

. o
Var(f) = ———

(GT PyGj)?
Then the t-statistic for testing Hy : § = 0 in model 2.5 will be

A T
T 5 _ Gj PUY
VVar() /#2G] PuG,

where 62 is the estimated variance from model 2.5.

(2.6)

(2.7)

(2.9)

Let M = (U,G;), Pyy =1~ M(MTM)~'MT. Then Py, is the projection matrix that

regresses out all predictors in model 2.5. Then

&QZM

n—kFk—1

We claim that -
P =tv=—crp e =

g UM

Proof

Multiply the RHS of equation 2.11 to Y, we have

PyG;GT PyY
T
16

PY = PyY — = PyY — BPyG,

(2.10)

(2.11)

(2.12)



Since P)s is the projection matrix that regress M out, we have
PyY =Y —Ua—Gjf (2.13)

where &, /3 are the least square estimators of «,  in model 2.5. Multiply both sides of

above equation by FPrr, we get
PyPyY = PyY — PyUéa — PyGif = PyY — PyGi = PY (2.14)

since PyU = 0.
Notice that
PyPy = (I-UWUTU) " WuTY Py = Py — UWUTU) 10T Py, 2.15)
UwTon)y~toTey)T = PyuwTo)y"'uT =0
The second equation holds because M contains U as its columns and Py;U = 0. Then we

have

PyY = PY (2.16)

Since it holds for all Y € R", we have Py; = P.

Plug Py; = P in the formula for 62, we get

T 2
~9 1 T (G‘ PUY)
o= n—k—1 <Y PUY_ GJjPUG]'
(2.17)
B G]T PyYy G]TPUY\/nfkfl
\/&QGJTPUGj \/(YTPUY)(GjPUGj)f(G;FPUY)Q
O

17



If Y has some variance structure,
Y ~ N(Ua + G;B,07%), (2.18)

A1
we could just multiply everything by ¥~ 2 and then apply the same procedure as the constant

and independent variance case.

18



CHAPTER 3
METHODOLOGY

3.1 TINGA method for correcting t-statistics for interaction in a

GWAS

To address the “feast or famine” effect in interaction GWAS, we propose to correct the
interaction t-statistics for a given GWAS by subtracting off their null conditional mean and
dividing by their conditional s.d. given the (Y, Z) observed for that GWAS. We call this
approach TINGA for “Testing INteraction in GWAS with test statistic Adjustment”.

In the most general case, we consider testing for interaction in the model
Y=Ua+Gip+Zy+ (Gjo Z)0 +e, (3.1)

where Y, U, G, 8, Z, v, (Gjo Z) and § are as defined before, a is a k x 1 vector of unknown
coefficients, and € ~ N (0, Ea%), where either ¥ = I, in the case of a linear model, or else
> = h2K + (1 — h?)I,, where h? is an unknown heritability parameter, in the case of a linear

mixed model. Then the t-statistic for interaction can be written as

Vn—k=3(Gj02)" Pyy
\/(Gj 0 Z) Py (Gjo 2) -YTPyY —((Gjo 2) PyY)?

T= (3.2)

where the “M” in P); stands for “marginal”, and P); is a symmetric matrix that removes the
marginal effects of G, Z, and U, where in the simplest case U represents just the intercept,
but it may contain additional covariates as needed. We let M be the n x (k 4 2) matrix
M whose columns are G, Z, and the columns of U. Then in the case of a linear model,
we have Py = I, — M(MTM)_lMT, and in the case of a linear mixed model, we have

~ - ~ -1 « ~
Py=s"1-%"1y <MTZ_1M> MT$1, where 3 is ¥ with the estimated value of A2
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plugged in. The proof is similar to the Proof of equation 2.3.

In the LMM context, the test based on T} is commonly called the “Wald test”. In fact,
the ordinary t-test for interaction is also a Wald test, so this term is not a useful way of
distinguishing the LMM-based test from the ordinary one. We refer to the test based on T}
as the “t-test” in both cases, and, when needed, we specify whether it is performed in an
LMM or a linear model.

For both the linear and LMM cases, we define the numerator of the t-statistic to be
T
Nj ENj(Gj,Z,Y) = (GjOZ) PMY. (3.3)

Then the regular interaction t-statistic in (3.2) can be rewritten as

N - Bo(NjlG;. Z) _ N;
VVar(NjIG;.2)  \/Var(N;IG;. 2)

Tj , as Eo(Nj|Gj, Z) = 0, (3.4)
where both Ey(N;|G, Z) and Var(N;|G, Z) are calculated based on Model (3.1), Eo(N;|G, Z)
has the additional assumption § = 0, which is the null hypothesis, and Var denotes estimated
variance.

For testing interaction in a GWAS context, we propose to replace T); by a “corrected” statistic

A Ni- Ey(N;|Z,Y)

— , (3.5)
Var(N;|Z,Y)

where the difference from Eq (3.4) is that we condition on (Z,Y) instead of on (G, Z).
The remaining challenge of the methods development is to obtain appropriate estimators

Eo(N;|Z,Y) and Var(N;|Z,Y).
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3.2 Key idea and framework

The key idea of our proposed TINGA method is to get the correct conditional variance and
null mean of the t-statistic numerator for the GWAS study design. This calculation basically

contains following steps:
1. We approximate N; by Nj = Nj(Gj, Z,Y), where Nj is quadratic in G .

2. We calculate EO(Nj\Z, Y') and approximate Var(Nj\Z, Y') as functions of Ey(G;|Z,Y)
and Var(G4|Z,Y).

3. We calculate Ey(G|Z,Y) and Var(G;|Z,Y) theoretically based on a suitable model.
4. We obtain estimates E’O(Gj|Z, Y) and \//z;(GﬂZ, Y') for the quantities in step 3.

5. We plug the estimates from step 4 into the expressions for EO(Nj |Z,Y) and Var(Nj |1Z,Y)
from step 2 to obtain EO(Nj|Z, Y') and \//z;(NﬂZ, Y), respectively, and calculate 7" in

(3.5).

8.2.1 Step 1: approximate N; by a quadratic function of G

Case with no covariates Firstly we start with a simpler model for 3.1 which does not

contain any covariates except the intercept:

Y ~ N(a+ B1Gj+7Z +08(Gjo Z), o3%)

2 2

Where 3 = Z—gK + Z—S[ is assumed known, (Gj o Z)k = (Grj — Gj)(Zy — Z). When testing
T T

for interaction between Z and each of the G;’s, we test Hp: 6 = 0 vs. Hy : § # 0.

Note that the Wald statistic will be

V=14 (Gjo2)" Pyy
\/(Gj o Z)T Py (GjoZ) -YTPyY — ((Gjo Z) PyY)?
21
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Where Py =21 —2—1y <MT21M)_1 MTs=1 6= (1, Gj, Z). Py is a symmetric
matrix that removes the effect of M in the above linear mixed model. We are mainly
interested in the numerator, which we have defined to be N; = (Gj o/ )T PyY.

For approximating N, it is useful to note that the matrix Py, can be calculated explicitly
using an iterative method. To describe the interative method, we first consider the ordinary
linear regression model Y ~ N (Mg, o21) where ¥ = I and M contains intercept term 1,

variable Gj and variable Z. Then we have

H=FP=1- %11T is the projection matrix that projects out 1,

— — 75— is the matrix that further regresses out G
so that (1, G)are regressed out, and

T
py— p — P1ZZ"P,

TP is the matrix that regresses out (1, Gj, Z)
1

(by a similar argument as in the Proof of equation 2.3).

To generalize above formula to the LMM case, we let CTC = f]_l, and define CM =

M — <I7 @;7 Z) Then CY = Y ~ <M5+7(Gj oZ), a%]), where w denotes C'w for

any vector w.

Then we can write
N A ~ -1 ~ — e~ —1 —
Py=s"1_s"1y (MTE_1M> MTst—cTo - cThm (MTM> MC

and

T/ 1 - _
(GjoZ)" Pyy = (Gjo2) (I-M(MTM> M)Y:(Gon) P=Y
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ey~ —1 —
wmme%gzl—ﬂ4@w?M) M.

Note PJ\7 is the matrix that regresses out M in the simple linear model, so we can compute

it using the above iterative method:

~ e S~ — 1~
He:ay:1—1(ﬂd 7
Pola;a; Py

Pl =P} — (3.7)
1= 40 T~ -
R
Pl ZZT Py
P—=p — L= L
M 1 ZT P17

Therefore, we can iteratively compute an explicit expression for PJT/f

(76)) (115,)

P =H-— :
and
gy (EG)(AG) (A7) o (ZTH)(HG)(HG)
Pﬁzfﬂ—Giizgfﬁ) (HZ TG Zf{ ST
Gj HG, Zng_(@”>i?%b2
G, HG,

~\1T s/~
Let S, = <Ha> (Hb) for any vectors a, b, then

TS Sapma; Sa;v 52218 6mz Szv Sa,6,7 56z 95,7 a7 S arna, Saz vz
(GjoZ) PGV =8 —~— _ — e
(Gjo2)Y G;G; ZZ~ @;@VJ

(3.8)
Note this formula is the same as the formula for non-GRM case, except that S, is the

simple inner product in that case. We can then transform these variables back and get an
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expression in terms of the original variables:
Sgy =0 BY =cTc" (1-1(1M) 1) oy
Gy — Vi Y
N A A -1 .
el (2—1 - (1 h) 12—1> Y

J

— G]TFIY

A N A A -1 .
Where H = 271 — %711 <1TE_11) 1271 Similarly for other S, terms. Then we

reorganize these terms and get

T . Spo Sea —Sa5 S5 \ Szv Szz—Saz Ses
(Gjo2) PMY(GJ-OZ)TH(Y ZY 6,6, G2 GYZ) G,)Y P72z~ °G;Z °YZ

2 _ 2
Sea S22- 5%, Sa6; S22~ S5 7
(3.9)
Sso S~ —S+ 5 S~ S Sz=—S~ = Sex
: : . 7y °G,G; 76,7 PG;Y G.Y PZZ7°G.7 °YZ
It is worth noting that the 2 fraction terms, . S~ JSQ — and 5], - 352 ,
G;G; 72776z G;G; 727G,z

are actually the estimated coefficients from the marginal effect model
Y ~ N(a+ BG; +~Z,0°%) (3.10)

where

Seo Ssz—Sa s Ses (3.11)

(see proof in Proof of equation 3.11).

Then we have
P T

(GjoZ) PrY =(Gjo2)TH(Y —4Z — BG)) (3.12)

which verifies our calculation.
Sye Sa g —Sa 5 Sa s S~ Sz=—S~> S~
) ) G;G; °G;Z PG;Y G;Y PZ227°G;Z °YZ
We simplify terms L J— and o 52

— Q2
SGG S@“g SGG ZZ

by dividing both nu-
merator and denominator by n? and approximating ab terms by their asymptotic means
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under the null conditional distribution of G; given (Y =y, Z = 2), where the lower case y, 2

denote the observed values of Y, Z.

Assume G Ji has the conditional mean and variance

E(GiI(Y =y Z=2) = 2
Var (G4|(Y =y, Z=2)) =Va

(3.13)

, where (i, Vo are some functions of y, 2 and independent of G .

We have, under some regularity conditions, that for large n, by law of large number:

—~ T 1
SGjy:GijNl<TA )
n n n

Then we could replace the “S” terms involving G; by their asymptotic approximates and

- , 55 Sa.a, %az Yag | ey 7 Y6z S
get simplified versions of IJ_ I - and —Z s , denoted by aj, a9,
[ S~ 8 ST _
G;G; Gz G;G; Gz

respectively.

Note Gj oz = Dy,HGj, where Dy, is the diagonal matrix whose diagonal entries are

Hz. Then we obtain an approximation to the numerator of the t statistic that is a quadratic

function of G 't

Nj|(Y =y,Z = 2) ~ Nj = GTHDy . H (y — 12) — agGT HDy HG;

! (3.14)

— T T
= GTBG; +17'G,
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where
H=r1-111T

~

R R N -1 .
g=s1_3s-1 (1Tz—11> 151

A~

B= —asHDp H (3.15)

b=HDp, H(y — a12)

Dy, = Diag(Hz) = Diag(z1 — Z, ..., 2p, — Z)

Case with population structure and covariates Next, we consider a more general
scenario in which there are additional covariates in the model. In the case, to derive the
asymptotic approximation, we could first project out the covariates and the rest will be the
same.

Suppose Y ~ N(Aa+ B1Gj +~vZ +6 (Gj o Z) , O’%E), where A € R"F is the covariate
matrix, k<n. Here we assume A contains the intercept term.

We want to first eliminate the covariate terms. Let A € R("K)*X" Rows of A€ are lin-
early independent vectors in the orthogonal complement of the column space of A. Therefore,
AA = 0k -

In practice, we can get A¢ by SVD : A = UAV, U € R"™™" A € R™*k V¢ RF*F Then
Ul, (k+1): n]T can be our A€ because U is an orthogonal matrix. After getting A€, we

multiply Y by it:
AY =YY" ~ N(BIG" +~Z" +5(Gj o Z), 0% ATAT),

where w" = A for any vector w.

Note that A¢ has full row rank, so A°S AT is positive definite and a valid variance matrix.
Now the model is very similar to the no-covariate part with variables Y", G;", Z7, (Gj o Z)T

and variance matrix being AT AT | except that there is no more intercept term. Therefore,

in the first step of forming Pﬁ, we do not need to regress out the 1 term and hence H=1I.
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Then

Sargr = (f[é?)T (vr) =6 Ty =artcteyr =it (@)1 "
J

R (3.16)
= GTaT (ACZACT> Ay = GTHY

R — -1
Where il = AT (4czaT) — ac.
After getting the new H, the calculation of conditional mean and variance follows the

same procedure.

3.2.2 Step 2: calculate Bo(N;|Z,Y) andVar(N;|Z,Y) as functions of
Ey(G41Z2,Y) and Var(G;|Z,Y).

Assume that G yi has the conditional mean and variance:

E(Gjl(Y =y, Z=2)) = pa,

(3.17)

Var (G4|(Y =y, Z=2z)) =Va

where py € R and V5 € R™ ™. From equation 3.14, we have
N T T

Nj :Gj BGj—i-b Gj. (3.18)

Then the conditional expectation of N ;j is straightforward:

EN;|Y =y, Z=2)=FEGYBG; +V1G,|Y =y, Z="2

(X1 ) = E(GTBG; + 7G| ) 10

— 1 Bug + tr (BVa) + b iy

The variance is a bit more complicated, and we have 2 approaches to calculate it: ap-

proximation approach and exact approach.
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Approximation approach

We treat G;|(Y =y, Z = z) as if it follows a multivariate normal distribution and we
apply the properties of the quadratic form of the multivariate normal variable to obtain the
variance. This approach is exact for the case when G;|Z,Y has a normal distribution and
is otherwise approximate.

Note that the quadratic form of multivariate normal variable requires the matrix B =
—a9HD Hzfl to be symmetric. In the case of independent individuals, we have H=H
and B is indeed symmetric. In the case of non-independent individuals, we can re-write the

quadratic term as

T T
where
T
PR

is symmetric. Then we can get the (approximated) conditional variance of Nj ;

var (GstGj +0IGj|lY =y, Z= z) = 2tr (BsVaBsVa) + 4ud BV Bgpg + b1 Vab 3.21)
+2COU(G?BSG]', bTGj|Y =y, Z=2)

Note that when w ~ N (0, I), cov (wTBsw, bTw> = 0. Write G = pg + Vw, where
w|y’ z~ N(O’ I)’ VVT = Vs,

cov <G?BSGj, bTGj

v, z) = 2T By VT = 24F ByVob

Therefore,

var (GJTBSGj o7 Gj‘y, z> — 2tr (BsVaBsVa) + 522

Apd BsVa Bspio + b Vob + 4ud Bs Vb
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Exact approach (Bernoulli case)

In the above approach, we estimated the variance by treating G|Y, Z as Gaussian distributed
and applying the distribution properties of quadratic forms of multivariate normal. How-
ever, this approximation may not be accurate when G follows a Bernoulli distribution. In
particular, Gaussian and Bernoulli random variables have different 3rd and 4th moments.
Here we give the calculation result that uses the Bernoulli property of G|Y, Z to compute
the conditional variance of N.

We assume that conditional on Y =y, 7 = z, G follows a Bernoulli distribution with
mean vector p and variance matrix V', where the vector of diagonal entries of V' is u(1 — p).

Firstly, we define array (M);;, € R™ ™™™ and (M);;3,; € R to0 be the 3rd and

4th central moments of G|Y, Z:

M;j1 = E[(G; — 1) (G — i) (G — )Y, Z]

(3.23)
Miji = E(G; — i) (G — 1) (Gl — m) (G — w)|Y, Z]
We can compute the special cases in which there are at most 2 distinct indices:
M5 = (1 = 2p)Vij
Miji = Vii (1 = 2p;)
Miijj = (1= 203) (1 = 25)Vij + ViV (3.24)

Mijii = (1 = 3 — 343 ) Vi

For other cases where there are more than 2 distinct indices (i.e., individuals), we approxi-
mate Mijkn Mijkl by 0.

To take advantage of the fact that for a Bernoulli random variable, we have GZ2 =G;. It
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is helpful to directly expand the matrix product

var(GT BG + bT'G|Y, Z) = var <Zi,j B;;GiGj + > 1 biGlY, Z)
=var(}_; ; BijGiG;|Y, Z) + var(3_p, bp Gr|Y, Z) + 2cov(}; ; BijGiGj, 301 bpGrlY, Z)

= 44" BV B — tr(BV)2 + 4T BVb + bT Vb

43 k1 15 Bij BriMigy + 31 Bij BraMijry + 2324 55 b Bij Miji,
(3.25)

Independent individuals When we assume unrelated individuals, V' is a diagonal matrix.

In this case, we can simplify equation 3.25 to

var(GTBG + b G|Y, Z) = 44" BVBpu — tr(BV)% + 4T BVb + b1 Vb
Y25 By My (450 miBi + 26;) + i Miij; (2B + BiiBj; ) — 25 B M,
= 4BV By — tr(BV)% + 44T BV 4+ 6T Vbt (3.26)
> BjiVii (1= 2u;) (4(MTB)j + 2bj> + 22 BiVii(1 — 6 + 617)
+3245 ViV (2B7; + BiiBjj)

Related individuals If the individuals are related, then V' is not diagonal and we have a

more complicated result

var(GT BG + 0T G|Y, Z) = 4y BV By — tr(BV)? + 4uT BVb + b1 Vb
= +83°,(BV) (1= 2u)(u B)j + 43y, Brgp(1 — 24) (V By,
=832 BjjVii(1 = 2u5)(Bp)j + 3045 (2B3; + BiiBij)[(1 = 211) (1 = 201)]Vij + ViV
+437; Bi(1 = 3Vyi)(BV)g — 632 BEVii(1 — 3Vy)

+23 2 0i(1 = 2p;)(BV )5 + 237 Byi(1 — 2p3)(Vb); — 432, B (1 — 243)b; Vi
(3.27)
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3.2.3 Steps 3-4: Estimation of the conditional distribution G;|Y, Z

For steps 3-4, we have 2 ways to compute the conditional distribution G j]Y, Z:

1. Gaussian approximation approach
We assume a normal regression model for G;|Z, i.e., we take G; = alp + bZ + 1,
where 1 ~ Ny (0, 02-In), or, more generally, where U consists of the intercept and any
confounding covariates that are in U, we take G; = aU + bZ + n, with a, b, and 032-
unknown. We also assume that (G,Y)|Z follows a multivariate normal distribution.
Then, FEy(Gj|Z,Y) and Var(G|Z,Y) can be easily computed using standard properties

of multivariate normal.

The basic idea uses the

Y=a+7Z+6G;+0(Gj —mg;)(Z —mg) +¢

2 2
G . o, (B+dzc)o7
e | \B+02)0Z . vy
where
fGy), = @+ bz
2 2

Then we can compute the the conditional mean and variance of Gj|Y, Z using the

multivariate normal approximation:

(B+02e) 02, (B+02)% 0, |
Sy~ ), o - ) (3.0)

Gjl(y, 2) ~ Nlug;. + . .

ylz ylz

The parameters such as a, b, 02, 3,0, Uy|z» Hy|, BT€ estimated by fitting the associated

Y j’
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linear and /or linear mixed models. Details are in Chapter 4 “Detailed steps for param-

eter estimation”.

2. Approach that uses a discrete model for G; (e.g. Bernoulli)

Alternatively, we can use a discrete model for G ;|Z, where we assume that conditional
on Z, the n entries of the vector G;, call them Gyj,...,Gyj, are independent with
P(Gij =k|Z; ==2) = Pk|- for all choices of (i, k, z), where these may also depend on U
as needed. Since G is a genotype, we will have k € {0, 1,2} when the genotypes are
from a diploid organism or k& € {0, 1} when the genotypes are from a haploid organism
or inbred line. For the latter case, we can use a logistic regression model for G |Z, and
for the former case a generalized linear model.

We can apply the Bayes rule to obtain the discrete distribution of Pr(G;|Z,Y’). For

example, if we assume unrelated individuals, then

_ PG =k, Zi) x by,
Y P (YilGij =1, Zi) xpyz,’

P(Gi; = k|Z,Y) = P(Gy; = k|Z;,Y;) (3.30)

P(Y|Gj, Z) can be estimate by fitting a model of Y on (G, Z)

For the case where there is some population structure, we can still estimate the
mean and variance for each individual by 3.30 and estimate the conditional covari-
ance Cov(G,|Y, Z) by incorporating the GRM. Details are in Chapter 4 “ Detailed

steps for parameter estimation”.

3.2.4  Proof of equation 3.11

For simplicity, we assume a simple linear model

Y ~ N(a+ BG; +~Z,0°1) (3.31)
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Let U= (1,Gj), Py=1- U(UTU)_lUT7 then by properties of partial regression, we have

. Zlpyy
1= TR,z
By equations 3.6, we have

H=p=1-111"

PyG;GT Py
Py =Py — —7=Li—
G PG
Plugging in the expression 3.32 for 4, we get
zt'aG,ctoy Sza:Sa;y
T _ 7T _ I — _ J g
2T PgY =20 HY = grge =Sy T Tsp o
ZTHG,;GTHZ Sza;5a;z
T _ 7T . I — _ J _7J
7' PyZ =7"HZ G?HG]- 77 Saa,

SzvSa.q.—Sza.Sq.
ZYPG;G;—RZGOGY

7= SZZSG]‘G]‘_S%’J-Z

Similarly for B .

Then suppose there is some covariance structure
Y ~ N(a+ BG; +~Z,0°%)

then let CTC = 271, then
clcT=x cxct =1
and
CY ~ N(aC1+ BCG,; +~CZ,0>1)
Y ~ N(ad —I—/BG; +~Z,021)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)

Then the result follow the same argument as the independent individual case by replacing

1,G;, 2,V with 1,G;, Z,Y.
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3.3 Adjustments and extensions

3.3.1 Heteroscadasticity correction

In an interaction GWAS, it can potentially be important to consider a specific type of
heteroscedasticity that arises naturally in a model in which Z interacts with some other
variable in a linear model or LMM for Y, even if it does not interact with G [46; 43; 44; 45].

That is, suppose the true model is
Y=Ua+GiB+Zy+X(+ (X oZ)0+e, (3.38)

where Y, U, o, Gj, 8, Z, 7, and € are as before, (X 0 Z) = (X — ux)(Z — pz), ¢ and 0 are
unknown scalar coefficients, and X is some additional variable that is not included in the
fitted model (and that might or might not even be observed), is independent of (G, Z), and
that interacts with Z. Then from the point of view of testing for interaction between Z and
G using fitted model 3.1, the null hypothesis of no interaction is true. However, when 7 is

interacting with some other known or unknown X, the conditional variance of Y'|Z is
Var(Y|2) = B20¢,, + (C+0(Z — pz))* ok + ot

which is a quadratic function of Z. This heteroscedasticity tends to lead to inflated type I
error [45] if it is not accounted for in the fitted model.

In TINGA, for each G; we correct for heteroscedasticity by first regressing G; out of Y’
to get the residual Y|G, and we replace Y by Y|G, in all rest steps of the calculation and
fit a heteroscedastic model of Y what allows Y to have different variances for different 7

values. The details are in Appendix: Heteroscedasticity correction strategy.
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3.3.2  Compute variance under alternative model

When estimating G;|Y, Z, for both the normal approximation approach (equation 3.29) and
the discrete model approach (equation 3.30), we need to fit a linear model of Y'|G j» Z to get

estimates of the parameters. Then we have 2 options for this: one is fitting the null model
Y|Z,G; ~ N(a+ BGj +~Z,0°I) (3.39)
and one is fitting the alternative model
Y|Z,Gj ~ N(a+ BGj+~Z +6(Gjo Z),0%I). (3.40)
Consider the regular t-statistic in testing for the interaction term (G o Z) in the model
Y|Z,Gj ~ N(a+ BGj+~vZ +6(Gjo Z),0*I) = N(Xb,o%I)

where X = (1,G, Z,(Gj o Z)):

§ o — E |b|null
62(XXT)57’5 var(dlalt)
2

the mean is under the null (6§ = 0), but the variance 6 is estimated under the alternative
model 3.40 so that we gain more power. In analogous to t-statistic, we could also estimate

the conditional distribution of (G; under alternative model for Var(N i, Z).

3.3.83  Summary of different versions

Firstly, we have 2 ways for estimating the conditional distribution of G;|Y,Z, we denote

them as

1. Bernoulli approach: directly estimate the Bernoulli distribution using equation 3.30
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2. Gaussian approach: estimate a conditional multivariate normal distribution by equa-

tion 3.29

Depending on whether to apply heteroscedasticity correction and whether to fit alterna-

tive model of Y for Var(N j1Z,Y), our adjustment method has 4 versions:

1. Methodl: No heteroscedasticity correction and estimate var(N. 1Y, Z) using the null

model

2. Method2: Conduct heteroscedasticity correction and estimate var(N. 1Y, Z) using the

null model

3. Method3: Conduct heteroscedasticity correction and estimate var(N. 1Y, Z) using the

alternative model

4. Method4: No heteroscedasticity correction and estimate var(N 1Y, Z) using the alter-

native model

They can be summarized in Table 3.1

Var(N;|Z, Y )y | Var(Nj| 2, Y ) gn
No heteroscedasticity correction Method1 Method4
Heteroscedasticity correction Method?2 Method3

Table 3.1: 4 Methods bases on model of Y

See details in Section Detailed steps for parameter estimation.

3.83.4  Appendiz: Heteroscedasticity correction strateqy

Non-GRM case

Suppose we have Y, Z, G1, ..., Gy, € R™ and we want to test for the interaction in the model

Y=a+GB+2Zy+(GjoZ)d+¢ (3.42)
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where we allow Y to have different variances for different values of Z.

For each G, we first test for its marginal association with Y in the model
Y =a+G8+e e~ N(0,02I) (3.43)

If the p-value for testing H; : 8 = 0 is smaller than 1073, we let

TY|G]‘ =Y -Y
where Y = & + GjB is the fitted value of model 3.43, so Y|G, is the residual of Y after
regressing out G;. Then we replace Y by Y|G; in all steps of our adjustment method with

heteroscedasticity correction applied. That is to say, we are testing the interaction term in

the heteroscedastic model
ry|g; = a+ GiB+Zy+(GjoZ)d+e e~ N(O, a%]IZ:() +odly1)

and apply our adjustment method.
If the p-value is larger than 1073, we use the original Y with heteroscedasticity correction

applied.

GRM case

The the case where the individuals are related by a GRM K, the heteroscedasticity correction
is similar to the non-GRM case, the only difference is that we fit LMMs instead of linear
models.

For each G, we first test for its marginal association with Y in the model

Y=a+GjB+e e~ N(0,021+0.K) (3.44)
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If the p-value for the Wald-test on Hy; : § = 0 is smaller than 1073, we let

A

TY|G]':Y_Y

where Y = & + G, B is the fitted value of model 3.44. Again we replace Y by Y|G, in all
steps of our adjustment method with heteroscedasticity correction applied.
If the p-value is larger than 1073, we use the original Y with heteroscedasticity correction

applied.

3.4 Additional methodological considerations

In the special case when at least one of Z and G is discrete, it is natural to place certain
constraints on when one would or would not perform any sort of interaction test. For
example, if both Z and G are binary and are perfectly correlated, then there would typically
be zero information in the data on interaction between them as a predictor of Y, and if they
are almost perfectly correlated, then the amount of information available on interaction would
be quite low. In the case when Z and G; are both binary, we can think of constructing a
2 x 2 table of counts of the four possible observed values of (Z,G) in the data as in Table

3.2: We require the minimum cell count (MCC), i.e., the smallest of the counts of the four

Table 3.2: Cell counts

=0 zZ =1
1] #(2,G4) = (0,1) | #(Z,G4) = (1,1)

Minimum cell count (MCC) is the smallest count in above table. If it is too small, it means

there are very few samples with a certain combination of Z and G value. This may make
the estimation inaccurate.

G
G

possible observed values, to be at least 5 in order to perform the interaction t-test.

Step 4 of the TINGA method requires some additional parameter estimation compared

38



to the interaction t-test. If all variables were continuous, then with typical GWAS sample
sizes, the estimation of a handful of additional parameters would pose little problem for the
inference. When G; and Z are both binary, however, then we require the MCC not be too
small.

Furthermore, for Method 3 and 4, the calculation of \//BE"(NHY, Z) a1t involves fitting an

alternative model in Y:
Y|Z,Gj ~ N(a+ BGj+Z +6(Gjo Z),0%I). (3.45)

when both G; and Z are binary genotypes and their MAF are not very large, the estimation
of 4 may not be very accurate and is variational.

For Bernoulli methods, the estimated conditional probability p,;; := P(Gj = 1Y, Z)ut
and the conditional variance @(G Y5 Z) a1t = Pait(1—Pqie) is somehow more sensitive to the
estimation of  than the Gaussian methods. We observed that when estimated 4 is relatively
large, for the individuals who get the minor allele of Z, p,;; tends to be more spread out, so
there are more entries in p,;; that are close to 0 or 1, making the conditional variance of G
smaller. Based on above reasoning, we explore additional ways to estimate \//a\r(Nj]Y, Z)alt

as following:

1. The shrinkage method:

We apply the following shrinkage only to the individuals whose SNP Z have the minor

allele:

Pt = Pat + (1 = )Ppuit; (3.46)
with ¢ = 0.7

2. The Lasso method:
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We fit the alternative model by Lasso regression:
ming g 5lY — a — Gj8 — Zy = (Gj 0 2)5]|* + All(«v, 8,7, )l (3.47)

and choose the optimal A with cross validation.

In addition to the MAF and MCC for the SNPs, we also require the correlation between
G and Z to be relatively small. Specifically for the problem of epistasis detection, it has
been noted that in the presence of an untyped causal variant, two typed variants in strong
linkage disequilibrium that form a haplotype that tags the untyped variant could exhibit
false epistasis [38]. Therefore, in detection of epistasis, we only test for epistasis between
variants Gj and Z if their sample correlation is close to 0. (In our data analysis we use a

cut-off of .1 for absolute value of correlation.)
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CHAPTER 4
DETAILED STEPS FOR PARAMETER ESTIMATION

In this section, we give the detailed steps of how to estimate the parameters in the different

versions of our methods for a given dataset.

4.1 Gaussian approaches

4.1.1 Independent individuals

We first consider the case where the individuals are independent, and the G,Y, Z denotes
the variables for one particular individual.
Recall that for the Gaussian approximation approach, we get the conditional distribution

of G;Y, Z by

(B + 0zc) aéj‘z ) (B + 6z¢) agj|z
(Y = 1y2), G,z

) (@)

Gil(y, 2) ~ Nlug,. +

(% (%

ylz ylz

Method1: estimate Var(NV,;|Y, Z) under null and no heteroscedasticity correction
For Methodl, we fit the homoscedastic model of Y|Z and fit the null (non-interaction)
model of Y|G}, Z .

We estimate Iy 2 by fitting the ordinary linear regression

Yy|z

,uy|z =a+79z (4'2)

For the parameters § and §, we assume o = 0 and estimate 8 the parameters by

Y|Z,Gj ~ N(a+~Z + Gj,0°I)
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Method2: estimate Var(N,|Y,Z) under null and conduct heteroscedasticity cor-
rection
We first regress Gj out of Y and replace Y by the residuals (see section 3.3.4). Then we

fit the heteroscedastic model in Y|Z as a linear mixed model:
Y|Z ~ N(a+~Z,o5diag(Z%) + o2diag(Z) + o2 ). (4.3)

We estimate Iy 2 by the fitted LMM 4.3.

Yyl

In the case where Z is binary, we estimate Hy|z» by simply taking the sample means

Yy|z
and variances of Y given Z =1 and Z = 0.

We then estimate 5 and ¢ by letting 6 = 0, and fitting the non-interaction model
Y|Z,G; ~ N(a+~Z + Gy, 0*W) (4.4)
where W = diag(wq, ..., wy), w; = 6%2:1-2 + &%zi + &(2) for the fitted model 4.3.

Method3: estimate Var(N;|Y,Z) under alternative and conduct heteroscedastic-
ity correction

For Method3, the parameters for computing (N fi |Y, Z) are the same as those for Method?2.

For the parameters for computing Var(N;|Y, Z), [y|z> Uy|, BTE those got from fitted model
4.3. For 3,0, we fit the interaction model of Y|G, Z:
Y|Z,Gj ~ N(a+~Z + BG; +6(Z 0 Gj),a*W) (4.5)

Method4: estimate Var(N;|Y,Z) under alternative and no heteroscedasticity cor-
rection
For Method4, the parameters for computing E(N;[Y, Z) are the same as those for Method1.

For the parameters for computing Var(N;|Y, Z) are those got from fitted model

» Hyler Vylz
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4.3 as in Methodl. For 3,9, we fit the interaction model of Y|Gj, Z

Y|Z,Gj ~ N(a+~Z + BG; +8(Z 0 Gj),0%I) (4.6)

4.1.2 GRM case

In the case where the individuals are non-independent, and has some population structure
such as a GRM K, we still assume a joint normal distribution of G;,Y|Z. In this part,

G;,Y,Z € R" are in vector form.

2 ; 2
Gj . TenE | UGj|zI” diag(s + 5ZC)UGJ-|Z )
: 2
Y Foy|z diag (5 + 5ZC)an|z Vy\z
where diag(f8 + 52’0)02 Gl := Dj is an n X n diagonal matrix with the i-th diagonal entry

being (3 + 6(z; — 2))o2 0G|z

Then we can get the conditional distribution of G;|Y =y, Z = z by
1
Cil (. 2) ~ Nugsypo + D3Vt = myp). 0% | In— D3V 1 D)) (4.8)

We estimate fhy| 2> V.1, bu fitting the LMM

ylz

Y|Z ~ N(a+~Z, 02K + 081) (homoscedastic model)

(4.9)
Y|Z ~ N(a+~Z,03diag(Z%) + o?diag(Z) + O'SK +03I) (heteroscedastic model)
The parameters (3,0 are estimated by fitting a LMM:
Y|Z,Gj ~ N(a+vZ + BGj ,O'gK +o ]) (homoscedastic null model) (4.10)
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Y|Z,Gj ~ N(a+vZ + BGj+6(Z o Gj), UgK + 08]) (homoscedastic alternative model)
(4.11)
Y|Z,Gj ~ N(a+~Z + G}, agf] +02I) (heteroscedastic null model) (4.12)

Y|Z,Gj ~ N(a+~Z + BGj+6(Z o Gy), agf] +021) (heteroscedastic alternative model)
(4.13)
where 3 = 63diag(Z?) +63diag(Z) +6§K is the fitted variance components except the noise
term from the heteroscedastic model in 4.9. We use agf] +a£l to approximate Var(Y' |G, Z)
so that we could use a faster LMM program that takes only one variance component other
than I and avoid fitting a LMM with 4 variance components for every G;.
We could also fit more precise heteroscedastic models for Method 2 and 3:

heteroscedastic null model (Method2):
Y|Z,Gj ~ N(a+~Z + BG;, o3diag(Z?) + o3diag(Z) + 02K + of 1) (4.14)
heteroscedastic alternative model (Method3):

Y|Z,Gj ~ N(a+vZ + BGj +6(Z 0 G)),05diag(Z?) + oldiag(Z) + 02K + o1) (4.15)

4.2 Bernoulli approaches

Here we design the methods that make use of the Bernoulli feature of G. Similar as above
sections, we denote y, z as the observed values of Y, Z.
When G only takes values in 0,1, we can estimate its conditional probability by Bayes
formula
P (Y|Gij =k, Z;) * pyz,

P(G;i = k|Z,Y) = P(G; = k|Z;,Y;) = k=0,1 (4.16
( 1] | ) ( 1] | 7 Z) ZZP(Y;‘GU:L Zi)*p”Zi ( )
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Here Z can be either discrete (Binomial, Bernoulli, etc.) or continuous. When Z is discrete,
Py|z can be easily estimated by taking the empirical conditional mean of G; on Z; when Z

is continuous, it can be estimated by fitting a logistic model.

4.2.1 Independent individuals

Method1: estimate Var(/V;|Y, Z) under null and no heteroscedasticity correction
When we do not consider the heteroscedasticity in Y |, we can estimate the conditional

distribution G|y, z by fitting a logistic model

Gjly, z ~ Ber (p), p = logit(n + ay + (z)

and use the fitted distribution to compute the conditional mean and variance of G :

Gj|y7 zn~ (,UQ, V2)7 where w2 = ﬁ? V2 = dzag(ﬁ(l _ﬁ))

Method2: estimate Var(N;|Y, Z) under null and conduct heteroscedasticity cor-
rection
Here we allow Y to have different variance for different values of Z. Compute the condi-

tional distribution of G|y, z by Bayes rule:

(4.17)

- P (y]Gj =1, z)p (Gj = 1‘2) +p (y’Gj — 0, Z) p(Gj —0)2) (4.18)

We estimate p(Gj|z) by taking the sample means of G; given Z when Z has a discrete
distribution; when Z takes continuous values, we fit a logistic model of Gj|Z.

For p (Y|Gj, Z ), for Method 2 our estimations are all under the null, so 6 = 0.
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We hope to estimate the parameters in the heteroscedastic model:

Y|z,Gj ~ N (a + G + 7z, O'%]IZ:Q + O'%]IZ:1> (4.19)
Let
03 = Var(Y|Z = 0); 4} = Var(Y|Z = 1) (4.20)

We first fit the weighted linear model
Y]z,Gj~ N (oz + BG; + 7z, 02W> , (4.21)
here W is a diagonal matrix with i-th diagonal entry being 13(2)11 2i=0 +@%]Izi:1 and get estimated

@, B3,7.
Then we estimate var(Y'|G;, z) by 62W, where

1 R 2
~2 A .. -1
60 == (vi—a—BGy) W (4.22)
1
or
E 1 . 2, 1 . 2
oy = mzi:zz:O <yz —a— 5Gij> , 01 = mzi:zizl (yi —a—pG; — ’7) :
(4.23)

where nj, is the number of z equaling k.
Then we plug the estimated parameters in above Bayes formula to get ﬁGﬂy,z- We

estimate the conditional mean and variance of G; by

EG,ly, z =~ ﬁGﬂy,Z’ var (Gj|y, z) & ﬁGj\y,z(l - ﬁGj\y,Z) (4.24)
and use this to compute E(N;ly, 2) and var(N;|y, z).
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Method3: estimate Var(N;|Y,Z) under alternative and conduct heteroscedastic-
ity correction

We compute var(N,|y, z) under alternative model: for E(N|y, z), we use the conditional
mean and variance of G ; under the null as in method2; for var(N;l|y, z), we fit the interaction
model.

For E(T|y, 2):

p(YilGij, z;) in E(Gjly, z) and var(Gjly, z) are given by fitting the null heteroscedastic
model

Y|Z, Gj ~ N(a+ G +7Z, 0l—g +071,—1)

as in method 2.
For var(T|y, z):

p(yilGij, ;) is given by fitting the interaction model
Y|Gj, Z ~ N(a+ G +7Z +3(GjoZ), 08,0 + 071,—1)

When Z is not Bernoulli, we estimate var(Y'|G, Z) by o?W, where W = var(Y|Z).

The rest steps are the same as method 1 & 2.

Method4: estimate Var(N;|Y,Z) under alternative and no heteroscedasticity cor-
rection
For Method4, we assume a homoscedastic model of Y, so the steps are the same as Method3

in the homoscedastic Y scenario.

4.2.2 GRM case

Method1:
Let K be the GRM. Let 7 denote the individual index.
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Compute the conditional mean of G : EGij|y, z=p(G;; = 1ly, z) by Bayes rule:

p (yi|Gii =1, z) p(Gyii = 1|z
2 (Gij = 132) ~p (Goj = 1]y ) = 211G p(y;@ﬂ( i = 112)

B p(yi|Gij =1, %) p(Gij = 1]%) (4.26)

Cp(ilGij =1, %) p(Gij = 1|z) +p (1] Gij =0, 2) p(Gij = 0])

(4.25)

where

Y|Gj,Z ~ N(a+BGj+7Z, 05K + 0 1)
YilGij, Zi ~ N (a +BGij +7Zi, 0 K + 0§f> ~ N(&+ BGyj + 4%, 65K +67)
Once get estimated p (Gij = 1|y, z) = P, we can estimate cov (G’j]y, z) by

K = cov2cor (K +¢l), ¢ =107

A

cov (Gjly, 2);; = Kijy /i (1 — i) pj(1 — b))
The computation of approximated T, E (T|y, z), var(T|y, z) is the same as non-GRM case

n

N N ~ N -1 . “
except that H = I — 1117, =1 -1y <1Tz—11) 1271 where ) = 62K + 627 is

the estimated covariance matrix in the LMM model
Y ~ N(a+BGj+7Z+6(GjoZ), 03K +02l)

Method2:

We fit the heteroscedastic model by regress:

Y|Z ~ N(a+7Z, J%diag (Z) —I—JgK—f—agl)
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Let 3 = 6%diag (z) + &EK, we estimate Y'|G;, Z by
Y|Gj, Z ~ N(a+ BGj + vz, Ugf] +021)

Y;|Gij, Zi ~ N(6+ BGyj +Z;, 6754 + 62)

where

A

Y = 67K + 67diag(2) (4.27)

Method3:
For E(T|y, z):

p(yilGij, z;) in E(Gjly, z) and var(Gjly, 2) are given by fitting the null model
Y|Gj, Z ~ N(a+ BGj +vZ, 02K + o21)

For var(Ty, z):

p(yilGij, ;) is given by fitting the interaction model
Y|Gj, Z ~ N(a+ BGj +~7Z +3(GjoZ), ot K + o2
Other parts are the same as methodl & 2.

Method4

Sames steps as Method3 in the homoscedasticity scenario.
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CHAPTER 5
RESULTS OF SIMULATIONS

In the simulations, we simulate Y € R" as the phenotype; Z € R" as the fixed SNP /environmental
factor; G, ...,Gy, € R™ as the SNPs in the genome. In this section, we first show the im-
provement of our methods on the uniformity of null p-values within one GWAS and on the
distribution of genomic control inflation factor. We then show the simulation results for
the Type I error rates and power across multiple GWAS’s and show that our methods have
desired type I error and better power performance than the regular methods. For the sim-
ulations, we particularly focus on the case where both Z, G; are Bernoulli distributed and
apply the Bernoulli version of our methods.

In this section, we have simulation experiments to access the performance of our methods
in 2 aspects: (1). Fixing the “feast or famine” effect in one interaction GWAS; (2). Type I

error rates and power across many GWAS’s.
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5.1 Simulation under null: check p-values within a GWAS

In this part, we focus on the performance of the m p-values within one GWAS in 2 aspects:
uniformity and genomic control inflation factor. For each replicate, the sample size is 1000.
We simulate a fixed Z and m = 5000 G;’s independently. Y is simulated under null . Then
for each G, we test for its interaction with Z and get a p-value. Finally, we test for the
uniformity of the resulting m = 5000 p-values using ELL [1] at level 0.05. We also got the
GCIF for each GWAS by taking the median of the m = 5000 y2 scores and divide it by
0.456.

5.1.1 Gaussian Methods

In this section, we compare the performance of Gaussian Method1-4.

We simulate interaction GWAS as follows:
e n = 1000, m = 5000
e Z ~ Bernoulli(mz), m, ~ Unif(0.2,0.8)

inde

[} Gj Np. Bernoulli(mj), mj u/\c} Unif(O.Q,O.S),CO?‘(Z, Gj) = 07 ] = 1727 ey T

Y =a+yZ 430 8iGj+e, a~Unif(~10,10), e ~ N(0, 1)

0.025 .
(0020 5 —1 2 . 50
0.025 = o5 J
2 -

0 j =51,...,5000

°
)
|

We let 50 out of 5000 SNPs have marginal association with Y to represent the situation
where there are a few marginal association signals.

When simulate each G, we check the following 2 conditions and keep re-generating G
until both of the 2 conditions are satisfied:

L. |cor(G4,Z)] <0.1
o1



2. MCC(G;,7) > 5

For each j =1,2,...,5000, we test Hy; : d; =0 in

Y:Ozj—I-Gjﬁj—FZ’yj—l-(GjOZ)(Sj—l-ej

and get m = 5000 interaction p-values.

We did 3000 replicates. For each replicate, we test for the uniformity of the 5000 p-values
using the method of Equal Local Level (ELL)[1]. We then got 3000 p-values for uniformity
(for simplicity, we denote them as “ELL p-values”). If the null hypothesis that the m = 5000
p-values from an interaction GWAS are iid unifom is true, then the 3000 ELL p-values
are expected to be uniformly distributed. Figure 5.1 depicts the (differenced) QQ-plots of
the 1000 ELL p-values against standard uniform: we take the -logl0 scaled p-values and
plot the difference between the observed quantiles and the theoretical quantiles (quantile of
uniform(0, 1)). As we can see, with the regular t-test, the p-values in a null GWAS tend to
be significantly non-uniform; while they are close to uniform for TINGA.

Figure 5.2 compares the genomic control inflation factors between the regular t-test and
the 4 Gaussian methods. As we can see, TINGA methods make the GCIF more concentrated

at 1, meaning there is less systematic inflation or deflation in the testing statistics.
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Figure 5.1: QQ-plots of ELL p-values 3000 points. FEach point represents a simulated
interaction GWAS of m = 5000 interaction test. For each GWAS, test whether the m = 5000
p-values are iid uniformly distributed using ELL [1|. The shaded region is the 95% confidence
region by ELL
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4 Gaussian versions of TINGA method
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5.1.2 Bernoulli Methods

In this section, we assess the performances of the following 4 versions of Bernoulli methods:
1. Method1
2. Method2
3. Method3, shrink (See equation 3.46 in section 3.4)
4. Method3, Lasso (See equation 3.47 in section 3.4)

We use the same simulation setting as above section 5.1.1 and we did 1000 replicates.
We again get the 1000 ELL p-values and plot the (differenced) QQ-plots in Figure 5.3.

Figure 5.4 compares the distributions of genomic control inflation factors.

We got similar conclusions as in section 5.1.1 for the Gaussian methods. In summary, in
the simulations, our TINGA method succeeds in eliminating or effectively reducing the “Feast

or Famine” effect. It makes the null interaction GWAS p-values approximately uniform as

we expect.
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5.1.3 More situations and comparisons

In this section, we explore more simulation settings.

We consider the following 4 cases:
1. Both Z and G;’s are Bernoulli, and Y is simulated under a linear model:

e n = 1000, m = 5000

e 7 ~ Bernoulli(my), myz ~ Unif(0.1,0.9)

° Gj m%p. Bernoulli(mj), m; lrl\(} Unif(0.1,0.9), cor(Z, G]) =0,7=12,...m

o Y =a+e¢ a~Unif(—10,10), e ~ N(0,1)

When simulate each G;

j» we check the following 2 conditions and keep re-generating

G Ji until both of the 2 conditions are satisfied:

(a) Jeor(Gj,Z)| < 0.1

(b) MCC(G},2) =25
2. Both Z and G’s are Binomial(2), and Y is simulated under a linear model:

e n = 1000, m = 5000

e z ~ Binom(2,m;), m, ~ Unif(0.1,0.9)

indep.

e G; ~" Binom(2,m;j), m; id Unif(0.1,0.9),cor(z,Gj) =0, j =1,2,....m

J

e y=a+e a~Unif(—10,10), ¢ ~ N(0,1)
3. Both Z and the G;’s are normal, and Y is simulated under a linear model:

e n = 1000, m = 5000

e 2 ~ Normal(mz,1), m, ~ Unif(—10,10)

° G, indep- Normal(mj, 1), m; i Unif(—10,10),cor(z,Gj) =0, j=1,2,...m
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e y=a+e a~Unif(—10,10), e ~ N(0,1)
4. Both Z and G’s are Bernoulli, and V" is simulated under a LMM:

e n = 1000, m = 5000
e 2z ~ Bernoulli(m;), m, ~ Unif(0.1,0.9)
indep. iid

e G; ~" Bernoulli(mj), m; ~ Unif(0.1,0.9),cor(z,G;) =0, j=1,2,..,m

e GRM K is calculated from a simulated genotype matrix G, which is independent

of z and z:
indep. iid .

G =(g1,-910000)s 9i ~ Ber(f;), fi < Unif(0.1,0.9)
~ ~ ~ _ g - 'g_
G = (G1,---910000); §i = —F——rtex

gi(1— g;)

L = xr
n 10000GG

o a~ Unif(—10,10), A2 =0.3, 0% =1
e y=a+¢ e~ N(0, a% (WK + (1 — h)I)
When simulate each G, we check the following 2 conditions and keep re-generating
Gj until both of the 2 conditions are satisfied:
(a) |eor(Gj,2)] <0.1
(b) MCC(Gj,2) =25
Table 5.1, 5.2 compare the rates of rejection of uniformity of p-values for regular t/Wald
test and the Bernoulli versions of our correction methods. As we can see, the regular t-test

gives large rejection rates, meaning the resulting p-values are not uniformly distributed, even

if Y is under completely null.
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This problem exists in general cases. G;’s can be Binomial or Bernoulli, representing
genotypes. Z can be either normal (representing environmental factors) or Binomial /Bernoulli
(genotypes).

Table 5.1: Rejection rates in non-GRM case (1000 replicates)

Uncorrected | Methodl | Method2 | Method3 | MCC20
286 59 54 129 131

Number of times that the uniformity of the resulting 5000 p-values is rejected, out of 1000
replicates. Both Z, G are Bernoulli and independent across individuals; Y is simulated
under the null. Methods are the Bernoulli version.

Table 5.2: Rejection rates in GRM case (200 replicates)

Wald | Methodl | Method2 | Method3 | TINGA
58 14 14 27 31

Number of times that the uniformity of the resulting 5000 p-values is rejected, out of 1000
replicates. Both Z, G are Bernoulli and independent across individuals; V" is simulated
with a GRM. Methods are the Bernoulli version.

Fig 5.5 are the histograms of genomic control inflation factors for different simulation
settings. From this we believe that our methods make the null p-values more “uniform” and

make the genomic control inflation factor more concentrate around 1.

Figure 5.6, 5.7 are histograms of GCIF for the case where both of G;,Z are Normal
and both of G, Z are Binomial. In addition to the comparison between the uncorrected
interaction test and the TINGAinteraction test, we also compare them with the ordinary
marginal association test, it shows that the distribution of GCIF from TINGAIs close to that
of the ordinary GWAS, which has no problem with the “feast or famine” effect.

Table 5.3 contains the rejection counts for different distributions for Z and G;.
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Figure 5.5: Uncorrecred vs. corrected GCIF under the null
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Figure 5.7: Z, G; both binomial
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Table 5.3: Rejection rates 100 replicates, using normal approximation methods

Z G cor(Z,G ) Y Uncorrected | Corrected
N(mz,1) | Bin(2,p) 0 N(my, 1) 46 6
N(mgy, 1) Ber(p) 0 N(my, 1) 36 5
Bin(2,p1) | Bin(2,p2) 0 N(my, 1) 39 8

Ber(p1) Ber(p9) 0 N(my, 1) 35 9

The conditional distribution G;|Y, Z is computed by normal approximation.

5.2 Type I error rates and power across GWAS’s

As we mentioned in previous sections, the t-statistic for the interaction test is indeed 7,_4
distributed both marginally and conditioning on (G, Z). It means if we take the t-statistics
from many interaction GWAS’s (so many different Y, Z pairs, they follow a t-distribution
and so the p-values from t-test are actually uniform. We also want to check if the testing
statistic from our TINGAmethod follows (approximately) standard normal distribution as
we expect. In this part, we run a simulation multiple times independently to mimic multiple

independent GWAS’s. Then we look at the Type I error rates and power across GWAS’s.

5.2.1 Gaussian Methods

In this section, we assess the performance of Gaussian Method2 and Method3 by looking at
the type 1 error and power across many independent GWAS'’s.

We simulate each replicate under the null as following:
e n=1000,m=>5

e 7 ~ Bernoulli(my)

e (G ~ Bernoulli(mq)

o m.,m1 3 Unif(0.15,0.85)
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11d

° G] inc{l\?p. Bernou]li(mj) P~ Unlf(O 2,0. 5) J=2,3,45

a ~ Unif(—10, 10)

Y =a+9Z+B1G1+ Y09 8;Gj+e, e~ N(0,021)

2 _ 2 2 ) 2_2
gt =1—7 UZ—ijlﬁjan

When simulate each G, we check the following 2 conditions and keep re-generating j

until both of the 2 conditions are satisfied:
L. |cor(G4,2)] <0.1
2. MC’C’(Gj,Z) > 5

We did ~ 10° replicates for the following 7 cases:

—_

- 07 (517627527647/85) = (070707070)

2. 7=0, B =0, (B2, B2, Ba, B5) = <\/%— 001 /001 _ ¢%>

e Gy ope

2 5
3.y = /%0 B1=0, (B2 52, B0, B5) = ([0, — [ 23, 99, —
V= (B2, B2 5) o2 T B o, 0G5

4oy =0, By = 200 (3, 3y 3y 05) = ([0 _ [o0r  [o0r
ol 1 1/0%1 (B2, B2, Ba, B5) = ( o2 o2\ o8, 005

5.v= /%L 8= /%1, (B2, B2, Bu, B5) = ( [22,— [O, O, — oL
Gy G, %Gy 2G5
6 ~— [oo1 _ [oo4 By, By, 01 001 001 _ fo01
V=0 oz Pr= 5z (B2 B2 B, ) = é 72\ o2, 0%5)
Toy= /% 8= [%1, (Ba B2, Ba, Bs) = (2, — [O, O - [B)
TGy 9az \ 9G4 7Gs

We simulate G, G3, G4, G5 to mimic the situation where there are other positively or neg-

atively associated SNPs.
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For each replicate in each of the 7 cases, we look at the p-values for testing the interaction

between Z and (G in
Y|Z,G1 ~ N(0,a +~Z + BG1 + 6(Gy 0 Z),0°1). (5.1)

Note that the fitted model does not contain G, G'3, G4, G5, so there is model mis-specification
except for case 1.

Figure 5.8 are the (differenced) QQ-plots of -logl0 p-values for the cases. The grey
regions are the 99% ELL confidence regions [1]. As we can see, Gaussian Method 2 and 3
have acceptable type 1 error performance.

We simulate the following alternative case to compare the power of regular t-test and

Gaussian Method 2 and 3:
Y =a+79Z+ 308G+ Y121 0j(Gjo2) +e

€~ N(0,021)

2 _ 2 2 5 2 5 2 2
og=1—-7%7% — ijl 6jOGj — Zj:l 5ngon

v= i 5= [0 5:2)
9z el
(B2, Ba, B, B5) = (\/001 _\/001 \/0 01 /00

(01,09, 93,04, 05) = ( [-32-,0,0,0,0)
UGloZ

Figure 5.9 draws the power curves for the 3 testing approaches. The x-axis is for -log10
scaled type 1 error for testing Go o Z. The y-axis is for power for testing G o Z. As we
can see, in our simulation setting, power of Gaussian Method 3 > regular t-test > Gaussian

Method 2.
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Figure 5.8: QQ-plots for Gaussian Methods Top: Gaussian Method 2; Bottom: Gaussian
Method3. The 7 cases are described in section 5.2.1
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5.2.2  Bernoulli Methods

In this section, we assess the performance of the following 3 Bernoulli versions of TINGA by

looking at the type 1 error and power across many independent GWAS’s:
1. Method2
2. Method3, shrink (see equation 3.46 in section 3.4)
3. Method3, Lasso (see equation 3.47 in section 3.4)

We use the same simulation setting as in above section 5.2.1 except that we set the lower

bound for MAF to 0.2 instead of 0.15:

my, my id Unif(0.2,0.8) (5:3)

ma, ms, mq, ms id Unif(0.2,0.5)

Figure 5.10 depicts the (differenced) QQ-plots of -logl0 p-values for the null cases. Figure
5.11 compares the power curves of regular t-test and Bernoulli methods in the alternative

case.
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Figure 5.10: QQ-plots for Bernoulli Methods Top left: Bernoulli Method 2; Top right:
Bernoulli Method3, shrinkl Bottom: Bernoulli Method3, lasso. The 7 cases are described in
section 5.2.1
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5.2.83  Other simulation settings

We compare the performances of the conventional methods (t/Wald test) and our methods

in 3 simulation settings: Non-GRM case, GRM case 1 and GRM case 2.

Non-GRM case In each replicate, we simulate a Bernoulli Z and m = 4 Bernoulli G}s
independently for n = 1000 independent individuals, where the Bernoulli frequencies are

generated independently from Unif(0.1, 0.5):
e n=1000, m=4
e 2z~ Ber(my), my ~ Unif(0.2,0.8)
indep.

e 1; ~  Ber(mj), m; id Unif(0.2,0.8), cor(zj,2) =0, j=1,2,3,4

When simulate each Gj, we check the following 2 conditions and keep re-generating G

until both of the 2 conditions are satisfied:
L. [cor(G4,Z)] <0.1
2. MCC’(Gj,Z) > 5

We simulate Y under the alternative model 5.4

m m
Y=a+yZ+Y BiGj+> 6;(Z—my)(Gj—mj)+e e~N(0,1I) (5.4)
j=1 i=j
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We set
a ~ Unif(—10, 10)

2 2
(B1, B2, B3, B4) = ( 0025, 00257\/005> ,
G e

025

O'
(01,02,43) = (0,0,0)
d4 = 0 (Null case)

NN

(5.5)

6= [-9925_ (Alternative case)

(G4°Z)
so that Z, Go, (3, G4 have marginal effects on Y and only (G4 has interactive effect with Z
onY.

We run 10° replicates for the non-GRM case. Figure 5.12 are (differenced) QQ-plots of
-log10 p-values for Gaussian Method1-4 under the null case (04 = 0).

Figure 5.13 are QQ-plots of of -logl0 p-values for the following Bernoulli versions of
TINGA: (1). Methodl. (2). Method2. (3). Method3, shrink. (4). Method3, lasso. (5).
Method4, shrink. (6). Method4, lasso.

The results are from the same simulation replicates as in Figure 5.12 for the Gaussian
Methods.

For the alternative case, we let

0.025
04 =

5 (5.6)
(e,

Figure 5.14 compares the power curves for the regular t-test with TINGA methods. The
top panel compares regular t-test and Gaussian Method 1-4. The bottom panel compares
regular t-test and the 6 different Bernoulli methods as those applied in above type 1 error
part. The top and bottom panels are from the same 10° replicates. The x-axis is -log10 of

the type 1 error for testing G9 o Z. The y-axis is the power for testing G4 o Z.
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Figure 5.12: QQ-plots for Gaussian Methods 10° replicates under the null case of no
interaction. 4 panels represents tests for interaction between Gy, G9,G3, G4 and Z
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GRM case 1: independent individuals In this case, Z, G;’s are simulated in the same
way as GRM case 1. Y is simulated with the same model 5.4 and the same effect parameters

as in 5.5, except a GRM as an extra variance component 5.7
¢ ~ N(0, o2 (hQK T (1- h2)1> , (5.7)

where K is the GRM computed from 10% independently simulated Bernoulli SNPs, h2 =

2 _ ..
03,07 =1:
indep. iid .

G =1(g1,-910000)s 9i ~ Ber(f;), fi < Unif(0.1,0.9)

~ ~ ~ _ g _‘g_

G = (g1, ---310000); §i = —F——rex

gi(1 — g;)
L =T
- _aa
10000

We run 10% replicates for GRM case 1. Figure 5.15 are (differenced) QQ-plots of -log10
p-values from different methods under GRM case 1. Figure 5.16 are power curves of different

methods.

GRM case 2: population structure with 3 sub-populations We also tried the setting
with population structure in which there are 3 sub-populations following the Balding-Nichols
model [47]. Both Z and G}’s are still Bernoulli distributed, and simulated with the 3 sub-
populations. Z,Go,G3,Gy and (Z o G4) have effects on Y. Y also has indicators of the
sub-populations as covariates:

We assign 1/3 of the total population to each sub-population. In our case, n = 1000,
so the sample sizes for sub-population 1, 2, 3 are 333, 333, 334 respectively. Let the fixation
index F' = 0.1.

For each SNP s, the ancestral allele frequency pg is drawn id Unif(0.2,0.8) (iid across
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SNPs). For each sub-population k£ = 1,2,3, the allele frequency p;. is drawn independently

from Beta(L 3(1F_F), (L—p S%I_F)) . Then for an individual assigned to sub-population k, the
genotype is drawn iid from Ber(p;). We only keep the SNPs with MAF > 0.05.

We use the above strategy to simulate one Z and m = 4 G;’s, independently. When
simulate each G, we check the following 2 conditions and keep re-generating G'j until both

of the 2 conditions are satisfied:
L. [cor(G4,Z)] <0.1
2. MCC’(Gj,Z) > 5

For the GRM, we simulate 10° independent SNPs, these SNPs are also independent from Z
and G;’s.

We simulate y by the following model:

m m
Y=a+yZ+) BiGi+> 6;(Z—mg)(Gj—mj)+e

j=1 i=j
where
0.025 0.025 0.05
o (B1.02. 53, 1) = ( \/U 5, \/ o \/ )
0.025

[ ) =

v o2
® (01,02,03) = (0,0,0)

— . _ 0.025 :
e 54 =0 (Null case); 04 = 5 (Alternative case)
(GygoZ)

o ¢~ N(0, 02 (h2K + (1 — h?)I)

e h2=03
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We run 10% replicates for GRM case 2. Figure 5.17 are (differenced) QQ-plots of -log10
p-values from different methods under GRM case 2. Figure 5.18 are power curves of different

methods.
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5.3 Effect of different minor allele frequencies of Z and G; on type

1 error

In our TINGA method, we intentionally denote the 2 SNPs by different letters Z and G,
to emphasis the situation where Z is fixed and we test the interaction between Z and other
SNPs in the genome, and our TINGA method is conditioning on “Z” and is not symmetric
between Z and G. However, when searching for pairwise interaction among all possible pairs
of SNPs in a GWAS, the 2 SNPs, say, G, and G are actually symmetric. Therefore, there

could be two possible ways to apply TINGA:

L. Let G, be the “Z”, condition on G, Y and treat N; as a function in random variable

G

2. Switch the role: Let G be the “Z”, condition on G}, Y and treat Ny as a function in

random variable Gy,

In this section, we investigate the condition under which our method is applicable and
which SNP to condition on in a pairwise search for interaction signals. We focus on Gaussian
approach Method 3.

We have the following simulation setting:

e 7 ~ Bernoulli(my)

G1 ~ Bernoulli(mq)

* Gj indep. Bernoulli(m;), m; ~ Unif(0.2,0.5), j =2,3,4,5

e o ~ Unif(—10, 10)

Y =a+7Z+p1G1+ Y09 BiGj+e e~N(0,02)

2 _ 2 2 3 2 2
of=1—7 JZ—ijlﬁjan
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For the allele frequencies of Z and G, we use a 317 x 317 fixed grid: we pick 317 equally
distanced points on the interval [0.05,0.95] and iterate my and m; over all possible pairs of
frequencies among the 317 points, resulting to 3172 = 100489 replicates.

We look at the p-values for testing the interaction between Z and (G in the same 7 cases

as in section 5.2.1:

—_

= 07 (/Blaﬁ27527ﬁ47ﬁ5) = (070707070)

2. 7v=0, p1 =0, (B2,B2,B4,B5) = (\/0—2—1 b \/%)

e N o

2 5
3. 7= /%, B1 =0, (B, B, Bu, ) = \/301 \/301 W’ﬂ —\/U
Gy Gs Gy Gx
oy =0, b= UL (B2 B, fs) = \/001 \/0-01 \/001 \/
e G, Gs 7G, Gy
50 = 85 = [0t (B o) = (08 \/301\/
zZ Go G3
6.7 = [O8 o= [0 (BB e) = (, [O42 \/201\/2
Gy Gy

.04 .01 .01 .01 .01 .01

We simulate G9, G3, G4, G5 to mimic the situation where there are other positively or neg-

0.
o
0
o

01 0.01
G4 Gy
01 0.01)
) 2
Gy G5

el

X

Q

atively associated SNPs. We assign different values to v and 1 to see how the cutoff for
MAF of Z and cutoff for MAF of (51 is related to their effect coefficients.

For each case, we run the 3172-replicate simulation 3 times, resulting 3 x 3172 = 301467
replicates in total.

We plot the -logl0 scaled ELL p-value [1]| for testing the uniformity of the resulting
301467 p-values for different ranges of MAFs of Z and 1 in Figure 5.19. We can see that
when MAF of Z > 0.15 (or 0.12) and MAF of G; > 0.05, the ELL p-values are all larger
than 0.01.
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Figure 5.19: ELL p-values for different ranges of minor allele frequencies for Z and
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The sub-vector is given by taking the replicates where MAF of Z > a and MAF of G1 > b.
The cutoff a for Z is denoted by different colors; the cutoff b for (G1 is the x-axis.
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We then look at the power performance under the condition that (1). MAF of Z > 0.15

and MAF of G1 > 0.05. (2). both MAF of Z and MAF of G1 > 0.12 We still use the model

in the type 1 error simulation:

Y =a+9Z+B1G1+ Y 098G+ Y01 0;(Gjo Z) +¢ €~ N(0,021)

2 _ 2 2 5 2 2 5 2 2
e =1-7%7 _ijlﬁ‘UG- _ijl(sjUGon

0.02
K (5.8)
(81, B2, B2, B, f5) = \/001 \/002 \/001 \/001 \/001

(81,09, 03,04,05) = (0, /392 0,0,0)
UGQOZ

In this case, Z is interacting with G9 only. We look at the QQ-plot for the p-values for
testing G o Z in Figure 5.20 (a), where we restrict the MAF of GGy to be greater than or
equal to 0.05 and MAF of Z to be greater than or equal to 0.15 and 0.12; ending up with
about 95,000 replicates and in Figure 5.20 (b), where we let both Z and G7 have MAF
> 0.12, ending up with about 81,000 replicates.

We compare the power for detecting GG o Z of the regular t-test, heteroscedasticity
corrected t-test and Gaussian approach method 3. Here the heteroscedasticity corrected t-
test is performed by fitting a weighted least square model, where the weights are —

Var(Y|Z 0)
for the individual with Z; = 0 and =———— for the individual with Z; = 1. Figure 5.20 (c)

Var(Y|Z
are the power curves when we restrict (the MA/)AF of G1,G9 to be greater than or equal to 0.05
and MAF of Z to be greater than or equal to 0.15 and 0.12, ending up with about 87,651
replicates. Figure 5.20 (d) are the power curves when we restrict the MAF of G1, G, Z to
be greater than or equal to 0.12, ending up with about 81,000 replicates.
We conclude when testing the interaction G; o Z where Z is the SNP that we choose to
condition on, having (1). MAF of Z > 0.15 and MAF of G| > 0.05 or (2). both MAF of

Z and MAF of G > 0.12 is needed for Gaussian approach Method 3 to have good type 1
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error performance.
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Figure 5.20: QQ-plots and power curves for different MAF lower bounds

(a). (Differenced) QQ-plot of -logl0 p-values when MAF of G; > 0.05 and MAF of

Z > 0.15 (black), 0.12 (red). (b). (Differenced) QQ-plot of -logl0 p-values when MAF of
G1 > 0.12 and MAF of Z > 0.12. (c) Power curves when MAF of G, G2 > 0.05 and MAF
of Z > 0.15. x-axis is the -log10 scaled type 1 error for G, y-axis is the power for (Gg o Z).

“HC t-test” means heteroscedasticity corrected t-test. (d). Power curves when MAF of
G1,G9 > 0.12 and MAF of Z > 0.12
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5.4 Effect of different minor allele frequencies of Z and G; on

power

From above section, we conclude that in a scenario where we perform a pairwise search
among all possible pairs of SNPs in a genome, then if one of the SNP has MAF > 0.15 and
another has MAF € [0.05,0.15), we should let Z be the one that has MAF > 0.15. That is
to say, we condition one the SNP that has larger MAF. When both SNPs have MAF > 0.15,
conditioning on either of them will lead to acceptable type 1 error performance.

In this section, we design an experiment where the MAFs for both Z and G are > 0.15,
and we assign a relatively small MAF for G; and a relatively large MAF for Z, to see if the
power performance of our method changes when the frequencies change.

For each choice of coefficients, we use the following setting to simulate N = 10% pairs of

(Z,G) independently:
e n = 1000
e G~ Ber(0.15), Z ~ Ber(0.35), G, Z independent

o YV =a+bGj+1Z+6(Gj —pj)(Z —pzg)+e e~ N(O, 1)

e (G, Z) are filtered by criterion of minimum cell count > 20

We tried the following 3 cases:
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We then test interaction between the two variants using Gaussian Method3 with (1) Z
being the variant with smaller MAF and G; being the variant with larger MAF and (2) the
reverse (Z being the variant with larger MAF and G; being the variant with smaller MAF).
Fig 5.21 are QQ-plots of the resulting p-values on the -log10 scale. We can see that Method
3 has slightly larger power for the reversed pair, where Z is chosen to be the one that has
smaller MAF. However, the difference is too small. For example, at p-value cutoff 1072, the
power for the original pair is

po = 0.7064,

the power for the reversed pair is

The z-score for testing the significance of the difference is

= br —Po ~0.716 (5.9)

7‘1_7" 01_0
\/p(Np)+p(Np)

and the p-value is 0.24, so the difference between the power of the original pair and the
power for the reversed pair is not significant. Therefore, we may conclude that when the
MAFs of both 2 SNPs to be tested for interaction are > 0.15, then whether to condition on
one or another does not affect the power or type 1 error performance. In this case, we may
choose which one to condition on based on correction of the “feast or famine” effect: we may
choose the one that potentially has worse “feast or famine” effect to be Z. By doing so, we

can get larger correction.
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Figure 5.21: —log10 scaled p-values from TINGA of reversed against original pairs
of 7, G;
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CHAPTER 6
ANALYSIS OF FLOWERING TIME IN A. THALIANA

In this chapter we show the application of our methods on the A. thaliana dataset, for which

the genotypes are binary.

6.1 Data Description

We study the genetic data from Arabidopsis thaliana and use its flowering time, the log
scaled number of days between germination and flowering at 10°C , as phenotype [48]. We
include 931 selected A. thaliana accessions (inbred lines) from difference regions. Therefore,
the genotypes are binary ( has 0/1 values only). The SNPs were filtered based on minor
allele frequency (MAF) > 0.03 [49]. LD pruning was done to remove loci in pairwise LD of
r2 > 0.99 [49]. After filtering, there are 865,350 SNPs remained.

It is worth noting that the flowering time used as our trait is obtained by taking average
over 10 identical accessions: 10 “individuals” of A. thaliana that have exactly the same genetic
data. In this way, environmental noise is reduced. The estimated heritability is about 88%.
Before taking the average, it was about 44%.

In our analyses with this dataset, we use a LMM for the phenotype, where the GRM is

computed by all SNPs with allele frequency > 0.05.

6.2 Performance for one particular SNP

Firstly, we pick some special SNPs as Z and do an interaction GWAS to have an rough idea
of the performance of different methods.

We pick SNP Chrd 18593622 as our first Z because it has relatively small marginal
p-value. G;’s are all SNPs in the genome that has correlation with Z between —0.1 to 0.1.

e frequency of Z: 0.28
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e number of Gj’sz 696396

We test for interaction between selected Z and G’s using Wald test and TINGA.

Fig 6.1 are (differenced) QQ-plots of p-values from different methods, with simultaneous
95% ELL acceptance regions for i.i.d. uniform p-values outlined in red, where these use the
method of [1]. (In a differenced QQ-plot, the y-axis depicts the difference between observed
and expected p-values, which is particularly helpful for creating a useful visualization when
the plot contains a large number of points.) We can see that for this particular SNP, the

distribution of p-values is much closer to uniform after TINGA adjustment.

6.3 “feast or famine” problem persists for simulated G;’s

As we mentioned in previous section, in an interaction GWAS, the true null distribution of
the testing statistic is some distribution that depends on (Y, Z). Therefore, we may expect to
get similar pattern of the “feast or famine” effect for the same pair of Y, Z but with different
set of Gj’s. To illustrate the persistence of “feast or famine” effect, we pick one SNP in the A.
thaliana dataset that has small GCIF for genome-wide interaction tests, denote it as our Z.
We apply MAF filtering and LD pruning using PLINK to the A. thaliana dataset and get a
set of 8183 SNPs with MAF > 0.1 and pairwise LD r2 < 0.075. We first conduct interaction
tests between Z and each of the 8183 SNPs, and the trait Y is still the flowering time we use
for the real data analysis. The QQ-plots and GC inflation factors of the interaction p-values
are in Fig 6.2 (a). Then we keep the (Y, Z) pair the same, and simulate 8183 SNPs from
Bernoulli distribution. These simulated SNPs are independent of (Y, Z) and independent of
each other. We conduct the interaction tests again and get the QQ-plots in Fig 6.2 (b). As
we can see, for both the original SNPs and simulated SNPs, the -log10 p-values of Wald test
are severely deflated, and our methods have good performance in fixing this issue. Similar

to the results in Fig 2.1 and Table 2.1, this experiment also gives us an idea of how the “feast
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Figure 6.1: QQ-plots of p-values

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Expected quantiles of p—values

0.0 0.2 0.4 0.6 0.8 1.0

Expected quantiles of p—values

Fix SNP Chr5 18593622 as Z and test its interaction with other SNPs in the genome. The
theoretical uniform quantiles are subtracted from both x and y coordinates, so that it has a
horizontal view. The red lines are the 95% ELL null confidence interval assuming there are
100,000 effective independent SNPs. Top: Unadjusted interaction p-values from Wald test.
Bottom: p-values from TINGA.
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or famine” effect is related to the particular value of (Y, Z) and presumably can be predicted

by it.

6.4 Strategy for detecting epistasis

Due to the large number of SNPs (totally 865,350), we are not able to do a pairwise search
over all possible pairs of SNPs for epistasis. Therefore, we first apply some filtering proce-
dures to narrow down the set of SNP pairs that we apply TINGA to. Then for the 2 SNPs
in a pair, we decide which SNP to condition on based on their MAFs and a diagnostic value
for the severity of the “feast or famine” effect (see Appendix 6.7).

Following are detailed steps:

Stepl: select 865 Z’s with smallest marginal p-values
We start by only picking the SNPs with marginal p-values (from Wald test) in the smallest
0.1% range, that’s to say, 865 SNPs with smallest marginal p-values, and use them as Z, the

SNPs we want to test for interaction.

Step2: perform (Appendix: Fast approximate Wald test) to selected Z and all
possible G;’s in the genome

Even with the number of tests reduced by a factor of more than 500, we still need a fast
computation strategy because we are performing interaction tests based on an LMM. We
take a two-stage approach, where we first apply a fast, approximate Wald test. Then we only
perform more time-consuming and accurate calculations for p-values that are small based on
the fast, approximate Wald test, and we content ourselves with the coarser approximation
for the p-values that are large. The key idea of the fast approximate Wald test is to regress
out all variables aside from the interaction term step by step using matrix operations, so
that we can avoid looping over the SNPs. We adopted this method to linear mixed model

and got approximate p-values for the interaction GWAS.
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Figure 6.2: QQ-plots of —logl0 p-values for interaction tests
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(a). Interaction tests between Z and 8183 original SNPs from the A. thaliana dataset. (b).
Interaction tests between Z and 8183 independently simulated Bernoulli SNPs
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Step3: Perform more accurate p-value calculation only for those pairs with fast
approximate Wald p-value < 10~% and minimum cell count (MCC) > 5
We use above fast approximate p-values for further filtering:

Both the p-value for interaction in a LMM and the TINGA method will be applied
only to those pairs with fast, approximate Wald p-value < 10—4. Furthermore, for some
pairs, interaction was not tested at all because informativeness constraints were not met (we
required MCC > 5) or our constraint on correlation was not met (we required 72 < .01).

After these filtering steps (based on MCC, r2 and fast approximate Wald p-value), there
are 57,149 pairs of SNPs remaining, with 728 of the originally chosen SNPs having at least
one pair, and these 57,129 are the pairs for which we calculate the interaction t-statistic and
TINGA statistic.

For the 57,129 pairs of SNPs, we first apply Gaussian Method 4 (fit homoscedastic model
of Y under alternative (interaction)) with the following strategy:

Let My, My be the minor allele frequencies of the 2 SNPs in the pair.

1. if min(My, My) > 0.15, or both My, My € [0.12,0.15), condition on the SNP with

worse diagnostic ratio (see Appendix 6.7)

2. if max(My, My) > 0.15 and min(My, M) € [0.05,0.15), condition on the SNP with
larger MAF

3. otherwise, do not apply TINGA

Then we pick the top 200 significant pairs from Gaussian Method 4 and apply Gaussian

Method 3 to them, where we fit the heteroscedastic model by
Y ~ N(a+ BGj+7Z+6(GjoZ), ordiag(Z) + oK + o2l). (6.1)

Step 4: look for interesting pairs We look for interesting pairs for which
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1. regular Wald test gives relatively significant result while TINGA gives much larger

p-values: could be due to correction of “feast or famine” effect or

2. TINGA gives more significant result than Wald test

6.5 Findings

Among the top 10 significant pairs from Wald test, several of them involve a common SNP
Chrl _27657389. It has large diagnostic ratio: 2.03. For the interaction GWAS where
SNP Chrl 27657389 is fixed, the GCIF is 1.67. That is to say, with Wald test, there is
a systematic deflation of p-values in the interaction GWAS. Table 6.1 compares the results
from Wald test and TINGA. The last column shows the heteroscedasticity p-values by testing

for heteroscedasticity in Y due to Z. i.e., testing Hy : o% =01in
Y=a+Z+Gj+(ZoGj)+e e~ N (0,031 + 02K + o3diag(Z))

As we can see, all 3 pairs have quite large heteroscedasticity p-values, indicating that the
difference between Wald and TINGA results are most likely due to correction for “feast or

famine” effect, instead of correction for heteroscedasticity.

SNP Z SNP G; Wald p-value | TINGA | Hetero. p-value
Chrl_ 27657389 | Chr2 5319468 | 2.2x 1077 [29x 107 0.49
Chrl 27657389 | Chrl 5422500 | 1.5x107% [4.9x 107 0.35
Chrl_ 27657389 | Chr2 12389533 | 3.3 x 10~° [ 5.3 x 10~* 0.14

Table 6.1: Comparison between Wald test and TINGA

SNP Z has diagnostic ratio 2.03 and GCIF 1.67. “Hetero. p-value”: p-value for test
heteroscedasticity in Y due to Z

Table 6.2 shows some pairs that TINGA gives more significant results. As we can see, for

the first 2 pairs, the GCIFs and diagnostic ratios are > 1. It means that after correcting for
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the systematic deflation of interaction p-values, TINGA still gives more significant result.
For the other 2 pairs, the GCIFs and diagnostic ratios are < 1. After correcting for the
systematic inflation of interaction p-values, TINGA gives more significant result, which is as

expected.

SNP Z GCIF | R SNP G Wald TINGA

Chr2 9312347 | 1.23 | 1.38 | Chrl 30240701 | 2.5 x 10~7 | 2.7 x 10~ 9
Chr5 12971212 | 1.30 | 1.30 | Chr3 22936958 | 6.8 x 1076 | 4.0 x 108
Chrl 24265614 | 0.88 | 0.87 | Chrd 2614033 | 2.1x 107" | 2.0 x 107
Chr3 21971020 | 0.93 | 0.91 | Chrl 22559639 | 3.9 x 107° | 1.4 x 10~7

Table 6.2: Pairs for which TINGA gives more significant results

GCIF: genomic control inflation factor for interaction GWAS with SNP Z fixed
R: diagnostic ratio for SNP Z

6.6 Appendix: Fast approximate Wald test

Fast approximate t-test

The basic idea is to regress out everything else except y and the interaction term. Then
the t-statistics for m x’s can be computed at once via matrix multiplication.
Suppose we have phenotype y, SNPs z, X = (x1,x9,...,2y,) and covariates u. Let z., X,
be the centered genotypes. Let W = X. o0 2z, = (10 Z¢, ..., Tme © 2¢) be the matrix of

interactions. We want the t-statistics for each of the epistasis by fitting m linear models
2
y ~ N(uei +7ize + BiTic + 6i(Tic 0 2c), 07 1)

Step 1: regress u, z. out of y, X., Xcoz. Let P be the matrix that projects to the

subspace spanned by (u, z.). We let

yr=y— Py
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Xr:XC_PXC

Wr:XCOZC—P(XCOZC)

Step 2: regress each column of X, out of 3. and each column of W, Since when the

subspace only has 1 dimension, the projection matrix can be directly written as ;‘erxgﬂ

(24
and the resulting variables can be computed by matrix operations in R. Let the results be

Yre and Wiy

Step 3: get the interaction t-statistics by regress each column of W;, on cor-
responding column of y,; Again, since each projection subspace has dimension 1, the

result can be got by matrix operations in R

This fast method gets all m t-statistics without running a loop of m iterations.

Fast approximate Wald test
When fitting a linear mixed model, we can modify above method to get approximated test

statistics. Suppose we want to fit the model
y ~ N(aj + 7z + Biz; + di(x; 0 2), Q)

where ) = agK —i—ag I. We could approximate it by a linear model by pre-multiply everything
by Q~1/2;

O Y2y ~ N (i (Q7V21) + 7, (7 Y22) 4+ 6107V 20) + 6,07 Y2 (20 2), 1)

We could let u = Q71/21 be the new covariate and apply the fast t-statistics method to the

new variables.
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6.7 Appendix: A diagnostic for “Feast or Famine” effect

As mentioned in Chapter 2, for a given (Y, Z), the true null conditional distribution Fy 7

depends on value of (Y, Z).
e For some value of Y, Z, we consistently have a “feast” problem;
e For some value of Y, Z, we consistently have a “famine” problem

Therefore, we could find some diagnostic as a function of Y, Z that predicts the FoF problem.

Recall that the regular t-statistic for testing interaction is

Vn—k—3(G;02)" PyY N,
T = z (Gio2) Pu = n—k— 3 (6.2)

\/(Gj 0 Z) Py (GjoZ) -YTPyY — ((Gjo Z)T PyY)? Dj

For a given (Y, Z), the true variance for the numerator N; should be Var(N;|Y, Z), but

the regular t-test is using

D} = (Gjo2) Py (Gjoz) YTPyY —((Gjoz) Pyy)?

Var(NV;|.2)

Therefore, the ratio 2
J

represents how the true variance is different from the
variance used in t-test
For Djz, take asymptotic approximation in G|Y, Z, we get a function D}% 7 inY, Z that

represents the asymptotic value of the (square of) denominator used in t-test given (Y, Z)

We get the diagnostic ratio by

R Var(N;|Y, Z)

6.3)
5 (
D},

In the simplest case where there is no covariates other than intercept, and the noise is

N(0,021),

R— nSzzrr

- ) 64
SZZSTT ( )

102



where 7 is the residual of Y after regressing out (1, Z) and Sy, = >, (a; — @) (b; —b), Supeq =

>oila; —a)(bi — b)(c; — ) (d; — d)

Extending it to a GRM case,

S0 S-1 oo ( 7 7 5
R:nZi,j(E )i (2 )jK’L](ZZ Z)(Zj Z)) (6.5)

(TS=1r) 32 (Zi = 2) (25 — 2)PyKj

where
S =62 +62K
p=5"1_35 11811 117g-1 (6.6)
r=Y —UWrstoy-tus-ly, U =(1,2)
Equation 6.4, 6.5 are derived by McPeek, M. S. ( McPeek, M. S., personal communication,
March 25, 2024).
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CHAPTER 7
DISCUSSION

Identifying interaction, either G x G or G x E, can give insight into both genetic effects on a
complex trait and underlying biological mechanisms, and it can also help to clarify the role
of environment in the case of G x F testing. For testing interaction in a GWAS context,
we have identified and described the “feast or famine” effect, in which different interaction
GWASs have fundamentally different null distributions. We show that the “feast or famine”
effect applies for different types of variables, including normal, binomial or binary, and for
standard testing methods such as the t-test, F-test or likelihood ratio test for interaction. We
show that it affects only interaction GWAS, not ordinary association GWAS. If we consider
GWASs in which there is no interaction under the null hypothesis (so heteroscedasticity is
not present), then on average over different GWASs standard methods have correct type 1
error overall, but false positives are overly concentrated in certain GWASs (“feast” GWASs)
and false negatives are overly concentrated in certain other GWASs (“famine” GWASs). The
“feast or famine effect” can lead to excess type 1 error, reduced power, inconsistent results
across studies, and failure to replicate true signal. Furthermore, we show that whether a
given GWAS will be a “feast or famine” GWAS is a reproducible property, and that it can
be corrected for.

We develop the TINGA method which corrects the t-statistic for interaction by choosing
different conditioning variables that are more appropriate for a GWAS than the standard
choice. TINGA also allows for covariates and population structure through a LMM, and it
accounts for heteroscedasticity. In simulations we show that TINGA can greatly reduce the
“feast or famine” effect while preserving the overall type 1 error, which we show can result
in higher power.

We apply TINGA to a GWAS for flowering time in A. thaliana. Using TINGA we detect 5

significant interactions after Bonferroni correction, where all the detected interactions involve
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loci identified in previous studies as associated with flowering time. This demonstrates the
potential of the TINGA method for detecting interaction in a GWAS.

For epistasis detection in a GWAS, there is a computational challenge in testing epistasis
for all possible pairs of variants. When the model for Y is a LMM, as in our data analysis,
this computational challenge is made much greater, even for the usual LMM-based t-test
for interaction without any correction. We have developed a fast approximate version of
the LMM-based t-test for interaction, and we use it as part of an adaptive approach to
genome-wide testing, where more accurate but time-consuming methods are applied only if
the approximate p-value is sufficiently small. In other words, our strategy is to spend more
computational time on small p-values and to be content with coarse approximations to large
p-values. In future work, there could be further scope for making faster algorithms for all
aspects of interaction testing with a LMM in a GWAS context.

In epistasis detection, the situation of fixing one SNP and test its interaction with other
SNPs in a genome is related to another concept of marginal epistasis [26], which test the null
hypothesis that the fixed SNP has no interaction with any other SNP in the genome. The
“feast or famine” effect could be expected to have a huge impact on the testing of marginal
epistasis, making it all but impossible to reliably perform valid tests of marginal epistasis
without adjusting for the effect in some way. This could be an avenue of possible future
work. It is promising to apply the idea of conditioning on (Z,Y") to the existing methods for
marginal epistasis and improve their performance.

Since detecting interactions in a GWAS setting might involve fixing ¥ and searching
through all possible SNP pairs, it makes sense to consider conditioning on Y only, which

could be another direction of future work.
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CHAPTER 8
SUPPLEMENTAL INFORMATION

8.1 S1 R script to calculate p-values for the two-sided equal local

levels test for i.i.d. uniformity

A two-sided equal local levels (ELL) test for i.i.d. uniformity a set of variables Xy,..., Xy
is described in [1], who created the R package qqconf, which is available on CRAN. The
primary purpose of qqconf is to generate appropriate simultaneous testing bands for a QQ-
plot, but in addition, the functions available in qqconf can be used to generate p-values for
the two-sided ELL test for i.i.d. uniformity.

In the R code below, suppose = € (0,1)". The code obtains a p-value for the deviation
of  from i.i.d. uniform(0,1). The test is a QQ-plot based ELL test. It answers the question:
what is the largest level a for the acceptance region for the qqg-plot that would result in
non-rejection of x, where the acceptance region is based on 2-sided ELL.

library(qqconf)

qqpvu <- function(x){

n = length(x)

tmpl = sort(x)

tmp2 = pbeta(tmpl,c(1:n),c(n:1))

tmp3 = min(min(tmp2),1-max(tmp2))*2
Ib = gbeta(tmp3,/2,c(1:n),c(n:1))

ub = gbeta(l-tmp3/2,c(1m),c(n:1))

get level from bounds two sided(Ib,ub)

}
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