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Abstract

This dissertation consists of two essays in financial econometrics.

In the first essay, coauthored with Kun Lu and Dacheng Xiu, we investigate estimators

of factor-model-based large covariance (and precision) matrices using high-frequency data,

which are asynchronous and potentially contaminated by the market microstructure noise.

Our estimation strategies rely on the pre-averaging method with refresh time to solve the

microstructure problems, while using three different specifications of factor models with

a variety of thresholding methods, respectively, to battle the curse of dimensionality. To

estimate a factor model, we either adopt the time-series regression (TSR) to recover loadings

if factors are known, or use the cross-sectional regression (CSR) to recover factors from known

loadings, or use the principal component analysis (PCA) if neither factors nor their loadings

are assumed known. We compare the convergence rates in these scenarios using the joint in-

fill and increasing dimensionality asymptotics. To evaluate the empirical trade-off between

robustness to model misspecification and statistical efficiency among all 30 combinations of

estimation strategies, we run a horse race on the out-of-sample portfolio allocation with Dow

Jones 30, S&P 100, and S&P 500 index constituents, respectively, and find the pre-averaging-

based strategy using TSR or PCA with location thresholding dominates, especially over the

subsampling-based alternatives.

In the second essay, we leverage high-frequency data from over 10,000 stocks spanning

more than two decades to apply machine learning algorithms to the task of forecasting re-

alized volatility (RV). By exploiting the nonlinear relationships between RV and a wide

xi



range of features and panel information, machine learning algorithms, particularly neural

networks, exhibit significantly enhanced performance compared to traditional ordinary least

square methods. Our findings suggest that employing a universal model that combines all

stocks outperforms individual models tailored to each stock, resulting in more reliable and

less extreme predictions. The ensemble neural networks achieve a relative R2 of over 18%

compared to the benchmark HAR model for S&P 500 stocks and over 11% for US stocks.

Furthermore, utilizing a straightforward utility-based framework, we show that neural net-

works offer a 40 basis points advantage over the HAR model for S&P 500 stocks and a 30

basis points advantage for US stocks.
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Chapter 1

Knowing Factors or Factor Loadings, or Neither?

Evaluating Estimators of Large Covariance Ma-

trices with Noisy and Asynchronous Data

This chapter is a joint work with Kun Lu and Dacheng Xiu, and it is pulished on Journal of

Econometrics (https://doi.org/10.1016/j.jeconom.2018.09.005).

1.1 Introduction

Factor models provide a parsimonious representation of the dynamics of asset returns, as mo-

tivated by Ross (1976)’s arbitrage pricing theory. Since this seminal work, researchers have

devoted significant effort to the search for proxies of factors (e.g., Fama and French (1993)

and Fama and French (2015)) or characteristics of stocks (e.g., Daniel and Titman (1997))

to explain the cross-sectional variation of expected returns. These factors and characteristics

also serve as natural candidates for factors and loadings that drive the time-series dynamics

of stock returns. In this paper, we make use of a factor model to assist the estimation of

large covariance matrices among stock returns.

The factor-model specification leads to a low-rank plus sparse structure of the covariance

matrix, which guarantees a well-conditioned estimator as well as a desirable performance

1
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of its inverse (precision matrix). To estimate the low-rank component, we consider three

scenarios: known factors, known factor loadings, or unknown factors and factor loadings. In

the first two scenarios, we employ a time-series regression (TSR) or a cross-sectional regres-

sion (CSR) to estimate the unknown loadings or factors, using either portfolios and ETFs as

proxies for factors, or characteristics as proxies for factor loadings. In the third scenario, we

employ the principal component analysis (PCA) to identify latent factors and their loadings.

Combining the estimated factors and/or their loadings yields the low-rank component of the

covariance matrix. With respect to the sparse component, we adopt a variety of thresholding

methods that warrant positive semi-definite estimates of the covariance matrix.

In addition, we use the large cross section of transaction-level prices available at high

frequencies. High-frequency data provide a unique opportunity to measure the variation and

covariation among stock returns. The massive amount of data facilitates the use of simple

nonparametric estimators within a short window, such as the sample covariance matrix esti-

mator on a daily, weekly, or monthly basis, so that several issues associated with parametric

estimation using low-frequency time series covering a long timespan become irrelevant, such

as structural breaks and time-varying parameters; see, e.g., Aït-Sahalia and Jacod (2014) for

a review. However, the microstructure noise and the asynchronous arrival of trades, which

come together with intraday data, result in biases of the sample covariance estimator with

data sampled at a frequency higher than, say, every 15 minutes, exacerbating the curse of

dimensionality due to data elimination.

By adapting the pre-averaging estimator designed for low-dimensional covariance matrix

estimation, e.g., Jacod, Li, Mykland, Podolskij, and Vetter (2009), we construct noise-robust

estimators for large covariance matrices, making use of a factor model in each of the three

aforementioned scenarios. Using the large deviation theory of martingales, we establish the

desired consistency of our covariance matrix estimators under the infinity norm (on the

vector space) and the weighted quadratic norm, as well as the precision matrix estimators

2



under the operator norm. Moreover, we show TSR converges as the sample size increases,

regardless of a fixed or an increasing dimension. By contrast, the convergence of CSR and

PCA requires a joint increase of the dimensionality and the sample size – the so-called

blessings of dimensionality; see Donoho et al. (2000).

Empirically, we analyze the out-of-sample risk of optimal portfolios in a horse race among

various estimators of the covariance matrix as inputs. The portfolios comprise constituents

of Dow Jones 30, S&P 100, and S&P 500 indices, respectively. We find covariance matrix

estimators based on pre-averaged returns sampled at refresh times outperform those based

on returns subsampled at a fixed 15-minute frequency, for almost all combinations of estima-

tion strategies and thresholding methods. Moreover, either TSR or PCA, plus the location

thresholding that utilizes the Global Industry Classification Standards (GICS) codes, yield

the best performance for constituents of the S&P 500 and S&P 100 indices, whereas TSR

dominates in the case of Dow Jones 30.

Our paper is closely related to a growing literature on continuous-time factor models for

high-frequency data. Fan, Furger, and Xiu (2016) and Aït-Sahalia and Xiu (2017) develop

the asymptotic theory for large dimensional factor models with known and unknown factors,

respectively, assuming a synchronous and noiseless dataset. Their simulations show a clear

breakdown of either TSR or PCA when noise is present and the sampling frequency is more

than every 15 minutes. Pelger (2015a) and Pelger (2015b) develop the central limit results of

such models in the absence of the noise. Their asymptotic results are element-wise, whereas

the theoretical results in this paper focus on matrix-wise properties. Wang and Zou (2010)

propose the first noise-robust covariance matrix estimator in the high-dimensional setting,

by imposing the sparsity assumption on the covariance matrix itself; see also Tao, Wang,

and Zhou (2013), Tao, Wang, Yao, and Zou (2011), Tao, Wang, and Chen (2013), and Kim,

Wang, and Zou (2016) for related results. Brownlees, Nualart, and Sun (2017) impose the

sparsity condition on the inverse of the covariance matrix or the inverse of the idiosyncratic

3



covariance matrix. By contrast, we impose the sparsity assumption on the covariance of the

idiosyncratic components of a factor model, as motivated by the economic theory, which also

fits the empirical data better.

Our paper is also related to the recent literature on the estimation of the low-dimensional

covariance matrix using noisy high-frequency data. The noise-robust estimators include,

among others, the multivariate realized kernels by Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2011), the quasi-maximum likelihood estimator by Aït-Sahalia, Fan, and Xiu

(2010) and Shephard and Xiu (2017), the pre-averaging estimator by Christensen, Kin-

nebrock, and Podolskij (2010), the local method of moments by Bibinger, Hautsch, Malec,

and Reiss (2014), and the two-scale and multi-scale estimators by Zhang (2011) and Bibinger

(2012). Shephard and Xiu (2017) document the advantage of using a factor model in their

empirical study, even when the dimension of assets is as low as 13. We build our estima-

tor based on the pre-averaging method because of its simplicity in deriving the in-fill and

high-dimensional asymptotic results. Allowing for increasing dimensionality asymptotics

sheds light on important statistical properties of the covariance matrix estimators, such as

minimum and maximum eigenvalues, condition numbers, etc, which are critical for portfo-

lio allocation exercises. Aït-Sahalia and Xiu (2019b) develop a related theory of PCA for

low-dimensional high-frequency data.

Our paper is also related to the recent literature on large covariance matrix estimation

with low-frequency data. Fan, Fan, and Lv (2008) propose a large covariance matrix esti-

mator using a strict factor model with observable factors. Fan, Liao, and Mincheva (2011)

extend this result to approximate factor models. Fan, Liao, and Mincheva (2013) develop

the POET method for models with unobservable factors. Alternative covariance matrix

estimators include the shrinkage method by Ledoit and Wolf (2004) and Ledoit and Wolf

(2012), and the thresholding method proposed by Bickel and Levina (2008a), Bickel and

Levina (2008b), Cai and Liu (2011), and Rothman, Levina, and Zhu (2009).
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Our paper shares the theoretical insight with the existing literature of factor models

specified in discrete time. Bai and Ng (2002) and Onatski (2010) propose estimators to

determine the number of factors. Bai (2003) develops the element-wise inferential theory

for factors and their loadings. These papers, including ours, allow for more general models

than the approximate factor models introduced in Chamberlain and Rothschild (1983). The

above factor models are static, as opposed to the dynamic factor models in which the lagged

values of the unobserved factors may also affect the observed dependent variables. Inference

on dynamic factor models are developed in Forni, Hallin, Lippi, and Reichlin (2000), Forni

and Lippi (2001), Forni, Hallin, Lippi, and Reichlin (2004), and Doz, Giannone, and Reichlin

(2011); see Croux, Renault, and Werker (2004) for a discussion.

Factor models based on stock characteristics date back to Rosenberg (1974), who suggests

modeling factor betas of stocks as linear functions of observable security characteristics.

Connor and Linton (2007) and Connor, Hagmann, and Linton (2012) further extend this

model to allow for nonlinear or nonparametric functions. One of our covariance matrix

estimators, namely, CSR, is designed to leverage the linear factor model with characteristics

as loadings. Such an estimation strategy is widely used in the financial industry, but is

largely ignored by the academic literature.1 Our asymptotic analysis of this estimator fills

in this gap.

The rest of the paper is structured as follows. In Section 1.2, we set up the model

and discuss model assumptions. Section 1.3 proposes the estimation procedure for each

scenario of the factor model and establishes the asymptotic properties of these estimators.

Section 1.4 discusses the choice of tuning parameters. Section 1.5 provides Monte Carlo

simulation evidence. Section 1.6 evaluates these estimators in an out-of-sample optimal

portfolio allocation race. The appendix contains all mathematical proofs.

1. Barra Inc., which was acquired by MSCI Inc., was a leading provider of this type of covariance matrix
to practitioners; see, e.g., Kahn, Brougham, and Green (1998).
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1.2 Model Setup and Assumptions

1.2.1 Notation

Let pΩ,F , tFtu,Pq be a filtered probability space. Throughout this paper, we use λjpAq,

λminpAq, and λmaxpAq to denote the j-th (descending order), the minimum, and the maxi-

mum eigenvalues of a square matrix A, respectively. In addition, we use }A}1, }A}, }A}F, and

}A}Σ to denote the L1 norm, the operator norm (or L2 norm), the Frobenius norm, and the

weighted quadratic norm of a matrix A, that is, maxj
ř

i |Aij |,
a

λmaxpAᵀAq,
a

TrpAᵀAq,

and d´1{2}Σ´1{2AΣ´1{2}F, respectively. Note }A}Σ is only defined for a dˆd square matrix.

We use Id to denote a d ˆ d identity matrix. All vectors are regarded as column vectors,

unless otherwise specified. When A is a vector, both }A} and }A}F are equal to its Euclidean

norm. We also use }A}MAX “ maxi,j |Aij | to denote the L8 norm of A on the vector space.

We use ei to denote a d-dimensional column vector whose ith entry is 1 and 0 elsewhere.

We write An — Bn if |An|{|Bn| “ Op1q. We use C to denote a generic constant that may

change from line to line.

1.2.2 Factor Dynamics

Let Y be a d-dimensional log-price process, X be an r-dimensional factor process, Z be the

idiosyncratic component, and β be a constant factor loading matrix of size dˆ r. We make

the following assumption about their dynamic relationship:

Assumption 1. Suppose Yt follows a continuous-time factor model:

Yt “ βXt ` Zt, (1.1)

in which Xt is a continuous Itô semimartingale, that is,

Xt “

ż t

0
hs ds`

ż t

0
ηsdWs,
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and Zt is another continuous Itô semimartingale, satisfying

Zt “

ż t

0
fsds`

ż t

0
γsdBs,

where Ws and Bs are standard Brownian motions. In addition, hs and fs are progressively

measurable. Moreover, the processes ηs and γs are càdlàg, and, writing es “ ηsη
ᵀ
s , gs “ γsγ

ᵀ
s ,

es, es´, gs, and gs´ are positive-definite. Finally, for all 1 ď i, j ď r, 1 ď k, l ď d,

|βkj | ď C, for some C ą 0, and there exists a locally bounded process Hs, such that |hi,s|,

|ηij,s|, |γkl,s|, |eij,s|, |fkl,s|, and |gkl,s| are bounded by Hs uniformly for 0 ď s ď t.

Assumption 1 is fairly general except for two important limitations: β is constant and

jumps are excluded. The same constant β assumption has been adopted by e.g., Todorov

and Bollerslev (2010) in a low-dimensional setting and Fan, Furger, and Xiu (2016) and

Aït-Sahalia and Xiu (2017) in high-dimensional settings. In our empirical study, we impose

a constant β within each month, because β is available from the MSCI Barra at a monthly

frequency.

To emphasize and highlight the theoretical trade-offs in the estimation from a high-

dimensional perspective, we exclude jumps from our theoretical analysis to avoid delving into

unnecessary technicalities. As a result, our empirical covariance matrix estimates contain

the quadratic covariation contributed by co-jumps. Although co-jumps may be an important

component, we do not find it particularly important to separate them from the total quadratic

covariation for the large portfolio allocation exercise in which we are interested. Moreover,

separating jumps would substantially complicate the estimation procedure, e.g., with more

tuning parameters. In this paper, we desire simpler estimators while leaving analysis of

jumps for future work.

Next, we impose the usual exogeneity assumption:

Assumption 2. For any 1 ď k ď d, and 1 ď l ď r, we have rZk,s, Xl,ss “ 0, for any

7



0 ď s ď t, where r¨, ¨s denotes the quadratic covariation.

Our main goal is to estimate the integrated covariance matrix of Y , denoted as Σ “

1
t

şt
0 csds, where cs is the spot covariance of Ys. Assumptions 1 and 2 infer a factor structure

on cs:

cs “ βesβ
ᵀ
` gs, 0 ď s ď t.

As a result, we can decompose the quadratic covariation of Y within r0, ts, Σ, as

Σ “ βEβᵀ ` Γ,

where

Σ “
1

t

ż t

0
csds, Γ “

1

t

ż t

0
gsds, and E “

1

t

ż t

0
esds.

We omit the dependence of Σ, E, and Γ on t for brevity in notation.

Next we impose that factors are pervasive, in the sense that they influence a large number

of assets; see, e.g., Chamberlain and Rothschild (1983).

Assumption 3. E has distinct eigenvalues, with λminpEq bounded away from 0. Moreover,

there exists some positive-definite matrix B such that
∥∥d´1βᵀβ ´B

∥∥ “ op1q, as dÑ 8, and

λminpBq is bounded away from 0.

As in Aït-Sahalia and Xiu (2017), Assumption 3 leads to the identification of the number

of factors when factors and their loadings are latent. Fan, Furger, and Xiu (2016) also use

it in the case of known factors, when building the operator norm bound for the precision

matrix. Such an assumption may also be restrictive in that it excludes the existence of weak

factors; see, e.g., Onatski (2010). Dealing with weak factors requires a rather different setup,

so we leave it for future work.
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1.2.3 Sparsity

For high-dimensional covariance matrix estimation, a certain “sparsity” condition is necessary

for dimension reduction, in addition to a factor model, because the idiosyncratic component

of the covariance matrix, once the low-rank component is removed, is equally large. One

cannot obtain a good estimate of it without additional assumptions. Sparsity seems a reason-

able choice for both known-factor and unknown-factor models given the empirical findings

of Aït-Sahalia and Xiu (2017).

We define md as the degree of sparsity of Γ, where

md “ max
iďd

ÿ

jďd

|Γij |
q, for some q P r0, 1q.

The sparsity assumption imposes md{dÑ 0. This notion of sparsity follows from Rothman,

Levina, and Zhu (2009) and Bickel and Levina (2008b). When q “ 0, md is equal to the

maximum number of non-zero elements in rows of Γ, the usual notion used by Bickel and

Levina (2008a). In this case, sparsity simply means each row of Γ contains few non-zero

elements. Fan, Furger, and Xiu (2016) and Aït-Sahalia and Xiu (2017) consider this special

case, while requiring Γ to be block diagonal. Our assumption below is more general.

Under this notion of sparsity, we have

}Γ} ď }Γ}1 “ max
iďd

d
ÿ

jďd

|Γij | “ Opmdq.

Therefore, imposingmd{dÑ 0 creates a gap between eigenvalues of the low rank (βEβᵀ) and

the sparse (Γ) components of the covariance matrix Σ, which is essential for identification in

a latent factor model specification, and for estimation of the factor models in general.

To use sparsity for estimation, we define a class of thresholding functions sλpzq : RÑ R,

9



which satisfies

piq |sλpzq| ď |z|; piiq sλpzq “ 0 for |z| ă λ; piiiq |sλpzq ´ z| ď λ.

As discussed in Rothman, Levina, and Zhu (2009), Condition (i) imposes shrinkage, condition

(ii) enforces thresholding, and condition (iii) restricts the amount of shrinkage to be no more

than λ. The exact three requirements of sλp¨q ensure desirable statistical properties of the

estimated covariance matrix. Examples of such thresholding functions we use include hard

thresholding, soft thresholding, smoothly clipped absolute deviation (SCAD) (Fan and Li

(2001)), and adaptive lasso (AL) (Zou (2006)):

sHardλ pzq “ z1p|z| ą λq, sSoftλ pzq “ signpzqp|z| ´ λq`, sALλ pzq “ signpzqp|z| ´ λη`1
|z|´ηq`,

sSCADλ pzq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

signpzqp|z| ´ λq`, when |z| ď 2λ;

pa´1qz´signpzqaλ
a´2 , when 2λ ă |z| ď aλ;

z, when aλ ă |z| .

.

where a “ 3.7 and η “ 1, as suggested by Rothman, Levina, and Zhu (2009). We adopt

these functions in the construction of the estimators in Section 1.3. Although these choices

lead to the same convergence rate from our analysis, the resulting finite sample performance

of the covariance matrices differ quite a bit, which we investigate in simulations and the

empirical study.

1.2.4 Microstructure Noise

We analyze three scenarios of factor models, depending on whether the factorX or its loading

β are known. We use the term “known” instead of “observable”, because even if we assume

factor X can be proxied by certain portfolios in the literature, for instance, the Fama-French

three factors by Fama and French (1993), we allow for potential microstructure noise so that
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the true factors are always latent in our setup.

The first scenario assumes X is known, in which case, we denote the observed factor as

X‹:

Y ‹
tij
“ Ytij

` ε
y

tij
, X‹

tij
“ Xtij

` εx
tij
,

for 1 ď i ď d and 1 ď j ď N i
t , where ε

y and εx are some additive noises associated with

the observations at sampling times tijs, t
i
j denotes the arrival time of the jth transaction of

asset i, and N i
t is the number of transactions for asset i. We can thereby rewrite the factor

model (1.1) as

Y ‹
tij
“ βX‹

tij
` Z‹

o,tij
, (1.2)

where Z‹
o,tij

“ Ztij
`ε

y

tij
´βεx

tij
. Barring from the noise, this model is a standard linear regres-

sion. In the empirical study, we regard those portfolios that are useful to explain the cross

section of expected asset returns as factors, including the five Fama-French factors (Fama

and French (2015)) and the momentum factor (Carhart (1997)).2 We also add industry

portfolios as suggested by King (1966).

The second scenario assumes β is known and perfectly observed, yet Y is again contam-

inated, so we can write the model as

Y ‹
tij
“ βXtij

` Z‹
u,tij

, (1.3)

where Z‹
u,tij

“ Ztij
`ε

y

tij
. This model dates back to Rosenberg (1974), who developed a factor

model of stock returns in which the factor loadings of stocks are linear functions of observable

security characteristics. This model is equivalent to a model with characteristics as βs

associated with some linear latent factors. In the empirical study, we use 13 characteristics

2. Although these factors explain the cross section of expected returns, they also account for significant
variations in the time series of realizations.
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obtained from the MSCI Barra, a leading company that provides factors and covariance

matrices using this method.

In the third scenario, we only observe a noisy Y , so the model can be written into the

same form as (1.3). This model is a “noisy” version of the approximate factor model by

Chamberlain and Rothschild (1983) and Bai (2003), which can only be identified as the

dimension of Y increases to 8, thanks to the “blessing” of the dimensionality.

With respect to the microstructure noises, following Kim, Wang, and Zou (2016), we

assume

Assumption 4. Both tεxi u and tε
y
i u have the following structure:

εi,tij
“ ui,tij

` vi,tij
,

where, for each 1 ď i ď d, 1 ď j ď N i
t , writing ∆til

“ til ´ t
i
l´1,

ui,tij
“

8
ÿ

l“0

ρi,tij´l
ξi,tij´l

, vi,tij
“

8
ÿ

l“0

bi,tij´l
∆
´1{4

tij´l
r rBi,tij´l

´ rBi,tij´l´1
s.

We assume ξi,til
and ξ

j,tj
l1
are random variables with mean 0, and independent when l ‰ l1,

but potentially dependent for l “ l1. Also, ρi,til
is bounded in probability with

ř8
l“0 |ρi,til

| ă 8

uniformly in i, and ξi,til
is independent of the filtration tFtu generated by X and Z. Moreover,

rBi is a Brownian motion independent of ξi but potentially correlated with W and B of

Assumption 1, and bi,til
is adapted to the filtration tFtil

u, and bounded in probability with
ř8
l“0 |bi,til

| ă 8 uniformly in i. Additionally, we assume there exists ς ą 2, such that

maxi,j E|εi,tij
|2ς ă 8.

The microstructure noise has two independent components: u and v, where u allows for

serial dependence, and v allows for correlation with returns. Here vi,tij
has scaled Brownian
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increments, where the scale factor is of order ∆
´1{4

tij´l
.3 This assumption is motivated from

the microstructure theory and existing empirical findings that order flows tend to cluster in

the same direction and to be correlated with returns in the short run; see, e.g., Hasbrouck

(2007), Brogaard, Hendershott, and Riordan (2014). This assumption is therefore more

realistic in particular for data sampled at ultra-high frequencies. Kalnina and Linton (2008)

and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) adopt a similar assumption.

1.2.5 Asynchronicity

Because the transactions arrive asynchronously, adpoting the refresh time sampling scheme

proposed by Martens (2004) prior to estimation is common. The first refresh time is defined

as t1 “ max
!

t11, t
2
1, . . . , t

d
1

)

. The subsequent refresh times are defined recursively as

tj`1 “ max

#

t1
N1
tj
`1
, . . . , td

Nd
tj
`1

+

,

where N i
tj

is the number of transactions for asset i prior to time tj . We denote by n the

resulting sample size after refresh time sampling.

Effectively, this sampling scheme selects the most recent transactions at refresh times,

which avoids adding zero returns artificially, because by design, all assets have at least one

update between two refresh times. By comparison, the alternative previous-tick subsampling

scheme by Zhang (2011) discards more data in order to avoid artificial zero returns. That

said, the refresh time scheme is notoriously influenced by the most illiquid asset, which

largely determines the number of observations after sampling. Pair-wise refresh time, as

suggested by Aït-Sahalia, Fan, and Xiu (2010), is more efficient for entry-wise consistency

of the covariance matrix. In the same spirit, Hautsch, Kyj, and Oomen (2012) adopt a more

general strategy that conducts refresh-time sampling on blocks of assets formed by sorting

3. The scaled factor is slightly more restrictive than that of the low dimensional setting considered in
Ikeda (2016) and Varneskov (2016), where they use ∆

´1{2

tij´l

. This rate only allows for moderate endogeneity
which our estimator is robust to.
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on liquidity. The resulting covariance matrix has desirable entry-wise consistency, but its

matrix-wise properties are rather involved to analyze. Since our focus is the consistency

under matrix-wise norms, we adopt the refresh time sampling throughout. We also find

empirically that the refresh time approach delivers satisfactory performance. We make the

following assumption on the observation times, following Kim, Wang, and Zou (2016):

Assumption 5. The observation time tijs, 1 ď j ď N i
t , 1 ď i ď d, are independent of the

price process Xt and Zt, and the noise εx and εy. We assume the intervals between two

adjacent observations are independent, and that there exist constants n̄, C, and ς ą 2, such

that

max
1ďiďd

E|tij ´ t
i
j´1|

a
ď Cn̄´a, for any 1 ď a ď 2ς,

and that c1n̄ ď n ď c2n̄ holds with probability approaching 1, where c1 and c2 are some

positive constants.

A large literature is devoted to the modeling of durations, i.e., time intervals between

adjacent transactions, since the seminal paper by Engle and Russell (1998), which proposes

an autoregressive conditional duration (ACD) model and shows this parametric model can

successfully describe the evolution of time durations for (heavily traded) stocks. Our focus

here is the covariance matrix of returns, so we are agnostic about the dynamics of durations.

The independence between durations and prices is a strong assumption, yet is commonly used

in the literature, with the exception of Li, Mykland, Renault, Zhang, and Zheng (2014). This

assumption means we can make our inference regarding the times of trades, and therefore

refresh times, fixed.

To simplify the notation, we treat n as if it were deterministic in what follows. Also, we

use Y ‹ti to denote the most recent observation prior to or at the ith refresh time, and relabel

the associated noise as εxi and εyi . Note Y ‹ti ´ ε
y
i is not necessarily equal to Yti . Instead, it

equals the value of Y at actual transaction times. The same convention applies to X‹ and

Z‹.
14



1.3 Three Estimators and Their Asymptotic Properties

We now proceed to the estimators and their asymptotic properties. Our results rely on the

joint large sample (nÑ 8) and increasing dimensionality (dÑ 8) asymptotics, with a fixed

number of factors r and a fixed time window r0, ts.

To deal with the bias due to the microstructure noise, we adopt the pre-averaging method

proposed by Jacod, Li, Mykland, Podolskij, and Vetter (2009) to pre-weight the returns.

Specifically, we divide the whole sample into a sequence of blocks, with the size of each block

being kn, which satisfies:

kn

n1{2`δ
“ θ ` opn

´1{2
δ q, (1.4)

where θ ą 0 and δ ą 0. We set n´1{2
δ :“ n´1{4`δ{2`n´2δ, in which n´2δ reflects the bias due

to the microstructure noise, whereas n´1{4`δ{2 is the convergence rate of the pre-averaging

estimator given by Christensen, Kinnebrock, and Podolskij (2010) in the low dimensional

setting. n´1{2
δ is the effective sample size as we will see below.

Our choice of δ ą 0 is not optimal. Nonetheless, it results in a simpler estimator without

need of bias-correction, which also relies on fewer tuning parameters. More importantly,

it guarantees a semi-definite covariance matrix estimate in any finite sample, a desirable

property on which our following-up thresholding procedure relies.

The returns in each block are weighted by a piecewise continuously differentiable func-

tion g on r0, 1s, with a piecewise Lipschitz derivative g1. Moreover, gp0q “ gp1q “ 0, and
ş1
0 g

2psqds ą 0. A simple example of g would be gpsq “ s ^ p1 ´ sq. We define ψ1 “ φ1p0q,

ψ2 “ φ2p0q, where

φ1psq “

ż 1

s
g1puqg1pu´ sqdu, φ2psq “

ż 1

s
gpuqgpu´ sqdu.
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For a sequence of vectors V , we define its weighted average return as V̄ , given by

V̄i “
kn´1
ÿ

j“1

g

ˆ

j

kn

˙

∆n
i`jV, for i “ 0, . . . , n´ kn ` 1,

and ∆n
i V “ Vi ´ Vi´1, for i “ 1, 2, . . . , n, and Vi P tXti , Yti , Zti , X

‹
ti
, Y ‹ti , Z

‹
ti
, εxi , ε

y
i u.

In what follows, we propose three estimators corresponding to different scenarios of the

factor model. Each estimator uses the sample covariance matrix of these pre-averaged returns

as an input, which leads to robustness to the microstructure noise. Intuitively, the effect of

the noise is dominated by a strengthened return signal of each block.

1.3.1 Time-Series Regression (TSR)

When factors are known, we adopt a time-series regression-based approach using Ȳ ‹ and

X̄‹. We stack the d- and r-dimensional processes Y and X into U , and their pre-average

returns Ȳ ‹, X̄‹ into Ū‹, respectively:

U :“ pY ᵀ, Xᵀ
q
ᵀ, Ū‹ :“ pȲ ‹ᵀ, X̄‹ᵀqᵀ,

where U is a pd ` rq-dimensional process and Ū‹ is a pd ` rq ˆ pn ´ kn ` 2q dimensional

matrix. The quadratic covariation of U is given by

Π :“
1

t

ż t

0
rdUs, dUssds “

1

t

ż t

0

¨

˚

˝

βesβ
ᵀ ` gs βes

esβ
ᵀ es

˛

‹

‚

ds :“

¨

˚

˝

Π11 Π12

Π21 Π22

˛

‹

‚

,

which can be estimated by the sample covariance matrix of Ū‹:

pΠ “
n

n´ kn ` 2

1

ψ2knt

n´kn`1
ÿ

i“0

Ū‹i Ū
‹ᵀ
i ,
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where Ū‹i is the pi` 1qth column of Ū‹. We then construct estimators of each component of

the covariance matrix as:

pβ “ pΠ12p
pΠ22q

´1, pE “ pΠ22, and pΓ “ pΠ11 ´
pΠ12p

pΠ22q
´1

pΠ21.

We apply thresholding to the covariance matrix estimates and obtain:

pΓS “
´

pΓSij

¯

, pΓSij “

$

’

&

’

%

pΓij i “ j,

sλij p
pΓijq i ‰ j,

. (1.5)

A plug-in covariance matrix estimator is therefore given by:

pΣTSR “
pβpEpβ

ᵀ
` pΓS .

We postpone the choice of the thresholding method sp¨q and tuning parameters λij to Section

1.4, where we provide a procedure to guarantee the positive semi-definiteness of pΣTSR.

We provide the convergence rates under several matrix norms for both the covariance

matrix pΣTSR and its inverse:

Theorem 1. Suppose Assumptions 1 - 5 hold, and n´1{2
δ

?
log d “ op1q. Then we have

›

›

›

pΣTSR ´ Σ
›

›

›

MAX
“ Op

´

n
´1{2
δ

a

log d
¯

,

›

›

›

pΣTSR ´ Σ
›

›

›

Σ
“ Op

´

d1{2n´1
δ log d` pn´1

δ log dqp1´qq{2md

¯

,

}pβ ´ β} “ Op

´

n
´1{2
δ

a

log d
¯

.

Moreover, if
´

n´1
δ log d

¯p1´qq{2
md “ op1q, we have

∥∥∥∥´pΣTSR

¯´1
´ Σ´1

∥∥∥∥ “ Op

ˆ

´

n´1
δ log d

¯p1´qq{2
md

˙

,
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and λminp
pΣTSRq ě

1
2λminpΓq, with probability approaching 1.

Theorem 1 establishes the convergence rate, which depends on the degree of sparsity

md, q, the dimension d, and the local window length parameter δ. Under } ¨ }MAX norm,

covariance matrix estimators with/without a factor model deliver the same rate, because even

in a factor model, too many parameters for estimation remain from the low-rank component,

which determines the low convergence rate under } ¨ }MAX norm.

In terms of the inverse, when d ą n, estimating Σ´1 becomes infeasible without a factor

model, whereas the factor-based covariance matrix is invertible with high probability, and

the inverse converges to the target under the operator norm. Because } ¨ }Σ norm depends

on both Σ and Σ´1, and the latter is more accurately estimated using a factor model, under

} ¨ }Σ norm, using a factor model gives a better rate than the rate without it, which would

be d1{2n
´1{2
δ

?
log d.

More importantly, the minimum eigenvalue of the resulting covariance matrix is bounded

away from 0 with high probability, so that the covariance matrix estimate is well-conditioned.

This property is essential to warrant an economically feasible optimal portfolio using the

estimated covariance matrix as the input.

1.3.2 Cross-Sectional Regression (CSR)

If we observe the factor loading matrix β, we propose a cross-sectional regression approach

that recovers X at first. We start with a scenario in which the data are synchronous and

noise-free, because the asymptotic property of such an estimator is not available in the

literature, to the best of our knowledge. The estimator can be constructed as

pΣ˚CSR “ βqE˚βᵀ ` qΓ˚S ,
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where

qX “ pβᵀβq´1βᵀY, qE˚ “
1

t
qX qXᵀ, qΓ˚ “

1

t

´

Y ´ β qX
¯´

Y ´ β qX
¯ᵀ
,

and

qΓ˚S “
´

qΓ˚Sij

¯

, qΓ˚Sij “

$

’

&

’

%

qΓij i “ j,

sλij p
qΓijq i ‰ j,

.

This estimator is similar in spirit to the covariance matrix estimator provided by the MSCI

Barra; see Kahn, Brougham, and Green (1998). We analyze its properties as follows:

Theorem 2. Suppose Assumptions 1 - 3, 5 hold, n´1{2?log d “ op1q. Then we have

›

›

›

pΣ˚CSR ´ Σ
›

›

›

MAX
“Op

´

n´1{2
a

log d` d´1{2m
1{2
d

¯

,

›

›

›

pΣ˚CSR ´ Σ
›

›

›

Σ
“Op

ˆ

”

n´1{2d1{4
a

log d` d´1{4m
1{2
d

ı2
`

”

n´1{2
a

log d` d´1{2m
1{2
d

ı1´q
md

˙

,

›

›

›

qX ´X
›

›

›
“Op

´

d´1{2m
1{2
d

¯

.

Moreover, if
”

n´1{2?log d` d´1{2m
1{2
d

ı1´q
md “ op1q, we have

∥∥∥∥´pΣ˚CSR

¯´1
´ Σ´1

∥∥∥∥ “Opˆ”n´1{2
a

log d` d´1{2m
1{2
d

ı1´q
md

˙

,

and λminp
pΣ˚CSRq ě

1
2λminpΓq, with probability approaching 1.

Theorem 2 shows the CSR estimator does not converge under ‖¨‖MAX when d is fixed,

due to the second term d´1{2m
1{2
d , unlike the TSR estimator. This finding is not surprising,

because the cross-sectional regression exploits an increasing dimensionality to estimate X.

The first term n´1{2?log d is the same as that in the convergence rate of TSR in the absence

of noise (see Fan, Furger, and Xiu (2016)), because both approaches estimate Γ based on a

thresholded sample covariance matrix estimator. Comparing this convergence rate with that
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of the PCA estimator given by Aït-Sahalia and Xiu (2017), which is n´1{2?log d`d´1{2md,

is also interesting. The rate improvement in the CSR estimator comes from the second term

and is due to the knowledge of β. Overall, the convergence rate of CSR depends on a striking

trade-off between n and d.

In the general scenario where the noise plagues the data, we construct a pre-averaging-

based covariance matrix estimator:

pΣCSR “ βqEβᵀ ` qΓS ,

where

qX‹ “ pβᵀβq´1βᵀȲ ‹,

qE “
n

n´ kn ` 2

1

ψ2knt
qX‹ qX‹ᵀ,

qΓ “
n

n´ kn ` 2

1

ψ2knt

´

Ȳ ‹ ´ β qX‹
¯´

Ȳ ‹ ´ β qX‹
¯ᵀ
,

and

qΓS “
´

qΓSij

¯

, qΓSij “

$

’

&

’

%

qΓij i “ j,

sλij p
qΓijq i ‰ j,

.

The next theorem gives the convergence rates

Theorem 3. Suppose Assumptions 1 - 5 hold, and n´1{2
δ

?
log d` d´1{2m

1{2
d “ op1q. Then

we have

›

›

›

pΣCSR ´ Σ
›

›

›

MAX
“Op

´

n
´1{2
δ

a

log d` d´1{2m
1{2
d

¯

,

›

›

›

pΣCSR ´ Σ
›

›

›

Σ
“Op

ˆ

”

n
´1{2
δ

a

log dd1{4
` d´1{2m

1{2
d

ı2
`

”

n
´1{2
δ

a

log d` d´1{2m
1{2
d

ı1´q
md

˙

,

›

›

›

qX‹ ´ X̄‹
›

›

›
“Op

´

d´1{2m
1{2
d

¯

.
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Moreover, if
”

n
´1{2
δ

?
log d` d´1{2m

1{2
d

ı1´q
md “ op1q, we have

∥∥∥∥´pΣCSR

¯´1
´ Σ´1

∥∥∥∥ “Opˆ”n´1{2
δ

a

log d` d´1{2m
1{2
d

ı1´q
md

˙

,

and λminp
pΣCSRq ě

1
2λminpΓq, with probability approaching 1.

Compared to the results of Theorem 2, the rates in Theorem 3 remain the same except

that n is replaced by nδ, which is the effective sample size when noise is present. The same

intuition as in the no-noise case holds as well. Moreover, as discussed previously, the choice

of δ ą 0 leads to a simpler estimator despite it being less efficient.

1.3.3 Principal Component Analysis (PCA)

Without prior knowledge of factors or their loadings, we apply PCA to the pre-averaged

covariance matrix estimate based on Ȳ ‹:

rΣ “
n

n´ kn ` 2

1

ψ2knt

n´kn`1
ÿ

i“0

Ȳ ‹i Ȳ
‹ᵀ
i .

Suppose pλ1 ą
pλ2 ą . . . ą pλd are the simple eigenvalues of rΣ, and pξ1,

pξ2, . . . ,
pξd are the

corresponding eigenvectors. Then rΣ can be decomposed as

rΣ “
pr
ÿ

j“1

pλjpξj
pξ
ᵀ
j `

rΓ, (1.6)

where pr is an estimator of r to be introduced below. Similar to TSR, we apply thresholding

on rΓ and obtain

rΓS “
´

rΓSij

¯

, rΓSij “

$

’

&

’

%

rΓij i “ j,

sλij p
rΓijq i ‰ j,

,
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and the resulting estimator of Σ is

pΣPCA “

pr
ÿ

j“1

pλjpξj
pξ
ᵀ
j `

rΓS . (1.7)

This estimator is motivated by the POET strategy by Fan, Liao, and Mincheva (2013)

for low-frequency data, and adapted from the PCA approach by Aït-Sahalia and Xiu (2017)

for high-frequency data. The idea behind this strategy is that the eigenvectors corresponding

to the first r eigenvalues of the sample covariance matrix can be used to construct proxies

of β, so that the low-rank component of Σ can be approximated by the first term on the

right-hand side of (1.6). The second term then approximates the sparse component of Σ,

which leads to the construction of the estimator given by (1.7).

This estimator can also be constructed from a least-squares point of view, which seeks F

and G such that

pF,Gq “ arg min
FPMdˆpr,GPMprˆn

›

›Ȳ ‹ ´ FG
›

›

2
F ,

subject to the normalization:

d´1FᵀF “ I
pr, GGᵀ is an pr ˆ pr diagonal matrix.

Bai and Ng (2002) and Bai (2003) propose this estimator to estimate factors and their

loadings in a factor model for low-frequency data.

Once we have estimates of factors and loadings, we can obtain the same rΓ and rΓS as

above by:

rΓ “
n

n´ kn ` 2

1

ψ2knt

`

Ȳ ‹ ´ FG
˘ `

Ȳ ‹ ´ FG
˘ᵀ
, rΓS “

´

rΓSij

¯

, rΓSij “

$

’

&

’

%

rΓij i “ j,

sλij p
rΓijq i ‰ j,

,

22



with which we can construct

pΣPCA “ t´1FGGᵀFᵀ
` rΓS . (1.8)

Although (1.7) is easier to implement, this equivalent form of pΣPCA is useful in the proof

and provides estimates of factors and their loadings (up to some rotation).

To determine the number of factors r, we propose the following estimator using a penalty

function:

pr “ arg min
1ďjďrmax

´

d´1λjprΣq ` j ˆ fpn, dq
¯

´ 1,

where rmax is some upper bound. This estimator is similar to that of Aït-Sahalia and

Xiu (2017), which shares the spirit with Bai and Ng (2002). The penalty function fpn, dq

satisfies two criteria. On the one hand, the penalty is dominated by the signal, i.e., the value

of d´1λjpΣq, for 1 ď j ď r. Because d´1λrpΣq is Opp1q as d increases, we select a penalty

that shrinks to 0. On the other hand, we require the penalty to dominate the estimation

error as well as d´1λjpΣq for r ` 1 ď j ď d to avoid overshooting. The choice of rmax does

not play any role in theory, yet it warrants an economically meaningful estimate of pr in a

finite sample or in practice.

Theorem 4. Suppose Assumptions 1 - 5 hold. Also, n´1{2
δ

?
log d ` d´1{2md “ op1q,

fpn, dq Ñ 0, and fpn, dq
´

n
´1{2
δ

?
log d` d´1md

¯´1
Ñ 8. Then we have

›

›

›

pΣPCA ´ Σ
›

›

›

MAX
“ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

,

›

›

›

pΣPCA ´ Σ
›

›

›

Σ
“ Op

ˆ

d1{2n´1
δ log d` d´1{2m2

d `md

´

n
´1{2
δ

a

log d` d´1{2md

¯1´q
˙

.

Also, there exists a rˆ r matrix H, such that with probability approaching 1, H is invertible,
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}HHᵀ ´ Ir} “ opp1q, and

‖F ´ βH‖MAX “ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

,∥∥∥G´H´1X
∥∥∥ “ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

.

If, in addition, n´1{2
δ

?
log d “ op1q, then λminp

pΣPCAq is bounded away from 0 with probability

approaching 1, and

›

›

›

pΣ´1
PCA ´ Σ´1

›

›

›
“ Op

ˆ

m3
d

´

n
´1{2
δ

a

log d` d´1{2md

¯1´q
˙

.

Due to the fundamental indeterminacy of a factor model, we only identify the latent

factors and their loadings up to some invertible matrix H. That said, the covariance matrix

estimator itself is invariant to H.

1.3.4 A Comparison of the Three Estimators

So far, we have obtained the convergence rates of all scenarios of factor models for the

covariance matrix and its inverse, under a variety of norms.

We observe the usual tradeoff between efficiency and robustness in all scenarios. In

terms of efficiency, TSR dominates CSR, which in turn dominates PCA. Nonetheless, PCA

is more robust to model misspecification in that its construction utilizes the least amount of

prior information. Interestingly, the loss of efficiency diminishes as the dimension of assets

increases, thanks to the blessings of dimensionality. In light of this tradeoff, we resort to

simulations in Section 1.5 for further comparison of the finite sample performance of these

estimators, and to empirical data in Section 1.6 for evaluation of their relevance in practice.
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1.4 Practical Considerations

1.4.1 Choice of Tuning Parameters

As discussed in Christensen, Kinnebrock, and Podolskij (2010), the pre-averaging estimator

we adopt is consistent in the low-dimensional case if 0 ă δ ă 0.5, but its CLT requires 0.1 ă

δ ă 0.5 so that the asymptotic bias due to noise is negligible compared to the asymptotic

variance.

The two terms in n´1{2
δ exactly characterizes the bias-variance trade-off in our setting.

Similar to Kim, Wang, and Zou (2016), the n´2δ term is due to the bias of the microstructure

noise, whereas n´1{4`δ{2 is due to the variance of the estimator. We thereby select δ “ 0.1

to balance the bias and variance.

The tuning parameter kn is determined by θ, once δ is given. With a large number of

observations, the estimates are not sensitive to the choice of kn as long as d is moderately

large. In simulations and empirical studies, we adopt a range of θs, and thus kns, all of which

lead to similar estimates that do not change our interpretations.

1.4.2 Choice of r and fpn, dq

A sensible choice of the penalty function could be

fpn, dq “ µ
´

n
´1{2
δ

a

log d` d´1md

¯κ
¨medianptλ̂1, ..., λ̂duq, (1.9)

for some tuning parameters µ and κ. One might also use the perturbed eigenvalue ratio

estimator in Pelger (2015a) to determine r, which gives almost the same result in simulations.

The latter requires one less tuning parameter, but its proof is more involved. Alternatively,

as argued by Aït-Sahalia and Xiu (2017), we can simply regard r as a tuning parameter from

the practical point of view. In fact, the performance of the estimator is not sensitive to pr,

as long as pr is greater than or equal to r, yet is not too large, as shown from our simulation
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results. We conjecture that the same convergence rate holds for our estimators as long as

pr ě r and pr is finite, which is indeed the case for parameter estimation in the interactive

effect models; see, e.g., Moon and Weidner (2015). The proof likely involves the random

matrix theory that is not available for continuous martingales. We leave this investigation

for future work. In our empirical studies, we find that as soon as r is greater than 3 but not

as large as 20, the comparison results remain the same qualitatively and the interpretations

are identical.

1.4.3 Choice of the Thresholding Methods

We compare two types of thresholding methods on the residual covariance matrix, e.g., pΓ

constructed in TSR.4 The same applies to qΓ (CSR) and rΓ (PCA).

The first one is the location-based thresholding utilizing domain knowledge (denoted as

location thresholding), as in Fan, Furger, and Xiu (2016). This approach preserves positive

semi-definiteness in a finite sample and is computationally efficient, because neither tuning

nor optimization is involved. Specifically, we first sort the residual covariance matrix pΓ into

blocks by assets’ industrial classifications (sector, industry group, industry, or sub-industry),

and then apply a block-diagonal mask to this residual covariance matrix. The thresholding

function can be written explicitly as:

slocλij pzq “ z1pλij “ 1q, where λij “ 1, if and only if pi, jq P the same block.

For each block, we have a positive semi-definite sub-matrix because pΓ is positive semi-

definite by construction, so that stacking these blocks on the diagonal produces a positive

semi-definite pΓS .

The second class of methods we consider employ a threshold based on the sample corre-

4. Alternatively, one can adopt the adaptive thresholding method by Cai and Liu (2011). In our sim-
ulations, this approach does not perform as well as the location-based and correlation-based thresholding
methods we consider.
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lation matrix. Specifically, we set

λij “ τ

b

pΓiipΓjj ,

where τ is some constant to be determined. With this threshold, we then apply Hard, Soft,

SCAD, and AL thresholding methods with sλij p¨qs given by Section 1.2.3, respectively, in

the construction of (1.5). These methods do not always guarantee a positive semi-definite

pΓS in a finite sample. Also, when τ is small, pΓS might not be sufficiently sparse.

To fix these issues, we find an appropriate τ via a grid search algorithm, following Fan,

Liao, and Mincheva (2013). We start from a small value of τ , and gradually increase it

until a positive semi-definite pΓS is obtained and the degree of sparsity is below a certain

threshold. As τ increases, the degree of sparsity decreases, and the solution shrinks toward

the diagonal of pΓ, which is positive semi-definite. Thus, our grid search is guaranteed to

produce a solution. In other words, this algorithm yields a positive semi-definite estimate

in a finite sample. Note the grid search for τ is easier here than that of Fan, Liao, and

Mincheva (2013), because τ is bounded between 0 and 1. In practice, a natural choice of

the desired degree of sparsity can be obtained using that of the location-based thresholding,

which is computationally less expensive than the cross-validation method.

1.5 Monte Carlo Simulations

In this section, we investigate the finite sample performance of the pre-averaging estimator

and compare it with the subsampling method discussed in Fan, Furger, and Xiu (2016) and

Aït-Sahalia and Xiu (2017). The latter estimators are built upon the realized covariance

estimators using subsampled returns. We simulate 1,000 paths from a continuous-time r-

factor model of d assets specified as

dYi,t “
r
ÿ

j“1

βi,jdXj,t ` dZi,t, dXj,t “ bjdt` σj,tdWj,t, dZi,t “ γ
ᵀ
i dBt,
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where Wj,t is a standard Brownian motion and Bt is a d-dimensional Brownian motion, for

i “ 1, 2, . . . , d, and j “ 1, 2, . . . , r. They are mutually independent. Xj is the jth factor, and

we set X1 as the market factor, with the associated loadings being positive. The covariance

matrix of Z, Γ, is a block-diagonal matrix with Γi,l “ γ
ᵀ
i γl. We also allow for time-varying

σ2
j,t which evolves as

dσ2
j,t “ κjpθj ´ σ

2
j,tqdt` ηjσj,td

rBj,t, j “ 1, 2, . . . , r,

where rBj is a standard Brownian motion with ErdBj,td rBj,ts “ ρjdt. We choose d “ 500

and r “ 3. We fix t at 21 trading days, i.e., t “ 1{12. In addition, κ “ p3, 4, 5q, θ “

p0.09, 0.04, 0.06q, η “ p0.3, 0.4, 0.3q, ρ “ p´0.6,´0.4,´0.250q, and b “ p0.05, 0.03, 0.02q.

As for the factor loadings, we sample β1 „ Ur0.25, 1.75s, and β2, β3 „ N p0, 0.52q. The

diagonal elements of Γ are sampled independently from Ur0.1, 0.2s, with constant within-

block correlations sampled from Ur0.1, 0.4s for each block. To generate blocks with random

sizes, we fix the largest block size at 35, and randomly generate the sizes of the blocks from

a uniform distribution between 10 and 35, such that the total size of all blocks is d. βs and

block sizes are randomly generated but fixed across Monte Carlo repetitions.

We simulate the noise in log prices for each asset as an MA(1) process, i.e., εy
i,tij

“

ξi,tij
´ 0.5ξi,tij´1

, where ξi,tij
is an i.i.d. normal noise with mean 0 and variance 0.0012. To

mimic the asynchronicity, we censor the data using Poisson sampling, where the number

of observations for each stock is sampled from a truncated log-normal distribution. The

log-normal distribution logN pµ, σ2q has parameters µ “ logp2500q and σ “ 0.8, and the

lower and upper truncation boundaries are 1,000 and 23,400, respectively, which matches

the empirical data on S&P 500 index constituents.

For pre-averaging estimators, we compare a range of local window lengths by varying θ

in (1.4). For subsampling estimators, we compare a range of subsampling frequencies from

every 5 minutes to every 65 minutes, denoted as ∆n in seconds. We also add the benchmark
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estimates using noiseless returns sampled at a 5-minute frequency without asynchronicity

for comparison. In addition, we consider a “mixed” approach by applying the pre-averaging

method to the subsampled data, in order to check the marginal effect of the refresh-time

versus subsampling. Because the simulated Γ is a block-diagonal matrix, we regard the

location-based thresholding method as the benchmark, and compare its performance with

other thresholding methods in Section 1.4.3. We present the simulation results in Tables 1.1,

1.2, and 1.3.

Estimator Pre-Averaging Subsampling Noiseless Mixed
Tuning θ θ θ θ ∆n ∆n ∆n ∆n ∆˚n θ,∆n

Parameters 0.04 0.06 0.08 0.10 300 900 1, 800 3, 900 300 0.08, 900
Location Thresholding

}pΣ´ Σ}MAX

TSR 0.06 0.06 0.06 0.06 0.12 0.08 0.09 0.13 0.03 0.09
CSR 0.05 0.04 0.04 0.04 0.11 0.07 0.07 0.09 0.03 0.06
PCA 0.06 0.06 0.06 0.06 0.12 0.08 0.09 0.17 0.04 0.09

}βpEβᵀ ´ βEβᵀ}MAX

TSR 0.03 0.04 0.05 0.05 0.04 0.06 0.08 0.11 0.03 0.07
CSR 0.02 0.02 0.03 0.03 0.02 0.03 0.04 0.06 0.02 0.04
PCA 0.04 0.04 0.05 0.06 0.04 0.06 0.08 0.19 0.04 0.08

}pΓ´ Γ}MAX

TSR 0.05 0.04 0.04 0.04 0.12 0.06 0.06 0.07 0.02 0.05
CSR 0.05 0.04 0.03 0.03 0.11 0.06 0.06 0.07 0.02 0.05
PCA 0.05 0.04 0.03 0.03 0.11 0.06 0.06 0.17 0.02 0.05

}pΣ´ Σ}Σ

TSR 0.31 0.24 0.24 0.26 0.80 0.40 0.43 0.62 0.14 0.39
CSR 0.30 0.23 0.22 0.23 0.79 0.37 0.37 0.48 0.13 0.33
PCA 0.31 0.25 0.24 0.26 0.79 0.40 0.43 0.93 0.15 0.40

}ppΣq´1 ´ Σ´1}

TSR 5.70 4.62 4.42 5.92 9.43 6.50 10.45 30.16 3.57 9.82
CSR 5.71 4.66 4.42 5.84 9.42 6.52 10.26 28.90 3.54 9.62
PCA 5.70 4.63 4.44 5.93 9.41 6.50 10.49 28.68 3.56 9.84

}ppΓq´1 ´ Γ´1}

TSR 5.72 4.64 4.45 5.96 9.45 6.52 10.54 30.59 3.59 9.90
CSR 5.74 4.68 4.45 5.89 9.44 6.54 10.38 29.33 3.57 9.71
PCA 5.72 4.65 4.48 5.98 9.44 6.52 10.59 28.89 3.58 9.95

pr PCA 3.00 3.00 3.00 3.00 3.00 3.00 3.00 1.71 3.00 3.04

Table 1.1: Pre-Averaging vs. Subsampling Using Location Thresholding

Note: In this table, we compare the performance of pre-averaging estimators with subsampling esti-
mators using location thresholding method under a variety of matrix norms. The tuning parameter
θ is for the pre-averaging local window length (kn « θn1{2`δ), whereas the ∆n is the subsampling
frequency in seconds. The “Noiseless” column provides the estimates using clean and synchronous
data with a sampling frequency at ∆˚

n “ 300 (5-minute), and the “Mixed” column provides the
estimates using the pre-averaging approach on the subsampled data (θ “ 0.08,∆n “ 900). Because
the low-rank part βpEβᵀ is identical across thresholding methods, we only report it in the upper
panel. We also report the average estimated number of factors for the PCA approach. The number
of Monte Carlo repetitions is 1,000.
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First, we find pre-averaging estimators achieve smaller errors compared to subsampling

estimators, and are closer to the noiseless benchmark, for almost all model specifications

and almost all criteria. The pre-averaging method achieves a slightly better estimate of the

low-rank part βEβᵀ, and a better residual part Γ, especially under the operator norm for

Γ´1, which in turn gives a better estimate of the precision matrix Σ´1. Throughout, the

pre-averaging estimators are robust to a wide range of tuning parameters θ. The sweet spot

appears to be θ “ 0.08, whereas the optimal frequency for the subsampling method seems

to be achieved near ∆n “ 900.

Second, for comparison across various thresholding methods, we find in almost all sce-

narios that the Location thresholding achieves the best result, followed by Soft, AL, and

SCAD thresholding, whereas Hard thresholding appears to be the worst. The differences

are smaller in terms of }pΣ´ Σ}MAX and }pΓ´ Γ}MAX, because the largest entry-wise errors

are either achieved along the diagonal or on entries off the diagonal with large magnitudes,

which are least affected by various thresholding methods. Nevertheless, the differences are

most salient in terms of }ppΣq´1´Σ´1} and }ppΓq´1´Γ´1}. The former is arguably the most

important metric in this table, because it dictates the performance of the portfolio allocation

in the empirical exercise.

Third, the comparison between the “mixed” approach versus subsampling depends on a

bias-variance tradeoff. If the bias due to noise is large, the mixed approach outperforms; if

the noise effect becomes negligible for a sufficiently low sampling frequency, the subsampling

approach can outperform because its convergence rate is faster. By contrast, the “mixed”

approach is always dominated by the pre-averaging based on the refresh time scheme, because

the latter reserves more data and the two estimators are equally efficient given the same

amount of data.

Finally, to demonstrate the impact of the selected number of factors on the PCA, we

present in Table 1.4 the errors with a range of pr pre-set instead of being estimated. Due to
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Estimator Pre-Averaging Subsampling Noiseless Mixed
Tuning θ θ θ θ ∆n ∆n ∆n ∆n ∆˚n θ,∆n

Parameters 0.04 0.06 0.08 0.10 300 900 1, 800 3, 900 300 0.08, 900
Hard Thresholding

}pΣ´ Σ}MAX

TSR 0.08 0.08 0.09 0.09 0.12 0.09 0.11 0.13 0.08 0.10
CSR 0.08 0.08 0.08 0.08 0.11 0.08 0.08 0.09 0.07 0.08
PCA 0.08 0.08 0.08 0.08 0.12 0.09 0.10 0.17 0.08 0.10

}pΓ´ Γ}MAX

TSR 0.08 0.08 0.08 0.08 0.12 0.08 0.08 0.08 0.08 0.08
CSR 0.08 0.08 0.08 0.08 0.11 0.08 0.08 0.08 0.08 0.08
PCA 0.08 0.08 0.08 0.08 0.11 0.08 0.08 0.17 0.08 0.08

}pΣ´ Σ}Σ

TSR 0.60 0.50 0.44 0.43 1.09 0.61 0.53 0.58 0.37 0.49
CSR 0.57 0.46 0.41 0.39 1.04 0.56 0.46 0.41 0.35 0.42
PCA 0.57 0.47 0.42 0.41 1.04 0.58 0.51 0.67 0.35 0.47

}ppΣq´1 ´ Σ´1}

TSR 8.40 7.65 7.20 7.02 10.65 8.52 7.79 7.56 6.58 7.44
CSR 8.25 7.50 7.05 6.90 10.53 8.38 7.67 7.52 6.67 7.33
PCA 8.23 7.46 7.13 7.22 10.52 8.35 7.61 8.45 7.43 7.38

}ppΓq´1 ´ Γ´1}

TSR 8.42 7.67 7.22 7.04 10.67 8.54 7.81 7.59 6.60 7.46
CSR 8.27 7.52 7.07 6.92 10.55 8.41 7.70 7.55 6.69 7.36
PCA 8.25 7.49 7.03 6.88 10.54 8.37 7.62 8.40 6.70 7.30

Soft Thresholding

}pΣ´ Σ}MAX

TSR 0.06 0.06 0.07 0.07 0.12 0.09 0.10 0.13 0.05 0.09
CSR 0.06 0.05 0.05 0.06 0.11 0.07 0.07 0.09 0.04 0.07
PCA 0.06 0.06 0.06 0.07 0.12 0.09 0.10 0.15 0.05 0.09

}pΓ´ Γ}MAX

TSR 0.05 0.05 0.05 0.05 0.12 0.06 0.06 0.08 0.04 0.06
CSR 0.05 0.05 0.05 0.05 0.11 0.06 0.06 0.08 0.05 0.06
PCA 0.05 0.05 0.05 0.05 0.11 0.06 0.06 0.17 0.05 0.06

}pΣ´ Σ}Σ

TSR 0.51 0.40 0.36 0.35 1.05 0.55 0.50 0.60 0.25 0.45
CSR 0.49 0.38 0.34 0.32 1.01 0.51 0.44 0.45 0.25 0.40
PCA 0.50 0.40 0.35 0.35 1.02 0.53 0.49 0.74 0.25 0.45

}ppΣq´1 ´ Σ´1}

TSR 7.28 6.26 5.74 5.61 10.39 7.76 7.14 7.79 5.43 6.62
CSR 7.27 6.26 5.76 5.64 10.36 7.76 7.18 7.99 5.54 6.67
PCA 7.25 7.20 7.76 8.11 10.35 7.73 8.12 12.54 8.24 8.42

}ppΓq´1 ´ Γ´1}

TSR 7.31 6.28 5.76 5.63 10.42 7.78 7.16 7.82 5.68 6.64
CSR 7.29 6.28 5.78 5.67 10.39 7.78 7.20 8.03 5.76 6.69
PCA 7.28 6.26 5.75 5.63 10.38 7.75 7.17 12.05 5.77 6.68

Table 1.2: Pre-Averaging vs. Subsampling Using Hard and Soft Thresholding

Note: This table is a continuation of Table 1.1, where we report the simulation results using different
thresholding methods. All other settings remain the same.
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Estimator Pre-Averaging Subsampling Noiseless Mixed
Tuning θ θ θ θ ∆n ∆n ∆n ∆n ∆˚n θ,∆n

Parameters 0.04 0.06 0.08 0.10 300 900 1, 800 3, 900 300 0.08, 900
SCAD Thresholding

}pΣ´ Σ}MAX

TSR 0.06 0.06 0.07 0.07 0.12 0.09 0.10 0.13 0.05 0.09
CSR 0.06 0.05 0.05 0.06 0.11 0.07 0.07 0.09 0.04 0.07
PCA 0.06 0.06 0.06 0.07 0.12 0.09 0.10 0.15 0.05 0.09

}pΓ´ Γ}MAX

TSR 0.05 0.05 0.05 0.05 0.12 0.06 0.06 0.08 0.04 0.06
CSR 0.05 0.05 0.05 0.05 0.11 0.06 0.06 0.08 0.05 0.06
PCA 0.05 0.05 0.05 0.05 0.11 0.06 0.06 0.17 0.05 0.06

}pΣ´ Σ}Σ

TSR 0.51 0.40 0.36 0.36 1.05 0.55 0.52 0.61 0.26 0.47
CSR 0.49 0.39 0.34 0.33 1.01 0.52 0.45 0.45 0.25 0.41
PCA 0.50 0.40 0.36 0.35 1.02 0.54 0.51 0.74 0.26 0.46

}ppΣq´1 ´ Σ´1}

TSR 7.42 6.51 6.10 6.35 10.39 7.99 12.21 9.69 5.44 11.96
CSR 7.37 6.53 6.14 6.22 10.36 7.94 10.78 9.96 5.55 10.75
PCA 7.35 7.26 7.92 8.43 10.35 7.91 11.04 12.96 8.39 11.40

}ppΓq´1 ´ Γ´1}

TSR 7.44 6.53 6.12 6.38 10.42 8.01 12.36 9.78 5.68 12.10
CSR 7.39 6.55 6.17 6.26 10.39 7.97 10.91 10.05 5.76 10.88
PCA 7.37 6.53 6.14 6.25 10.38 7.94 10.68 12.60 5.77 10.97

AL Thresholding

}pΣ´ Σ}MAX

TSR 0.06 0.06 0.06 0.07 0.12 0.09 0.10 0.13 0.05 0.09
CSR 0.05 0.05 0.05 0.05 0.11 0.07 0.07 0.09 0.04 0.07
PCA 0.06 0.06 0.06 0.07 0.12 0.09 0.10 0.16 0.05 0.09

}pΓ´ Γ}MAX

TSR 0.05 0.04 0.04 0.05 0.12 0.06 0.06 0.08 0.04 0.06
CSR 0.05 0.05 0.05 0.05 0.11 0.06 0.06 0.08 0.04 0.06
PCA 0.05 0.05 0.05 0.05 0.11 0.06 0.06 0.17 0.04 0.06

}pΣ´ Σ}Σ

TSR 0.48 0.38 0.35 0.36 1.03 0.55 0.55 0.67 0.23 0.50
CSR 0.47 0.37 0.34 0.34 1.00 0.52 0.50 0.53 0.23 0.45
PCA 0.48 0.38 0.35 0.36 1.00 0.54 0.55 0.75 0.24 0.50

}ppΣq´1 ´ Σ´1}

TSR 6.70 5.65 5.29 6.73 10.26 7.46 16.46 41.68 5.34 14.24
CSR 6.76 5.72 5.37 6.67 10.30 7.53 17.40 40.75 5.46 15.06
PCA 6.94 7.94 8.82 9.55 10.29 7.71 18.10 25.70 9.12 16.06

}ppΓq´1 ´ Γ´1}

TSR 6.72 5.66 5.32 6.79 10.29 7.48 16.70 42.81 5.59 14.42
CSR 6.78 5.75 5.43 6.78 10.32 7.56 17.72 41.92 5.71 15.32
PCA 6.77 5.73 5.44 6.89 10.32 7.54 17.95 25.58 5.71 15.87

Table 1.3: Pre-Averaging vs. Subsampling Using SCAD, and AL Thresholding

Note: This table is a continuation of Table 1.1, where we report the simulation results using different
thresholding methods. All other settings remain the same.
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space constraints, we only report the results with θ “ 0.08 for the pre-averaging, ∆n “ 900 for

the subsampling method, and the benchmark no-noise and synchronous case with ∆˚n “ 300.

Location thresholding is used in all cases. For the estimation of Σ and Σ´1, we find when

pr ă r, the performance is much worse in every metric than the case with pr “ r, whereas in

the case of pr ą r, the performance is only slightly worse, in particular when pr is within a

reasonable range (smaller than 20). For the purpose of covariance matrix estimation, this

result justifies treating r as a tuning parameter without estimating it. With respect to

estimating the low-rank and sparse components of Σ, using an incorrect number of factors

is harmful.

Location Thresholding
pr 1 2 3 4 5 6 8 10 15 20 30 50

}pΣ´ Σ}MAX

Pre-Averaging 0.20 0.14 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
Subsampling 0.20 0.15 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
Noiseless 0.20 0.14 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04

}βpEβᵀ ´ βEβᵀ}MAX

Pre-Averaging 0.24 0.16 0.05 0.08 0.09 0.10 0.10 0.10 0.11 0.11 0.12 0.14
Subsampling 0.24 0.16 0.06 0.09 0.10 0.10 0.11 0.11 0.11 0.12 0.13 0.16
Noiseless 0.24 0.16 0.04 0.08 0.08 0.09 0.09 0.09 0.09 0.10 0.10 0.12

}pΓ´ Γ}MAX

Pre-Averaging 0.25 0.17 0.03 0.07 0.07 0.08 0.09 0.09 0.09 0.09 0.09 0.11
Subsampling 0.27 0.19 0.06 0.07 0.08 0.08 0.09 0.09 0.09 0.09 0.09 0.10
Noiseless 0.24 0.16 0.02 0.07 0.07 0.08 0.09 0.09 0.09 0.09 0.09 0.11

}pΣ´ Σ}Σ

Pre-Averaging 1.11 0.66 0.24 0.25 0.26 0.27 0.29 0.31 0.36 0.39 0.55 0.75
Subsampling 1.19 0.76 0.40 0.41 0.43 0.44 0.46 0.48 0.54 0.59 0.78 1.03
Noiseless 1.07 0.62 0.15 0.15 0.16 0.16 0.18 0.19 0.21 0.23 0.34 0.49

}ppΣq´1 ´ Σ´1} ˆ 10´2

Pre-Averaging 0.10 0.09 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.07 0.07 0.09
Subsampling 0.10 0.09 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.08 0.09
Noiseless 0.10 0.09 0.04 0.04 0.04 0.04 0.04 0.04 0.05 0.06 0.06 0.07

}ppΓq´1 ´ Γ´1} ˆ 10´2

Pre-Averaging 0.10 0.09 0.04 0.08 0.13 0.21 0.36 0.50 0.87 1.35 1.69 2.06
Subsampling 0.10 0.09 0.07 0.08 0.11 0.17 0.26 0.35 0.59 0.84 1.03 1.26
Noiseless 0.10 0.09 0.04 0.14 0.23 0.42 0.79 1.09 2.03 3.23 4.36 5.01

Table 1.4: Impact of the Selected Number of Factors on the PCA Method

Note: We present the errors of the PCA approach for a variety of norms, using different number of
factors pr, with the true value of r being equal to 3. For tuning parameters, we select θ “ 0.08 for
pre-averaging estimators, ∆n “ 900 for subsampling estimators, and the benchmark no-noise and
synchronous case with ∆˚

n “ 300. Location thresholding is used in all cases. The number of Monte
Carlo repetitions is 1,000.
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1.6 Empirical Applications

1.6.1 Data

We collect data from the TAQ database intraday transaction prices of the constituents of

Dow Jones 30 index, S&P 100 index, and S&P 500 index from January 2004 to December

2013. The indices have 42, 152, and 735 stocks, respectively, during this sampling period.

We select stocks that are members of these indices on the last day of each month, and

exclude those among them that have no trading activities on one or more trading days of this

month, as well as the bottom 5% stocks in terms of the number of observations for liquidity

concerns. To clean the data, we adopt the procedure detailed in Da and Xiu (2017), which

only relies on the condition codes from the exchanges and the range of NBBO quotes to

identify outliers. We exclude overnight returns to avoid dividend issuances and stock splits.

Days with half trading hours are also excluded. We do not, however, remove jumps from

these intraday returns as they do not seem to matter for our purpose. We sample the stocks

using the refresh time approach, as well as the previous tick method at a 15-minute frequency.

We select 15 minutes because the Hausman tests proposed in Aït-Sahalia and Xiu (2019a)

suggest it is a safe frequency at which to use realized covariance estimators for this pool of

stocks.

Figure 1.1 plots the daily sample sizes after refresh time sampling for S&P 500, S&P

100, and Dow Jones 30 index constituents. In addition, it presents the quartiles of the

daily sample sizes for S&P 500 index constituents by different shading. As we increase the

number of assets, the daily refresh time observations decrease rapidly. Still, we are able to

obtain on average 284 observations per day for S&P 500, which is approximately equivalent

to sampling every 90 seconds. The average number of observations for S&P 100 and Dow

Jones 30 constituents are 905 and 2,105, respectively.

We collect the GICS codes from the Compustat database for the Location thresholding

34



Trading Intensity Graph
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Figure 1.1: Trading Intensity of Assets

Note: This figure plots the max, 5%, 25%, 50%, and 75% quantiles of the daily number of observa-
tions for the S&P 500 index constituents after cleaning. It also plots the sample size after refresh
time sampling for the Dow Jones 30, S&P 100, and S&P 500 index constituents, respectively.

method. The codes have 8 digits. Digits 1-2 indicate the company’s sector; digits 3-4 describe

the company’s industry group; digits 5-6 describe the industry; digits 7-8 describe the sub-

industry. Throughout 120 months and among the assets we consider, the time-series median

of the largest block size is 80 for sector-based classification, 39 for industry group, 27 for

industry, and 15 for sub-industry categories, for S&P 500 index constituents.

We construct observable factors from high-frequency transaction prices at a 15-minute

frequency. The factors include the market portfolio, the small-minus-big (SMB) portfo-

lio, the high-minus-low (HML) portfolio, the robust-minus-weak (RMW) portfolio, and the

conservative-minus-aggressive (CMA) portfolio in the Fama-French 5-factor model. We also

include the momentum (MOM) portfolio formed by sorting stock returns between the past

250 days and 21 days. We also collect the 9 industry SPDR ETFs from the TAQ database

(Energy (XLE), Materials (XLB), Industrials (XLI), Consumer Discretionary (XLY), Con-

sumer Staples (XLP), Health Care (XLV), Financial (XLF), Information Technology (XLK),
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and Utilities (XLU)). The time series of cumulative returns of all factors are plotted in Figure

1.2.

We obtain monthly factor loadings (exposures) from the MSCI Barra USE3 by Kahn,

Brougham, and Green (1998). The loadings we utilize include Earnings Yield, Momentum,

Trading Activity, Currency Sensitivity, Earnings Variation, Growth, Volatility, Dividend

Yield, Size, Size Nonlinearity, Leverage, and Value. In addition, we construct and add the

market exposure for each stock, using the slope coefficient in a time-series regression of its

weighted daily returns on the weighted S&P 500 index returns over the trailing 252 trading

days. The weights are chosen to have a half life of 63 days, so as to match the method

documented by USE3. In total, we have 14 observable loadings including the intercept term.

We normalize the factor exposures such that their cross-sectional means are 0 and variances

are 1 for each month. Although the covariance matrix estimation is invariant under such

transformations, the estimated factors now have similar scales. In case of missing exposures,

we use their latest available values, or set them to 0 if they are missing throughout the entire

sample period for certain stocks.5 The cumulative returns of the estimated factors based on

S&P 500 constituents are shown in Figure 1.3.

We plot the cumulative leading principal components of S&P 500 constituents using our

PCA method in Figure 1.4. Recognizing a one-to-one correspondence among the factors

in Figures 1.2, 1.3, and 1.4 is difficult, because the list of characteristics available from

the MSCI Barra does not match the observed factors we obtain. Instead, we plot their

generalized correlations using 15-minute returns in Figure 1.5, which measure how correlated

two sets of factors are, as suggested by Bai and Ng (2006) and recently employed in Pelger

(2015b). Indeed, strong coherence exists among the observed and inferred factors using

different approaches, in particular among the PCA and the CSR factors.

5. The empirical findings remain the same if we exclude stocks whose loadings are missing from the USE3
dataset.
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Figure 1.2: Time Series of Factors Used in TSR

Note: This figure plots the cumulative returns of the factors we have used in TSR, including the
market portfolio, the small-minus-big market capitalization (SMB) portfolio, the high-minus-low
price-earning ratio (HML) portfolio, the robust-minus-weak (RMW) portfolio, the conservative-
minus-aggressive (CMA) portfolio, the momentum (MOM) portfolio, as well as 9 industry SPDR
ETFs (Energy (XLE), Materials (XLB), Industrials (XLI), Consumer Discretionary (XLY), Con-
sumer Staples (XLP), Health Care (XLV), Financial (XLF), Information Technology (XLK), and
Utilities (XLU)). The overnight returns are excluded, same for the half trading days.
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Figure 1.3: Time Series of Estimated Factors by CSR

Note: This figure plots the cumulative returns of factors we estimate using CSR, based on S&P
500 constituents. The corresponding factor exposures include the intercept, the market beta, and
12 other variables from MSCI Barra USE3 (Earnings Yield, Momentum, Trading Activity, Cur-
rency Sensitivity, Earnings Variation, Growth, Volatility, Dividend Yield, Size, Size Nonlinearity,
Leverage, and Value).
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Figure 1.4: Time Series of Estimated Factors by PCA

Note: This figure plots the cumulative returns of the leading principal components of S&P 500
constituents we estimate using PCA.
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TSR vs PCA
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Figure 1.5: Generalized Correlation Plot

Note: This figure provides the heatmap of the monthly generalized (canonical) correlations among
the time series of factors used in TSR and estimated from CSR and PCA methods. The y-axis
is the rank of the generalized correlation. For two sets of factors Xa and Xb, the generalized
correlation of rank k is calculated as the square-root of the kth-largest eigenvalue of the matrix
rXa, Xas

´1rXa, XbsrXb, Xbs
´1rXb, Xas, where r¨, ¨s denotes the quadratic covariation.
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1.6.2 Out-of-Sample Portfolio Allocation

We then examine the performance of the covariance matrix estimators in a constrained min-

imum variance portfolio allocation exercise because it requires only the estimated covariance

matrix as an input. This approach to evaluating estimators of large covariance matrices

is common; see, e.g., Fan, Zhang, and Yu (2012). Specifically, we consider the following

optimization problem:

min
ω

ωᵀpΣω, subject to ωᵀ1 “ 1, }ω}1 ď γ, (1.10)

where }ω}1 ď γ imposes an exposure constraint. As explained in Fan, Furger, and Xiu

(2016), when γ “ 1, all portfolio weights must be non-negative, i.e., no short selling occurs.

When γ is small,
∥∥∥pΣ´ Σ

∥∥∥
MAX

dictates the performance of the portfolio risk because the

optimal portfolio comprises a relatively small number of stocks. By contrast, when γ is large,

the portfolio is close to the global minimum variance portfolio, for which
∥∥∥pΣ´1 ´ Σ´1

∥∥∥ drives

the performance of the portfolio risk. Therefore, investigating the out-of-sample risk of the

portfolios in (1.10) for a variety of exposure constraints is informative about the quality of

the covariance matrix estimation.

To focus on the evaluation of covariance matrix estimators, we intentionally adopt the

simplest random walk forecasting model, i.e., pΣt « EtpΣt`1q, so that the estimated realized

covariance matrices using data of the previous month are directly used for the portfolio

construction the next month. For a range of exposure constraints, we measure the out-of-

sample portfolio risk using 15-minute realized volatility. We compare the covariance matrices

based on pre-averaging and subsampling methods, with many choices of θs and subsampling

frequencies ∆ns. Figures 1.6, 1.7, and 1.8 provide the results for the best choice of θ “ 0.08

and ∆n “ 900 in simulations and the five thresholding methods we consider.

Figure 1.6 shows that (i) for S&P 500 constituents, the Location thresholding (black)
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Figure 1.6: Out-of-Sample Risk of the S&P 500 Portfolio

Note: This figure compares the time-series average of the out-of-sample monthly volatility from
2004 to 2013 using S&P 500 Index constituents. The x-axis is the exposure constraint γ in the
optimization problem (1.10). The results are based on a combination of methods: (pre-averaging,
subsampling) ˆ (TSR, CSR, PCA) ˆ (Location, Hard, Soft, SCAD, AL thresholding). We use the
GICS codes at the industry group level for the location thresholding method. The pre-averaging
estimator uses θ “ 0.08, whereas the subsampling estimator uses 15-minute returns. The out-of-
sample volatility is calculated using 15-minute subsampled returns each month.
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Figure 1.7: Out-of-Sample Risk of the S&P 100 Portfolio

Note: This figure compares the time-series average of the out-of-sample monthly volatility from
2004 to 2013 using S&P 100 Index constituents. All other settings remain the same as those in
Figure 1.6.
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Figure 1.8: Out-of-Sample Risk of the Dow Jones 30 Portfolio

Note: This figure compares the time-series average of the out-of-sample monthly volatility from
2004 to 2013 using Dow Jones 30 Index constituents. All other settings remain the same as those
in Figure 1.6.

performs the best among all thresholding methods, followed by Soft (blue), AL (red), and

SCAD (green) approaches, with Hard thresholding (yellow) being the worst. (ii) The TSR

approach appears to be the best, with the lowest out-of-sample risk and most stable perfor-

mance across different thresholding methods. PCA is almost the same as TSR when Location

thresholding is applied, but its performance deteriorates if we apply other thresholding tech-

niques. CSR is dominated by the other two by a very large margin. This differs from our

simulation results, indicating CSR suffers from more serious model misspecification. (iii)

When the exposure constraint γ is small, the performance gap among different thresholding

methods is small. This result is expected because the ‖¨‖MAX norm differences across all

methods are similar, and in this case, the portfolios are so heavily constrained that they

are effectively low-dimensional. (iv) The pre-averaging estimators (solid lines) dominate the

subsampling estimators (dash-dotted lines) across almost all cases, which agrees with our

simulation results.

For S&P 100, we observe similar patterns from Figure 1.7, namely, that pre-averaging
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estimators outperform the subsampling estimators. PCA performs slightly worse than TSR.

With respect to the Dow Jones 30, Figure 1.8 shows the CSR and PCA perform considerably

worse than TSR. This finding is not surprising, given that our theory suggests consistency

of these two estimators requires a large dimension, whereas for TSR, a smaller cross section

works better.

Finally, we report in Table 1.5 and 1.6 the Diebold-Mariano (Diebold and Mariano (2002))

tests for comparison of the out-of-the-sample risk of portfolios based on the pre-averaging es-

timators against the subsampling estimators. Negative test statistics favor the pre-averaging

approach. Similar to Figures 1.6 - 1.8, when γ is large, pre-averaging estimators deliver sig-

nificantly smaller out-of-the-sample risk using TSR and PCA across all thresholding methods

for S&P 500 index constituents. For S&P 100 and Dow-Jones index constituents, the differ-

ence between pre-averaging and subsampling is significant only if using TSR.

Exposure Constraint γ 1 1.2 1.6 2 3 4 8
S&P 500

Location
TSR -1.51 -1.84* -2.25** -2.74*** -3.04*** -3.01*** -3.01***
CSR 0.01 -0.39 -1.36 -1.43 -1.74* -1.60 -1.56
PCA -2.20** -2.44** -2.53** -2.69*** -2.85*** -2.69*** -2.66***

Hard
TSR -1.43 -2.01** -2.46** -2.64*** -2.60*** -2.46** -2.44**
CSR 0.59 0.56 0.35 0.76 1.23 1.31 1.33
PCA -2.29** -2.81*** -3.18*** -3.37*** -3.44*** -3.23*** -3.22***

Soft
TSR -1.52 -2.09** -2.79*** -3.28*** -3.44*** -3.42*** -3.40***
CSR 0.49 0.35 0.08 0.43 0.78 0.85 0.89
PCA -2.21** -2.65*** -3.20*** -3.42*** -3.59*** -3.50*** -3.48***

SCAD
TSR -1.53 -2.04** -2.57** -2.98*** -3.08*** -2.98*** -2.97***
CSR 0.56 0.50 0.31 0.51 0.99 1.09 1.11
PCA -2.21** -2.65*** -3.09*** -3.32*** -3.23*** -2.91*** -2.88***

AL
TSR -1.54 -2.15** -2.84*** -3.33*** -3.53*** -3.46*** -3.44***
CSR 0.61 0.45 0.47 0.80 1.30 1.43 1.44
PCA -2.18** -2.60*** -3.10*** -3.27*** -3.32*** -3.10*** -3.09***

Table 1.5: Diebold-Mariano Tests for the Out-of-Sample Risk Comparison

Note: This table reports the Diebold-Mariano test statistics against the null that the out-of-sample
risk of the portfolios based on the pre-averaging method is equal to that based on the subsampling
approach. Negative numbers favor the pre-averaging approach. We use *, **, and *** to reveal the
significance at the 10%, 5%, and 1% levels, respectively.
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Exposure Constraint γ 1 1.2 1.6 2 3 4 8
S&P 100

Location
TSR -1.57 -2.09** -2.34** -2.46** -1.86* -1.51 -1.53
CSR -2.43** -2.79*** -3.23*** -3.19*** -3.30*** -3.30*** -3.30***
PCA -1.55 -1.93* -1.58 -1.40 -0.83 -0.64 -0.64

Hard
TSR -1.69* -2.25** -2.47** -2.43** -2.03** -2.05** -2.05**
CSR -1.87* -1.89* -1.67* -1.87* -1.93* -1.93* -1.93*
PCA -1.38 -1.64 -0.93 -1.06 -0.57 -0.31 -0.30

Soft
TSR -1.67* -2.31** -2.63*** -2.59*** -2.12** -2.05** -2.05**
CSR -2.17** -2.50** -2.21** -2.32** -2.40** -2.40** -2.40**
PCA -1.70* -2.16** -1.53 -1.62 -1.22 -1.16 -1.16

SCAD
TSR -1.69* -2.34** -2.63*** -2.56** -2.02** -1.93* -1.93*
CSR -2.15** -2.41** -2.14** -2.24** -2.34** -2.34** -2.34**
PCA -1.60 -2.03** -1.22 -1.32 -0.89 -0.72 -0.72

AL
TSR -1.68* -2.30** -2.61*** -2.61*** -2.28** -2.00** -2.01**
CSR -2.17** -2.39** -2.11** -2.25** -2.35** -2.35** -2.35**
PCA -1.70* -2.11** -1.48 -1.48 -1.02 -0.91 -0.91

Dow Jones 30

Location
TSR -1.83* -2.22** -2.70*** -2.64*** -2.55** -2.55** -2.55**
CSR -0.04 0.00 0.15 0.14 0.20 0.20 0.20
PCA 0.71 0.38 -0.07 -0.69 -0.75 -0.75 -0.75

Hard
TSR -1.74* -1.91* -2.65*** -2.50** -2.44** -2.44** -2.44**
CSR -0.69 -0.76 -0.68 -0.60 -0.49 -0.49 -0.49
PCA 0.63 0.23 -0.50 -1.06 -1.00 -0.97 -0.97

Soft
TSR -0.61 -1.09 -2.39** -2.28** -2.21** -2.21** -2.21**
CSR -0.58 -0.76 -1.02 -0.97 -0.84 -0.84 -0.84
PCA 0.62 0.23 -0.44 -0.97 -1.10 -1.10 -1.10

SCAD
TSR -0.58 -1.07 -2.39** -2.28** -2.21** -2.21** -2.21**
CSR -0.58 -0.76 -1.02 -0.98 -0.85 -0.85 -0.85
PCA 0.62 0.22 -0.46 -0.96 -1.10 -1.10 -1.10

AL
TSR -0.06 -0.62 -2.08** -2.01** -1.98** -1.98** -1.98**
CSR -0.51 -0.65 -1.06 -1.01 -0.88 -0.88 -0.88
PCA 0.64 0.25 -0.43 -0.85 -1.02 -1.02 -1.02

Table 1.6: Diebold-Mariano Tests for the Out-of-Sample Risk Comparison

Note: This table is a continuation of Table 1.5, where we report the Diebold-Mariano Tests for the
S&P 100 and Dow Jones 30 index constituents. All other settings remain the same.

1.7 Conclusion

Leveraging a variety of factor models, we construct pre-averaging-based large covariance ma-

trix estimators using high-frequency transaction prices, which are robust to the asynchronous

arrival of trades and the market microstructure noise. We compare various estimators based
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on different combinations of factor model specifications and thresholding methods, in terms

of their convergence rates, their finite sample behavior, and their empirical performance in

a portfolio allocation horse race. Throughout, we find that pre-averaging plus TSR or PCA

with Location thresholding dominates the other combinations, in particular the subsampling

method. Also, CSR, the method MSCI Barra adopts for low-frequency data, performs con-

siderably worse in almost all scenarios we study. This bad performance is perhaps driven

by model misspecification, which can be alleviated with a potentially better set of factor

exposures.

1.8 Appendix: Mathematical Proofs

1.8.1 Proof of Theorem 1

We need a few lemmas.

Lemma 1. Suppose that n´1{2
δ

?
log d “ op1q. Under Assumptions 1 - ??, and for some

constants C0, C1 and C2, we have

piq P
´
›

›

›

pE´ E
›

›

›

MAX
ě C0n

´1{2
δ

a

log d
¯

“ Opr2C1d
´C2

0C2q, (1.11)

piiq P
´
›

›

›

pE´ E
›

›

›

F
ě C0rn

´1{2
δ

a

log d
¯

“ Opr2C1d
´C2

0C2q, (1.12)

piiiq P

¨

˝ max
1ďkďr
1ďlďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

X̄‹k,iZ̄
‹
o,li

ˇ

ˇ

ˇ

ˇ

ˇ

ě C0n
´1{2
δ

a

log d

˛

‚ (1.13)

“ OprC1d
´C2

0C2`1
q,

pivq P

˜

max
1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

Z̄‹o,kiZ̄
‹
o,li ´

ż t

0
gs,lkds

ˇ

ˇ

ˇ

ˇ

ˇ

(1.14)

ě C0n
´1{2
δ

a

log d
¯

“ OpC1d
´C2

0C2`2
q,

pvq P
ˆ

max
1ďjďd

›

›

›

pβj ´ βj

›

›

›
ě C0n

´1{2
δ

a

log d

˙

“ OpC1d
´C2

0C2`1
q, (1.15)

pviq P
´
›

›

›

pβ ´ β
›

›

›

F
ě C0d

1{2n
´1{2
δ

a

log d
¯

“ OpC1d
´C2

0C2`1
q, (1.16)

pviiq P
´
›

›

›

pβ ´ β
›

›

›

MAX
ě C0n

´1{2
δ

a

log d
¯

“ OpC1d
´C2

0C2`1
q, (1.17)
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pviiiq P

˜

max
1ďkďd

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

´´

β ´ pβ
¯ᵀ
X̄‹i

¯

k
ě C0r

2n´1
δ log d

¸

(1.18)

“ OpC1d
´C2

0C2`1
q,

pixq P
ˆ

max
1ďk,lďd

ˇ

ˇ

ˇ

pΓkl ´ Γkl

ˇ

ˇ

ˇ
ě C0n

´1{2
δ

a

log d

˙

“ OpC1d
´C2

0C2`2
q, (1.19)

pxq P
ˆ

max
1ďk,lďd

ˇ

ˇ

ˇ

pΓSkl ´ Γkl

ˇ

ˇ

ˇ
ě C0n

´1{2
δ

a

log d

˙

“ OpC1d
´C2

0C2`2
q. (1.20)

Proof of Lemma 1 . (i) Note that we have

pEkl “
n

n´ kn ` 2

1

ψ2kn

˜

n´kn`1
ÿ

i“0

X̄k,iX̄l,i `
n´kn`1
ÿ

i“0

X̄k,iε̄l,i `
n´kn`1
ÿ

i“0

X̄l,iε̄k,i `
n´kn`1
ÿ

i“0

ε̄k,iε̄l,i

¸

“T1 ` T2 ` T3 ` T4,

therefore,

Pp|pEkl ´ Ekl| ě uq ď Pp|T1 ´ Ekl| ě u{4q ` Pp|T2| ě u{4q ` Pp|T3| ě u{4q ` Pp|T4| ě u{4q.

For T1, this expression can be furthered decomposed as:

T1 “
n

n´ kn ` 2

1

ψ2kn

#

n´kn`1
ÿ

i“1

a1,ipk, lqpXk,tki
´Xk,tki´1

qpXl,tli
´Xl,tli´1

q

`
ÿ

pi,jqPF
b1,ijpk, lqpXk,tki

´Xk,tki´1
qpXl,tli

´Xl,tli´1
q

,

.

-

,

for certain numbers a1,ipk, lq and b1,ijpk, lq such that

|a1,ipk, lq| ` |b1,ijpk, lq| ď Ckn.
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The set F is given by

F “ tpi, jq|1 ď i ď n´ kn ` 1, 1 ď j ď n´ kn ` 1, |i´ j| ď kn ´ 1, i ‰ ju .

Let

Aik,l :“
n

n´ kn ` 2

a1,ipk, lq

ψ2kn
“ Op1q.

We insert synchronized true price Xk,ti and Xk,ti´1 between Xk,tki
and Xk,tki´1

and write

Xk,tki
´Xk,tki´1

“ Xk,tki
´Xk,ti `Xk,ti ´Xk,ti´1 `Xk,ti´1 ´Xk,tki´1

.

Now using the above expression to expand pXk,tki
´Xk,tki´1

qpXl,tli
´Xl,tli´1

q, we obtain the

following decomposition
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ÿ
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Aik,lpXk,tki
´Xk,tki´1
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q
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ÿ
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`pXk,ti´1 ´Xk,tki´1
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q

*

”

n´kn`1
ÿ

i“1

Aik,l∆
n
i Xk∆n

i Xl `H
1
klp1q ` ¨ ¨ ¨ `H

1
klp8q.

For
řn´kn`1
i“1 Aik,l∆

n
i Xk∆n

i Xl, denote X
˚
t “

şt
0 σsdWs, and denote for 1 ď i ď n, 1 ď k, l ď
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p,

ζi,kl “ p∆
n
i X

˚
kqp∆

n
i X

˚
l q, ζ 1i,kl “ Epp∆n

i X
˚
kqp∆

n
i X

˚
l q|Fpi´1q∆n

q, ζ2i,kl “ ζi,kl ´ ζ
1
i,kl,

then Mt “
řn´kn`1
i“1 Aik,lζ

2
i,kl is a continuous-time martingale. By Itô’s lemma, we have

´

X˚t,k ´X
˚
s,k

¯´

X˚t,l ´X
˚
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¯

´
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s
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¯
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Therefore
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´
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˚
pi´1q∆n,l

¯

pσsdWsqk.

Now we have

ˇ

ˇ

ˇ

ˇ

ˇ
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ÿ
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q ´
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ÿ
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pi´1q∆n

Aik,lpσσ
ᵀ
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ˇ

ˇ

ˇ

ˇ

ˇ
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ˇ

ˇ

ˇ

ˇ

ˇ
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ÿ

i“1
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n
i X

˚
k
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pi´1q∆n
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n´kn`1
ÿ

i“1

Aik,l∆
n
i X

˚
l
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pi´1q∆n
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ÿ

i“1

Aik,l
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pi´1q∆n

bs,lds
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pi´1q∆n
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ˇ

ˇ

ˇ

ˇ

ˇ

.

We proceed with each of the four terms, starting with Mt.

The quadratic variation of Mt is given by

rM,M st “∆n

n´kn`1
ÿ

i“1

ż i∆n

pi´1q∆n

pAik,lq
2

˜

´

X˚s,k ´X
˚
pi´1q∆n,k

¯2
q
ÿ

r“1

σ2
s,lr

`

´
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¯2
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ÿ
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`2
´

X˚s,k ´X
˚
pi´1q∆n,k

¯´

X˚s,l ´X
˚
pi´1q∆n,l

¯

q
ÿ
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¸

ds.

According to Assumption 1, here we assume that ‖Xt‖8 ď K, ‖ht‖8 ď K, and
∥∥σtσᵀt ∥∥MAX ď

K, for some constant K ą 0. Therefore by Cauchy-Schwarz inequality, we have

rM,M st ď 16K3t∆n.

Then by the exponential inequality for a continuous martingale, we have

P

˜
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ˇ

ˇ
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ÿ
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In addition, by Cauchy-Schwarz inequality:
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where the last inequality follows from (1.21). Finally, notice that
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ˇ
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we can derive
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ÿ
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where the above inequality holds if x ą ptK2∆n maxi |A
i
k,l|q_ptK

?
∆nq_ptK∆n{2

a

1` 4{∆nq,

and C1 ě 3, C2 ď p512K3tq´1. On the other hand, if x violates this bound, i.e., x ď

C 1
?

∆n, we can choose C1 such that C1 expp´16C2C
12q ě 1, so that the inequality fol-

lows trivially. For H1
klp1q, . . . H

1
klp8q, we can use exactly the same technique for proving
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n
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Since it is easy to show that
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ż i∆n

pi´1q∆n

Aik,lpσσ
ᵀ
qs,klds “

ż ᵀ

0
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ÿ
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ÿ
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` P
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On the other hand, since we have

|a1,ipk, lq| ` |b1,ijpk, lq| ď Ckn,

and

pXk,tki
´Xk,tki´1

qpXl,tli
´Xl,tli´1

q “ Oppn
´1
q,

pXk,tki
´Xk,tki´1

qpXl,tli
´Xl,tli´1
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´1
q,
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n
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n

ψ2kn
b1,ijpk, lqpXk,tki

´Xk,tki´1
qpXl,tli

´Xl,tli´1
q,

then for pi, jq P F ,

X1,ij “ Oppn
´1
q.

Using a similar decomposition, we can obtain

ÿ

pi,jqPF
X1,ij “

ÿ

pi,jqPF
Bik,l∆

n
i Xk∆n

i Xl `H
2
klp1q ` ¨ ¨ ¨ `H

2
klp8q.

Since }Xt}8 is bounded, then Bik,l∆
n
i Xk∆n

i Xl ´ EpBik,l∆
n
i Xk∆n

i Xlq is also bounded.

Then according to the Hoeffding’s lemma, we obtain Bik,l∆
n
i Xk∆n

i Xl ´ EpBik,l∆
n
i Xk∆n

i Xlq

is a sub-Gaussian random variable. Similar arguments can be extended toH2
klp1q, . . . , H

2
klp8q.

Then according to Hoeffding inequality, and 7Fkl ď Cnkn, where 7Fkl denotes the number
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of elements in the set Fkl, then we have

P

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

pi,jqPF
X1,ij

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě u{8

˛

‚

ďP

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

1

n

ÿ

pi,jqPF
Bik,l∆

n
i Xk∆n

i Xl ´ E

¨

˝

1

n

ÿ

pi,jqPF
Bik,l∆

n
i Xk∆n

i Xl

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě u{24

˛

‚

`P
´
ˇ

ˇ

ˇ
H2
klp1q ` ¨ ¨ ¨ `H

2
klp8q ´ EpH2

klp1q ` ¨ ¨ ¨ `H
2
klp8qq

ˇ

ˇ

ˇ
ě u{24

¯

` 1

¨

˝

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

E

¨

˝

1

n

ÿ

pi,jqPF
X1,ij

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ě u{24

˛

‚

ďCpe
´
Cppnuq2

nkn ` 1!ˇ
ˇ

ˇ
E
´

1
n

ř

pi,jqPF X1,ij

¯
ˇ

ˇ

ˇ
ěu{24

)

ďCpe
´Cpn

1{2´δu2 .

This inequality holds when u ě Ckn{n for some constant C.

As for T4, it can be decomposed as

T4 “
n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

ūk,tki
ūl,tli

` v̄k,tki
v̄l,tki

` ūk,tki
v̄l,tli

` v̄k,tki
ūl,tli

“T 1
4 ` T

2
4 ` T

3
4 ` T

4
4 .

Using similar techniques of proving Proposition 10 in Kim, Wang, and Zou (2016), and

under Assumption 4, we can prove that

max
1ďk,lďd

E |T4| ď Cp

´

n´2δ
` n´1{4´2δ

` n´1{2´2δ
¯

.

With respect to T2, note that

T2 “
n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

X̄k,tki
ūl,tli

` X̄k,tki
v̄l,tli

“ T 1
2 ` T

2
2 .
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For T 1
2 , by Jensen’s inequality, we have

max
1ďk,lďd

E|T 1
2 | ďCp

1

kn

n´kn`1
ÿ

i“0

E|X̄k,tki
|E|ūl,tli

|

ďCp
1

kn

n´kn`1
ÿ

i“0

E|X̄k,tki
|k
´1{2
n ď Cp

1

kn
nn´1k

´1{2
n “ k

´3{2
n .

For T 2
2 , by Jensen’s inequality and Holder’s inequality, we have

max
1ďk,lďd

E|T 2
2 | ďCp

1

kn

n´kn`1
ÿ

i“0

rE|X̄k,tki
|
2
s
1{2
rE|v̄2

l,tli
s
1{2
ď Cpk

´1
n n1{4ς .

Therefore,

max
1ďk,lďd

E|T2| ď Cppk
´3{2
n ` k´1

n n1{4ς
q.

Similarly, we can show that

max
1ďk,lďd

E|T3| ď Cppk
´3{2
n ` k´1

n n1{4ς
q.

Using Talagrand’s concentration inequality and some simple calculation, we have

Pp max
1ďk,lďd

|T2| ě uq ď d2e´Cppk
´3
n `k´2n n1{2ςq´2u2 ,

Pp max
1ďk,lďd

|T3| ě uq ď d2e´Cppk
´3
n `k´2n n1{2ςq´2u2 ,

and

Pp max
1ďk,lďd

|T4| ě uq ď d2e´Cppn
´2δ`n´1{4´2δ`n´1{2´2δq´2u2 .

Above all, we prove that

Pp|pEkl ´ Ekl| ě uq ď C1e
´C2rn

1{2´δ`n4δsu2 .
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Thus

P
´
›

›

›

pE´ E
›

›

›

MAX
ě C0n

´1{2
δ

a

log d
¯

ďC1r
2e´C2rn

1{2´δ`n4δspC0n
´1{2
δ

?
log dq2

“ C1d
´C2

0C2 .

(ii) Since
›

›

›

pE´ E
›

›

›

F
ď r

›

›

›

pE´ E
›

›

›

MAX
,

then

P
´
›

›

›

pE´ E
›

›

›

F
ě C0rn

´1{2
δ

a

log d
¯

ď C1d
´C2

0C2 .

(iii) The derivation of X̄‹k,iZ̄
‹
o,li is similar to that of X̄‹k,iX̄

‹
l,i given by (i), and under As-

sumption 3, we obtain

P

˜

max
1ďkďr,1ďlďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

X̄‹k,iZ̄
‹
o,li

ˇ

ˇ

ˇ

ˇ

ˇ

ě C0n
´1{2
δ

a

log d

¸

ď C1d
´C2

0C2`1.

(iv) By the similar argument as in (i), we have

P

˜

max
1ďkďr,1ďlďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

Z̄‹o,kiZ̄
‹
o,li ´

ż t

0
gs,klds

ˇ

ˇ

ˇ

ˇ

ˇ

ě C0n
´1{2
δ

a

log d

¸

ďC1d
´C2

0C2`2.

(v)-(vii) Moreover, note that

pβj ´ βj “
´

pΠ22
¯´1

pΠ12
j ,

therefore, under the event that

A “

#

max
1ďiďs,1ďjďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

X̄‹k,iZ̄
‹
o,li

ˇ

ˇ

ˇ

ˇ

ˇ

ď C0n
´1{2
δ

a

log d

+
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X

"

λmin

´

pE
¯

ě
1

2
λmin

ˆ
ż t

0
esds

˙*

,

we have

}pβj ´ βj}
2
ď

4

λ2
min

´

şt
0 esds

¯

r
ÿ

i“1

´

pΠ12
ij

¯2
ď

4rC2
0n
´1
δ log d

λ2
minp

şt
0 esdsq

.

and

}pβ ´ β}2F ď
4rC2

0n
´1{2`δd log d

λ2
minp

şt
0 esdsq

.

Therefore, it suffices to show that PpAq ě 1´Oprn3{2`δ´3ν{4´νδ{2d´1q.

We assume λmin

´

şt
0 esds

¯

is bounded away from 0 and r is finite, so it follows that

P
ˆ
›

›

›

›

pE´

ż t

0
esds

›

›

›

›

ď
1

2
λmin

ˆ
ż t

0
esds

˙˙

ěP
ˆ

r max
1ďi,jďs

ˇ

ˇ

ˇ

ˇ

pEij ´

ż t

0
eij,sds

ˇ

ˇ

ˇ

ˇ

ď
1

2
λmin

ˆ
ż t

0
esds

˙˙

ě1´OpC1d
´C2

0C2q.

By Lemma A.1 of Fan, Liao, and Mincheva (2011), we have

P
ˆ

λminp
pEq ě

1

2
λmin

ˆ
ż t

0
esds

˙˙

ě 1´OpC1d
´C2

0C2q.

Combining this with (1.13), we have PpAq ě 1´OpC1d
´C2

0C2`1q.

(viii) To prove (1.18), we note that

max
1ďkďd

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

˜

r
ÿ

l“1

pβk,l ´ pβk,lqX̄l,i

¸2

ď max
1ďkďd

}pβk ´ βk}
2 n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

}X̄‹i }
2.
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Then by (1.11) with C ą max1ďkďr
şt
0 es,kkds,

P

˜

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

}X̄‹i }
2
ď rC

¸

ěP

˜

s max
1ďkďr

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

}X̄‹i }
2
´

ż t

0
es,kkds

ˇ

ˇ

ˇ

ˇ

ˇ

` r max
1ďkďr

ż t

0
es,kkds ď rC

¸

ě1´OpC1d
´C2

0C2q.

By (1.15), we obtain

P

¨

˝ max
1ďkďd

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

˜

r
ÿ

l“1

pβk,l ´ pβk,lqX̄
‹
l,i

¸2

ą Crn´1{2`δ
` n´4δ

sr2 log d

˛

‚

ď OpC1d
´C2

0C2`1
q.

(ix) Finally, under the event of

#

max
1ďlďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

pZ̄‹o,liq
2
´

ż t

0
gs,llds

ˇ

ˇ

ˇ

ˇ

ˇ

ď
1

4
max

1ďlďd

ż t

0
gs,llds

+

X

$

&

%

max
1ďkďd

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

˜

r
ÿ

l“1

pβk,l ´ pβk,lqX̄
‹
l,i

¸2

ď Crn´1{2`δ
` n´4δ

sr2 log d

,

.

-

,

according to Cauchy-Schwarz inequality, we have

max
1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

”

pȲ ‹k,i ´ p
pβX̄‹i qkqpȲ

‹
l,i ´ p

pβX̄‹i qlq ´ Z̄
‹
o,kiZ̄

‹
o,li

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

pppβ ´ βqX̄‹i qkp
pβ ´ βqX̄‹i ql

ˇ

ˇ

ˇ

ˇ

ˇ

` 2 max
1ďl,kďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

Z̄‹o,kipp
pβ ´ βqX̄‹i ql

ˇ

ˇ

ˇ

ˇ

ˇ
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ď max
1ďkďd

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

pppβ ´ βqX̄‹i q
2
k

` 2

g

f

f

e max
1ďkďd

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

pZ̄‹o,kiq
2 max

1ďkďd

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

pppβ ´ βqX̄‹i q
2
k

ďC0rn
´1{2`δ

` n´4δ
sr2 log d` 2

d

ˆ

5

4
Ct

˙

pC0rn
´1{2`δ ` n´4δsr2 log dq

ďC
1

0n
´1{2
δ r

a

log d.

Consequently, we have

max
1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

”´

Ȳ ‹k,i ´ p
pβX̄‹i qk

¯´

Ȳ ‹l,i ´ p
pβX̄‹i ql

¯

´ Z̄‹o,kiZ̄
‹
o,li

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ďC
1

0n
´1{2
δ r

a

log d,

with probability 1´O
´

n3{2`δ´3ν{4´νδ{2
¯

by (1.14) and (1.16). Finally, by triangle inequal-

ity, we obtain

max
1ďl,kďd

ˇ

ˇ

ˇ

pΓkl ´ Γkl

ˇ

ˇ

ˇ

ď max
1ďkďr,1ďlďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

Z̄‹k,iZ̄
‹
l,i ´

ż t

0
gs,lkds

ˇ

ˇ

ˇ

ˇ

ˇ

` max
1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

”´

Ȳ ‹k,i ´ p
pβX̄‹i qk

¯´

Ȳ ‹l,i ´ p
pβX̄‹i ql

¯

´ Z̄‹o,kiZ̄
‹
o,li

ı

ˇ

ˇ

ˇ

ˇ

ˇ

,

which leads to the result by (1.14).

(x) Under the event of

B1 “

"

max
k,l

|pΓkl ´ Γ| ď Csn
´1{2
δ

a

log d

*

,
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and

B2 “

"

C1 ă

b

pΓkkpΓll ă C2, for all k ď d, l ď d

*

,

here C1 and C2 are some constant, and ωn “ n
´1{2
δ

?
log d. Because of

sklpzq “ skl

˜

z1
|z|ąτωn

b

pΓkkpΓll

¸

, we have

›

›

›

pΓS ´ Γ
›

›

›

MAX
ď max

1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

pΓkl1
|pΓkl|ěτωn

b

pΓkkpΓll
` Γkl1

|Γ̂kl|ěτωn

b

pΓkkpΓll
´ Γkl1

|Γ̂kl|ďτωn

b

pΓkkpΓll

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

sklppΓklq ´ pΓkl|1
|Γ̂kl|ěτωn

b

pΓkkpΓll
` |pΓkl ´ Γkl|1

|Γ̂kl|ďτωn

b

pΓkkpΓll

`Γkl1
|Γ̂kl|ďτωn

b

pΓkkpΓll

ˇ

ˇ

ˇ

ˇ

ˇ

ďCωn

b

pΓkkpΓll1|Γ̂kl|ěCωnθ1
` Cωn1|Γ̂kl|ěCωnθ1

` Cωn

b

pΓkkpΓll

ďCωn.

Then we obtain
›

›

›

pΓS ´ Γ
›

›

›

MAX
ď Crn

´1{2
δ

a

log d,

with probability at least 1´OpC1d
´C2

0C2`2q.

Lemma 2. Under Assumptions 1 - 4, and n´1{2
δ

?
log d “ op1q. We have

piq P
ˆ

›

›

›
βppE´ Eqβᵀ

›

›

›

2

Σ
`

›

›

›
βpEppβ ´ βqᵀ

›

›

›

2

Σ
ě C0d

´1n´1
δ log d

˙

“ OpC1d
´C2

0C2`1
q,

and

piiq P
ˆ

›

›

›
ppβ ´ βqpEppβ ´ βqᵀ

›

›

›

2

Σ
ě C0dn

´2
δ log2 dd

˙

“ OpC1d
´C2

0C2`1
q.

Proof of Lemma 2. (i) For the first part, using the same argument in proof of theorem 2 in
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Fan, Fan, and Lv (2008), we have

›

›

›
βᵀΣ´1β

›

›

›
ď 2

›

›

›
cov´1

pXq
›

›

›
.

Therefore

›

›

›
βppE´ Eqβᵀ

›

›

›

2

Σ
“d´1tr

´

Σ´1{2βppE´ EqβᵀΣ´1βppE´ EqβᵀΣ´1{2
¯

“d´1tr
´

ppE´ EqβᵀΣ´1βppE´ EqβᵀΣ´1β
¯

ďd´1
›

›

›
ppE´ EqβᵀΣ´1β

›

›

›

2

F

ďOpd´1
q

›

›

›

pE´ E
›

›

›

2

F
.

On the other hand, we also have

›

›

›
βpEppβ ´ βqᵀ

›

›

›

2

Σ
ď

1

d

›

›

›
βᵀΣ´1βpEppβ ´ βq

›

›

›

F

›

›

›

pEΣ´1
ppβ ´ βqᵀ

›

›

›

F

ď
1

d

›

›

›
βᵀΣ´1β

›

›

›

F

›

›

›

pE
›

›

›

2

F

›

›

›

pβ ´ β
›

›

›

2

F
.

Then by Lemma 1 (1.12) and (1.16), and Pp}pE}2F ą Cq “ OpC1r
2d´C

2
0C2q. We can get

the final results.

(ii) For the second part, we have

›

›

›
ppβ ´ βqpEppβ ´ βqᵀ

›

›

›

2

Σ
“

1

d
tr
´

ppβ ´ βqpEppβ ´ βqᵀΣ´1
ppβ ´ βqpEppβ ´ βqᵀΣ´1

¯

ď
1

d

›

›

›
ppβ ´ βqpEppβ ´ βqᵀΣ´1

›

›

›

2

F

ď
1

d
λ2

MAXpΣ
´1
qλ2

MAXp
pEq

›

›

›

pβ ´ β
›

›

›

4

F
.

Since λ2
MAXpΣ

´1q and λ2
MAXp

pEq are both bounded, then the result follows from (1.16).
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Lemma 3. Under Assumptions 1 - 4, and n´1{2
δ

?
log d “ op1q, we have

piq P
´
∥∥∥pΓS ´ Γ

∥∥∥ ą C0mdn
´p1´qq{2
δ plog dqp1´qq{2

¯

“ Opn3{2`δ´3ν{4´νδ{2
q, (1.22)

piiq P
ˆ

λmin

´

pΓS
¯

ě
1

2
λmin pΓq

˙

ą 1´Opn3{2`δ´3ν{4´νδ{2
q, (1.23)

piiiq P
´
∥∥∥ppΓSq´1

´ Γ´1
∥∥∥ ą C0mdn

´p1´qq{2
δ plog dqp1´qq{2

¯

“ Opn3{2`δ´3ν{4´νδ{2
q, (1.24)

pivq P
´
∥∥∥pβᵀppΓSq´1

pβ ´ βᵀΓ´1β
∥∥∥ ą C0mddn

´p1´qq{2
δ plog dqp1´qq{2

¯

“ Opn3{2`δ´3ν{4´νδ{2
q, (1.25)

pvq P
´∥∥∥´pE´1

` pβ
ᵀ
ppΓSq´1

pβ
¯

´

´

E´1
` βᵀpΓSq´1β

¯∥∥∥
ą C0mddn

´p1´qq{2
δ plog dqp1´qq{2

¯

“ Opn3{2`δ´3ν{4´νδ{2
q, (1.26)

pviq P
ˆ∥∥∥∥´pE´1

` pβ
ᵀ
ppΓSq´1

pβ
¯´1

∥∥∥∥ ą C0mdd
´1

˙

“ Opn3{2`δ´3ν{4´νδ{2
q, (1.27)

pviiq P
ˆ∥∥∥∥pβ ´pE´1

` pβ
ᵀ
ppΓSq´1

pβ
¯´1

pβ
ᵀ
ppΓSq´1

∥∥∥∥ ą C0md

˙

“ Opn3{2`δ´3ν{4´νδ{2
q,(1.28)

pviiiq P
ˆ∥∥∥∥pβ ´pE´1

` pβ
ᵀ
ppΓSq´1

pβ
¯´1

pβ
ᵀ
Γ´1

∥∥∥∥ ą C0md

˙

“ Opn3{2`δ´3ν{4´νδ{2
q.(1.29)

Proof of Lemma 3. (i) Since pΓS ´ Γ is symmetric, its operator norm is bounded by the

8-norm:

∥∥∥pΓS ´ Γ
∥∥∥ ď max

1ďlďd

d
ÿ

k“1

ˇ

ˇ

ˇ

pΓSlk ´ Γlk

ˇ

ˇ

ˇ
.

Then using the same technique for proving (1.20), we can prove that, with probability no

less than Opn3{2`δ´3ν{4´νδ{2q, we have

∥∥∥pΓS ´ Γ
∥∥∥ ď C0mdn

´p1´qq{2
δ plog dqp1´qq{2.

Proofs of (1.23)-(1.29) are similar to that of Lemma 5 in Fan, Furger, and Xiu (2016),
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therefore we omit the details.

Proof of Theorem 1. Based on Lemma 1, and following the same steps as that of theorem 1

in Fan, Furger, and Xiu (2016), we can obtain

›

›

›

pΣTSR ´ Σ
›

›

›

MAX
“ O

´

n
´1{2
δ

a

log d
¯

.

For the next part, we will prove the convergence results based on the Σ norm:

›

›

›
Σ̂TSR ´ Σ

›

›

›

2

Σ
ď4

›

›

›
βppE´ Eqβᵀ

›

›

›

2

Σ
` 24

›

›

›
βpEppβ ´ βq

›

›

›

2

Σ

` 16
›

›

›
ppβ ´ βqpEppβ ´ βqᵀ

›

›

›

2

Σ
` 2

›

›

›
Γ̂S ´ Γ

›

›

›

2

Σ
. (1.30)

Finally, we have

›

›

›
Γ̂S ´ Γ

›

›

›

Σ
“d´1{2

›

›

›
Σ´1{2

pΓ̂S ´ ΓqΣ´1{2
›

›

›

F
ď

›

›

›
Σ´1{2

pΓ̂S ´ ΓqΣ´1{2
›

›

›

ď

›

›

›
Γ̂S ´ Γ

›

›

›
λmaxpΣ

´1
q.

Then based on (1.30), Lemma 2 and Lemma 3 (1.22), and the fact that

d´1n´1
δ log d` dn´2

δ log2 dd`m2
dmdn

´p1´qq
δ plog dqp1´qq

“O
´

dn´2
δ log2 dd`m2

dmdn
´p1´qq
δ plog dqp1´qq

¯

,

we prove that

›

›

›

pΣTSR ´ Σ
›

›

›

Σ
“ Op

´

d1{2n´1
δ log d`mdn

´p1´qq{2
δ plog dqp1´qq{2

¯

.

On the other hand, if we do not assume the factor structure, using a direct pre-averaging
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estimator Σ̂‹. Then we will get

›

›

›
Σ̂‹ ´ Σ

›

›

›

2

Σ
ď C

›

›

›
βppE´ Eqβᵀ

›

›

›

2

Σ
` C

›

›βX̄Z̄ᵀ›
›

2
Σ ` C

›

›Z̄Z̄ᵀ
´ Γ

›

›

2
Σ .

According to the proof of Lemma 2, we obtain
›

›

›
βppE´ Eqβᵀ

›

›

›

2

Σ
“ Oppd

´1n´1
δ log dq and

›

›βX̄Z̄ᵀ
›

›

2
Σ “ Oppd

´1n´1
δ log dq. We can also get

›

›Z̄Z̄ᵀ ´ Γ
›

›

2
Σ “ Oppdn

´1
δ log dq. Therefore

›

›

›
Σ̂‹ ´ Σ

›

›

›

Σ
“ Oppd

1{2n
´1{2
δ

?
log dq, which has slower convergence rate than our estimator.

For the inverse part, by the localization argument, we only need to prove the result under

a stronger assumption that the entry-wise norms of all the processes are bounded uniformly

in r0, ts. By the Sherman - Morrison -Woodbury formula, we have

∥∥∥ppΣTSRq
´1
´ Σ´1

∥∥∥
ď

∥∥∥ppΓSq´1
´ Γ´1

∥∥∥` ∥∥∥∥´ppΓSq´1
´ Γ´1

¯

pβ
´

pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯´1

pβ
ᵀ
ppΓSq´1

∥∥∥∥
`

∥∥∥∥´ppΓSq´1
´ Γ´1

¯

pβ
´

pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯´1

pβ
ᵀ
Γ´1

∥∥∥∥
`

∥∥∥∥Γ´1
ppβ ´ βq

´

pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯´1

pβ
ᵀ
Γ´1

∥∥∥∥` ∥∥∥∥Γ´1
ppβ ´ βq

´

pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯´1

βᵀΓ´1
∥∥∥∥

`

∥∥∥∥Γ´1β

ˆ

´

pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯´1

´

´

E´1
` βᵀpΓSq´1β

¯´1
˙

βᵀΓ´1
∥∥∥∥

:“L1 ` L2 ` L3 ` L4 ` L5 ` L6.

We now bound each term above with probability no less than 1´Opn3{2`δ´3ν{4´νδ{2q.

First of all, by (1.22)

L1 ď Cmdn
´p1´qq{2
δ plog dqp1´qq{2.

To bound L2, by (1.24) and (1.28), we have

L2 ď

∥∥∥ppΓSq´1
´ Γ´1

∥∥∥¨∥∥∥∥pβ ´pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯´1

pβ
ᵀ
ppΓSq´1

∥∥∥∥ ď Cm2
dn
´p1´qq{2
δ plog dqp1´qq{2.
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Similarly, L3 can be bounded using (1.24) and (1.29).

Next, for L4, we use (1.16), and (1.27), ‖¨‖ ď ‖¨‖F, and λminpΓq is bounded below by

some constant,

L4 ď

∥∥∥Γ´1
∥∥∥2
¨

∥∥∥pβ ´ β∥∥∥ ¨ ∥∥∥pβ∥∥∥ ¨ ∥∥∥∥´pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯´1

∥∥∥∥ ď Cm2
dn
´p1´qq{2
δ plog dqp1´qq{2.

Similarly, using the fact that ‖β‖ ď ‖β‖F “ Op
?
dq, we can establish the same bound for

L5.

Finally, we have

L6 ď

∥∥∥Γ´1
∥∥∥2
¨ ‖β‖2 ¨

∥∥∥∥´pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯´1

´

´

E´1
` βᵀpΓSq´1β

¯´1
∥∥∥∥

ď

∥∥∥Γ´1
∥∥∥2
¨ ‖β‖2 ¨

∥∥∥´pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯

´

´

E´1
` βᵀpΓSq´1β

¯∥∥∥
¨

∥∥∥∥´pE´1
` pβ

ᵀ
ppΓSq´1

pβ
¯´1

∥∥∥∥ ¨ ∥∥∥∥´E´1
` βᵀΓ´1β

¯´1
∥∥∥∥ .

Note that for any vector v such that ‖v‖ “ 1, by the definition of operator norm, we have

vᵀβᵀΓ´1βv ě λminpΓ
´1
qvᵀβᵀβv ě λminpΓ

´1
qλminpβ

ᵀβq.

It then follows that

λminpβ
ᵀΓ´1βq ě λminpΓ

´1
qλminpβ

ᵀβq.

On the other hand, by Assumption 3, we have

1

d
vᵀβᵀβv “ vᵀBv ´ vᵀpB ´

1

d
βᵀβqv ě λminpBq ´

∥∥∥∥1

d
βᵀβ ´B

∥∥∥∥ ą C,

where C is some constant. Thus, λminpβ
ᵀβq ą Cd. Therefore λminpβ

ᵀΓ´1βq ą Cd, fol-

lowing from the fact that λmaxpΓq ď Kmd. It then implies that λminpE
´1 ` βᵀΓ´1βq ě
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λminpβ
ᵀΓ´1βq ą Cm´1

d d.

∥∥∥∥´E´1
` βᵀΓ´1β

¯´1
∥∥∥∥ “ Oppmdd

´1
q.

Using (1.26) and (1.27) , we have

L6 ď Cm3
dn
´p1´qq{2
δ plog dqp1´qq{2.

Finally, combining these results, we can obtain, for some constant C ą 0,

∥∥∥ppΣTSRq
´1
´ Σ´1

∥∥∥ ď C
´

m3
dn
´p1´qq{2
δ plog dqp1´qq{2 `m2

dn
´p1´qq{2
δ plog dqp1´qq{2

¯

.

We find that the second term on the right is dominated by the first one, then replace the

whole above equation by the first term, which yields the desired result.

To prove the second statement, note that for any vector v such that ‖v‖ “ 1, we have

vᵀpΣTSRv “ vᵀpβpEpβ
ᵀ
v ` vᵀpΓSv ě λmin

´

pΓS
¯

,

which implies that

λmin

´

pΣTSR

¯

ě λmin

´

pΓS
¯

.

This inequality, combining with (1.23) of Lemma 3, concludes the proof.

1.8.2 Proof of Theorem 2

Proof of Theorem 2 follows the same arguments as that of Theorem 3.
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1.8.3 Proof of Theorem 3

We note that

qX‹ ´ X̄‹ “ pβᵀβq´1βᵀZ̄‹.

Similar to the proof of 1.11-1.13, and by Hoeffding inequality, we have

}βᵀZ̄‹} “
b

}βᵀZ̄‹Z̄‹ᵀβ} ď
b

}βᵀpZ̄‹Z̄‹ᵀ ´ Γqβ} ` }βᵀΓβ}

ď

b

}βᵀ}}Z̄‹Z̄‹ᵀ ´ Γ}}β} ` }βᵀ}}Γ}}β}

ďC

b

dmdn
´p1´qq{2
δ plog dqp1´qq{2 ` dmd

ďCd1{2m
1{2
d n

´p1´qq{4
δ plog dqp1´qq{4 ` d1{2m

1{2
d ,

where we use }Γ} ď md, and }Z̄‹Z̄‹ᵀ ´ Γ}
p
“ Oppnδ

?
log dq.

Then we have

›

›

›

qX‹ ´ X̄‹
›

›

›
ď}pβᵀβq´1

}}βᵀZ̄‹} ď
}βᵀZ̄‹}

λminpβ
ᵀβq

ď
}βᵀZ̄‹}d´1

λminpd
´1βᵀβq

ď Cd´1{2m
1{2
d n

´p1´qq{4
δ plog dqp1´qq{4 ` d´1{2m

1{2
d .

Moreover, we note that

max
1ďkďd

n´kn`1
ÿ

i“0

˜

r
ÿ

l“1

βk,lp pX
‹
l,i ´ X̄

‹
l,iq

¸2

ď max
1ďkďd,1ďiďn

}βk}
2
} qX‹ ´ X̄‹}2F

ď max
1ďkďd,1ďiďn

}βk}
2 r} qX‹ ´ X̄‹}2,

ďCd´1mdn
´p1´qq{2
δ plog dqp1´qq{2 ` d´1md.
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Using these estimates, we obtain

max
1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

n´kn`1
ÿ

i“0

”

pȲ ‹k,i ´ pβ
pX‹i qkqpȲ

‹
l,i ´ pβ

pX‹i qlq ´ Z̄
‹
o,kiZ̄

‹
o,li

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

n´kn`1
ÿ

i“0

pβp qX‹ ´ X̄‹i qqkpβp
qX‹ ´ X̄‹i qql

ˇ

ˇ

ˇ

ˇ

ˇ

` 2 max
1ďl,kďd

ˇ

ˇ

ˇ

ˇ

ˇ

n´kn`1
ÿ

i“0

Z̄‹o,kipβp
qX‹ ´ X̄‹i qql

ˇ

ˇ

ˇ

ˇ

ˇ

ď max
1ďkďd

n´kn`1
ÿ

i“0

pβp qX‹ ´ X̄‹i qq
2
k ` 2

g

f

f

e max
1ďkďd

n´kn`1
ÿ

i“0

pZ̄‹o,kiq
2 max

1ďkďd

n´kn`1
ÿ

i“0

pβp qX‹ ´ X̄‹i qq
2
k

ďCd´1{2m
1{2
d n

´p1´qq{4
δ plog dqp1´qq{4 ` d´1{2m

1{2
d . (1.31)

Therefore, according to (1.31) and (1.14), and using triangle inequality, we have

max
1ďl,kďd

ˇ

ˇ

ˇ

pΓ
1

kl ´ Γkl

ˇ

ˇ

ˇ

ď max
1ďkďr,1ďlďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

Z̄‹k,iZ̄
‹
l,i ´

ż t

0
gs,lkds

ˇ

ˇ

ˇ

ˇ

ˇ

` max
1ďk,lďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

”´

Ȳ ‹k,i ´ pβ
qX‹i qk

¯´

Ȳ ‹l,i ´ pβ
qX‹i ql

¯

´ Z̄‹o,kiZ̄
‹
o,li

ı

ˇ

ˇ

ˇ

ˇ

ˇ

ďC
´

n
´1{2
δ

a

log d` Cd´1{2m
1{2
d n

´p1´qq{4
δ plog dqp1´qq{4 ` d´1{2m

1{2
d

¯

ďC
´

n
´1{2
δ

a

log d` d´1{2m
1{2
d

¯

.

The rest steps are similar to the TSR case. This concludes the proof.

1.8.4 Proof of Theorem 4

Proposition 1. Suppose that Assumptions 1 - 4 hold. Also, assume that }E}MAX ď K,

}Γ}MAX ď K almost surely for some constant K, n´1{2
δ

?
log d “ op1q, and d´1{2md “ op1q.

Then r, βEβᵀ, and Γ can be identified as d Ñ 8. That is, r̄ “ r, if d is sufficiently large.
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Moreover, we have

›

›

›

›

›

›

r̄
ÿ

j“1

λjξjξ
ᵀ
j ´ βEβᵀ

›

›

›

›

›

›

MAX

ď Cd´1{2md, and

›

›

›

›

›

›

d
ÿ

j“r̄`1

λjξjξ
ᵀ
j ´ Γ

›

›

›

›

›

›

MAX

ď Cd´1{2md,

where tλj , 1 ď j ď du and tξj , 1 ď j ď du are the eigenvalues and their corresponding

eigenvectors of Σ, and r̄ “ arg min1ďjďdp
λj
d ` jd

´1{2mdq ´ 1.

Lemma 4. Suppose Assumptions 1 - 4 hold, and n´1{2
δ

?
log d “ op1q, then we have

max
1ďkďr,1ďlďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

X̄k
i X̄

l
i ´

ż t

0
es,klds

ˇ

ˇ

ˇ

ˇ

ˇ

“ Oppn
´1{2
δ

a

log dq, (1.32)

max
1ďkďr,1ďlďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

X̄k
i Z̄

‹
u,li

ˇ

ˇ

ˇ

ˇ

ˇ

“ Oppn
´1{2
δ

a

log dq, (1.33)

max
1ďkďr,1ďlďd

ˇ

ˇ

ˇ

ˇ

ˇ

n

n´ kn ` 2

1

ψ2kn

n´kn`1
ÿ

i“0

Z̄‹u,kiZ̄
‹
u,li ´

ż t

0
gs,klds

ˇ

ˇ

ˇ

ˇ

ˇ

“ Oppn
´1{2
δ

a

log dq.(1.34)

Recall that

Λ “ Diag
´

pλ1, pλ2, . . . , pλr

¯

, F “ d1{2
´

pξ1,
pξ2, . . . ,

pξr

¯

, and G “ d´1FᵀY .

We write

H “
n

n´ kn ` 2

1

ψ2knt
X̄ ‹X̄ ‹ᵀβᵀFΛ´1.

It is easy to verify that

pΣF “ FΛ, GGᵀ
“ td´1

ˆ Λ, FᵀF “ dˆ Ir, and
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pΓ “
1

t
pY ´ FGq pY ´ FGqᵀ “ 1

t
YYᵀ ´ 1

d
FΛFᵀ.

Lemma 5. Suppose Assumptions 1 - 4 hold with λij “ Opn
´1{2
δ

?
log dq. Suppose d´1{2md “

op1q, n´1{2
δ

?
log d “ op1q, and pr Ñ r with probability approaching 1, then there exists a

r ˆ r matrix H, such that with probability approaching 1, H is invertible, }HHᵀ ´ Ir} “

}HᵀH ´ Ir} “ opp1q, and more importantly,

}F ´ βH}MAX “ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

,
›

›

›
G´H´1X̄

›

›

›
“ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

.

Lemma 6. Under Assumptions 1 - 4 , d´1{2md “ op1q, and n´1{2
δ

?
log d “ op1q, we have

‖F ´ βH‖MAX “ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

. (1.35)∥∥∥H´1
∥∥∥ “ Opp1q. (1.36)∥∥∥G´H´1X̄
∥∥∥ “ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

. (1.37)

Lemma 7. Under Assumptions 1 - 4 , d´1{2md “ op1q, and n´1{2
δ

?
log d “ op1q, we have

∥∥∥rΓS ´ Γ
∥∥∥

MAX
ď

∥∥∥pΓ´ Γ
∥∥∥

MAX
“ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

. (1.38)

Lemma 8. Under Assumptions 1 - 4, d´1{2md “ op1q, and n´1
δ log d “ op1q, we have

∥∥∥∥1

t
FGGᵀFᵀ

´ βEβᵀ
∥∥∥∥

MAX
“ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

.

Proof of Proposition 1, Lemma 4-8. The proofs follow the same arguments as in Aït-Sahalia

and Xiu (2017), thus we omit the details.
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Lemma 9. Under Assumptions 1 - 4, dpn´1{2
δ

?
log dq2 “ op1q, nδ´1{2 log d “ op1q, and

d´1{2md “ op1q, we have

piq ‖F ´ βH‖2F “ Op

´

dpn
´1{2
δ

a

log dq2 `m2
d

¯

. (1.39)

piiq ‖pF ´ βHqpF ´ βHqᵀ‖2F “ Op

´

dn2δ´1 log2 d` d´1m4
d

¯

. (1.40)

piiiq ‖βHpF ´ βHqᵀ‖2Σ “ Op

´

nδ´1{2 log d` d´1m2
d

¯

. (1.41)

pivq ‖βpHᵀH ´ Irqβ
ᵀ‖2Σ “ opp1q. (1.42)

Proof of Lemma 9. (i) We have ‖F ´ βH‖2F ď d ‖F ´ βH‖2MAX.

(ii) According to the definition of } ¨ }Σ, we have

‖pF ´ βHqpF ´ βHqᵀ‖2Σ “ Opp
1

d
}F ´ βH}4Fq “ Oppd ‖F ´ βH‖4MAXq.

(iii) By
∥∥βᵀΣ´1β

∥∥ “ Op1q, We have

‖βHpF ´ βHqᵀ‖2Σ “
1

d
trpHpF ´ βHqᵀΣ´1

pF ´ βHqHβᵀΣ´1βq

ď
1

d
‖H‖2

∥∥∥βᵀΣ´1β
∥∥∥∥∥∥Σ´1

∥∥∥ ‖F ´ βH‖2F
“Opp‖F ´ βH‖2MAXq.

(iv) by
∥∥βᵀΣ´1β

∥∥ “ Op1q, We have

‖βpHᵀH ´ Irqβ
ᵀ‖2Σ ď

1

d
trtpHᵀH ´ Irqβ

ᵀΣ´1βpHᵀH ´ Irqβ
ᵀΣ´1βu

ď
1

d

∥∥∥βᵀΣ´1β
∥∥∥2
}HᵀH ´ Ir}

2
F

“opp1q.
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Lemma 10. Under Assumptions 1 - 4, d´1{2md “ op1q, and n´1{2
δ

?
log d “ op1q, we have

∥∥∥rΓS ´ Γ
∥∥∥ “ Op

´

mdpn
´1{2
δ

a

log d` d´1{2mdq
1´q

¯

. (1.43)

Moreover, if in addition, d´1{2m2
d “ op1q and mdn

´1{2
δ

?
log d “ op1q hold, then λmin

´

pΓS
¯

is bounded away from 0 with probability approaching 1, and

∥∥∥∥´rΓS¯´1
´ Γ´1

∥∥∥∥ “ Op

´

mdpn
´1{2
δ

a

log d` d´1{2mdq
1´q

¯

. (1.44)

Proof of Lemma 10. Note that since pΓS ´ Γ is symmetric,

∥∥∥rΓS ´ Γ
∥∥∥ ď ∥∥∥rΓS ´ Γ

∥∥∥
8
“ max

1ďlďd

d
ÿ

k“1

ˇ

ˇ

ˇ

pΓSlk ´ Γlk

ˇ

ˇ

ˇ
.

By Lemma 7, and using the same technique as proving (1.20), we have

∥∥∥rΓS ´ Γ
∥∥∥ “ Op

´

mdS
´q
pn
´1{2
δ

a

log d` d´1{2mdq `mdS
1´q

¯

.

Choosing λij “M 1pn
´1{2
δ

?
log d` d´1{2mdq, M 1 is some positive constant, we have

∥∥∥rΓS ´ Γ
∥∥∥ “ Op

´

mdpn
´1{2
δ

a

log d` d´1{2mdq
1´q

¯

.

Moreover, since λminpΓq ą K for some constant K and by Weyl’s inequality, we have

λminp
rΓSq ą K ´ opp1q. As a result, we have

∥∥∥∥´rΓS¯´1
´ Γ´1

∥∥∥∥ “∥∥∥∥´rΓS¯´1 ´

Γ´
´

rΓS
¯¯

Γ´1
∥∥∥∥ ď λminp

rΓSq´1λminpΓq
´1

∥∥∥Γ´ rΓS
∥∥∥

ďOp

´

mdpn
´1{2
δ

a

log d` d´1{2mdq
1´q

¯

.

71



Proof of Theorem 4. Note that

pΣPCA “
1

d
FΛFᵀ

` rΓS “
1

t
FGGᵀFᵀ

` rΓS .

By Lemma 7, we have

∥∥∥rΓS ´ Γ
∥∥∥

MAX
“ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

.

By the triangle inequality, we have

∥∥∥pΣPCA ´ Σ
∥∥∥

MAX
ď

∥∥∥∥1

d
FΛFᵀ

´ βEβᵀ
∥∥∥∥

MAX
`

∥∥∥rΓS ´ Γ
∥∥∥

MAX

Therefore, the desired result follows from Lemmas 7 and 8.

Using Lemma 9, for some constant C, we have

}pΣPCA ´ Σ}2Σ ďC
”

‖βpHᵀH ´ Irqβ
ᵀ‖2Σ ` ‖βHpF ´ βHq

ᵀ‖2Σ

` ‖pF ´ βHqpF ´ βHqᵀ‖2Σ `
∥∥∥rΓS ´ Γ

∥∥∥ı
“Oppdpn

´1{2
δ

a

log dq4 `
1

d
m4
d `m

2
dpn

´1{2
δ

a

log d` d´1{2mdq
2p1´qq

q.

For the inverse, firstly, by Lemma 10 and the fact that λminp
pΣPCAq ě λminp

rΓSq, we can

establish the first two statements.

To bound
∥∥∥ppΣPCAq

´1 ´ Σ´1
∥∥∥, by the Sherman - Morrison - Woodbury formula, we have

´

pΣPCA

¯´1
´

´

rΣ
¯´1

“

´

t´1FGGᵀFᵀ
` rΓS

¯´1
´

´

t´1βHH´1X̄ ‹X̄ ‹ᵀpH´1
q
ᵀHᵀβᵀ ` Γ

¯´1

“

´

prΓSq´1
´ Γ´1

¯

´

´

prΓSq´1
´ Γ´1

¯

F
´

dΛ´1
` Fᵀ

prΓSq´1F
¯´1

Fᵀ
prΓSq´1
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´ Γ´1F
´

dΛ´1
` Fᵀ

prΓSq´1F
¯´1

Fᵀ
´

prΓSq´1
´ Γ´1

¯

` Γ´1
pβH ´ F q

´

tHᵀ `X̄ X̄ ᵀ˘´1
H `HᵀβᵀΓ´1βH

¯´1
HᵀβᵀΓ´1

´ Γ´1F
´

tHᵀ `X̄ X̄ ᵀ˘´1
H `HᵀβᵀΓ´1βH

¯´1
pFᵀ

´HᵀβᵀqΓ´1

` Γ´1F

ˆ

´

tHᵀ `X̄ X̄ ᵀ˘´1
H `HᵀβᵀΓ´1βH

¯´1
´

´

dΛ´1
` Fᵀ

prΓSq´1F
¯´1

˙

FᵀΓ´1

“L1 ` L2 ` L3 ` L4 ` L5 ` L6.

By Lemma 10, we have

‖L1‖ “ Op

´

mdpn
´1{2
δ

a

log d` d´1{2mdq
1´q

¯

.

For L2, because ‖F‖ “ Oppd
1{2q, λmax

´

prΓSq´1
¯

ď

´

λminp
rΓSq

¯´1
ď K ` opp1q,

λmin

´

dΛ´1
` Fᵀ

prΓSq´1F
¯

ě λmin

´

Fᵀ
prΓSq´1F

¯

ě λmin pF
ᵀF qλmin

´

prΓSq´1
¯

ě m´1
d d,

and by Lemma 10, we have

‖L2‖ ď
∥∥∥´prΓSq´1

´ Γ´1
¯
∥∥∥ ‖F‖∥∥∥∥´dΛ´1

` Fᵀ
prΓSq´1F

¯´1
∥∥∥∥∥∥∥Fᵀ

prΓSq´1
∥∥∥

“ Op

´

mdpn
´1{2
δ

a

log d` d´1{2mdq
1´q

¯

.

The same bound holds for ‖L3‖. As for L4, note that ‖β‖ “ Oppd
1{2q,

∥∥Γ´1
∥∥ ď pλminpΓqq

´1 ď

K, ‖H‖ “ Opp1q, and ‖βH ´ F‖ ď
?
rd ‖βH ´ F‖MAX “ Oppn

´1{2
δ d2{ν`1{2 ` mdq, and

that

λmin

´

tHᵀ `X̄ X̄ ᵀ˘´1
H `HᵀβᵀΓ´1βH

¯

ě λmin

´

HᵀβᵀΓ´1βH
¯

ě λminpΓ
´1
qλminpβ

ᵀβqλminpH
ᵀHq

ą Km´1
d d,

73



hence we have

‖L4‖ ď
∥∥∥Γ´1

∥∥∥ ‖pβH ´ F q‖
∥∥∥∥´tHᵀ `X̄ ‹X̄ ‹ᵀ

˘´1
H `HᵀβᵀΓ´1βH

¯´1
∥∥∥∥ ‖Hᵀβᵀ‖

∥∥∥Γ´1
∥∥∥

“ Oppmdn
´1{2
δ

a

log d` d´1{2m2
dq.

The same bound holds for L5. Finally, with respect to L6, we have

∥∥∥∥´tHᵀ `X̄ X̄ ᵀ˘´1
H `HᵀβᵀΓ´1βH

¯´1
´

´

dΛ´1
` Fᵀ

prΓSq´1F
¯´1

∥∥∥∥
ďKd´2m2

d

∥∥∥´tHᵀ `X̄ X̄ ᵀ˘´1
H `HᵀβᵀΓ´1βH

¯

´

´

dΛ´1
` Fᵀ

prΓSq´1F
¯
∥∥∥ .

Moreover, since we have

∥∥∥tHᵀ
pX̄ X̄ ᵀ

q
´1H ´ dΛ´1

∥∥∥ “ ∥∥∥Λ´1Fᵀ
pβH ´ F q

∥∥∥
“ Op

´

n
´1{2
δ

a

log d` d´1{2md

¯

,

and

∥∥∥HᵀβᵀΓ´1βH ´ Fᵀ
prΓSq´1F

∥∥∥
ď

∥∥∥pHᵀβᵀ ´ Fᵀ
qΓ´1βH

∥∥∥` ∥∥∥FᵀΓ´1
pβH ´ F q

∥∥∥` ∥∥∥Fᵀ
´

Γ´1
´ prΓSq´1

¯

F
∥∥∥

“Op

´

dmdpn
´1{2
δ

a

log d` d´1{2mdq
1´q

¯

.

Combining these inequalities yields

‖L6‖ “ Op

´

m3
dpn

´1{2
δ

a

log d` d´1{2mdq
1´q

¯

.
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On the other hand, using the Sherman - Morrison - Woodbury formula again,

∥∥∥rΣ´1
´ Σ´1

∥∥∥
“

∥∥∥∥´t´1βX̄ X̄ ᵀβᵀ ` Γ
¯´1

´ pβEβᵀ ` Γq´1
∥∥∥∥

ď

∥∥∥Γ´1
∥∥∥2
‖βH‖2

∥∥∥∥ˆ´tHᵀ `X̄ X̄ ᵀ˘´1
H `HᵀβᵀΓ´1βH

¯´1
´

´

HᵀE´1H `HᵀβᵀΓ´1βH
¯´1

˙∥∥∥∥
ďKd

∥∥∥tHᵀ `X̄ X̄ ᵀ˘´1
H `HᵀβᵀΓ´1βH

∥∥∥´1 ∥∥∥HᵀE´1H `HᵀβᵀΓ´1βH
∥∥∥´1 ∥∥∥t `X̄ X̄ ᵀ˘´1

´ E´1
∥∥∥

“Op

´

mdn
´1{2
δ

a

log d
¯

.

By the triangle inequality, we obtain

∥∥∥ppΣPCAq
´1
´ Σ´1

∥∥∥ ď∥∥∥ppΣPCAq
´1
´ rΣ´1

∥∥∥` ∥∥∥rΣ´1
´ Σ´1

∥∥∥
“Op

´

m3
dpn

´1{2
δ

a

log d` d´1{2mdq
1´q

¯

.

This concludes the proof.
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Chapter 2

Large Scale Realized Volatility Forecasting with

Machine Learning

2.1 Introduction

Realized volatility forecasting is crucial in asset pricing and risk management and plays

important roles for financial market practitioners and regulators. Despite the existence of

many GARCH and stochastic volatility formulations in the literature, their performance is

typically less competitive with high-frequency intraday data compared to the reduced-form

forecasting models (Andersen, Bollerslev, Diebold, and Labys (2003)), due to the complica-

tion of the latent nature.

We develop realized volatility forecasting models by incorporating features from existing

literature. These include the mixed data sampling (MIDAS) approach by Ghysels, Santa-

Clara, and Valkanov (2006), the heterogeneous autoregressive (HAR) model by Corsi (2009),

the semivariance-HAR model by Patton and Sheppard (2015), the HARQ model by Boller-

slev, Patton, and Quaedvlieg (2016) that accounts for measurement error, and the heteroge-

neous exponential realized volatility with global risk factor (HExpGl) model by Bollerslev,

Hood, Huss, and Pedersen (2018). These models utilize the weighted average of past RVs

and sometimes combine realized quarticity with RV to predict the future RV, demonstrating
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decent out-of-sample forecasting performance.

Additionally, we explore non-RV based features that may contain incremental information

for forecasting. These include implied volatilities derived from option prices of underlying

assets (Christensen and Prabhala (1998), Busch, Christensen, and Nielsen (2011)), earn-

ings announcement dates (Cao and Narayanamoorthy (2012), Barth and So (2014),Atilgan

(2014),Lei, Wang, and Yan (2020)), trading volume (Liu, Choo, Lee, and Lee (2023)),and

returns and overnight returns (Ahoniemi and Lanne (2013), Todorova and Souček (2014)).

We find that incorporating these non-RV based features significantly enhances out-of-sample

forecasting performance.

Our dataset comprises two extensive sets of stocks: all S&P 500 index constituents from

1996 to 2022 and all stocks and ETFs traded in the major United States stock exchanges

over the same period (referred to as US stocks). To the best of our knowledge, the latter

represents the largest empirical experiment conducted in the volatility forecasting literature

to date.

This paper investigates several machine learning algorithms for forecasting the realized

volatility of stocks by utilizing this large set of features, including LASSO (Tibshirani (1996)),

Principal Component Regression, Random Forest (Leo (2001)), Gradient Boosted Regres-

sion Tree (Freund and Schapire (1995)), and neural networks (LeCun, Bengio, and Hinton

(2015)). Machine learning algorithms have demonstrated superior performance in various

areas, such as complex games like Go (Silver, Hubert, Schrittwieser, Antonoglou, Lai, Guez,

Lanctot, Sifre, Kumaran, Graepel, et al. (2018)), physical control (Gu, Holly, Lillicrap, and

Levine (2017)), and artificial intelligence-generated content models like ChatGPT (Schulman,

Zoph, Kim, Hilton, Menick, Weng, Uribe, Fedus, Metz, Pokorny, et al. (2022)). Finance is no

exception, with successful applications of machine learning algorithms in empirical asset pric-

ing (Gu, Kelly, and Xiu (2020)), fraud detection (Ravisankar, Ravi, Rao, and Bose (2011)),

solving dynamic equilibrium models (Scheidegger and Bilionis (2019)), and, of course, real-
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ized volatility forecasting (Li and Tang (2022), Zhang, Zhang, Cucuringu, and Qian (2024)).

Notably, machine learning algorithms, particularly neural networks, outperform traditional

ordinary least squares (OLS) based methods significantly, as measured by out-of-sample R-

squares, mean squared errors, and quasi-likelihood. This holds true for both S&P 500 index

constituents and all US stocks.

We observe that the OLS-based method performs much better when we pool all the data

together and fit a universal model for all stocks, as opposed to fitting individual models for

each stock. As we increase the number of features, the performance of individual models

deteriorates, whereas for the pooled model, the opposite is true, with all features combined

producing the best OLS model. In fact, even the worst-performing pooled model outperforms

the best individual model in all metrics, even after correcting extreme predictions in the

individual models via the insanity filter (Swanson and White (1997)). Such a filter is a must

for the individual model and improves performance significantly, but it is rarely triggered

for the pooled model and has a negligible effect on performance.

We evaluate the relative out-of-sample performance of models by assigning a value of 0 to

a naive random walk model and a value of 100 to the pooled HAR model, based on the mean

squared error. A higher value indicates better performance. On the set of S&P 500 stocks,

the individual HAR model without the insanity filter achieves a score of 65.66. However,

when incorporating the insanity filter correction, the score increases to 95.15. Parsimonious

regression forms like HARQ achieve a performance value of 106.87. Additionally, the regres-

sion form OLSRV, which includes all RV-based features, scores 108.84. By adding implied

volatility as additional predictors in the OLSRVIV specification, the performance score in-

creases to 114.70. Surprisingly, by further incorporating non-RV and non-IV based features

into the OLSRV specification, OLSVPOS achieves a score of 131.57. Finally, utilizing all

available features in the OLSALL specification results in the best performing pooled OLS

model with a score of 134.73. When using the same set of features, a neural network with
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4 hidden layers achieves a score of 136.47, while taking an ensemble of 5 neural networks

with different random seeds pushes the limit to 137.62. This indicates the ability of neural

networks to capture the nonlinear dependencies of the features in predicting future RV.

For the set of US stocks, without the insanity filter, the individual HAR model performs

very poorly, scoring -282.75, indicating inferior performance compared to even the simple

random walk model. With the insanity filter incorporated, the individual HAR model barely

scores 19.16, still falling short compared to the pooled HAR model’s score of 100. HARQ

and OLSRV achieve scores of 103.12 and 104.87, respectively, while OLSRVIV boosts the

score to 105.77. OLSVPOS achieves a significantly higher score of 116.34, which is further

increased to 116.89 by adding IV-based features. When using the same set of features as

OLSALL, the neural network with 4 hidden layers achieves scores above 122.11, while the

ensemble version reaches 122.97.

Due to computational constraints, we did not fit individual models for the machine

learning algorithms. It is highly likely that the individual models would have suffered from

the over-fitting issue, resulting in poor out-of-sample forecasting. However, we did not

observe the need for an insanity filter when using the pooled data. We found that Lasso and

principal component regression did not outperform the OLS model with all features. This

may be because all features are important when dealing with such a large dataset, and these

methods could not capture the nonlinear dependencies as effectively as neural networks.

We also observed that tree-based methods, especially GBRT, tended to underperform other

machine learning-based methods on average, but they produced the fewest extreme values

and were more stable in that regard.

We employ the utility-based framework presented in Bollerslev, Hood, Huss, and Pedersen

(2018), which relies on mean-variance preference and a constant Sharpe ratio, to quantify

the economic gain of the volatility forecasting models constructed in this study. The more

accurate the forecast, the higher the realized utility the investor would obtain. Under realistic
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assumptions of risk aversion and Sharpe ratio, the pooled models outperform the individual

models by a large margin, even on the set of S&P 500 stocks, and the gap widens on the

larger US set. On average, the neural network achieves a 44 basis point advantage over the

benchmark HAR model with individual fit and 40 basis points over the pooled fit for the

S&P 500 stocks, and 30 basis points over the pooled fit for the US stocks.

The rest of the paper is structured as follows. In Section 2.2, we set up the general

framework of the problem and discuss the ordinary least squares based methods and ma-

chine learning methods. Section 2.3 details the data collection and cleaning process, the

training scheme, and evaluation metrics. Section 2.4 provides the forecasting performance

and discusses the empirical findings. Section 2.5 introduces the utility-based framework,

quantifying the economic gain of the forecasting models. Finally, in Section 2.6, we conclude

the paper.

2.2 Methodology

2.2.1 Problem Setup

We denote pt as the log-price of an asset at time t, and assume that it follows a generic

stochastic differential process

pt “ p0 `

ż t

0
µsds`

ż t

0
σsdWs (2.1)

where µs represents the drift, σs represents the instantaneous volatility, Ws represents the

standard Brownian motion. By normalizing the unit time interval to a day (Bollerslev,

Patton, and Quaedvlieg (2016)), our aim is to forecast the latent Integrated Variance (IV)

formally defined by,

IVt ”

ż t

t´1
σ2
sds. (2.2)

80



Due to its latent nature, IV is not directly observable, whereas the (daily) Realized Volatility

(RV), defined by summation of high-frequency intraday squared log-returns, is observable:

RVt ” RV dt “
M
ÿ

i“1

rpt´1`i{M ´ pt´1`pi´1q{M s
2
“

M
ÿ

i“1

r2
t,i. (2.3)

Here M is the daily sampling frequency, and rt,i is the intraday log-return. The RVt pro-

vides a consistent estimator as the sampling frequency M increases (Barndorff-Nielsen and

Shephard (2002)). We sometimes put a superscription d to RV dt to emphasis it is the daily

RV, and omits it for the majority of the parts for simplicity. We further define the t ` 1

through t` h average RV as

RVt`1|t`h “
1

h

h
ÿ

j“1

RVt`j . (2.4)

There is an upper bound for the sampling frequency M due to data limitation and mi-

crostructure noise. The estimation error in RV is characterized by the asymptotic distribution

theory of Barndorff-Nielsen and Shephard (2002), that

RVt “ IVt ` ηt, ηt „MNp0,
2

M
IQtq, IQt ”

ż t

t´1
σ4
sds,

where the Integrated Quarticity (IQ) may be consistently estimated by the Realized Quar-

ticity (RQ),

RQt “
M

3

M
ÿ

i“1

r4
t,i. (2.5)

2.2.2 OLS Methods

We consider several classical reduced-form forecasting models that rely on RV features. The

mixed data sampling (MIDAS) model, which was proposed by Ghysels, Santa-Clara, and
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Valkanov (2006), will be discussed first. The model is specified as follows:

MIDAS: RVt`1 “ β0 ` βmMIDASt ` εt, (2.6)

where the MIDASt term is a weighted averaged of past L days’ RV, defined as

MIDASt “
1

řL
j“1 aj

L
ÿ

j“1

ajRVt`1´j ,

aj “ p
j

L
q
θ1´1

p1´
j

L
q
θ2´1, j “ 1, ..., L.

MIDAS utilizes smooth lag polynomials to depict dynamic dependencies, with the aj

being the most commonly used specification, namely the scaled beta functions. It should be

noted that the gamma terms in the beta function have been omitted as they will be cancelled

out by normalization.

The long-memory Heterogeneous AR (HAR) model, proposed by Corsi (2009), is widely

used to estimate RV and has become one of the preferred specifications for RV-based forecast-

ing. This is due to its simplicity and superior performance compared to traditional GARCH

and stochastic volatility models. The model defines the weekly, monthly, and quarterly RV

as follows:

RV wt “
1

5

5
ÿ

j“1

RVt`1´j “ RVt´4|t,

RVmt “
1

21

21
ÿ

j“1

RVt`1´j “ RVt´20|t,
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RV
q
t “

1

63

63
ÿ

j“1

RVt`1´j “ RVt´62|t.

The dynamic dependencies in the HAR model are limited to daily, weekly, monthly, and

quarterly averages. The regression formula for the HAR model is as follows:

HAR: RVt`1 “ β0 ` βdRV
d
t ` βwRV

w
t ` βmRV

m
t ` βqRV

q
t ` εt (2.7)

A variant of the HAR model, proposed by Patton and Sheppard (2015), is known as

Semivariance-HAR (SHAR). This model extends HAR by decomposing the daily RV into

positive and negative semi-variances, RV P and RV N , where

RV Pt “
M
ÿ

i“1

r2
t,i1trt,ią0u,

RV Nt “
M
ÿ

i“1

r2
t,i1trt,iă0u “ RVt ´RV Pt,

arguing that the negative semi-variance has stronger predictive power, and thus extends the

HAR model by incorporating this feature. The regression formula for SHAR may be written

as follows:

SHAR: RVt`1 “β0 ` β
`
d RV Pt ` β

´
d pRVt ´RV Ptq

` βwRV
w
t ` βmRV

m
t ` βqRV

q
t ` εt (2.8)

The HARmodel is further extended by Bollerslev, Patton, and Quaedvlieg (2016) through

the introduction of HARQ, which is a set of specifications that exploits the measurement error

of RV forecasts. We will be considering their full specification, which allows all parameters
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to vary with an estimate of the measurement error variance:

HARQ: RVt`1 “β0 ` βdRV
d
t ` βwRV

w
t ` βmRV

m
t ` βqRV

q
t ` φdRV

d
t

b

RQdt

` φwRV
w
t

b

RQwt ` φmRV
m
t

b

RQmt ` φqRV
q
t

b

RQ
q
t ` εt (2.9)

The Heterogeneous Exponential Realized Volatility with Global Risk Factor (HExpGl)

model, proposed by Bollerslev, Hood, Huss, and Pedersen (2018), distinguishes itself from

previous models by utilizing exponentially weighted moving averages (EWMA) of lagged RV

instead of simple averages. Furthermore, the model incorporates a global risk factor that

takes panel information into account. The EWMA of lagged RV is denoted as follows:

ExpRV
CoMpλq
t “

1
ř500
j“1 e

´jλ

500
ÿ

j“1

e´jλRVt`1´j ,

here the center-of-mass is defined as CoMpλq ” e´λ

1´e´λ
, and Bollerslev, Hood, Huss, and

Pedersen (2018) considers 4 values of CoM, 1, 5, 25, and 125, corresponding to λ “ logp1`

1
1q,logp1` 1

5q,logp1` 1
25q, and logp1` 1

125q. DenoteK as the total number of stocks considered,

RVk,t and ĞRVk,t as the RV and long-run mean of RV for stock k at time t. The EWMA of

global risk factor GLRV is defined as

ExpGLRV
CoMpλq
k,t “

1
ř500
j“1 e

´jλ

500
ÿ

j“1

e´jλGLRVk,t`1´j ,

GLRVk,t “ p
1

K

K
ÿ

i“1

RVi,t
ĘRVi,t

qĞRVk,t,

ĞRVk,t “

řt
j“1RVk,j

t
.
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The resulting regression formula, dropping the k under-script, is then,

HExpGl:RVt`1 “β0 ` β1ExpRV
1
t ` β2ExpRV

5
t ` β3ExpRV

25
t ` β4ExpRV

125
t

` β5ExpGLRV
5
t ` εt. (2.10)

According to Li and Tang (2022), combining all RV-based features leads to an improve-

ment in overall forecasting performance. The resulting specification is referred to as OLSRV

and includes 16 features, including the intercept. The regression formula for OLSRV is as

follows:

OLSRV:RVt`1 “β0 ` βmMIDASt ` βpRV Pt ` βdRV
d
t ` βwRV

w
t ` βmRV

m
t ` βqRV

q
t

` φdRV
d
t

b

RQdt ` φwRV
w
t

b

RQwt ` φmRV
m
t

b

RQmt ` φqRV
q
t

b

RQ
q
t

` β1ExpRV
1
t ` β2ExpRV

5
t ` β3ExpRV

25
t ` β4ExpRV

125
t

` β5ExpGLRV
5
t ` εt (2.11)

In addition to RV-based features, we also include a set of features based on implied

variances (IV) as suggested by the literature (Christensen and Prabhala (1998), Busch,

Christensen, and Nielsen (2011), Li and Tang (2022)). Specifically, we consider the option-

implied variance from call and put options denoted as CIVm,δt and PIV
m,δ
t , where the

time to maturity m P t30, 60, 91u, and δ P t0.1, 0.15, ..., 0.85, 0.9u. We augment the HAR

specification with the these IV-based features, this results in 107 features for each stock,

whenever available. 1 We define the specification using both the implied variances and HAR

features as OLSIV:

1. We have also considered the specification using only the IV features, but it resulted in inferior perfor-
mance compared to HAR by a large margin.
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OLSIV: RVt`1 “β0 ` βdRV
d
t ` βwRV

w
t ` βmRV

m
t ` βqRV

q
t

`
ÿ

mPt30,60,91u

ÿ

δPt0.1,0.15,...,0.85,0.9u

´

βCm,δCIV
m,δ
t ` βPm,δPIV

m,δ
t

¯

` εt,

(2.12)

and the specification using all the RV-based features and implied variances as OLSRVIV:

OLSRVIV:RVt`1 “β0 ` βmMIDASt ` βpRV Pt ` βdRV
d
t ` βwRV

w
t ` βmRV

m
t ` βqRV

q
t

` φdRV
d
t

b

RQdt ` φwRV
w
t

b

RQwt ` φmRV
m
t

b

RQmt ` φqRV
q
t

b

RQ
q
t

` β1ExpRV
1
t ` β2ExpRV

5
t ` β3ExpRV

25
t ` β4ExpRV

125
t ` β5ExpGLRV

5
t

`
ÿ

mPt30,60,91u

ÿ

δPt0.1,0.15,...,0.85,0.9u

´

βCm,δCIV
m,δ
t ` βPm,δPIV

m,δ
t

¯

` εt.

(2.13)

To enhance the forecasting performance, we incorporate several features that are not

solely based on realized volatility or implied volatility. These additional features encompass

the earnings announcement date, overnight return, daily returns, trading volumes, market

capitalizations, and sector ETFs.

The earnings announcement date (EAD) is a crucial event for investors, as it provides

valuable information into a company’s business performance. Several studies, including

Cao and Narayanamoorthy (2012), Barth and So (2014),Atilgan (2014),Lei, Wang, and Yan

(2020), have shown that stock prices, and hence returns and realized volatilities, can react

strongly to the new information provided during earnings announcements. As the announce-

ment date is an anticipated event, it can be used to construct a feature for the task of

forecasting. We construct 5 indicators of the EAD, EADi
t, i P t´2,´1, 0, 1, 2u, indicating

whether 2 days ago, 1 day ago, the day, the day after, and 2 days after time t is an earnings
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announcement date for that stock. By incorporating EADi
t as a feature in volatility models,

we can more accurately capture the impact of earnings announcements on realized volatility

and improve the accuracy of our forecasts.

We incorporate overnight returns, daily returns, trading volumes, and market capitaliza-

tions as additional features. To account for the polarity of overnight returns, we calculate

the squared value of both the overall overnight return and the positive overnight returns

(Ahoniemi and Lanne (2013), Todorova and Souček (2014)). The daily returns are derived

from the logarithmic returns over the holding period sourced from CRSP. For trading vol-

umes and market capitalization, we normalize the trading volume by shares outstanding and

include the logarithm of the previous day’s price multiplied by the trading volume, which

provides a measure of the dollar value of market activity (Liu, Choo, Lee, and Lee (2023)).

Additionally, we incorporate the logarithm of market capitalization as the size factor. For

the first five features, we also include their corresponding weekly, monthly, and quarterly

averages. However, for market capitalization, we solely utilize the daily value, as it exhibits

less variation compared to the other features. This results in 21 additional features denoted

as V POi,ht , where i P t1, 2, 3, 4, 5u, h P td, w,m, qu and MkCt.

We leverage the Global Industry Classification Standard (GICS) codes to assign industry

classifications to stocks and then match them with their respective industry SPDR ETFs.

We utilize the RVs of these ETFs as a proxy for the market factor. In cases where there is no

corresponding ETF available, we employ the SPDR S&P 500 ETF Trust (SPY) as the proxy.

This approach yields four additional features denoted as ETFht , where h P td, w,m, qu,

representing the daily value as well as the corresponding weekly, monthly, and quarterly

averages.

Augmenting these 5 ` 21 ` 4 features to the OLSRV model, we name the resulting

specification as OLSVPOS for its inclusion of non-RV based features. Furthermore, we

consider combining all features, named OLSALL, which utilizes all the p “ 148 features
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mentioned above. For simplicity we label the features as xj,t, j “ 1, ..., p. The regression

formula for OLSALL is as follows:

OLSALL: RVt`1 “

p
ÿ

j“1

βjxj,t ` εt. (2.14)

2.2.3 Machine Learning Methods

We consider several popular machine learning algorithms for regression, including LASSO,

PCR, Random Forest, Gradient Boosted Regression Trees, and Neural Networks.

For simplicity, we denote our training data as tpxi, yiquni“1, where yi represents the one-

day-ahead RVk,t`1 for some stock k and xi P Rp is the corresponding p-dimensional feature

vector, using the information up to the end day t for the same stock. We use all the p

features from OLSALL by default. Furthermore, we denote tpxvi, yviqu
nv
i“1 and tpxti, ytiqu

nt
i“1

as the validation and test data, respectively. Most machine learning algorithms require

normalization of the features, and we only use the training data to compute the normalization

coefficients, which are then applied to the validation and test data.

LASSO stands for least absolute shrinkage and selection operator (Tibshirani (1996)), it

is a penalized least squares method that imposes an L1-penalty on the regression coefficients,

and it performs continuous shrinkage and automatic variable selection simultaneously. Given

the data tpxi, yiquni“1, LASSO solves the L1-penalized regression problem of finding the

β “ tβju
p
j“1 that minimizes the following expression:

1

n

n
ÿ

i“1

¨

˝yi ´

p
ÿ

j“1

xi,jβj

˛

‚

2

` λ

p
ÿ

j“1

ˇ

ˇβj
ˇ

ˇ . (2.15)

Here the λ is the hyperparameter that controls the level of regularization. When λ is large,

LASSO returns very few non-zeros values for β, and when it is 0, it reduces to usual OLS
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method.

PCR, or principal component regression, is motivated by the fact that the features are

often highly correlated (Li and Tang (2022)). Specifically, we stack the training data as

Y “ py1, ..., ynq
T P Rnˆ1, and X “ px1, ..., xnq

T P Rnˆp. The X and Y are already

normalized such that they are centered and have 0 empirical means. We then perform the

(compact) Singular Value Decomposition (SVD) on the matrix X, resulting in:

X “ UDV T ,where U P Rnˆp, D P Rpˆp, V P Rpˆp. (2.16)

In the above expression, D is a diagonal matrix with diagonal elementsD1,1 ě D2,2 ě Dp,p ě

0, V is an orthogonal matrix, and U is composed of orthogonal columns. By selecting the

number of components, J , and denote V1:J “ rv1, ..., vJ s as the sub-matrix of V with first

J columns, PCR effectively regresses Y on the WJ ” XV1:J . In fact, since Wp is composed

of orthogonal columns, we may solve for a single β with all components, and perform cross-

validation on the validation set to select the optimal J. Here J is a hyperparameter controlling

the complexity of the model. When we set J “ p, then it reduces to usual OLS method, and

when J is small, then the regression is performed only on the top principal components.

The Random Forest (RF) algorithm, introduced by Leo (2001), is a nonlinear ensemble

method that combines individual decision trees and is a major player in data-mining. Luong

and Dokuchaev (2018) used RF for forecasting the direction and magnitude of RV for top

stocks in the Australian Stock Exchange and demonstrated superior performance compared

to traditional methods. To grow the random forest, we start from growing a regression tree,

with K leaves (terminal nodes), and depth L,

f tree,bpxq “
K
ÿ

k“1

θk,b1txPCkpLqu, (2.17)
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where CkpLq is one of the K partitions of the data, a product up to L indicator functions,

each is univariate on one entries of x (Gu, Kelly, and Xiu (2020)). For a given set of data,

one may use the Classification and Regression Trees (CART) algorithm (Breiman, Friedman,

Olshen, and Stone (1984)) to grow a decision tree f tree,bpxq that partitions the feature space

into rectangles and fits a simple model (average) in each element of the partition. The tree

is grown in a greedy way by searching for the optimal split over the features and dividing

into leaf nodes until one reaches a minimum threshold of the leaf node, or one reaches a

minimum deviance threshold that measures the goodness of fit, or one reaches the maximum

depth.

RF has two key characteristics that make trees much better predictors. First, each of the

individual trees is grown using a bootstrapped sample (random sampling with replacement)

to reduce overfitting. Second, when growing the individual tree, instead of searching the

entire set of features, RF randomly selects a subset of features and performs the search of

optimal split only on this subset, thus reducing the possibility of overfitting (and increasing

the computational efficiency).2 The result is a collection of trees 1
B

řB
b“1 f

tree,bpxq.

For RF, we have a number of hyperparameters that control the complexity of the fitted

models. One may select the number of trees, B, where a larger number results in a more

complex model at the cost of computational resources. The maximum depth L and minimum

number of observations at the leaf node control the complexity of each individual tree, where

a larger maximum depth/smaller minimum number of observations at the leaf node results

in a more complex tree.

The Gradient Boosted Regression Trees (GBRT) is a tree-based ensemble method that

differs from Random Forest in that it grows trees sequentially and uses the residuals from

previously grown trees to enhance the performance of the new tree. Random Forest, on

the other hand, grows individual trees independently and combines them by equal weights

2. The algorithm without the random selection of features is called Bagging by Breiman (1996), and it is
generally not performing as good as RF in practice and much slower to train.
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as a final predictor. This approach has been described in Freund and Schapire (1995) and

Friedman (2001).

To grow each individual tree, GBRT begins with a loss function, such as squared loss,

and evaluates the gradient with respect to the loss function using the previous collection of

trees. This gradient serves as the target for the tree, instead of the actual yi’s. The resulting

tree is multiplied by a shrinkage parameter λ, such that 0 ă λ ď 1, before being added to the

collection of trees. Unlike Random Forest, GBRT prefers many shallow trees over a few deep

trees, as noted in Hastie, Tibshirani, Friedman, and Friedman (2009). In addition to the

shrinkage parameter λ, GBRT also considers the maximum number of trees B, maximum

depth, and minimum number of observations at leaf node. To produce a better model, one

may perform sampling without replacement at each iteration to sample a fraction of training

data and perform stochastic gradient boosting, as described in Friedman (2002).

Neural networks (NN), also known as deep learning, are considered by many to be the

most powerful modeling device in machine learning, as noted in LeCun, Bengio, and Hinton

(2015). They use compositions of simple nonlinear functions, indexed by coefficients, to ap-

proximate complex ones. According to the universal approximation theorem, as described in

Hornik, Stinchcombe, and White (1989) and Cybenko (1989), a neural network with one hid-

den layer can approximate any Borel measurable function from one finite dimensional space

to another with any desired degree of accuracy, given enough neurons. Empirically, neural

networks with more hidden layers have been extremely successful in various tasks, including

image recognition, game playing, and autonomous driving, among others. Deep neural net-

works can be efficiently estimated using variants of stochastic gradient descent methods with

back-propagation algorithms, which can be implemented using standard software packages

such as TensorFlow (Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving,

Isard, et al. (2016) ) and Keras (Chollet et al. (2015)).

The neural network training process involves determining the architecture of the network,
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the loss function, and the training pipeline. To build the volatility prediction function using

a neural network fpx, θq indexed by coefficients θ, the only requirement is that the input and

output shapes must match the shapes of the feature vector and prediction target, namely

p and 1. While we are not limited in the intermediate architecture, for simplicity, we will

use a simple feed-forward neural network. Let K denote the number of hidden layers, and

tn1, ..., nKu be the number of hidden units in each layer, where layer 1 is connected to the

input and layer K is connected to the output layer, denote zk, k P t1, ..., K`1u be the output

vector for layer k (also the input for layer k ` 1), and z0 ” x , and σkp¨q as the activation

function, the simple feed-forward neural network with architecture rn1ˆ n2ˆ ...ˆ nK s may

be written recursively as,

z0 “ x,

zk “ σkpbk `Wkzk´1q, k P t1, ..., K ` 1u

fpx, θq “ zK`1,where θ “ tb1, ..., bK`1,W1, ...,WK`1u,

Here bk P Rnk and Wk P Rnkˆnk´1 are the bias term and weight term for layer k, and

n0 “ p is the dimension of input feature. The activation function σkp¨q adds nonlinearity to

the neural network model. Common functions for this purpose include the rectified linear

unit (ReLU), Leaky ReLU, tanh, and others (LeCun, Bengio, and Hinton (2015))). In this

case, we use Leaky ReLU for the intermediate layers for simplicity, and tanh for the final

layer to limit the forecasts within the range of (-1,1). The scaled forecasts are then adjusted

using the standardization from the training data.

LeakyReLUαpxq “ αx1xă0 ` x1xě0, where 0 ď α ă 1,

tanhpxq “
ex ´ e´x

ex ` e´x
.
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As the network becomes deeper (with a larger value of K) or wider (with larger values

of nk’s), it becomes more complex. While this may increase its capacity to approximate the

training data, it can also make it harder to train and may cause overfitting. For our network

architecture, we choose a simple fully connected feed-forward network and determined the

number of neurons in each layer using a geometric pyramid rule (Masters (1993), Gu, Kelly,

and Xiu (2020)). We consider several architectures with varying numbers of hidden layers.

The deepest architecture (NN6) has 6 hidden layers, starting with 64 neurons in the first

layer and decreasing to 32, 16, 8, 4, and 2 neurons in each subsequent layer. The medium

architecture (NN4) has four hidden layers, with 64, 32, 16, and 8 neurons in each layer. The

shallowest architecture (NN2) has only two hidden layers, with 64 and 32 neurons in each

layer.

The loss function, denoted as Losspfpx, θq, yq, can be any sensible function for which we

can compute the gradients for back-propagation. In the training process, we employ two

regularization techniques: the learning rate shrinkage method called “Adam”, described in

Kingma and Ba (2014), and early-stopping, as described in Morgan and Bourlard (1990).

The learning rate is a key tuning parameter for the neural network, as it controls the step

size of the gradient descent. Ideally, we would prefer a large learning rate away from the

optimum to ensure fast convergence and a small learning rate close to the optimum to

avoid oscillation.“Adam” is an adaptive algorithm that performs learning rate shrinkage.

Early stopping is a cross-validation regularization technique that determines when to stop

the learning process to avoid overfitting. We select the patience threshold Npthres, set the

patience count Np to 0, and generate a validation set that is not used for training. As we

train the model, we evaluate the loss function on the validation set regularly. Each time, we

increase Np by 1, and if the validation loss is lower than previous lowest, we keep the current

coefficient as ϑ˚, and reset Np to 0. Once Np exceeds Npthres, we stop the training process.

The resulting neural network fpx, ϑ˚q would be used for forecasting.
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Due to the inherent stochastic nature of neural networks, which includes the initialization

of weights and biases, as well as the random sampling of batches during stochastic descent,

using different random seeds can result in different forecasts. In order to reduce the variance

in predictions, we employ an ensemble approach (Hansen and Salamon (1990),Dietterich

(2000)). This approach involves averaging the predictions from neural networks with the

same architecture initialized with different random seeds. We refer to these ensemble neural

networks as NN6E, NN4E, and NN2E, respectively.

In summary, Lasso and PCR are direct extensions of OLS-based methods. Lasso reduces

dimensionality through variable selection, while PCR reduces dimensionality through prin-

cipal components. RF and GBRT are both nonlinear tree-based methods, but they differ in

their approach. RF utilizes bootstrapped samples and grows independent trees, while GBRT

utilizes gradient information with respect to previously grown trees. Neural networks are

the most flexible machine learning method, as their functional form can be any architecture

as long as the gradients can be computed.

2.3 Data

2.3.1 Raw Data

We consider two large universes of stocks: the first one is the set of stocks that have ever

been constituents of the S&P 500 index (denoted as S&P 500), and the second is the set

of all stocks and ETFs traded in the major United States stock exchanges (denoted as

US), from January 1996 to December 2022. The stocks (and ETFs) 3 are identified using

permno, a unique permanent stock (share class) level identifier from CRSP. We collect the

high-frequency intraday trade prices from the Trade and Quote (TAQ) database. Implied

volatilities from call and put options for the same universe of stocks are collected from Op-

tionMetrics over the same period, with maturities between one month and three months

3. If there is no ambiguity, we refer to both stocks and ETFs simply as stocks.
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and absolute delta between 0.1 and 0.9. Additionally, we collect opening and closing prices,

holding period returns, trading volumes, and shares outstanding from the CRSP daily stock

file to compute features related to overnight returns and daily trading volumes. The earnings

announcement date is collected from the Institutional Broker’s Estimate System (I/B/E/S)

database. We collect the Global Industry Classification Standards (GICS) code from the

Compustat database for the stocks to match their corresponding industry SPDR ETFs (En-

ergy (XLE), Materials (XLB), Industrials (XLI), Consumer Discretionary (XLY), Consumer

Staples (XLP), HealthCare (XLV), Financials (XLF), Information Technology (XLK), Com-

munication Services (XLC), Utilities (XLU), Real Estate (XLRE)). If no classification is

available, we match the stock to the SPDR S&P 500 ETF TRUST (SPY).

For the same stock, the ticker symbol may change over time4, and we use the daily stock

file table (dsenames) from CRSP to link the ticker symbols from TAQ to permnos through

2022 (CRSP (2021)). We use the 8-digit Named CUSIPs (NCUSIPs)5 from CRSP to match

the implied volatilities from OptionMetrics, where the implied volatilities data starts at 1996.

We follow the data cleaning procedure outlined in Da and Xiu (2021) for our analysis.

This procedure involves constructing the national best bid and offer (NBBO) from all ex-

changes at a 1-second frequency and removing observations that fall outside the range of

NBBO quotes. We exclude days with half trading hours. Stocks that terminate before Jan-

uary 1st, 1996, or start after December 31st, 2021, are removed to ensure they appear in

the training or validation set at least once. We also remove stock-days with less than 12

observations after subsampling. Additionally, we eliminate potential outliers that exhibit a

sudden rise or fall of RV followed by a bounce back on the second day. Finally, stocks with

less than 150 days of data within this period are excluded from the analysis.

The matching procedure yields a sample of 11,771 unique stocks (permnos) for the US

4. For example, Facebook Inc changed its ticker symbol from “FB” to “META” effectively on 2021-Nov-1st.

5. CUSIPs change over time, and Header CUSIPs only report the latest CUSIP of a stock, while Names
CUSIPs track the entire history of a stock
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stock universe from 1996-Jan-02 to 2022-Dec-30, with 30,429,300 stock-day observations. A

subset of S&P 500 stocks is selected using the same criteria, resulting in a sample of 1,162

unique stocks for the same period, with 5,023,069 stock-day observations. The exact number

of stock-day observations after each data cleaning step is reported in Table 2.1.

S&P 500 US
Steps Counts Proportion Counts Proportion
Has Price 5089365 1 31997147 1
Exclude HTD 5040134 0.9903 31701305 0.9908
ě 12 Obs 5023629 0.9871 30445465 0.9515
Filtering 5023069 0.9870 30429300 0.9510

Table 2.1: Sample Size by Data Cleaning Steps

Note: This table shows the sample size at the end of each data cleaning step for the S&P 500 stocks
and US stocks. Step 1: We collect the total number of stock-day combinations that have trading
activities. Step 2: We remove the half trading dates. Step 3: We require each stock-day to have
at least 12 observations (trading prices) after subsampling. Step 4: We apply a filter to remove
potential outliers. We also report the proportion of data that remains, in addition to the counts.

2.3.2 Data Processing

To compute the RVs, we apply a 15-minute subsampling frequency (Liu, Patton, and Shep-

pard (2015), Li and Xiu (2016)) on the intraday prices and compute the returns accordingly.

The overnight returns are corrected using the holding period returns and prices for opening

and closing. Consistent with Andersen, Bollerslev, Diebold, and Labys (2003), Bucci (2020),

and Zhang, Zhang, Cucuringu, and Qian (2024), we consider the logarithm of the annualized

RVs to reduce the impact of extreme values.

Figure 2.1 shows the percentiles of RVs for the S&P 500 and US stock universe over time,

supporting the transformation of RVs into log-scale. Without this transformation, the loss

function would be dominated by observations of large RVs. The figure also reveals spikes

around significant events such as the 2000 dot-com bubble, the 2008 financial crisis, the 2011

European debt crisis, and the 2020 Covid-19 pandemic, among others.

The implementation of MIDAS requires a choice of of the cutoff L, and the two tuning
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Figure 2.1: Quantiles of RVs

Note: This figure displays the 0.1st, 5th, 50th, 95th, and 99.9th percentiles of daily annualized
realized volatilities (in logarithm) for stocks in the S&P 500 and US stock universe from 1996 to
2022. The daily realized volatilities are computed using intraday high-frequency returns sampled
at 15-minute frequency.
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parameters θ1 and θ2. Follow Ghysels, Santa-Clara, and Valkanov (2006), we fix the cutoff

at L “ 50 and set θ1 “ 1. For θ2, existing literature (Bollerslev, Hood, Huss, and Pedersen

(2018), Ghysels and Qian (2019)) usually replies on a grid-search to find the best θ2 that

maximizes the predictability over the full-sample due to computation burden, resulting in

potential look-ahead bias. Instead, we apply a year-specific rolling window to tune the θ2.

Specifically, we gather the RVs for all the stocks in one year and run a MIDAS regression

to find the best θ2, and use this as the θ2 for data in the coming year for all the stocks.

When generating the corresponding features for the actual prediction tasks, we compute the

MIDAS feature year-by-year using the set of θ2’s, ensuring that there is no look-ahead bias.

2.3.3 Training Scheme

Due to the large amount of data, we rely on a rolling window estimation procedure. Specif-

ically, we use five calendar years of data for training, the next year for validation, and the

year after that for forecasting. Since our data starts in 1996, the first forecasting year would

be 2002, where the data from 1996-2000 is used for training, and the data from 2001 is used

for validation. For the S&P 500 stocks, we select the stocks for the test set based on their

membership to S&P 500 constituents on the day prior to test year, and there are 499 stocks

on average. We select the S&P 500 stocks for the training and validation set if the stock has

ever been in the constituents before the day prior to the test year, and there are on average

713 stocks. For the US universe, there are on average 5215 stocks in the test year and 6292

stocks in the training and validation years.

For the ML models, we use the training data to fit the models and the validation data

to perform cross-validation for the hyperparameters. For the OLS-based methods, no val-

idation is required, so the validation year’s data is also included for training. The set of

hyperparameters used is reported in Table 2.2. We mainly rely on the “pooled” fit, where

we fit one model using all the available data in the universe of stocks. For the OLS-based

method, we also consider the “individual” fit, which uses the stock’s own data.
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Model Hyperparameter Value

Lasso
Number of λ’s 100
λMin{λMax 10´7

Maximum iteration 106

PCR
Maximum components p
Minimum variance ratio 10´8

SVD Solver Full

RF

Number of trees 100
Maximum depth t10, 15, 20u
Minimum sample at leaf node 10
Number of features to consider for best split ?

p
Loss function MSE

GBRT

Number of trees 100
Learning rate t0.1, 0.3, 0.5u
Maximum depth 5
Minimum sample at leaf node 10
Number of features to consider for best split ?

p
Validation fraction 10%
Loss function MSE

NN

Architecture NN6 64ˆ 32ˆ 16ˆ 8ˆ 4ˆ 2
Architecture NN4 64ˆ 32ˆ 16ˆ 8
Architecture NN2 64ˆ 32
Training batch size 10000
Validation frequency 20
Epoch 20
Learning rate t0.002, 0.001, 0.0005, 0.0002u
Patience threshold Npthres 20
Activation function (hidden layer) LeakyReLU0.01p¨q

Activation function (output layer) tanhp¨q
Loss function MSE
Random seeds {2020,2021,2022,2023,2024}

Table 2.2: Hyperparameters for Machine Learning Models

Note: This table reports the hyperparameters for the five machine learning models we considered in
the paper, Lasso, Principal Component Regression (PCR), Random Forest (RF), Gradient Boosted
Regression (GBRT), and Neural Network (NN).

We follow Swanson and White (1997) and apply an “insanity filter” to the forecast. If

a forecast falls outside the range of values of the target variable observed in the estimation

period, then the forecast is replaced by the unconditional mean over that period. The upper

and lower bounds to trigger the insanity filter for each test year are computed using only

the corresponding training data.
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2.3.4 Evaluation Metrics

Denote yyk,t as the predicted value of yk,t, the log-scale RV for stock k at time t. Denote

1pk,tqPTest as the indicator variable that RV for stock k at time time t exists in the test set,

we compute the following out-of-sample metrics to compare the predictive performance of

various forecasting models,

Mean squared error (MSE) :
1

nTest

K
ÿ

k“1

T
ÿ

t“1

`

yyk,t ´ yk,t
˘2

1pk,tqPTest,

Quasi-likelihood (QLike) :
1

nTest

K
ÿ

k“1

T
ÿ

t“1

«

exppyk,tq

exppyyk,tq
´
`

yk,t ´yyk,t
˘

´ 1

ff

1pk,tqPTest,

Relative R-squared (R2) :1´

řK
k“1

řT
t“1

`

yyk,t ´ yk,t
˘2

1pk,tqPTest

řK
k“1

řT
t“1

´

yyk,t
Benchmark

´ yk,t

¯2
1pk,tqPTest

,

where nTest “

K
ÿ

k“1

T
ÿ

t“1

1pk,tqPTest.

Here, the yyk,t
Benchmark is the forecast from a benchmark model, and we use the HAR

model as the benchmark in this study for its simplicity yet appealing empirical performance

in the literature. QLike is computed using the original scale by definition, while for MSE and

R2, we use the log-scale of RV to reduce the impact of extreme RVs. Note that sometimes

a poor point forecast might result in a very large error (For example, when yk,t is large and

yyk,t is small in QLike), which can lead to spurious overall performance. To mitigate the

effect of possible extreme observations, we winsorize the squared error and quasi-likelihood

at the 99.99th percentiles. The winsorized version is called MSE* and QLike*, respectively.

MSE and QLike are “robust” loss functions in preserving the rankings of competing fore-

casts (Hansen and Lunde (2006), Patton (2011)), while the relative out-of-sample predictive

R2 produces a unit-free measure that is easy to interpret. The modified Diebold-Mariano

test is conducted to make pairwise comparisons of competing methods (Diebold and Mar-
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iano (2002)). Specifically, we compute the cross-sectional average of loss differentials, and

compute the corresponding mean and Newey-West standard error over the test sample (Gu,

Kelly, and Xiu (2020)).

2.4 Predictive Performance

Table 2.3 and 2.4 present the out-of-sample forecasting performance for S&P 500 stocks and

US stocks, respectively. Each row represents a forecasting model, and each column represents

a performance metric in the left panel. The best-performing model is highlighted in bold

font in each column. Starting with Table 2.3, which focuses on S&P 500 stocks consisting of

large and liquid companies, the performance metrics reported include R2, MSE, winsorized

MSE*, QLike, and winsorized QLike*. The relative performance of each model is shown

in the Gain(%) column, with the random walk (RW) model set to 0 and the HAR model

set to 100 as benchmarks. The number of features used in each model is reported in the

nFeature column. In the upper panel, OLS-based methods are presented, while the bottom

panel consists of machine learning methods. The relative R2 for the HAR model is 0 by

definition. The MIDAS model has a slightly worse performance with a relative R2 of -

0.0144. Parsimonious regression forms like SHAR, HEXP, and HARQ achieve relative R2

values between 0.0036 and 0.0334. Combining all RV-based features in OLSRV yields a

relative R2 of 0.0430. Including IV-based features to the HAR model (OLSIV) improves the

relative R2 to 0.0415. Combining all RV and IV-based features, referred to as OLSRVIV,

results in a relative R2 of 0.0716. The non-RV and non-IV based features proposed in this

paper significantly enhance forecasting performance. Augmenting these features to OLSRV

produces OLSVPOS, which achieves a relative R2 of 0.1537. Finally, the best OLS model

considered here is OLSALL, which incorporates all 148 features and yields a relative R2

of 0.1691. Among the machine learning methods, Lasso and PCR perform comparably to

OLSALL, while RF and GBRT underperform OLSALL. The neural network models with 6,

4, and 2 hidden layers, referred to as NN6, NN4, and NN2, respectively, achieve relative R2
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values ranging from 0.1757 to 0.1780. However, when an ensemble of neural networks with

the same architecture is formed, referred to as NN6E, NN4E, and NN2E, the relative R2

further increases to the range of 0.1810 to 0.1835.

Model R2 MSE MSE* QLike QLike* Gain(%) nFeature
RW -0.4868 0.7484 0.7473 0.5999 0.5748 0 0

MIDAS -0.0144 0.5106 0.5101 0.4559 0.4428 97.04 2
HAR 0 0.5033 0.5028 0.4557 0.4426 100 5
SHAR 0.0036 0.5015 0.5010 0.4544 0.4411 100.74 6
HEXP 0.0075 0.4995 0.4990 0.4536 0.4404 101.55 6
HARQ 0.0334 0.4865 0.4859 0.4441 0.4311 106.87 9
OLSRV 0.0430 0.4817 0.4811 0.4412 0.4278 108.84 16
OLSIV 0.0415 0.4825 0.4819 0.4237 0.4125 108.52 107

OLSRVIV 0.0716 0.4673 0.4668 0.4161 0.4045 114.70 118
OLSVPOS 0.1537 0.4260 0.4254 0.3374 0.3253 131.57 46
OLSALL 0.1691 0.4182 0.4177 0.3281 0.3169 134.73 148
LASSO 0.1673 0.4191 0.4185 0.3291 0.3178 134.37 148
PCR 0.1665 0.4195 0.4190 0.3292 0.3182 134.21 148
RF 0.1365 0.4346 0.4341 0.3437 0.3319 128.05 148

GBRT 0.1274 0.4392 0.4387 0.3404 0.3289 126.16 148
NN6 0.1757 0.4149 0.4143 0.3227 0.3098 136.09 148
NN4 0.1776 0.4140 0.4133 0.3252 0.3116 136.47 148
NN2 0.1780 0.4138 0.4132 0.3235 0.3102 136.56 148
NN6E 0.1810 0.4122 0.4116 0.3215 0.3088 137.18 148
NN4E 0.1832 0.4111 0.4105 0.3222 0.3088 137.62 148
NN2E 0.1835 0.4110 0.4104 0.3212 0.3081 137.69 148

Table 2.3: Out-of-Sample Forecasting Performance for S&P 500 Stocks

Note: This table presents metrics that measure the out-of-sample forecasting performance for various
models discussed in the paper on the set of stocks that once belonged to the S&P 500 index. The
upper panel includes all the ordinary least squares methods, while the bottom panel includes all the
machine learning methods. R2 represents the relative out-of-sample predictive R2, and the larger
the value, the better the performance. MSE stands for the mean squared error, and MSE* stands
for the winsorized mean squared error, where extreme errors (larger than the 99.99th percentile)
are replaced by the boundary value (99.99th percentile). QLike stands for the quasi-likelihood, and
QLike* stands for the winsorized QLike. The smaller the value of the latter four metrics, the better
the performance. The Gain(%) column set the relative performance of a random walk model (RW)
as 0, and HAR model as 100% based on MSE for better comparison among models. The final column
nFeature reports the number of features used for the corresponding model. The best-performing
model is highlighted in bold in each column, and the (ensemble) neural networks outperform all
other methods.

When analyzing the set of US stocks in Table 2.4, we observe similar patterns in the OLS-

based methods, although the MSE and QLike metrics are considerably higher in every entry.
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Model R2 MSE MSE* QLike QLike* Gain(%) nFeature
RW -0.4948 0.9167 0.9147 0.8089 0.7578 0 0

MIDAS -0.0163 0.6232 0.6224 0.5438 0.5157 96.71 2
HAR 0 0.6133 0.6123 0.5366 0.5095 100 5
SHAR 0.0019 0.6121 0.6112 0.5350 0.5082 100.38 6
HEXP 0.0067 0.6092 0.6083 0.5292 0.5035 101.35 6
HARQ 0.0154 0.6038 0.6028 0.5311 0.5044 103.12 9
OLSRV 0.0241 0.5985 0.5975 0.5226 0.4974 104.87 16
OLSIV 0.0058 0.6097 0.6089 0.5259 0.5014 101.18 107

OLSRVIV 0.0286 0.5957 0.5949 0.5153 0.4920 105.77 118
OLSVPOS 0.0809 0.5637 0.5627 0.4514 0.4272 116.34 46
OLSALL 0.0835 0.5620 0.5612 0.4475 0.4246 116.89 148
LASSO 0.0823 0.5628 0.5620 0.4483 0.4252 116.63 148
PCR 0.0818 0.5631 0.5623 0.4493 0.4256 116.53 148
RF 0.0851 0.5610 0.5603 0.4517 0.4270 117.21 148

GBRT 0.0702 0.5702 0.5694 0.4563 0.4312 114.19 148
NN6 0.1032 0.5500 0.5492 0.4346 0.4104 120.85 148
NN4 0.1094 0.5462 0.5453 0.4323 0.4063 122.11 148
NN2 0.1108 0.5453 0.5445 0.4347 0.4065 122.40 148
NN6E 0.1102 0.5457 0.5449 0.4327 0.4087 122.27 148
NN4E 0.1136 0.5436 0.5427 0.4325 0.4066 122.97 148
NN2E 0.1127 0.5442 0.5433 0.4348 0.4086 122.77 148

Table 2.4: Out-of-Sample Forecasting Performance for US Stocks

Note: This is a continuation of Table 2.3, where the forecasting exercise is conducted on the set
of US stocks. The best-performing model is highlighted in bold in each column. The (ensemble)
neural network achieves the best performance among all.
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This is due to the inclusion of smaller stocks that are more challenging to predict. While

the boost in performance relative to HAR by incorporating additional features is weaker for

this set of stocks, the inclusion of these features still improves performance. The largest

additional gain still comes from the set of non-RV and non-IV based features. OLSALL

now achieves a relative R2 of 0.0835, representing a 16.89% additional boost against the

naive random walk model relative to HAR. Among the machine learning algorithms, RF

now performs better than OLSALL. This is likely because tree-based methods like RF rarely

produce extreme values, as the predictions are based on averages from certain leaf nodes.

Neural networks still demonstrate the best performance across all metrics, producing relative

R2 values ranging from 0.1032 to 0.1108. The relative R2 further increases to the range of

0.1102 to 0.1136 for the ensemble neural networks. The gaps between MSE and MSE*, as

well as between QLike and QLike*, are slightly larger when more smaller stocks with lower

market capitalization are included compared to the constituents of the S&P 500 index.

Table 2.5 examines the impact of using a pooled approach versus an individual approach

for the S&P 500 universe. The pooled approach utilizes all available data to fit a single

model, while the individual approach builds separate models for each stock using its own

data. Results indicate that, for each model specification, the pooled approach yields higher

R2 values and lower MSE* and QLike* values compared to the individual approach. In the

individual approach, simpler specifications (MIDAS/HAR/HARQ) demonstrate better per-

formance, which deteriorates as more features are included. In contrast, the pooled approach

shows improved performance as more features are incorporated. This finding potentially ex-

plains why Lasso and PCR do not outperform OLSALL. With a substantial amount of data,

nearly all considered features become influential.

Table 2.6 compares the pooled and individual approaches for the US stock universe.

Similar patterns are observed as in the S&P 500 universe, where the individual approach un-

derperforms compared to the pooled approach, and this difference becomes more pronounced
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R2 MSE* QLike*
Model Individual Pooled Individual Pooled Individual Pooled
MIDAS -0.0296 -0.0144 0.5177 0.5101 0.4498 0.4428
HAR -0.0236 0 0.5147 0.5028 0.4576 0.4426
SHAR -0.0201 0.0036 0.5129 0.5010 0.4545 0.4411
HEXP -0.0560 0.0075 0.5303 0.4990 0.5030 0.4404
HARQ -0.0166 0.0334 0.5103 0.4859 0.5099 0.4311
OLSRV -0.0388 0.0430 0.5214 0.4811 0.4933 0.4278
OLSIV -0.2920 0.0415 0.6481 0.4819 0.5675 0.4125

OLSRVIV -0.3170 0.0716 0.6604 0.4668 0.5942 0.4045
OLSVPOS -0.2180 0.1537 0.6115 0.4254 0.8627 0.3253
OLSALL -0.5436 0.1691 0.7749 0.4177 1.3462 0.3169

Table 2.5: Individual vs Pooled Fit, S&P 500 Stocks

Note: This table compares the forecasting performance between the pooled and individual fit for
various ordinary least squares methods for the S&P 500 universe. We evaluate the relative out-of-
sample predictive R2 (R2), winsorized mean squared error (MSE*), and winsorized quasi-likelihood
(QLike*), and highlight the best-performing model in bold font in each column. For each model,
the pooled fit using all the data outperforms the individual fit using only single stock data. The
OLSALL with all the features is the best-performing ordinary least square method using the pooled
data. The HARQ stands out as the best-performing ordinary least square method using individual
stock data under R2 and MSE*, while MIDAS with hyper-parameters tuned using the pooled data
performs the best using individual stock data under QLike.

R2 MSE* QLike*
Model Individual Pooled Individual Pooled Individual Pooled
MIDAS -0.1961 -0.0163 0.7317 0.6224 0.7128 0.5157
HAR -0.4000 0 0.8564 0.6123 3.3431 0.5095
SHAR -0.3995 0.0019 0.8562 0.6112 3.4558 0.5082
HEXP -0.6146 0.0067 0.9880 0.6083 6.1034 0.5035
HARQ -0.6117 0.0154 0.9864 0.6028 6.7636 0.5044
OLSRV -0.7815 0.0241 1.0906 0.5975 10.3853 0.4974
OLSIV -1.3102 0.0058 1.4148 0.6089 13.2184 0.5014

OLSRVIV -1.6054 0.0286 1.5958 0.5949 17.3691 0.4920
OLSVPOS -2.1049 0.0809 1.9021 0.5627 46.0299 0.4272
OLSALL -2.7719 0.0835 2.3113 0.5612 48.1355 0.4246

Table 2.6: Individual vs Pooled Fit, US Stocks

Note: This is a continuation of Table 2.5, where the forecasting exercise is done on the set of US
stocks. We observe a similar pattern that the pooled fits dominate the individual fits for all the
models and all the metrics. (Winsorized) MSE* and QLike* increase compared to the S&P 500
universe for the pooled fit, and there are even larger increases in the individual fit. This is probably
due to the fact that the stocks with small market capitalizations are harder to predict. MIDAS
achieves the best performance for individual fit for the reason that the hyper-parameter is tuned
using the pooled data. OLSALL is still the best-performing pooled model for R2 and MSE*, and
for QLike*.
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with the inclusion of more features. One notable distinction is the performance of MIDAS

in the individual approach, which stands out. This could be attributed to the fact that the

hyperparameter in MIDAS is tuned using the pooled data. The gap between the individual

approach and pooled approach is now wider in the US stock universe.

To examine the impact of the “Insanity Filter”, we compare the MSEs before and after

applying the filter in Tables 2.7 and 2.8. In the individual approach, where separate models

are created for each stock using their own data, the Insanity Filter is frequently triggered

and significantly improves out-of-sample performance by correcting outliers. For example,

in the S&P 500 universe, the MSE for HAR decreases by 12.30%, and the MSE for OLSALL

decreases by 41.32%. In contrast, the pooled approach has only a few trigger counts, resulting

in minimal change in MSE. In the US universe, we observe even more trigger counts for the

individual approach, with a 51.62% reduction in MSE for HAR and an 82.56% reduction

in MSE for OLSALL. The pooled approach still has few trigger counts, resulting in little

change in MSE. While the Insanity Filter proves crucial in eliminating potential outliers and

enhancing forecasting performance for individual stocks, it may not be necessary for large

datasets. However, its inclusion does not harm the analysis. Despite the correction by the

Insanity Filter, the individual approach still underperforms the pooled approach prior to

correction. Due to computational constraints, we did not analyze the individual approach

for machine learning models, and it is likely that it will underperform.

We perform the modified Diebold-Mariano test on selected models to assess the signifi-

cance of differences in forecasting performance, following the approach in Gu, Kelly, and Xiu

(2020). The results are reported in Tables 2.9 and 2.10 for the S&P 500 and US universes,

respectively. We utilize squared errors to calculate the loss differentials and compute cross-

sectional averages, along with the corresponding mean and Newey-West standard error. In

the tables, a positive value indicates that the model in the corresponding row outperforms

the model in the corresponding column, as we subtract the loss from the row model from
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Individual MSE Pooled MSE
Model Pre Counts Post Pre Counts Post
RW 0.7466 203 0.7484 0.7466 207 0.7484

MIDAS 0.5182 4 0.5182 0.5105 5 0.5106
HAR 0.5875 474 0.5152 0.5033 2 0.5033
SHAR 0.5856 474 0.5135 0.5015 3 0.5015
HEXP 0.7768 4308 0.5315 0.4995 0 0.4995
HARQ 0.6167 2075 0.5117 0.4864 10 0.4865
OLSRV 1.1684 8171 0.5229 0.4817 2 0.4817
OLSIV 0.8369 4549 0.6503 0.4825 0 0.4825

OLSRVIV 0.9964 5436 0.6629 0.4673 3 0.4673
OLSVPOS 1.7648 13962 0.6131 0.4259 9 0.4260
OLSALL 1.3240 10707 0.7770 0.4182 4 0.4182
LASSO - - - 0.4191 4 0.4191
PCR - - - 0.4195 3 0.4195
RF - - - 0.4346 0 0.4346

GBRT - - - 0.4392 2 0.4392
NN6 - - - 0.4148 12 0.4149
NN4 - - - 0.4137 33 0.4140
NN2 - - - 0.4136 27 0.4138
NN6E - - - 0.4121 12 0.4122
NN4E - - - 0.4110 29 0.4111
NN2E - - - 0.4109 25 0.4110

Table 2.7: Insanity Filter, S&P 500 Stocks

Note: This table reports the effect of having an insanity filter on the out-of-sample forecasting
performance for the S&P 500 universe. It reports the MSE for each model before passing the
predictions to an insanity filter (Pre), the counts of triggering the insanity filter (Counts), and the
MSE after the insanity filter (Post). The left panel reports the individual fit while the right panel
reports the pooled fit, and we only report the pooled fit for the machine learning models due to
computation constraints. It is clear that the insanity filter improves the out-of-sample performance
for individual OLS fits as the MSE decreases by a large magnitude when the counts are large, except
for MIDAS. For the pooled fits, the insanity filter rarely triggers, and as a result, the MSE does
not change much. The takeaway is that the insanity filter greatly improves individual fits, but they
still perform much worse compared to the pooled fit. The best-performing column is highlighted in
bold font.
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Individual MSE Pooled MSE
Model Pre Counts Post Pre Counts Post
RW 0.9725 1029 0.9746 0.9144 1138 0.9167

MIDAS 0.7595 4145 0.7335 0.6231 48 0.6232
HAR 1.7746 83630 0.8585 0.6130 89 0.6133
SHAR 1.7624 83251 0.8583 0.6118 91 0.6121
HEXP 5.6763 337759 0.9902 0.6089 101 0.6092
HARQ 3.3154 213536 0.9884 0.6033 150 0.6038
OLSRV 8.5373 524750 1.0925 0.5980 172 0.5985
OLSIV 8.5821 549885 1.4168 0.6096 28 0.6097

OLSRVIV 8.9928 583681 1.5978 0.5955 85 0.5957
OLSVPOS 14.1244 966067 1.9041 0.5641 207 0.5637
OLSALL 13.2639 925902 2.3131 0.5625 160 0.5620
LASSO - - - 0.5632 169 0.5628
PCR - - - 0.5633 117 0.5631
RF - - - 0.5610 0 0.5610

GBRT - - - 0.5702 0 0.5702
NN6 - - - 0.5500 10 0.5500
NN4 - - - 0.5460 84 0.5462
NN2 - - - 0.5452 87 0.5453
NN6E - - - 0.5457 11 0.5457
NN4E - - - 0.5434 55 0.5436
NN2E - - - 0.5440 72 0.5442

Table 2.8: Insanity Filter, US Stocks

Note: This is a continuation of Table 2.7, where the forecasting exercise is done on the set of US
stocks. We observe a similar pattern that the insanity filter is triggered much more frequently in
the individual fits, and it improves the performance, yet there is a large gap to the pooled fits. For
the US stocks, the insanity filter is triggered even more frequently compared to S&P 500 stocks for
the individual fit, yet the pooled fit is rather robust as it has few trigger counts, and the MSE does
not change much as a result.
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the loss of the column model. For the S&P 500 stocks in Table 2.9, we observe large

and significant test statistics as we increase the number of features from HAR to OLSRV,

OLSVPOS, and OLSALL, thus validating the effectiveness of feature construction. Lasso

and PCR significantly underperform OLSALL, while RF and GBRT perform considerably

worse. On the other hand, all three neural network architectures exhibit significantly better

performance than OLSALL. However, pairwise comparisons among the neural network ar-

chitectures do not yield significant differences in performance. The ensemble neural networks

even outperform the original networks, with large positive test statistics against OLSALL.

Similar patterns are observed for the US stocks in Table 2.10, with the exception of RF,

which exhibits comparable results to OLSALL. Neural networks once again demonstrate

strong significance against OLSALL, while the ensemble neural network further enhances

the performance.

Model HAR OLSRV OLSVPOS OLSALL LASSO PCR RF GBRT NN6 NN4 NN2 NN6E NN4E
OLSRV 11.6 - - - - - - - - - - - -

OLSVPOS 18.3 17.1 - - - - - - - - - - -
OLSALL 17.7 17.3 9.0 - - - - - - - - - -
LASSO 17.6 16.9 7.2 -2.3 - - - - - - - - -
PCR 17.6 16.8 6.8 -3.1 -1.9 - - - - - - - -
RF 15.7 14.1 -6.6 -14.2 -14.6 -13.9 - - - - - - -

GBRT 14.8 11.9 -8.9 -12.9 -13.9 -13.4 -4.4 - - - - - -
NN6 16.2 15.9 6.4 3.2 3.7 3.9 13.2 11.6 - - - - -
NN4 18.0 17.6 10.6 5.3 5.7 6.0 16.9 15.6 1.0 - - - -
NN2 18.7 18.4 10.4 4.0 4.1 4.4 14.5 13.8 0.9 0.3 - - -
NN6E 18.5 18.2 12.1 6.5 6.4 6.6 17.1 15.4 2.6 3.5 3.4 - -
NN4E 18.3 18.2 11.7 8.2 7.8 8.0 18.5 15.6 4.4 7.1 4.4 2.8 -
NN2E 18.4 18.3 11.9 8.0 7.6 7.8 18.0 15.5 4.2 6.3 5.5 3.7 0.9

Table 2.9: Diebold-Mariano Tests, S&P 500 Stocks

Note: This table displays the modified Diebold-Mariano test statistics for the out-of-sample fore-
casting performance of various models using panel data for the S&P 500 universe. The loss differ-
ential is calculated using squared errors, and the cross-sectional average is taken. A positive test
statistic indicates that the model in the corresponding row performs better than the model in the
corresponding column. Among the ordinary least square methods, OLSALL demonstrates the best
performance. However, the ensemble neural networks outperform all other competing models.
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Model HAR OLSRV OLSVPOS OLSALL LASSO PCR RF GBRT NN6 NN4 NN2 NN6E NN4E
OLSRV 12.0 - - - - - - - - - - - -

OLSVPOS 18.0 18.0 - - - - - - - - - - -
OLSALL 18.0 18.2 10.4 - - - - - - - - - -
LASSO 17.4 17.1 1.6 -2.4 - - - - - - - - -
PCR 17.2 16.8 0.9 -3.2 -3.3 - - - - - - - -
RF 20.6 20.5 3.0 0.9 2.2 2.5 - - - - - - -

GBRT 17.4 15.1 -7.0 -8.4 -7.8 -7.4 -17.0 - - - - - -
NN6 21.2 19.6 8.8 7.4 7.0 7.2 6.7 12.2 - - - - -
NN4 20.2 21.3 20.9 20.1 16.8 17.2 12.7 18.2 2.5 - - - -
NN2 18.4 19.3 16.2 16.3 15.6 16.0 11.0 15.1 2.1 1.0 - - -
NN6E 23.1 22.0 12.6 10.9 10.1 10.2 10.1 16.1 14.3 0.4 -0.1 - -
NN4E 21.1 22.4 25.4 24.7 20.1 20.5 15.1 20.2 4.4 13.7 2.8 1.5 -
NN2E 22.8 23.3 20.6 18.1 15.6 15.7 14.6 21.2 6.9 2.8 1.0 2.2 -0.8

Table 2.10: Diebold-Mariano Tests, US Stocks

Note: This is a continuation of Table 2.9, where the forecasting exercise is conducted on the set of
US stocks. A positive test statistic indicates that the model corresponding to the row outperforms
the model corresponding to the column. We observe a similar pattern to Table 2.9, where OLSALL
with all features is the best performing ordinary least square method, and the ensemble neural
networks significantly outperform all other models.

In Table 2.11, we provide a detailed examination of the features considered in this pa-

per for the set of S&P 500 stocks. The features are divided into 12 groups, each labeled

accordingly. The groups include MIDAS, SHAR, HARQ, and HEXP, which represent addi-

tional features compared to the HAR model. IV represents implied-volatility based features,

EAD represents earnings announcement indicators, OVN represents overnight return fea-

tures, VoSVoP represents volume-based features (turnover and dollar volume), Ret represents

daily return features, MkC represents market capitalization features, and ETF represents

sector ETFs. The table includes the number of features in each group, ranging from 1 to

102, reported in the nFeatures column. We report the in-sample Newey-West t-statistics for

each group based on the OLSALL model, and all groups show statistical significance. Addi-

tionally, we present the out-of-sample relative R2 when augmenting the group of features to

the HAR model in the R2(Inclusion) column. It is observed that, except for MkC, all groups

exhibit additional forecasting power compared to the HAR model. Furthermore, we assess
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the impact of removing each group of features from the OLSALL model. With the exception

of MIDAS, all other groups show a decrease in forecasting performance when removed. It

is worth noting that even after removing MIDAS from the model, the out-of-sample relative

R2 (0.1698) remains significantly lower than that of neural networks, such as 0.1780 in NN2.

Additionally, when considering only the intercept, the R2 value drops to -2.0332, indicating

poor forecasting performance. Based on these findings, it can be concluded that the earnings

announcements indicators (EAD) are likely the most important group of features, second

only to the HAR model, in terms of their contribution to forecasting accuracy.

Similar observations can be made for US stocks in Table 2.12, where each group con-

tributes to improved forecasting performance with significant in-sample t-statistics. It is

evident that earnings announcements indicators are the most important group of features,

in addition to the HAR model, in terms of their impact on forecasting accuracy.

We examine the influential features by ranking them according to the variable importance

as in Gu, Kelly, and Xiu (2020). Specifically, we calculate the reduction in out-of-sample

predictive R2 when setting all values of a particular feature to its mean value in the training

data, while keeping the model estimates and other features fixed. We then normalize the

values so that they sum to one in each model. Figure 2.2 for S&P 500 stocks illustrates that

the models generally agree on the most influential features. The top four features across

all the models considered are daily and weekly realized volatility (RV, RVw) and daily and

weekly realized quarticity (RVQ, RVwQ). Following closely is the earnings announcement

indicator (EAD0), which consistently ranks high in importance. Besides various weighted

average of past RVs, the daily, weekly, and monthly dollar volumes (VoPd, VoPw, VoPm) as

well as the sector ETFs (ETFd, ETFw, ETFm) also have a significant impact on forecasting.

One interesting observation in the GBRT model is that the rankings of IV-based features are

surprisingly high compared to other models. This might potentially explain the differences in

performance between the models. When examining the US stocks in Figure 2.3, we observe
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Group nFeature AvgT MaxT MinT R2(Inclusion) R2(Exclusion)
HAR 4 97.89 150.41 46.38 0 0.1614

MIDAS 1 54.49 - - 0.0037 0.1698
SHAR 1 140.40 - - 0.0036 0.1687
HARQ 4 38.19 67.66 14.90 0.0334 0.1606
HEXP 5 25.92 42.03 10.75 0.0088 0.1690
IV 102 4.33 141.32 0.02 0.0415 0.1537

EAD 5 111.05 182.53 45.80 0.0922 0.0901
OVN 8 56.89 158.45 2.98 0.0179 0.1677

VoSVoP 8 16.25 48.67 1.22 0.0104 0.1645
Ret 4 21.06 32.56 5.25 0.0157 0.1665
MkC 1 149.57 - - -0.0000 0.1690
ETF 4 79.25 130.02 46.47 0.0177 0.1629

OLSALL 143 5.99 168.93 0.01 0.1691 -2.0332

Table 2.11: Feature Estimation by Group, S&P 500 Stocks

Note: This table presents the in-sample t-statistics and out-of-sample R2 for various feature groups
considered in this paper on the set of S&P 500 stocks. The features are divided into 12 groups,
and the column nFeature reports the number of features in each group. The groups are labeled
as follows: MIDAS, SHAR, HARQ, and HEXP indicate additional features compared to the HAR
model. IV represents implied-volatility based features, EAD represents earnings announcement
indicators, OVN represents overnight return features, VoSVoP represents volume-based features, Ret
represents daily return features, MkC represents market capitalization feature, and ETF represents
sector ETFs. We present the in-sample average t-statistics (AvgT), maximum t-statistics (MaxT),
and minimum t-statistics (MinT) when running the OLSALL regression. If there is only one feature
in the group, the MaxT and MinT values are skipped. The R2(Inclusion) reports the out-of-sample
relative R2 when augmenting the group of features to the HAR model, while the R2(Exclusion)
reports the out-of-sample relative R2 when excluding the group of features in the OLSALL model
(the intercept is always kept). From the table, we observe that the inclusion of each group of
features is significant in-sample and provides additional forecasting power compared to the HAR
model. Conversely, excluding these features results in a decrease in forecasting power.
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Group nFeature AvgT MaxT MinT R2(Inclusion) R2(Exclusion)
HAR 4 235.98 364.48 104.46 0 0.0776

MIDAS 1 138.29 - - 0.0043 0.0840
SHAR 1 311.10 - - 0.0019 0.0824
HARQ 4 75.77 122.97 42.85 0.0154 0.0782
HEXP 5 56.31 102.44 15.99 0.0077 0.0827
IV 102 11.10 363.23 0.02 0.0058 0.0809

EAD 5 246.43 357.63 102.25 0.0432 0.0426
OVN 8 134.82 379.47 7.30 0.0123 0.0812

VoSVoP 8 28.67 101.04 0.65 0.0044 0.0806
Ret 4 38.65 66.89 4.08 0.0058 0.0816
MkC 1 364.52 - - 0.0004 0.0834
ETF 4 208.57 336.35 102.30 0.0084 0.0786

OLSALL 143 12.67 303.78 0.03 0.0835 -3.4874

Table 2.12: Feature Estimation by Group, US Stocks

Note: Continuing from Table 2.11, which focuses on the estimation conducted on the set of US
stocks, we observe that the inclusion of each group of features to the HAR model leads to an
increase in the out-of-sample R2. Conversely, excluding any one of these groups (except MIDAS)
results in a decrease in the out-of-sample R2. Additionally, we note that the in-sample average
t-statistics within each group are significantly large.

increases in variable importance for the quarterly RV and realized quarticity (RVq, RVqQ),

and this could be attributed to the volatile nature of inclusion of small stocks.

To obtain an overview of the feature rankings across models, we calculate the importance

of each feature for each model in each test year and sum the ranks. The features are then

ordered based on their ranks across models, with the highest-ranked features at the top and

the lowest-ranked features at the bottom. The overall rankings are visualized in Figure 2.4

and 2.5, where darker colors indicate higher ranks within each model, as in Gu, Kelly, and

Xiu (2020). Besides the overall agreement on the top features, we see that neural networks

put more emphasis on daily/weekly/monthly/quarterly returns (Retd, Retw, Retm, Retq).

The effect of the earnings announcement indicator fades quickly, as indicated by the low

rankings of EAD2 and EAD-2 (2 days after and 2 days prior to), despite the top ranking of

EAD0.

In Table 2.13, we examine the effect of varying the number of years used for training

on different models for the S&P 500 stocks. The minimum number of years for training
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Figure 2.2: Variable Importance By Model, S&P 500 Stocks

Note: The variable importance for the top 20 most influential features for S&P 500 stocks in each
model is presented, the variable importance values are normalized within each model to sum to one.
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Figure 2.3: Variable Importance By Model, US Stocks

Note: The variable importance for the top 20 most influential features for US stocks in each model
is presented, the variable importance values are normalized within each model to sum to one.
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Figure 2.4: Variable Importance Ranking, S&P 500 Stocks

Note: We calculate the importance of each feature for each model in each test year and sum the
ranks for the S&P 500 stocks. The features are then ordered based on their ranks across models,
with the highest-ranked features at the top and the lowest-ranked features at the bottom, with the
color gradient indicates the relative rankings within each model.
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Figure 2.5: Variable Importance Ranking, US Stocks

Note: This is a continuation of Table 2.4, where the importance and rankings are calculated for the
US stocks.
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is one, while the maximum is ten. We report the relative R2, benchmarked against the

HAR model using five years of training data. The rankings among the OLS models remain

relatively consistent, with OLSALL producing the best out-of-sample results. Although the

HAR model tends to favor more years of training, OLSALL achieves the best out-of-sample

performance using five years of training data. For neural networks, as long as there is a

sufficient amount of training data, they consistently outperform all the OLS models. The

forecasting performance is generally not highly sensitive to the choice of years of training

data.

Number of Training Years
Model 1 4 5 6 10
MIDAS -0.0137 -0.0148 -0.0144 -0.0144 -0.0140
HAR -0.0021 -0.0014 0 0.0002 0.0016
SHAR 0.0008 0.0022 0.0036 0.0039 0.0053
HEXP 0.0055 0.0062 0.0075 0.0075 0.0091
HARQ 0.0308 0.0326 0.0334 0.0334 0.0338
OLSRV 0.0276 0.0410 0.0430 0.0432 0.0445
OLSIV 0.0410 0.0404 0.0415 0.0414 0.0398

OLSRVIV 0.0624 0.0702 0.0716 0.0715 0.0708
OLSVPOS 0.1430 0.1524 0.1537 0.1533 0.1510
OLSALL 0.1618 0.1683 0.1691 0.1686 0.1653
NN6 0.1285 0.1697 0.1757 0.1757 0.1765
NN4 0.1526 0.1712 0.1776 0.1755 0.1808
NN2 0.1438 0.1726 0.1780 0.1804 0.1768

Table 2.13: Relative R2 by Training Years, S&P 500 Stocks

Note: This table presents the out-of-sample forecasting performance of various models using different
numbers of training years, measured by relative R2. The benchmark relative R2 is calculated using
5 years of training data with the HAR model. Generally, the HAR model benefits from more years
of training data, while the OLSALL model achieves the best performance with 5 years of data.
When there is only one year of training data, neural networks underperform compared to OLSALL.
However, as the number of years for training increases, neural networks consistently outperform all
the OLS methods.

We investigate the impact of changing the random seeds when training different neural

network models, as shown in Tables 2.14 and 2.15. Randomness arises from initializing

the weights and biases of the networks, as well as shuffling the training data for stochastic
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gradient descent. It is observed that the forecasting performance is quite robust to the choice

of random seed. All seeds yield decent relative R2 values, which are higher than 0.1691 from

OLSALL for the S&P 500 stocks in Table 2.14, and higher than 0.0835 from OLSALL for

the US stocks in Table 2.15. The ensemble of neural networks trained with different seeds

further enhances the performance.

Random Seeds
Model 2020 2021 2022 2023 2024 Ensemble
NN6 0.1735 0.1745 0.1769 0.1757 0.1739 0.1810
NN4 0.1786 0.1804 0.1760 0.1776 0.1784 0.1832
NN2 0.1782 0.1764 0.1792 0.1780 0.1793 0.1835

Table 2.14: Relative R2 by Random Seeds, S&P 500 Stocks

Note: This table showcases the out-of-sample forecasting performance of neural network models
that are initialized with different random seeds, as well as their ensemble model. The relative R2
is used as the performance measure. The best performing model in each row is highlighted in bold,
and it is achieved by the ensemble model, which takes the simple average of predictions from each
individual network. In general, the forecasting performance varies as the random seed is changed,
but all models outperform the OLSALL model with a relative R2 of 0.1691. Furthermore, utilizing
the ensemble approach further enhances the performance.

Random Seeds
Model 2020 2021 2022 2023 2024 Ensemble
NN6 0.1051 0.1061 0.1040 0.1032 0.1024 0.1102
NN4 0.1083 0.1098 0.1094 0.1094 0.1070 0.1136
NN2 0.1061 0.1054 0.1069 0.1108 0.1080 0.1127

Table 2.15: Relative R2 by Random Seeds, US Stocks

Note: Continuing from Table 2.14, where the forecasting exercise is conducted on the set of US
stocks, we observe a similar pattern. There are variations in performance when different random
seeds are used, but all models perform better than the OLSALL model with a relative R2 of 0.0835.
Notably, the ensemble of these models achieves the best performance.
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2.5 Utility Benefits

To quantify the benefits of having a better forecasting model, we consider the utility-based

framework by Bollerslev, Hood, Huss, and Pedersen (2018) that an investor with mean-

variance preferences investing in an asset with time-varying volatility and a constant sharpe

ratio. Specifically, denote up¨q as the utility function of an investor, and Wt and Wt`1 as

the wealth at time t and t` 1. The investor is deciding the proportion of wealth, xt, at time

t to invest in a risky asset with return rt`1, and the remaining proportion, 1 ´ xt, in the

risk-free asset with return rft , to maximize the expected utility at time t,

max
xt

Et rupWt`1qs (2.18)

subject to Wt`1 “ Wt

”

1` xtrt`1 ` p1´ xtqr
f
t

ı

(2.19)

Write eet`1 ” rt`1´r
f
t , by a Taylor series expansion of up¨q and ignoring the higher order

terms and constants that depends only on time-t variables, we may rewrite expected utility

function as,

Upxtq « Wt

”

xtEtpret`1q ´
γ

2
x2
tV artpr

e
t`1q

ı

“ Wt

”

xtEtpret`1q ´
γ

2
x2
tEtpRVt`1q

ı

(2.20)

where γ ” ´u2Wt
u1

is the relative risk aversion of the investor. The optimal portfolio to

maximize the investor’s expected utility would be

x˚t “
Etpret`1q

γEtpRVt`1q
“

SR{γ
a

EtpRVt`1q
, (2.21)

where SR ”
Etpret`1q?
EtpRVt`1q

is the conditional Sharpe ratio that is assumed to be constant.

This x˚t may be interpreted as “volatility-timing”, because the expected standard deviation
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of the resulting portfolio equals SR{γ, and the investor would adjust the position based on

the predicted volatility
a

EtpRVt`1q to reach the target. Let Etp¨q denote the expectations

from the true (unknown) risk model, while Eθt p¨q denote expectation from a particular risk

model θ, we may plug in the feasible xθt portfolio decision in the expected utility function

divided by Wt to get the per unit of wealth utility

UoW θ
t ”

Upxθt q

Wt
“
SR2

γ

»

–

a

EtpRVt`1q
b

Eθt pRVt`1q

´
EtpRVt`1q

2Eθt pRVt`1q

fi

fl (2.22)

The maximum utility is achieved when Eθt pRVt`1q “ EtpRVt`1q with value SR
2

2γ , which is the

proportion of wealth an investor is willing to give to access the x˚t portfolio instead of simply

investing in the risk-free asset. We follow Bollerslev, Hood, Huss, and Pedersen (2018) and

set SR “ 0.4 and γ “ 2, and SR2

2γ “ 4% consequently. The expected per unit of wealth

utility can be empirically evaluated by averaging over the out-of-sample forecasting periods.

UoW θ
“

1

T

T
ÿ

t“1

SR2

γ

»

–

a

RVt`1
b

Eθt pRVt`1q

´
RVt`1

2Eθt pRVt`1q

fi

fl . (2.23)

Table 2.16 presents the results of implementing the "volatility-timing" portfolio using

various prediction models for the S&P 500 stocks, measured in basis points. The "Ideal"

column represents the maximum utility achievable by employing an infeasible look-into-the-

future strategy, which amounts to 400 basis points. The pooled HAR model demonstrates

a 4.5 basis points advantage over the individual HAR model. Furthermore, the pooled OL-

SALL model outperforms the pooled HAR model by 38.6 basis points. The neural networks

exhibit an advantage of 39.2 to 40.1 basis points over the pooled HAR model, while the

ensemble neural networks achieves 40.0 to 40.4 basis points. It is important to note that,

since the utility function has an upper bound, and for portfolio allocation xt near x˚t , the

derivative U 1pxtq is close to 0. Therefore, the first-order difference in forecasting performance
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only results in a second-order difference when prediction models perform well (Bollerslev,

Hood, Huss, and Pedersen (2018)). When considering the percentiles, the advantage of

pooling and utilizing all the features is more significant in the lower percentiles. In fact, all

individual OLS models yield negative realized utility under the 1st percentile. Interestingly,

the random forest model, despite not being the top-performing model, achieves the highest

realized utility at the 1st percentile.

Table 2.17 presents the results for US stocks, which include more volatile small stocks,

leading to more erratic numbers. In fact, the simple averages of the realized utility for all

individual OLS models are negative, with only MIDAS showing positive winsorized realized

utility. The OLSALL model now exhibits a 27.8 basis points advantage over the pooled HAR

model, while the neural networks show a 30.8 to 31.8 basis points advantage over the pooled

HAR model. Once again, the random forest model shows promise for the lowest percentiles.

For the 99th percentile, Lasso, OLSALL, and neural networks are all very close to each other.

Overall, the neural networks deliver the best performance.

To further investigate the impact of size on realized utility and the underlying forecasting

performance, we divided the set of stocks into five quintiles based on market capitalization

(size) and analyzed the realized utility within each quintile. We considered two weighting

schemes for aggregating the individual stocks’ realized utility: one based on equal weighting,

as shown in the left panels of Tables 2.18 and 2.19, and the other weighted based on size

in the right panels. The components of each quintile were selected for each test year based

on the corresponding size prior to the test year, and the weighted realized utility was then

averaged across the test years. For the S&P 500 stocks in Table 2.18, we observed a gradual

increase in realized utility for all models, starting from the portfolio with the smallest stocks

to the portfolio with the largest stocks. The neural networks produced the best realized

utility in each quintile for both equal-weighted and size-weighted portfolios.

When analyzing Table 2.19, the differences among quintiles become significantly more
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Model Mean 1% 5% 25% Median 75% 99% Mean* Ideal
MIDAS Ind 276.8 -13.5 153.8 248.7 284.1 313.1 352.3 277.1 400
HAR Ind 273.6 -95.3 139.0 247.4 284.4 312.6 352.2 275.8 400
SHAR Ind 274.6 -142.1 137.6 247.2 284.5 312.9 352.8 276.0 400
HEXP Ind 239.8 -307.5 122.0 244.2 284.3 311.4 350.5 273.6 400
HARQ Ind 215.6 -1115.9 134.6 246.3 286.2 313.5 353.2 269.4 400
OLSRV Ind 187.0 -1071.5 105.1 244.1 284.8 312.6 353.6 268.3 400
OLSIV Ind 201.4 -2826.1 -131.6 210.1 273.9 307.5 350.8 231.1 400

OLSRVIV Ind 181.3 -3135.7 -263.1 206.5 271.9 307.0 350.6 220.4 400
OLSVPOS Ind -112.5 - -459.4 261.4 302.5 324.2 356.2 45.0 400
OLSALL Ind -475.4 - -1566.0 202.9 276.8 311.1 355.6 -323.0 400

MIDAS 278.4 -26.2 146.3 250.5 286.2 315.6 352.9 278.8 400
HAR 278.1 4.1 151.5 251.5 286.6 314.8 351.4 278.4 400
SHAR 278.4 7.4 151.3 252.4 286.6 315.5 351.7 278.7 400
HEXP 278.6 13.0 149.7 251.3 287.8 314.4 351.6 278.9 400
HARQ 281.0 -18.0 155.5 253.7 290.0 317.4 354.3 281.3 400
OLSRV 281.7 -14.5 156.0 254.9 291.3 317.4 355.0 282.0 400
OLSIV 288.0 38.0 187.7 263.0 295.9 317.6 353.0 288.4 400

OLSRVIV 289.6 31.3 184.0 265.4 297.9 319.1 354.2 290.0 400
OLSVPOS 313.9 61.6 232.5 296.8 321.6 337.6 362.7 314.5 400
OLSALL 316.7 68.5 238.6 300.8 324.0 338.7 362.8 317.1 400
LASSO 316.4 75.8 238.5 300.5 323.9 338.4 362.6 316.8 400
PCR 316.4 77.6 237.7 300.4 323.8 338.4 362.6 316.7 400
RF 312.4 108.8 232.6 295.7 319.8 334.3 360.1 313.2 400

GBRT 313.8 74.7 236.0 296.9 320.4 334.8 360.3 314.7 400
NN6 318.1 54.3 238.8 303.3 326.1 340.2 362.8 318.9 400
NN4 317.3 59.5 234.3 302.1 325.3 339.3 362.8 318.2 400
NN2 317.8 62.6 233.8 303.4 326.0 339.6 363.1 318.7 400
NN6E 318.4 65.5 236.3 303.5 326.1 339.9 363.5 319.2 400
NN4E 318.1 64.7 233.8 303.0 326.2 340.2 362.6 319.0 400
NN2E 318.4 65.5 233.3 303.6 326.5 340.1 362.8 319.2 400

Table 2.16: Realized Utility for S&P 500 Stocks

Note: This table displays the realized utility, measured in basis points, of executing the volatility-
timing portfolio on the S&P 500 stocks. The “Ideal” column represents the upper bound that
could be achieved through an optimal yet infeasible trading strategy, assuming perfect knowledge
of future realized volatility. The table reports the average, 1st percentile, 25th percentile, median,
75th percentile, 99th percentile, and winsorized average at 1st percentile of the realized utility. The
best performing column, if unique, is highlighted in bold font. The upper panel shows the results
of fitting ordinary least squares models using individual stock data, while the middle and lower
panels show the results of fitting both ordinary least squares models and machine learning models
to the pooled data. The results indicate that the pooled fit performs significantly better than the
individual fit, especially for the lower percentiles.
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Model Mean 1% 5% 25% Median 75% 99% Mean* Ideal
MIDAS Ind -36.6 -3442.0 -521.8 152.1 244.8 289.8 343.6 202.1 400
HAR Ind -3200.8 - -2570.3 100.3 234.0 285.2 342.0 -713.8 400
SHAR Ind -3076.6 - -2350.9 100.6 234.5 285.2 342.7 -853.8 400
HEXP Ind -5715.7 - - -26.1 220.8 282.2 343.2 -2354.9 400
HARQ Ind -4706.1 - - -23.6 219.9 280.9 343.0 -2747.2 400
OLSRV Ind -7428.2 - - -239.8 201.6 277.2 343.6 -3814.8 400
OLSIV Ind -8310.3 - - -3817.0 -309.3 189.1 330.3 -6272.0 400

OLSRVIV Ind - - - -4643.1 -445.6 170.9 330.0 -8009.2 400
OLSVPOS Ind - - - -8349.8 -140.0 261.1 340.6 - 400
OLSALL Ind - - - - -1376.5 99.9 328.2 - 400

MIDAS 254.4 -344.7 71.2 214.0 266.3 303.8 349.2 257.0 400
HAR 256.4 -329.0 78.8 219.6 267.9 303.7 348.8 258.7 400
SHAR 256.8 -339.2 81.2 220.2 268.3 304.1 349.0 259.2 400
HEXP 258.7 -314.4 82.1 222.1 269.6 304.4 349.5 260.7 400
HARQ 257.7 -331.5 78.1 219.6 268.8 305.5 350.2 260.0 400
OLSRV 260.3 -335.0 81.1 222.6 271.2 306.5 351.4 262.3 400
OLSIV 260.0 -266.5 97.9 225.1 270.1 305.2 349.4 261.9 400

OLSRVIV 262.8 -274.0 94.2 226.3 272.8 307.3 351.6 264.5 400
OLSVPOS 282.9 -328.3 104.4 249.9 295.0 323.3 356.9 284.8 400
OLSALL 284.2 -253.8 111.7 251.7 295.5 323.5 357.3 285.9 400
LASSO 283.9 -259.6 112.5 251.5 295.5 323.6 357.7 285.8 400
PCR 283.6 -273.6 110.1 251.5 295.5 323.6 357.7 285.7 400
RF 282.6 -225.5 118.4 251.2 293.2 321.2 355.3 284.9 400

GBRT 281.6 -250.3 106.3 247.7 293.1 320.8 353.4 283.9 400
NN6 287.7 -250.8 117.7 255.4 298.8 325.6 357.2 290.2 400
NN4 288.2 -260.8 116.5 256.9 300.3 326.6 357.2 291.2 400
NN2 287.1 -303.9 111.1 256.3 300.1 326.7 357.1 290.8 400
NN6E 288.1 -259.0 114.8 255.8 299.3 325.8 356.7 290.4 400
NN4E 287.9 -281.5 115.8 256.4 299.8 326.3 356.7 291.0 400
NN2E 287.2 -288.7 113.4 255.9 299.4 326.1 356.9 290.2 400

Table 2.17: Realized Utility for US Stocks

Notes: This table presents the realized utility, expressed in basis points, from executing the
volatility-timing portfolio on the set of US stocks, and is a continuation of Table 2.16. Entries
with values lower than -10000 basis points are not displayed. The mean column is greatly affected
by stocks that fall below the 5th percentile for the upper panel, resulting in negative realized utility
for the individual OLS models.
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Equal Weighted Size Weighted
Model Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

MIDAS Ind 259.2 271.5 281.1 283.0 289.3 260.0 271.6 280.7 280.6 290.7
HAR Ind 260.0 270.9 280.4 276.2 280.4 260.7 271.0 279.9 274.8 286.6
SHAR Ind 259.8 270.7 280.7 279.0 282.9 260.6 270.9 280.3 277.3 288.3
HEXP Ind 207.7 202.7 275.6 245.0 267.9 227.9 192.5 275.1 249.2 279.0
HARQ Ind 109.0 201.0 278.2 229.2 259.0 113.6 205.9 278.2 237.3 258.1
OLSRV Ind 246.0 11.5 251.0 223.3 204.5 251.5 21.1 248.3 232.4 228.7
OLSIV Ind 176.9 113.1 244.6 212.2 261.3 165.3 96.6 238.9 211.1 273.6

OLSRVIV Ind 184.8 146.6 114.6 252.5 209.5 182.5 138.9 98.5 248.9 191.5
OLSVPOS Ind -273.7 -175.9 -389.7 144.7 139.2 -403.4 -187.8 -345.9 164.8 116.9
OLSALL Ind -177.1 -348.7 -1159.7 -364.3 -316.0 -211.8 -442.4 -1155.7 -312.7 -627.4

MIDAS 258.4 272.4 283.4 284.8 292.6 259.3 272.5 283.0 282.5 294.2
HAR 260.8 272.7 282.1 283.7 290.8 261.3 272.7 281.5 281.4 291.9
SHAR 261.0 272.8 282.4 284.3 291.3 261.5 272.9 281.8 282.0 292.4
HEXP 261.2 274.0 282.8 284.1 290.7 262.0 274.2 282.2 281.8 292.0
HARQ 264.4 276.0 285.6 286.0 292.7 264.8 275.9 284.9 283.6 293.8
OLSRV 264.9 277.2 286.4 286.8 293.0 265.4 277.2 285.8 284.5 294.3
OLSIV 276.0 284.0 291.8 291.3 297.0 276.2 283.9 291.3 289.4 298.8

OLSRVIV 276.9 286.1 294.1 292.7 298.1 277.2 286.0 293.6 290.7 300.1
OLSVPOS 305.4 313.4 317.9 313.8 319.0 304.3 312.5 316.9 310.7 322.1
OLSALL 308.3 315.6 320.2 316.4 322.8 307.3 314.6 319.4 313.7 326.6
LASSO 308.1 315.3 319.8 316.1 322.4 307.3 314.4 319.0 313.5 326.2
PCR 308.0 315.2 319.8 316.0 322.8 307.1 314.3 318.9 313.4 326.6
RF 303.6 311.4 316.0 311.3 319.6 302.0 310.4 315.1 308.5 322.6

GBRT 304.1 312.6 317.8 312.6 321.7 302.7 311.4 317.0 309.7 324.9
NN6 309.9 317.2 321.4 318.6 323.5 308.1 316.1 320.7 315.8 327.8
NN4 308.5 316.7 320.5 316.1 324.2 306.5 315.5 319.4 312.8 327.9
NN2 309.2 317.1 321.1 317.1 324.6 307.0 315.8 320.1 313.7 328.3
NN6E 309.8 317.5 321.6 318.0 324.9 307.8 316.4 320.9 315.0 328.8
NN4E 309.8 317.5 321.1 317.0 324.8 307.9 316.4 320.0 313.8 328.5
NN2E 310.0 317.8 321.5 317.8 324.9 308.1 316.6 320.4 314.7 328.6

Table 2.18: Realized Utility on Size Portfolios for S&P 500 Stocks

Note: This table displays the average realized utility, expressed in basis points, of executing the
“volatility-timing” trading strategy on 5 quintiles of S&P 500 stocks sorted by their market capital-
ization (size). The best performing model in each column is highlighted in bold font. The sorting is
based on the available stocks’ size before each forecasting year, where Q1 represents the 1st quintile
consisting of stocks with the smallest size in the set, and so on for Q2, Q3, Q4, and Q5, which
consist of the largest stocks. The left panel shows an equal weighting strategy for the stocks within
each quintile, while the right panel weights the stocks’ realized utility by their previous year’s size.
As the size of the stocks increases, we generally observe an increase in the realized utility for all
models, indicating more accurate predictions. Further, we almost observe uniform improvements of
realized utility for neural networks over the OLSALL in every quintile. The neural networks have
the best performing models within each portfolio.
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Equal Weighted Size Weighted
Model Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

MIDAS Ind -387.4 -157.1 249.9 265.8 276.2 -1575.9 -190.8 243.0 262.4 284.3
HAR Ind -6509.9 -5298.4 -1183.1 -1002.7 49.3 - -5013.3 -1110.6 -664.9 186.1
SHAR Ind -6180.9 -5494.8 -1223.7 -757.7 13.4 -9518.1 -5408.2 -1096.1 -475.0 167.8
HEXP Ind - -9732.1 -4164.9 -1136.0 9.6 - -9730.0 -3857.8 -1049.5 172.6
HARQ Ind - -5734.6 -4154.3 -1230.3 -558.5 -9642.4 -6066.2 -3927.0 -1011.1 -157.4
OLSRV Ind - -8639.5 -7388.2 -1973.9 -471.6 - -8652.5 -6874.2 -1900.2 -200.7
OLSIV Ind - - -8774.1 -3281.4 -676.2 - - -8557.9 -3200.1 -46.5

OLSRVIV Ind - - - -6527.6 -814.0 - - - -8227.8 -225.3
OLSVPOS Ind - - - -8129.6 -3166.4 - - - -8089.4 -1225.2
OLSALL Ind - - - -8373.8 -4004.5 - - - -9271.0 -3174.9

MIDAS 214.9 256.4 258.1 267.9 280.3 202.3 248.3 253.5 264.8 289.3
HAR 224.3 259.2 261.6 267.1 277.6 211.7 250.6 257.6 263.6 286.1
SHAR 225.0 259.6 262.0 267.5 277.9 212.5 250.9 258.0 264.1 286.5
HEXP 227.2 261.9 264.2 268.7 278.6 214.9 253.7 260.3 265.5 286.8
HARQ 219.8 260.3 264.2 270.1 280.6 206.5 251.0 260.2 266.6 289.0
OLSRV 222.3 263.3 267.5 272.5 282.2 209.1 254.2 263.6 269.3 290.3
OLSIV 229.2 264.3 265.2 269.0 277.3 217.7 257.1 261.4 265.6 285.0

OLSRVIV 225.7 267.2 270.0 273.6 281.4 213.5 259.6 266.4 270.4 288.7
OLSVPOS 235.0 281.7 295.4 301.9 305.8 223.0 274.2 291.9 298.3 310.4
OLSALL 236.3 283.6 296.3 302.2 306.1 225.2 277.2 292.9 298.8 311.1
LASSO 235.1 283.7 296.1 302.1 305.7 225.3 277.3 292.7 298.6 310.5
PCR 233.3 283.7 296.2 302.1 305.7 225.0 277.3 292.8 298.6 310.4
RF 240.3 280.2 289.4 299.8 306.2 229.9 273.4 285.0 296.4 312.4

GBRT 232.7 278.0 289.7 301.5 309.4 223.9 271.1 285.0 298.2 316.2
NN6 246.4 284.7 295.8 305.6 311.6 233.2 277.1 291.3 301.8 318.8
NN4 247.3 286.2 293.9 306.5 313.1 234.0 278.1 288.6 302.5 320.2
NN2 244.8 285.6 291.2 306.8 312.9 231.4 276.7 285.1 302.8 319.3
NN6E 246.5 285.4 295.8 305.9 312.2 233.3 277.7 291.2 302.1 319.3
NN4E 246.0 285.9 292.6 306.7 313.5 232.7 278.0 287.0 302.9 320.4
NN2E 244.4 285.2 293.0 306.2 312.7 230.9 276.9 287.6 302.3 319.4

Table 2.19: Realized Utility on Size Portfolios for US Stocks

Note: This table displays the average realized utility, expressed in basis points, of executing the
“volatility-timing” trading strategy on 5 quintiles of US stocks that are sorted by their market
capitalization (size), and is a continuation of Table 2.18. Entries with values lower than -10000
basis points are not displayed, while the best performing model in each column is highlighted
in bold font. In the upper panel, most OLS models with individual fit now show huge negative
realized utility, indicating that the agent would prefer investing in the risk-free asset instead, except
for MIDAS where the tuning is done over the pooled data. As we go down the quintiles, smaller
stocks are associated with lower realized utility, indicating that they are harder to predict.
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pronounced. In fact, several individual OLS models generate extremely negative realized

utility values (lower than -10,000 basis points), suggesting that investing in the risk-free asset

would have been a better option. The only exception to this is the MIDAS model, which

is specifically tuned using panel data. The first quintile exhibits considerably lower realized

utility compared to the other four quintiles for both the pooled OLS models and machine

learning models. This indicates that predicting the performance of stocks with smaller

market capitalizations is particularly challenging. Neural networks generally demonstrate a

larger advantage in the first and fifth quintiles, a smaller advantage in the second and fourth

quintiles, while the OLSALL model prevails in the third quintile, albeit by a small margin.

2.6 Conclusion

In conclusion, we applied machine learning algorithms to the task of realized volatility fore-

casting on two very large sets of stocks. By pooling the data of all stocks and fitting one

universal model, we found that utilizing all the features produces the best ordinary least

squares model, which is very stable and produces few extreme predictions, unlike the indi-

vidual models. However, the neural network, with the same set of features as input, yielded

an even better prediction model and significantly outperformed all others. The difference

in performance was larger when we focused on the set of US stocks that includes those

with smaller market capitalization, and we showed large economic gains in switching from

individual OLS models to pooled OLS models and to neural networks.

An accurate volatility forecasting model is useful in estimating the volatility risk pre-

mium, which is the difference between the risk-neutral expectation of volatility derived from

option prices and the actual expectation of volatility (Bollerslev, Patton, and Quaedvlieg

(2016)). In fact, Conrad and Loch (2015) and Bekaert and Hoerova (2014) use many OLS-

based realized volatility forecasting models to estimate the volatility risk premium, and the

choice of forecasting model matters in both the numerical result and interpretation. Since

we provide an even better forecasting model than the OLS-based methods, we can obtain
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a more accurate estimate of the volatility risk premium and gain deeper insights into the

underlying economic story. Additionally, one may combine the forecast of expected return

(Gu, Kelly, and Xiu (2020)) with the forecast of realized volatility to study a much broader

set of investors’ behavior beyond the agent considered here, which we leave for future work.
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