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ABSTRACT

In genetic association analysis of complex traits, detection of interaction (either GxG or

GxE) can help to elucidate the genetic architecture and biological mechanisms underlying

the trait. Detection of interaction in a genome-wide association study (GWAS) can be

methodologically challenging for various reasons, including a high burden of multiple com-

parisons when testing for epistasis between all possible pairs of a set of genome-wide variants,

as well as heteroscedasticity effects occurring in the presence of GxG or GxE interaction.

In this paper, we address the problem of an even more striking phenomenon that we call

the “feast or famine” effect that occurs when testing interaction in a genome-wide context.

We show that, even in a simplified setting in which there is no interaction at all (and so no

heteroscedasticity) and all SNPs are assumed independent, in a GWAS to detect gene-gene

or gene-environment interactions with a fixed genetic variant or environmental factor, the

distribution of the genome-wide p-values under the null hypothesis of no interaction is not

the i.i.d. uniform one that is commonly assumed. Using standard methods, even if all SNPs

are independent, some GWAS’s will have systematically underinflated p-values (“feast”), and

others will have systematically overinflated p-values (“famine”), which can lead to false detec-

tion of interaction, reduced power, inconsistent results across studies, and failure to replicate

true signal. This is a surprising result that is specific to detection of interaction in a GWAS,

and it may partly explain why such detection has so far proved challenging and difficult to

replicate. We show theoretically that the key cause of this phenomenon is which variables

are conditioned on in the analysis, and this suggests an approach to correct the problem

by changing the way the conditioning is done. Using this insight, we have developed the

TINGA (Testing INteraction in GWAS with test statistic Adjustment) method to adjust the

interaction test statistics to make their p-values closer to uniform under the null hypothesis.

In simulations we show that TINGA controls type 1 error, improves power and reduces the

“feast or famine” effect. TINGA allows for covariates and population structure through use

ix



of a linear mixed model and accounts for heteroscedasticity. We apply TINGA to detection

of epistasis in a study of flowering time in Arabidopsis thaliana.
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CHAPTER 1

INTRODUCTION

GWAS usually investigates the associations between genetic variants (or SNPs) and a partic-

ular phenotype, in a genome-wide scale. Apart from the ordinary genotype-trait associations,

we are also interested in the statistical problem of detecting interactions in a GWAS setting,

either gene by environment (GxE) interaction or epistasis, which is the interaction between

genes. It is well-known that the effects of a genetic variant can be different for individuals

with different environments, such as age [2; 3], sex [4; 5; 6; 7; 8] , lifestyles [9] , cell type

[10] and other exposures [11]; the genetic effects can also depend on other variants, either

from the same genome [12; 13] or the genome of another species (such as pathogen and host

[14], mother and offspring [15]). The two types of interactions are very important in many

aspects. For example, detection of such interaction effects can enhance the ability to identify

genetic effects that would otherwise be reduced or masked [16]; they are considered as one of

the reasons why results of marginal association studies are sometimes hard to replicate [17];

they are believed to account for a large part of missing heritability [18; 19; 20]; and they

can lead to a better understanding of genetic architecture of complex traits and diseases

[21; 16; 22] and potentially benefit many areas such as public health [23] and agriculture

[24; 25]. Extensive prior research has been done to develop appropriate methods for detect-

ing interactions in GWAS, aiming to improve computational efficiency, reduce false positives

and increase power [6; 26; 27; 28; 29; 30; 31; 32].

One challenge specific to epistasis detection is that, because of the large number of tests,

an exhaustive search for epistatic effects in a GWAS context has a larger computational

burden and lower statistical power than an ordinary trait-variant GWAS. To deal with this

issue, researchers have developed various methods that corrects for multiple testing while still

remaining powerful [33; 34]. Another option is to reduce the number of tests by a two-stage
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approach: first select a subset of SNPs that are more likely to be involved in interaction and

then test for interaction among them [26; 30; 35; 36; 37].

Moreover, previous work found it hard to replicate interactions in GWAS [38; 39; 40].

This can occur for a variety of reasons. For example, in some cases, an apparent epistatic

effect that is detected could be due to an unsequenced causal variant [41; 42; 38]. Another

important issue that has been identified is heteroscedasticity [43; 44; 45] that can result

under the null model when, for example, interaction is present between one of the two tested

variables and some other variable not included in the model or when the null model is

misspecified in some other way. If not accounted for, this heteroscedasticity can lead to

excess type 1 error for testing interaction [43; 44; 45].

Many scenarios of testing for GxG or GxE in a GWAS context involve fixing one genetic

variant or environmental factor and performing an interaction GWAS by testing the fixed

variable for interaction with each genetic variant across the genome. The typical approach to

inference treats the phenotype as random and the environmental factors and/or genotypes

as fixed. Systematically inflated or deflated p-values in such an interaction GWAS have

been previously reported, based on both data and simulations [42; 43; 44]. Even under

simplified assumptions, in the absence of problems such as heteroscedasticity, it has been

noted that type 1 error rates and genomic control inflation factors are highly variable across

such interaction GWAS’s [43; 44].

In this paper, we develop a deeper and more detailed understanding of such unexpected

behaviour of interaction test results in a GWAS context, which we call the “feast or famine”

effect. We frame this problem as resulting from the choice of variables to condition on and

show how changing this choice has the potential to resolve the problem. Our framework also

explains clearly why the “feast or famine” effect only occurs in interaction GWAS, not in

ordinary association GWAS. We implement our ideas in a method we call TINGA (Testing

INteraction in GWAS with test statistic Adjustment), in which we adjust the t-statistic for

2



interaction by re-centering and re-scaling it using the null conditional mean and conditional

variance of its numerator, with a more appropriate choice of conditioning variables. In

simulations, we demonstrate the ability of TINGA to greatly reduce the “feast or famine”

effect while controlling type 1 error and increasing power. We apply TINGA to detect

epistasis in a GWAS for flowering time in Arabidopsis thaliana.
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CHAPTER 2

PROBLEM DESCRIPTION AND INTERPRETATION

We consider the problem of testing for interaction, either G×E or G×G, in a GWAS context.

In a sample of n individuals, let Y be an n× 1 trait vector, and let G be an n×m matrix of

genotypes for a set of m genome-wide variants. Let Z be an n× 1 vector that, in the case of

G × E testing, represents the environmental variable that we wish to test interaction with

and in the case of G × G testing, represents the genotype at a particular variant that we

wish to test interaction with (where we assume that Z is removed from the matrix G in that

case). In addition, we can allow for an n × k matrix U of covariates (including intercept).

By “testing interaction in a GWAS context”, we mean that for each j in {1, . . . ,m}, we test

for interaction between Gj and Z in a linear or linear mixed model for Y , where Gj is the

jth column of G.

In this section, we first describe what we call the “feast or famine” effect for testing

interaction in a GWAS context. We explain how the “feast or famine” effect can result in

some GWAS’s having systematically overinflated interaction p-values, reducing power, while

others have systematically underinflated p-values, resulting in excess type 1 error. In what

follows, we focus our exposition on the t-statistic for testing interaction, but the “feast or

famine” effect is very general and applies just as well to, e.g., the likelihood ratio chi-squared

test or the F-test for interaction. We show that the “feast or famine” effect does not occur in

ordinary GWAS for association between a trait and genetic variants, but only when testing

interaction in a GWAS context. After that we describe our TINGA method to correct the

interaction test statistic to greatly reduce this effect. We then show the performance of our

method via simulation results in the next section.

In the simplest setting in which there are no covariates and no population sub-structure,

we let Tj denote the t-statistic for testing interaction between Gj and Z, i.e., for testing

4



H0 : δ = 0, in the following linear model:

Y = 1nα +Gjβ + Zγ + (Gj ◦ Z)δ + ϵ, (2.1)

where 1n is a vector of length n with every entry equal to 1, α, β, γ and δ are unknown

scalar parameters, ϵ ∼ N(0, σ2eIn), where σ2e is unknown and In is the n×n identity matrix,

and where, for any two vectors a and b, both of length n, we define a ◦ b to be the vector

of length n with ith element (ai − ā)(bi − b̄), where, e.g., ā = n−1∑n
i=1 ai. (Note that

the test statistics Tj would remain exactly the same if we replaced Gj ◦ Z in (2.1) by the

element-wise product of the vectors Gj and Z, but choosing to center the variables before

multiplying them has various advantages such as reducing potential collinearity and making

the coefficients more interpretable.)

2.1 The “feast or famine” effect: what we thought we knew about

testing interaction in a GWAS context was wrong

For simplicity, we first focus the exposition on G×E interaction testing. An essential feature

of testing G× E interaction in a GWAS context is that we obtain a set of m test statistics

Tj , j ∈ {1, . . . ,m}, where Tj ≡ Tj(Gj , Z, Y ), with the same Y and Z used in all the test

statistics and only Gj varying. As a thought experiment, imagine the simplest possible null

scenario in which Y , Z and the columns of G are mutually independent, with the elements

of Y drawn as i.i.d. N(µ, σ2), the elements of Z drawn as i.i.d. from some distribution FZ ,

and the elements of Gj drawn as i.i.d. from some distribution FGj , for j = 1, . . . ,m. What

would be the distribution of (T1, . . . , Tm) in this case? It is well-known that for any given j,

the distribution of Tj in this case is the (central) Student’s t distribution on n− 4 df, which

we denote by Tn−4. Thus, it is tempting to assume that T1, . . . , Tm must be approximately

i.i.d. draws from Tn−4, but that is (perhaps surprisingly) incorrect.
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In this simple scenario, we show that it is most appropriate to think of T1, . . . , Tm as

i.i.d. draws from some distribution whose mean is 0 and whose variance is a function of

(Y, Z). For some choices of (Y, Z), the variance of the resulting Tj ’s is larger than 1 (where

1 is the approximate variance of Tn−4 for large n), while for other choices of (Y, Z), the

variance of the resulting Tj ’s is smaller than 1. Thus, if we used Tn−4 to calculate p-values

p1, . . . , pm for T1, . . . , Tm, respectively, which would be the standard approach, then in one

GWAS these p-values might be systematically too big on average, in a second GWAS these

p-values might be systematically too small on average, and in a third GWAS, they might be

about right (where by “about right” we mean approximately i.i.d. uniform under the null).

This can easily be observed in simulations. Fig 2.1 shows four histograms, each of which

depicts the p-values p1, . . . , pm for a G × E GWAS obtained as described above, where n

is 1,000, m is 5,000, FZ is taken to be Bernoulli(.2), and FGj is taken to be Bernoulli(fj)

for j = 1, . . . ,m, where f1, . . . , fm are drawn as i.i.d. Unif(.1, .9), to mimic the genotypes

of a haploid organism or an inbred line. In Panel A of Fig 2.1, the p-values are seen to

be systematically overinflated, while in Panel B of Fig 2.1, the p-values are seen to be

systematically underinflated. The information in Table 2.1 supports this conclusion, where

we can see that for Panel A, the s.d. of the interaction t-statistics is < 1 and the genomic

control inflation factor is < 1, while for Panel B the opposite holds. We repeated this

experiment 400 times, and in each replicate, we tested whether the 5,000 p-values were i.i.d.

Uniform(0,1) distributed under the null hypothesis (which is equivalent to testing whether

the 5,000 interaction t-statistics are i.i.d. Tn−4 distributed) using the two-sided equal local

levels (ELL) test as implemented in qqconf [1] (See S1 R script to calculate p-values for the

two-sided equal local levels test for i.i.d. uniformity for an R script to perform the test).

In 190 out of 400, i.e., 47.5%, of the replicates, the two-sided ELL test for uniformity was

rejected at level .05, clearly showing that the t-statistics for interaction in a GWAS are not

i.i.d. Tn−4 distributed under the null hypothesis.
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This effect seems to be very general and also occurs when, e.g., FZ and FGj are taken to

be Gaussian or Binomial, as we show later. Furthermore, if instead of a t-test for interaction,

we apply a likelihood ratio chi-squared test or F-test for interaction to the same simulated

data sets, we get essentially indistinguishable histograms to those in Fig 2.1 (which is perhaps

not surprising since they are asymptotically equivalent tests), and the same 190 replicates

out of 400 are rejected by the ELL test for uniformity of the p-values, showing that the

likelihood ratio chi-squared test and F-test for interaction are also subject to the “feast or

famine” effect.

Table 2.1: Summary statistics for the examples in Fig 2.1

Panel Tj mean Tj s.d. genomic control λ ELL p-value
A .015 .93 .88 2.2e-10
B -.002 1.09 1.19 3.6e-12
C .013 .94 .92 9.5e-9
D -.010 1.09 1.16 3.5e-12

For each panel of Fig 2.1, Tj mean is the mean and Tj s.d. is the s.d. of the interaction
t-statistics whose p-values are displayed in the panel. The genomic control λ is based on
the squares of the interaction t-statistics in each panel. The ELL p-value is the p-value for
testing the null hypothesis that the interaction p-values are uniformly distributed under
the null hypothesis, as described in [1].
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Figure 2.1: Histograms of p-values for t-tests for interaction in a GWAS when the
null hypothesis is true

Each histogram is based on a replicate of (Y, Z) and 5,000 genotypes, G1, . . . , G5000. In
each histogram, interaction is tested between Z and Gj in the linear model in (2.1) for
j = 1, . . . 5,000, as described in the text, and the 5,000 p-values are computed using the
Tn−4 distribution and are displayed in the histogram. Panels A and B represent two
different replicates of a null simulation as described in the text. In Panel C, the same
(Y, Z) replicate is used as in Panel A, and a new set of 5,000 genotypes is simulated and
used in the interaction tests. Similarly, in Panel D, the same (Y, Z) replicate is used as in
Panel B, and a new set of 5,000 genotypes is simulated and used in the interaction tests.
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2.2 A deeper understanding

We want to emphasize that we are not simply saying that p1, . . . , pm are positively correlated.

A further key point is that for a particular G × E GWAS, i.e., for a particular choice of

(Y, Z), it is, in principle, predictable based on (Y, Z) whether the p-values of p1, . . . , pm will

be systematically too large, systematically too small or about right. For example, in Fig 2.1,

when we keep (Y, Z) the same as in Panel A and simulate a completely new and independent

set of genotypes G for testing interaction, as in Panel C, we again see over-inflation of the

p-values. Similarly, when we keep (Y, Z) the same as in Panel B and simulate a completely

new and independent set of genotypes G for testing interaction, as in Panel D, we again see

under-inflation of the p-values. This is further supported by the information in Table 2.1.

Thus, use of standard methods would be expected to result in loss of power (“famine”) in

some GWAS’s (e.g., the (Y, Z) used in Panels A and C) and excessive type 1 (“feast”) error

in other GWAS’s (e.g., the (Y, Z) used in Panels B and D).

To understand why this happens, it is helpful to think about which variables we are

conditioning on. The ordinary t-statistic for interaction was developed in a non-GWAS

context in which it made sense to condition on Gj and Z and treat Y as random, and in that

case, the null conditional distribution of Tj can be proven to be the same Tn−4 distribution

for any values of Gj , Z in the simple setting described above. As a direct consequence of

this, it is also true that the unconditional distribution of Tj is Tn−4. In other words, if we

randomly choose a G×E GWAS (i.e., randomly choose (Y, Z)), and then randomly choose

a null SNP j from that GWAS, then Tj has distribution Tn−4. However, in any particular

G × E GWAS, Z and Y are fixed, and only Gj is varying, so it is more appropriate to

consider the null conditional distribution of the t-statistic for interaction where we condition

on Z and Y and treat Gj as random (see, e.g. [43]). We show that even in the simple

case described above, conditional on (Y, Z), the distribution of Tj depends on (Y, Z) and is

not Tn−4. In fact, in the slightly more general null hypothesis scenario when Gj has some
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marginal effect on Y but no interaction with Z, we show that not only the null conditional

variance of Tj but even its null conditional mean depends on (Z, Y ).

These same ideas apply to testing G × G interaction in a GWAS context if we think of

setting Z to be the genotype of one particular variant, we exclude Z from the columns of G,

and we consider a GWAS in which we test for interaction between Z and Gj for j = 1, . . . ,m

in model (2.1) using a t-test for interaction. The upshot is that for some G × E or G × G

GWAS’s, i.e., for some realizations of (Y, Z), use of a Tn−4 distribution to assess significance

of interaction will systematically overstate the evidence for interaction (“feast”), while for

other G×E or G×G GWAS’s, it will systematically understate the evidence for interaction

(“famine”). Whether there is feast or famine will depend on the luck of what value of (Y, Z)

is observed. This statistical phenomenon could be an important explanation of the difficulty

in detecting and replicating epistasis and gene-environment interaction that has long been

observed.

With this conditioning explanation in mind, one way of thinking of the “feast or famine”

effect is that if we average across many interaction GWASs, then the t-statistic for interaction

has correct type 1 error, but its false positives are excessively concentrated in some GWASs,

and its false negatives are excessively concentrated in some other GWASs. The good news is

that our conditioning explanation implies that by doing conditional calculations, such as we

describe below, we should in principle be able to alleviate or entirely eliminate this effect.

2.3 Why doesn’t ordinary (non-interaction) GWAS have the

“feast or famine” phenomenon?

We have argued that when testing interaction in a GWAS context, we are actually con-

ditioning on Y and Z and letting Gj be random, and that the t-statistic for interaction

does not have a t-distribution under the null hypothesis when we condition on (Y, Z). By a

similar argument, we could point out that in an ordinary (non-interaction) GWAS, we are
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conditioning on Y and letting Gj be random, rather than the reverse. Does this also cause a

problem for the t-statistic for association? The answer is no. The problem we describe does

not occur for ordinary (non-interaction) GWAS, but is specific to interaction GWAS, as we

now explain.

First, consider the t-statistic for association in an ordinary GWAS. We consider a slightly

more general scenario than before in which there may be additional covariates U in the model

(where U includes an intercept). Suppose the model we use for testing association is

Y = Uα +Gjβ + ϵ (2.2)

where Y is n × 1, U is n × k, and Gj is n × 1, all as defined before, α is an (unknown)

k × 1 vector, β is the unknown scalar parameter of interest, and ϵ ∼ N(0, σ2eIn), where σ2e

is unknown.

Define PU = I−U(UTU)−1UT , an n×n symmetric matrix. We note that the t-statistic

for testing H0 : β = 0 in the model in (2.2) can be written as

Sj =
(GT

j PUY )
√
n− k − 1√

(Y TPUY )(GT
j PUGj)− (GT

j PuY )2
(2.3)

(see the proof in section 2.4).

From this formula, it is clear that the t-statistic is symmetric in Gj and Y . That is to

say, if we switch Y and Gj in 2.2 and regress Gj on Y and U , we will get the same form of

t-statistic Sj . In other words, it is equivalent to testing for the marginal effect of Y on Gj

in the model

Gj ∼ N(Uα + Y β, σ2I) (2.4)

The symmetry between Gj and Y in the ordinary (non-interaction) t-statistic for association

means that in large samples, the distribution of the t-statistic under the null hypothesis of
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no association would be approximately the same regardless of whether we conditioned on

Gj and let Y be random or conditioned on Y and let Gj be random. The only difference

would be that Gj would typically be a Binomial or Bernoulli random variable (genotype)

and Y might commonly be a conditionally normal random variable (phenotype). In very

small sample sizes, the difference between the underlying distributions of Gj and Y would

change the conditional distribution of the t-statistic for association depending on which one

you conditioned on, but in typical GWAS sample sizes, the central limit theorem will take

effect, and the conditional distribution of the t-statistic for association will be approximately

the same in both cases.

This difference between ordinary (non-interaction) GWAS and interaction GWAS can be

seen in simulations. We performed r = 5,000 replicates of a null simulation similar to that

in section 2.1, except that instead of FZ being Bernoulli(.2), we made FZ Bernoulli(pZk)

in replicate k, where pZ1, . . . , pZk are i.i.d. Unif(.1, .9). As before, frequencies of Gj are iid

draws from Unif(0.1, 0.9), Y ∼ N(µ, σ2) and is independent of Z and Gj ’s. In replicate k, we

tested interaction between Z and Gj (H0 : δ = 0 in Model (2.1)) for j = 1, . . .m, obtaining

interaction t-statistics T
(k)
1 , . . . , T

(k)
m . We also tested marginal association between Gj and

Y in a model with no other covariates except intercept, obtaining ordinary association t-

statistics S
(k)
1 , . . . , S

(k)
m as in (2.3). We obtain the interaction p-values for T

(k)
j using the

Tn−4 distribution and the ordinary association p-values for S(k)
j using the Tn−2 distribution.

In this simulation, when we apply the two-sided ELL test for uniformity at level .05 to the

interaction p-values from each replicate, we reject 29.3% of the 5,000 replicates as being

significantly non-uniform. In contrast, when we apply the same ELL test to the ordinary

association p-values from each replicate, we reject just 4.8% of the 5,000 replicates, which is

not significantly different from the nominal 5% rate. This verifies that the ordinary GWAS p-

values are showing the expected behavior, while the “feast or famine” effect is only showing

up in the interaction p-values. This can be seen also in Fig 2.2 Panel A which depicts
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a histogram of the genomic control inflation factors for each replicate for the interaction

GWAS’s in red and for the ordinary (non-interaction) GWAS’s in purple. The narrower

purple histogram reflects the expected sampling variability of the GCIF based on 5,000 i.i.d.

test statistics. In contrast, the wider red histogram reflects the additional spread due to

the “feast or famine effect”, i.e., the fact that conditional on (Y, Z) the p-values may be

systematically over- or under-inflated compared to uniform. Fig 2.2 Panel B is similar but

for a simulation in which FZ is Binomial(2, pZk) in replicate k instead of Bernoulli(pZk) and

FGj is Binomial(2, pGj) instead of Bernoulli(pGj). In Figure 2.3, a similar pair of histograms

can be seen for the case when both Z and G are normally distributed.

For the case when Y follows a linear mixed model, i.e., the model is as in (2.2) except

that

ϵ ∼ N(0,Σ), Σ = σ2gK + σ2eIn

where K is a GRM, it is also true that the Wald test statistic for association (i.e., the Wald

test for H0 : β = 0) is symmetric between Gj and Y when Σ is known. Thus, in this case

also, ordinary GWAS association testing is essentially not affected by whether we condition

on Gj and let Y be random or condition on Y and let Gj be random.

2.4 Proof of equation 2.3

For the linear model

Y ∼ N(Uα +Gjβ, σ
2I), (2.5)

let β̂ be the estimated value for β. Let PU = I−U(UTU)−1UT , note that PU is a projection

matrix so it is symmetric and idempotent. PUY is the residual of Y after regressing out

U ; similarly, PUGj is the residual of Gj after regressing out U . Then from the properties

of partial regression, we know that β̂ is the same as the estimated coefficient for Gj in the
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Figure 2.2: Marginal vs. interaction GCIF

(a)
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Y is simulated without GRM and under completely null. Purple: genomic control inflation
factors of the 5000 marginal association tests between G1, ..., G5000 and Y ; Red: GCIF of
the 5000 interaction tests between Z and G1, ..., G5000. (a). Both Z and Gj ’s are Bernoulli
distributed; (b). Both Z and Gj ’s are Binomial distributed with 2 trials.
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Figure 2.3: GCIF Z Normal, Gj Normal
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Y is simulated without GRM and under completely null. Purple: genomic control inflation
factors of the 5000 marginal association tests between G1, ..., G5000 and Y ; Red: GCIF of
the 5000 interaction tests between Z and G1, ..., G5000. Both Z and Gj ’s are Normal
distributed with mean ∼ Unif(−10, 10) and variance 1
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following linear regression

PUY ∼ N(PuGjθ, ω
2I), (2.6)

which regress the residual of Y on the residual of Gj . Then we can get

β̂ = θ̂ =
GT
j PUY

GT
j PUGj

(2.7)

Then go back to our original model 2.5, the variance of β̂ can be obtained by

Var(β̂) =
σ2

(GT
j PUGj)2

GT
j PUGj =

σ2

GT
j PUGj

(2.8)

Then the t-statistic for testing H0 : β = 0 in model 2.5 will be

T =
β̂√

V̂ar(β̂)
=

GT
j PUY√

σ̂2GT
j PUGj

, (2.9)

where σ̂2 is the estimated variance from model 2.5.

Let M = (U,Gj), PM = I −M(MTM)−1MT . Then PM is the projection matrix that

regresses out all predictors in model 2.5. Then

σ̂2 =
Y TPMY

n− k − 1
(2.10)

We claim that

PM = PU −
PUGjG

T
j PU

GT
j PUGj

:= P (2.11)

Proof

Multiply the RHS of equation 2.11 to Y , we have

PY = PUY −
PUGjG

T
j PUY

GT
j PUGj

= PUY − β̂PUGj (2.12)
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Since PM is the projection matrix that regress M out, we have

PMY = Y − Uα̂−Gj β̂ (2.13)

where α̂, β̂ are the least square estimators of α, β in model 2.5. Multiply both sides of

above equation by PU , we get

PUPMY = PUY − PUUα̂− PUGj β̂ = PUY − PUGj β̂ = PY (2.14)

since PUU = 0.

Notice that

PUPM = (I − U(UTU)−1UT )PM = PM − U(UTU)−1UTPM

(U(UTU)−1UTPM )T = PMU(UTU)−1UT = 0
(2.15)

The second equation holds because M contains U as its columns and PMU = 0. Then we

have

PMY = PY (2.16)

Since it holds for all Y ∈ Rn, we have PM = P .

Plug PM = P in the formula for σ̂2, we get

σ̂2 = 1
n−k−1

(
Y TPUY −

(GT
j PUY )2

GjPUGj

)

T =
GT
j PUY√

σ̂2GT
j PUGj

=
GT
j PUY

√
n−k−1√

(Y TPUY )(GjPUGj)−(GT
j PUY )2

(2.17)

17



If Y has some variance structure,

Y ∼ N(Uα +Gjβ, σ
2
TΣ), (2.18)

we could just multiply everything by Σ̂−1
2 and then apply the same procedure as the constant

and independent variance case.
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CHAPTER 3

METHODOLOGY

3.1 TINGA method for correcting t-statistics for interaction in a

GWAS

To address the “feast or famine” effect in interaction GWAS, we propose to correct the

interaction t-statistics for a given GWAS by subtracting off their null conditional mean and

dividing by their conditional s.d. given the (Y, Z) observed for that GWAS. We call this

approach TINGA for “Testing INteraction in GWAS with test statistic Adjustment”.

In the most general case, we consider testing for interaction in the model

Y = Uα +Gjβ + Zγ + (Gj ◦ Z)δ + ϵ, (3.1)

where Y , U , Gj , β, Z, γ, (Gj ◦Z) and δ are as defined before, α is a k×1 vector of unknown

coefficients, and ϵ ∼ N(0,Σσ2T ), where either Σ = In in the case of a linear model, or else

Σ = h2K+(1−h2)In where h2 is an unknown heritability parameter, in the case of a linear

mixed model. Then the t-statistic for interaction can be written as

T =

√
n− k − 3

(
Gj ◦ Z

)T
PMY√(

Gj ◦ Z
)T

PM
(
Gj ◦ Z

)
· Y TPMY − (

(
Gj ◦ Z

)T
PMY )2

(3.2)

where the “M” in PM stands for “marginal”, and PM is a symmetric matrix that removes the

marginal effects of Gj , Z, and U , where in the simplest case U represents just the intercept,

but it may contain additional covariates as needed. We let M be the n × (k + 2) matrix

M whose columns are Gj , Z, and the columns of U . Then in the case of a linear model,

we have PM = In − M(MTM)−1MT , and in the case of a linear mixed model, we have

PM = Σ̂−1 − Σ̂−1M
(
MT Σ̂−1M

)−1
MT Σ̂−1, where Σ̂ is Σ with the estimated value of h2
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plugged in. The proof is similar to the Proof of equation 2.3.

In the LMM context, the test based on Tj is commonly called the “Wald test”. In fact,

the ordinary t-test for interaction is also a Wald test, so this term is not a useful way of

distinguishing the LMM-based test from the ordinary one. We refer to the test based on Tj

as the “t-test” in both cases, and, when needed, we specify whether it is performed in an

LMM or a linear model.

For both the linear and LMM cases, we define the numerator of the t-statistic to be

Nj ≡ Nj(Gj , Z, Y ) =
(
Gj ◦ Z

)T
PMY. (3.3)

Then the regular interaction t-statistic in (3.2) can be rewritten as

Tj =
Nj − E0(Nj |Gj , Z)√

V̂ar(Nj |Gj , Z)
=

Nj√
V̂ar(Nj |Gj , Z)

, as E0(Nj |Gj , Z) = 0, (3.4)

where both E0(Nj |Gj , Z) and Var(Nj |Gj , Z) are calculated based on Model (3.1), E0(Nj |Gj , Z)

has the additional assumption δ = 0, which is the null hypothesis, and V̂ar denotes estimated

variance.

For testing interaction in a GWAS context, we propose to replace Tj by a “corrected” statistic

T̃j =
Nj − Ê0(Nj |Z, Y )√

V̂ar(Nj |Z, Y )
, (3.5)

where the difference from Eq (3.4) is that we condition on (Z, Y ) instead of on (Gj , Z).

The remaining challenge of the methods development is to obtain appropriate estimators

Ê0(Nj |Z, Y ) and V̂ar(Nj |Z, Y ).
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3.2 Key idea and framework

The key idea of our proposed TINGA method is to get the correct conditional variance and

null mean of the t-statistic numerator for the GWAS study design. This calculation basically

contains following steps:

1. We approximate Nj by Ñj ≡ Ñj(Gj , Z, Y ), where Ñj is quadratic in Gj .

2. We calculate E0(Ñj |Z, Y ) and approximate Var(Ñj |Z, Y ) as functions of E0(Gj |Z, Y )

and Var(Gj |Z, Y ).

3. We calculate E0(Gj |Z, Y ) and Var(Gj |Z, Y ) theoretically based on a suitable model.

4. We obtain estimates Ê0(Gj |Z, Y ) and V̂ar(Gj |Z, Y ) for the quantities in step 3.

5. We plug the estimates from step 4 into the expressions for E0(Ñj |Z, Y ) and Var(Ñj |Z, Y )

from step 2 to obtain Ê0(Nj |Z, Y ) and V̂ar(Nj |Z, Y ), respectively, and calculate T̃ in

(3.5).

3.2.1 Step 1: approximate Nj by a quadratic function of Gj

Case with no covariates Firstly we start with a simpler model for 3.1 which does not

contain any covariates except the intercept:

Y ∼ N(α + β1Gj + γZ + δ(Gj ◦ Z), σ2TΣ)

Where Σ =
σ2g
σ2T

K +
σ2e
σ2T

I is assumed known,
(
Gj ◦ Z

)
k = (Gkj − Ḡj)(Zk − Z̄). When testing

for interaction between Z and each of the Gj ’s, we test H0 : δ = 0 vs. H1 : δ ̸= 0.

Note that the Wald statistic will be

T =

√
n− 4

(
Gj ◦ Z

)T
PMY√(

Gj ◦ Z
)T

PM
(
Gj ◦ Z

)
· Y TPMY − (

(
Gj ◦ Z

)T
PMY )2
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Where PM = Σ̂−1 − Σ̂−1M
(
MT Σ̂−1M

)−1
MT Σ̂−1, M = (1, Gj , Z). PM is a symmetric

matrix that removes the effect of M in the above linear mixed model. We are mainly

interested in the numerator, which we have defined to be Nj =
(
Gj ◦ Z

)T
PMY.

For approximating Nj , it is useful to note that the matrix PM can be calculated explicitly

using an iterative method. To describe the interative method, we first consider the ordinary

linear regression model Y ∼ N(Mβ, σ2I) where Σ = I and M contains intercept term 1,

variable Gj and variable Z. Then we have

H = P0 = I − 1
n11

T is the projection matrix that projects out 1,

P1 = P0 −
P0GjG

T
j P0

GT
j P0Gj

is the matrix that further regresses out Gj

so that (1, Gj)are regressed out, and

P2 = P1 − P1ZZTP1
ZTP1Z

is the matrix that regresses out (1, Gj , Z)

(3.6)

(by a similar argument as in the Proof of equation 2.3).

To generalize above formula to the LMM case, we let CTC = Σ̂−1, and define CM =

M̃ =
(
1̃, G̃j , Z̃

)
. Then CY = Ỹ ∼

(
M̃β + γ ˜(Gj ◦ Z

)
, σ2T I

)
, where w̃ denotes Cw for

any vector w.

Then we can write

PM = Σ̂−1 − Σ̂−1M
(
MT Σ̂−1M

)−1
MT Σ̂−1 = CTC − CT M̃

(
M̃T M̃

)−1
M̃C

and

(
Gj ◦ Z

)T
PMY = ˜(Gj ◦ Z

)T (
I − M̃

(
M̃T M̃

)−1
M̃

)
Ỹ = ˜(Gj ◦ Z

)T
P
M̃
Ỹ
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Where P
M̃

= I − M̃
(
M̃T M̃

)−1
M̃ .

Note P
M̃

is the matrix that regresses out M̃ in the simple linear model, so we can compute

it using the above iterative method:

H̃ = P0′ = I − 1̃
(
1̃T 1̃

)−1
1̃T

P ′
1 = P ′

0 −
P0′G̃jG̃j

T
P0′

G̃j
T
P ′
0G̃j

P
M̃

= P ′
1 −

P ′
1Z̃Z̃TP1′
Z̃TP1′Z̃

(3.7)

Therefore, we can iteratively compute an explicit expression for P
M̃

:

P ′
1 = H̃ −

(
H̃G̃j

)(
H̃G̃j

)T
G̃j

T
H̃G̃j

,

and

P
M̃

= H̃−

(
H̃G̃j

)(
H̃G̃j

)T
G̃j

T
H̃G̃j

−
(H̃Z̃ −

(
H̃G̃j

)(
H̃G̃j

)T(
H̃Z̃

)
G̃j

T
H̃G̃j

)(Z̃T H̃ −
(Z̃T H̃)

(
H̃G̃j

)(
H̃G̃j

)T
G̃j

T
H̃G̃j

)

Z̃T H̃Z̃ −
(
(
H̃Z̃

)T(
H̃G̃j

)
)2

G̃j
T
H̃G̃j

Let Sab =
(
H̃a
)T (

H̃b
)

for any vectors a, b, then

˜(Gj ◦ Z)
T
P
M̃
Ỹ = S

(G̃j◦Z)Ỹ
−

S
(G̃j◦Z)G̃j

S
G̃j Ỹ

S
Z̃Z̃

+S
(G̃j◦Z)Z̃

S
Z̃Ỹ

S
G̃jG̃j

−S
(G̃j◦Z)Z̃

S
G̃j Z̃

S
G̃j Ỹ

−S
(G̃j◦Z)G̃j

S
G̃j Z̃

S
Ỹ Z̃

S
G̃jG̃j

S
Z̃Z̃

−S2
G̃jG̃j

(3.8)

Note this formula is the same as the formula for non-GRM case, except that Sab is the

simple inner product in that case. We can then transform these variables back and get an
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expression in terms of the original variables:

S
G̃j Ỹ

= G̃j
T
H̃Ỹ = GT

j C
T
(
I − 1̃

(
1̃T 1̃

)−1
1̃T
)
CY

= GT
j

(
Σ̂−1 − Σ̂−11

(
1T Σ̂−11

)−1
1Σ̂−1

)
Y

= GT
j ĤY

Where Ĥ = Σ̂−1 − Σ̂−11
(
1T Σ̂−11

)−1
1Σ̂−1. Similarly for other Sab terms. Then we

reorganize these terms and get

˜(Gj ◦ Z)
T
P
M̃
Ỹ = (Gj ◦ Z)T Ĥ

Y −
S
Z̃Ỹ

S
G̃jG̃j

− S
G̃jZ̃

S
G̃j Ỹ

S
G̃jG̃j

S
Z̃Z̃

− S2
G̃jZ̃

Z

−
S
G̃j Ỹ

S
Z̃Z̃

− S
G̃jZ̃

S
Ỹ Z̃

S
G̃jG̃j

S
Z̃Z̃

− S2
G̃jZ̃

(Gj ◦ Z)T ĤGj

(3.9)

It is worth noting that the 2 fraction terms,
S
Z̃Ỹ

S
G̃jG̃j

−S
G̃j Z̃

S
G̃j Ỹ

S
G̃jG̃j

S
Z̃Z̃

−S2
G̃j Z̃

and
S
G̃j Ỹ

S
Z̃Z̃

−S
G̃j Z̃

S
Ỹ Z̃

S
G̃jG̃j

S
Z̃Z̃

−S2
G̃j Z̃

,

are actually the estimated coefficients from the marginal effect model

Y ∼ N(α + βGj + γZ, σ2Σ) (3.10)

where

γ̂ =
S
Z̃Ỹ

S
G̃jG̃j

−S
G̃j Z̃

S
G̃j Ỹ

S
G̃jG̃j

S
Z̃Z̃

−S2
G̃j Z̃

β̂ =
S
G̃j Ỹ

S
Z̃Z̃

−S
G̃j Z̃

S
Ỹ Z̃

S
G̃jG̃j

S
Z̃Z̃

−S2
G̃j Z̃

(3.11)

(see proof in Proof of equation 3.11).

Then we have

˜(Gj ◦ Z
)T

P
M̃
Ỹ = (Gj ◦ Z)T Ĥ(Y − γ̂Z − β̂Gj) (3.12)

which verifies our calculation.

We simplify terms
S
Z̃Ỹ

S
G̃jG̃j

−S
G̃j Z̃

S
G̃j Ỹ

S
G̃jG̃j

S
Z̃Z̃

−S2
G̃j Z̃

and
S
G̃j Ỹ

S
Z̃Z̃

−S
G̃j Z̃

S
Ỹ Z̃

S
G̃jG̃j

S
Z̃Z̃

−S2
G̃j Z̃

by dividing both nu-

merator and denominator by n2 and approximating Sab
n terms by their asymptotic means
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under the null conditional distribution of Gj given (Y = y, Z = z), where the lower case y, z

denote the observed values of Y, Z.

Assume Gj has the conditional mean and variance

E
(
Gj |(Y = y, Z = z)

)
= µ2,

Var
(
Gj |(Y = y, Z = z)

)
= V2

(3.13)

, where µ2, V2 are some functions of y, z and independent of Gj .

We have, under some regularity conditions, that for large n, by law of large number:

S
G̃jG̃j

n
=

GT
j ĤGj

n
∼ 1

n

(
µT2 Ĥµ2

)
+

1

n
tr
(
ĤV2

)
S
G̃j z̃

n
=

GT
j Ĥz

n
∼ 1

n

(
µT2 Ĥz

)
S
G̃j ỹ

n
=

GT
j Ĥy

n
∼ 1

n

(
µT2 Ĥy

)
Then we could replace the “S” terms involving Gj by their asymptotic approximates and

get simplified versions of
Sz̃ỹ S

G̃jG̃j
−S

G̃j z̃
S
G̃j ỹ

S
G̃jG̃j

Sz̃z̃−S2
G̃j z̃

and
S
G̃j ỹ

Sz̃z̃−S
G̃j z̃

Sỹz̃

S
G̃jG̃j

Sz̃z̃−S2
G̃j z̃

, denoted by α1, α2,

respectively.

Note Gj ◦ z = DHzHGj , where DHz is the diagonal matrix whose diagonal entries are

Hz. Then we obtain an approximation to the numerator of the t statistic that is a quadratic

function of Gj :

Nj |(Y = y, Z = z) ≈ Ñj = GT
j HDHzĤ (y − α1z)− α2G

T
j HDHzĤGj

= GT
j BGj + bTGj

(3.14)
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where
H = I − 1

n11
T

Ĥ = Σ̂−1 − Σ̂−11
(
1T Σ̂−11

)−1
1Σ̂−1

B = −α2HDHzĤ

b = HDHzĤ(y − α1z)

DHz = Diag(Hz) = Diag(z1 − z̄, ..., zn − z̄)

(3.15)

Case with population structure and covariates Next, we consider a more general

scenario in which there are additional covariates in the model. In the case, to derive the

asymptotic approximation, we could first project out the covariates and the rest will be the

same.

Suppose Y ∼ N(Aα+ β1Gj + γZ + δ
(
Gj ◦ Z

)
, σ2TΣ), where A ∈ Rn×k is the covariate

matrix, k<n. Here we assume A contains the intercept term.

We want to first eliminate the covariate terms. Let Ac ∈ R(n−k)×n. Rows of Ac are lin-

early independent vectors in the orthogonal complement of the column space of A. Therefore,

AcA = 0(n−k)×k.

In practice, we can get Ac by SVD : A = UΛV, U ∈ Rn×n, Λ ∈ Rn×k, V ∈ Rk×k. Then

U [, (k + 1) : n]T can be our Ac because U is an orthogonal matrix. After getting Ac, we

multiply Y by it:

AcY := Y r ∼ N(β1Gj
r + γZr + δ(Gj ◦ Z)r, σ2TA

cΣAcT ),

where wr = Acw for any vector w.

Note that Ac has full row rank, so AcΣAcT is positive definite and a valid variance matrix.

Now the model is very similar to the no-covariate part with variables Y r, Gj
r, Zr,

(
Gj ◦ Z

)r
and variance matrix being AcΣAcT , except that there is no more intercept term. Therefore,

in the first step of forming P
Ũ

, we do not need to regress out the 1 term and hence H̃ = I.
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Then

S
G̃r
j Ỹ

r =
(
H̃G̃j

r
)T (

H̃Ỹ r
)

= G̃j
rT Ỹ r = Gr

j
TCTCY r = Gr

j
T
(
ÂcΣA

)−1
Y r

= GT
j A

cT
(

̂AcΣAcT
)−1

AcY := GT
j ĤY

(3.16)

Where Ĥ = AcT
(

̂AcΣAcT
)−1

Ac.

After getting the new Ĥ, the calculation of conditional mean and variance follows the

same procedure.

3.2.2 Step 2: calculate E0(Ñj|Z, Y ) andVar(Ñj|Z, Y ) as functions of

E0(Gj|Z, Y ) and Var(Gj|Z, Y ).

Assume that Gj has the conditional mean and variance:

E
(
Gj |(Y = y, Z = z)

)
= µ2,

Var
(
Gj |(Y = y, Z = z)

)
= V2

(3.17)

where µ2 ∈ Rn×1 and V2 ∈ Rn×n. From equation 3.14, we have

Ñj = GT
j BGj + bTGj . (3.18)

Then the conditional expectation of Ñj is straightforward:

E(Ñj |Y = y, Z = z) = E(GT
j BGj + bTGj |Y = y, Z = z)

= µT2 Bµ2 + tr (BV2) + bTµ2

(3.19)

The variance is a bit more complicated, and we have 2 approaches to calculate it: ap-

proximation approach and exact approach.
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Approximation approach

We treat Gj |(Y = y, Z = z) as if it follows a multivariate normal distribution and we

apply the properties of the quadratic form of the multivariate normal variable to obtain the

variance. This approach is exact for the case when Gj |Z, Y has a normal distribution and

is otherwise approximate.

Note that the quadratic form of multivariate normal variable requires the matrix B =

−α2HDHzĤ to be symmetric. In the case of independent individuals, we have Ĥ = H

and B is indeed symmetric. In the case of non-independent individuals, we can re-write the

quadratic term as

GT
j BGj = GT

j BsGj (3.20)

where

Bs =
B +BT

2

is symmetric. Then we can get the (approximated) conditional variance of Ñj :

var
(
GT
j BsGj + bTGj

∣∣∣Y = y, Z = z
)
= 2tr (BsV2BsV2) + 4µT2 BsV2Bsµ2 + bTV2b

+2cov(GT
j BsGj , bTGj |Y = y, Z = z)

(3.21)

Note that when w ∼ N (0, I) , cov
(
wTBsw, bTw

)
= 0. Write Gj = µ2 + V w, where

w|y, z ∼ N (0, I) , V V T = V2,

cov
(
GT
j BsGj , bTGj

∣∣∣y, z
)
= 2µT2 BsV V T b = 2µT2 BsV2b

Therefore,

var
(
GT
j BsGj + bTGj

∣∣∣y, z
)
= 2tr (BsV2BsV2)+

4µT2 BsV2Bsµ2 + bTV2b+ 4µT2 BsV2b
(3.22)
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Exact approach (Bernoulli case)

In the above approach, we estimated the variance by treating G|Y, Z as Gaussian distributed

and applying the distribution properties of quadratic forms of multivariate normal. How-

ever, this approximation may not be accurate when G follows a Bernoulli distribution. In

particular, Gaussian and Bernoulli random variables have different 3rd and 4th moments.

Here we give the calculation result that uses the Bernoulli property of G|Y, Z to compute

the conditional variance of Ñ .

We assume that conditional on Y = y, Z = z, Gj follows a Bernoulli distribution with

mean vector µ and variance matrix V , where the vector of diagonal entries of V is µ(1− µ).

Firstly, we define array (M)ijk ∈ Rn×n×n and (M)ijkl ∈ Rn×n×n×n to be the 3rd and

4th central moments of G|Y, Z:

Mijk = E[(Gi − µi)(Gj − µj)(Gk − µk)|Y, Z]

Mijkl = E[(Gi − µi)(Gj − µj)(Gk − µk)(Gl − µl)|Y, Z]
(3.23)

We can compute the special cases in which there are at most 2 distinct indices:

Miij = (1− 2µi)Vij

Miii = Vii(1− 2µi)

Miijj = (1− 2µi)(1− 2µj)Vij + ViiVjj

Miiij = (1− 3µi − 3µ2i )Vij

Miiii = (1− 3µi − 3µ2i )Vii

(3.24)

For other cases where there are more than 2 distinct indices (i.e., individuals), we approxi-

mate Mijk,Mijkl by 0.

To take advantage of the fact that for a Bernoulli random variable, we have G2
i = Gi. It
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is helpful to directly expand the matrix product

var(GTBG+ bTG|Y, Z) = var
(∑

i,j BijGiGj +
∑

k bkGk|Y, Z
)

= var(
∑

i,j BijGiGj |Y, Z) + var(
∑

k bkGk|Y, Z) + 2cov(
∑

i,j BijGiGj ,
∑

k bkGk|Y, Z)

= ...

= 4µTBV Bµ− tr(BV )2 + 4µTBV b+ bTV b

+4
∑

ijkl µjBijBklMikl +
∑

ijkl BijBklMijkl + 2
∑

ijk bkBijMijk

(3.25)

Independent individuals When we assume unrelated individuals, V is a diagonal matrix.

In this case, we can simplify equation 3.25 to

var(GTBG+ bTG|Y, Z) = 4µTBV Bµ− tr(BV )2 + 4µTBV b+ bTV b

+
∑

j BjjMjjj
(
4
∑

i µiBij + 2bj
)
+
∑

ij Miijj

(
2B2

ij +BiiBjj

)
− 2

∑
iB

2
iiMiiii

= 4µTBV Bµ− tr(BV )2 + 4µTBV b+ bTV b+∑
j BjjVjj(1− 2µj)

(
4(µTB)j + 2bj

)
+
∑

iB
2
iiVii(1− 6µi + 6µ2i )

+
∑

i,j ViiVjj(2B
2
ij +BiiBjj)

(3.26)

Related individuals If the individuals are related, then V is not diagonal and we have a

more complicated result

var(GTBG+ bTG|Y, Z) = 4µTBV Bµ− tr(BV )2 + 4µTBV b+ bTV b

= +8
∑

j(BV )jj(1− 2µj)(µ
TB)j + 4

∑
k Bkk(1− 2µk)(V Bµ)k

−8
∑

j BjjVjj(1− 2µj)(Bµ)j +
∑

ij(2B
2
ij +BiiBij)[(1− 2µi)(1− 2µj)]Vij + ViiVjj ]

+4
∑

iBii(1− 3Vii)(BV )ii − 6
∑

iB
2
iiVii(1− 3Vii)

+2
∑

i bi(1− 2µi)(BV )ii + 2
∑

iBii(1− 2µi)(V b)i − 4
∑

iBii(1− 2µi)biVii
(3.27)
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3.2.3 Steps 3-4: Estimation of the conditional distribution Gj|Y, Z

For steps 3-4, we have 2 ways to compute the conditional distribution Gj |Y, Z:

1. Gaussian approximation approach

We assume a normal regression model for Gj |Z, i.e., we take Gj = a1n + bZ + η,

where η ∼ Nn(0, σ
2
j In), or, more generally, where Ũ consists of the intercept and any

confounding covariates that are in U , we take Gj = aŨ + bZ + η, with a, b, and σ2j

unknown. We also assume that (Gj , Y )|Z follows a multivariate normal distribution.

Then, E0(Gj |Z, Y ) and Var(Gj |Z, Y ) can be easily computed using standard properties

of multivariate normal.

The basic idea uses the

Y = α + γZ + βGj + δ(Gj −mGj
)(Z −mZ) + ϵ

Gj

Y

 |z ∼ N


µGj |z

µy|z

 ,

 σ2
Gj |z

(β + δzc)σ
2
Gj |z

(β + δzc)σ
2
Gj |z

vy|z


 (3.28)

where

µGj |z = a+ bz

σ2Gj |z = σ2j

Then we can compute the the conditional mean and variance of Gj |Y, Z using the

multivariate normal approximation:

Gj | (y, z) ∼ N(µGj |z +
(β + δzc)σ

2
Gj |z

vy|z
(y − µy|z), σ2Gj |z −

(β + δzc)
2 σ4

Gj |z
vy|z

) (3.29)

The parameters such as a, b, σ2j , β, δ, vy|z, µy|z are estimated by fitting the associated
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linear and/or linear mixed models. Details are in Chapter 4 “Detailed steps for param-

eter estimation”.

2. Approach that uses a discrete model for Gj (e.g. Bernoulli)

Alternatively, we can use a discrete model for Gj |Z, where we assume that conditional

on Z, the n entries of the vector Gj , call them G1j , . . . , Gnj , are independent with

P (Gij = k|Zi = z) = pk|z for all choices of (i, k, z), where these may also depend on Ũ

as needed. Since Gj is a genotype, we will have k ∈ {0, 1, 2} when the genotypes are

from a diploid organism or k ∈ {0, 1} when the genotypes are from a haploid organism

or inbred line. For the latter case, we can use a logistic regression model for Gj |Z, and

for the former case a generalized linear model.

We can apply the Bayes rule to obtain the discrete distribution of Pr(Gj |Z, Y ). For

example, if we assume unrelated individuals, then

P (Gij = k|Z, Y ) = P (Gij = k|Zi, Yi) =
P
(
Yi
∣∣Gij = k, Zi

)
∗ pk|Zi∑

l P
(
Yi
∣∣Gij = l, Zi

)
∗ pl|Zi

, (3.30)

P (Y |Gj , Z) can be estimate by fitting a model of Y on (Gj , Z)

For the case where there is some population structure, we can still estimate the

mean and variance for each individual by 3.30 and estimate the conditional covari-

ance Cov(Gj |Y, Z) by incorporating the GRM. Details are in Chapter 4 “ Detailed

steps for parameter estimation”.

3.2.4 Proof of equation 3.11

For simplicity, we assume a simple linear model

Y ∼ N(α + βGj + γZ, σ2I) (3.31)
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Let U = (1, Gj), PU = I −U(UTU)−1UT , then by properties of partial regression, we have

γ̂ =
ZTPUY

ZTPUZ
(3.32)

By equations 3.6, we have

H = P0 = I − 1
n11

T

PU = P0 −
P0GjG

T
j P0

GT
j P0Gj

(3.33)

Plugging in the expression 3.32 for γ̂, we get

ZTPUY = ZTHY −
ZTHGjG

T
j HY

GT
j HGj

= SZY −
SZGj

SGjY

SGjGj

ZTPUZ = ZTHZ −
ZTHGjG

T
j HZ

GT
j HGj

= SZZ −
SZGj

SGjZ

SGjGj

γ̂ =
SZY SGjGj

−SZGj
SGjY

SZZSGjGj
−S2

GjZ

(3.34)

Similarly for β̂.

Then suppose there is some covariance structure

Y ∼ N(α + βGj + γZ, σ2Σ) (3.35)

then let CTC = Σ−1, then

C−1C−T = Σ, CΣCT = I (3.36)

and
CY ∼ N(αC1 + βCGj + γCZ, σ2I)

Ỹ ∼ N(α1̃ + βG̃j + γZ̃, σ2I)
(3.37)

Then the result follow the same argument as the independent individual case by replacing

1, Gj , Z, Y with 1̃, G̃j , Z̃, Ỹ .
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3.3 Adjustments and extensions

3.3.1 Heteroscadasticity correction

In an interaction GWAS, it can potentially be important to consider a specific type of

heteroscedasticity that arises naturally in a model in which Z interacts with some other

variable in a linear model or LMM for Y , even if it does not interact with Gj [46; 43; 44; 45].

That is, suppose the true model is

Y = Uα +Gjβ + Zγ +Xζ + (X ◦ Z)θ + ϵ, (3.38)

where Y , U , α, Gj , β, Z, γ, and ϵ are as before, (X ◦ Z) = (X − µX)(Z − µZ), ζ and θ are

unknown scalar coefficients, and X is some additional variable that is not included in the

fitted model (and that might or might not even be observed), is independent of (Gj , Z), and

that interacts with Z. Then from the point of view of testing for interaction between Z and

Gj using fitted model 3.1, the null hypothesis of no interaction is true. However, when Z is

interacting with some other known or unknown X, the conditional variance of Y |Z is

V ar(Y |Z) = β2σ2Gj
+ (ζ + θ(Z − µZ))

2 σ2X + σ2ϵ

which is a quadratic function of Z. This heteroscedasticity tends to lead to inflated type I

error [45] if it is not accounted for in the fitted model.

In TINGA, for each Gj we correct for heteroscedasticity by first regressing Gj out of Y

to get the residual rY |Gj
, and we replace Y by rY |Gj

in all rest steps of the calculation and

fit a heteroscedastic model of Y what allows Y to have different variances for different Z

values. The details are in Appendix: Heteroscedasticity correction strategy.
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3.3.2 Compute variance under alternative model

When estimating Gj |Y, Z, for both the normal approximation approach (equation 3.29) and

the discrete model approach (equation 3.30), we need to fit a linear model of Y |Gj , Z to get

estimates of the parameters. Then we have 2 options for this: one is fitting the null model

Y |Z,Gj ∼ N(α + βGj + γZ, σ2I) (3.39)

and one is fitting the alternative model

Y |Z,Gj ∼ N(α + βGj + γZ + δ(Gj ◦ Z), σ2I). (3.40)

Consider the regular t-statistic in testing for the interaction term (Gj ◦ Z) in the model

Y |Z,Gj ∼ N(α + βGj + γZ + δ(Gj ◦ Z), σ2I) = N(Xb, σ2I)

where X = (1, Gj , Z, (Gj ◦ Z)):

t =
δ̂ − 0√

σ̂2(XXT )−1
δ,δ

=
δ̂ − E

[
δ̂|null

]
√
var(δ̂|alt)

, (3.41)

the mean is under the null (δ = 0), but the variance σ̂2 is estimated under the alternative

model 3.40 so that we gain more power. In analogous to t-statistic, we could also estimate

the conditional distribution of Gj under alternative model for V ar(Ñj |Y, Z).

3.3.3 Summary of different versions

Firstly, we have 2 ways for estimating the conditional distribution of Gj |Y, Z, we denote

them as

1. Bernoulli approach: directly estimate the Bernoulli distribution using equation 3.30
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2. Gaussian approach: estimate a conditional multivariate normal distribution by equa-

tion 3.29

Depending on whether to apply heteroscedasticity correction and whether to fit alterna-

tive model of Y for Var(Ñj |Z, Y ), our adjustment method has 4 versions:

1. Method1: No heteroscedasticity correction and estimate var(Ñj |Y, Z) using the null

model

2. Method2: Conduct heteroscedasticity correction and estimate var(Ñj |Y, Z) using the

null model

3. Method3: Conduct heteroscedasticity correction and estimate var(Ñj |Y, Z) using the

alternative model

4. Method4: No heteroscedasticity correction and estimate var(Ñj |Y, Z) using the alter-

native model

They can be summarized in Table 3.1

V̂ar(Nj |Z, Y )null V̂ar(Nj |Z, Y )alt
No heteroscedasticity correction Method1 Method4

Heteroscedasticity correction Method2 Method3

Table 3.1: 4 Methods bases on model of Y

See details in Section Detailed steps for parameter estimation.

3.3.4 Appendix: Heteroscedasticity correction strategy

Non-GRM case

Suppose we have Y, Z,G1, ..., Gm ∈ Rn and we want to test for the interaction in the model

Y = α +Gjβ + Zγ + (Gj ◦ Z)δ + ϵ (3.42)
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where we allow Y to have different variances for different values of Z.

For each Gj , we first test for its marginal association with Y in the model

Y = α +Gjβ + ϵ, ϵ ∼ N(0, σ2I) (3.43)

If the p-value for testing H0j : β = 0 is smaller than 10−3, we let

rY |Gj
= Y − Ŷ

where Ŷ = α̂ + Gj β̂ is the fitted value of model 3.43, so rY |Gj
is the residual of Y after

regressing out Gj . Then we replace Y by rY |Gj
in all steps of our adjustment method with

heteroscedasticity correction applied. That is to say, we are testing the interaction term in

the heteroscedastic model

rY |Gj
= α +Gjβ + Zγ + (Gj ◦ Z)δ + ϵ, ϵ ∼ N(0, σ20IZ=0 + σ21IZ=1)

and apply our adjustment method.

If the p-value is larger than 10−3, we use the original Y with heteroscedasticity correction

applied.

GRM case

The the case where the individuals are related by a GRM K, the heteroscedasticity correction

is similar to the non-GRM case, the only difference is that we fit LMMs instead of linear

models.

For each Gj , we first test for its marginal association with Y in the model

Y = α +Gjβ + ϵ, ϵ ∼ N(0, σ2eI + σ2gK) (3.44)
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If the p-value for the Wald-test on H0j : β = 0 is smaller than 10−3, we let

rY |Gj
= Y − Ŷ

where Ŷ = α̂ + Gj β̂ is the fitted value of model 3.44. Again we replace Y by rY |Gj
in all

steps of our adjustment method with heteroscedasticity correction applied.

If the p-value is larger than 10−3, we use the original Y with heteroscedasticity correction

applied.

3.4 Additional methodological considerations

In the special case when at least one of Z and Gj is discrete, it is natural to place certain

constraints on when one would or would not perform any sort of interaction test. For

example, if both Z and Gj are binary and are perfectly correlated, then there would typically

be zero information in the data on interaction between them as a predictor of Y , and if they

are almost perfectly correlated, then the amount of information available on interaction would

be quite low. In the case when Z and Gj are both binary, we can think of constructing a

2× 2 table of counts of the four possible observed values of (Z,Gj) in the data as in Table

3.2: We require the minimum cell count (MCC), i.e., the smallest of the counts of the four

Table 3.2: Cell counts

Z = 0 zZ = 1
Gj = 0 #(Z,Gj) = (0, 0) #(Z,Gj) = (1, 0)
Gj = 1 #(Z,Gj) = (0, 1) #(Z,Gj) = (1, 1)

Minimum cell count (MCC) is the smallest count in above table. If it is too small, it means
there are very few samples with a certain combination of Z and Gj value. This may make
the estimation inaccurate.

possible observed values, to be at least 5 in order to perform the interaction t-test.

Step 4 of the TINGA method requires some additional parameter estimation compared
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to the interaction t-test. If all variables were continuous, then with typical GWAS sample

sizes, the estimation of a handful of additional parameters would pose little problem for the

inference. When Gj and Z are both binary, however, then we require the MCC not be too

small.

Furthermore, for Method 3 and 4, the calculation of V̂ar(Nj |Y, Z)alt involves fitting an

alternative model in Y :

Y |Z,Gj ∼ N(α + βGj + γZ + δ(Gj ◦ Z), σ2I). (3.45)

when both Gj and Z are binary genotypes and their MAF are not very large, the estimation

of δ may not be very accurate and is variational.

For Bernoulli methods, the estimated conditional probability p̂alt := P̂ (Gj = 1|Y, Z)alt

and the conditional variance V̂ar(Gj |Y, Z)alt = p̂alt(1−p̂alt) is somehow more sensitive to the

estimation of δ than the Gaussian methods. We observed that when estimated δ̂ is relatively

large, for the individuals who get the minor allele of Z, p̂alt tends to be more spread out, so

there are more entries in p̂alt that are close to 0 or 1, making the conditional variance of Gj

smaller. Based on above reasoning, we explore additional ways to estimate V̂ar(Nj |Y, Z)alt

as following:

1. The shrinkage method:

We apply the following shrinkage only to the individuals whose SNP Z have the minor

allele:

p̂newalt = cp̂alt + (1− c)p̂null, (3.46)

with c = 0.7

2. The Lasso method:
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We fit the alternative model by Lasso regression:

minα,β,γ,δ∥Y − α−Gjβ − Zγ − (Gj ◦ Z)δ∥2 + λ∥(α, β, γ, δ)∥1 (3.47)

and choose the optimal λ with cross validation.

In addition to the MAF and MCC for the SNPs, we also require the correlation between

Gj and Z to be relatively small. Specifically for the problem of epistasis detection, it has

been noted that in the presence of an untyped causal variant, two typed variants in strong

linkage disequilibrium that form a haplotype that tags the untyped variant could exhibit

false epistasis [38]. Therefore, in detection of epistasis, we only test for epistasis between

variants Gj and Z if their sample correlation is close to 0. (In our data analysis we use a

cut-off of .1 for absolute value of correlation.)
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CHAPTER 4

DETAILED STEPS FOR PARAMETER ESTIMATION

In this section, we give the detailed steps of how to estimate the parameters in the different

versions of our methods for a given dataset.

4.1 Gaussian approaches

4.1.1 Independent individuals

We first consider the case where the individuals are independent, and the Gj , Y, Z denotes

the variables for one particular individual.

Recall that for the Gaussian approximation approach, we get the conditional distribution

of Gj |Y, Z by

Gj | (y, z) ∼ N(µGj |z +
(β + δzc)σ

2
Gj |z

vy|z
(y − µy|z), σ2Gj |z −

(β + δzc)
2 σ4

Gj |z
vy|z

) (4.1)

Method1: estimate Var(Nj |Y, Z) under null and no heteroscedasticity correction

For Method1, we fit the homoscedastic model of Y |Z and fit the null (non-interaction)

model of Y |Gj , Z .

We estimate µy|z, vy|z by fitting the ordinary linear regression

Y |Z ∼ N(α + γZ, σ2I)

µy|z = α̂ + γ̂z

vy|z = σ̂2

(4.2)

For the parameters β and δ, we assume δ = 0 and estimate β the parameters by

Y |Z,Gj ∼ N(α + γZ + βGj , σ
2I)
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Method2: estimate Var(Nj |Y, Z) under null and conduct heteroscedasticity cor-

rection

We first regress Gj out of Y and replace Y by the residuals (see section 3.3.4). Then we

fit the heteroscedastic model in Y |Z as a linear mixed model:

Y |Z ∼ N(α + γZ, σ22diag(Z
2) + σ21diag(Z) + σ20I). (4.3)

We estimate µy|z, vy|z by the fitted LMM 4.3.

In the case where Z is binary, we estimate µy|z, vy|z by simply taking the sample means

and variances of Y given Z = 1 and Z = 0.

We then estimate β and δ by letting δ = 0, and fitting the non-interaction model

Y |Z,Gj ∼ N(α + γZ + βGj , σ
2W ) (4.4)

where W = diag(w1, ..., wn), wi = σ̂22z
2
i + σ̂21zi + σ̂20 for the fitted model 4.3.

Method3: estimate Var(Nj |Y, Z) under alternative and conduct heteroscedastic-

ity correction

For Method3, the parameters for computing E(Nj |Y, Z) are the same as those for Method2.

For the parameters for computing Var(Nj |Y, Z), µy|z, vy|z are those got from fitted model

4.3. For β, δ, we fit the interaction model of Y |Gj , Z:

Y |Z,Gj ∼ N(α + γZ + βGj + δ(Z ◦Gj), σ
2W ) (4.5)

Method4: estimate Var(Nj |Y, Z) under alternative and no heteroscedasticity cor-

rection

For Method4, the parameters for computing E(Nj |Y, Z) are the same as those for Method1.

For the parameters for computing Var(Nj |Y, Z), µy|z, vy|z are those got from fitted model
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4.3 as in Method1. For β, δ, we fit the interaction model of Y |Gj , Z:

Y |Z,Gj ∼ N(α + γZ + βGj + δ(Z ◦Gj), σ
2I) (4.6)

4.1.2 GRM case

In the case where the individuals are non-independent, and has some population structure

such as a GRM K, we still assume a joint normal distribution of Gj , Y |Z. In this part,

Gj , Y, Z ∈ Rn are in vector form.

Gj

Y

 |z ∼ N


µGj |z

µy|z

 ,

 σ2
Gj |z

In diag(β + δzc)σ
2
Gj |z

diag(β + δzc)σ
2
Gj |z

Vy|z


 (4.7)

where diag(β + δzc)σ
2
Gj |z

:= Dj is an n × n diagonal matrix with the i-th diagonal entry

being (β + δ(zi − z̄))σ2
Gj |z

.

Then we can get the conditional distribution of Gj |Y = y, Z = z by

Gj | (y, z) ∼ N(µGj |z +DjV
−1
y|z (y − µy|z), σ2Gj |zIn −DjV

−1
y|z Dj) (4.8)

We estimate µy|z, Vy|z bu fitting the LMM

Y |Z ∼ N(α + γZ, σ2gK + σ20I) (homoscedastic model)

Y |Z ∼ N(α + γZ, σ22diag(Z
2) + σ21diag(Z) + σ2gK + σ20I) (heteroscedastic model)

(4.9)

The parameters β, δ are estimated by fitting a LMM:

Y |Z,Gj ∼ N(α + γZ + βGj , σ
2
gK + σ20I) (homoscedastic null model) (4.10)
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Y |Z,Gj ∼ N(α + γZ + βGj + δ(Z ◦Gj), σ
2
gK + σ20I) (homoscedastic alternative model)

(4.11)

Y |Z,Gj ∼ N(α + γZ + βGj , σ
2
b Σ̂ + σ2eI) (heteroscedastic null model) (4.12)

Y |Z,Gj ∼ N(α + γZ + βGj + δ(Z ◦Gj), σ
2
b Σ̂ + σ2eI) (heteroscedastic alternative model)

(4.13)

where Σ̂ = σ̂22diag(Z
2)+ σ̂21diag(Z)+ σ̂2gK is the fitted variance components except the noise

term from the heteroscedastic model in 4.9. We use σ2b Σ̂+σ2eI to approximate Var(Y |Gj , Z)

so that we could use a faster LMM program that takes only one variance component other

than I and avoid fitting a LMM with 4 variance components for every Gj .

We could also fit more precise heteroscedastic models for Method 2 and 3:

heteroscedastic null model (Method2):

Y |Z,Gj ∼ N(α + γZ + βGj , σ
2
2diag(Z

2) + σ21diag(Z) + σ2gK + σ20I) (4.14)

heteroscedastic alternative model (Method3):

Y |Z,Gj ∼ N(α + γZ + βGj + δ(Z ◦Gj), σ
2
2diag(Z

2) + σ21diag(Z) + σ2gK + σ20I) (4.15)

4.2 Bernoulli approaches

Here we design the methods that make use of the Bernoulli feature of G. Similar as above

sections, we denote y, z as the observed values of Y, Z.

When Gj only takes values in 0, 1, we can estimate its conditional probability by Bayes

formula

P (Gij = k|Z, Y ) = P (Gij = k|Zi, Yi) =
P
(
Yi
∣∣Gij = k, Zi

)
∗ pk|Zi∑

l P
(
Yi
∣∣Gij = l, Zi

)
∗ pl|Zi

, k = 0, 1 (4.16)
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Here Z can be either discrete (Binomial, Bernoulli, etc.) or continuous. When Z is discrete,

pk|Z can be easily estimated by taking the empirical conditional mean of Gj on Z; when Z

is continuous, it can be estimated by fitting a logistic model.

4.2.1 Independent individuals

Method1: estimate Var(Nj |Y, Z) under null and no heteroscedasticity correction

When we do not consider the heteroscedasticity in Y , we can estimate the conditional

distribution Gj |y, z by fitting a logistic model

Gj |y, z ∼ Ber (p) , p = logit(µ+ αy + βz)

and use the fitted distribution to compute the conditional mean and variance of Gj :

Gj |y, z ∼ (µ2, V2), where µ2 = p̂, V2 = diag(p̂ (1− p̂))

Method2: estimate Var(Nj |Y, Z) under null and conduct heteroscedasticity cor-

rection

Here we allow Y to have different variance for different values of Z. Compute the condi-

tional distribution of Gj |y, z by Bayes rule:

pGj |y,z := p
(
Gj = 1

∣∣y, z) = p
(
y
∣∣Gj = 1, z

)
p(Gj = 1|z)

p(Y |z)
(4.17)

=

(
2πσ2z

)−1
2 e

1
2σ2z

(y−α−β−γz−δ(1−mx)(z−mz))
2

p(Gj = 1|z)
p
(
y
∣∣Gj = 1, z

)
p
(
Gj = 1

∣∣z)+ p
(
y
∣∣Gj = 0, z

)
p(Gj = 0|z)

(4.18)

We estimate p(Gj |z) by taking the sample means of Gj given Z when Z has a discrete

distribution; when Z takes continuous values, we fit a logistic model of Gj |Z.

For p
(
Y
∣∣Gj , Z

)
, for Method 2 our estimations are all under the null, so δ = 0.

45



We hope to estimate the parameters in the heteroscedastic model:

Y |z,Gj ∼ N
(
α + βGj + γz, σ20Iz=0 + σ21Iz=1

)
(4.19)

Let

v̂20 = V̂ar(Y |Z = 0); v̂21 = V̂ar(Y |Z = 1) (4.20)

We first fit the weighted linear model

Y |z,Gj ∼ N
(
α + βGj + γz, σ2W

)
, (4.21)

here W is a diagonal matrix with i-th diagonal entry being v̂20Izi=0+v̂21Izi=1 and get estimated

α̂, β̂, γ̂.

Then we estimate var(Y |Gj , z) by σ̂2W , where

σ̂2 =
1

n− 3

∑
i

(
yi − α̂− β̂Gij

)2
W−1

ii (4.22)

or

σ̂20 =
1

n0 − 1.5
Σi:zi=0

(
yi − α̂− β̂Gij

)2
, σ̂21 =

1

n1 − 1.5
Σi:zi=1

(
yi − α̂− β̂Gij − γ̂

)2
,

(4.23)

where nk is the number of z equaling k.

Then we plug the estimated parameters in above Bayes formula to get p̂Gj |y,z. We

estimate the conditional mean and variance of Gj by

EGj |y, z ≈ p̂Gj |y,z, var
(
Gj

∣∣y, z) ≈ p̂Gj |y,z(1− p̂Gj |y,z) (4.24)

and use this to compute E(Nj |y, z) and var(Nj |y, z).
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Method3: estimate Var(Nj |Y, Z) under alternative and conduct heteroscedastic-

ity correction

We compute var(Nj |y, z) under alternative model: for E(Nj |y, z), we use the conditional

mean and variance of Gj under the null as in method2; for var(Nj |y, z), we fit the interaction

model.

For E(T |y, z):

p(yi|Gij , zi) in E(Gj |y, z) and var(Gj |y, z) are given by fitting the null heteroscedastic

model

Y |Z, Gj ∼ N(α + βGj + γZ, σ20Iz=0 + σ21Iz=1)

as in method 2.

For var(T |y, z):

p(yi|Gij , zi) is given by fitting the interaction model

Y |Gj , Z ∼ N(α + βGj + γZ + δ(Gj ◦ Z), σ20Iz=0 + σ21Iz=1)

When Z is not Bernoulli, we estimate var(Y |Gj , Z) by σ2W , where W = ˆvar(Y |Z).

The rest steps are the same as method 1 & 2.

Method4: estimate Var(Nj |Y, Z) under alternative and no heteroscedasticity cor-

rection

For Method4, we assume a homoscedastic model of Y , so the steps are the same as Method3

in the homoscedastic Y scenario.

4.2.2 GRM case

Method1:

Let K be the GRM. Let i denote the individual index.
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Compute the conditional mean of Gj : EGij |y, z = p(Gij = 1|y, z) by Bayes rule:

p
(
Gij = 1

∣∣y, z) ≈ p
(
Gij = 1

∣∣yi, zi) = p
(
yi
∣∣Gij = 1, zi

)
p(Gij = 1|zi)

p(yi|zi)
(4.25)

=
p
(
yi
∣∣Gij = 1, zi

)
p(Gij = 1|zi)

p
(
yi
∣∣Gij = 1, zi

)
p
(
Gij = 1

∣∣zi)+ p
(
yi
∣∣Gij = 0, zi

)
p(Gij = 0|zi)

(4.26)

where

Y |Gj , Z ∼ N(α + βGj + γZ, σ2gK + σ2eI)

Yi|Gij , Zi ∼ N
(
α + βGij + γZi, σ2gK + σ2eI

)
≈ N(α̂ + β̂Gij + γ̂Zi, σ̂2gKii + σ̂2e)

Once get estimated p
(
Gij = 1

∣∣y, z) := p̂, we can estimate cov
(
Gj |y, z

)
by

K̃ = cov2cor (K + cI) , c = 10−7

cov
(
Gj |y, z

)
ij ≈ K̃ij

√
p̂i (1− p̂i) p̂j(1− p̂j)

The computation of approximated T, E (T |y, z) , var(T |y, z) is the same as non-GRM case

except that H = I − 1
n11

T , Ĥ = Σ̂−1 − Σ̂−11
(
1T Σ̂−11

)−1
1Σ̂−1, where Σ̂ = σ̂2gK + σ̂2eI is

the estimated covariance matrix in the LMM model

Y ∼ N(α + βGj + γZ + δ(Gj ◦ Z), σ2gK + σ2eI)

Method2:

We fit the heteroscedastic model by regress:

Y |Z ∼ N(α + γZ, σ2hdiag (Z) + σ2gK + σ2eI)
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Let Σ̂ = σ̂2hdiag (z) + σ̂2gK, we estimate Y |Gj , Z by

Y |Gj , Z ∼ N(α + βGj + γz, σ2b Σ̂ + σ2eI)

Yi|Gij , Zi ≈ N(α̂ + β̂Gij + γ̂Zi, σ̂2b Σ̂ii + σ̂2e)

where

Σ̂ = σ̂2gK + σ̂2hdiag(Z) (4.27)

Method3:

For E(T |y, z):

p(yi|Gij , zi) in E(Gj |y, z) and var(Gj |y, z) are given by fitting the null model

Y |Gj , Z ∼ N(α + βGj + γZ, σ2bK + σ2eI)

For var(T |y, z):

p(yi|Gij , zi) is given by fitting the interaction model

Y |Gj , Z ∼ N(α + βGj + γZ + δ(Gj ◦ Z), σ2bK + σ2eI)

Other parts are the same as method1 & 2.

Method4

Sames steps as Method3 in the homoscedasticity scenario.
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CHAPTER 5

RESULTS OF SIMULATIONS

In the simulations, we simulate Y ∈ Rn as the phenotype; Z ∈ Rn as the fixed SNP/environmental

factor; G1, ..., Gm ∈ Rn as the SNPs in the genome. In this section, we first show the im-

provement of our methods on the uniformity of null p-values within one GWAS and on the

distribution of genomic control inflation factor. We then show the simulation results for

the Type I error rates and power across multiple GWAS’s and show that our methods have

desired type I error and better power performance than the regular methods. For the sim-

ulations, we particularly focus on the case where both Z, Gj are Bernoulli distributed and

apply the Bernoulli version of our methods.

In this section, we have simulation experiments to access the performance of our methods

in 2 aspects: (1). Fixing the “feast or famine” effect in one interaction GWAS; (2). Type I

error rates and power across many GWAS’s.
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5.1 Simulation under null: check p-values within a GWAS

In this part, we focus on the performance of the m p-values within one GWAS in 2 aspects:

uniformity and genomic control inflation factor. For each replicate, the sample size is 1000.

We simulate a fixed Z and m = 5000 Gj ’s independently. Y is simulated under null . Then

for each Gj , we test for its interaction with Z and get a p-value. Finally, we test for the

uniformity of the resulting m = 5000 p-values using ELL [1] at level 0.05. We also got the

GCIF for each GWAS by taking the median of the m = 5000 χ2 scores and divide it by

0.456.

5.1.1 Gaussian Methods

In this section, we compare the performance of Gaussian Method1-4.

We simulate interaction GWAS as follows:

• n = 1000, m = 5000

• Z ∼ Bernoulli(mz), mz ∼ Unif(0.2, 0.8)

• Gj
indep.∼ Bernoulli(mj), mj

iid∼ Unif(0.2, 0.8), cor(Z,Gj) = 0, j = 1, 2, ...,m

• Y = α + γZ +
∑m

j=1 βjGj + ϵ, α ∼ Unif(−10, 10), ϵ ∼ N(0, 1)

• γ =
√

0.025
σ2z

, β =


√

0.025
σ2j

j = 1, 2, ..., 50

0 j = 51, ..., 5000

We let 50 out of 5000 SNPs have marginal association with Y to represent the situation

where there are a few marginal association signals.

When simulate each Gj , we check the following 2 conditions and keep re-generating Gj

until both of the 2 conditions are satisfied:

1. |cor(Gj , Z)| ≤ 0.1
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2. MCC(Gj , Z) ≥ 5

For each j = 1, 2, ..., 5000, we test H0j : δi = 0 in

Y = αj +Gjβj + Zγj + (Gj ◦ Z)δj + ϵj

and get m = 5000 interaction p-values.

We did 3000 replicates. For each replicate, we test for the uniformity of the 5000 p-values

using the method of Equal Local Level (ELL)[1]. We then got 3000 p-values for uniformity

(for simplicity, we denote them as “ELL p-values”). If the null hypothesis that the m = 5000

p-values from an interaction GWAS are iid unifom is true, then the 3000 ELL p-values

are expected to be uniformly distributed. Figure 5.1 depicts the (differenced) QQ-plots of

the 1000 ELL p-values against standard uniform: we take the -log10 scaled p-values and

plot the difference between the observed quantiles and the theoretical quantiles (quantile of

uniform(0, 1)). As we can see, with the regular t-test, the p-values in a null GWAS tend to

be significantly non-uniform; while they are close to uniform for TINGA.

Figure 5.2 compares the genomic control inflation factors between the regular t-test and

the 4 Gaussian methods. As we can see, TINGA methods make the GCIF more concentrated

at 1, meaning there is less systematic inflation or deflation in the testing statistics.
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Figure 5.1: QQ-plots of ELL p-values 3000 points. Each point represents a simulated
interaction GWAS of m = 5000 interaction test. For each GWAS, test whether the m = 5000
p-values are iid uniformly distributed using ELL [1]. The shaded region is the 95% confidence
region by ELL
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Figure 5.2: Genomic Control Inflation Factors 4 penels represent the GCIFs from the
same 3000 replicates of simulation. Red bars: GCIF from regular t-test; Green: GCIF from
4 Gaussian versions of TINGA method
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5.1.2 Bernoulli Methods

In this section, we assess the performances of the following 4 versions of Bernoulli methods:

1. Method1

2. Method2

3. Method3, shrink (See equation 3.46 in section 3.4)

4. Method3, Lasso (See equation 3.47 in section 3.4)

We use the same simulation setting as above section 5.1.1 and we did 1000 replicates.

We again get the 1000 ELL p-values and plot the (differenced) QQ-plots in Figure 5.3.

Figure 5.4 compares the distributions of genomic control inflation factors.

We got similar conclusions as in section 5.1.1 for the Gaussian methods. In summary, in

the simulations, our TINGA method succeeds in eliminating or effectively reducing the “Feast

or Famine” effect. It makes the null interaction GWAS p-values approximately uniform as

we expect.
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Figure 5.3: QQ-plots of ELL p-values 1000 points. Each point represents a simulated
interaction GWAS of m = 5000 interaction test. For each GWAS, test whether the m = 5000
p-values are iid uniformly distributed using ELL [1]. The shaded region is the 95% confidence
region by ELL
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Figure 5.4: Genomic Control Inflation Factors 4 penels represent the GCIFs from the
same 1000 replicates of simulation. Red bars: GCIF from regular t-test; Green: GCIF from
4 Bernoulli versions of TINGA method
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5.1.3 More situations and comparisons

In this section, we explore more simulation settings.

We consider the following 4 cases:

1. Both Z and Gj ’s are Bernoulli, and Y is simulated under a linear model:

• n = 1000, m = 5000

• Z ∼ Bernoulli(mZ), mZ ∼ Unif(0.1, 0.9)

• Gj
indep.∼ Bernoulli(mj), mj

iid∼ Unif(0.1, 0.9), cor(Z,Gj) = 0, j = 1, 2, ...,m

• Y = α + ϵ, α ∼ Unif(−10, 10), ϵ ∼ N(0, 1)

When simulate each Gj , we check the following 2 conditions and keep re-generating

Gj until both of the 2 conditions are satisfied:

(a) |cor(Gj , Z)| ≤ 0.1

(b) MCC(Gj , Z) ≥ 5

2. Both Z and Gj ’s are Binomial(2), and Y is simulated under a linear model:

• n = 1000, m = 5000

• z ∼ Binom(2,mz), mz ∼ Unif(0.1, 0.9)

• Gj
indep.∼ Binom(2,mj), mj

iid∼ Unif(0.1, 0.9), cor(z,Gj) = 0, j = 1, 2, ...,m

• y = α + ϵ, α ∼ Unif(−10, 10), ϵ ∼ N(0, 1)

3. Both Z and the Gj ’s are normal, and Y is simulated under a linear model:

• n = 1000, m = 5000

• z ∼ Normal(mz, 1), mz ∼ Unif(−10, 10)

• Gj
indep.∼ Normal(mj , 1), mj

iid∼ Unif(−10, 10), cor(z,Gj) = 0, j = 1, 2, ...,m
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• y = α + ϵ, α ∼ Unif(−10, 10), ϵ ∼ N(0, 1)

4. Both Z and Gj ’s are Bernoulli, and Y is simulated under a LMM:

• n = 1000, m = 5000

• z ∼ Bernoulli(mz), mz ∼ Unif(0.1, 0.9)

• Gj
indep.∼ Bernoulli(mj), mj

iid∼ Unif(0.1, 0.9), cor(z,Gj) = 0, j = 1, 2, ...,m

• GRM K is calculated from a simulated genotype matrix G, which is independent

of z and x:

G = (g1, ..., g10000), gi
indep.∼ Ber(fi), fi

iid∼ Unif(0.1, 0.9)

G̃ = (g̃1, ...g̃10000), g̃i =
gi − ḡi√
ḡi(1− ḡi)

K =
1

10000
G̃G̃T

• α ∼ Unif(−10, 10), h2 = 0.3, σ2T = 1

• y = α + ϵ, ϵ ∼ N(0, σ2T
(
h2K + (1− h2)I

)
When simulate each Gj , we check the following 2 conditions and keep re-generating

Gj until both of the 2 conditions are satisfied:

(a) |cor(Gj , z)| ≤ 0.1

(b) MCC(Gj , z) ≥ 5

Table 5.1, 5.2 compare the rates of rejection of uniformity of p-values for regular t/Wald

test and the Bernoulli versions of our correction methods. As we can see, the regular t-test

gives large rejection rates, meaning the resulting p-values are not uniformly distributed, even

if Y is under completely null.
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This problem exists in general cases. Gj ’s can be Binomial or Bernoulli, representing

genotypes. Z can be either normal (representing environmental factors) or Binomial/Bernoulli

(genotypes).

Table 5.1: Rejection rates in non-GRM case (1000 replicates)

Uncorrected Method1 Method2 Method3 MCC20
286 59 54 129 131

Number of times that the uniformity of the resulting 5000 p-values is rejected, out of 1000
replicates. Both Z, Gj are Bernoulli and independent across individuals; Y is simulated
under the null. Methods are the Bernoulli version.

Table 5.2: Rejection rates in GRM case (200 replicates)

Wald Method1 Method2 Method3 TINGA
58 14 14 27 31

Number of times that the uniformity of the resulting 5000 p-values is rejected, out of 1000
replicates. Both Z, Gj are Bernoulli and independent across individuals; Y is simulated
with a GRM. Methods are the Bernoulli version.

Fig 5.5 are the histograms of genomic control inflation factors for different simulation

settings. From this we believe that our methods make the null p-values more “uniform” and

make the genomic control inflation factor more concentrate around 1.

Figure 5.6, 5.7 are histograms of GCIF for the case where both of Gj , Z are Normal

and both of Gj , Z are Binomial. In addition to the comparison between the uncorrected

interaction test and the TINGAinteraction test, we also compare them with the ordinary

marginal association test, it shows that the distribution of GCIF from TINGAis close to that

of the ordinary GWAS, which has no problem with the “feast or famine” effect.

Table 5.3 contains the rejection counts for different distributions for Z and Gj .

60



Figure 5.5: Uncorrecred vs. corrected GCIF under the null

(a)

Histograms of GCIF

GCIF

F
re

qu
en

cy

0.7 0.8 0.9 1.0 1.1 1.2 1.3

0
20

40
60

80
10

0
12

0
14

0

Unadjusted Interaction
TINGA

(b)

Histograms of GCIF

GCIF

F
re

qu
en

cy
0.7 0.8 0.9 1.0 1.1 1.2

0
10

20
30

40

Unadjusted Interaction
TINGA

(c)

Histograms of GCIF

GCIF

F
re

qu
en

cy

0.8 0.9 1.0 1.1 1.2

0
10

20
30

40
50

60

Unadjusted Interaction
TINGA

(d)

Histograms of GCIF

GCIF

F
re

qu
en

cy

0.8 0.9 1.0 1.1 1.2

0
20

40
60

80 Unadjusted Interaction
TINGA

Genomic control inflation factors of interaction tests between m = 5000 Gj ’s and Y ; Both
Z and Gj ’s are Bernoulli distributed and independent across individuals (a). Z, Gj
Bernoulli. Non-GRM case, 500 replicates; (b). Z, Gj Bernoulli. GRM case, 200 replicates.
(c). Z, Gj Gaussian. Non-GRM case, 500 replicates. (d). Z, Gj Binomial(2, ∗).
Non-GRM case, 500 replicates.

61



Figure 5.6: Z, Gj both normal
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Figure 5.7: Z, Gj both binomial
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Table 5.3: Rejection rates 100 replicates, using normal approximation methods

Z Gj cor(Z,Gj) Y Uncorrected Corrected
N(mz, 1) Bin(2, p) 0 N(my, 1) 46 6
N(mz, 1) Ber(p) 0 N(my, 1) 36 5
Bin(2, p1) Bin(2, p2) 0 N(my, 1) 39 8
Ber(p1) Ber(p2) 0 N(my, 1) 35 9

The conditional distribution Gj |Y, Z is computed by normal approximation.

5.2 Type I error rates and power across GWAS’s

As we mentioned in previous sections, the t-statistic for the interaction test is indeed Tn−4

distributed both marginally and conditioning on (Gj , Z). It means if we take the t-statistics

from many interaction GWAS’s (so many different Y, Z pairs, they follow a t-distribution

and so the p-values from t-test are actually uniform. We also want to check if the testing

statistic from our TINGAmethod follows (approximately) standard normal distribution as

we expect. In this part, we run a simulation multiple times independently to mimic multiple

independent GWAS’s. Then we look at the Type I error rates and power across GWAS’s.

5.2.1 Gaussian Methods

In this section, we assess the performance of Gaussian Method2 and Method3 by looking at

the type 1 error and power across many independent GWAS’s.

We simulate each replicate under the null as following:

• n = 1000,m = 5

• Z ∼ Bernoulli(mZ)

• G1 ∼ Bernoulli(m1)

• mz,m1
iid∼ Unif(0.15, 0.85)
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• Gj
indep.∼ Bernoulli(mj), mj

iid∼ Unif(0.2, 0.5), j = 2, 3, 4, 5

• α ∼ Unif(−10, 10)

• Y = α + γZ + β1G1 +
∑5

j=2 βjGj + ϵ, ϵ ∼ N(0, σ2eI)

• σ2e = 1− γ2σ2Z −
∑5

j=1 β
2
j σ

2
Gj

When simulate each Gj , we check the following 2 conditions and keep re-generating j

until both of the 2 conditions are satisfied:

1. |cor(Gj , Z)| ≤ 0.1

2. MCC(Gj , Z) ≥ 5

We did ≈ 105 replicates for the following 7 cases:

1. γ = 0, (β1, β2, β2, β4, β5) = (0, 0, 0, 0, 0)

2. γ = 0, β1 = 0, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

3. γ =

√
0.01
σ2Z

, β1 = 0, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

4. γ = 0, β1 =
√

0.01
σ2G1

, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

5. γ =

√
0.01
σ2Z

, β1 =
√

0.01
σ2G1

, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

6. γ =

√
0.01
σ2Z

, β1 =
√

0.04
σ2G1

, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

7. γ =

√
0.04
σ2Z

, β1 =
√

0.01
σ2G1

, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

We simulate G2, G3, G4, G5 to mimic the situation where there are other positively or neg-

atively associated SNPs.
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For each replicate in each of the 7 cases, we look at the p-values for testing the interaction

between Z and G1 in

Y |Z,G1 ∼ N(0, α+ γZ + βG1 + δ(G1 ◦ Z), σ2I). (5.1)

Note that the fitted model does not contain G2, G3, G4, G5, so there is model mis-specification

except for case 1.

Figure 5.8 are the (differenced) QQ-plots of -log10 p-values for the cases. The grey

regions are the 99% ELL confidence regions [1]. As we can see, Gaussian Method 2 and 3

have acceptable type 1 error performance.

We simulate the following alternative case to compare the power of regular t-test and

Gaussian Method 2 and 3:

Y = α + γZ +
∑5

j=1 βjGj +
∑5

j=1 δj(Gj ◦ Z) + ϵ,

ϵ ∼ N(0, σ2eI)

σ2e = 1− γ2σ2Z −
∑5

j=1 β
2
j σ

2
Gj

−
∑5

j=1 δ
2
jσ

2
Gj◦Z

γ =

√
0.02
σ2Z

, β1 =
√

0.02
σ2G1

(β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

(δ1, δ2, δ3, δ4, δ5) = (
√

0.02
σ2G1◦Z

, 0, 0, 0, 0)

(5.2)

Figure 5.9 draws the power curves for the 3 testing approaches. The x-axis is for -log10

scaled type 1 error for testing G2 ◦ Z. The y-axis is for power for testing G1 ◦ Z. As we

can see, in our simulation setting, power of Gaussian Method 3 > regular t-test > Gaussian

Method 2.
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Figure 5.8: QQ-plots for Gaussian Methods Top: Gaussian Method 2; Bottom: Gaussian
Method3. The 7 cases are described in section 5.2.1
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Figure 5.9: Power curves for Gaussian Methods x-axis: -log10 scaled type 1 error for
testing G2 ◦ Z; y-axis: power for testing G1 ◦ Z
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5.2.2 Bernoulli Methods

In this section, we assess the performance of the following 3 Bernoulli versions of TINGA by

looking at the type 1 error and power across many independent GWAS’s:

1. Method2

2. Method3, shrink (see equation 3.46 in section 3.4)

3. Method3, Lasso (see equation 3.47 in section 3.4)

We use the same simulation setting as in above section 5.2.1 except that we set the lower

bound for MAF to 0.2 instead of 0.15:

mz,m1
iid∼ Unif(0.2, 0.8)

m2,m3,m4,m5
iid∼ Unif(0.2, 0.5)

(5.3)

Figure 5.10 depicts the (differenced) QQ-plots of -log10 p-values for the null cases. Figure

5.11 compares the power curves of regular t-test and Bernoulli methods in the alternative

case.
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Figure 5.10: QQ-plots for Bernoulli Methods Top left: Bernoulli Method 2; Top right:
Bernoulli Method3, shrinkl Bottom: Bernoulli Method3, lasso. The 7 cases are described in
section 5.2.1

70



2.0 2.5 3.0 3.5 4.0

0.
3

0.
4

0.
5

0.
6

−log10 type I error rate for G2

po
w

er
 fo

r 
G

1

regular t−test
Method 2
Method3, shrink
Method3, lasso

Figure 5.11: Power curves for Bernoulli Methods x-axis: -log10 scaled type 1 error for
testing G2 ◦ Z; y-axis: power for testing G1 ◦ Z
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5.2.3 Other simulation settings

We compare the performances of the conventional methods (t/Wald test) and our methods

in 3 simulation settings: Non-GRM case, GRM case 1 and GRM case 2.

Non-GRM case In each replicate, we simulate a Bernoulli Z and m = 4 Bernoulli G′
js

independently for n = 1000 independent individuals, where the Bernoulli frequencies are

generated independently from Unif(0.1, 0.5):

• n = 1000, m = 4

• z ∼ Ber(mz), mz ∼ Unif(0.2, 0.8)

• xj
indep.∼ Ber(mj), mj

iid∼ Unif(0.2, 0.8), cor(xj , z) = 0, j = 1, 2, 3, 4

When simulate each Gj , we check the following 2 conditions and keep re-generating Gj

until both of the 2 conditions are satisfied:

1. |cor(Gj , Z)| ≤ 0.1

2. MCC(Gj , Z) ≥ 5

We simulate Y under the alternative model 5.4

Y = α + γZ +
m∑
j=1

βjGj +
m∑
i=j

δj(Z −mZ)(Gj −mj) + ϵ, ϵ ∼ N(0, In) (5.4)
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We set
α ∼ Unif(−10, 10)

(β1, β2, β3, β4) =

(
0,
√

0.025
σ
G2
2

,−
√

0.025
σ
G2
3

,
√

0.05
σ
G2
4

)
,

γ =

√
0.025
σ2Z

,

(δ1, δ2, δ3) = (0, 0, 0)

δ4 = 0 (Null case)

δ4 =
√

0.025
σ2
(G4◦Z)

(Alternative case)

(5.5)

so that Z,G2, G3, G4 have marginal effects on Y and only G4 has interactive effect with Z

on Y .

We run 105 replicates for the non-GRM case. Figure 5.12 are (differenced) QQ-plots of

-log10 p-values for Gaussian Method1-4 under the null case (δ4 = 0).

Figure 5.13 are QQ-plots of of -log10 p-values for the following Bernoulli versions of

TINGA: (1). Method1. (2). Method2. (3). Method3, shrink. (4). Method3, lasso. (5).

Method4, shrink. (6). Method4, lasso.

The results are from the same simulation replicates as in Figure 5.12 for the Gaussian

Methods.

For the alternative case, we let

δ4 =

√
0.025

σ2
(G4◦Z)

(5.6)

Figure 5.14 compares the power curves for the regular t-test with TINGA methods. The

top panel compares regular t-test and Gaussian Method 1-4. The bottom panel compares

regular t-test and the 6 different Bernoulli methods as those applied in above type 1 error

part. The top and bottom panels are from the same 105 replicates. The x-axis is -log10 of

the type 1 error for testing G2 ◦ Z. The y-axis is the power for testing G4 ◦ Z.
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Figure 5.12: QQ-plots for Gaussian Methods 105 replicates under the null case of no
interaction. 4 panels represents tests for interaction between G1, G2, G3, G4 and Z
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Figure 5.13: QQ-plots for Bernoulli Methods Results from the same 105 replicates as
in Figure 5.12. 4 panels represents tests for interaction between G1, G2, G3, G4 and Z
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Figure 5.14: Power curves x-axis: -log10 scaled type 1 error for testing G2◦Z; y-axis: power
for testing G4 ◦ Z. Top: Gaussian Methods; Bottom: Bernoulli Methods. Top and bottom
panels are results from the same 105 replicates under alternative case (δ4 =

√
0.025

σ2
(G4◦Z)

)
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GRM case 1: independent individuals In this case, Z, Gj ’s are simulated in the same

way as GRM case 1. Y is simulated with the same model 5.4 and the same effect parameters

as in 5.5, except a GRM as an extra variance component 5.7

ϵ ∼ N(0, σ2T

(
h2K + (1− h2)I

)
, (5.7)

where K is the GRM computed from 104 independently simulated Bernoulli SNPs, h2 =

0.3, σ2T = 1 :

G = (g1, ..., g10000), gi
indep.∼ Ber(fi), fi

iid∼ Unif(0.1, 0.9)

G̃ = (g̃1, ...g̃10000), g̃i =
gi − ḡi√
ḡi(1− ḡi)

K =
1

10000
G̃G̃T

.

We run 104 replicates for GRM case 1. Figure 5.15 are (differenced) QQ-plots of -log10

p-values from different methods under GRM case 1. Figure 5.16 are power curves of different

methods.

GRM case 2: population structure with 3 sub-populations We also tried the setting

with population structure in which there are 3 sub-populations following the Balding-Nichols

model [47]. Both Z and Gj ’s are still Bernoulli distributed, and simulated with the 3 sub-

populations. Z,G2, G3, G4 and (Z ◦ G4) have effects on Y . Y also has indicators of the

sub-populations as covariates:

We assign 1/3 of the total population to each sub-population. In our case, n = 1000,

so the sample sizes for sub-population 1, 2, 3 are 333, 333, 334 respectively. Let the fixation

index F = 0.1.

For each SNP s, the ancestral allele frequency ps is drawn iid∼ Unif(0.2, 0.8) (iid across
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Figure 5.15: QQ-plots for GRM case 1 104 replicates. 4 panels represents tests for
interaction between G1, G2, G3, G4 and Z
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Figure 5.16: Power curves for GRM case 1 104 replicates. x-axis: -log10 scaled type 1
error for testing G2 ◦ Z; y-axis: power for testing G4 ◦ Z
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SNPs). For each sub-population k = 1, 2, 3, the allele frequency pk is drawn independently

from Beta(
ps(1−F )

F ,
(1−ps)(1−F )

F ) . Then for an individual assigned to sub-population k, the

genotype is drawn iid from Ber(pk). We only keep the SNPs with MAF ≥ 0.05.

We use the above strategy to simulate one Z and m = 4 Gj ’s, independently. When

simulate each Gj , we check the following 2 conditions and keep re-generating Gj until both

of the 2 conditions are satisfied:

1. |cor(Gj , Z)| ≤ 0.1

2. MCC(Gj , Z) ≥ 5

For the GRM, we simulate 105 independent SNPs, these SNPs are also independent from Z

and Gj ’s.

We simulate y by the following model:

Y = α + γZ +
m∑
j=1

βjGj +
m∑
i=j

δj(Z −mZ)(Gj −mj) + ϵ

where

• (β1, β2, β3, β4) =

(
0,
√

0.025
σ
G2
2

,−
√

0.025
σ
G2
3

,
√

0.05
σ
G2
4

)

• γ =

√
0.025
σ2Z

• (δ1, δ2, δ3) = (0, 0, 0)

• δ4 = 0 (Null case); δ4 =
√

0.025
σ2
(G4◦Z)

(Alternative case)

• ϵ ∼ N(0, σ2T
(
h2K + (1− h2)I

)
• h2 = 0.3
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We run 104 replicates for GRM case 2. Figure 5.17 are (differenced) QQ-plots of -log10

p-values from different methods under GRM case 2. Figure 5.18 are power curves of different

methods.
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Figure 5.17: QQ-plots for GRM case 2 104 replicates. 4 panels represents tests for
interaction between G1, G2, G3, G4 and Z
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Figure 5.18: Power curves for GRM case 2 104 replicates. x-axis: -log10 scaled type 1
error for testing G2 ◦ Z; y-axis: power for testing G4 ◦ Z
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5.3 Effect of different minor allele frequencies of Z and Gj on type

1 error

In our TINGA method, we intentionally denote the 2 SNPs by different letters Z and G,

to emphasis the situation where Z is fixed and we test the interaction between Z and other

SNPs in the genome, and our TINGA method is conditioning on “Z” and is not symmetric

between Z and G. However, when searching for pairwise interaction among all possible pairs

of SNPs in a GWAS, the 2 SNPs, say, Gk and Gj are actually symmetric. Therefore, there

could be two possible ways to apply TINGA:

1. Let Gk be the “Z”, condition on Gk, Y and treat Nj as a function in random variable

Gj

2. Switch the role: Let Gj be the “Z”, condition on Gj , Y and treat Nk as a function in

random variable Gk

In this section, we investigate the condition under which our method is applicable and

which SNP to condition on in a pairwise search for interaction signals. We focus on Gaussian

approach Method 3.

We have the following simulation setting:

• Z ∼ Bernoulli(mZ)

• G1 ∼ Bernoulli(m1)

• Gj
indep.∼ Bernoulli(mj), mj ∼ Unif(0.2, 0.5), j = 2, 3, 4, 5

• α ∼ Unif(−10, 10)

• Y = α + γZ + β1G1 +
∑5

j=2 βjGj + ϵ, ϵ ∼ N(0, σ2eI)

• σ2e = 1− γ2σ2Z −
∑5

j=1 β
2
j σ

2
Gj

84



For the allele frequencies of Z and G1, we use a 317 × 317 fixed grid: we pick 317 equally

distanced points on the interval [0.05, 0.95] and iterate mZ and m1 over all possible pairs of

frequencies among the 317 points, resulting to 3172 = 100489 replicates.

We look at the p-values for testing the interaction between Z and G1 in the same 7 cases

as in section 5.2.1:

1. γ = 0, (β1, β2, β2, β4, β5) = (0, 0, 0, 0, 0)

2. γ = 0, β1 = 0, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

3. γ =

√
0.01
σ2Z

, β1 = 0, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

4. γ = 0, β1 =
√

0.01
σ2G1

, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

5. γ =

√
0.01
σ2Z

, β1 =
√

0.01
σ2G1

, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

6. γ =

√
0.01
σ2Z

, β1 =
√

0.04
σ2G1

, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

7. γ =

√
0.04
σ2Z

, β1 =
√

0.01
σ2G1

, (β2, β2, β4, β5) = (
√

0.01
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

We simulate G2, G3, G4, G5 to mimic the situation where there are other positively or neg-

atively associated SNPs. We assign different values to γ and β1 to see how the cutoff for

MAF of Z and cutoff for MAF of G1 is related to their effect coefficients.

For each case, we run the 3172-replicate simulation 3 times, resulting 3× 3172 = 301467

replicates in total.

We plot the -log10 scaled ELL p-value [1] for testing the uniformity of the resulting

301467 p-values for different ranges of MAFs of Z and G1 in Figure 5.19. We can see that

when MAF of Z ≥ 0.15 (or 0.12) and MAF of G1 ≥ 0.05, the ELL p-values are all larger

than 0.01.
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Figure 5.19: ELL p-values for different ranges of minor allele frequencies for Z and
G1
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Each point is the -log10 scaled ELL p-values [1] for a sub-vector of the 301467 p-values.
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The cutoff a for Z is denoted by different colors; the cutoff b for G1 is the x-axis.
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We then look at the power performance under the condition that (1). MAF of Z ≥ 0.15

and MAF of G1 ≥ 0.05. (2). both MAF of Z and MAF of G1 ≥ 0.12 We still use the model

in the type 1 error simulation:

Y = α + γZ + β1G1 +
∑5

j=2 βjGj +
∑5

j=1 δj(Gj ◦ Z) + ϵ, ϵ ∼ N(0, σ2eI)

σ2e = 1− γ2σ2Z −
∑5

j=1 β
2
j σ

2
Gj

−
∑5

j=1 δ
2
jσ

2
Gj◦Z

γ =

√
0.02
σ2Z

(β1, β2, β2, β4, β5) = (
√

0.01
σ2G1

,
√

0.02
σ2G2

,−
√

0.01
σ2G3

,
√

0.01
σ2G4

,−
√

0.01
σ2G5

)

(δ1, δ2, δ3, δ4, δ5) = (0,
√

0.02
σ2G2◦Z

, 0, 0, 0)

(5.8)

In this case, Z is interacting with G2 only. We look at the QQ-plot for the p-values for

testing G1 ◦ Z in Figure 5.20 (a), where we restrict the MAF of G1 to be greater than or

equal to 0.05 and MAF of Z to be greater than or equal to 0.15 and 0.12, ending up with

about 95,000 replicates and in Figure 5.20 (b), where we let both Z and G1 have MAF

≥ 0.12, ending up with about 81,000 replicates.

We compare the power for detecting G2 ◦ Z of the regular t-test, heteroscedasticity

corrected t-test and Gaussian approach method 3. Here the heteroscedasticity corrected t-

test is performed by fitting a weighted least square model, where the weights are 1

V̂ar(Y |Z=0)

for the individual with Zi = 0 and 1

V̂ar(Y |Z=1)
for the individual with Zi = 1. Figure 5.20 (c)

are the power curves when we restrict the MAF of G1, G2 to be greater than or equal to 0.05

and MAF of Z to be greater than or equal to 0.15 and 0.12, ending up with about 87,651

replicates. Figure 5.20 (d) are the power curves when we restrict the MAF of G1, G2, Z to

be greater than or equal to 0.12, ending up with about 81,000 replicates.

We conclude when testing the interaction Gj ◦ Z where Z is the SNP that we choose to

condition on, having (1). MAF of Z ≥ 0.15 and MAF of G1 ≥ 0.05 or (2). both MAF of

Z and MAF of G1 ≥ 0.12 is needed for Gaussian approach Method 3 to have good type 1
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error performance.
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Figure 5.20: QQ-plots and power curves for different MAF lower bounds

(a). (Differenced) QQ-plot of -log10 p-values when MAF of G1 ≥ 0.05 and MAF of
Z ≥ 0.15 (black), 0.12 (red). (b). (Differenced) QQ-plot of -log10 p-values when MAF of
G1 ≥ 0.12 and MAF of Z ≥ 0.12. (c) Power curves when MAF of G1, G2 ≥ 0.05 and MAF
of Z ≥ 0.15. x-axis is the -log10 scaled type 1 error for G1, y-axis is the power for (G2 ◦Z).
“HC t-test” means heteroscedasticity corrected t-test. (d). Power curves when MAF of
G1, G2 ≥ 0.12 and MAF of Z ≥ 0.12
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5.4 Effect of different minor allele frequencies of Z and Gj on

power

From above section, we conclude that in a scenario where we perform a pairwise search

among all possible pairs of SNPs in a genome, then if one of the SNP has MAF ≥ 0.15 and

another has MAF ∈ [0.05, 0.15), we should let Z be the one that has MAF ≥ 0.15. That is

to say, we condition one the SNP that has larger MAF. When both SNPs have MAF ≥ 0.15,

conditioning on either of them will lead to acceptable type 1 error performance.

In this section, we design an experiment where the MAFs for both Z and Gj are ≥ 0.15,

and we assign a relatively small MAF for Gj and a relatively large MAF for Z, to see if the

power performance of our method changes when the frequencies change.

For each choice of coefficients, we use the following setting to simulate N = 104 pairs of

(Z,Gj) independently:

• n = 1000

• Gj ∼ Ber(0.15), Z ∼ Ber(0.35), Gj , Z independent

• Y = α + bGj + rZ + δ(Gj − µj)(Z − µZ) + ϵ, ϵ ∼ N(0, 1)

• α = 1, δ =
√

0.025
σ2Gj

σ2Z
= 0.928

• (Gj , Z) are filtered by criterion of minimum cell count ≥ 20

We tried the following 3 cases:

1. b = r = 0

2. b =

√
0.025
σ2G

= 0.44, r = 0

3. b = 0, r =
√

0.025
σ2z

= 0.33
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We then test interaction between the two variants using Gaussian Method3 with (1) Z

being the variant with smaller MAF and Gj being the variant with larger MAF and (2) the

reverse (Z being the variant with larger MAF and Gj being the variant with smaller MAF).

Fig 5.21 are QQ-plots of the resulting p-values on the -log10 scale. We can see that Method

3 has slightly larger power for the reversed pair, where Z is chosen to be the one that has

smaller MAF. However, the difference is too small. For example, at p-value cutoff 10−5, the

power for the original pair is

po = 0.7064,

the power for the reversed pair is

pr = 0.711

The z-score for testing the significance of the difference is

z =
pr − po√

pr(1−pr)
N +

po(1−po)
N

= 0.716 (5.9)

and the p-value is 0.24, so the difference between the power of the original pair and the

power for the reversed pair is not significant. Therefore, we may conclude that when the

MAFs of both 2 SNPs to be tested for interaction are ≥ 0.15, then whether to condition on

one or another does not affect the power or type 1 error performance. In this case, we may

choose which one to condition on based on correction of the “feast or famine” effect: we may

choose the one that potentially has worse “feast or famine” effect to be Z. By doing so, we

can get larger correction.
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Figure 5.21: −log10 scaled p-values from TINGA of reversed against original pairs
of Z, Gj

x-axis is for the original pair, y-axis is for the reversed pair. Both Z, Gj are Bernoulli
distributed. For the original pair, frequency of Gj is 0.07, frequency for Z is 0.25. Y is

generated by Y = α + bGj + rZ + δ(Gj − µG)(Z − µZ) + ϵ, α = 1, δ =

√
0.025
σ2Gσ

2
Z

. (a).

b = r = 0. (b). b =

√
0.025
σ2G

, r = 0. (c). b = 0, r =
√

0.025
σ2z
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CHAPTER 6

ANALYSIS OF FLOWERING TIME IN A. THALIANA

In this chapter we show the application of our methods on the A. thaliana dataset, for which

the genotypes are binary.

6.1 Data Description

We study the genetic data from Arabidopsis thaliana and use its flowering time, the log

scaled number of days between germination and flowering at 10◦C , as phenotype [48]. We

include 931 selected A. thaliana accessions (inbred lines) from difference regions. Therefore,

the genotypes are binary ( has 0/1 values only). The SNPs were filtered based on minor

allele frequency (MAF) ≥ 0.03 [49]. LD pruning was done to remove loci in pairwise LD of

r2 > 0.99 [49]. After filtering, there are 865,350 SNPs remained.

It is worth noting that the flowering time used as our trait is obtained by taking average

over 10 identical accessions: 10 “individuals” of A. thaliana that have exactly the same genetic

data. In this way, environmental noise is reduced. The estimated heritability is about 88%.

Before taking the average, it was about 44%.

In our analyses with this dataset, we use a LMM for the phenotype, where the GRM is

computed by all SNPs with allele frequency ≥ 0.05.

6.2 Performance for one particular SNP

Firstly, we pick some special SNPs as Z and do an interaction GWAS to have an rough idea

of the performance of different methods.

We pick SNP Chr5_18593622 as our first Z because it has relatively small marginal

p-value. Gj ’s are all SNPs in the genome that has correlation with Z between −0.1 to 0.1.

• frequency of Z: 0.28
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• number of Gj ’s: 696396

We test for interaction between selected Z and Gj ’s using Wald test and TINGA.

Fig 6.1 are (differenced) QQ-plots of p-values from different methods, with simultaneous

95% ELL acceptance regions for i.i.d. uniform p-values outlined in red, where these use the

method of [1]. (In a differenced QQ-plot, the y-axis depicts the difference between observed

and expected p-values, which is particularly helpful for creating a useful visualization when

the plot contains a large number of points.) We can see that for this particular SNP, the

distribution of p-values is much closer to uniform after TINGA adjustment.

6.3 “feast or famine” problem persists for simulated Gj’s

As we mentioned in previous section, in an interaction GWAS, the true null distribution of

the testing statistic is some distribution that depends on (Y, Z). Therefore, we may expect to

get similar pattern of the “feast or famine” effect for the same pair of Y, Z but with different

set of Gj ’s. To illustrate the persistence of “feast or famine” effect, we pick one SNP in the A.

thaliana dataset that has small GCIF for genome-wide interaction tests, denote it as our Z.

We apply MAF filtering and LD pruning using PLINK to the A. thaliana dataset and get a

set of 8183 SNPs with MAF ≥ 0.1 and pairwise LD r2 < 0.075. We first conduct interaction

tests between Z and each of the 8183 SNPs, and the trait Y is still the flowering time we use

for the real data analysis. The QQ-plots and GC inflation factors of the interaction p-values

are in Fig 6.2 (a). Then we keep the (Y, Z) pair the same, and simulate 8183 SNPs from

Bernoulli distribution. These simulated SNPs are independent of (Y, Z) and independent of

each other. We conduct the interaction tests again and get the QQ-plots in Fig 6.2 (b). As

we can see, for both the original SNPs and simulated SNPs, the -log10 p-values of Wald test

are severely deflated, and our methods have good performance in fixing this issue. Similar

to the results in Fig 2.1 and Table 2.1, this experiment also gives us an idea of how the “feast
94



Figure 6.1: QQ-plots of p-values
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Fix SNP Chr5_18593622 as Z and test its interaction with other SNPs in the genome. The
theoretical uniform quantiles are subtracted from both x and y coordinates, so that it has a
horizontal view. The red lines are the 95% ELL null confidence interval assuming there are
100,000 effective independent SNPs. Top: Unadjusted interaction p-values from Wald test.
Bottom: p-values from TINGA.
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or famine” effect is related to the particular value of (Y, Z) and presumably can be predicted

by it.

6.4 Strategy for detecting epistasis

Due to the large number of SNPs (totally 865,350), we are not able to do a pairwise search

over all possible pairs of SNPs for epistasis. Therefore, we first apply some filtering proce-

dures to narrow down the set of SNP pairs that we apply TINGA to. Then for the 2 SNPs

in a pair, we decide which SNP to condition on based on their MAFs and a diagnostic value

for the severity of the “feast or famine” effect (see Appendix 6.7).

Following are detailed steps:

Step1: select 865 Z’s with smallest marginal p-values

We start by only picking the SNPs with marginal p-values (from Wald test) in the smallest

0.1% range, that’s to say, 865 SNPs with smallest marginal p-values, and use them as Z, the

SNPs we want to test for interaction.

Step2: perform (Appendix: Fast approximate Wald test) to selected Z and all

possible Gj’s in the genome

Even with the number of tests reduced by a factor of more than 500, we still need a fast

computation strategy because we are performing interaction tests based on an LMM. We

take a two-stage approach, where we first apply a fast, approximate Wald test. Then we only

perform more time-consuming and accurate calculations for p-values that are small based on

the fast, approximate Wald test, and we content ourselves with the coarser approximation

for the p-values that are large. The key idea of the fast approximate Wald test is to regress

out all variables aside from the interaction term step by step using matrix operations, so

that we can avoid looping over the SNPs. We adopted this method to linear mixed model

and got approximate p-values for the interaction GWAS.
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Figure 6.2: QQ-plots of −log10 p-values for interaction tests
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(a). Interaction tests between Z and 8183 original SNPs from the A. thaliana dataset. (b).
Interaction tests between Z and 8183 independently simulated Bernoulli SNPs
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Step3: Perform more accurate p-value calculation only for those pairs with fast

approximate Wald p-value < 10−4 and minimum cell count (MCC) ≥ 5

We use above fast approximate p-values for further filtering:

Both the p-value for interaction in a LMM and the TINGA method will be applied

only to those pairs with fast, approximate Wald p-value < 10−4. Furthermore, for some

pairs, interaction was not tested at all because informativeness constraints were not met (we

required MCC ≥ 5) or our constraint on correlation was not met (we required r2 < .01).

After these filtering steps (based on MCC, r2 and fast approximate Wald p-value), there

are 57,149 pairs of SNPs remaining, with 728 of the originally chosen SNPs having at least

one pair, and these 57,129 are the pairs for which we calculate the interaction t-statistic and

TINGA statistic.

For the 57,129 pairs of SNPs, we first apply Gaussian Method 4 (fit homoscedastic model

of Y under alternative (interaction)) with the following strategy:

Let M1,M2 be the minor allele frequencies of the 2 SNPs in the pair.

1. if min(M1,M2) ≥ 0.15, or both M1,M2 ∈ [0.12, 0.15), condition on the SNP with

worse diagnostic ratio (see Appendix 6.7)

2. if max(M1,M2) ≥ 0.15 and min(M1,M2) ∈ [0.05, 0.15), condition on the SNP with

larger MAF

3. otherwise, do not apply TINGA

Then we pick the top 200 significant pairs from Gaussian Method 4 and apply Gaussian

Method 3 to them, where we fit the heteroscedastic model by

Y ∼ N(α + βGj + γZ + δ(Gj ◦ Z), σ2hdiag(Z) + σ2gK + σ2eI). (6.1)

Step 4: look for interesting pairs We look for interesting pairs for which
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1. regular Wald test gives relatively significant result while TINGA gives much larger

p-values: could be due to correction of “feast or famine” effect or

2. TINGA gives more significant result than Wald test

6.5 Findings

Among the top 10 significant pairs from Wald test, several of them involve a common SNP

Chr1_27657389. It has large diagnostic ratio: 2.03. For the interaction GWAS where

SNP Chr1_27657389 is fixed, the GCIF is 1.67. That is to say, with Wald test, there is

a systematic deflation of p-values in the interaction GWAS. Table 6.1 compares the results

from Wald test and TINGA. The last column shows the heteroscedasticity p-values by testing

for heteroscedasticity in Y due to Z. i.e., testing H0 : σ22 = 0 in

Y = α + Z +Gj + (Z ◦Gj) + ϵ, ϵ ∼ N(0, σ20I + σ21K + σ22diag(Z))

As we can see, all 3 pairs have quite large heteroscedasticity p-values, indicating that the

difference between Wald and TINGA results are most likely due to correction for “feast or

famine” effect, instead of correction for heteroscedasticity.

SNP Z SNP Gj Wald p-value TINGA Hetero. p-value
Chr1_27657389 Chr2_5319468 2.2× 10−9 2.9× 10−5 0.49

Chr1_27657389 Chr1_5422500 1.5× 10−8 4.9× 10−5 0.35

Chr1_27657389 Chr2_12389533 3.3× 10−8 5.3× 10−4 0.14

Table 6.1: Comparison between Wald test and TINGA

SNP Z has diagnostic ratio 2.03 and GCIF 1.67. “Hetero. p-value”: p-value for test
heteroscedasticity in Y due to Z

Table 6.2 shows some pairs that TINGA gives more significant results. As we can see, for

the first 2 pairs, the GCIFs and diagnostic ratios are > 1. It means that after correcting for

99



the systematic deflation of interaction p-values, TINGA still gives more significant result.

For the other 2 pairs, the GCIFs and diagnostic ratios are < 1. After correcting for the

systematic inflation of interaction p-values, TINGA gives more significant result, which is as

expected.

SNP Z GCIF R SNP Gj Wald TINGA
Chr2_9312347 1.23 1.38 Chr1_30240701 2.5× 10−7 2.7× 10−9

Chr5_12971212 1.30 1.30 Chr3_22936958 6.8× 10−6 4.0× 10−8

Chr1_24265614 0.88 0.87 Chr4_2614033 2.1× 10−5 2.0× 10−7

Chr3_21971020 0.93 0.91 Chr1_22559639 3.9× 10−5 1.4× 10−7

Table 6.2: Pairs for which TINGA gives more significant results

GCIF: genomic control inflation factor for interaction GWAS with SNP Z fixed
R: diagnostic ratio for SNP Z

6.6 Appendix: Fast approximate Wald test

Fast approximate t-test

The basic idea is to regress out everything else except y and the interaction term. Then

the t-statistics for m x’s can be computed at once via matrix multiplication.

Suppose we have phenotype y, SNPs z, X = (x1, x2, ..., xm) and covariates u. Let zc, Xc

be the centered genotypes. Let W = Xc ◦ zc = (x1c ◦ zc, ..., xmc ◦ zc) be the matrix of

interactions. We want the t-statistics for each of the epistasis by fitting m linear models

y ∼ N(uαi + γizc + βixic + δi(xic ◦ zc), σ2i I)

Step 1: regress u, zc out of y, Xc, Xc ◦ zc Let P be the matrix that projects to the

subspace spanned by (u, zc). We let

yr = y − Py
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Xr = Xc − PXc

Wr = Xc ◦ zc − P (Xc ◦ zc)

Step 2: regress each column of Xr out of yr and each column of Wr Since when the

subspace only has 1 dimension, the projection matrix can be directly written as 1
∥xr∥2

xrx
T
r

and the resulting variables can be computed by matrix operations in R. Let the results be

yrx and Wrx

Step 3: get the interaction t-statistics by regress each column of Wrx on cor-

responding column of yrx Again, since each projection subspace has dimension 1, the

result can be got by matrix operations in R

This fast method gets all m t-statistics without running a loop of m iterations.

Fast approximate Wald test

When fitting a linear mixed model, we can modify above method to get approximated test

statistics. Suppose we want to fit the model

y ∼ N(αi + γiz + βixi + δi(xi ◦ z),Ω)

where Ω = σ2gK+σ2eI. We could approximate it by a linear model by pre-multiply everything

by Ω−1/2:

Ω−1/2y ∼ N(αi(Ω
−1/21) + γi(Ω

−1/2z) + βi(Ω
−1/2xi) + δiΩ

−1/2(xi ◦ z), I)

We could let u = Ω−1/21 be the new covariate and apply the fast t-statistics method to the

new variables.
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6.7 Appendix: A diagnostic for “Feast or Famine” effect

As mentioned in Chapter 2, for a given (Y, Z), the true null conditional distribution FY,Z

depends on value of (Y, Z).

• For some value of Y, Z, we consistently have a “feast” problem;

• For some value of Y, Z, we consistently have a “famine” problem

Therefore, we could find some diagnostic as a function of Y, Z that predicts the FoF problem.

Recall that the regular t-statistic for testing interaction is

Tj =

√
n− k − 3 (Gj ◦ Z)T PMY√

(Gj ◦ Z)T PM (Gj ◦ Z) · Y TPMY − ((Gj ◦ Z)TPMY )2
:=

√
n− k − 3

Nj

Dj
, (6.2)

For a given (Y, Z), the true variance for the numerator Nj should be Var(Nj |Y, Z), but

the regular t-test is using

D2
j =

(
Gj ◦ Z

)T
PM

(
Gj ◦ Z

)
· Y TPMY − (

(
Gj ◦ Z

)T
PMY )2

Therefore, the ratio Var(Nj |Y,Z)

D2
j

represents how the true variance is different from the

variance used in t-test

For D2
j , take asymptotic approximation in Gj |Y, Z, we get a function D2

Y,Z in Y, Z that

represents the asymptotic value of the (square of) denominator used in t-test given (Y, Z)

We get the diagnostic ratio by

R =
Var(Nj |Y, Z)

D2
Y,Z

(6.3)

In the simplest case where there is no covariates other than intercept, and the noise is

N(0, σ2I),

R =
nSzzrr
SzzSrr

, (6.4)
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where r is the residual of Y after regressing out (1, Z) and Sab =
∑

i(ai− ā)(bi− b̄), Sabcd =∑
i(ai − ā)(bi − b̄)(ci − c̄)(di − d̄)

Extending it to a GRM case,

R =
n
∑

i,j(Σ̂
−1r)i(Σ̂

−1r)jKij(Zi − Z̄)(Zj − Z̄)

(rT Σ̂−1r)
∑

i,j(Zi − Z̄)(Zj − Z̄)PijKij
, (6.5)

where
Σ̂ = σ̂2eI + σ̂2gK

P = Σ̂−1 − Σ̂−11(1Σ̂−11)−11T Σ̂−1

r = Y − U(UT Σ̂−1U)−1UΣ̂−1Y, U = (1, Z)

(6.6)

Equation 6.4, 6.5 are derived by McPeek, M. S. ( McPeek, M. S., personal communication,

March 25, 2024).

103



CHAPTER 7

DISCUSSION

Identifying interaction, either G×G or G×E, can give insight into both genetic effects on a

complex trait and underlying biological mechanisms, and it can also help to clarify the role

of environment in the case of G × E testing. For testing interaction in a GWAS context,

we have identified and described the “feast or famine” effect, in which different interaction

GWASs have fundamentally different null distributions. We show that the “feast or famine”

effect applies for different types of variables, including normal, binomial or binary, and for

standard testing methods such as the t-test, F-test or likelihood ratio test for interaction. We

show that it affects only interaction GWAS, not ordinary association GWAS. If we consider

GWASs in which there is no interaction under the null hypothesis (so heteroscedasticity is

not present), then on average over different GWASs standard methods have correct type 1

error overall, but false positives are overly concentrated in certain GWASs (“feast” GWASs)

and false negatives are overly concentrated in certain other GWASs (“famine” GWASs). The

“feast or famine effect” can lead to excess type 1 error, reduced power, inconsistent results

across studies, and failure to replicate true signal. Furthermore, we show that whether a

given GWAS will be a “feast or famine” GWAS is a reproducible property, and that it can

be corrected for.

We develop the TINGA method which corrects the t-statistic for interaction by choosing

different conditioning variables that are more appropriate for a GWAS than the standard

choice. TINGA also allows for covariates and population structure through a LMM, and it

accounts for heteroscedasticity. In simulations we show that TINGA can greatly reduce the

“feast or famine” effect while preserving the overall type 1 error, which we show can result

in higher power.

We apply TINGA to a GWAS for flowering time in A. thaliana. Using TINGA we detect 5

significant interactions after Bonferroni correction, where all the detected interactions involve
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loci identified in previous studies as associated with flowering time. This demonstrates the

potential of the TINGA method for detecting interaction in a GWAS.

For epistasis detection in a GWAS, there is a computational challenge in testing epistasis

for all possible pairs of variants. When the model for Y is a LMM, as in our data analysis,

this computational challenge is made much greater, even for the usual LMM-based t-test

for interaction without any correction. We have developed a fast approximate version of

the LMM-based t-test for interaction, and we use it as part of an adaptive approach to

genome-wide testing, where more accurate but time-consuming methods are applied only if

the approximate p-value is sufficiently small. In other words, our strategy is to spend more

computational time on small p-values and to be content with coarse approximations to large

p-values. In future work, there could be further scope for making faster algorithms for all

aspects of interaction testing with a LMM in a GWAS context.

In epistasis detection, the situation of fixing one SNP and test its interaction with other

SNPs in a genome is related to another concept of marginal epistasis [26], which test the null

hypothesis that the fixed SNP has no interaction with any other SNP in the genome. The

“feast or famine” effect could be expected to have a huge impact on the testing of marginal

epistasis, making it all but impossible to reliably perform valid tests of marginal epistasis

without adjusting for the effect in some way. This could be an avenue of possible future

work. It is promising to apply the idea of conditioning on (Z, Y ) to the existing methods for

marginal epistasis and improve their performance.

Since detecting interactions in a GWAS setting might involve fixing Y and searching

through all possible SNP pairs, it makes sense to consider conditioning on Y only, which

could be another direction of future work.
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CHAPTER 8

SUPPLEMENTAL INFORMATION

8.1 S1 R script to calculate p-values for the two-sided equal local

levels test for i.i.d. uniformity

A two-sided equal local levels (ELL) test for i.i.d. uniformity a set of variables X1, . . . , Xn

is described in [1], who created the R package qqconf, which is available on CRAN. The

primary purpose of qqconf is to generate appropriate simultaneous testing bands for a QQ-

plot, but in addition, the functions available in qqconf can be used to generate p-values for

the two-sided ELL test for i.i.d. uniformity.

In the R code below, suppose x ∈ (0, 1)n. The code obtains a p-value for the deviation

of x from i.i.d. uniform(0,1). The test is a QQ-plot based ELL test. It answers the question:

what is the largest level α for the acceptance region for the qq-plot that would result in

non-rejection of x, where the acceptance region is based on 2-sided ELL.

library(qqconf)

qqpvu <- function(x){

n = length(x)

tmp1 = sort(x)

tmp2 = pbeta(tmp1,c(1:n),c(n:1))

tmp3 = min(min(tmp2),1-max(tmp2))*2

lb = qbeta(tmp3/2,c(1:n),c(n:1))

ub = qbeta(1-tmp3/2,c(1:n),c(n:1))

get_level_from_bounds_two_sided(lb,ub)

}
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