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ABSTRACT

Variations are prevalent in all aspects of quantum computing. On solid state quantum

devices, fabrication errors lead to variations in device connectivity. Among the qubits that

are available for use, there are still variations in multiple properties. Other than hardware

variations, different algorithms and operations impose different requirements on the devices

and systems. In order to bridge the gap between the theory and implementation of quantum

computing, we need practical designs that are aware of variations and system-level tradeoffs.

This thesis includes three examples of adapting to variations: choosing two-qubit basis gates

based on individual qubits’ properties, adapting error correction codes and using modular

architecture to support fault-tolerant computation in the presence of fabrication defects, and

adapting real time decoding protocols to support large patches of topological codes that arise

during lattice surgery operations.
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CHAPTER 1

INTRODUCTION

Quantum computing is an interdisciplinary field that encompasses diverse research areas.

Its advancement requires both highly abstract theory research, like the high-level design

of quantum algorithms and error correction codes, and experimental efforts that focus on

the development and implementation of quantum hardware. Theory works make simplifying

assumptions about the underlying hardware, which allow them to focus on the core concepts.

For example, it is common for a paper that proposes a novel quantum algorithm to assume

that it runs on an ideal noiseless quantum device, and for a paper on quantum error correction

to use a simplified phenomenological noise model. In addition to ignoring noises, another

common assumption is uniformity, including but not limited to uniformity across physical

qubits on a device.

While simplification is necessary for research, various complications arise when it comes

to practically implementing quantum applications on hardware. Qubits are not only sus-

ceptible to a variety of noises that require mitigation, but some of them, including the

superconducting qubits that are the currently leading candidates, also exhibit inhomogene-

ity. This leads to variability in performance and characteristics, even among qubits on the

same device. In the worst case, a qubit or link between qubits could have severely limited

functionality, reducing the connectivity of the device. The design of quantum computing

architectures must be flexible enough to accommodate these variations in qubit behavior

and performance.

Research in software and computer architecture should also meet the various demands

imposed by quantum algorithms. For example, fault-tolerant quantum algorithms require

real time decoding of syndromes. For superconducting devices with fast syndrome mea-

surement cycles, it is hard for a software decoder designed to run on a CPU to meet the

requirement for real time decoding. In recent years, there have been real time decoders based

1



on FPGAs, ASICs, or SFQ circuits. Different quantum error correction codes also impose

distinct requirements on quantum computers. Topological codes like the surface code and

the color code only require nearest-neighbor interactions, but their low encoding rates leads

to a high qubit overhead. On the contrary, some qLDPC codes have high encoding rates but

require long range connectivity.

This dissertation presents three examples of adapting to variations that are often over-

looked. Specifically, Chapter 2 and 3 address different aspects of the variations in qubit

characteristics, and Chapter 4 involves a variation in quantum application.

Chapter 2 introduces a framework for selecting different “nonstandard” two-qubit basis

gates for each link on a superconducting quantum device. Conventionally, it is assumed that

the same two-qubit basis gate (typically an XX- or XY-type gate) is implemented between

every pair of neighboring qubits on a quantum device. This assumption is prevalent in

quantum compiler research, and the research that studies the expressivity of different two-

qubit gates. However, if the same target two-qubit gate is selected as basis gate for the

entire device, even a small amount of coherent crosstalk between two qubits will cause a

gate to have a deviation from the target. We instead studied how to select the most efficient

“nonstandard” two-qubit basis gate, given the systematic deviations in the Cartan trajectory

of an interaction.

Chapter 3 considers the problem of implementing quantum error correction codes on

defective arrays of qubits. Prior work had proposed techniques that deforms the surface

code in the presence of defective qubits and links. We proposed to implement surface codes

on modular chiplets, and use the flexibility of a modular design to mitigate the resource

overhead caused by fabrication defects. Our work addressed several practical challenges that

need to be solved before one can build a large scale fault-tolerant device that implements

surface code. We developed an automated protocol for adapting the rotated surface code

to a grid with an arbitrary defect distribution. With this tool, we performed numerical
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simulations to identify the key metrics that characterize the fidelity of a surface code on

a defective array of qubits. These metrics serve a dual purpose: firstly, as post-selection

criteria for the strategic selection and arrangement of chiplets; secondly, they facilitate the

simulations to assess the resource overheads. We also determine cutoff fidelity values that

help identify whether a qubit should be disabled or kept as part of the error correction code.

The topic in Chapter 4 is adapting real time decoders to the large patches of codes

that arise during lattice surgery. This is accomplished by dividing the device into multiple

overlapping windows and assigning a decoder module to each window. We refer to this

approach as spatially parallel windows. While previous work has explored similar ideas, none

have addressed the unique hardware constraints and system-specific considerations pertinent

to the task. We show how to configure spatially parallel windows, so that the scheme (1) is

compatible with hardware accelerators, (2) supports general lattice surgery operations, (3)

maintains the fidelity of the logical qubits, and (4) meets the throughput requirement for

real time decoding. Furthermore, our results reveal the importance of optimally choosing

the buffer width to achieve a balance between accuracy and throughput — a decision that

should be influenced by the device’s physical noise.

These examples demonstrate the need for quantum computer architecture research that

bridges theory and hardware, both for physical operations and logical operations. Chapter

5 concludes with a discussion of future work in this direction.
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CHAPTER 2

NONSTANDARD TWO-QUBIT BASIS GATES FOR QUBIT

VARIATIONS

2.1 Introduction

Quantum computers have the potential to solve problems currently intractable for conven-

tional computers [107], but current computations are limited by errors [99], particularly

when interacting two qubits to perform a quantum gate operation. This is not surprising,

as qubits are engineered to preserve quantum state and be isolated from the environment,

but a quantum operation is a moment in time where external control is applied from the

environment to deliberately alter a qubit’s state. To accomplish low-error gates, the control

mechanisms are carefully designed and the control signals are calibrated for each qubit or

pair of qubits.

Similar to how classical computers use a small set of classical logic gates (AND, OR, NOT,

XOR...) as building blocks for larger circuits, current superconducting quantum devices

typically only directly support a universal gate set consisting of a few two-qubit (2Q) gates

and a continuous set of single-qubit (1Q) gates. This paper will refer to the set of directly

supported quantum gates as basis gates. In the space of 2Q gates (see Fig.2.1), any point

that does not coincide with SWAP or Identity has nonzero entangling power. Any of these

2Q entangling gates can achieve universal computation when added to a continuous set of

1Q gates [20].

Using the minimal set of gates needed for universal computing is rarely a desirable thing

to do. For example, while the NAND is universal in classical computing, building circuits

from it alone is less efficient than using a larger set of logic gates. However, the intensive

calibrations necessary for high fidelity 2Q gates between qubits in a large quantum computer

make it impractical to support a large set of 2Q basis gates. All logical 2Q gates scheduled to
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Figure 2.1: The Weyl chamber of 2Q quantum gates, explained in Sec 2.2.2. The non-local
part of a 2Q gate is fully described by its position in the Weyl chamber. As the duration
of an entangling gate pulse increases, the 2Q gate evolves, traversing a Cartan trajectory in
the Weyl chamber. CNOT and CZ are both represented by (12 , 0, 0). The SWAP gate is at
the top vertex (12 ,

1
2 ,

1
2). On the bottom surface, (tx, ty, 0) and (1 − tx, ty, 0) represent the

same equivalent class of gates. For example, the two points I0 = (0, 0, 0) and I1 = (1, 0, 0)
both represent the 2Q identity gate I.

run on a quantum computer have to be decomposed by its compiler into alternating layers

of pre-calibrated 1Q and 2Q basis gates. Thus, the choice of which 2Q gates to directly

support is critical to enabling high-performance quantum computing. On the hardware side,

the 2Q basis gates must have high-fidelity hardware implementations. On the software side,

they must enable the low-depth decomposition of other 2Q gates.

Superconducting qubits support XX- and XY-type 2Q interactions [6, 72]. The strength

of each of these interactions depends on the type of coupling, the coupling strength, and the

frequency detuning between the qubits [72]. The Weyl chamber space of 2Q gates (Fig. 2.1)

is a useful way to visualize these interactions: the coordinates of a gate correspond to its

non-local part in Cartan’s KAK decomposition (see Section 2.2.2). In the Weyl chamber,

gates in the XX family form a straight trajectory from Identity to CNOT/CZ, while gates in

the XY family form a trajectory from Identity to iSWAP. Cartan trajectories are generated

by increasing the duration of an entangling gate pulse, which evolves the 2Q gate.

Section 2.4 describes the various difficulties associated with reliably performing standard
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2Q gates like CZ and iSWAP on today’s superconducting quantum computers. Whether

a deviation from a standard Cartan trajectory is a 2Q error depends on what the target

2Q gate is. If the target 2Q gate has to be a certain standard gate (e.g. iSWAP), even

a small amount of coherent crosstalk between the two qubits will cause the gate to have

a small CZ component, and so the gate will not be identically iSWAP. However, if that

coherent crosstalk is a stable systematic that does not add noise or cause decoherence, the

gate could still be an effective, high fidelity entangler that is useful for computing; the target

2Q gate would just have to be a nonstandard unitary rather than the standard iSWAP. In

Section 2.4 we also show an example of an experimentally measured Cartan trajectory of 2Q

gates on a superconducting qubit device. The measured Cartan trajectory includes very fast

nonstandard 2Q gates with high entangling power, but it does not pass through traditional

basis gates like iSWAP and CZ. This example motivates us to develop methods that enable

the use of nonstandard 2Q gates for quantum computing. If we allow for deviations from

standard 2Q gates, we can use high fidelity, non-standard quantum hardware for practical

quantum computing.

Using nonstandard 2Q basis gates requires methods for identifying good basis gates on a

general 2Q gate trajectory, calibrating a nonstandard gate, and compiling with nonstandard

basis gates. The primary focus of our work is to construct and demonstrate a framework for

efficiently identifying a “good” set of 2Q basis gates from a nonstandard trajectory. But we

also propose solutions for calibration and compilation.

What are our standards for a good set of 2Q basis gates? Following the principle of

Amdahl’s Law, we pay most attention to the SWAP gate as a target for synthesis because

of its importance for communication within programs executing on superconducting devices.

To mitigate crosstalk and satisfy other hardware constraints, superconducting devices usually

have the sparse connectivity of a grid lattice or a hexagonal lattice. Therefore, the compiler

has to schedule a series of SWAP gates before it can interact two qubits that are not adjacent
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to each other. Although clever mapping from logical to physical qubits can result in a smaller

number of inserted SWAP gates, we still observe a high proportion of SWAP gates in post-

mapping quantum circuits. Besides efficient synthesis of the SWAP gate, our framework also

allows one to prioritize other target gates, including but not limited to CNOT, iSWAP, and

the B gate. It also enables the simultaneous prioritisation of multiple target gates.

The calibration of a non-standard 2Q basis gate requires identifying a gate duration that

gives an ideal basis gate and then accurately characterizing the corresponding gate so that

we use the right unitary for compiling. Our proposed calibration protocol address both

without causing a long downtime on a quantum device. However, we point out that in order

to precisely characterize a non-standard gate, one should consider using gate set tomography

(GST) as opposed to quantum process tomography (QPT). The data collected from GST

experiments may require several hours of classical processing. Before that finishes, one would

have to use the calibration results from the previous cycle. The speedup of GST’s classical

processing, which is an active field of research [4], would help reduce the cost of calibrating

non-standard gates. In addition, we observed that the systematic deviations are stable over

days (Fig. 2.5). If the change in deviation is negligible, one may not need to apply GST in

every calibration cycle.

Compiling with non-standard 2Q basis gates requires a conversion from arbitrary 2Q

gates into the basis gates. There isn’t a general analytical formula that works for arbitrary

target and basis gate, so a numerical search is needed. However, we can analytically obtain

information on the minimum circuit depth needed for a perfect synthesis and use it to

facilitate the numerical search. Besides, the circuits that synthesise common gates from the

basis gates can be pre-computed after each calibration cycle, so that one wouldn’t need to

re-compute them for every program.

Our contributions are summarized below.

• Our work is the first to consider using 2Q basis gates from general non-standard gate
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trajectories that are not parametrized by a simple function.

• We provide a theoretical framework for identifying and visualizing the set of good 2Q

basis gates, given a set of target 2Q gates to prioritize. With an emphasis on SWAP,

we characterize the sets of gates that enable the synthesis of SWAP in 1, 2, and 3

layers, respectively. As another example, we visualize the gates that are able to both

synthesize SWAP in 3 layers and CNOT in 2 layers. After identifying the volume of

desirable basis gates in the Weyl chamber, one can select the first intersection of the

trajectory with the volume as the 2Q basis gate. (Section 2.5)

• We propose a practical calibration protocol that is agnostic as to whether a 2Q gate

is standard or non-standard. (Section 2.6)

• We discuss a practical approach to compiling with non-standard 2Q basis gates. (Sec-

tion 2.7)

• We apply our methods to a case study entangling gate architecture with far-detuned

transmon qubits [96]. First, we use our theoretical framework to select 2Q basis gates

from simulated nonstandard Cartan trajectories that are realistic for this case study

architecture. By increasing the entangling pulse drive amplitude we get a significant

2Q basis gate speedup but introduce a deviation into the Cartan trajectory. Then

we use these 2Q basis gates to run a variety of benchmark circuits including BV[12],

QAOA[38], the QFT adder[103], and the Cuccaro Adder[28], and compare to the results

from using the
√
iSWAP gate on the standard XY-type trajectory. (Section 2.8)
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2.2 Background

2.2.1 Qubits and gates

Unlike a classical bit that is either 0 or 1, a quantum bit (qubit) can exist in a linear

superposition of |0⟩ and |1⟩; A general quantum state can be expressed as α|0⟩+ β|1⟩ where

α, β are complex amplitudes that satisfy |α|2 + |β|2 = 1. Thus, the state of one qubit can

be represented by a 2-vector of the amplitudes α and β. A system of n qubits can exist in

a superposition of up to 2n basis states, and its state can be represented by a 2n-vector of

complex amplitudes. A quantum gate that acts on n qubits can be represented by a 2n× 2n

unitary matrix.

2.2.2 Geometric characterization of 2Q gates

Two 2Q quantum gates U1, U2 ∈ SU(4) are locally equivalent if it is possible to obtain one

from the other by adding 1Q operations. In other words, 2Q operations U1 and U2 are locally

equivalent if there exist k1, k2 ∈ SU(2)⊗SU(2) such that U1 = k1U2k2. For example, CNOT

and CZ are locally equivalent via Hadamard gates.

Any 2Q quantum gate U ∈ SU(4) can be written in the form of

U = k1 exp(−i
π

2
(txX ⊗X + tyY ⊗ Y + tzZ ⊗ Z))k2 (2.1)

where X, Y, Z are the Pauli gates. This is called the Cartan decomposition.

The space of two-qubit quantum gates can be represented geometrically in a Weyl cham-

ber (Fig. 2.1), where each point stands for a set of gates that are locally equivalent to each

other [136]. The Cartan coordinates (tx, ty, tz) in Eq. (2.1) are the coordinates of U in the

Weyl chamber. They fully characterize the non-local part of a 2Q gate. On the bottom

surface, (tx, ty, 0) and (1− tx, ty, 0) represent the same equivalent class of gates. The other
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points in the Weyl chamber each represent a different equivalence class of 2Q gates. We refer

the interested readers to [27] for a more thorough introduction to the Weyl chamber. Note

that other conventions of the Cartan coordinates are also common. They usually differ from

ours by a constant factor of π or 2π.

In this paper, when we talk about some gate G in the Weyl chamber, we usually mean

the local equivalence class of 2Q gates that includes G.

2.2.3 Entangling power of 2Q gates

The entangling power [135] is a widely accepted quantitative measure of the capacity of a 2Q

gate to entangle the qubits that it acts on. It is typically a good indicator of the ability of a

specific 2Q gate to synthesize arbitrary 2Q gates. For a unitary operator U , the entangling

power ep(U) ∈ [0, 29 ] is defined as the average linear entropy of the states produced by U

acting on the manifold of all separable states [135]. It is solely based on the non-local part

of U , which is characterized by the position of U in the Weyl chamber.

A 2Q gate has 0 entangling power if and only if it is locally equivalent to the Identity

or the SWAP gate. Conversely, 2Q gate U is called a perfect entangler if it can produce

a maximally entangled state from an unentangled one[136]. Perfect entanglers (PE) have

entangling power no less than 1
6 . They constitute a polyhedron in the Weyl chamber that

is exactly half of the total volume. The 6 vertices of the PE polyhedron are CZ(CNOT),

iSWAP,
√
SWAP ,

√
SWAP

†, and the 2 points that both represent
√
iSWAP . The perfect

entanglers with maximal entangling power of 2
9 are also called special perfect entanglers [102].

In the Weyl chamber, they are on the line segment from CNOT to iSWAP. The B gate

(Berkeley gate), which is at the midpoint of this line segment, has the property that it can

synthesize any arbitrary 2Q gates within 2 layers[137]. However, there has been no proposal

to directly implement the B gate in hardware.
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2.3 Related work

To the best of our knowledge, no prior work involves using 2Q basis gates from arbitrary

nonstandard gate trajectories. In parallel with this work, Lao et al. [73] propose to mitigate

coherent parasitic errors in 2Q gates by software and present methods of compilation. Our

work is more general then [73], although we share the insight that coherent errors in 2Q

gates can be treated as part of the gate for compilation. While our framework works for

general irregular trajectories and select basis gates on them using the approach detailed

in Section 2.5, they focus on iSWAP-like (XY) gates with an unwanted CPHASE (XX)

component (which belongs to the FSim gate set so is not truly non-standard) and always

use CPHASE(ψ)iSWAP(π/4) because it has similar expressivity as iSWAP(π/4) for small

deviation ψ. They do not discuss calibration. Their baseline for evaluation is similar to the

baseline in our case study, which is to make the trajectory more standard by lengthening

the gate duration.

Recent research from both the experimental [42, 86, 132, 57] and theory sides has utilized

2Q (and 3Q) basis gates from a continuous set of standard gates, as opposed to only building

and compiling with the best-known gates like CNOT and iSWAP. The works that are most

relevant to this project are those that look for a small set of 2Q basis gates (from a continuous

standard gate set) that are the most valuable to calibrate. Lao et al. [74] use a numerical

approach to test the performance of different gates from the fSim and XY gate sets on a

range of application circuits, with the overall circuit success rate as the objective. Peterson

el al. [94] from IBM use analytic techniques to find that the gate set {CX,CX1/2, CX1/3}

is almost as good as the entire continuous set of XX gates in implementing random 2Q

gates. They try to minimize the expected (average) infidelity in implementing random 2Q

gates under an experimentally motivated error model. Huang et al. [61] proposes using the
√
iSWAP as 2Q basis gate, instead of using iSWAP or CNOT, and implement it using a

2-fluxonium qubit device. Recent proposals for novel nonstandard 2Q gates in the supercon-
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ducting qubit literature that are informed by the current experimental challenges in scaling

up with standard 2Q gates include [93, 133].

2.4 Systematic deviations in 2Q gates

The 2Q gate is a critical building block that must be well-engineered before it is used to

construct a quantum computer with many qubits. In practice, engineering 2Q gates in the

lab involves iterating prototypes of the devices to minimize any and all systematic errors

that result from imperfect device design or control along with nonuniformities in device

fabrication.

Even if unwanted crosstalk between the qubits is successfully reduced and the 2Q gate is

shown to be an effective entangler with a consistent identity, if the gate’s identity is somehow

nonstandard, one would normally assume it is not useful. The constraint of requiring 2Q

gates to be standard is most burdensome for the superconducting qubit platform, where

device Hamiltonians are engineered from scratch and there is no 2Q gate that is truly native

to the platform - unlike, for instance, the SWAP gates that are native to atomic qubits [124].

Today’s multi-qubit superconducting devices are not able to perform perfectly identical

2Q gates between every pair of qubits because of device-level imperfections, tradeoffs and

uncertainties. Experimentalists model the expected rate of information leakage between

on-chip elements using microwave circuit design software [3, 2], but it is inevitable that

irregularities arise during device fabrication and packaging. The devices are at least partially

handmade and every fabrication tool has a finite precision. Also, the various materials that

make up the layers of the superconducting device can host physical two-level systems that

act as sources of noise and even can coherently interact with qubits [105, 112]; reducing the

effect of these two-level systems is an active field of research [125]. Another active field of

research is reducing irregularities in the fabrication of Josephson junctions, which are critical

on-chip elements [68, 54]. For a given device, it can be difficult for the experimentalist to
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determine whether a systematic 2Q gate deviation is caused by an imperfection in the device

design or in its control. For example, a common source of systematic 2Q gate deviation is

the imperfect mitigation of the static ZZ crosstalk which is a dominant source of 2Q gate

error for transmon qubits [88, 71, 117, 91, 64, 138]. Devices can be designed to suppress

the static ZZ crosstalk but unless the device is properly fabricated, packaged, biased and

controlled there will be nonzero static ZZ crosstalk which will cause the 2Q gate to deviate

from the target unitary.

Superconducting devices can also have higher order Hamiltonian terms that result in the

experimentally measured Cartan trajectory of 2Q gates deviating from the expected Cartan

trajectory. This deviation is particularly significant for fast gates enabled by large coupling

or large drive strength [96, 84, 63]. Experimentalists have historically tried to suppress these

deviations by reducing the 2Q gate drive strength, which has the negative consequence of

slowing the 2Q gate down. It is in general difficult to accurately model the effect of the

strong drives that perform fast 2Q gates on the Hamiltonian level, and this is an active field

of research [96].

Plotting measured 2Q gates in Cartan coordinates is a valuable tool experimentalists

can use to easily visualize and study any deviations their gates may have from the expected

Cartan trajectory. For example, Figure 2.2 shows a measured Cartan trajectory that is

nonstandard. This experimental data was collected from one of the first iterations of a su-

perconducting device [52] that was designed to implement a recently proposed entangling

gate architecture [96]. The data includes a very fast (13 ns) perfect entangler. Since the

measured trajectory was systematically offset from the predicted one (XY), the experimen-

talists investigated potential sources of that systematic offset. Since this source of deviation

could be eliminated with better device and control engineering, the experimentalists began

to optimize their next device iteration accordingly. But in this work we suggest that there is

nothing inherently unusable about measured Cartan trajectories that are nonstandard due
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Figure 2.2: Experimental data showing a nonstandard Cartan coordinate trajectory. An ex-
perimental implementation [52] of the iSWAP gate with the entangler architecture proposed
in [96] yielded a nonstandard Cartan coordinate trajectory close to the plane of I0, SWAP,
and iSWAP. The first instance of a perfect entangler was at an entangler duration of 13
ns. In this nonstandard trajectory, the 13 ns entangler is offset from the Cartan coordinate
for the square root of iSWAP and the 26 ns entangler is likewise offset from the Cartan
coordinate for iSWAP. Note that due to an experimental hardware constraint the shortest
possible entangling pulse duration was 4 ns, so the measured Cartan trajectory begins there.

to this kind of coherent systematic offset, and that the 13 ns nonstandard perfect entangler

identified in Figure 2.2 could be treated as a native 2Q basis gate by the compiler.

Our work seeks to enable the use of the nonstandard 2Q gates that can be native to

superconducting devices. If 2Q gate calibration and compiling protocols became more flexi-

ble, usable superconducting 2Q gate yield would increase considerably, enabling more rapid

and effective prototyping of 2Q gates which could be scaled to a computer. Furthermore,

any number of novel superconducting devices with very fast 2Q gates that happen to be

nonstandard could be effectively utilized for computing.
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Figure 2.3: (a) Gate A, decomposed into 2 layers with 2Q gates B, C and 1Q gates
Ua,Ub,Uc,Ud,Ue, Uf . (b) A general 2-layer decomposition of the SWAP gate. Here ∗, ∗mirror
can be replaced by any pair of 2Q gates capable of synthesizing a SWAP in 2 layers. (c) The
SWAP gate, decomposed into 3 CNOT gates. (d) A general 3-layer decomposition of the
SWAP gate. Here the ∗ can be replaced by any 2Q gate capable of synthesizing a SWAP in
3 layers.

2.5 Identifying good 2Q basis gates

2.5.1 Fidelity of a synthesized gate

If a 2Q quantum gate is not directly supported on a device, it needs to be implemented by

alternating layers of 1Q and 2Q gates from the set of basis gates that are directly supported.

See Figure 2.3 for examples. We say that a decomposition is n-layer if it contains n layers of

2Q gates. Besides the errors that come from noises in the quantum hardware, a synthesized

gate also suffers from the approximation error in gate decomposition. Thus the total fidelity

of a gate should be the product of the hardware-limited fidelity and the decomposition

fidelity. In this work, the decomposition errors are negligible compared to the hardware

errors.

In our error model, decoherence is the dominant source of hardware error. So two factors

determine whether a 2Q gate set is ideal for synthesizing a target gate: the duration of the

basis gates, and the depth of the decomposition circuit. We need to take both into account

when deciding on a strategy for selecting basis gates.
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2.5.2 An analytic method for determining 2Q circuit depth

When deciding whether a potential basis gate is ideal for synthesizing a target gate, we

consider the depth of the decomposition circuit as one of the factors. Given a 2Q target

gate A, and a 2Q gate B (or a gate set S), how to determine the minimum circuit depth

required for a decomposition of A into B (or S) and 1Q gates? One can take a practical,

numerical approach to finding this decomposition. For a given number of layers, one can fix

the 2Q gates and then numerically search for the 1Q gates that can minimize the discrepancy

between the target unitary and the synthesized gate. One can start the numerical search

from 1 layer, and increment the number of layers until the decomposition error gets below a

threshold. But a more efficient and accurate way to determine the circuit depth is to apply

the analytic method developed by Peterson et al. [95].

Without going into the technical details, here we summarize a key result from [95] that

we adapt and apply in Section 2.5.3 and 2.5.4.

Theorem 2.5.1. There exists a 2-layer decomposition of 2Q gate A into B, C, and 1Q gates

as in Figure 2.3(a), if and only if any of the 1 to 8 sets of 72 inequalities that depend on the

non-local parts of A, B, C is all satisfied.

For details of the theorem, the readers can look at Theorem 23 of [95] or the imple-

mentation of the function in our code 1. Note that Reference [95] characterizes the space

of 2Q gates with LogSpec instead of the Cartan coordinates (see [95] for the definition of

LogSpec). Both are valid ways to represent the non-local part of a 2Q gate, but care must

be taken when converting between the two. A gate U usually maps to 1 point in the Weyl

chamber, but it usually maps to 2 points in the LogSpec space: LogSpec(U) = (a, b, c, d)

and ρ(LogSpec(U)) = (c + 1
2 , d +

1
2 , a −

1
2 , b −

1
2). If LogSpec(U) = ρ(LogSpec(U)) for all

A, B, and C, we only need to check one set of inequalities. If LogSpec(U) ̸= ρ(LogSpec(U))

1. Our code can be found at https://github.com/SophLin/nonstandard_2qbasis_gates
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for 1, 2, or all 3 of A, B, and C, we need to plug in different versions of the LogSpec and

check 2, 4, or 8 versions of the 72 inequalities, respectively.

Figure 2.4: (a) Gates that are able to synthesize SWAP in 2 layers form 2 line seg-
ments in the Weyl chamber. The red one is from the B gate to

√
SWAP , and the

green one is from the B gate to
√
SWAP

†. (b) Pairs of gates that are able to synthe-
size a SWAP in 2 layers. In blue is an example trajectory that deviates from the stan-
dard XY interaction, in orange are the points that would complement the blue ones in
synthesizing a SWAP in 2 layers. (c) Gates that are NOT able to synthesize a SWAP
in 3 layers. (d) Gates that are NOT able to synthesize a SWAP in 3 layers. The 4
tetrahedra are defined by vertices {I0, CZ, (14 ,

1
4 , 0), (

1
6 ,

1
6 ,

1
6)}, {CZ, I1, (34 ,

1
4 , 0), (

5
6 ,

1
6 ,

1
6)},

{SWAP, (12 ,
1
6 ,

1
6), (

1
6 ,

1
6 ,

1
6), (

1
3 ,

1
3 ,

1
6)}, and {SWAP, (12 ,

1
6 ,

1
6), (

5
6 ,

1
6 ,

1
6), (

2
3 ,

1
3 ,

1
6)}. (e) Gates

that are NOT able to synthesize CNOT in 2 layers. The 3 tetrahedra in the plot are de-
fined by vertices {I0, (14 , 0, 0), (

1
4 ,

1
4 ,

1
4),

√
SWAP}, {I1, (34 , 0, 0), (

3
4 ,

1
4 , 0),

√
SWAP

†}, and

{SWAP,
√
SWAP,

√
SWAP

†
, (12 ,

1
2 ,

1
4)}. (f) Gates that are able to decompose SWAP in 3

layers and CNOT in 2 layers.
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2.5.3 Synthesis of the SWAP gate

On bounded connectivity architectures, SWAPs make up a significant portion of all two-

qubit gates. A SWAP gate exchanges the quantum states of two neighboring qubits. A 2Q

gate in a quantum program can be directly scheduled if it acts on two physical qubits that

are connected to each other, but this is not the case in general. Superconducting devices

are usually designed to have sparse connectivity, because otherwise crosstalk errors would

be difficult to suppress. As a result, quantum programs usually contain a large proportion

of SWAP gates after they are compiled to run on a superconducting device.

When we select the 2Q basis gate set for each pair of qubits, a top priority is to optimize

the fidelity of the SWAP gate that is built from the gate set. We discuss three approaches

towards synthesizing a SWAP gate: decompose it into 1, 2, or 3 layers of hardware 2Q gates.

SWAP in 1 layer: This requires a basis gate that is locally equivalent to SWAP. In

other words, the trajectory of the available native gates needs to pass through the top vertex

of the Weyl chamber.

SWAP in 2 layers: We consider 2 cases: 2-layer decomposition of SWAP using a single

2Q basis gate, and using two different 2Q basis gates.

In the first case, the set of 2Q gates that are capable of synthesizing SWAP in 2 layers

are represented by 2 line segments in the Weyl chamber as shown in Figure 2.3(b). One is

from the B gate to
√
SWAP and the other is from B to

√
SWAP

†. We denote them by L0

and L1, respectively.

In the second case, for each point ∗ in the Weyl chamber, (as derived in 2.10.2) there is

exactly one point ∗mirror such that they together enable a 2-layer decomposition of SWAP

(see Figure 2.3(b)). The line segment from ∗ to ∗mirror always has one of L0, L1 as its

perpendicular bisector. Thus, given ∗, we can locate ∗mirror by rotating ∗ by π around the

closer one of L0, L1. One example pair of such points is CNOT and iSWAP. For a trajectory

that deviates from the standard XY trajectory (goes from Identity to a point near iSWAP),
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its “mirror” is a trajectory from SWAP to a point near CNOT (Figure 2.4(b)). Since there’s

no overlap between the example trajectory and the “mirror”, we conclude that the trajectory

does not contain any pair of points that is able to synthesize SWAP together in 2 layers.

SWAP in 3 layers: It is a well-known result that 3 invocations of CNOT are required

to implement a SWAP [106]. We show the circuit in Figure 2.3(c). In fact, CNOT and

iSWAP share the property that they can synthesize any arbitrary 2Q gate in 3 layers but

only a 0-volume set of gates (in the Weyl chamber) in 2 layers [95].

For our purpose, we need to know what other gates are capable of decomposing SWAP

in 3 layers. We only consider 3-layer decomposition of SWAP using a single 2Q basis gate

as in Figure 2.3(d). Let SSWAP,3 denote the set of gates that satisfy our requirement.

To determine whether a 2Q basis gate G is in SSWAP,3, we first locate the corresponding

Gmirror such that G and Gmirror together can provide a 2-layer decomposition of SWAP.

Then we apply Theorem 2.5.1 with Gmirror as target and G as basis gate to check if there

exists a 2-layer decomposition of Gmirror into G.

We apply the method above to a sample of points in the Weyl chamber, and obtain the

distribution of gates that are able to synthesize SWAP in 3 layers. Since the complement of

the set has a simpler shape, here we show a plot of SSWAP,3, the points that are not able to

synthesize SWAP in 3 layers, in Figure 2.4(c). A visual inspection tells us SSWAP,3 consists

of 4 tetrahedra in the Weyl chamber. After locating the vertices of the tetrahedra, we obtain

Figure 2.4(d). We also learn that the volume of SSWAP,3 is 68.5% the volume of the Weyl

chamber.

A 2Q gate trajectory starts from either I0 (or I1) and goes out of the bottom left (or the

bottom right) tetrahedron in Figure 2.4(d). If the trajectory does not go directly to SWAP, it

will enter SSWAP,3 after leaving the bottom tetrahedron that it starts from. Thus, the fastest

gate on the trajectory that synthesizes SWAP in 3 layers can be found by locating the inter-

section of the trajectory with the face {CZ, (14 ,
1
4 , 0), (

1
6 ,

1
6 ,

1
6)} or {CZ, (34 ,

1
4 , 0), (

5
6 ,

1
6 ,

1
6)}.
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Summary: Given a 2Q gate trajectory that deviates from XY or XX, the most suitable

2Q gate for SWAP synthesis is the fastest one on the trajectory that is capable of synthesizing

SWAP in 3 layers. Although some gates in the Weyl chamber are able to synthesize SWAP

in 1 or 2 layers, it is unlikely that the early part of the trajectory overlaps any of them.

2.5.4 Synthesis of other gates

The techniques that we use to study the synthesis of SWAP also applies to other 2Q

gates. For example, by applying Theorem 2.5.1 to a sample of points in the Weyl cham-

ber, with CNOT as target, we learn that the gates that are able to synthesize CNOT in

2 layers (denoted SCNOT,2 here) takes up 75% of the volume in the Weyl chamber. The

complement SCNOT,2 consists of 3 tetrahedra, as shown in Figure 2.4(e). Therefore, on

a 2Q gate trajectory, we can locate the fastest gate that synthesizes CNOT in 2 layers

by taking the intersection of the trajectory with the face {(14 , 0, 0), (
1
4 ,

1
4 ,

1
4),

√
SWAP} or

{(34 , 0, 0), (
3
4 ,

1
4 , 0),

√
SWAP

†}. We can also locate the fastest gate from the trajectory that

can both synthesize CNOT in 2 layers and synthesize SWAP in 3 layers, by taking the first

intersection of the trajectory with SCNOT,2 ∩ SSWAP,3 (See Figure 2.4(f)).

2.5.5 A strategy for locating good 2Q basis gates

Our framework allows one to prioritize different combinations of target 2Q gates. In Section

2.8, we test the following two criteria for selecting 2Q basis gates from native 2Q trajectories.

1. Select the fastest gate on the trajectory that can synthesize SWAP in 3 layers.

2. Select the fastest gate on the trajectory that can both synthesize SWAP in 3 layers

and synthesize CNOT in 2 layers.

As explained in Section 2.5.3, the gate that meets Criterion 1 can be found at the intersec-

tion of the 2Q trajectory and one of the 2 faces {CZ, (14 ,
1
4 , 0), (

1
6 ,

1
6 ,

1
6)} and {CZ, (34 ,

1
4 , 0), (

5
6 ,

1
6 ,

1
6)}.
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And as explained in Section 2.5.4, the gate that meets Criterion 2 can be found similarly.

With this insight, we can locate a desired 2Q basis gate in an experimental setting using the

methods in Section 2.6.

Our framework can be easily adapted to other criteria for selecting basis gates. For

instance, we can select the fastest gate that can decompose another set of target gates

within a certain number of layers. We can also incorporate other metrics like the entangling

power into a criterion, e.g. we can locate the fastest gate on the trajectory that is both a

PE and can synthesize SWAP in 3 layers.

2.6 Calibration of nonstandard 2Q gates

We propose two stages for calibrating a 2Q basis gate on an unknown trajectory of 2Q

gates: first, a more costly “initial tuneup” stage that does not assume any knowledge of

the trajectory and then a less costly “retuning” stage that utilizes information from the

last initial tuneup and the retunings after it. In a well-controlled industry setup we would

imagine the initial tuneup being done once a month and retuning being done daily. In a less

well-controlled environment (e.g. one prone to low frequency drift), the initial tuneup could

be done more frequently, as needed.

Our proposed calibration approach uses two techniques for experimentally characterizing

the unitary of a potentially non-standard 2Q gate: quantum process tomography (QPT)

[26, 98] and gate set tomography (GST) [50, 90, 134, 80]. QPT is a simple way to estimate a

unitary but it cannot separate state preparation and measurement (SPAM) errors from gate

errors [85]. GST is a highly general and accurate tomography technique that characterizes

all the operations in a gate set (including SPAM) simultaneously and self-consistently. GST

is simple to run, taking minutes to acquire on a superconducting device. GST acquisition

is followed by classical processing of the data that can be computed on a cluster in about

two hours. Note that during the classical processing, the quantum device can still be used
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with gates from the previous calibration cycle. The speedup of GST’s classical processing is

an active field of research and may be obtained by allowing physics to inform the dominant

errors that are expected [4]. The most relevant returns for fine tuning the unitary are

the error generators [14] for the gate set. The error generators are a basis for writing the

transformation between the measured unitary and the unitary that GST expects. It measures

coherent differences and estimates stochastic noise levels. GST is thus a valuable tool for

directly characterizing 2Q gates.

Here we list the steps in the initial tuneup stage.

1. Do preliminary coarse tuning experiments such as amplitude and frequency calibration

of the entangling pulse drive to estimate the entangling pulse duration of interest. For

example, a resonant iSWAP -like interaction may have an amplitude and a frequency

to tune for optimal population swapping. (5 minutes per pulse)

2. Perform QPT for each 2Q gate in the Cartan trajectory leading up to the approximate

2Q gate of interest. The qubit controller resolution (typically ∼1 ns) will determine the

spacing between the trajectory points. Based on the findings in Step 1 the trajectory

can be cropped around the entangling pulse duration of interest. The unitaries found

will be the full list of candidate gates. (30-60 minutes per trajectory)

3. From the candidate gates in the previous steps, use Section 2.5 to identify which of

them might be the fastest ones that also are good 2Q basis gates. In this step the list

of candidate basis gates is narrowed down. We are not able to narrow down to one

basis gate due to the imprecision of QPT.

4. Perform GST to obtain full information about each candidate 2Q gate, including an

accurate gate unitary and a breakdown of error sources. Then the set of 2Q basis gates

can be chosen. (∼10 minutes for each 2Q gate, followed by classical processing)
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The second calibration stage is the quick “retuning” of the 2Q basis gates that relies

on the results of the initial tuneup. Once the precise unitary for each 2Q basis gate is

found, the gates can be simply retuned using the coarse tuning procedures in Step 1 of the

initial tuneup. The information gained in the initial tuneup would allow experimentalists

to prescribe a different retuning protocol to each 2Q basis gate according to what it needs.

In practice, retuning would most likely be a simple combination of amplitude calibration

and frequency calibration of the elements involved in each 2Q basis gate, and it would take

approximately 1-5 minutes per 2Q basis gate.
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Figure 2.5: Stability over drive amplitude of the experimentally measured Cartan coordinate
trajectories. In the same experimental implementation from Figure 2.2, as the entangling
pulse drive amplitude ξ increased from 0.005Φ0 to 0.01Φ0, the Cartan coordinate trajectories
were found to double in speed but still be qualitatively similar. The data was collected over
a two day period. As in Figure 2.2, due to an experimental hardware constraint the shortest
possible entangling pulse duration was 4 ns, so the measured Cartan trajectories begin there.

The extent to which previously gathered information can help reduce the cost of retuning

depends on the stability of the gate trajectories over time. Figure 2.5 shows the nonstandard

Cartan trajectories measured on two days, over two entangling pulse drive amplitudes. Over

the five day period that Cartan trajectories were measured for this device, the trajectories

were all found to look qualitatively similar, as in Figure 2.5. While limited, this experimental
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data suggests that the measured Cartan trajectories obtained in the initial tuneup stage could

potentially be used for several days afterward to provide an initial guess for the duration of

the good 2Q basis gates.

Our calibration protocol does not include the use of randomized benchmarking (RB)

[66, 104, 81]. RB is best suited for architectures with specific target gates that are members

of the Clifford group. Furthermore, interleaved RB [82] will estimate the gate infidelity but

will provide no information about an error budget. In our setting we do not have a fixed

2Q gate as the goal of implementation and understanding the gate unitaries themselves is

a primary goal. We have thus decided GST and QPT are more suitable for precise gate

characterization.

The scalability of our proposed calibration method is not different from traditional ap-

proaches. Calibration techniques like QPT, RB, and GST can be applied to multiple 2Q

gates on the same device in parallel, as long as the gates do not act on the same qubits.

One can use an edge-coloring of the device connectivity graph to determine which gates to

calibrate simultaneously. An edge-coloring of the grid graph takes 4 colors, one for a sparser

connectivity (e.g. heavy hexagonal) takes fewer colors. Thus, for a superconducting device

with typical connectivity, the calibration overhead on the quantum device does not scale

with the size of the device.

2.7 Compiling with non-standard 2Q basis gates

Most quantum programs and benchmarks are already specified at the 2 or 3 qubit gate level.

Therefore, like previous works [61][74][94] that discuss choice of 2Q basis gate and how to use

less conventional 2Q basis gates for compilation, we use a transpiler pass to convert other 2Q

gates in a circuit into our own 2Q basis gates, instead of building an entirely new compiler.

Some of the prior works decompose 2Q gates from application circuits into 1Q gates and

native 2Q gates using a numerical approach [74], while others take an analytical approach
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[61] [94]. Note that such a decomposition requires finding the 1Q local unitaries, not just

determining the required circuit depth. The analytical and numerical approaches each have

their advantages. The numerical approach is more flexible. It can be applied to any 2Q basis

and target gates. The analytic methods have limits on what gates they can be applied to, but

are faster and some of them guarantee optimal results. There is currently no analytic formula

that convert between arbitrary sets of 2Q gates. Huang et al. [61] and Peterson et al. [94]

develop analytic algorithms that decomposes an arbitrary 2Q gates into
√
iSWAP and dis-

crete sets of XX-type gates, respectively. The decompose_two_qubit_interaction_into_four_

fsim_gates function in Cirq [35] implements an analytic formula that decomposes an arbi-

trary 2Q gate into 4 layers of a given fSim gate, via the B gate.

In this project, we need to synthesize other 2Q gates from 2Q basis gates that are even

less conventional than the ones considered in previous work. Therefore, we take a mostly

numerical approach to gate synthesis and write our numerical search code based on NuOp

from [74]. The difference is, we use knowledge about decomposition circuit depth computed

analytically to inform and speedup the numerical search for 1Q local unitaries. NuOp first

attempts to search for a 1-layer decomposition, and moves on to 1 more layer upon failure to

find solution, until it meets the target decomposition error rate. Using the analytic techniques

for determining circuit depth developed by [95] and extended by our work for SWAP, we are

able to skip to the step in NuOp in which a perfect decomposition is guaranteed by theory.

This significantly speeds up the numerical search and also guarantee that the solution has

optimal depth.

Synthesizing all 2Q gates in the application programs directly into the basis gates might

incur a compilation overhead. We avoid it by computing in advance and storing the decom-

positions of a few common 2Q gates into our basis gates. This only needs to be done once

per calibration cycle (usually 1 day) and costs little time. In this work (see Section 2.8)

we only directly decompose SWAP and CNOT into our basis gates. But instead of taking
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this minimalist approach, one can alternatively prepare decompositions for a larger set of

potential target gates into the basis gates. The cost would still quite small. We imagine

that one can identify a set of potentially useful target gates using an approach similar to

[74], except that [74] looks for a set of gates to calibrate instead of decompose. In addition,

in the scenario where programs wait in long queues before execution, one might be able to

afford directly decomposing all 2Q gates in the circuits into the basis gates.

2.8 Case study: entangling fixed frequency far-detuned transmons

with a tunable coupler

2.8.1 Introduction to the case study entangling gate architecture

Many efforts are being made in industry and academia to design a 2Q entangling gate archi-

tecture that can be used for scaling up to a general quantum computer [128, 42, 117]. The

all-microwave cross-resonance gate was recently used by IBM to do a high fidelity CNOT

gate in 90 ns [128], but to suppress the always-on ZZ crosstalk mentioned in Section 2.4,

precise crosstalk cancellation pulses applied to both qubits during run time were required,

adding complexity to the architecture. Google Quantum AI and MIT have each developed

entangling gate architectures for high fidelity CZ and iSWAP gates, with Google’s archi-

tecture supporting a continuous set of these standard gates [42, 117]. Google’s architecture

requires all qubits and couplers to be flux-tunable, which adds complexity and additional

sources of leakage and noise to their architecture. Similarly, in order to suppress the always-

on ZZ crosstalk, MIT’s architecture requires one qubit per pair to be tunable as well as the

coupler.

The unit cell of our case study entangling gate architecture is a pair of qubits and a

coupler. This unit cell, first proposed in [96], was designed to perform a diverse set of 2Q

gates, including iSWAP and CZ; the full list of 2Q gates can be found in Table 1 of [96]. The
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Figure 2.6: (a) Optical image of the device presented in [52] shows two fixed frequency
transmons coupled via a tunable coupler. (b) Schematic for modelling the device adapted
from [96].

two qubits are fixed frequency transmon qubits; the benefits of fixed frequency transmons

are that they are easy to fabricate and can be reliably engineered to have high coherence

> 100 us [97]. The two qubits are also far detuned from each other so there is reduced single

qubit control crosstalk. The coupler is a generalized flux qubit which has been designed

to have several good properties for qubit control. Notably, because the coupler’s positive

anharmonicity has been designed to balance out the negative anharmonicity of the two qubits,

the eigenspectrum of this architecture’s unit cell can support a zero-ZZ crosstalk bias point.

This architecture is relatively simple to implement because fixed frequency transmons have

high coherence, there is only one flux-tunable element in the unit cell (the coupler), and it

is easy to bias the unit cell to zero-ZZ crosstalk.

A model Hamiltonian of the two qubits coupled with a tunable coupler is shown in

Section 2.10.1. Here we highlight the time-dependent term, Ĥc(t) that describes the coupler

dynamics:

Ĥc(t) = ωc(t)ĉ
†ĉ+

αc
2
ĉ†2ĉ2 (2.2)

where αc is the coupler anharmonicity, ĉ is the annihilation operator and the coupler fre-

quency ωc(t), corresponding to the transition to its first excited state, can be varied in time

via the flux through its superconducting loop. Low-crosstalk 2Q gates are realized by AC

modulating this coupler frequency after DC biasing it to the zero-ZZ crosstalk bias point.

In [52] an early prototype device (shown in Fig. 2.6) for this case study architecture

demonstrated a fast perfect entangler biased to zero-ZZ crosstalk. This device produced
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the nonstandard 2Q gate trajectory shown in Figure 2.2, which included a 13 ns perfect

entangler. Figure 2.5 shows how the measured trajectories were similar over a range of

entangling pulse drive amplitudes that did not exceed ξ = 0.01Φ0, the point at which strong

drive effects would be expected to become non-negligible [96]. So in this early prototype

device, the measured trajectories in Figures 2.2 and 2.5 were not nonstandard because of

strong drive effects, but because of some other systematic in the experiment.

2.8.2 Our simulation approach

The case study entangling gate architecture natively supports strong parametrically activated

interactions between the two qubits. Since the full Hamiltonian for this architecture is

computationally intensive to model [96], for our simulation we use the simplified effective

Hamiltonian from [96] that models the device using fewer parameters while still capturing

all of the essential physics of the device (see 2.10.1). Our general protocol for simulating

Cartan trajectories is as follows:

1. We input the simulated device parameters into our Hamiltonian. These parameters

include the qubit frequencies ωa and ωb, and the qubit coherence times. This generates

the eigenspectrum of the simulated device.

2. We bias the coupler frequency (ω0c ) between the two qubit frequencies (ωa, ωb) such

that the static ZZ term (i.e. for δ(t) = 0) between the two qubits is tuned to zero.

3. We specify the drive amplitude ξ of our entangling pulse. In this case study we im-

plement a iSWAP-like entangler, so the entangling pulse is driven at the frequency ωd

that generates maximal population swapping between the two qubits. For ξ ≤ 0.01Φ0,

the entangling pulse frequency ωd is essentially identical to the difference frequency of

the two qubits |ωa − ωb|. However, increasing ξ > 0.01Φ0 activates the two-photon

process in Equation 2.2, causing population to enter the second excited state of the
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coupler and modify the entangling interaction. This in turn causes ωd to deviate from

|ωa − ωb|. The entangling pulse is modulated by a rectangular envelope, as was done

in experiment to obtain the measured trajectories; due to qubit controllers typically

having a time resolution of 1 ns, short entangling gates ∼10 ns have to be implemented

using a pulse with a fast rise time. Experimentalists typically choose between a flat

top Gaussian pulse with a short rise time, or a rectangular pulse for simplicity.

4. We evolve the time-dependent Hamiltonian and project the evolution propagator on

the computational subspace to obtain the effective unitary operation with respect to

the entangling pulse drive duration. This time ordered sequence of unitary operations

can be represented as a trajectory in the Weyl space using Cartan coordinates. By

examining the trace of the effective unitary propagator we can obtain the leakage

outside the computational space. We confirm that the leakage rates are much below

the expected gate errors due to decoherence.

In this case study we simulate standard and nonstandard 2Q trajectories. The simplest

and most consistent way to do this is to use the same simulated devices but to vary the

drive power ξ. For ξ ≤ 0.01Φ0 we expect the above protocol to result in a standard iSWAP

interaction between the two qubits. But for ξ > 0.01Φ0, we expect strong drive effects to

begin to emerge and cause the Cartan trajectory to deviate away from a standard iSWAP. We

note that the simulated trajectories differ in several ways from the measured trajectories in

Figures 2.2 and 2.5. Firstly, the measured trajectories are nonstandard even for ξ ≤ 0.01Φ0

due to an additional systematic effect in the experiment. Secondly, the simulated trajectories

are consistently slower than the measured trajectories; e.g. at ξ = 0.01Φ0, the simulated

trajectories are slower by a factor of 3.5 than the measured trajectory, which included a

13 ns
√
iSWAP -like entangling gate. These discrepancies can both be explained by the

simulation model Hamiltonian being significantly simpler than the true device Hamiltonian.

Aside from these discrepancies, our simulations are realistic; our trajectories are generated
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Figure 2.7: Device simulation. The high and low frequency qubits are shown in different
colors. Each edge connects two qubits with different colors.

using parameters and techniques that closely resemble those used in experiment and our

method for generating standard and nonstandard trajectories using a single simulated device

is physically intuitive.

Simulating Cartan trajectories over a range of entangling pulse amplitudes ξ we observe

the correct intuitive behavior. The simulated trajectories deviate more and more from the

standard iSWAP as the entangling pulse amplitude increases beyond ξ = 0.01Φ0. Secondly,

the speed of the simulated trajectories scales linearly with ξ. This agrees with the exper-

imental data shown in Figure 2.5 where the measured trajectory doubled in speed when ξ

increased by a factor of two.

2.8.3 Methodology

We simulate a 10 by 10 device with grid connectivity (Fig. 2.7),where the qubit frequencies

of each pair of neighbors are sampled from two normal distributions respectively with means

that differ by 2 GHz. We use a 5% standard deviation for sampling the qubit frequencies.

Improved fabrication techniques have reduced the smaller standard deviation to about 0.5%

[54], but we use a larger standard deviation to show that our method is robust to variations

in device fabrication.
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Between each pair of neighboring qubits on the 10×10 grid, we simulate two types of 2Q

trajectory by varying the entangling pulse amplitude ξ: 1) A baseline trajectory generated

with a low entangling pulse amplitude of ξ = 0.005Φ0 and 2) a nonstandard trajectory due

to strong drive effects resulting from a larger ξ = 0.04Φ0.

Then on each nonstandard trajectory, we select 2Q basis gates using Criterion 1 and 2

(respectively) introduced in Section 2.5.5. We test these 3 sets of 2Q basis gates on common

application circuits as benchmarks. We use the Qiskit[8] transpiler with the “SABRE”[75]

layout and routing methods to map the benchmarks circuits to the 10×10 grid connectivity.

With the nonstandard basis gates, we compile circuits using the methods from Section 2.7.

With the
√
iSWAP from the standard trajectories, we use the analytic approach in [61].

Like the 2Q basis gates selected with Criterion 2,
√
iSWAP decomposes SWAP in 3 layers

and CNOT in 2 layers, but we can also use it to directly decompose other 2Q gates (like the

CRZ gates in the QFT benchmarks) analytically. For the 1Q gates in the gate and circuit

synthesis, we use a duration of 20 ns, which is typical for fixed-frequency transmon qubit

processors [63].

Decoherence is the dominant hardware noise in our noise model, because crosstalk is

suppressed by the high detuning in the qubits. For each qubit, we model the decoherence

error as 1− e−t/T , where T is the coherence time of the qubit. We set T to a typical value

of 80 µs for all qubits. We compute t as tf − ti, where ti is the start of the first gate on the

qubit and tf is the end of the last gate on the qubit. The total coherence-limited fidelity

of a circuit is the product over the e−t/T term from each qubit. The decomposition errors

in gate synthesis are negligible compared to the decoherence errors, and can be reduced to

arbitrarily close to zero in theory. Thus we only show the coherence-limited fidelities in the

results.
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2.8.4 Results

Before discussing our results, as a disclaimer we note that while increasing the entangling

pulse drive amplitude is one way to speed up 2Q gates, it is by no means an all-purpose

solution that we generally advocate for. We chose to do this in our simulation case study only

because it was a simple and intuitive way to compare standard and nonstandard simulated

gates for the same case study entangling architecture. For this case study architecture, the

drive amplitudes chosen were realistic in an experimental setting.

Basis SWAP CNOT

Baseline
83.04 ns 329.1 ns 226.1 ns

99.884% 99.541% 99.684%

Criterion 1
10.15 ns 110.5 ns 110.5 ns

99.986% 99.845% 99.845%

Criterion 2
10.76 ns 112.3 ns 81.51 ns

99.985% 99.843% 99.886%

Table 2.1: Average duration (top) and coherence-limited gate fidelity (bottom) of the 2Q
basis gates and the synthesized SWAP and CNOT gates, from baseline, Criterion 1, and
Criterion 2.

The average durations and coherence limited fidelities (obtained using the Qiskit Ignis

coherence_limit function [1]) of the synthesized SWAP and CNOT gates from the two

approaches are summarized in Table 2.1. In Table 2.2, we show the coherence-limited circuit

fidelities of 5 sets of benchmark circuits, when transpiled to different sets of 2Q basis gates.

We first observe that the faster nonstandard 2Q basis gates have ∼8x lower coherence-

limited infidelities than the baseline standard 2Q gates. We also observe that the synthesized

SWAP (CNOT) gates from Criterion 1 and 2 are 3.0x and 2.9x (2.0x and 2.8x) faster than the

baseline, respectively. Due to the relation between gate fidelity and circuit fidelity, fidelity

improvements scale exponentially in benchmark size.

Next, we observe that Criterion 2 performs better than Criterion 1. This is not surprising

since it has significantly faster CNOT gates and only slightly slower SWAP gates compared
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to Criterion 1.

For the baseline case, the 1Q gate duration is 4x shorter than the standard 2Q basis gate,

and therefore ∼24% of the duration of the compiled SWAP/CNOT gate is spent performing

1Q gates. In contrast, for the nonstandard case, the 1Q gate duration is 2x longer than

the nonstandard 2Q basis gate, and ∼72% of the duration of the compiled SWAP/CNOT

gate is spent performing 1Q gates. This puts us in the regime of today’s fastest large

superconducting processors such as Google’s Sycamore device, where the optimal processor

configuration that minimizes the overall effects of gate error has the 1Q gates being roughly

twice as long as the 2Q gates [9].

Benchmark Baseline Criterion 1 Criterion 2
qft 10 58.2% 65.6% 70.8%
qft 20 1.33% 6.03% 9.94%
bv 9 88.7% 94.4% 95.3%
bv 19 79.3% 89.9% 91.0%
bv 29 44.5% 72.5% 74.3%
bv 39 26.8% 56.3% 59.7%
bv 49 27.7% 58.4% 62.4%
bv 59 12.5% 43.8% 47.4%
bv 69 9.15% 39.4% 43.2%
bv 79 0.428% 11.3% 14.2%
bv 89 2.44% 23.1% 26.3%
bv 99 0.06% 6.26% 7.97%
cuccaro 10 21.5% 46.3% 52.6%
cuccaro 20 0.800% 7.68% 11.8%
qaoa_0.1 10 97.2% 98.5% 98.8%
qaoa_0.1 20 84.4% 92.0% 93.6%
qaoa_0.1 30 14.4% 43.3% 49.0%
qaoa_0.1 40 0.00585% 5.59% 8.56%
qaoa_0.33 10 66.1% 81.0% 84.3%
qaoa_0.33 20 15.0% 42.2% 48.2%

Table 2.2: The decoherence-limited fidelities of benchmark circuits, transpiled using the
standard 2Q basis gates from baseline, and the nonstandard ones selected by Criterion 1 and
2. The QAOA benchmarks all have p = 1 where p is the number of times the protocol is
repeated. The fractions 0.1 and 0.33 are the probablities that an edge is created between a
pair of nodes.
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2.9 Conclusion

The idea of a uniform set of basis gates naturally arose from early notions of universal gate

sets, which experimentalists then implemented on various qubit platforms. By looking at

the theory of possible entanglers, we have found that there are many options for good 2Q

basis gates, and that these gates behave differently on each pair of interacting qubits in a

processor. This led us to a radically new idea, why be constrained to a single canonical gate

(e.g. CX or CZ)? Why not tune up the gate that will have the highest fidelity between every

pair of qubits, allowing each to differ and instead adjust for these variations in software? If

we do not treat all the coherent deviations in gate trajectories as errors, we will have more

freedom in hardware design and achieve a higher gate fidelity.

In this paper, we examined the space of possible entanglers and developed a practical

method for finding a high-fidelity entangler between every pair of qubits. In the case study,

we find heterogeneous basis gates that are ∼8x faster than the baseline, and use them to

synthesize faster SWAP and CNOT gates than synthesized by the baseline
√
iSWAP gate

from the standard XY-type trajectories. We then evaluate these heterogeneous basis gates

on a number of benchmark circuits and find fidelity improvements that scale exponentially

in benchmark size.

Our approach successfully uses software to overcome the limitations of today’s hardware.

Such types of adaptive basis-gate design will be essential to pioneering innovative future

quantum systems.

2.10 Appendices

2.10.1 Hamiltonian of 2 qubits coupled with a tunable coupler

The system Hamiltonian of the two qubits coupled with a tunable coupler can be modelled

as in [96]:
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Ĥ(t) = Ĥa + Ĥb + Ĥc(t) + Ĥg, (2.3)

with

Ĥa = ωaâ
†â+

αa
2
â†2â2,

Ĥb = ωbb̂
†b̂+

αb
2
b̂†2b̂2,

Ĥc(t) = ωc(t)ĉ
†ĉ+

αc
2
ĉ†2ĉ2.

Ĥg = −gabâ†b̂− gbcb̂
†ĉ− gcaĉ

†â

− g∗abâb̂
† − g∗bcb̂ĉ

† − g∗caĉâ
†

(2.4)

where ωa(b) corresponds to the qubit a(b) frequency, gij represents capacitive coupling

strength between elements i and j. The entangling interaction is realized by modulating the

coupler frequency as ωc(t) = ω0c + δ sin(ωdt).

2.10.2 SWAP synthesis in 2 layers

See the circuit in Fig. 2.3(a). Let A = SWAP we get the equation

SWAP = (e⊗ f)C(c⊗ d)B(a⊗ b).

Move e⊗ f and a⊗ b to the other side and move e⊗ f through SWAP,

C(c⊗ d)B = (e⊗ f)†SWAP (a⊗ b)†

= SWAP (f ⊗ e)†(a⊗ b)†

= SWAP (fa⊗ eb)†.

35



Move (fa⊗ eb)† to the LHS, and C to the RHS,

(c⊗ d)B(fa⊗ eb) = C†SWAP.

This equation tells us that, B and C can synthesize SWAP as in Fig. 2.3(a) if and only if the

Cartan coordinates of B are equal to the Cartan coordinates of C†SWAP up to canonicaliza-

tion. Let B ∼ (x, y, z) and C ∼ (x′, y′, z′), then we have (x, y, z) ∼ (−x′,−y′,−z′)+(12 ,
1
2 ,

1
2).

From this we can tell that for every local equivalence class [B] of 2Q gates, there is exactly

one local equivalence class [C] such that [B] and [C] together can synthesize SWAP in 2

layers. And since we know how to canonicalize Cartan coordinates into points within the

Weyl chamber, given [B] we will be able to find the corresponding [C]. Here we do not

elaborate on how we identify the geometric relation between [B] and [C] inside the Weyl

chamber, but the readers can check our claim by applying Theorem 2.5.1.
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CHAPTER 3

CODESIGN OF QUANTUM ERROR-CORRECTING CODES

AND MODULAR CHIPLETS IN THE PRESENCE OF DEFECTS

3.1 Introduction

Fault-tolerant (FT) quantum computers will enable the implementation of large-scale quan-

tum algorithms such as search [107] and factoring [51]. These machines are designed to

protect quantum information by encoding logical qubits in quantum error-correcting codes

that consist of a large number of interacting physical qubits.

Achieving fault tolerance requires a practical way to manufacture physical qubits. One

leading approach is to manufacture a large planar array [41] of qubits in a solid-state system

such as superconducting [70, 116, 7] or spin qubits [43, 53]. In these hardware architectures,

Ref. [92] estimates that over a million high-fidelity qubits will be required for FT quantum

applications. However, scaling a quantum device to this magnitude presents significant

challenges.

The fabrication of large-scale solid-state devices encounters additional complexities due

to fabrication errors. There are many steps in processing where a slight deviation from the

target specification occurs due to process imprecision or stochastically appearing impurities

or imperfection[55, 67]. As a result, variation in the quality of qubits, as well as the links

along which qubits interact, is inevitable. On quantum devices, physical qubits will exhibit

inhomogeneous characteristics, including variations in gate success, measurement fidelity,

and coherence, and will likely contain faulty (defective) qubits — qubits with severely lim-

ited functionality. With today’s technology, [110] estimated that ∼ 2% of the qubits on a

transmon device would be faulty.

To effectively scale up solid-state quantum devices in the presence of fabrication errors, we

combine two approaches: (1) Leveraging the flexibility of a modular architecture, which offers
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greater adaptability compared to a monolithic architecture by enabling the post-selection

of individual chiplets prior to their integration into a larger device. (2) Adapting QEC

codes to defective qubit arrays, which enables the utilization of some defective chiplets. The

combination of these two strategies helps mitigate the additional resource overhead caused by

fabrication errors, but it requires a thorough understanding of the performance of an adapted

surface code, and how the overhead is affected by design choices. Importantly, establishing an

informed post-selection criterion that accounts for how each chiplet is affected by its defects

requires identifying performance indicators specific to the adapted surface code. This also

helps us understand how the logical fidelity of an adapted surface code compares with that

of a standard surface code.

An adapted surface code can be implemented on a defective chiplet by employing “super-

stabilizer measurements,” which are capable of detecting errors in proximity to defective

areas, as outlined in previous studies [114, 113, 10, 115]. We illustrate the construction of

super-stabilizers in Fig. 3.1. Conveniently, these super-stabilizers can be measured in a timely

manner using the operational qubits adjacent to the defective region [114, 113, 10]. It has

been shown, in theory, that this approach can scale on a large lattice [115]. However, there

is a noticeable gap in existing research regarding the comparative performance and resource

overhead of such adapted codes relative to the standard, defect-free surface code. To address

this, we conduct numerical simulations. And to facilitate our numerical simulations, we

develop an automated method to map surface code to defective grids by deforming boundaries

and forming super-stabilizers. Notably, our automated method can define a surface code for

an arbitrary configuration of defects.

Using our numerical results, we identify two key figures of merit that characterize the

fidelity of a surface code on a defective chiplet. The first is the distance on the defective

patch d, the least number of physical errors that can lead to a logical failure. In the regime

of low error rate per gate, p, we find that to leading order, the logical failure rate decays like
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Figure 3.1: Examples of super-stabilizers and boundary deformations. The faulty qubits
are marked with a red ‘x’, and the excluded part in a patch is represented by lighter color.
(a) One broken data qubit in the interior, handled by a super-stabilizer. (b) One broken
syndrome qubit in the interior, handled by larger super-stabilizers. (c)(d) Broken qubits
near the boundary require boundary deformations.

O(pd/2), just as for defect-free chiplets. Remarkably, we identify this scaling when physical

errors occur at a rate p ∼ 10−3, the regime where we expect a defect-free chip to be operable.

This implies that the defective chips are functionally similar to the defect-free ones with the

same d, except that they cost more physical qubits. Aside from this scaling, we identify

variation in surface codes with equivalent code distances. We find a second figure of merit

that differentiates among these codes. Specifically, we find that the logical failure rate will

scale with the number of different ways that a logical failure can occur with d physical errors.

Both of these figures of merit can be efficiently computed after the surface code is adapted

to a defective grid.

These two indicators enable us to rapidly assess the quality of individual defective

chiplets. This is necessary for establishing a post-selection criterion for the modular chiplet

architecture, and also for resource overhead evaluation. Our numerical results demonstrate

that our post-selection criterion is more effective than the natural strategy to select the

chiplets with the fewest defects.

We quantify the resource overhead by the total number of fabricated physical qubits per

logical qubit, including the qubits on the chiplets that are not selected. In Fig.3.12b,3.13b,

and 3.17b, we show the factor of resource overhead relative to the ideal no-defect case. Our
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results show that it is important to select the chiplet size based on the fabrication error

rate, in order to achieve a balance between having a high yield (proportion of chiplets that

meet the standard) and using a small number of physical qubits per patch of code. When

the optimal chiplet size is chosen based on the results, the resource overhead is below 3X

and 6X respectively for the two defect models we study (defective links only v.s. same rate

of defect on links and qubits), when the defect rate is below 1%. This holds for a wide

range of performance targets. Without the ability to tolerate defects, the resource overhead

grows exponentially with the number of physical qubits in a logical qubit (which increases

for higher performance targets) and also grows faster with the defect rate.

We also evaluate the sensitivity of the yield to two design choices: what boundary con-

straint is imposed on each patch, and whether the chiplet design allows the data and syn-

drome qubits to be swapped by rotating a chiplet. Although in this paper we mainly evaluate

each patch by its capacity to store a logical qubit, a boundary constraint can ensure the qual-

ity of multi-qubit logical gates.

Finally, we identify cutoff fidelity values for determining whether a qubit should be treated

as faulty or kept in the code. This is important in the practical setting because the impact of

fabrication errors varies and there’s not always a clear line between faulty and good qubits.

Summary of contributions and results:

• We develop an automated method that adapts the rotated surface code to a grid with

an arbitrary distribution of defects using super-stabilizers. Our automated method

produces a simulation of active error correction that is implemented on Stim [45]. Our

code and a demo notebook is available at https://github.com/SophLin/superstab

ilizer_demo.

• Using our numerical simulations, we identify effective indicators for assessing the fi-

delity of a surface code adapted to defective chiplets.

• We present the first evaluation of the impact of fabrication defects on the resource
40
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overhead of quantum error correction. Our focus is on the modular chiplet architecture

where one logical qubit is allocated on each chiplet. We quantify the resource overhead

as the average number of physical qubits fabricated for a logical qubit, and evaluate its

sensitivity to system parameters. We show that the post-selection of chiplets and the

ability to use defective chips are both critical for reducing the extra overhead caused

by fabrication errors.

• We identify cutoff fidelity values for determining whether a qubit with worse perfor-

mance than its neighbors should be treated as faulty or kept in the code.

3.2 Background

3.2.1 Fabrication errors and variations on transmon-based quantum devices

In this section, we discuss some of the sources of fabrication errors and variation for transmon

qubits. Although our discussion is not exhaustive, it is meant to give some intuition for why

current chips see a 2% defect rate.

Imprecision in the fabrication of Josephson Junctions (JJs) is a source of varied qubit

performance. A JJ, two superconductors separated by a thin metal-oxide insulator, is the

heart of a transmon qubit [44]. JJs have incredibly small feature sizes that are hundreds of

nanometers in scale [55], smaller than the wavelengths used during optical lithography. Thus,

slight imperfections that appear in JJ positioning, component dimension, or surrounding

layers influence operational characteristics of the transmon [67].

On fixed-frequency transmons with fixed couplers, one of the most commonly used super-

conducting qubits, frequency collision is a dominant type of fabrication error. Fabrication

variation can deviate a qubit’s frequency from the ideal frequency, resulting in spectral

overlaps that cause frequency collisions. This variation is stochastic, causing the resulting

frequency profile of each chip to be unique.
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Another type of unintended defect that frequently and stochastically appears across a

quantum chip during processing is a two-level system (TLS) [87]. A TLS is caused by impu-

rities inside materials or irregularities within atomic crystalline lattice structures appearing

unexpectedly in oxide layers or on the surface of the chip. Because of the layered approach as-

sociated with transmon processing, there are many opportunities for TLSs to appear during

fabrication.

3.2.2 Surface code

The surface code [33, 41, 65] is one of the most practical quantum error-correcting codes

for physical realization due to its implementation using a two-dimensional nearest-neighbor

qubit layout, and its high tolerance to noise. It can perform a universal set of logic gates

while maintaining its local planar layout. One can use lattice surgery to perform entangling

operations [59, 22, 76] and magic state distillation [17, 48] to perform non-Clifford gates.

For most of this work, we will concentrate on the performance of the surface code storing a

logical qubit over time.

In this paper, we use the rotated planar surface code due to its low qubit overhead

[16, 40, 13]. We define the surface code with code distance d on a d× d grid of data qubits.

The errors on the data qubits are detected using d2−1 measurement qubits, otherwise known

as ancilla qubits or syndrome qubits. More specifically, a measurement qubit is placed on

either a red or a blue face of the grid of data qubits, as in Fig. 3.2. Note also that the faces

at the lattice boundary each touch two data qubits.

We measure stabilizers to detect errors that qubits experience. Stabilizers are measured

repeatedly in cycles to determine the locations of errors that occur over time. In each

cycle, each measurement qubit is used to measure either a Pauli-X stabilizer, X̂aX̂bX̂cX̂d,

or a Pauli-Z stabilizer ẐaẐbẐcẐd, depending on the color of the lattice face on which the

measurement qubit lies. The measurement qubits on the boundary only acts on two data
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Figure 3.2: Rotated surface code with d=3. The black dots represent the data qubits, and
each red (blue) face represents an X (Z) stabilizer. Each stabilizer requires an ancilla qubit.

qubits, and therefore measure stabilizers of the type X̂aX̂b or ẐaẐb. Stabilizers are measured

with circuits that are detailed in, e.g., Ref. [121].

In practice, to deal with the errors that occur on data qubits, as well as errors that occur

on measurement qubits that may cause stabilizer circuits to give unreliable outcomes, we

compare a stabilizer reading at cycle t to the reading of the same stabilizer made at cycle

t− 1. A difference in reading gives rise to an error detection event.

By performing multiple cycles, we obtain a history of detection events over time that

we call the error syndrome. In general, we can regard errors as string-like objects in this

error syndrome, where detection events occur at the end-points of these strings. See e.g.

Refs. [21, 33, 41, 126] for details. Using the error syndrome, we can obtain a correction

to recover encoded information using minimum-weight perfect-matching algorithm [21, 33,

41, 56, 126], where we deal with detection events due to Pauli-X stabilizers and Pauli-Z

stabilizers separately. We concentrate on only Pauli-Z stabilizers throughout this work, but

note that an equivalent analysis will hold for the alternative stabilizers.

A logical error is introduced into the surface code when at least d/2 errors occur along a

non-trivial path over the surface code error syndrome history [13, 33, 41, 126]. If we assume

that an individual error occurs with probability O(p), then in the limit that p is small, we

can fit the logical error rate to the ansatz

LER = β(Np)αd, (3.1)

where N and α ≤ 1/2 are constants to be determined [13, 18, 33, 41, 126, 127].
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Figure 3.3: Algorithm for mapping rotated surface code to a defective grid by deforming
boundaries and forming super-stabilizers.

3.3 Deforming boundary and forming super-stabilizers

Faulty qubits and links can be particularly harmful to the implementation of topological

QEC codes if they are not handled correctly. This is because qubit errors in the vicinity of

fabrication defects may not be detected. Given a finite density of fabrication defects, this

will inhibit the decay of logical failure rate as we increase code distance, if we do not deal

with these defects correctly.

Building upon the theory in Ref. [115], we develop and implement an automated method

that adjusts a surface code for arbitrary defect distributions. Our algorithm includes de-

forming boundaries of a code and forming super-stabilizers in the interior. A flowchart is

shown in Fig. 3.3. Our code takes the chiplet size l and a list of defects as input, then

adapts a surface code to the defective grid and generates a stabilizer measurement circuit

compatible with the Stim[45] simulator.

We learn the occurrence of errors close to fabrication defects by forming super-stabilizers
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around them. The values of these super-stabilizers can be inferred from local measurements

around the defects [114, 113, 10]. Furthermore, we repeat the local measurements used to

obtain the super-stabilizer for an elongated time, over a timescale that is commensurate with

the size of the super-stabilizer that are defective [115]. A measurement schedule with this

feature is adopted in Ref. [115] to demonstrate the procedure helps achieve a threshold —

when the physical errors on the non-faulty qubits is lower than the threshold, one can expect

the quality of the logical qubit to improve as it is encoded with more physical qubits.

As an example, we show how we can construct a weight-6 X and Z super-stabilizer

around a single faulty qubit in the interior of the code in Fig. 3.1a). The value of the X (Z)

super-stabilizer can be computed from the direct product of the two weight-3 broken X (Z)

stabilizers used as gauge operators. The X and Z gauges anti-commute, so they cannot be

measured in the same cycle. Instead, they are measured in alternate cycles.

Another important example is the case where a measurement qubit in the interior of the

qubit grid is faulty (Fig. 3.1b). All of its neighboring data qubits are disabled and larger

super-stabilizers (each consisting of 4 gauge operators) are formed. Around a larger defect

cluster like this, instead of measuring the X and Z gauges in alternate cycles (XZ...), we

repeat one type of measurement several times before switching to the other (e.g. XXZZ...)

following [108, 115]. The number of repetitions should scale with the size of the cluster [108,

115]; here we set the number of repetitions equal to the diameter of the defect cluster.

Note that when forming super-stabilizers in the interior, we not only need to disable the

data qubits connected to defective syndrome qubits, but also need to disable syndrome qubits

due to defective data qubits in some cases. It is obvious that a syndrome qubit connected

to no more than one active data qubit needs to be disabled. When a syndrome qubit is

connected to two active data qubits but the three qubits are on the same diagonal line, it

also needs to be disabled.

If a faulty qubit is too close to the boundary to be surrounded by gauge operators, it
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cannot be handled by super-stabilizers. In this case the boundary of the patch needs to be de-

formed to exclude the faulty qubit. Although [10] addressed the boundary deformation for a

surface code with a different lattice geometry, the rotated surface code has more complicated

boundaries and we develop a new algorithm for handling the defects near boundary.

To illustrate a boundary deformation, four examples are shown in Fig. 3.1 (c) and (d).

On the right side of (d) is a faulty syndrome qubit near a boundary of different color. Two

data qubits are disabled along with it, because they are no longer included in any Z stabilizer.

Then the X syndrome qubit on its right is also disabled, because it no longer has any data

qubits to measure. If any of these three qubits were the faulty one, the same boundary

deformation would apply. If a faulty syndrome qubit is near a boundary of the same color,

as is the case on the left of (c), more qubits need to be excluded from the patch to ensure

that all stabilizers on the boundary are of the same color. In particular, the neighboring

syndrome qubits of different type than the boundary need to be excluded from the patch.

If a data or syndrome qubit at a corner is faulty, then only one other qubit needs to be

excluded (lower right of (d)). If any faulty qubit is too close to the new boundary, it must be

excluded too. To the lower left of (c), such an example is shown. The faulty data qubit on

the original boundary leads to an excluded region that is similar to the one on the right edge

of (d). Then since a data qubit on the new boundary is faulty, the lower boundary is further

deformed. Note that the second faulty qubit in this region was part of three stabilizers that

remained active after the first deformation, but only the one of different color than the lower

boundary is excluded in the second deformation.

The code distance d is the length of the shortest undetectable error chain on a patch of

QEC code, and is equivalent to the length of the shortest X or Z logical operator. As we will

show in Sec. 3.4, it not only characterizes the defect-free codes, but also serves as a primary

indicator for the fidelity of defective patches. On a l× l patch, we have d = l only if there is

no defect; a defective patch has d < l. In Fig. 3.1 (a), l = 5 and d = 4 along both directions.

46



In (b), we have l = 7 and d = 5. In (c) and (d), l = 9. The code distance is 7 in (c). In (d),

the distance is different along each direction: d = 9 vertically and d = 8 horizontally.

3.4 Building a device with defective qubits

In this section, we move on to the setting where the goal is to build a large FT device with an

array of rotated surface code patches. We first propose a modular architecture and discuss

design choices, then identify a post-selection criterion for evaluating the quality of defective

chiplets.

For the simulation, we use two models of fabrication errors: one with links set to be

faulty at random, and one with links and qubits both set to be faulty at the same probability.

The first one models fixed-frequency transmon qubits with fixed couplers, where frequency

collision is the dominant type of fabrication error. The latter models tunable transmon

qubits, where links are as intricate as qubits. When using the super-stabilizers, a faulty

link can be handled by disabling either of the two qubits that it connects. Faulty syndrome

qubits lead to greater damage as explained in the last section, so we choose to disable the

data qubit connected to a faulty link unless the syndrome qubit on the other end is already

disabled.

We use a circuit-level noise model for the physical errors on the non-defective qubits,

where the two-qubit gate error is p, the one-qubit gate error is 0.8p, and the readout error

is 8
15p. We use standard measurement circuits for the syndromes [121].

3.4.1 A modular architecture for rotated surface code

The modular architecture we simulate in this project is an array of chiplets similar to the

ones in [110]. We allocate one patch of surface code on each chiplet, as in Fig. 3.4. The

qubits on adjacent chiplets can communicate via the inter-chip links (shown in dashed lines),

but these links are currently ∼ 3X worse than on-chip links[110]. Since no patch is defined
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Figure 3.4: Schematic of a chiplet architecture.

across multiple chiplets, the inter-chip links are not used when a patch is idle. We assume

the physical qubits on each chiplet has the grid connectivity, which is the one that naturally

supports the surface code.

In Fig. 3.4, we show a design that allows one to swap the assignment of the data and

syndrome qubits on a chiplet by rotating the chiplet by 180°. When a chiplet contains more

faulty syndrome qubits than faulty data qubits, this will likely improve the quality of the

code, because faulty syndrome qubits generally cause more significant drop in fidelity. In

Sec. 3.5.1, we will evaluate how much advantage this degree of freedom translates to.

3.4.2 Post-selection criterion: assessing the quality of defective chiplets

When building a modular device, one has the opportunity to select the chips with better

quality, and arrange them in a way that maximizes the fidelity. In [110], only the defect-

free chiplets are kept, and then they are combined in a way that avoids frequency collisions

along inter-chip links. When the goal is to support the surface code, we need different post-

selection criteria. The chiplets that support higher-quality surface code patches should be

kept, and they should be arranged to ensure that they can communicate at full code distance
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via lattice surgery.

For the purpose of selecting and arranging chiplets, we need to find good indicators for

the ability of a defective chip to support a good surface code encoding and lattice surgery.

This is because in a realistic setting, it might be impractical to experimentally measure the

fidelity of surface code patches encoded on each chiplet before deciding which ones to use.

Experimentally testing the fidelity of lattice surgery operations between patches on different

chips is even less practical, since it requires repeatedly connecting and disconnecting chiplets

to iterate through different combinations. When the target logical error rate (LER) is tiny,

the cost of running simulations (e.g. a memory experiment) to estimate fidelity is also

formidable. This is because when the LER is small, it takes too many shots to observe

enough instances of logical errors.

To investigate the relevance of different figures of merit for many sample chiplets, we

need a way of evaluating the quality of individual chiplets. We adopt Eqn. (3.1) to devise

one such quantity. Specifically, we look to find the exponent αd of this expression. To obtain

this number, for each sample chiplet, we evaluate the logical failure rate as a function of p

for values of 5×10−4 ≤ p ≤ 2×10−3 where logical failure rates are determined using Monte

Carlo methods. This is a typical regime where the defect-free surface code is studied [41].

The value αd is the gradient of the logical failure rate shown as a function of p plotted with

logarithmic axes. As such we will refer to this value as ‘the slope’. We show logical failure

rates plotted as a function of p in Fig. 3.6. The straight lines given in the plot indicate that

we are sampling in a low p regime where Eqn. (3.1) is valid.

We explored various possible indicators including d of the defective patches, the total

number of qubits that get disabled (a quantity that is generally higher than the number

of faulty qubits), the size of the largest cluster of disabled qubits. The code distance of a

defective surface code patch is the best indicator we find (Fig. 3.5). Although [10] suggests

that defective patches are outperformed by defect-free patches with the d, their data (Fig.

49



6 7 8 9 10
Code distance

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Sl
op

e 
of

 lo
g 

lo
g 

pl
ot

mean
defect-free

Figure 3.5: Slopes of the log-log LER v.s. p plots, from randomly sampled defective rotated
surface code patches with l = 11. For each value of d, 50 defective patches are sampled, with
the same probability for link failure and qubit failure.
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Figure 3.6: Logical error rate v.s. physical error rate at low physical error rates (5× 10−4 to
2× 10−3), for defect-free patches of rotated surface code, and examples of defective patches
with l = 11. The shaded regions represent the 95% confidence intervals for each value.

14 in [10]) only supports this claim for physical error rates ≥ 3×10−3. Instead, we find that

the defective patches generally have higher slopes than the defect-free patches with the same

d (Fig. 3.5). This means although the defective patches perform worse than the defect-free

counterparts at higher p, they generally perform better at lower p.

To explain the variation among patches with the same d, we identified a secondary

indicator, the number of unique weight d logical operators. In other words, it is the number

of different ways that a logical failure can occur with d physical errors. It can be evaluated

efficiently with a modified version of breadth-first search on a graph where the nodes are

the physical qubits on a surface code. As shown in Fig. 3.7, this helps to identify the

outliers that significantly overperforms or under-performs compared to the defective patches

with the same d. This indicator also helps us to understand why defective patches generally
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Figure 3.7: Slopes of LER v.s. p, from the same defective patches used in Fig. 3.5, grouped
by d and plotted against the log of the number of shortest logical X.
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Figure 3.8: Slopes of LER v.s. p, from the same defective patches used in Fig. 3.5, grouped
by d and plotted against the proportion of disabled physical qubits on a patch.

outperform defect-free counterparts with the same d: a defect-free patch has more symmetry

in its shape so it has a large number of unique minimum-weight logical operators.

In Fig. 3.8 and 3.9, we evaluate two other indicators that we tested. The size of the

largest defect cluster does not help predict the slope. The proportion of disabled data qubits

is inversely correlated with the slope, but does not provide extra information that one cannot

tell from the d.

Now, we compare our post-selection criterion against a baseline indicator, the number

of faulty qubits on a chiplet. Although there is a visible negative correlation between this

quantity and the slope in Fig. 3.10, it is not as effective as the indicators we choose in

Fig. 3.11.

51



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Diameter of largest defect cluster

3.5

4.0

4.5

5.0

5.5

6.0

Sl
op

e

d=6
d=7
d=8
d=9
d=10

Figure 3.9: Slopes of LER v.s. p, from the same defective patches used in Fig. 3.5, grouped
by d and plotted against the diameter of largest cluster of disabled qubits.
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Figure 3.10: Slopes of LER v.s. p, from the same defective patches used in Fig. 3.5, plotted
against the number of faulty qubits on a patch.
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Figure 3.11: Mean and worst slopes of selected patches, when the proportion selected is
varied. The baseline only uses the number of faulty qubits (Fig. 3.10); the "chosen indicators”
use d as primary indicator and the number of shortest logical operators to break ties.
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3.5 Impact on resource overhead

In this section, we show how design choices affect the resource overhead of building a large

quantum computer to support a surface code.

3.5.1 Resource overhead and sensitivity analysis

In this section, we show how fabrication errors increase the resource overhead of the surface

code, and show that a modular architecture design and super-stabilizers successfully mitigate

the cost.

When the goal is to match the fidelity of the d = 9 defect-free patch, we have the choice

of using chiplets of width 9, 11, or larger. What chiplet size is more resource-efficient? If

we make larger chiplets, each patch has a higher l. Then under the same fabrication error

rate, we expect more chiplets to meet the standard. With smaller chiplets, we have a lower

yield, and for the baseline where l = 9, we cannot tolerate any defects. But each larger

chiplet is made with more resources, which we quantify as the number of physical qubits.

In Fig. 3.12(a), we show the yields, and in (b), we show the average number of fabricated

physical qubits for a logical qubit, which is obtained by dividing the number of qubits on

each patch by the yield. The simulation is run with the model that only has faulty links,

and each data point is collected from a 10000-shot simulation. From Fig. 3.12(b) we can tell

that below a fabrication error rate of ∼ 0.1%, we should choose the baseline. From ∼ 0.1%

to ∼ 0.6% and from ∼ 0.6% to ∼ 1.1%, we should choose l =11 and 13 respectively. When

the fabrication error rate is above ∼ 1.1%, we should choose l = 15 or higher. The overhead

factor of the baseline approach rises out of the figure at higher defect rates. It is 18X and

336X respectively at 1% and 2% defect rates.

When we use the model where links and qubits have the same defect rate (Fig. 3.13),

instead of the link-defect-only model, the yields are lower than in Fig. 3.12 and the advantage

of using larger l start from a lower defect rate. At a 1% defect rate, the overhead factor of
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Figure 3.12: Defective links only. (a) Proportion of chiplets that support a rotated surface
code patch that performs as well as a defect-free patch of distance 9, evaluated with the two
metrics in 3.7. (b) As for (a) but showing the average number of fabricated physical qubits
per logical qubit scaled by the number in the no-defect case.

the baseline approach (l = 9) is 91X.

For most of the paper, we focus on the fidelity of an individual patch. Here, we briefly

discuss how certain deformations on the boundary would result in a drop in code distance

during lattice surgery, and evaluate the cost of avoiding such chiplets.

Lattice surgery involves merges and splits between patches of the planar surface code. In

Fig. 3.14 we show an example case where a deformed boundary only leads to a small decrease

in the distance of the individual patch, but causes a larger decrease of code distance after a

merge. In this example, the two merging edges are deformed at the same place. When the

deformations are not aligned, there can be a greater drop in code distance after the merge.

A low-distance merge has lower fidelity, so when this type of patch is used, the compiler

should try to schedule lattice surgery operations on its other edges. Then, the programs

would be compiled to more layers. Alternatively, one can avoid using patches with such an

edge, which may result in a lower yield.

Note that we did not run simulation to compute the fidelity of lattice surgery operations

between defective patches. Therefore, it is only our speculation that the code distance of

the merged patch is sufficient to predict the fidelity of the logical operations.
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Figure 3.13: Links and qubits are assigned faulty at the same rate. (a) Proportion of chiplets
that support a rotated surface code patch that performs as well as a defect-free patch of
distance 9, evaluated with the two metrics in 3.7. (b) The same as for (a) but showing the
average number of fabricated physical qubits per logical qubit scaled by the number in the
no-defect case.
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Figure 3.14: An example where the code distance drops after a merge.
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Figure 3.15: The change in yield after imposing different standards on boundaries of patches.
Standard 1: No deformation on any boundary; standard 2: at least 2 boundaries of different
types have no deformation; standard 3: all 4 boundaries support lattice surgery without
decreasing distance; standard 4: at least 2 boundaries of different types support lattice
surgery without decreasing distance.

In Fig. 3.15, we show how the yield changes after a boundary constraint is imposed.

We have two types of boundary constraints for an edge of a surface code patch: (a) where

we are free of deformations (in this case we do not need to form any new super-stabilizer

during lattice surgery), and (b) where the total width of deformations along the edge is not

enough to decrease the code distance after a merge. Then, we have the choice of imposing

the constraint on (c) all four edges of a patch, or (d) on only two edges (at least one X-edge

and at least one Z-edge, for the convenience of scheduling lattice surgery operations). From

these, we get four different boundary constraints. The yield drops significantly only when we

impose the strictest constraint (standard 1, or a and c). The drop is negligible for standard 4,

when we impose (b) and (d). When we impose standard 2 or 3, the drop is visible but small.

Given the results, we should apply standard 3 if we are willing to form new super-stabilizers

along the merging/splitting edges; if not, we should apply standard 2.

The way we propose to allocate a surface code patch on a chiplet (in Sec 3.4.1) allows

the freedom to swap the assignment of data/syndrome qubits by a 180°rotation. We observe

a small improvement in yield when we have such a freedom (Fig. 3.16). The improvement is

smaller in the regime with a higher number of faulty qubits - when l is large or the fabrication

error rate is high. This is because when there are defects on both links and qubits, a patch
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Figure 3.16: Improvement in yield when there is freedom to rotate the chiplets. Links and
qubits are assigned faulty at the same rate.

tends to have more faulty data qubits than syndrome qubits since we handle each defective

link by disabling the end with data qubit. Also, this holds with a higher certainty when

there are more defects. Some techniques to reduce leakage errors involve swapping data and

ancilla qubits [83], which might not work well with this design. Handling leakage errors is

outside the scope of this paper, however.

In Fig. 3.17, we show the cost of making higher-quality logical qubits. For this set of

simulations, instead of matching the fidelity of the d = 9 defect-free rotated surface code,

the goal is to match the d = 17 defect-free code. The trends we observe are qualitatively

the same. Note that at 1% defect rate, the factor of resource overhead from the l = 17

defect-intolerant baseline is over 56000X. In fact, when the defect rate is fixed, the resource

overhead increases exponentially with the number of physical qubits in a logical qubit.

On Fig. 3.12b,3.13b, and 3.17b, if we take the minimum of all curves at each fabrication

error rate, we obtain the minimum extra resource overhead (due to defects) that can be

achieved by the chiplet architecture considered in this work. In Fig. 3.18, we show how

this factor is affected by the fabrication error rate and the target code fidelity. When the

fabrication error model consists of defective links only, the curves for different target fidelity

coincide. It is ∼ 2X at a 0.5% defect rate, and below 3X at 1% defect rate. When we model

both defective qubits and links, the curves coincide at low defect rate and diverge a small

amount at higher defect rate. The factor of overhead is ∼ 3X at a 0.5% defect rate and 5X
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Figure 3.17: Yields for larger chiplets. Defective links only. (a) Proportion of chiplets that
support a rotated surface code patch that performs as well as a defect-free patch of distance
17, evaluated with the two metrics in 3.7. (b) The same as for (a) but showing the average
number of fabricated physical qubits per logical qubit scaled by the number in the no-defect
case.

to 6X at 1% for the range of fidelity targets we set.

Fig. 3.18 shows that, even with a method to implement QEC in the presence of fabrication

errors, it is still important to reduce the defect rate by adopting improved designs for qubits

or fabrication. Limiting the factor of overhead to below 2X requires a defect rate below

∼ 0.5% for the link-defect only model, and below ∼ 0.2% for the model with both defective

links and qubits.

3.5.2 Limit of the monolithic architecture

The results in Sec. 3.5.1 demonstrate that the ability to implement the surface code on

defective grids is necessary for containing its resource overhead, by comparing against a

baseline design that uses modular chiplets but only accepts defect-free surface code patches.

What if we choose a monolithic architecture but accept defective patches?

On a monolithic device holding an array of surface code patches, not all the good patches

can be used - they must also be connected at the very least. In Fig. 3.19, we show the

results from simulating a monolithic device holding a square array of logical qubits. Each

patch of logical qubit is randomly assigned to be good/bad, and then we search for the
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Figure 3.18: The extra resource overhead due to defects, for different target logical error
rates. The y-axis is the average number of fabricated qubits for a logical qubit, scaled by
the number in the ideal no-defect case. The target logical error rate is the fidelity of the
defect-free rotated surface code of code distance d.

largest connected component (LCC) of the good patches. The x-axis of the figure is the

total number of patches on the device, while the y-axis shows the expected size of the LCC

of good patches and the expected number of good patches. The results show that not all

the good patches on a monolithic device are connected unless the yield is as high as 90%.

We conclude that the monolithic architecture imposes a higher requirement on the yield.

A very high proportion of the patches must be good, otherwise the good patches are dis-

connected by the bad ones. For example, in the setting of Fig. 3.13, the yields from the

most resource efficient approaches are 63.7%, 69.9%, 79.0%, 81.9%, and 74.2% respectively

at defect rates 0.1%, 0.3%, 0.5%, 0.7% and 1%. In all 5 cases, some of the good patches will

be disconnected. When the yield is 63.7%, on a device with 10 by 10 patches the expected

size of the LCC is 48.3, which means 24% of the good patches (63.7) are not in the LCC.

Note that evaluating the size of LCC of good patches on a monolithic device does not fully

reflect the disadvantage of the monolithic architecture. Most importantly, the good patches

in the same connected component on a monolithic device are connected more sparsely than

those on a modular device solely made with good patches. Furthermore, the modular design

provides the flexibility to reduce the poor match of edges that may result in low-quality
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Figure 3.19: Limit of a monolithic architecture. The figure shows the expected size of largest
connected component of the good patches on a square array of surface code patches allocated
on a monolithic device, where each patch is randomly assigned to be good/bad. The label
of each line is the proportion of the good patches.

lattice surgery. This optimization is not available on a monolithic architecture.

The analysis above focused on the connectivity problem that arises when we only use the

patches that meet the requirement on a monolithic device. If all patches are used, the ones

that do not meet the performance requirement will lower the application fidelity, as shown

in Section 3.5.3.

3.5.3 Resource overhead and fidelity estimation for an example application

In Section 3.5.1, the quantity we use for evaluating each approach is the factor of extra

resource overhead relative to the ideal defect-free case. In this section, we estimate the

resource cost and application fidelity of an example application in the presence of defects.

The application we choose is Shor’s algorithm applied to 2048-bit integers, whose imple-

mentation with surface code (in the no-defect setup) is optimized and analyzed in [47]. It

requires a 226 · 63 grid of distance-27 surface code patches, and about 25 billion surface code

cycles, according to [47].

In Table 3.1 and 3.2, we show cost estimates for building a modular device that supports

the application, at a defect rate of 0.1% and 0.3% respectively (on both qubits and links).

To compute the cost of the super-stabilizer approach, we use the steps in Section 3.5.1, and

find the optimal choice of l that minimizes the factor of resource overhead for a target code
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distance of 27. The no-defect baseline is for the ideal case where no defects arise, and the

defect-intolerant baseline is for the design choice to only use defect-free chiplets. The results

show that the defect-intolerant approach makes the already tremendous resource requirement

for the algorithm orders of magnitude higher, while the super-stabilizers help lower the factor

of resource overhead to a small number (45X better for the 0.1% defect rate and more than

105X better when the defect rate is 0.3%). This example also demonstrates the importance

of reducing the defect rate. When the defect rate is increased from 0.1% to 0.3%, the cost

increases by 40% even when the super-stabilizers are applied.

No-defect Defect-
intolerant

Super-
stabilizer

l 27 27 33
Yield 100% 1.4% 94.5%

Overhead 1 71.32 1.58
Qubits 2.1× 107 1.5× 109 3.3× 107

Table 3.1: Resource estimation for building a device that supports a 226 ·63 grid of distance-
27 surface code patches, for a defect rate of 0.001 on both qubits and links. No-defect is the
ideal setting without fabrication defects, not an approach to handle defects. Both the defect-
intolerant and the super-stabilizer approaches here post-select chiplets to make a modular
device. Overhead is the factor of resource overhead, determined by the yield and the size of
each chiplet; Qubits is the total number of physical qubits fabricated for the application.

No-defect Defect-
intolerant

Super-
stabilizer

l 27 27 39
Yield 100% 2.7× 10−6 94.6%

Overhead 1 3.67× 105 2.21
Qubits 2.1× 107 7.6× 1012 4.6× 107

Table 3.2: Same as Table 3.1 but for a defect rate of 0.003.

The fidelity of a large-scale fault-tolerant application can be roughly estimated with the

topological error rate, as in Section 2.13 of [47]. We follow their method to estimate the

fidelity of the application, assuming the physical gate error on the device is 10−3. In the

calculation, we account for the code distance distributions for the adapted surface code
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(b) l = 39, defect rate at 0.3% for both links
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Figure 3.20: Distribution of code distance. In orange: proportions of patches with d ≥ 27;
in blue: proportions of patches with d < 27.

patches (see Fig. 3.20). The distributions are each obtained from a sample size of 10000.

Recall that based on the results in Section 3.4.2, code distance is the most important indicator

for the performance of an adapted surface code patch. Furthermore, the logical error rate of

the adapted surface code is generally lower than that of the defect-free patch with the same

code distance. Therefore, using code distance to estimate the performance of each patch

does not underestimate the failure rate for the super-stabilizer approach.

Estimates for the application fidelity are shown in Table 3.3 and 3.4. Note that the device

from the ideal no-defect case (all patches are exactly distance 27) would have a fidelity of

∼ 73%. In the case where we use a modular device with super-stabilizers, all the patches are

at least distance 27 and most of them have larger code distances. Therefore, the estimated

application fidelity is higher, albeit at a higher resource cost than the ideal no-defect case.

We compare our approach against two baselines while holding the resource overhead

constant. The first baseline’s goal is to build a modular, defect-free device from defective

qubits. For this baseline, we need to lower the resource overhead to be the same as the

super-stabilizer approach. We do this by reducing the size of the chiplets. The factor of

resource overhead for building this modular defect-free device from defective qubits (relative

to the distance-27, ideal no-defect case) is 1.12 for d = 15 and 2.09 for d = 17, at a defect
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baseline1 baseline2 Modular &
super-stabilizer

l 15 ∼ 17 33 ∼ 35 33
Overhead 1.58 1.58 1.58
Estimated

fidelity 0 79.9% 88.5%

Table 3.3: Application fidelity estimated with the topological error. Baseline1: modular,
defect-intolerant. Baseline2: monolithic, uses super-stabilizers to handle defects.

baseline1 baseline2 Modular &
super-stabilizer

l 11 ∼ 13 39 ∼ 41 39
Overhead 2.21 2.21 2.21
Estimated

fidelity 0 76.1% 91.7%

Table 3.4: Same as Table 3.3 but for a defect rate of 0.003.

rate of 0.1%. To match the resource overhead of our approach (1.58), one would use a mix

of d = 15 and d = 17 defect-free patches. However, these code distances are insufficient for

the application; they both result in an estimated fidelity of effectively 0. Furthermore, when

the defect rate is 0.3%, the defect-intolerant baseline can only afford patches of distance 11

and 13, which is even farther below the requirement.

The second baseline is the monolithic device with the super-stabilizers applied. There

is no post-selection of chiplets for the monolithic device, so its resource overhead is lower

if the same l is used. In order to match the resource overhead factor of our approach, we

increase l for a proportion of the patches. For the case with a 0.1% defect rate, we keep 53%

of the patches at l = 33 and use l = 35 for the rest. For the defect rate= 0.3% case, we keep

47% of the patches at l = 39 and expand the rest to l = 41. Our calculation shows that

even with the increased code distance, the expected failure rate of this baseline is ∼ 1.8X

and ∼ 2.9X higher than the modular, super-stabilizer approach for the two cases. This is

because the logical qubit patches with d < 27 contribute to the error rate on the monolithic

device, negatively impacting fidelity, but they are discarded in the modular case.

63



3.6 What counts as a fabrication error

So far we have been using a simple model for defects, where each qubit or link is labeled

directly as “faulty” or “non-faulty”. In real life, there are scenarios where it is not clear

whether a qubit should be viewed as faulty. For example, on a device with a average 2-qubit

gate fidelity of 99.9%, should we disable a qubit that only supports 2-qubit gates with 97%

fidelity? If the cutoff is set too high, we lose too many physical qubits and suffer a decrease

in code performance; if the cutoff is too low, the inferior qubits will also damage the code.

To identify cutoff fidelity values for labelling a qubit faulty, we need to compare the

logical performance when we keep the faulty qubits against the results from disabling them.

We use the stability experiment [46] instead of the more standard memory experiment

that we used in the previous sections. While the memory experiment quantifies how well

a logical observable is maintained by the code, the stability experiment evaluates how well

a logical observable can be moved (a capacity that is needed for logical operations). As

explained in [46], measurement errors can’t cause logical errors in memory experiments

except by creating confusion that hides the key data errors. Since errors caused by a faulty

qubit look like repeated measurement errors, the memory experiment is unable to show the

damage of faulty qubits.

In Fig. 3.21, we show the results from a stability experiment where the data qubit in

the center of a d = 5 surface code has higher error rate than the rest. We set the value of p,

the two-qubit error rate of the worse qubit, to values from 5% to 15% (the other errors on it

scale accordingly). Then, we compare the results against the one from disabling the worse

qubit and using super-stabilizers around it. The figure shows that when p of the bad qubit

is above ∼ 10%, we should disable it regardless of the quality of the other qubits. When p

is below 5%, it is preferable to keep it unless the error rate on the other qubits is below the

range in the plot. Finally, when p = 8%, we should disable the qubit if the error rate on the

other qubits is below ∼ 0.45%.
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Figure 3.21: Stability experiment results from keeping/disabling a bad data qubit on a d = 5
surface code. The x-axis is the physical error rate of the good qubits.

3.7 Related work

To the best of our knowledge, [110] is the only prior paper that also advocates for a modular

quantum chiplet design to mitigate fabrication defects. They analyze how to reduce the

resource overhead in the pursuit of making a defect-free device. In contrast to [110], which

does not specialize in any particular application, our research specifically targets quantum

error correction. This focus allows us to utilize some defective chiplets, significantly reducing

the resource overhead compared to [110].

Our method for adapting the surface code to defective qubit arrays builds upon earlier

work on super-stabilizers [10, 115, 108]. However, prior studies did not establish a post-

selection criterion applicable to modular chiplets, nor did they perform an analysis of the

associated resource overhead. [10] proposed to correct errors that occur near to defects using

super-stabilizers. The idea was built from [114, 113] where super-stabilizers are constructed

to correct for an idealized noise model that introduces loss errors. As the authors of [10]

point out, it is not clear if their measurement schedule to read out super-stabilizers will

give rise to a threshold. [10] also introduced a protocol for adapting the surface code to

arbitrary defect distributions, but the boundary deformation in the protocol only applies

to the unrotated surface code, which uses ∼ 2X more physical qubits per logical qubit for

a commensurate code distance with the rotated code used in this paper. Our simulator
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includes a new algorithm for deforming boundaries due to the more complicated boundary

of rotated surface code. Another difference is that we implement the shells proposed in [115]

to mitigate clustered defects.

Some other methods have also been proposed to handle faulty qubits. Nagayama et

al. [89] also formed large stabilizers around the defects. They use SWAP gates to collect

all the syndrome information onto one qubit, while we adopt the approach that takes the

product of gauge operators. Wu et al. [129] developed an algorithm to adapt surface code

to devices with sparse connectivity such as the current IBM devices. According to our

correspondence with them, their method is more suitable for highly symmetric lattices and

is less suitable for handling arbitrary defect distributions.

We focus on static defects in this paper, but transient events such as cosmic rays could

result in temporary defects. There are some strategies [118] that are specifically designed

for transient defects on QEC code. [108] recently considered producing shells around large

clusters of transiently defective qubits introduced by cosmic rays. This work identified the

importance of varying the schedule of super-stabilizer measurements for clustered defects.

3.8 Conclusion

Building a large device with modular chiplets provides the flexibility to throw away unwanted

chiplets and arrange the rest. Such flexibility is crucial for scaling up quantum devices

to support QEC in the presence of fabrication defects. In this work, we implement an

automated method to adapt a rotated surface code to a defective grid and generate syndrome

measurement circuits. Then, we run numerical simulations to identify effective indicators

for assessing the performance of defective chiplets relative to defect-free chiplets. With these

indicators, we evaluate the resource overhead of implementing an array of logical qubits with

different target fidelity and under different defect rates. We also analyze how the overhead

is affected by factors like the chiplet size. We found that with modularity and the super-
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stabilizers, the increase of resource overhead due to defects can be limited to a small factor,

which is orders of magnitude better than the defect-intolerant baseline.

We have focused on the design that allocates one patch of a surface code on each chiplet.

Dividing each patch onto multiple chiplets would increase the flexibility in post-selection.

However, since inter-chip links are currently ∼ 3X worse than on-chip links[110], this decision

might increase the logical error rates. Whether further division of chiplets can reduce the

overhead could be an interesting subject for future work.
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CHAPTER 4

SPATIALLY PARALLEL DECODING FOR FAULT-TOLERANT

QUANTUM LOGICAL OPERATIONS

4.1 Introduction

Given the error rates experienced by quantum computers, quantum error correction (QEC) is

necessary for running large-scale quantum applications. QEC protects quantum information

by encoding each logical qubit in multiple physical data qubits, and using another set of

physical syndrome qubits to detect errors on the data qubits. In each measurement cycle,

syndrome qubits extract parity information from the data qubits on which they act. This

parity information is then sent to a classical decoder that decodes the syndromes and reports

a correction.

Here we focus on the surface code [34, 41, 65], a popular QEC that tolerates relatively

high physical noise, supports relatively easy logical operations, and only requires nearest-

neighbor grid connectivity. In recent years, academic and industry labs have experimentally

demonstrated small instances of a surface code logical memory [5, 69, 139]. While an offline

decoder — applied after the experiment has completed — is sufficient for such demonstra-

tions, applications with nontrivial information processing will require real time decoding [41].

A requirement for real time decoding is that the throughput of the decoder match the

rate of syndrome measurements, which avoids an exponential backlog of data [120]. And the

requirement can be quite strict: each syndrome measurement cycle on a superconducting

device can be completed in ∼ 1 µs (921 ns in [5]). The strict timescales have persuaded

the community to explore hardware accelerators for the task, such as Field Programmable

Gate Arrays (FPGAs) [29, 123, 79], Application Specific Integrated Circuits (ASICs) [30],

or on-chip SFQ-based superconducting digital circuits [100, 58, 122]. While their software

counterparts — designed to run on general-purpose CPUs [56] — offer more flexibility, hard-
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Figure 4.1: A merge operation in lattice surgery, specifically, a logical Z ⊗ Z measurement.

ware decoders promise higher throughput, deterministic execution, and tighter integration

with the rest of the control system [11].

Whichever decoder one chooses, a single monolithic instance will inevitably struggle to

meet the decoding demands that arise during multi-qubit logic gates. For surface codes,

lattice surgery [60, 40] is the most efficient way to perform multi-qubit logical operations.

When lattice surgery is performed on two or more (possibly distant) patches of logical qubits,

they are merged into a single patch for multiple measurement cycles before being split apart;

a snapshot of the procedure is shown in Figure 4.1. It’s worth noting that current state

of the art decoders can only meet the throughput demands on a patch that is the size

of an individual logical qubit up to distance 20 to 30 [11]. Worse, their throughput is

inversely proportional to the size of the patch [56]. Meanwhile, lattice surgery requires

merging multiple such patches [77] and decoding the merged patch.

Dividing the decoding task into overlapping windows is a promising approach [109, 119,

15] to manage this scalability challenge. For instance, prior work [109, 119] leverages tem-

poral parallelism by processing the syndrome data from many measurement rounds with

temporally parallel windows. This limits the growth of syndrome backlog when the inner de-

coder is slower than syndrome generation in terms of throughput. But this strategy doesn’t

mitigate the large spatial window that each parallel decoder must cover. In [109], the au-

thors introduce the idea of dividing the decoding problem in both time and space, but do
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not analyze its feasibility. In [15], the authors leverage a different kind of spatial parallelism,

where independent subgraphs arising from the logical circuit are decoded in parallel. This

addresses the spatial challenge, but requires a dynamic choice in where parity information

is routed. We suspect this dynamic routing may prove complicated for hardware decoders

to realize in practice.

Here, we explore spatially parallel windows. To the best of our knowledge, ours is the

first analysis of a decoding scheme that is both capable of handling large patches that arise

during logical operations and compatible with practical system level constraints of hardware

accelerators. As alluded to in [109], we employ the strategy of dividing the decoding task

into multiple overlapping windows, and assign a decoder module to each window. The inner

decoder that operates on an individual window can be any real time decoder; our scheme

is agnostic to the choice. The important point is that these decoders can be coordinated

to output a correction when a merged patch spans multiple windows. This technique works

because we only need to protect logical information up to the distance of the isolated logical

qubits. This allows us to overlap windows with local views and focus on resolving the

disagreements at their seams. The decoders are scheduled to run during different time steps,

so that they only need to resolve with their neighbors before and after they run.

A motivating principle of our work is that various design choices need to be carefully

balanced to ensure that a scheme with spatially parallel windows can meet the requirements

of real time decoding. A hardware constraint specific to the problem is that each window

needs to be pre-assigned to an area on the device. This is because real time decoders that

operate on individual windows, regardless of the specific implementation, require hardware

accelerators with fixed positions. Furthermore, our work emphasizes the importance of

avoiding larger windows than necessary, since large windows challenge the scalability of

inner decoders.

We begin by demonstrating how to configure spatially parallel windows in a manner that
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(1) is compatible with hardware accelerators like FPGAs and ASICs, and (2) can handle

the larger merged patches that arise during lattice surgery operations. The decoding scheme

is scalable, in the sense that its speed and resource requirements are independent of the

number of patches that are merged or how far they are apart on the device. Then we

examine the factors influencing the performance, focusing specifically on two key aspects:

accuracy and throughput. We proceed to analyze how to achieve a balance between these

requirements. Finally, we estimate the size of the individual code patches this scheme can

support, assuming one uses an FPGA-based inner decoder.

By performing numerical simulations and analyzing the mechanisms through which spa-

tially parallel windows lead to extra decoding errors, we identify that the size of the windows

and the width of the overlapping areas (buffer width) are important factors that determine

the accuracy. To maintain the fidelity of the logical qubits, the size of the windows cannot

be smaller than the individual patches that encode the logical qubits. The buffer width,

however, is a key variable in the trade-off between accuracy and throughput. Enlarging the

buffer results in larger windows, which subsequently leads to lower throughput (or signifi-

cantly raises the requirement on computing resources). Conversely, when the buffer is too

narrow, it compromises the accuracy of the decoding. We find that the optimal choice of

buffer width not only depends on the size of individual code patches, but also depends on

the level of physical noise on the device. This can be explained by examining the terms

in the logical error rate expression, especially the entropic factors. At a modest physical

noise level, the buffer width should be between one-half and two-thirds of the width of an

individual patch of code.

The throughput of the decoding scheme is determined by its slowest component. To iden-

tify the bottleneck, we separately estimate the speed of both the inter-window communication

and the decoding modules. Our findings indicate that the inter-window communication will

not become the bottleneck, even when the width of the windows exceed 100. This means
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the overall throughput of the decoding scheme meets the requirement for real time decoding

if and only if each inner decoder module runs sufficiently fast on its window. We discuss

the scalability of two state-of-the-art real time decoders [79, 11] when applied to individual

windows.

Although we focus on surface code in this work, our results are also relevant to other

local codes, e.g. color codes.

4.2 Background

4.2.1 Surface code, lattice surgery, and decoding

A square patch of surface code encodes one logical qubit in a d×d grid of data qubits, where

d is the code distance, and uses d2 − 1 syndrome qubits for the stabilizer measurements.

A distance-5 example is shown in Figure 4.2a. The stabilizer measurements project errors

on the data qubits into Pauli X, Y or Z errors. Each X (Z) stabilizer measures the X (Z)

parity of the data qubits that it acts on, and detects the Z (X) errors on them since the X

and Z operators anti-commute. An X (Z) syndrome qubit reads 1 if an odd number of its

data qubits are affected by a Z (X) error. In this case we say the stabilizer is flipped. A

flipped syndrome readout is also called an anyon or a defect in literature. A Y error can be

viewed as the product of an X error and a Z error. It can be detected by both types of the

stabilizers.

AnX (Z) logical operator, X̂L (ẐL), is a product chain ofX (Z) operators on a set of data

qubits that connect the two X (Z) boundaries. Examples of them are shown in Figure 4.2a.

The logical operators do not flip any stabilizer. Note that if a chain of operators is equivalent

to a linear combination of the stabilizers, it does not flip any stabilizer either, but it acts

trivially on the logical qubit. We define the code distance for X (Z) errors, dX (dZ), as the

weight of the shortest X (Z) logical operator. It is the minimum weight of a nontrivial X
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Figure 4.2: (a) A square patch of surface code. The red and blue faces are the X and
Z stabilizers, respectively. The blue and red lines mark ẐL and X̂L, the Z and X logical
operators. (b) An example decoding graph for the X errors. The vertices are the Z stabilizers,
augmented by the virtual boundary node (in yellow). The stabilizers that are flipped are
marked in red, and a minimum weight matching is denoted by the green edges.

(Z) error chain that cannot be detected by the code. The code distance d is the minimum of

dX and dZ . If a device has biased noise, e.g. more Z errors than X errors, then a rectangular

patch with different dX and dZ could be used to further suppress the dominant type of

errors.

Lattice surgery implements logical multi-qubit Pauli measurements via the merging and

splitting of patches, which can be used for performing logical gates. For instance, when two

patches are merged along boundaries that coincide with their Z logical operators, the value

of Z ⊗ Z can be inferred from the product of the Z stabilizers spanning the boundary. X

Pauli products are measured similarly, while measurements that involve the Y operator can

be done with twist-based lattice surgery [78] or an alternative protocol [24]. When logical

qubits are separated in space, the merge operation can be facilitated by a long ancilla patch

as in Figure 5 in [78].

While all errors chains with weight smaller than d are detectable by the code, only

the ones with distance no more than ⌊d2⌋ are guaranteed to be correctable. The decoding of

syndrome is performed on a decoding graph (Figure 4.2b). For the surface code, independent

X and Z decoding graphs can be used for correcting X and Z logical errors. On a decoding

graph, each edge represents an error mechanism that is detectable by its vertices. An edge
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between two adjacent Z stabilizers represents an X flip on the data qubit shared by them.

An edge connected to the virtual boundary node represents an error that is only detected

by one stabilizer.

For simplicity, Figure 4.2b only shows a 2D decoding graph for one round of syndrome

measurement. The full decoding graph that a decoder works with has a time dimension

because measurement errors also need to be represented. Such a graph can be viewed as

multiple copies of Figure 4.2b stacked on top of each other. If two vertices represent the

readouts of the same stabilizer from adjacent time steps, they are connected by an edge that

represents a flip on the syndrome qubit.

A popular technique for decoding syndromes from a surface code is minimum-weight

perfect matching (MWPM) [34], which identifies the lowest weight error patterns on a given

decoding graph. Sparse Blossom [56] and Fusion Blossom [131] are recent, fast software

implementations of this technique. Union-Find (UF) [32] is another popular technique,

and can be viewed as an approximation of the Blossom algorithm [36, 37] that implements

MWPM [130]. It is known to have better runtime complexity and slightly lower accuracy

than MWPM.

4.2.2 Real time decoding with FPGA

For concreteness, we explore the implications of using an FPGA for the inner decoder.

FPGAs offer an attractive alternative to general-purpose CPUs for tasks with strict timing

requirements and modest programmability requirements. An FPGA is made up of a “fabric”

consisting of a great many components whose behaviors are individually programmable,

whose input and output can be flexibly routed among other components, and whose timing

is uniformly specified so as to support easy latching of inter-component signals. These

properties imbue FPGAs with excellent parallelism and pipelinability, enabling them to

achieve excellent throughput on high-bandwidth tasks. The primary trade-off for these
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abilities is that the FPGA fabric is almost always programmed “once and for all”—that is,

the individually programmable components nonetheless have their behaviors fixed for the

lifetime of an application.

Because surface code syndromes arrive in a stream at approximately (d2 − 1) Mbps, de-

coding is a strong candidate application for an FPGA [79, 29, 123]. However, the constraints

of FPGA programming bear directly on the decoding problem:

• Scalability: An individual FPGA enjoys a fixed set of components, making it suitable

for decoding only up to a certain size. Meanwhile, arbitrarily long swaths of surface

code may appear during lattice surgery protocols.

• Communication: The high-speed communication afforded by the lock-step evolution

of FPGA components is somewhat lost when connecting two separate fabrics together

(e.g., over ethernet). Accordingly, programmers need to keep tight control over inter-

fabric communication to keep it from dominating the runtime of an application. Addi-

tionally, local connections between components are set out at “compile time”, sometimes

coming at significant layout cost.

• Fixed gateware: Since FPGAs only permit modest on-the-fly reprogramming, care

must be taken to match these limited abilities with the changing decoder requirements

of a surface code patch undergoing lattice surgery.

Deploying an FPGA to accomplish decoding requires accommodating each of these con-

straints.

4.3 Related work

In recent years, there has been a surge in research on real time decoding for QEC. Helios [79]

is an FPGA-based UF decoder. When acting on a surface code with distance d, it achieves

a sublinear average time complexity per cycle, at the cost of O(d3) hardware resources.
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The work demonstrated an implementation operable up to d = 21. Riverlane [11] recently

implemented a UF decoder on both FPGAs and ASICs and reported results for up to d = 23.

Astrea [123] and LILLIPUT [29] output the same solution as a MWPM decoder for surface

code up to d = 7 and d = 5, respectively. These can be implemented on FGPAs. AFS

proposes to implement the UF decoder on ASICs [30]. There are also real time decoders with

SFQ-based superconducting digital circuits [100, 58, 122]. Some decoders use hierarchical

decoding [100, 25, 111].

A few recent works divide the decoding task into overlapping windows [109, 119, 15], an

approach that is also employed in our work. In [119] and [109], the authors primarily address

parallelization in time, which helps contain the backlog when the throughput of the decoder

does not match the rate that the syndrome is generated. In [109], the authors also includes

a discussion on dividing the decoding problem in space but do not explore the consequences.

The information passed between neighboring windows is similar, whether they are temporally

or spatially parallel. However, temporally and spatially parallel windows apply to different

problems and so have different constraints and goals. For example, [109] does not investigate

how a narrow buffer would compromise the accuracy of decoding.

A paper from PsiQuantum [15] is the only prior work that targets lattice-surgery style

fault-tolerant blocks. Its focus is different from our work though. It prioritizes minimizing the

latency of a software implementation and does not address “further hardware and systems

considerations that are relevant". However, we put more emphasis on the constraints of

hardware accelerators, and consider throughput instead of latency as the more important

measure of speed for real time decoders. For example, they develop algorithms that take

lattice surgery blocks as input, then assign windows, while we explicitly require that windows

have pre-assigned positions so that they are compatible with hardware accelerators. Both

papers include numerical results on how the buffer width affects decoding accuracy, but we

provide more analysis and also study how the influence depends on the physical noise level.
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4.4 Framework of the decoding scheme

In Section 4.2.2, we discussed three constraints of an FPGA implementation. Our protocol

keeps these constraints foremost in mind: our starting premise is that a single decoder

handles a fixed (small) window; we explicitly analyze the single burst of communication

needed from one stage of decoding to the next, which takes place over a fixed subset of a

nearest-neighbor topology network; and we limit our reprogrammability requirements to a

simple form of “masking”, where read and write operations are individually dis/allowed at

given cells.

In this section we explain key aspects of the design. We first show how the decoder

modules should be connected and why it is necessary for them to overlap in buffer regions.

Then we discuss the metrics of the decoding scheme and the design choices that influence

them. Finally we introduce a configuration that is compatible with the hardware constraints.

4.4.1 Connecting decoder modules

The time that it takes for a monolithic decoder to process a long patch of code scales at

least linearly with the area of the patch. (Exceptions like look-up-table-based decoders have

exponentially high storage overhead so they only work for very small patches [29]). Spatially

parallel decoding circumvents this by dividing the decoding task into multiple processes.

In order to avoid frequent communication between the processes, we do not consider fine-

grained schemes where each (ancilla or data) qubit is assigned its own decoder module. We

only consider coarse-grained parallel schemes where each decoder module works on an area

that is similar to an individual patch of logical qubit like Figure 4.2(a). We refer to the area

that a decoder module acts on as a window.

It might seem resource efficient to divide the device into non-overlapping windows, and

run decoders on each window simultaneously. However, this will either completely sacrifice

the accuracy of decoding, or require high communication overhead between neighboring
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Figure 4.3: A segment from a longer patch of surface code, divided into 2 non-overlapping
windows by an artificial boundary (dashed line). The optimal corrections are shown in green
and the suboptimal ones in purple. (a) One flipped syndrome in window A. The suboptimal
correction will be selected if matching to the artificial boundary is allowed. (b) An error flips
two syndromes, one in each window. The suboptimal correction will be selected if matching
to the artificial boundary is disallowed.

decoder modules. If no communication is allowed between non-overlapping windows, the

decoder has two choices when acting on one window: (1) it allows matching across the

boundary with neighboring windows, (2) it does not allow such matching. The examples

in Figure 4.3 show that either case leads to easy decoding failures. In case (1), the flipped

syndrome in Figure 3(a) would be matched to the boundary between the two windows, while

it should be matched to the lower boundary. In case (2), the flipped syndromes in Figure

3(b) would be matched to the top and bottom boundaries, while they should be matched to

each other. Both examples result in logical errors.

In order to maintain the accuracy of decoding and avoid high communication overhead,

one can take the approach of using overlapping windows and applying decoder modules on

neighboring windows in different layers (time steps). We will use terms rough boundary and

smooth boundary in the explanation. On a decoding graph, a boundary with edges to the

virtual boundary node is termed rough, while a boundary with no edges out of it termed

smooth. These boudaries can refer to either ones that already exist in the global decoding

graph (e.g. the top and bottom boundaries of Fig. 4 are rough), or an artificial one that

arises from partitioning the patch into multiple windows (e.g. the vertical boundaries in
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B's commit region

A's commit region
A's buffer
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A's commit region A's buffer

B's commit region

Figure 4.4: Decoding graphs for X errors, used by window A and B respectively. The buffer
is marked in pink. In (a), the red edges are the ones that connect the nodes in A’s commit
region to the buffer. The two nodes where artificial defects could be introduced are marked
by solid black dots. Corrections along the dotted edges are on nodes in the buffer, and are
not committed by window A.

Fig. 4 are rough and smooth respectively). These terms should not be confused with the

rough and smooth boundaries of a surface code, which are synonymous with boundaries that

absorb strings of Z and X flips, respectively.

Figure 4.4 illustrates this approach for a segment of the X decoding graph taken from a

longer patch. As shown in shown in Figure 4a, window A has a rough boundary on its right

side. The edges that connect to this boundary are derived from those that straddle window

A in the global decoding graph. In the first layer, only window A is acted on by a decoder.

After it obtains a correction, the decoder only commits the part that acts on the nodes in

A’s commit region, marked by the solid edges in Figure 4a. The edges with dotted lines are

in the buffer between the windows A and B, and corrections in this region are not applied

by window A.

The only communication between windows A and B happens when A finishes decoding.
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And the only information A passes to B is the artificial defects, the nodes along the left

(smooth) boundary of B that are flipped by corrections in the commit region of A. The

artificial defects are marked with solid black dots in Figure 4. After B learns about these

defects, it performs corresponding flips on the nodes along its left boundary and begins

decoding, as shown in Figure 4b. This ensures consistent corrections across the windows.

Unlike in window A, the decoding graph of window B (Figure 4b) does not have an

artificial rough boundary with neighboring windows. This is true for any window scheduled

in the final layer. In the X decoding graphs shown in Figure 4, there are still natural rough

boundaries at the top and bottom; however, these would be smooth in the corresponding Z

decoding graph and so this graph would have no rough boundaries. When a decoding graph

has no rough boundaries, the decoder will fail to output a correction if the syndrome it

receives contains an odd number of flipped nodes. In other words, there is a lone defect that

cannot be matched. When this happens, we terminate decoding and report that a logical

error has occurred. This failure is due to suboptimal decoding in previous layers.

4.4.2 Metrics

Throughput is one of the most important metrics for a real time decoder. It should match

the rate at which syndromes are generated so that the syndrome backlog will not grow

exponentially, exhausting storage space and slowing down logical operations [120]. When

the decoder has enough throughput, it is sufficient to apply the sliding window technique [62]

along the time dimension. When the inner decoder is not fast enough, a temporally parallel

decoding scheme can mitigate the backlog problem. But temporal parallelization alone is not

an ideal solution for the long patches that arise from lattice surgery, which will require more

layers of temporally parallel windows. This will slow down the logical clock rate further and

also incur more hardware costs if the decoder is implemented with hardware accelerators.

Accuracy is a critical metric for any decoding scheme. When multiple logical qubits
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undergo a logical operation, they should ideally maintain the same level of fidelity as when

they are isolated. As we will show in Section 4.5, this requires sufficiently large windows and

buffers.

Latency is another metric of the decoder’s efficiency. It measures the total delay between

the time that a syndrome measurement cycle finishes and the decoder outputs a correction. It

is particularly important when performing conditional operations, like gate-by-measurement.

The latency of the decoder determines how long a logical qubit needs to idle before the con-

ditional operation can be executed. This is because the value that conditions the operation

is in part determined by the decoder’s corrections. While it doesn’t have a strict limit like

throughput, a large latency is still undesirable because it leads to an increase in the space-

time volume of the computation [25, 31]. Specifically, the time of the computation increases

linearly with the latency, and to protect the logical information, the code distance should be

increased logarithmically to compensate. However, the scheme we consider only has a latency

of a few cycles. The logical error rate per cycle is roughly proportional to (100p)(d+1)/2 [39].

At p ∼ 0.1%, increasing d by 2 would suppress the logical error rate by ∼ 10X, which is

enough for overcoming the latency.

The latency of the spatially parallel windows is determined by (1) the latency in each

component of the decoding scheme, which is already reflected in the throughput, and (2) the

number of layers that the windows are divided into. To reduce the latency, it is preferable to

use a window configuration with a small number of layers. This is one of the considerations

in the following subsection.

4.4.3 Window configuration for hardware decoding

For a software implementation of the spatially parallel windows, one can dynamically and

flexibly adjust the configuration of the windows during the computation, given the lattice

surgery operations at each time step. However, for real time decoding using a hardware

81



(a) (b)

Figure 4.5: (a) A patch with a tree structure is 2-colorable. (b) A patch that arises during
a Y ⊗ Y logical measurement. Not 2-colorable.

accelerator like an FPGA or ASIC, the positions of the windows and the links between

them should ideally be fixed. Here, we seek a window configuration that is compatible with

hardware accelerators and also accommodates general lattice surgery operations.

Besides having fixed window positions and links, the window configuration and map-

ping/compiling strategy should respect three other constraints to ensure the accuracy of

decoding. First, the commit regions of the windows in the same layer must be disjoint.

Unlike windows in different layers (e.g. the two windows in Figure 4.4), they cannot share

data qubits. This is because no information is shared between windows in the same layer,

while the information necessary for making consistent corrections is passed between neigh-

boring windows in different layers. Second, the windows should not have smaller size than

an isolated patch of code (e.g. Figure 4.2a). Thirdly, when a patch spans multiple commit

regions, the intersection of the patch with each commit region should not be too small. The

second and third points will be further explained in Section 4.5.

To reduce the latency of the decoder, the windows should be arranged in a small number

of layers. Can a two-layer configuration meet the requirements? For the large patch in

Figure 4.1, it suffices to use a 2-colorable checkerboard configuration of windows. This is

because the patch has a tree structure. See Figure 4.5a for a window configuration that

accommodates a multi-patch merge of this type (only the commit region of each window

is shown). In this example, although the commit regions with the same color overlap at
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Figure 4.6: A window configuration with staggered squares. (a) Only showing the commit
region of each window. Each arrow represents a link that communicates information on
artificial defects. (b-d) The windows in the first, second, and third layers, respectively. The
buffers are shown in lighter color and surrounded by dotted edges. The windows on the last
layer do not have buffers. The buffer width in this figure is chosen to improve readability.

corners, their committed corrections do not conflict because no active qubits are at these

corners.

However, not all patches from lattice surgery operations have a tree structure similar to

that in Figure 4.1 and Figure 4.5a. These examples only involve X and Z logical measure-

ments. But when a lattice surgery operation involves a Y measurement on a logical qubit,

the patch may need to be touched on more than one X or Z edge, which may result in a

patch that cannot be accommodated by a checkerboard pattern. For instance, Figure 4.5b

shows a merged patch that arises during a Y ⊗ Y logical measurement [23].

To accommodate general lattice surgery operations we propose to use a 3-coloring of

staggered squares (Figure 4.6). It is a simple configuration that satisfies all the constraints

mentioned above. The size of each commit region is the same as the size of an individual

patch of code. If the rows of windows are not staggered then 4 colors are required, which

leads to an unnecessary increase of latency.
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4.5 Logical error rates

In this section we study the logical error rates (LER) when using spatially parallel windows.

We begin by describing the simulation setup on a rectangular surface code patch, and then

study logical errors along the short and long edges of the patch. We then move on to

simulations and analysis for a more general setup, five windows stacked in two rows. We

also discuss how the results influence design decisions (e.g. buffer width) and introduce

constraints on mapping.

4.5.1 Methodology for simulations

We perform quantum memory simulations, where each shot includes d cycles of stabilizer

measurements. We use Stim [45] for simulating stabilizer circuits along with a circuit-level

noise model that includes single-qubit, two-qubit, and measurement errors characterized

by a single parameter p. We use PyMatching2 [56], a state-of-the-art implementation of

the MWPM decoder, both as the inner decoder applied to individual windows and as the

baseline global decoder. Although evaluation of the throughput would require a real time

inner decoder, PyMatching2 is sufficient for simulations that focus on logical error rates and

syndrome densities.

For Sections 4.5.2 and 4.5.3 we use a rectangular surface code patch that would arise

when merging two square-shaped patches of distance d during lattice surgery. Our goal is to

maintain the fidelity of the individual patches, and we study the impact of the buffer width

and physical noise p on this fidelity. As such, we use the simplest setup (Figure 4.7) with

just two overlapping windows, with window A applied before B. This configuration is such

that the square-patches are the same size as the commit regions of the windows.
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Figure 4.7: Setup for the numerical simulations.

4.5.2 Logical errors along the short edge

In a memory experiment, a logical error occurs if an X or Z logical operator is flipped after

applying both the noise and the correction. We first study the impact of logical errors along

the short edge of Figure 4.7, with code distance d = 15. We only use one of the X and Z

(global) decoding graphs: the one with rough boundaries on the top and bottom edges. For

this setup the logical operator should be a horizontal string that connects the left and right

edges of the entire patch.

In Figure 4.8 we plot the LER against w, the buffer width (e.g. Figure 4 has w = 3).

The figure shows that when the buffer width is small, the accuracy of the parallel decoder

is orders of magnitude worse than its global counterpart. It also shows that increasing w

closes the gap. In fact, the gap diminishes before the buffer is grown to match the length of

the short edge, which implies that w need not be as large as d to maintain accuracy. This is

beneficial for throughput, since large buffers invariably decrease the speed of each decoder

module or place tighter requirements on the underlying hardware.

So how large does w need to be? From Figure 4.8 we observe that the optimal choice of

w depends on the physical noise p. At p = 0.1%, the 95% confidence intervals of the LERs

from parallel and global decoding overlap when w ≥ 10. At w = 10 and p = 0.1%, the ratio

of parallel to global LER is ∼ 1.32. But at p = 0.5%, the ratio is below 1.3 when w ≥ 6,

and it is only ∼ 1.05 at w = 10. This shows that one might need a larger w at lower p to
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1Figure 4.8: Logical error rate v.s. buffer width, using the setup in Figure 4.7 with d = 15,
counting the logical errors along the short edge (that connect the top and bottom bound-
aries). The dashed lines are the baseline results from using a global decoder on the same
underlying patch. The shaded regions indicate the 95% confidence intervals. Each data
point at p = 0.1% is obtained with 8B shots.

match the accuracy of global decoding.

In Figure 4.9, we provide an another view of the results from Figure 4.8. In Figure 4.9a

we plot the LERs against p on log scale. The slope of a line in the plot shows how quickly

the LER is suppressed when p decreases, and is a proxy for effective code distance. When

we plot the slope against w in Figure 4.9b, we see that the benefit of growing w diminishes

as w increases.

To facilitate understanding of the numerical results, we also study error strings that

confuse the parallel decoder but can be corrected by a global decoder. In Figure 4.10 we

show examples of such error strings for d = 15, w = 9 and 3. The example error strings have

lengths (l) 6 and 4, respectively. Since l is no more than ⌊d2⌋ (which is 7) for both strings,

they can be corrected by a global decoder.

However, in Figure 4.10a, window A can match the left end of the string to the top

boundary (and commit this), and the right end to the rough boundary outside of the buffer

(tentatively). Such a matching consists of 6 edges, the same as the correct one, so window A

will output one or the other with equal probability. When window B is in action, it only sees

the right end of the error string, and matches it to the bottom boundary. Since one end of
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1Figure 4.9: The data in Figure 4.8 represented differently. (a) Logical error rate v.s. physical
error rate, for parallel decoding with different buffer width w. (b) The slopes of the lines in
(a) and (b), plotted against w.
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Figure 4.10: Example error strings that confuse the parallel decoder but can be corrected by
a global decoder. Left: w = 9. Right: w = 3. In each example, the region between the two
dashed vertical lines is the overlap of windows A and B. Window A is decoded first. The
flipped stabilizers are in red. The error strings are in green. The purple edges are wrong
decoder outputs by A. The dotted horizontal line marks the middle of the patch.
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the error string is matched to the top boundary and the other is matched to the bottom, the

correction flips the horizontal logical operator while the noise does not. Thus the operator

is flipped at the end and we have a logical error. In Figure 4.10b, window A can match the

left end of the error string to the bottom boundary. The right end of the string is invisible

to A, so A does not need to act on it. Such a matching is again the same weight as the

actual error string. Then window B only sees the right end of the error string and matches

it to the top boundary.

How long do these strings need to be? For a connected error string (that is correctable

by some global decoder) to result in a logical error along the short edge, it should satisfy

three conditions:

1. One end of it is matched to the top boundary and the other is matched to the bottom,

in the committed matching

2. Exactly one end of it is in the commit region of window A. If neither end is in the

commit region of A, no correction will be committed by window A, and the error is

entirely decoded by B as in the case of a global decoder. If both ends are in the commit

region of A, then the corrections to both defects are committed by A.

3. In window A, the end that is not matched to the top/bottom boundary is matched to

the rough boundary out of the buffer. If both ends are matched to the same boundary,

we do not get a logical error. If they are matched to opposite boundaries by A, the

global decoder would also do such a matching.

Let l be the weight of the error string (its number of edges). The right end of the error

string can be just above or just below the middle of the patch, and the left end can be just

within the commit region of A. The weight of the wrong matching in A, described above,

is the sum of the distance from the right end to the rough boundary out of the buffer,

and from the left end to the top/bottom boundary. Assuming an odd d, the first part is
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max(w + 1 − l, 0), and the second part is max(d−1
2 + 1 − l, 0), for a diagonal error string

similar to the ones in Figure 4.10. The wrong matching might be output by decoder A if it

has no higher weight than any correct one. Then for d = 15, a string with l = 4 (5, 6, 7) can

confuse a parallel decoder with w ≤ 3 (w ≤ 6, w ≤ 9, w ≤ 12). Note that when w ≥ d− 2, a

connected error string that can confuse the parallel decoder is also long enough to confuse

any global decoder.

The lengths and the quantity of error strings help explain the LER. The chance of having

a weight l error is roughly (1 − p)n−lpl, where n is the total number of edges in the 3D

decoding graph (we say roughly because the probability associated with an edge in the

decoding graph is not exactly p — the circuit-level noise model adds complications). The

LER can be expressed as P =
∑n

l=lmin
Nfail(l)(1 − p)n−lpl, where Nfail(l) is the number of

weight-l errors that cause logical error and lmin is the minimum weight of an uncorrectable

error (which does not need to be a connected string).

When p is low, the LER is usually dominated by the term from lmin. This is why lmin is

an important quantity, whether in the decoder-specific context in this paper or the decoder-

independent context where it is equivalent to ⌈d2⌉. The range of p we use for the numerical

simulations includes 0.1% which is already low. However, our simulation results cannot be

fully explained by the min weight of uncorrectable errors. For example, Figure 4.10b has a

lmin of 4 with parallel decoding, but it has more than two orders of magnitude lower LER

than a distance 8 surface code decoded globally (which also has lmin = 4) under the same p

of 0.1%.

The value lmin alone does not fully explain the simulation results because the entropy

of error chains sometimes play a more important role in determining the LER at modest

physical noise [13, 19]. When the buffer is just narrow enough for an error of weight lmin to

cause a logical error, as in both examples in Figure 4.10, the entropic factor Nfail(lmin) is a

tiny value. The entropic factors of higher order terms in P are significantly larger. When p is
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not low enough, the disparity in error probability is not enough to offset the difference in the

entropic factors, then the main contribution to the LER is from the higher order terms. If

the LER from the parallel decoder is dominated by terms with weight no less than ⌊d2⌋, then

it will be close to the LER from the global decoder, even when the two decoding schemes

have different lmin. This explains the results in Figure 4.8.

4.5.3 Logical errors along the long edge

For a rectangular patch of surface code with a long edge and a short edge, the logical errors

along the long edge constitute only a small portion of the total LER when a global decoder

is used. Here, we check that spatially parallel windows preserve this property.

We again use the setup in Figure 4.7, and show the results of numerical simulations in

Figure 4.11. This time, we observe that the LER gap between parallel and global decoding

stays constant as the buffer is grown. We note a distinction between Figure 4.11 and Fig-

ure 4.8. As the buffer width w increases, the code distance increases along the long edge

but remains constant along the short edge. This is why the LER from the global baseline

decreases as w grows in Figure 4.11 but remains almost constant in Figure 4.8. We also

find that the LER from parallel decoding coincides with the one from applying the global

decoder to a smaller patch that is the same size as window A.

Along the long edge, we must consider error strings like the one in Figure 4.12. Window

A in this figure has code distance 9, the entire patch has distance 13, and the green error

string has weight 5. The string is not long enough to confuse the global decoder on the entire

patch, but is long enough to confuse a window. In particular, window A would prefer the

incorrect purple matching to the green one, because it only has weight 4. Then window B,

which only sees the right end of the error string, has no choice but to match it to right rough

boundary of its decoding graph. The result is a logical error along the horizontal edge.

Our findings about the LER along the long edge are conclusive: as long as the horizontal
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1Figure 4.11: Logical error rate v.s. buffer width, using the setup in Figure 4.7 with d = 7,
counting the logical errors along the long edge. The dashed lines are the baseline results
from using a global decoder on the same patch. The results from applying the global decoder
on a patch that is the size of window A are also shown.
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Figure 4.12: An example error string that causes a logical error along the long edge, when
the parallel decoder is used. As in Figure 4.10, window A is applied before B, the buffer is
between the vertical dashed lines, the error string is in green, and a wrong decoder output
by A is in purple.
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Figure 4.13: Setups for simulations with 5 windows stacked in 2 rows. The area of the
underlying patch is enclosed by the pink square. The vertical and horizontal logical operators
are in green and red. In (a) the two original patches that are merged are labelled b1 and o1,
while in (b) they are labelled g1 and b1

dimension of window A in Figure 4.7 is longer than d (which will be the case due to the buffer),

the increased LER from logical errors along the longer edge is negligible when compared to

the increase from the errors along shorter edge. Therefore we do not need to consider this

type of logical errors when choosing w.

4.5.4 Generalizing to 2D configurations

As mentioned in Section 4.4.3, some lattice surgery operations involve thicker merged patches.

This section investigates whether the window configuration in Figure 6 works on these

patches, and the buffer width requirement for decoding on these patches.

We imagine a setting where two vertically-stacked square patches, each with the same

size as a commit region in Figure 6, are first deformed into rectangles with longer horizontal

edges, so that they can perform Y ⊗ Y logical measurement [78, 23]. Then the top and

bottom rectangles are merged. We perform simulations with the 2 settings shown in Figure

13, where the underlying patch is at the top right and top left corners of the windows in

Figure 6, respectively. For baseline we take the LER of the two isolated patches, either

before all the logical operations (when they are squares), or right before the merge (when

they are longer rectangles).
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1Figure 4.14: LER v.s. buffer width at p = 0.4% over 15 rounds, using the setups in Fig. 13a
and 13b respectively, with horizontal and vertical logical operators. The size of each smaller
square (e.g. the commit region of b1) is chosen to be 15× 15. The blue (purple) baseline is
the LER of two isolated patches, each with size 15× 29 (15× 15), taken over 15 rounds and
with logical errors along the edge with d = 15.
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The simulation results in Figure 14 shows that, in this setting, the LER of parallel

windows is suppressed exponentially with w, and is below the baseline before w is grown to

more than half the commit region width. Compared to the linear case presented earlier, the

parallel windows can be seen to make use of the extra distance present during this logical

operation — the buffers extend in both directions rather than one direction. The difference

between Figure 14a and b is due to the order that the windows act. In (a), the case with

vertical logical operator has higher errors because the intersection of the merged patch and

the commit regions of o2 and b3 have short horizontal edges, and o2 and b3 are scheduled

before their neighbor g2. This does not apply to (b) because in the lower row of (b), the

middle window acts first.

4.5.5 Implications

We conclude that a sufficient buffer width w is needed for achieving high accuracy. Since

linear settings (Figure 7) have larger buffer width requirements than multi-row settings

(Figure 13), it suffices to choose w based on Section V-B. Section 4.5.3 shows that the size

of the windows (or specifically, the intersection of a patch with a window) also bound the

fidelity that can be achieved. This is acceptable as long as a window is wider than an isolated

patch of code. One mapping/compiling constraint should be noted though. When a patch

spans multiple commit regions, and its intersection with one of the windows is too small, the

type of logical errors in Figure 4.12 can be large. This is the case in Figure 13a, where the

intersection of the patch with the commit region of o2 has width d/2. When w is at least

half of d, o2’s total width is at least d, so the contribution from this type of error is not too

large. However, the intersection of a patch with a commit region should not be smaller than

half the commit region.
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Figure 4.15: A flowchart of the parallel decoding scheme, the colored squares correspond to
the windows in Figure 4.6.

4.6 Throughput

In this section, we shift the focus to throughput and study how large the window size can

grow before the throughput limit is reached. We quantify throughput by the average time

that it takes for a decoder to process one round of measurements. Since each surface code

measurement cycle takes ∼ 1 µs on a superconducting qubit-based quantum computer, we

set it as the standard that a real time decoder should meet.

Figure 4.15 shows a flowchart of a real time decoder using the spatially parallel windows.

Each window receives information from the control system measuring the qubits and its

neighboring windows from previous layers. After decoding, each window sends the committed

corrections to the runtime and its artificial defects to neighboring windows in later layers.

This results in a pipelined scheme where the throughput is limited by the slower of two

components: the inter-window communication or the inner decoder. In this section, we

first show that the inter-window communication will not be a bottleneck for an FPGA-

based implementation, then discuss the scalability of inner decoders and how it affects the

maximum window size that an FPGA implementation can have. To achieve larger window

sizes than supported by FPGA-based inner decoders, one may turn to more resource efficient

ASICs [11].
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4.6.1 Inter-window communication

The throughput of the communication links depends on the number of bits that it takes

to transmit information on the artificial defects. As explained in Section 4.4.1, the only

information that a decoder passes to its neighbor in a subsequent layer is the artificial defects.

The length of this message is determined by (1) the number of bits required to represent an

artificial defect and (2) the expected number of artificial defects that arise during decoding.

Quantity (1) depends on the number of different locations for artificial defects. Between

two neighboring windows A and B, this is proportional to the area of Acommit ∩ B, the

intersection of window B and the commit region of A. Suppose we use the staggered square

configuration, where the commit regions are d× d and d cycles are processed at once. Then,

between any pair of neighboring windows, the number of possible artificial defect positions

is ∼ d2/2 for either the X or the Z decoding graphs. This translates to ⌈log2(d2/2)⌉ bits

for representing each artificial defect — 9 bits for d ranging from 23 to 32, and 12 bits for d

from 65 to 89.

To study quantity (2), we look at the distributions of artificial defects recorded from the

simulations in Section 4.5.2 (Figure 4.16). We found that the distributions are independent

of w and heavily dependent on p. Distributions from different values of p can be fit with

the Poisson distribution with different means (λ), with the mean of the distribution roughly

proportional to p. When we compared the data from Section 4.5.2 and Section 4.5.3, we find

that the mean of the distribution is also proportional to the area of Acommit ∩ B. This is

not surprising: p is proportional to the chance that an artificial defect arises at each possible

location, and the area of Acommit ∩B is associated with the number of such locations.

Given p and the area of the face where the artificial defects lie, we can estimate the

mean count of artificial defects by extrapolating from our simulation results. For example,

at p = 0.1% and d ∼ 30, the mean count of artificial defects is ∼ 5. Then for each of the

X and Z decoding graphs, it takes about 5 × 9 = 45 bits to transmit the artificial defect
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1Figure 4.16: The number of artificial defects, from the same simulations as Figure 4.8. The
curves are fit to the Poisson distribution.

information, without further optimization. This sums up to ∼ 90 bits in total, for a link

between two neighboring windows.

For an FPGA-based implementation, each copy of the inner decoder is implemented on

one FPGA and acts on one window. Therefore, the inter-window communication is between

FPGAs. For reference, the communication between two Xilinx FPGAs using a standard

high-speed serial communication link is 54 clock cycles, plus 1 clock cycle per 64-bits [101].

On FPGAs, clock cycles of 4 ns (250 MHz) can be routinely achieved, even at high resource

utilization. For windows with d × d commit regions arranged as in Figure 4.6, we have

shown that, at p = 0.1%, the information passed between two neighbors is at most ∼ 94

bits for d ≤ 30, if d rounds of syndrome is processed at once. That means each of these

inter-FPGA links will take roughly 56 clock cycles, or ∼ 224 ns if running at 250 MHz.

Divided by d, the cost of communication is only 7 ns per measurement cycle, well below the

requirement of 1 µs. We also calculated the communication overhead for larger d, and found

that it decreases with d in the range that is relevant. At d = 151, the average cost of an

inter-window communication is below 3 ns per measurement cycle. We performed the same

calculation at a high physical noise of p = 0.5%, and found that the overhead is 44 ns per

round at d = 5 and steadily drops to below 9 ns at d = 151. This is because when we divide

the link latency by d, the contribution from the constant latency (54 clock cycles) decreases
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as d increases, which outweighs the increase in the other term that is proportional to d2. We

conclude that the inter-window communication does not limit the size of windows.

4.6.2 Inner decoders

The throughput of the inner decoder depends on the size of the windows and the choice

of decoder. Since spatially parallel windows can be layered over any inner decoder, and

the development of real time decoders is still an active field, there is no clear answer for

the maximum size of the window. Nonetheless, we can discuss the scalability of real time

decoders that are currently available. Note that we also view the link from the control system

to a window and the one from a window to the runtime as parts of an inner decoder.

An inner decoder’s scalability bottleneck depends on its design. As examples, we look

at two FPGA-based real time decoders that work for at least medium-sized codes and have

different scalability challenges. Helios [79] is a distributed version of a Union-Find decoder

that exploits parallel computing resources for speedup. It has been demonstrated on a 21×21

patch and operates with O(d3) processing elements, each assigned to a node in the decoding

graph and communicates via shared memory. Its average runtime per measurement round

decreases with d, as long as d is not large enough to require board to board communication

between FPGAs (which is much slower than shared memory based communication). Aside

from this limit, the main scalability challenge of Helios is the O(d3) scaling of its computing

resources. A recent update of Helios [49] improved its scalability to a 51 × 51 patch at the

cost of increased latency.

Riverlane’s Collision Clustering (CC) decoder [11] is another UF-based decoder, with

demonstrated implementations on both FPGA and ASIC. The advantage of CC is its efficient

use of storage resources, so its scalability is not constrained by hardware capacity, but instead

constrained by the throughput. On an FPGA, its average execution time per measurement

round increases with d, but is below 1 µs until d = 23. Like Helios, each instance of the CC

98



decoder also needs to fit on 1 FPGA due to the usage of shared memory.

The maximum window size supported by the FPGA is constrained by the scalability of

the inner decoder. The decoding graphs in [11, 79] are cubes, but for the spatially parallel

windows, the number of measurement rounds that need to be processed at once does not

depend on the full width of the window, but rather the width of the commit region. This

would decrease the volume of the decoding graph by roughly half, but in practice, applying

sliding windows along the time dimension would increase the volume of the decoding graph

by 2X. Therefore we expect that volume of the decoding graph in a window would be

similar to the ones used in [11, 79], which means an inner decoder for d = 51 translates

to a commit region width of ∼ 25 for the spatially parallel windows, assuming that the

buffer is slightly wider than half of the commit region. We conclude that FPGA-based

implementations of real time decoders connected into spatially parallel windows will be able

to support at least medium term demonstrations of logical operations. In the long term,

ASIC-based implementations should be able to support larger code distances, because they

can be optimized for higher performance and lower cost [11].

How does the maximum window size depend on the physical noise p? Recall from Sec-

tion 4.5 that when p is lower, a wider buffer is required for the spatially parallel windows to

achieve good accuracy. Wider buffers lead to larger windows, which impose higher require-

ments on the inner decoder. But it is worth noting that most decoders also run faster at low

p [56], which is natural since physical errors are sparse at low p. If the main constraint on

the scalability of an inner decoder is its throughput, as in the case of the CC decoder, then

these are competing factors that determine the maximum window size it can support at low

p.
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4.7 Conclusion

Spatially parallel windows make real time decoding of QEC codes scalable for the large

patches of codes that arise during fault-tolerant quantum logical operations. We show that

the scheme is compatible with the constraints imposed by using hardware accelerators, with

proper window configuration. We perform numerical studies of the decoding accuracy and

investigate the mechanisms through which the spatially parallel windows might introduce

additional logical errors. The implications of the results impose constraints on mapping and

introduce requirements on the window size and buffer width. We specifically study how the

requirement on buffer width depends on the physical noise level. We assess the through-

put of the decoding scheme and analyze the maximum window size that can be supported

before the throughput falls below the requirement. We find that the communication be-

tween neighboring windows never becomes the bottleneck in the decoding scheme, so the

maximum window size is limited by the scalability of the inner decoders. Since running on

larger windows decreases the throughput of the inner decoders and/or requires more hard-

ware resources, the window size and the buffer width need to be carefully chosen to achieve

a balance between throughput/cost and accuracy.
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CHAPTER 5

CONCLUSION AND OUTLOOK

The main theme of this dissertation is that software and architecture design for quantum

computing need to adapt to features and variations of both quantum hardware and algo-

rithms. Research in this direction starts with identifying gaps between the demands of

quantum algorithms and the limitations of current quantum devices. These gaps can be

closed by developing better quantum hardware or directly optimizing the algorithms, but

sometimes it could be more practical to address them with systems-level solutions.

Chapter 2 identifies the problem that two-qubit gates on some superconducting qubits

are susceptible to systematic deviations. One way to solve the problem is to reduce the

deviations, at the cost of potentially making lower-fidelity gates. We instead propose a

framework to accommodate the hardware deviations by choosing the most efficient basis

gates from the deviated trajectories. However, two-qubit basis gates are not the only design

choice that should be made according to hardware variations. For devices that consist of

qubits with different properties, it is important that the compiler is optimized based on

these differences. The choices of hardware gates and compiling strategy also highly depend

on the type of hardware. Current superconducting devices only support nearest-neighbor

connectivity, and interactions that directly act on one or two qubits, so there has been

research that aims to reduce the number of SWAP gates in the compiling process. On

the neutral atoms, multi-qubit interactions and atom movements are available, but it is

challenging to locally access the atoms, and the qubit measurements have a destructive

nature. For trapped ions, it is easier to interact ions within the same trap than those in

different traps, and it is important to design the structure of the traps. Therefore, these

hardware should be supported by different systems.

The same logic also applies to quantum error correction. The decoders for QEC codes

should account for the variations on a device, capturing the noise landscape as accurately as
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possible, in order to improve the accuracy of decoding. And as explored in Chapter 3, the

presence of permanently defective qubits requires adapting QEC codes and modifying the

architecture design, exploiting the flexibility of modular architectures. Aside from permanent

defects, temporary defects from erasure errors or cosmic rays can also affect QEC.

Defective qubits are only one possible cause of the mismatch between device connectivity

and the connectivity requirement of a QEC code. There has also been research that designs

QEC codes specifically for devices with limited connectivity, such as the hexagonal lattice.

Currently, qLDPC codes are a promising research direction because of their much better

encoding rates than the surface code. The long range interactions in these codes require

careful mapping from the codes to the devices. It is also a challenge to efficiently implement

logical gates on these codes. Heterogeneity might be necessary in future devices that support

qLDPC codes. With superconducting qubits, the device might need to include a mix of

short-range and long-range connections. With neutral atoms, it might need to use multiple

atom species, and a combination of different technologies for addressing the atoms. There

has also been proposals to implement logical operations on qLDPC codes by using multiple

QEC codes for the same computation, with the surface code as compute qubits. Another

promising solution to the high qubit overhead of topological codes is to use bosonic QEC

schemes, or a combination of continuous-variable and discrete-variable error correction.

Aside from designing for the hardware features and variations, another research direction

is to accommodate the demands of algorithms. Chapter 4 is an attempt towards addressing

the problem that real time decoding schemes often do not scale well for the large patches

that arise during lattice surgery operations. One can also focus on a particular application,

or component of computation, and make optimizations specific to it. For example, magic

states are one important component to QEC, so it is important to efficiently produce them.

Alternatively, one can identify common bottlenecks of multiple algorithms.

In the future, more advanced quantum computers will be made and new algorithms will
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be developed. The field will face different challenges than we do now. However, as we go

from abstract algorithms to concrete implementation, it is always important to design proper

software and systems that address practical concerns.
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