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Figure 1: Inspired by the gradual nature of the diffusion process along a diffusion time-axis (left), our approach (right) entangles
the temporal-axis of motion with the time-axis of the diffusion process (right), enabling a new mechanism for synthesizing
arbitrarily long motion sequences.

ABSTRACT
The gradual nature of a diffusion process that synthesizes sam-
ples in small increments constitutes a key ingredient of Denoising
Diffusion Probabilistic Models (DDPM), which have presented un-
precedented quality in image synthesis and been recently explored
in the motion domain. In this work, we propose to adapt the gradual
diffusion concept (operating along a diffusion time-axis) into the
temporal-axis of the motion sequence. Our key idea is to extend
the DDPM framework to support temporally varying denoising,
thereby entangling the two axes. Using our special formulation, we
iteratively denoise amotion buffer that contains a set of increasingly-
noised poses, which auto-regressively produces an arbitrarily long
stream of frames. With a stationary diffusion time-axis, in each dif-
fusion step we increment only the temporal-axis of the motion such
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that the framework produces a new, clean frame which is removed
from the beginning of the buffer, followed by a newly drawn noise
vector that is appended to it. This new mechanism paves the way
towards a new framework for long-term motion synthesis with
applications to character animation and other domains.
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1 INTRODUCTION
Long-term generation of a motion sequence is a difficult and long
standing problem in character animation with myriad applications
in computer animation, motion control, human-computer inter-
action, and more. Generating long-term motion entails producing
realistic, non-repetitive sequences which avoids degenerate outputs
(i.e., frozen motion).

A promising avenue for generating high-qualitymotion is through
Denoising Diffusion Probabilistic Models (DDPM), which have pro-
duced unprecedented quality in image synthesis [Ho et al. 2020] and
have been recently adapted to motion synthesis [Kim et al. 2022;
Tevet et al. 2022; Zhang et al. 2022]. A typical adaptation of DDPM
to motion synthesis generates a fixed-length motion sequence (i.e.,
a “motion image”) from randomly sampled Gaussian noise.

A fixed-length output limits long-term motion synthesis for a
couple of reasons. First, there is no satisfactory approach for creat-
ing long-sequences from short-sequences outputs. Simply chaining
together motions and blending them may create stitching artifacts.
Second, a typical diffusion process has limited interactive control-
lability. Diffusion requires several hundred denoising iterations
before producing a short sequence of clean motions.

We are inspired by the time-dependent nature of the diffusion
process, where samples are synthesized from pure noise gradu-
ally in small time increments along the diffusion time-axis. In this
work, we propose to adapt diffusion to the temporal-axis of the
motion. Our method, referred to as TEDi (Temporally-Entangled
Diffusion), extends the DDPM framework by enabling injection
of temporally-varying noise levels during each step of the diffu-
sion process, instead of a Gaussian noise with a fixed, temporally-
invariant variance. By entangling the temporal-axis of the motion
sequence with the time-axis of the diffusion process, we enable the
production of a continuous stream of clean motion frames during
each step of the diffusion process.

At the core of our framework lies amotion buffer, which encodes
noisy future motion frames with varied noise levels. During the
training phase, we add temporally varied noise to clean motion se-
quences, such that each frame has a random level. However, during
inference the motion buffer is initialized with amotion primer - a se-
quence of cleanmotion frames that are being noised with increasing
noise levels, such that adjacent frames contains consecutive noise
levels. TEDi recursively denoises the increasingly-noised future
frames. In order to constantly maintain the progressively-noised
motion buffer structure during each denoising step, we insert a
noisy frame at the end of the motion buffer and remove a single
clean frame at the beginning.

This recursive mechanism enables motion sequence frames to
be continuously generated, and avoids stitching problems which
current motion diffusion models suffer from (see 4.4.1).

During inference, we can guide the generation with specific
motions by intervening in the process and persistently injecting
clean frames, called guiding motions. This injection enables us to
control and influence the current set of generated frames to prepare
and plan for the upcoming motion guides. This strategy causes a
premeditated and calculated transition between the current frames
and the future guiding motions.

Our network continues to denoise an ever-evolving motion
buffer, which contains vague information about the future trajec-
tory of the motion sequence. This formulation opens the door to
more direct control, and better planning, of the generated motion
via manipulation of the motion buffer. We demonstrate that our
framework is capable of producing different types of long motion
sequences, and due to its random nature, can provide diverse results
even for the same initialization. In addition, we evaluate the model
against other long-term generation models. Our experiments show
that TEDi is a natural framework for generating long-term motion
sequences.

2 RELATEDWORK
2.1 Deep Motion Synthesis
Before the advent of modern deep learning architectures, earlier
works attempted to model motion and styles of motion with tech-
niques such as restricted Boltzmann machines Taylor and Hinton
[2009]. Later on, the seminal set of works by Holden et al. [2016;
2015] applied convolutional neural networks (CNN) to motion data
and learned a motion manifold which can then be used to perform
motion editing by, for instance, projection onto themotionmanifold.
At the same time, recurrent neural networks (RNN) have also been
applied to achieve expressive modeling of the temporal dynamics of
motion and have succeeded in motion prediction tasks [Fragkiadaki
et al. 2015; Pavllo et al. 2018]. RNN-based works have also been
applied to incorporate controllable generations such as interactive
motion generation [Lee et al. 2018] and music-conditioned motion
synthesis [Aristidou et al. 2021]. To address collapse in RNN-based
models and better leverage the cyclic nature in motion, Holden
et al. [2017] proposed a phase-functioned neural network (PFNN)
for locomotion generation. This idea was extended to beyond sim-
ple human locomotion by localizing phases to each joint by Starke
et al. [2020], and it was also used for quadruped motion genera-
tion [Zhang et al. 2018]. Additionally, normalizing flows have also
been used to model motion dynamics [Henter et al. 2020]. Deep
neural networks have been successfully applied to other motion
synthesis tasks such as motion retargeting [Aberman et al. 2020a,
2019; Villegas et al. 2018], motion style-transfer [Aberman et al.
2020b; Mason et al. 2022], key-frame based motion generation [Har-
vey et al. 2020], motion matching [Holden et al. 2020], animation
layering [Starke et al. 2021], motion in-betweening [Tang et al.
2022], and motion synthesis from a single sequence [Li et al. 2022].

2.2 Long-Term Motion Synthesis
Deep learning models for long term motion synthesis are mostly
based on RNNs as they naturally enable auto-regressive genera-
tion and capture the time dependencies between animation frames.
In general, RNNs have shown much success in natural language
processing (NLP) for generating text [Sutskever et al. 2011], hand
written characters [Gregor et al. 2015], and even captioning images
[Vinyals et al. 2015]. At the same time, much progress was made
to enable RNNs to better model the temporal and the spatial struc-
ture of data. For instance, Shi et al. [2015] proposed ConvLSTM
which adds convolutional layers into the fully-connected LSTM,
and Wang et al. [2017] proposed Spatialtemporal LSTM (ST-LSTM)
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units that are able to model spatial and temporal representations
simultaneously in one unified recurrent unit.

Zhou et al. [2018] addressed the error accumulation problem in
autoregressive motion models by introducing acRNN, a modifica-
tion to RNNs to include both the network’s output and groudtruth
as input during training. However, despite the modified training
procedure, acRNN still fails to produce very long motions over a
diverse motion dataset. One speculation is that acRNN, and RNNs in
general, rely on amemory component that is being erodedwith time.
In contrast, our framework explicitly utilizes frames within our
context window which only needs to be the same size temporally
as the diffusion time-axis, producing the motion autoregressively
in small increments that complies with the successful mechanism
of the diffusion process.

In addition to RNN-based methods, VAE-based and phase-based
models have also achieved success in long-term motion generation.
In particular, VAEs can be used tomodel the dynamics of locomotion
to enable memoryless autoregressive generation [Ling et al. 2020],
and phase-based methods are able to leverage the periodic nature
of motion to generate long-term motions that can adapt to complex
terrains with rich user interactions [Holden et al. 2017; Starke et al.
2022]. Nevertheless, these methods are often only suited to work
over a single motion category (locomotion, dance, etc.) as different
categories of motion have distinct transition dynamics.

Moreover, we note that long-term motion generation can also be
achieved with repeated applications of motion in-betweening and
motion matching. Nevertheless, as the required transition length
and time increases, motion in-betweening may degrade in quality,
and motion matching systems does not model the underlying mo-
tion dynamics of the given dataset and is unable to produce novel
motions.

2.3 Diffusion Models
Denoising diffusion probalistic models (DDPMs) and its variants
[Dhariwal and Nichol 2021; Ho et al. 2020, 2022] have achieved
unprecedented quality on conditional and unconditional image
generation, generally surpassing GAN-based [Dhariwal and Nichol
2021] methods both in visual quality and sampling diversity. In
particular, diffusion models have demonstrated remarkable fidelity
and semantic control for text-to-image synthesis and editing tasks
when large models are trained on text and image pairs [Hertz et al.
2022; Ramesh et al. 2022; Rombach et al. 2021; Ruiz et al. 2022;
Saharia et al. 2022b]. In addition, diffusion has been successfully ap-
plied in adjacent domains such as text-to-video and image-to-image
translation [Saharia et al. 2022a]. Moreover, diffusion models are
beginning to see increased usage in generative tasks with 3D data.
Some recent work enable 3D data generation by reducing it to a 2D
task, while others directly train the entire diffusion pipeline on 3D
data. More recently, in the animation domain, Zhang et al. [Zhang
et al. 2022], Kim et al. [Kim et al. 2022], Tevet et al. [Tevet et al.
2022], Dabral et al. [Dabral et al. 2023], Yuan et al. [Yuan et al. 2023],
and Shimada et al. [Shimada et al. 2024] have suggested adapting
diffusion models for motion generation by directly applying the
diffusion framework, namely by treating the entire motion as an
image and denoising all frames in parallel. This adaptation can

Figure 2: TEDi Recursive Generation. TEDi is capable of gen-
erating an arbitrarily long motion sequence. First, we ini-
tialize our motion buffer with a set of increasingly-noised
motion frames. Then (step 1) we denoise the entire motion
buffer, (step 2) pop the new, clean frame in the beginning of
the motion buffer, and then (step 3) push noise into the end
of the motion buffer. This process is repeated recursively.

only generate fixed-length motion sequences which makes long-
term generation and interactive control infeasible. Consequently,
long-term generation methods for diffusion based motion synthesis
models have been proposed in Shafir et al. [2023] and Tseng et
al. [2022]. These methods circumvent the fixed length problem
of diffusion models by dividing the long-term motion into fixed
length intervals through batched generation and then stitching the
results. Temporal consistency of these intervals is enforced through
diffusion in-painting to ensure the long-term motion is smooth in
the stitched areas. In contrast, our framework requires no stitching
or post-processing to obtain long-term motions from the diffusion
model, because we combine the diffusion framework with an auto-
regressive generation scheme, thus enabling generation of arbitrary
length sequences by design.

3 METHOD
We propose a new approach to synthesize long motion sequences
using diffusion models. Our approach extends the classic DDPM
framework to support injection of temporally-varying noise levels
during the diffusion process. This extension enables entangling
the temporal-axis of the motion sequence with the time-axis of the
diffusion process. In the particular case where the first frame in
the sequence is mapped into the lowest noise level, the last frame
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Figure 3: TEDi Training. We train our diffusion-based
model to remove temporally-varying noise that is applied
to clean sequences during training. In each iteration we
fetch a motion sequence of 𝐾 frames [𝑓1, 𝑓2, . . . , 𝑓𝐾 ] from the
dataset, apply noise to it according to a noise level schedule
[𝛽𝑡1 , 𝛽𝑡2 , . . . , 𝛽𝑡𝐾 ], and train our network to predict the clean
motion sequence in a supervised fashion as described in (1).

to the highest level, and the mapping function is linear, we can
continuously synthesize arbitrarily many frames during inference
- akin to a motion buffer. In each diffusion step we get a clean
frame at the beginning of the sequence, shift the frames in the
stack by popping the clean frame, and append a new noisy frame
(drawn from a Gaussian distribution) to the end of the sequence.
Repeating this process during inference results in a newmechanism
for long term motion synthesis. We describe below the motion
representation (3.1), novel diffusion framework (3.2), training (3.3)
and inference procedure (3.4).

3.1 Motion representation
Motion sequences are represented by a temporal set of 𝐾 poses
consisting of root joint displacements with respect to the xz-plane
Oxz ∈ R𝐾×2, root joint heightOy ∈ R𝐾 , root joint angular velocity
with respect to the y-axis Ow ∈ R𝐾 , joint rotations R ∈ R𝐾× 𝐽 𝑄 ,
joint positions in root space P ∈ R𝐾×3𝐽 , and joint velocities in root
space V ∈ R𝐾×3𝐽 , where 𝐽 is the number of joints and𝑄 is the num-
ber of rotation features. The rotations are in local coordinates with
respect to joint parents, and we use the 6D rotation representation
(𝑄 = 6) [Zhou et al. 2019]. In addition, we include foot contact labels
as a 𝐾 ·𝐶 binary values L ∈ {0, 1}𝐾×𝐶 , and we let𝐶 = 4, where the
joints are the left(right) heels and toes. All the features are concate-
nated along the channel axis and we denote the full representation
by M ≡ [Ow,Oxz,Oy, P,V,R, L] ∈ R𝐾×(4+𝐽 (6+𝑄 )+𝐶 ) .

3.2 Diffusion Models
Diffusion Denoising Probabilistic Models (DDPM) [Ho et al. 2020;
Sohl-Dickstein et al. 2015] are generative models that aim to ap-
proximate a given data distribution 𝑞(𝑚0) with an easy and intu-
itive sampling mechanism that is inspired by diffusion processes
in physics. In the particular case of motion synthesis, the data con-
sists of fixed-length motion sequences. During training, the process
starts by sampling a clean motion sequence𝑚0 from the dataset,
then an IID Gaussian noise is added gradually to form a sequence
of noisy motions which constitute the latent variables of the pro-
cess {𝑚1, . . . ,𝑚𝑇 }. The latent sequence follows 𝑞1:𝑡 |0 (𝑚1, . . . ,𝑚𝑡 |
𝑚0) =

∏𝑡
𝑖=1 𝑞𝑖 |𝑖−1 (𝑚𝑖 | 𝑚𝑖−1), where a sampling step in the for-

ward process (clean data to noise) is defined as a Gaussian transi-
tion 𝑞𝑡 |𝑡−1 (𝑚𝑡 | 𝑚𝑡−1) := N(

√︁
1 − 𝛽𝑡𝑚𝑡−1, 𝛽𝑡 𝐼 ) parameterized by

a schedule 𝛽0, . . . , 𝛽𝑇 ∈ (0, 1). When the total diffusion time step 𝑇
is large enough, the last noise vector𝑚𝑇 nearly follows an isotropic
Gaussian distribution.

In order to sample from the distribution𝑞(𝑚0), we define the dual
“time-reversal” with transitions 𝑝𝑡−1 |𝑡 (𝑚𝑡−1 | 𝑚𝑡 ) from isotropic
Gaussian noise𝑚𝑇 to data by sampling the posteriors𝑞𝑡−1 |𝑡 (𝑚𝑡−1 |
𝑚𝑡 ). Since the intractable reverse process 𝑞𝑡−1 |𝑡 (𝑚𝑡−1 | 𝑚𝑡 ) de-
pends on the unknown data distribution 𝑞(𝑚0), we approximate
it with a parameterized Gaussian transition network 𝑝𝜃 (𝑚𝑡−1 |
𝑚𝑡 ) := N(𝑚𝑡−1 | 𝜇𝜃 (𝑚𝑡 , 𝑡), Σ𝜃 (𝑚𝑡 , 𝑡)).

As suggested by [Tevet et al. 2022], instead of predicting the
noise as formulated by [Ho et al. 2020], we follow [Ramesh et al.
2022] and the network predicts the signal itself while solving the
following optimization problem:

min
𝜃
𝐿(𝜃 ) := min

𝜃
𝐸𝑚0∼𝑞 (𝑚0 ),𝑤∼𝑁 (0,𝐼 ),𝑡 ∥𝑚0 − 𝜇𝜃 (𝑚𝑡 , 𝑡)∥22 , (1)

which maximizes a variational lower bound. In addition, we find
that it is best to fix the variance schedule on the reverse process,
namely setting Σ𝜃 = 𝛽𝑡 𝐼 for all time steps, so our model only needs
to learn to predict the clean motion. For more details about DDPMs
please refer to [Ho et al. 2020; Sohl-Dickstein et al. 2015].

3.3 Temporally-Entangled Diffusion
Next, we extend the DDPM framework to support injection of
temporally-varying noise levels during the diffusion process. The
noise level becomes a function of the frame index and we discard
the notion of the diffusion time-axis during training. Effectively,
we are setting 𝑇 = 𝐾 and identifying the diffusion time-axis and
the motion temporal-axis. We propose two schemes for noise injec-
tion: 1) random schedule, and 2) monotonic schedule (we avoid the
term linear schedule as it is commonly used to indicate a type of
variance schedule [Nichol and Dhariwal 2021]). Note that these are
not variance schedules. Concretely, given a fixed variance sched-
ule 𝛽𝑡𝑖 ∈ (0, 1), 𝑡𝑖 ∈ {0, 1, . . . ,𝑇 }, at each training step the random
schedule is given by

[𝛽𝑡1 , 𝛽𝑡2 , . . . , 𝛽𝑡𝐾 ], 𝑡𝑖 ∼ U(0,𝑇 ). (2)

On the other hand, the monotonic schedule is given by

[𝛽𝑡1 , 𝛽𝑡2 , . . . , 𝛽𝑡𝐾 ], 𝑡𝑖 = 𝑖 . (3)

The former gives a temporally-varying noise level while the latter
gives a monotonically increasing noise level.
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In practice, we use a mix of these two noise injection schemes
during training, so the model learns to completely denoise a motion
sequence with varying noise levels across frames. This enables us to
create explicit entanglement between the time axis of the diffusion
process and the temporal-axis of the motion - a unique property
which will be exploited during inference.

For each iteration during training, we first sample from the
dataset a motion sequence of length 𝐾 ,

[𝑓1, 𝑓2, . . . , 𝑓𝐾 ] .

The model is then given the noise injected motion [𝑓1, 𝑓2, . . . , ˜𝑓𝐾 ] as
input where 𝑓𝑖 ∼ N(

√︁
𝛼 (𝑡𝑖 ) 𝑓𝑖 , (1−𝛼 (𝑡𝑖 )𝐼 ), for𝛼 (𝑡𝑖 ) =

∏𝑡 𝑗
𝑗=1 (1−𝛽𝑡 𝑗 ),

and is tasked to predict the clean motion [𝑓1, 𝑓2, . . . , 𝑓𝐾 ] directly. To
give the network a mixture of the two types of noise injection, we
assign [𝛽𝑡 𝑗 ]𝐾𝑗=1 using the random schedule or monotonic schedule
with fixed probabilities 𝑝 and 1 − 𝑝 . We set 𝑝 = 2

3 in practice.
As a remark, the training objective with the random schedule is

similar to those of a pose-oriented diffusion model, where we view
the entire motion sequence as a batch of poses with batch size 𝐾 . If
we let 𝑞∗0 be the data distribution of individual poses, then at each
frame index, the model tries to learn a posterior

𝑞∗
𝑡−1 |𝑡 (𝑓

𝑡−1 | 𝑓 𝑡 )

where the superscript indicates time in the diffusion time-axis. Then,
the objective with monotonic noise schedule serves to provide
additional supervision to ensure smooth transitions across frames
during inference.

3.3.1 Loss functions. As previously mentioned, the benefit of pre-
dicting the clean motions directly is that it gives access to regu-
larizations that otherwise would be ill-defined for the mollified
distributions. For instance, joint velocities cannot be properly regu-
larized with loss terms for noisy motions. Due to the hierarchical
nature of the human model, errors accumulate along the kinematic
chains, thus errors on joint rotations should be weighted appropri-
ately with respect to their positions in the hierarchy. Therefore, we
add a positional loss defined as follows:

Lpos =
1
𝐾𝐽

𝐾∑︁
𝑡=1

FKS (R̂𝑡 , Ô𝑡 ) − FKS (R𝑡 ,O𝑡 )
2

2 , (4)

where FKS : R𝐽 𝑄 ×R3 → R3𝐽 is a forward kinematics operator for
a fixed skeleton 𝑆 , and R̂, Ô are the model predicted joint rotation
and displacements and R,O are the corresponding ground truth. In
addition, since foot contact is vital to generating natural motions
and enables using inverse kinematics as post-process, we further
penalize errors accumulated at the foot joint with the following
foot contact loss:

Lcontact =
1
𝐾𝐶

∑︁
𝑗

𝐾−1∑︁
𝑡=1

FKS (R𝑡+1,O𝑡+1) 𝑗 − FKS (R𝑡 ,O𝑡 ) 𝑗
2

2 ·𝑠 (L𝑡 𝑗 ),

(5)
where 𝑠 = 1

1+𝑒−12(𝑥−0.5) , and 𝐿𝑡 𝑗 is the contact label for contact join
𝑗 at time 𝑡 as defined in Sec. 3.1. This penalizes high foot velocity
while having true contact labels, thus ensuring self-consistency of
the generated motions.

3.3.2 Training. In summary, our full training loss is

L = 𝜆diffLdiff + 𝜆posLpos + 𝜆contactLcontact (6)

where Ldiff corresponds to the diffusion loss specified by equation
(1), and the 𝜆 parameters determine the weights of the losses.

Our diffusion network is inspired by the typical U-Net model
used in the 2D image diffusion domain [Rombach et al. 2022]. In
order for the network to process 1D signals, we use 1D convolutions
striding over the temporal axis. We also use 1D attention blocks
and skip connections so long term frame correlations are captured
within the motion data.

3.4 Inference
During inference, we take advantage of the monotonic noise sched-
ule that our model trained on. We use a typewriting-like system,
as depicted in Fig. 2. Our model maintains a buffer of frames with
monotonically increasing noise, where the first frame in the buffer
is mapped to the lowest noise level, and and the last to the high-
est, as described in (3). The model is designed to generate motion
autoregressively. At the beginning, the buffer is initialized with
a given motion sequence that is noised with increasing variance.
Then, at each iteration, the model processes all the frames in the
motion sequence in parallel and produces a progressively denoised
sequence. At this point, the first frame in the sequence is completely
clean and can be popped from the buffer. We sample a new frame
from standard Gaussian distribution and push it into the motion
sequence at the end of the buffer. The model can then iteratively
perform this denoising mechanism. This mode of generation can be
continued indefinitely as desired, and the resulting motion frames
are collected frame by frame from the model output.

Concretely, let 𝑀𝜃 be our model and let 𝐼 = [𝑓1, . . . , 𝑓𝐾 ] be the
initialization (clean motion that is noised with increasing variance)
and let 𝐹out denote the (initially empty) set of output frames. At
time step 𝑡 , 𝑡 ∈ {1, 2, . . . }, we have the update

𝐹out = [𝐹out, 𝑀𝜃 (𝐼 )1],

𝑓𝑖−1 = 𝑀𝜃 (𝐼 )𝑖 , 𝑖 ∈ {2, . . . 𝐾},

𝑓𝐾 = 𝑋 ∼ N(0, 𝐼 ),

𝐼 = [𝑓1, . . . , 𝑓𝐾 ],

where𝑀𝜃 (𝐼 )𝑖 denotes the 𝑖-th frame in the output of our model.
We highlight the distinction from a typical inference pass in the

standard diffusion process, which samples Gaussian noise using
the full motion length and repeatedly denoises the entire motion.
For such a generation scheme, all the frames are required to pass
through the model 𝑇 times. Here, our inference scheme is able to
output a new clean frame after only one forward pass of the model.
At the same time, a newly sampled frame (pure noise) that gets
pushed into the motion buffer will stay in the motion buffer for
𝑇 iterations, going through all diffusion time steps before getting
added to the output. In short, our inference method enables faster
autoregressive generation yet ensures that each frame of motion
goes through the full diffusion process.
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Figure 4: Long-term Generation. Our method synthesizes
arbitrarily long motion sequences. In the above figure, we
summarize 33 seconds of motion by visualizing the pose
every 100-frames (≈3 seconds). Our model is able to generate
plausible motions throughout the entire motion sequence.

Figure 5: Trajectory Control. Similar to guided generation,
given the desired trajectory information P (shown in yellow),
our method can generate natural motions that adhere to the
given trajectory.

4 EXPERIMENTS
In this section, we demonstrate the effectiveness of TEDi on several
long-term generation tasks. We show several unique applications of
ourmethod, including the ability to plan for upcomingmotion using
guided generation. We also evaluate our method through various
comparisons and ablations. For additional qualitative results, please
refer to the supplemental video.

Figure 6: Ablations: Here we show the average motion vari-
ance over 500 frames for our method with and without the
random schedule. It can be seen that our random schedule
helps avoid motion-collapse.

4.1 Long-term Generation
Our TEDi framework is able to generate long-term motions condi-
tioned on a clean primer motion which is used to populate the initial
motion buffer. The model is given as input a primer of 𝐾 frames
{𝑓1, 𝑓2, . . . , ˜𝑓𝐾 } which are progressively noised with a monotonic
noise schedule. Our iterative inference strategy can then produce
an arbitrarily long sequence of new frames. We highlight some of
the frames from a long-term sequence generated by our method in
Fig. 4. The key to maintaining long-term generation is that at each
iteration, the newly sampled noise frame ensures that our "buffer"
is able to explore new potential motions in the near future, and the
iterative denoising process ensures framewise consistency across
the motion. In addition, we show in Fig. 7 and 8 that our method is
capable of generating diverse motion sequences. Full video results
can be found in the supplementary video.

4.2 Guided generation
For a character in motion, it is often desired for the character to
perform a set of predefined motions which will occur at a point
and time in the future. We refer to these frames are motion guides.
Our framework maintains a motion buffer which contains informa-
tion about the motions to be performed in the future. In order to
influence the set of currently-generated frames, we directly modify
the motion buffer using the motion guide. Specifically, we remove
the current set of frames and replace them with a noised version of
the motion guide. Then, we discard the predicted denoised frames
and replace them with the noised version of the motion guide at
the appropriate diffusion time.

Suppose we have a motion buffer of 𝐾 frames 𝐼 = [𝑓1, . . . , 𝑓𝐾 ]
and a set of motion guides Q1,Q2, . . . each with length 𝑙1, 𝑙2, . . .
frames that we wish to perform starting at frame number 𝑛1, 𝑛2, . . .,
𝑛𝑖 ≥ 𝐾 . Assuming we start with the frame number 𝑛 = 1 (e.g.
the end of the current motion buffer would be frame number 𝐾),
for each predefined motion Q𝑖 , if any of its frames Q𝑖 𝑗 , where
𝑗 ∈ {1, 2, . . . , 𝑙𝑖 } and 𝑛𝑖 ≤ Q𝑖 𝑗 ≤ 𝑛𝑖 + 𝑙𝑖 is such that 𝑛 + 5 ≤ 𝑛𝑖 + 𝑗 ≤
𝑛 + 𝐾 , then we recursively replace it into the motion buffer. Note
that there are five frames right before the start of the motion buffer
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where we don’t recursively replace. This enables the network to
smooth out the transitions between the generated frames and the
motion guide.We have detailed the procedure for guided generation
through recursive replacement in Algorithm 1. We demonstrate
guided generation in Fig. 9 and the supplementary material.

Algorithm 1 Guided generation
Require:
𝑀𝜃 : Denoising model
𝐼 = [𝑓1, . . . , 𝑓𝐾 ]: motion buffer
{Q1,Q2, . . .}: motion guides
{𝑙1, 𝑙2, . . .}: motion guide lengths
{𝑛1, 𝑛2, . . .}: starting frame numbers for guidance
𝐹out = ∅: ouput frames
for 𝑛 in 1, 2, . . . do

Evaluate 𝑀𝜃 (𝐼 )
for all frames 𝑄𝑖 𝑗 do

if 𝑛 + 5 ≤ 𝑛𝑖 + 𝑗 ≤ 𝑛 + 𝐾 then
𝑀𝜃 (𝐼 )𝑛𝑖+𝑗−𝑛 ← 𝑄𝑖 𝑗

end if
end for
𝐹out ← [𝐹out, 𝑀𝜃 (𝐼 )1]
𝑓𝑖−1 ← 𝑀𝜃 (𝐼 )𝑖 ∀𝑖 ∈ {2, . . . 𝐾}
𝑓𝐾 ← 𝑋 ∼ N(0, 𝐼 )
𝐼 ← [𝑓1, . . . , 𝑓𝐾 ]

end for

4.3 Trajectory Control
Our work can be applied to perform trajectory control during in-
ference without additional training. Similar to the mechanism of
guided generation in the previous section, trajectory control also
utilizes the inpainting strategy by modifying the motion buffer.
Specifically, let 𝐼 = [𝑓1, . . . , 𝑓𝐾 ] be a motion buffer of 𝐾 frames,
and let P ∈ R3×𝑁 be the trajectory information (root displace-
ments with respect to the xz-plane and root height), where 𝑁 is
the desired number of frames to be generated. During inference,
we recursively overwrite the trjactory information in the motion
buffer with frames in P. The detailed procedure is similar to the
one presented in Algorithm 1. We demonstrate trajectory control
generation in Fig. 5.

4.4 Comparison and Ablation
We next evaluate our approach against alternative baselines, and
assess our framework through an ablation study.We refer the reader
to the supplementary video attached to this work to assess the
results qualitatively. For quantitative evaluation, we assess our
ability to avoid collapses in the motion sequence by measuring
the variance across all generated frames. In order to measure how
non-stationary generated motions are, and to detect the time-point
where they collapse, we measure the average variance of poses in a
local window.

4.4.1 Comparison. In this experiment, we focus on comparing our
framework to other works on the task of long-term generation.
We compare our method with ACRNN [Zhou et al. 2018] and the

Human Motion Diffusion Model (MDM) [Tevet et al. 2022]. In par-
ticular, ACRNN is an RNN-based work that receives part of the
model’s output frames during training, to imitate the inference set-
ting and mitigate motion collapse. ACRNN has the potential to be
trained over diverse motion datasets for long-term generation and
has been used as baseline in other recent works such as GANima-
tor [Li et al. 2022] and GMM [Li et al. 2023]. MDM is an adaptation
of the classic DDPM network for motion generation. While ACRNN
is designed to be trained has long-term generation as default for
inference, MDM does not have a default implementation for long
term generation. Thus we use a pretrained checkpoint for MDM
and implement an inpainting-based scheme to enable long-term
generation for MDM. This implementation is the same as the pop-
ular "outpainting" technique used in 2D image generation, where
we take the latter part of the generated motion and in-paint it to
the first part of the generated motion on the next iteration. As in
Fig. 10, it can be seen that ACRNN is not able to perform well on a
large and diverse dataset, producing motions that quickly collapse
after initialization. In contrast, TEDi can produce infinitely long
sequences that is robust to collapses. On the other hand, MDM pro-
duces significant stitching artifacts along the in-painting boundary.
Please refer to the supplemental video for more details.

4.4.2 Ablation. In Fig. 6, we demonstrate the advantage of our
training scheme, by training a version of ourmodel without temporally-
variant noise levels. The running variance over a window of 50
frames is calculated for motions generated by the two models. With-
out temporally varying noise, the network shows sign of mode col-
lapse and diminishes in diversity of long-range motion generation.

4.5 Perceptual Study
We conduct a perceptual study to evaluate the perceived diversity
and quality of the generated motions. In addition to MDM and
ACRNN (both trained on the same CMU dataset as our model), we
also add Motion VAE [Ling et al. 2020], a recent autoregressive
motion generation model with VAE, as a baseline comparison. Fol-
lowing the setup of DALLE-2 [Ramesh et al. 2022], we show users
3x3 grids of randomly sampled 500-frame motions from our model
(excluding the primer frames), MDM, Motion VAE, and ACRNN,
and ask them to choose 1) the set with the most diverse motions
and 2) the set with the highest quality motions (only from ours,
MDM, or ACRNN). Visual examples of the generated motions in
the perceptual study is provided in Fig. 11 and Fig. 12.

We had 55 respondents for our study, and we report the results
in Tab. 1. We conclude from our perceptual study that our method
produces motion of equivalent or better quality compared to MDM
while significantly outperforming in terms of diversity.

Table 1: Perceptual study results for our method and base-
lines.

Ours MDM ACRNN MVAE
Diversity 34 12 8 1
Quality 33 17 5 -
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5 CONCLUSION
In this paper, we proposed TEDi, an adaptation of diffusion models
for motion synthesis which entangles the motion temporal-axis
with the diffusion time-axis. This mechanism enables synthesizing
arbitrarily long motion sequences in an autoregressive manner
using a U-Net architecture. A unique aspect of our work is the
notion of a stationary motion buffer. Our framework continues to
produce clean frames (i.e., progressing along the diffusion-time
axis), without actually incrementing the diffusion time. The ability
of our pipeline to continually generate motion along the diffusion
axis is what enables our framework to robustly and continuously
produce novel frames. Interestingly, the ability to naturally use
diffusion in such an autoregressive fashion may have implications
for other types of sequential data beyond motion, such as audio
and video, or modalities where a sequential order can be defined,
such as a patch-by-patch order for images.

Our system enables partially-clean-frame to be immediately (or
near immediately) popped-off the motion buffer stack. However, a
current limitation of our system is that computing a clean from from
pure noise requires going through the chain of denoising diffusion.
In the future we are interested in leveraging ideas fromDDIM [Song
et al. 2020] to skip ahead during the denoising process to achieve
even lower latency. In addition, our framework may enable future
research in long-term text-conditioned motion generation. We are
interested in exploring how high-level control may be coupled
with low-level user-guidance for the task of long-term generation.
Finally, as a result of representing pose with root displacements
instead of absolute coordinate (Sec 3.1), our method cannot place
the guiding motions in a fixed-world location. One possibility is to
specify a trajectory (a set of displacements) that leads to a global
position, but this will limit the diversity of different possiblemotions
that can be generated towards the target position.
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Figure 7: Diverse Motions. Our method is capable of producing a wide variety of long motion sequences. From left to right:
Boxing, shuffling, and hand-gestures.

Figure 8: Motion Variations. Due to the stochastic nature of diffusion models, our method is able to generate variations using
the same motion primer as input. We show four motions generated from a single primer, from left to right, we can see that the
motions begins to differ significantly as time goes on.

Figure 9: Guided Generation. Given a set ofmotion guides Q𝑖 (shown in yellow), we are able to perform them in sequence at
desired points while generating plausible motion in the interactively generated frames (blue). From top-left to bottom-right,
our method generates an entire motion sequence that contains the desired motion guides and the interactively synthesized
motion. The interactively generated motions will “prepare and plan” for the upcoming motion guides. See the supplementary
video.
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Figure 10: Long-term motion synthesis baseline comparisons. Left: We show two pairs of consecutive frames generated through
an in-painting implementation with MDM [Tevet et al. 2022]. Classic in-painting shows visible discontinuity that happens
along the border of in-painting. Right: ACRNN [Zhou et al. 2018] when trained on a large dataset is not stable, as seen by the
foot levitation and penetration artifacts.

Figure 11: Questions from perceptual study.

Figure 12: Example motions from perceptual study. From top to bottom, left to right: Ours, ACRNN, MDM, and Motion VAE.
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