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ABSTRACT

This dissertation consists of three essays. The first essay "Network Games of Imperfect Com-

petition: An Empirical Framework" studies how product differentiation affects the ability of

firms to price above costs in oligopolistic markets where products are differentiated over

multiple attributes. It shows that, under suitable assumptions, firms’ pricing power is fully

summarized by a measure of network centrality function of product characteristics. The

second essay "Plan Menus, Retirement Portfolios and Investors’ Welfare" studies the US

market of employer-sponsored retirment plans. It develops a structural model of plan menu

design and fee competition between funds to rationalize the incentives behind the provision

of high-cost investment options and to assess the effects of alternative plan design policies on

investors welfare. The third essay "Oligopolistic Competition, Fund Proliferation, and Asset

Prices" (joint work with Federico Mainardi) develops and estimates a dynamic oligopoly

model to understand why different mutual fund families introduce new funds at different

rates and at different points in time and how these competitive dynamics impact asset prices

and investors welfare.
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CHAPTER 1

NETWORK GAMES OF IMPERFECT COMPETITION: AN

EMPIRICAL FRAMEWORK

1.1 Introduction

Product differentiation plays a crucial role in allowing firms to price above costs. When

products are homogeneous, standard models of price competition predict that firms should

price at costs even in markets with only two competitors.1 The most common approach to

model product differentiation is to define a product in terms of a bundle of characteristics.

Although models of oligopolistic competition may differ in the way they are specified, they

typically carry the same intuition about how product differentiation affects products’ substi-

tution patterns and producers’ price-cost margins. Products that have similar characteristics

should be more substitutable to each other, and firms selling more differentiated products

should be able to charge higher margins. Although the intuition is clear, in models where

the characteristic space is multidimensional, it is often hard to characterize analytically how

product differentiation enables firms to price above costs.2

This paper considers a framework in which product differentiation enters substitution

patterns and firms’ price-cost margins in an way that is analytically tractable and easy

to interpret. At the same time, it allows for products to be differentiated over multiple

attributes and for consumers to have heterogeneous preferences over these attributes. In

modelling consumer preferences, I make two assumptions. First, consumers choose how

much to consume of each product. With this first assumption, I depart from the unit de-

mand framework commonly used in empirical applications.3 Second, product characteristics

1. Also assuming there are no capacity constraints.

2. This is not the case in more stylized models, such as the Hotelling and Salop models, where product
are differentiated along one dimension.

3. However, if consumers were constrained to purchase at most one unit of a single product, the model
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enter consumers’ preferences in a linear-quadratic fashion. The linear component of prefer-

ences mimics the linearity of consumers’ indirect utility, often assumed under discrete choice

demand. The quadratic term instead enters preferences with a negative sign, implying that

consumers have a taste for variety. This preference specification induces an hedonic demand

system similar to the generalized hedonic-linear (GHL) demand system recently developed

in Pellegrino (2023).4

Under the previous assumptions, I show that the cross-price elasticity between any two

products is proportional to a weighted inner product of their corresponding vector of at-

tributes. This weighting has two properties. First, it is such that, regardless of the units

with which characteristics are measured, the resulting inner product always lies in between

−1 and 1 and thus can be interpreted as a correlation between the characteristics of the two

products. Two products are substitutes if their characteristics are positively correlated and

complements otherwise. Second, the weight on a given characteristic is inversely related to

how much that characteristic varies across all products in the market. Thus, characteris-

tics that are more homogeneous across all products available matter more in determining

substitution patterns between products.

Next, I turn to the supply side to study how product attributes affect firms’ pricing

power. Although I will primarily focus on Bertrand competition because it is the workhorse

model used in empirical applications, I also consider quantity competition a la Cournot. In

both cases, I leverage the linear-quadratic structure of consumer preferences to frame the

oligopolistic game as a network game in the spirit of Ballester, Calvó-Armenagol and Zenou

(2006). Products are the network nodes, and the weighted inner product between their vector

would boil down to a standard discrete choice demand framework. The linear-quadratic model nests the
discrete choice framework. The only difference would be that the inner-product of the vector of attributes of,
say, product j, would enter the indirect utility uij as an additional product characteristic. For more details
see Appendix 1.13.

4. In studying the demand and supply of differentiated products under perfect competition, Epple (1987)
also leverages these type of preferences to study the identification of hedonic demand systems of the type
considered in the seminal work by Rosen (1974)
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of attributes determines the strength of the links between nodes. The implied competitive

network is weighted, undirected and such that the more substitutable two products are, the

stronger their link. Within this network framing, I show that firms’ equilibrium price-cost

margins can be decomposed additively into two components: a monopolistic component

and a product differentiation component. The monopolistic component captures the price-

cost margins a monopolist would charge. The product differentiation component instead

summarizes how differentiated a product is relative to its competitors and is proportional

to the Bonacich network centrality of that product. This centrality measure enters firms’

price-cost margins with a negative sign because a more central product or, equivalently, a

less differentiated product faces more competition and, in turn, charges lower markups.

In the second part of the paper, I estimate the Bertrand Network model using price-

quantity data on the US automobile industry. I show that the demand parameters can be

identified and estimated with a simple linear IV strategy, assuming that any unobserved

product characteristic enters consumers’ utility only through the linear component of pref-

erences. With the estimated demand parameters, margins and costs can be recovered from

the supply equation. Although the model is not based on discrete choice demand, it deliv-

ers reasonable price elasticities and price-cost margins. When I decompose the estimated

margins, I find that the network structure implied by the observed product characteristics

is competitive. The Bonacich product centrality, on average, accounts for more than 90%

of the monopolistic margins. By differentiating their products, car producers are able to

capture from 2% to 7% of the potential monopolistic margins.

Lastly, to quantify how much product differentiation matters in determining price-cost

margins, I compare the estimated margins with the ones firms would have charged if their

products were to be homogeneous. The estimated margins can be as high as three times

the homogeneous margins, suggesting that product differentiation plays an important role

in allowing firms to price above costs.
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The rest of the paper proceeds as follows. Section 1.2 describes how this paper fits the

literature, Section 1.3 develops the demand side of the model, Section 1.4 focuses on the

supply side and looks at both Bertrand and Cournot competition, Section 1.5 extends the

supply to the case of multiproduct firms, Section 1.6 estimates the model with market level

data on the US automobile industry and Section 1.7 concludes.

1.2 Contributions to the Literature

This paper contributes to the empirical industrial organization literature that estimates

oligopolistic models of product differentiation using market-level data. Most of this literature

models demand as a discrete choice problem and supply as a game of imperfect competition

with differentiated products where, in most cases, firms are assumed to choose prices simul-

taneously (i.e., a la Bertrand).5 Bresnahan (1987) was among the first to estimate a discrete

choice model of oligopolistic competition with products that are vertically differentiated

along one dimension (i.e., a la Hotelling). A few years later, motivated by the theoretical

advancements in the modelling of product differentiation, Feenstra and Levinsohn (1995)

extended the Bresnahan (1987) model to accommodate for product differentiation along

multiple dimensions and showed how to recover price-cost margins in this more general con-

text. Importantly, in their model, substitution patterns and markups are determined by the

distance in the characteristic space to neighbouring products.

In parallel, Berry (1994) and Berry, Levinsohn and Pakes (1995) developed methodolo-

gies to estimate oligopolistic models in which products are horizontally differentiated. These

methodologies can accommodate the presence of unobserved product characteristics, which

is one of the reasons that made them the leading approaches to estimating oligopolistic

models of product differentiation.6 An important caveat with these models is that to obtain

5. For an exception with continuous demand see Dubois, Griffith and Nevo (2014).

6. Perhaps even more importantly, these methodologies enable researchers and practitioners to test firms’
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reasonable substitution patterns, in the sense that products with similar characteristics are

more substitute to each other, one needs to introduce random coefficients on product char-

acteristics and estimate the model via a non-convex optimization. In addition, while in most

cases, the estimates obtained from these models match the common intuition that similar

products are more substitutable, it is not immediate to confirm such intuition analytically

from the model equations.

In the framework I consider, substitution patterns and price-cost margins are related to

the distance between product characteristics as in Feenstra and Levinsohn (1995) but with

the advantage that the characterization is analytical instead of being defined implicitly. More

precisely, by framing oligopolistic competition as a network game, I show that the equilibrium

price-cost margins can be expressed as a function of a product’s Bonacich centrality, which

captures how close that product is to its competitors and represents a summary statistic

for the ability of firms to price above marginal costs. I also show that the cross-price

elasticity between any two goods is determined by a weighted inner product of their vector of

characteristics which, differently from the standard discrete-choice models, can accommodate

the presence of complementary goods.7 At the same time, the model allows for unobserved

product characteristics, delivers reasonable substitution patterns and can be estimated with

a simple linear IV strategy.

Product proximity in terms of characteristics also matters for more practical aspects of

model estimation. In the context of the standard discrete choice framework developed by

Berry (1994) and Berry, Levinsohn and Pakes (1995), a recent contribution by Gandhi and

Houde (2023) shows that, under the common assumption that product characteristics are

conduct on the the supply side (Nevo (2001)) and quantify the welfare effects of mergers.

7. A notable exception is Gentzkow (2007) who develops a discrete choice model with complementary
goods. Departing from discrete choice, Thomassen, Smith, Seiler and Schiraldi (2017) develop and estimate a
demand model of complementary product categories, where consumers have quadratic preferences. Similarly,
Lee and Allenby (2009) study the role of complementarity across product categories. In their demand
model, consumers’ utility is a composite function with linear sub-utility within each product category, and
a quadratic specification across categories.
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exogenous, relevant price instruments should reflect the degree of differentiation of a product

relative to others available in the market. In particular, they show that the residual function

of the model, which depends on endogenous prices, is a function of the distances between

observed product characteristics. In the model considered here, the intuition of this result

emerges clearly from the analytical solution of the equilibrium prices (i.e., Proposition 3)

which are a function of the proximity of products in the characteristic space as measured by

their Bonacich network centrality.

Also recently, Magnolfi, McClure and Sorensen (2022) showed how to incorporate on-

line survey data on the product space into demand estimation. The data capture product

distances in the form of "product A is closer to B than it is to C" and can be used to con-

struct a low-dimensional representation of the latent product space (i.e., an embedding).

The authors show that incorporating these embeddings into conventional random coefficient

logit models delivers elasticity estimates that are similar to those from a model that uses

observable characteristics, suggesting that what matters are not attributes per se but rather

how a product’s attributes differ relative to its competitors. Similarly, in the network model

developed here, substitution patterns depend only on how similar product characteristics

are. Any set of characteristics that preserves the same network structure would generate the

same substitution patterns.

This paper also contributes to a recent literature that applies results from network theory

to study oligopolistic competition and market power. This literature builds on the seminal

contribution by Ballester, Calvó-Armenagol and Zenou (2006) to frame games of imper-

fect competition as network games with product differentiation. In a recent contribution,

Ushchev and Zenou (2018) develop a model of price competition in which product varieties

are differentiated over a network and show that a unique Bertrand-Nash equilibrium exists

and is proportional to a sign-alternating version of the Bonacich centrality. Galeotti, Golub,

Goyal, Talamàs and Tamuz (2022) also frame oligopolistic price competition as a network
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game and exploit properties of the singular value decomposition (SVD) of the Slustky ma-

trix to characterize optimal tax-subsidy designs in terms of properties of the underlying net-

work structure. Pellegrino (2023) instead considers a general equilibrium Cournot oligopoly

in which products are differentiated over multiple attributes and the network structure is

pinned down by the characteristics of the products.8 He decomposes Cournot markups

into a (quality-adjusted) productivity component and a product centrality component and

calibrates the model using data on firms’ financials from Compustat while measuring the

adjacency matrix of product characteristics using the data on product cosine similarities

constructed in Hoberg and Phillips (2016).

This paper contributes to this network literature along several dimensions. First, as

in Pellegrino (2023), but differently from Ushchev and Zenou (2018) and Galeotti, Golub,

Goyal, Talamàs and Tamuz (2022), I assume that products are differentiated over multi-

ple attributes, which imply that the characteristics of the products determine the network

structure. Second, differently from Pellegrino (2023), I focus on Bertrand competition, the

standard conduct assumption made in most empirical applications. Importantly, I show that

in both Cournot and Bertrand games, equilibrium price-cost margins can be decomposed ad-

ditively into a monopolistic component that captures the margin a monopolist would charge

and into a product differentiation component which captures how differentiated a given prod-

uct is relative to its competitors.9 I show that, in both Cournot and Bertrand, this centrality

component coincides with the standard Bonacich network centrality as defined in Bonacich

8. See also Ederer and Pellegrino (2022) which extends the Cournot network model of Pellegrino (2023)
to account for firms’ institutional ownership structure.

9. The decomposition I obtain is remindful of the one obtained by Chen, Zenou and Zhou (2018) and Chen,
Zenou and Zhou (2022) in a model of price competition with perfect price discrimination where firms sell
products that generate network externalities between connected consumers. In that setting, the price charged
to a given consumer decomposes additively into the monopoly price and the consumer network centrality.
The latter enters negatively suggesting that firms’ offer price discounts to more connected consumers. In the
model considered here, firms cannot price discriminate and there are no network externalities. The network
structure arises because products are differentiated over multiple attributes and more central products must
charge lower prices because they are not differentiated enough.
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(1987) and Jackson (2008) and, in both cases, the relevant adjacency matrix is a simple (pos-

sibly weighted) inner-product between the matrix of product characteristics X.10 Moreover,

similarly to Galeotti, Golub, Goyal, Talamàs and Tamuz (2022), I exploit the SVD of the

Slusky matrix to characterize and interpret own and cross-price elasticities (Proposition 2).

Overall, this paper provides a unified framework to model imperfect competition in

quantities or prices as a network game in which products are differentiated over multiple

attributes, and shows how to estimate the model with market-level data (e.g., prices, quan-

tities and characteristics) on a given industry using a simple linear IV strategy.

Finally, this paper contributes to the theoretical industrial organization literature that

compares equilibrium outcomes across price and quantity competition. In general, this

literature finds that under strategic complementarity in prices, Cournot equilibrium prices

are higher than Bertrand prices, thus confirming the intuition that Bertrand competition is

more intense. The seminal contribution by Singh and Vives (1984) develops the argument

for the case of a differentiated duopoly which was then extended to an N firms oligopoly

in Vives (1985).11 More recently, Magnolfi, Quint, Sullivan and Waldfogel (2022) pointed

out that, under the assumption that prices are strategic complements, imposing Cournot

competition would always lead the researcher to estimate higher markups. In Proposition

5 I show that these results also hold when comparing the Cournot network game with the

Bertrand network game. In particular, I show that, under strategic complementarity in

prices, the centrality of each product is higher under Bertrand competition.

10. The decomposition I propose here is for the dollar price-cost margins p − c. For the Cournot case,
Pellegrino (2023) instead develops a decomposition for markups defined as µ = p/c. In Appendix 1.10, I
show that the two decompositions are related. In particular, I show that the measure of centrality defined in
Pellegrino (2023) is an affine transformation of the Bonacich product centrality that enters Cournot price-cost
margins.

11. Similar results can be found in Cheng (1985), Okuguchi (1987) and Amir and Jin (2001).
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1.3 Demand

This section sets up the demand side of the model. I start by describing the set of products

available, consumers’ preferences and by deriving individual demand functions. Then, I

turn to aggregate demand and describe how product attributes affect own and cross price

elasticities.

1.3.1 Products

In the market I consider, there are j ∈ {1, ..., J} products available. Each product j is

characterized by a set of K attributes whose values are collected in the K dimensional

real-valued vector xj = (xjk)
K
k=1 where xjk is measured in units of quantity consumed.

Characteristic xjk tells you how much of attribute k you would get if you consume one unit

of product j.

1.3.2 Utility

Consumers are indexed by i ∈ I, take product prices p = (pj)
J
j=1 as given, and choose how

much to consume of each product available. I denote by qi = (qij)
J
j=1 the consumption

vector of consumer i.

I define consumer i preferences as follows:12

ui(qi, X) = qi0 +

(
q′iα

q
i −

βi
2
q′iqi

)
+ η

(
q′iXα

x
i − βi

2
q′iXX

′qi

)
= qi0 + q′iαi −

βi
2
q′i
(
IJ + ηXX ′) qi (1.1)

where qi0 is an outside good, X the J × K matrix of products attributes, η > 0 governs

the extent with which product differentiation in terms of attributes matters for consumers,

12. The same type of preferences are considered in Pellegrino (2023).
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α
q
i > 0 and αxi > 0 are respectively a J-vector and K-vector of utility parameters. Both

vectors of parameters affect the marginal utility that comes from the linear term in (1.1),

αi ≡ ηXαxi + α
q
i . Finally, βi captures i’s love for varieties.

1.3.3 Individual Demand

Consumer i takes prices p as given and maximizes (1.1) subject to

qi0 + q′ip ≤ yi (1.2)

where yi is consumer i income. After substituting for the budget constraint in (1.2), consumer

i’s demand function is given by

qi(p) =
1

βi

(
IJ + ηXX ′)−1

(αi − p) (1.3)

which is always well defined because
(
IJ + ηXX ′) is positive definite and therefore non-

singular.

1.3.4 Aggregate Demand and Price Elasticities

I assume there is a mass M of consumers that are heterogeneous in terms of (αi, βi). Further,

I assume that all moments involving the random variables αi and βi are well-defined. The

next proposition characterizes the aggregate demand function.

Proposition 1. Under the above assumptions, the aggregate demand of product j as a func-

tion of own and competitors prices is given by

qj(pj , p−j) = aj(α, β, (θjl)
J
l=1)−

1

β
(1− θjj)pj +

1

β

∑
l ̸=j

θjlpl (1.4)
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where β ≡ M
(∫ 1

βi
di
)−1

, θjl ≡ x′jΩ
−1xl where Ω ≡

(
1
η IK +X ′X

)
is a positive definite

weighting matrix independent of (j, l) and aj is a j-specific demand intercept that depends

on α ≡
∫ αi/βidi∫

1/βidi
. Moreover, for any (j, l), θjl ∈ (−1, 1) if j ̸= l whereas θjj ∈ (0, 1) if

j = l.

Equation (2.10) defines the aggregate demand for a given product j. Because consumer

preferences are quadratic, aggregate demand is linear in prices. What is more interesting is

how own and cross price elasticities relate to products characteristics. This relationship is

enclosed in the elements (θjl)j,l which determine the substitution patterns across products.

In fact, the (j, l) element of the Slutsky matrix is given by

∂qj
∂pl

=


− 1

β (1− θjj) if j = l

1
β θjl if j ̸= l

(1.5)

so that products j and l are substitutes or complements whenever θjl is respectively positive

or negative. But Proposition 1 tells us more; the element θjl is a weighted inner-product

between j and l vectors of attributes. In other words, the closer j and l are in this inner-

product space the more substitutable they are. The next result characterizes the weighting

of the inner-product between xj and xl in terms of the principal components of the matrix

of characteristics X.

Proposition 2. Let U be the K × K matrix of principal components directions of X and

for any j let x̃j = U ′xj be the projection of xj onto these principal components. Then for

any (j, l)

θjl =
K∑
k=1

(
1

1 + λx
′x

k

)
x̃jkx̃lk (1.6)

where λx′xk is the k-th eigenvalue of X ′X.
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Equation (1.6) has two main insights. First, the substitution between any two products

j and l can be expressed as a weighted inner-product between the vectors of projected

attributes x̃j and x̃l. Because U is an orthogonal matrix, this projection is innocuous in the

sense that X̃X̃ ′ = XUU ′X ′ = XX ′ and we can replace XX ′ with X̃X̃ ′ without affecting

consumer preferences defined in (1.1), individual demand defined in (1.3) and aggregate

demand defined in (2.10).

Second, the weighting of these (projected) product characteristics depends on how much

variety in terms of each characteristic is available in the whole market. From expression (1.6)

we can see that characteristics with smaller λx′xk are weighted more. But what does a small

λx
′x

k mean in practice? It means that higher weight is assigned to (projected) characteristics

that do not vary too much across products as measured by X̃ ′X̃. To see this more formally,

let uk be k-th principal component of X, x̃k the k-th column of X̃ and note that,

x̃′kx̃k = u′kX
′Xuk = u′kUΛ

x′xU ′uk = λx
′x

k . (1.7)

where the first equality comes from the definition of x̃j and x̃k, the second from the eigen-

decomposition of X ′X and the last one from the fact that U is an orthogonal matrix. Overall,

equation (1.7) tells us that characteristics that vary more across all products available in

the market will have a higher λx′xk and thus will matter less when computing substitution

patterns between any two products.

To sum up, equation (1.6) highlights that the elasticity of substitution between two

products is affected by not only how similar are their vector of characteristics, but also

by how similar are characteristics across the whole market. The substitutability between

any two products will be higher if their characteristics are similar but even more so if the

characteristics in which they are similar are the ones that are more homogeneous across all

products available.

12



1.4 Oligopolistic Competition

In this section, I turn to the analysis of the supply side. I will mainly focus on Bertrand

competition because it is the workhorse model used in empirical applications. After solving

the Bertrand game, I will turn to Cournot competition. In both cases, I show that the effect

of product differentiation on equilibrium markups is summarized by a measure of how central

a product is in the competitive network. I conclude the section by comparing the two cases

and by showing that, under strategic complementarity, Cournot competition always leads to

higher price-cost margins.

To start with, I assume that J single-product firms produce the J products with constant

marginal costs. Then, section 1.5 deals with the case in which firms are multiproductuct.

Moreover, throughout the following analysis, I will assume that an interior Nash equilibrium

exists.13

1.4.1 Bertrand Competition

Firm j takes the vector of competitor prices p−j as given and solves

max
pj

(pj − cj)qj(pj , p−j) (1.8)

s.t. qj(pj , p−j) = aj −
1

β
(1− θjj)pj +

1

β

∑
l ̸=j

θjlpl (1.9)

which is equivalent to

max
pj

(
aj +

cj
β
(1− θjj)

)
pj −

1

β

(
1− θjj

)
p2j +

1

β

∑
l ̸=j

θjlpjpl. (1.10)

13. In Appendix 1.9, I provide conditions for the existence and uniqueness of an Nash equilibrium where
pj ∈ [cj , αj ] for all j.
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The payoff function in equation (1.10) is analogous to the linear-quadratic utility functions

considered in Ballester, Calvó-Armenagol and Zenou (2006) and, as such, defines a linear-

quadratic network game in which each product is a node and the J × J matrix

A(Θ) ≡ Θ− diag(Θ) (1.11)

is the weighted and undirected adjacency matrix of the network.

Network game interpretation. The adjacency matrix defined in (1.11) shows that net-

work connections and products’ substitution patterns are isomorphic to each other. From

the previous section, we know that an off-diagonal element θjl of the matrix Θ captures the

degree of substitution between product j and product l as measured by a weighted inner-

product of their vector of characteristics xj and xl respectively. From equation (1.11), we

know that we can interpret the inner-product θjl as a weighted link between product j and

product l and therefore, we can think of the product differentiation space as being a net-

work whose nodes are the products and whose links tell us how close, or equivalently how

substitutable, any two products are.

The natural question at this point is, why embedding product differentiation into a

competitive network is relevant? Framing the product differentiation space as a network

is important because it enables us to learn how product differentiation affects equilibrium

outcomes by studying the topological properties of the network. In the next proposition,

I show that the equilibrium Bertrand price-cost margins depend negatively on a product’s

Bonacich centrality, which, following Jackson (2008), I define as

Definition 1. Let (A, J) be a network with J nodes and adjacency matrix A. The J-vector

of (weighted) Bonacich centralities b(A, δ, u) is given by

b(A, δ, u) ≡ (IJ − δA)−1δAu =
∞∑
k=1

δkAku, (1.12)
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where δ > 0 is a scalar and u > 0 is J-vector.

The j-th element of b(A, δ, u) summarizes how central node j is in the network. This

measure of centrality is widely used in social networks because it captures a node’s impor-

tance in terms of how close/connected this node is to others and how close/connected the

nodes it is connected to. According to the definition of Bonacich centrality, a node’s impor-

tance is a weighted sum of the walks that emanate from it. Moreover, if δ ∈ (0, 1), walks of

shorter length are weighted more.14

Proposition 3. Assume that θjj = θ for all j ∈ {1, ..., J}. If an interior equilibrium

p∗ = (p∗j )
J
j=1 of the Bertrand pricing game exists, then it is unique and is such that

p∗ − c =
α− c

2
− b

(
A(Θ),

1

2(1− θ)
,
α− c

2

)
, (1.13)

provided θ < 1− 1
2 maxj |λj(A)| where λj(A) is the j-th eigenvalue of the adjacency matrix

A(Θ).

The key insight of Proposition 3 is that the more central a product is in the competitive

network, the lower its equilibrium price-cost margins.15 What does this mean in practice?

From Definition 1, we can see that the higher any of the entries of the j-th row of A, the more

central node j is. In our settings, product j is more central the higher its substitutability

with any other product (i.e., the higher the elements (θjl)l ̸=j of the j-th row of Θ). Overall,

the expression for the Bertrand price-cost margins in (1.13) tells us two things. First, a less

central or, equivalently, more differentiated product will be able to charge higher markups.

Second, a product’s Bonacich centrality is a sufficient statistic to measure how product

differentiation allows firms to price above marginal costs.

14. This interpretation is motivated by the fact that when A is a binary {0, 1} it k-th power Ak counts
how many walks of length k are between any two nodes.

15. In Appendix 1.12 I perform a simple simulation exercise to visualize and summarize the properties of
the Bertrand network model.
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Comparison with Ballester, Calvó-Armenagol and Zenou (2006). In their seminal paper,

Ballester et al. show that in a general network game with quadratic payoffs, the Nash equilib-

rium action of any player is increasing in their Bonancich centrality. For the Bertrand com-

petition game I study, the opposite holds; Nash equilibrium prices decrease with a player’s

centrality. This mismatch in the results is a consequence of the fact that in Ballester et al.,

the coefficient on the linear component of players’ utility does not depend on the network

structure, whereas, in the Bertrand case, the linear term of the quadratic profit in (1.10)

depends on Θ.16

What is the economic interpretation of this result? The linear term in the Bertrand

game corresponds to the marginal benefit of the very first unit for the average consumer and

(assuming cj = 0) is given by

aj = (1− θjj)αj −
∑
l ̸=j

θjlαl. (1.14)

From expression (1.14), it is immediate to see that a more central product faces a lower

residual demand. This residual-demand effect has to be contrasted with the peer-effect

benefit of being more connected, which affects firms’ payoffs through the interaction terms

in

∑
l ̸=j

θjlplpj . (1.15)

From expression (1.15), we can see that holding everything else constant, being more central

or having more substitutes increases profits. In the class of network games studied by

Ballester et al., only this second effect is present, and it is the force that pushes players to

16. As I discuss in subsection 1.4.2, this is not the case with quantity competition a la Cournot. Conse-
quently, the relationship between the Cournot-Nash equilibrium and the Bonacich network centrality follows
immediately from the main result in Ballester, Calvó-Armenagol and Zenou (2006).
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increase their equilibrium action proportionally to their network centrality. In the Bertrand

network game, not only the residual-demand effect in (1.14) is present but, as I show in

Proposition 3, it dominates the peer-effect. As a result, the equilibrium actions (i.e., firms’

prices) decrease with a product’s centrality.

Some remarks. A couple of remarks are in order before turning to the Cournot case. First,

the assumption that θjj are homogeneous across j is made only for expositional purposes,

and the proof presented in Appendix 1.8 is provided for the general heterogeneous case.

Similarly, Section 1.5 generalizes the result to the case in which firms are multiproduct.

Second, the condition on the largest eigenvalue of A(Θ) ensures that the Bonacich central-

ity can be rewritten as a convergent infinite sum. If the condition is not satisfied, expression

(1.13) would still be well-defined but not expressable as an infinite series.

Third, Proposition 3 offers a two-terms decomposition of price-cost margins, a monopolis-

tic component and a product differentiation component summarized in terms of the network

centrality. Interestingly, this latter component matters only to the extent that firms are

competing with each other. As I show in Section 1.5, when there is a multiproduct monop-

olist, the product differentiation component converges to zero, and monopolistic price-cost

margins are charged to each of the J product varieties.

1.4.2 Cournot Competition

In this section, I focus on quantity competition a la Cournot. To define a firm’s objective, I

need the inverse aggregate demand instead of the aggregate demand derived in Proposition

1. Compared to Bertrand, deriving the aggregate demand for the Cournot case is almost

immediate. Starting from (1.3), and defining α and β as in Proposition 1 the aggregate
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inverse demand for product j is

pj(qj , q−j) = α− β(1 + η(x′jxj))qj − ηβ
∑
l ̸=j

(x′jxl)ql. (1.16)

Similar to the Bertrand case, substitution patterns in Cournot are driven by an inner product

between product attributes. In this case, the inner product is unweighted, and the substi-

tutability between products j and l is given by x′jxl. One drawback of this is that, without

a normalization on the scale of characteristics, the implied product adjacency matrix can

have weights larger than one in absolute value, which makes it less interpretable. In the

Bertrand case, as shown in Proposition (3), no normalization of the product characteristics

is required.

Firm j takes competitors’ quantities as given and solves

max
qj

(αj − cj)qj − β(1 + η(x′jxj))q
2
j − ηβ

∑
l ̸=j

(x′jxl)qlqj (1.17)

The Cournot objective in (1.17) also defines a network game with quadratic payoffs. In

this case, the relevant adjacency matrix will be constructed from the matrix Θ− ≡ −XX ′.

Why this is important will be clear in the following Proposition, where I derive the Cournot

price-cost margins as a function of the vector of Bonacich centralities.

Proposition 4. Let Θ− ≡ −XX ′ and assume that θ−jj = θ− for all j ∈ {1, ..., J}. If an

interior equilibrium q∗ = (q∗j )
J
j=1 of the Cournot game exists, then it is unique and is such

that

p∗ − c =
α− c

2
+ b

(
A(Θ−),

η

2(1− ηθ−)
,
α− c

2

)
(1.18)

provided θ− < 1
η − 1

2 maxj |λj(A(Θ−))| where λj(A) is the j-th eigenvalue of the adjacency

matrix A(Θ−).
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The expression for Cournot price-cost margins resembles very closely the one for Bertrand

described in (1.13). The most apparent difference is that now price-cost margins seem to

increase in the product’s centrality, but this is not the case. To see this, note that the

relevant adjacency matrix here is Θ = −XX ′, which, because of the minus sign, assigns

higher centrality whenever a product becomes less substitutable with any other product or

equivalently more differentiated. As expected, Cournot and Bertrand’s price-cost margins

are higher for more differentiated products.

In the context of Cournot competition, Pellegrino (2023) also develops a decomposition

of firms’ markups, defined as pj/cj , into a productivity component αj/cj and a product

centrality component, denoted by 1−χj in the paper. Although different, the two decompo-

sitions are related to each other. More precisely, in Appendix 1.10, I show that the product

centrality defined in Pellegrino (2023) is an affine transformation of the Bonacich product

centrality that enters the Cournot price-cost margins in equation (1.18).

Comparison with Ballester, Calvó-Armenagol and Zenou (2006). As I did for the Bertrand

case, it is interesting to compare the result in Proposition 4 to the more general result pro-

vided in Ballester et al. Differently from Bertrand, the linear component of the quadratic

payoff in (1.17) does not depend on the network structure, which makes the Cournot game

analogous to the network game considered in Ballester et al., provided one defines the adja-

cency matrix as −XX ′.

1.4.3 Bertrand vs Cournot

In this subsection, I compare the Bertrand and Cournot equilibrium outcomes. I start by

describing the main differences between the two in terms of the product characteristics space.

Then, I study how the network structure depends on the nature of competition and show that

when there is strategic complementarity in prices, Bertrand competition leads to a network

in which each product is more central and where price-cost margins are lower.
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Product characteristics. In both models, product characteristics affect substitution pat-

terns through an inner product matrix. In Cournot, this matrix is simply the inner product

between each product’s vector of attributes and is given by XX ′. In Bertrand, as shown in

Proposition 1, this inner-product matrix is instead XΩ−1X ′ where Ω is a K × K matrix

that reweights each vector of characteristics. At first glance, it might seem that product

characteristics are different in the two models, but because Ω is positive definite, this turns

out not to be the case.

To see this more formally, note that Ω is diagonalizable through an orthonormal basis

of eigenvectors S such that Ω−1 = SΛS′ where Λ = diag(λ1, ..., λK) is a diagonal matrix

that collects the eigenvalues of Ω−1. Then, by letting X̃ = XS, we can redefine product

characteristics without changing their inner-product X̃X̃ ′ = XX ′. Thus comparing XX ′ to

XΩ−1X ′ is equivalent to comparing X̃X̃ ′ to X̃ΛX̃ ′. From this second comparison, it is easy

to see that for any characteristic k, if x̃jk ≥ x̃lk, then
√
λkx̃jk ≥

√
λkx̃lk, where the latter

inequality holds because Ω is positive definite and thus λk > 0 for all k. In practice, this

means that, under Bertrand, each product characteristic is just rescaled by a positive number

λk. Thus, whether product j offers more characteristic k than product l is independent of

the type of competition model, as one would expect.

Another important difference is that the competitive network implied by Bertrand does

not depend on the units with which product characteristics are measured. From Proposition

3, we know that θjl, or equivalently x′jΩ
−1xl, or equivalently x̃′jΛx̃l, always lie in between

−1 and 1 regardless of the units with which each characteristic is measured, which is an

appealing property in an empirical context.

Competition and network structure. The following proposition shows how the nature

of competition influences the structure of the competitive network by comparing the network

centralities implied by price and quantity competition, respectively.

Proposition 5. Assume that θjk ≥ 0 if j ̸= k. Then each node centrality in the network
20



implied by Bertrand competition is higher than the one under Cournot competition, i.e.,

b̃b ≥ −b̃c where b̃b ≡ (IJ − diag(Θ))−1/2bb and −b̃c ≡ (IJ − diag(Θ−))1/2(−bc) are the

vectors of Bertrand and Cournot centralities respectively.

As described in Section 1.2, several papers in the industrial organization literature have

studied how equilibrium outcomes compare across the two types of competition models. In

general, under strategic complementarity in prices, it is known that Bertrand competition

with differentiated products is more efficient than Cournot competition and leads to lower

prices and higher consumer surplus.17 The same is true in this network setting where the

vector of Bonacich centralities captures the intensity of competition. Proposition 5 shows

that each node has a higher centrality under Bertrand and thus faces more intense compe-

tition. Moreover, looking back at the results in Propositions 3 and 4, one can see that the

vector of Bonacich centralities is the only determinant of the wedge between Cournot and

Bertrand prices. Hence, the effect of more intense competition on equilibrium prices must

be entirely captured by differences in centrality.

Remarks. Before concluding this section, a couple of remarks are in order. First, note

that the centrality implied by the Cournot model enters the inequality in Proposition 5 with

a negative sign. This is because the centrality in Cournot is based on the matrix −XX ′,

which assigns a lower centrality to a more substitutable product. The measure bb implied

by Bertrand instead assigns higher centrality to more substitutable products and should be

compared to −bc. To see this mathematically, suppose we knew that Cournot equilibrium

prices pc were to be higher than Bertrand prices pb then by combining equations (1.13) and

(1.18), the inequality in Proposition 5 would follow immediately.

Second, the Bonancich centralities are scaled by two positive diagonal matrices. This

scaling appears because I am not imposing homogeneity across j of the θjj and θ−jj and

17. With homogenous products, the efficiency of Bertrand competition is maximized; even with only two
firms, the perfectly competitive outcome obtains.
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the vectors of Bonacich centralities enter equilibrium price-cost margin after this positive

rescaling.18 Furthermore, because the scaling is positive, the effect of product differentia-

tion on equilibrium price-cost margins remains unaffected; higher centrality implies lower

markups.19

1.5 Multiproduct Firms

In this section, I allow for the possibility that the same firm owns multiple products. I index

firms by f and denote by Jf the set of products offered by firm f . Assuming there are

F < J firms, the F × J matrix R keeps track of which product belongs to which firm, i.e.,

rfj = 1{j ∈ Jf} and the J × J matrix H = R′R denotes the ownership matrix. Moreover,

as typically assumed in the context of multiproduct firms, I will assume that one product

can only be owned by one firm or equivalently that the sets (Jf )
F
f=1 forms a partition of

the set {1, ..., J}. The latter implies that the ownership matrix H will be a block-diagonal

matrix with F blocks where the matrix of ones 1|Jf |1
′
|Jf |

corresponds to f -th block.

In what follows, I will focus on Bertrand competition, but everything can be restated

in terms of Cournot competition. I start by defining the profit maximization problem for a

generic firm f and frame it as a Network game. Next, I show that in the case of multiprod-

uct firms, the implied adjacency matrix only keeps track of the competitive links between

products across different firms but not between products within the same firm. Finally, I

extend the result in Proposition 3 and derive equilibrium price-cost margins in terms of the

vector of Bonacich centralities. The result points to an intuitive comparative static for the

18. In Proposition 3 and 4 this homogeneity assumption was made only for expositional purposes. For
more details, refer to the proofs of Propositions 3, 4 and 5, which are presented for the non-homogeneous
case.

19. A similar type of rescaling also appears in the more general setting considered by Ballester, Calvó-
Armenagol and Zenou (2006). If we allow for heterogeneity in the curvature (σii in their notation) of own
marginal returns, Remark 2 in their paper suggests scaling all elements of the adjacency matrix by its
diagonal elements σii. My scaling is similar, but it preserves the symmetry of the adjacency matrix.
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conduct parameter H: when moving toward a more collusive industry structure (e.g., as

H → 1J1
′
J ), product differentiation (or equivalently product centrality) matters less and

less for the equilibrium price-cost margins.

1.5.1 Multiproduct Firm Problem

Under Bertrand competition, firm f chooses prices (pj)j∈Jf taking prices of competitors

firms as given to maximize

max
(pj)j∈Jf

J∑
j=1

rfj(pj − cj)qj(pj , p−j) (1.19)

s.t. qj(pj , p−j) =

aj(1− θjj)−
∑
l ̸=j

θjlal

− (1− θjj)pj +
∑
l ̸=j

θjlpl

Problem (1.19) is a quadratic problem in the vector of prices chosen by firm f , (pj)j∈Jf

and as such can be framed as a network game. The main difference from the single product

problem in (1.10) is that now firm f will price its products jointly and will internalize how

increasing a given price impacts the market shares of each of its products, i.e., the so-called

portfolio effect.

How does the portfolio effect due to multiproduct pricing affect the equilibrium outcomes?

When interpreting oligopolistic competition as a network game, the answer is fully captured

by the adjacency matrix of the competitive network, which, as I show formally in Proposition

6, is a function of the ownership structure H

AH(Θ) ≡ Θ−H ⊙Θ (1.20)

where ⊙ is the Hadamard matrix product. The matrix Θ still captures the competitive

links between products. However, in the presence of multiproduct firms, the links between
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products within the same firms are set to zero by subtracting the block diagonal matrix

H ⊙ Θ. The resulting adjacency matrix AH(Θ) keeps track of the competitive links only

between products owned by different firms.

1.5.2 Equilibrium price-cost Margins for Multiproduct Firms

In the next Proposition, I show that the result in Proposition 3 extends to the case in which

firms sell multiple products and price them jointly. The result is presented for the case where

own-price elasticities are heterogeneous across products, e.g., θjj varies across j.

Proposition 6. For a given ownership structure H, if an interior equilibrium (p∗j )
J
j=1 of

the Bertrand pricing game exists, then it is unique and is such that

p∗ − c =
α− c

2
− (I −H ⊙Θ)−1/2b

(
GH(Θ),

1

2
, (I −H ⊙Θ)1/2

α− c

2

)
(1.21)

provided maxj |λj(G)| ≤ 2 and where GH(Θ) ≡ (I −H ⊙Θ)−1/2AH(Θ) (I −H ⊙Θ)−1/2

is a weighted adjacency matrix with elements in (−1, 1).

Similarly to the single-product case, in the multiproduct case, price-cost margins can

be decomposed into a monopolistic component (α − c)/2 and into a product differentiation

component proportional to the vector of Bonacich centralities b. The fact that some subsets

of products are priced jointly influences the network structure and, in turn, the centrality

of each node. In particular, it affects the adjacency matrix by setting all the competitive

links between products owned by the same firm to zero, i.e., any (j, l) element of the matrix

AH(Θ) is zero whenever i, j ∈ Jf for some firm f and the same is true for the matrix GH(Θ).

One slight difference between the single and multiproduct cases is that the matrix G(Θ)

that enters the Bonacich centrality is not necessarily symmetric, although its elements still

belong to (−1, 1). Luckily, this is not too much of a problem because one advantage of

the Bonacich centrality compared to other measures is that it can be applied regardless of
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whether the network is directed or undirected.20 This would not be the case if we were to

use a measure of degree centrality, which, in the case of directed networks, needs to consider

the direction of the link.

Comparative static with respect to H. The expression in equation (1.21) points to

an insightful comparative static in terms of the ownership structure matrix or, equivalently,

the conduct parameter H. Consider first the extreme cases in which either firms are single-

products (equivalently no collusion), or there is a single monopolist (equivalently perfect

collusion). In the non-collusive case, we can see that expression (1.21) collapses to the

outcome described in Proposition 3 because H = IJ and H ⊙ Θ = diag(Θ). Conversely,

under perfect collusion, H = 1J1
′
J , H ⊙ Θ = Θ and price-cost margins collapse to the

monopolistic price-cost margins given by (α − c)/2. The reason is that when all products

are priced jointly, all the competitive links in the adjacency matrix A1J1
′
J
(Θ) = Θ−Θ = O

are set to zero, and product differentiation does not matter for price-cost margins.

To gain more intuition, suppose that A(Θ) is non-negative or equivalently that prices are

strategic complements. Then, as the market becomes more collusive (i.e., H → 1J1
′
J ), the

centrality of each product decreases because AH(Θ) → O element-wise and the importance of

the monopolistic component (i.e., portfolio effect) in determining price-cost margins increases

relative to the product differentiation component.

1.5.3 Market Definition and Mergers

Framing oligopolistic competition with product differentiation as a network game is insightful

for at least two reasons.

First, from Proposition 6, we know that changes in the ownership structure will affect

equilibrium price-cost margins only through the product differentiation component. There-

fore, assuming there are no cost synergies, the only thing needed to assess the effect of

20. See also Remark 3 in Ballester, Calvó-Armenagol and Zenou (2006).
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mergers on equilibrium prices is the vector of product centralities under the merger and no

merger scenarios. In practice, this requires taking a stand on the relevant product charac-

teristics for consumers. Depending on the industry under consideration, this might be more

or less difficult. However, if one is willing to assume Bertrand competition, no normalization

on the levels or the scale of product attributes is needed because, as I showed in Propositions

1 and 3, characteristics affect substitution patterns and price-cost margins only through a

normalized inner-product.

A second advantage of modelling product differentiation as a competitive network is

that, as already pointed out in Hoberg and Phillips (2016), there is no need to put too

much thought into defining the relevant market. To the extent that the vector of attributes

adequately describes substitution patterns across products, the implied network structure

defines the market; products that are more substitutable to each other will share a stronger

link in the network. Thus, even a broad definition of the market, such as an entire industry,

would not affect the merger analysis as long as the product characteristics considered capture

the true substitution patterns across products.

1.6 Application: The US Automobile Industry

In this section, I estimate the model using data on the US automobile industry. The same

data have been used extensively in the empirical industrial organization literature starting

from the seminal contribution in Berry, Levinsohn and Pakes (1995).

Before going into the estimation details, I want to remark that, although the car industry

is important, it does not represent the most ideal application for the current setting. The

reason is that consumers in the model have a taste for variety and will consume more than

one good. In the context of car choice, this is not the most realistic assumption because

households typically own no more than two cars and, in most cases, would buy only one

car at the time of purchase. Nonetheless, as I show later, the model produces reasonable
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substitution patterns and price-cost margins.

In what follows, I describe the data sources and the empirical model. Then, I recover

own-cross price elasticities and price-cost margins. Lastly, I decompose price-cost margins

and quantify how much of those are attributable to product differentiation.

1.6.1 Data

I obtain data on the US automobile industry from two different sources. First, I downloaded

the data in Berry, Levinsohn and Pakes (1995) from the replication package accompanying

a recent paper by Andrews, Gentzkow and Shapiro (2017). These data include the quantity

sold by each car brand which I need because aggregate demand is derived in terms of quan-

tities and not market shares. The second source of data is included in the recent Python

package developed in Conlon and Gortmaker (2020), which again contains the very same

automobile data but also includes the set of demand and supply instruments used in Berry,

Levinsohn and Pakes (1995), which I will use to estimate demand in my model. Lastly, I

collect data on the number of US households from the FRED website.

Overall, the data contains information on prices, quantities, market shares and character-

istics of several car models sold in the US from 1971 to 1990. Table 1.1 reports sales-weighted

averages of some relevant variables for each year. Average quantities sold are in units of 1000,

average prices are in $1000 units, and the number of households is in millions. The last five

columns are sales-weighted averages of product characteristics: HP/WT is the ratio of horse-

power to weight, Air is a dummy for whether air conditioning is standard, Size captures the

space of the car, MP$ measures the number of ten-mile increments one could drive for $1

worth of gasoline, and lastly MPG measures the number of ten-mile increments one could

drive with one gallon of gasoline.

Several interesting patterns emerge from Table 1.1. The number of competing firms has

been roughly constant, ranging between 17 and 22 multiproduct car manufacturers. The
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Year Firms Models Own models Competitors Quantity Price Households HP/WT Air Size MP$ MPG

1971 18 92 5.11 86.89 86.89 7.87 64.78 0.49 0.00 1.50 1.85 1.66
1972 19 89 4.68 84.32 98.62 7.98 66.68 0.39 0.01 1.51 1.87 1.62
1973 17 86 5.06 80.94 92.79 7.53 68.25 0.36 0.02 1.53 1.82 1.59
1974 17 72 4.24 67.76 105.12 7.51 69.86 0.35 0.03 1.51 1.45 1.57
1975 19 93 4.89 88.11 84.77 7.82 71.12 0.34 0.05 1.48 1.50 1.58
1976 21 99 4.71 94.29 93.38 7.79 72.87 0.34 0.06 1.51 1.70 1.76
1977 18 95 5.28 89.72 97.73 7.65 74.14 0.34 0.03 1.47 1.83 1.95
1978 18 95 5.28 89.72 99.44 7.64 76.03 0.35 0.03 1.40 1.93 1.98
1979 18 102 5.67 96.33 82.74 7.60 77.33 0.35 0.05 1.34 1.66 2.06
1980 19 103 5.42 97.58 71.57 7.72 80.78 0.35 0.08 1.30 1.47 2.21
1981 19 116 6.11 109.89 62.03 8.35 82.37 0.35 0.09 1.29 1.56 2.36
1982 19 110 5.79 104.21 61.89 8.83 83.53 0.35 0.13 1.28 1.82 2.44
1983 18 115 6.39 108.61 67.88 8.82 83.92 0.35 0.13 1.28 2.09 2.60
1984 20 113 5.65 107.35 85.93 8.87 85.41 0.36 0.13 1.29 2.12 2.47
1985 20 136 6.80 129.20 78.14 8.94 86.79 0.37 0.14 1.26 2.02 2.26
1986 22 130 5.91 124.09 83.76 9.38 88.46 0.38 0.18 1.25 2.86 2.42
1987 21 143 6.81 136.19 67.67 9.97 89.48 0.39 0.23 1.25 2.79 2.33
1988 20 150 7.50 142.50 67.08 10.07 91.07 0.40 0.24 1.25 2.92 2.33
1989 21 147 7.00 140.00 62.91 10.32 92.83 0.41 0.29 1.26 2.81 2.31
1990 20 131 6.55 124.45 66.38 10.34 93.35 0.42 0.31 1.27 2.85 2.27

Table 1.1: Sales-weighted averages.

same is true for the average number of car models produced by a single manufacturer, which

increased slightly from 5 to 6.5. On the other hand, the total number of available car models

increased more than 40%, from 92 in 1971 to 131 in 1990. At the same time, the average

number of models produced by competitor firms also increased by 40%, from 87 models in

1971 to 124 in 1990, suggesting that competition in the number of products increased for the

average firm. Next, looking at the average quantity and prices, the former decreased with

cyclical ups and downs over time. In contrast, sales-weighted prices increased throughout

the ’80s while being roughly constant in the ’70s. Product characteristics have also changed.

For instance, air-conditioning becomes a more common feature over time, and both tens of

miles per dollar (MP$) and tens of miles per gallon (MPG) increased, suggesting that cars

have become more efficient over time. At the same time, car size seems to have decreased,

whereas horsepower has been roughly constant.

Before turning to the estimation of the model and recovering products’ price-cost margins,

it is helpful to get a sense of how prices correlate with product characteristics in the raw
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data without imposing any modelling structure. To this end, Figure 1.1 presents a binscatter

of car prices against an unweighted measure of product centrality which summarizes how

differentiated a product is relative to its competitors. The measure of centrality on the

x-axis is motivated by the result I provided in Proposition 3 but differs in several respects

because some terms are unobserved. The intuition described in equation (1.13) is simple:

the margin over marginal cost a firm can charge depends negatively on how central its

product is in the competitive network. Empirically though, whether or not this relationship

between margins and centrality holds cannot be tested directly because marginal costs (c)

and consumer preferences (α) are unobserved. Nonetheless, Figure 1.1 attempts to do so

naively by proxying margins (i.e., the left-hand side of equation (1.13)) with observed prices

and the Bonacich centrality b(A(Θ), 1/2, (α − c)/2) (i.e., the second term in (1.13)) with

a similar centrality measure where ((α − c)/2) is replaced with a vector of ones 1J . The

resulting measure is an unweighted Bonacich centrality given by

b (A(Θ), 1/2, 1J ) =

(
IJ − 1

2
A(Θ)

)−1 1

2
A(Θ)1J , (1.22)

which I can compute directly from the raw data. To compute Θ, I use the same product

characteristics that enter the indirect utility in Berry, Levinsohn and Pakes (1995) namely

horsepower (HP/WT), air conditioning, size and miles-per-dollar (MP$), and I calibrate η

to 0.136.21

Returning to Figure 1.1, we can see that products with higher unweighted Bonacich

centrality tend to charge lower prices. This decreasing relationship looks stronger for lower

values of product centrality and seems to flatten as centrality increases. Although prices

and centrality are negatively correlated as predicted by the network Bertrand model, from

Figure 1.1, we cannot conclude that less central firms can charge higher margins and thus

21. The parameter η corresponds to the α
1−α in Pellegrino (2023) which is calibrated to α to 0.12.
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Figure 1.1: Binscatter of car prices against (unweighted) product Bonacich centrality after
partialling out time fixed effects.
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have more market power.22 The reason is that the relationship can be driven by unobserved

costs or heterogeneity in consumer preferences, which we are not accounting for. To uncover

these unobservable components, we need a structural model of competition that allows us to

identify consumer preferences and marginal costs. In the next section, I leverage the struc-

ture of the Bertrand network model to identify and estimate both the linear and quadratic

components of consumer preferences. After estimating these demand parameters, I recover

firms’ marginal costs from the Nash-Bertrand equilibrium conditions.

1.6.2 The Empirical Nash-Bertrand Network Model

In this section, I make the Bertrand network model described in Section 1.4.1 empirically

operational and adapt it to the context of car consumption.

An implicit assumption of the demand model introduced in Section 1.3 is the absence

of income effects due to the quasi-linearity of consumer preferences in the outside good. In

the context of car purchases, this assumption might be unrealistic. For this reason, I will

now extend the demand model parsimoniously to accommodate income effects. To this end,

I follow Berry, Levinsohn and Pakes (1995), and model consumer preferences for the inside

and outside goods in a Cobb-Douglas fashion

Ui
(
yi − p′qi, qi;X

)
=
(
yi − p′qi

)γ
[Gi (qi, X)]ϕ (1.23)

where the first term in U already substitutes for the budget constraint and

G(qi, X) ≡ exp

{
q′iαi −

βi
2
q′i
(
IJ + ηX ′X

)
qi

}
.

22. Similarly, if prices and centrality were positively correlated or uncorrelated in the data, we could not
conclude that centrality does not influence price-cost margins as predicted by the model.
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Next, substituting G into (1.23) and taking logs, consumer i’s utility can be written as

ui(qi, X) ≡ log (Ui) = γ log(yi − p′qi) + q′iαi −
βi
2
q′i
(
IJ + ηX ′X

)
qi (1.24)

≈ q′i

(
αi −

p

yi

)
− βi

2
q′i
(
IJ + ηX ′X

)
qi (1.25)

where I normalize ϕ = 1 and γ = 1 because they cannot be separately identified from αi and

βi, and I use a first order Taylor expansion to approximate log
(
yi − p′qi

)
.23 The preferences

in (1.25) are identical to the ones described in Section 1.3 except for the fact that prices are

now measured relative to income. Consumer i’s demand system can be derived as before

qi(p) =
1

βi

(
IJ + ηXX ′)−1

(
αi −

p

yi

)
. (1.26)

To derive the aggregate demand for product j we need to integrate over the distribution

of consumer preferences (αi, βi, yi). Assuming that yi is independent of (αi, βi),24 aggregate

demand for product j is given by:

qj(pj , p−j) = aj −
1

β
(1− θjj)

pj
y

+
1

β

∑
k ̸=j

θjk
pk
y

(1.27)

where α =
∫ αi/βi

1/βi
di, β = M

[∫ 1
βi
di
]−1

, y = M
[∫ 1

yi
di
]−1

and θjk = x′jΩ
−1xk. Overall,

the demand functions are identical to the ones presented in Section 1.3 except that income

effects are now present.

To make the model empirically operational, let t denote a market (i.e., a year in our

23. The same approximation has been used in Berry, Levinshon and Pakes (1999).

24. In empirical IO it commonly assumed that preferences parameters are idiosyncratic and independent
from demographics.
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empirical context) and note that equation (1.27) can be rearranged in vector form as

q̃t ≡ (IJt + ηXtX
′
t)qt =

1

β

(
αt −

pt
yt

)
(1.28)

where Jt is the number of car models available in market t, Xt is a Jt×K matrix of product

characteristics and the linear preference parameter vector α is allowed to vary over time.

Next, consider the jth equation of the above system

q̃jt =
1

β

(
αjt −

pjt
yt

)
(1.29)

and note that, upon calibrating η and assuming that the matrix Xt contains only observ-

ables characteristics, the left-hand side in (1.27), denoted by q̃jt, is directly measurable.

Conversely, on the right-hand side of (1.27), only pt and yt are observable.25

More generally, equation (1.29) suggests that we can estimate demand using the following

linear specification

q̃jt = − 1

β

pjt
yt

+ w′
jtζ + ξjt (1.30)

where wjt is a vector of observable product and demographic characteristics which, in this

context, includes both xjt and yt. On the other hand, ξjt includes characteristics that are

unobservable to the econometrician but known by the agents.

To summarise, two assumptions allow us to estimate demand from (1.30). First, all

the characteristics that enter consumer preferences in the quadratic term are observable.

Second, any unobserved characteristic (ξjt) enters consumer preferences only through the

25. To measure income in a given year, I use the simulated draws that come with the pyBLP package
developed in Conlon and Gortmaker (2020), and I average them using the weights provided. The draws
come from a log-normal distribution of income whose location and scale parameters are estimated from the
Current Population Survey (CPS) each year as described in Berry, Levinsohn and Pakes (1995).
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linear parameter vector α, i.e.,26

αjt = β(w′
jtζ + ξjt) (1.31)

To consistently estimate (1.30), we need to instrument pjt/yt because prices will be

correlated with the unobservable component ξjt. The reason is that firms internalize ξjt

before setting prices simultaneously. To see this formally, recall that Nash equilibrium prices

are given by

pjt = cjt +
ytαjt − cjt

2
+ bjt (1.32)

and note that those prices are a function of αjt (and in turn function of ξjt) both directly

and indirectly through product j’s Bonacich centrality bjt.27 Under this setting, demand

can be estimated with a simple linear instrumental variable strategy which I describe next.

1.6.3 Estimation Results

I start by estimating demand from the linear specification in (1.30). To do so, I instrument

the term pjt/yt using the set of demand instruments zjt constructed in Berry, Levinsohn

and Pakes (1995) and available in the pyBLP Python package developed by Conlon and

Gortmaker (2020). These instruments are a function of product characteristics and, as a

consequence, are correlated with prices because, per the supply equation (1.32), characteris-

tics affect firms’ pricing decisions through the centrality term bjt and the observable part of

αjt. The fact that our instruments are correlated with prices is not enough, and we also need

to ensure that demand remains constant while instruments shift the supply. The identifying

26. I am also assuming that the parameter β is constant across markets. This assumption can be partially
relaxed by interacting prices with any market level observable in equation (1.30).

27. The derivation of (1.30) is analogous to the one presented in the proof of Proposition (3) with the
exception that the income term now appears.
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OLS IV-2SLS

Constant -0.1023 -0.1005
(0.0043) (0.0044)

Air (dummy) -0.0179 0.0039
(0.0145) (0.0183)

MP$ 0.0331 0.0368
(0.0104) (0.0104)

HP/WT 0.1432 0.1040
(0.0448) (0.0476)

Space -0.0138 -0.0115
(0.0168) (0.0166)

price/income -0.0043 -0.0327
(0.0037) (0.0121)

Fstat (Excluded) - 92.1276
R2 0.8704 0.6257
Observations 2,217 2,217

Table 1.2: Demand estimates. Both specifications include interactions between characteristics and
income, not reported here but available in Appendix 1.11. Standard errors are clustered at the car
model level.

assumption relies on the idea that firms choose characteristics before observing any demand

shock ξjt which formally boils down to requiring that E[ξjt|zjt] = 0.

Table 1.2 reports both OLS and 2SLS demand estimates for the linear specification

in equation (1.30). In both cases, the vector of characteristics wjt includes a dummy for

air conditioning, miles per dollar (MP$), horsepower (HP/WT), space and the interaction

between all of those with income. The coefficients on characteristics are similar across the

two specifications, and, in both cases, only horsepower and miles per dollar are significantly

different from zero. Both coefficients are positive, suggesting that the average consumer

prefers cars with more horsepower and cars that are more efficient in gasoline consumption.

The estimated price-to-income coefficient is the most evident difference between the OLS

and 2SLS specifications. With OLS, the coefficient is not statistically different from zero. In

contrast, when we instrument for prices, the coefficient becomes negative and significant, and

its magnitude increases almost ten folds in absolute value. The discrepancy between OLS
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and IV estimates is quite common in contexts where prices and quantities are determined

simultaneously in equilibrium. OLS estimates often imply inelastic demand curves because

the observed variation in quantity and prices is also due to shifts in demand. However, after

instrumenting for prices, the resulting estimates recover demand curves that are much more

elastic.

After estimating the demand parameters, one would recover firms’ marginal costs from

equation (1.32). One issue in our context is that we do not observe αjt, and we need to

estimate it before being able to back out cjt. Luckily, we can obtain an estimate of α̂jt

for each product j and market t by simply plugging our demand estimates (β̂, ζ̂) and the

estimated regression residuals (ξ̂jt) into equation (1.31),

α̂jt = β̂
(
w′
jtζ̂ + ξ̂jt

)
. (1.33)

From the pricing equation in (1.32), with an estimate of αjt, we can then recover marginal

costs cjt, price-cost margins pjt − cjt and decompose the latter into monopolistic price-cost

margins (αjt − cjt)/2 and network centrality bjt.

Figures 1.2 and 1.3 show the distribution of both marginal costs and price-cost margins

in $1000.28 The median marginal cost across models and years is around $6,900, and 3/4

of car models have a marginal cost lower than $12,500. The distribution of estimated price-

cost margin is more spread out, with a median margin around $1,500 and 75% of car models

charging a margin lower than $3,200. Overall, although I started from linear-quadratic

preferences rather than discrete choice, the estimated price-cost margins seem reasonably

close to the ones recovered in Berry, Levinsohn and Pakes (1995).

Next, I decompose price-cost margins into a monopolistic component and a product cen-

trality component which measures how differentiated a given product is relative to its com-

28. I removed roughly 6% of observations estimated to have negative marginal costs.
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Figure 1.2: Distribution of marginal costs.

Figure 1.3: Distribution of price-cost margins.
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Year MC ($1000) PMC ($1000) MPCM ($1000) BC ($1000) PMC/MPCM (%) BC/MPCM (%)

1971 4.435 4.668 92.937 88.269 4.99 95.01
1972 4.290 4.825 101.971 97.146 4.79 95.21
1973 4.096 4.695 89.996 85.301 5.26 94.74
1974 4.256 4.295 65.251 60.956 6.51 93.49
1975 4.462 3.803 66.107 62.304 5.70 94.30
1976 4.247 3.990 88.535 84.545 4.53 95.47
1977 4.299 4.014 93.829 89.815 4.33 95.67
1978 4.198 4.091 101.548 97.457 4.08 95.92
1979 4.541 3.708 70.299 66.592 5.24 94.76
1980 4.503 3.514 49.657 46.143 7.05 92.95
1981 5.627 3.151 49.460 46.309 6.36 93.64
1982 6.270 2.848 55.414 52.566 5.13 94.87
1983 5.906 3.281 75.745 72.464 4.39 95.61
1984 4.917 4.259 98.949 94.690 4.36 95.64
1985 5.767 3.614 101.260 97.645 3.62 96.38
1986 5.556 4.133 175.756 171.623 2.42 97.58
1987 6.578 3.807 150.768 146.960 2.56 97.44
1988 6.782 3.834 167.875 164.042 2.28 97.72
1989 7.288 3.600 146.416 142.816 2.46 97.54
1990 7.417 3.326 135.846 132.520 2.48 97.52

Table 1.3: Sales-weighted averages of the decomposition of price-cost margins (PMC).

petitors. Table 1.3 reports sales-weighted averages of such decomposition for each year avail-

able. The second column shows that the average marginal cost (MC) was stable throughout

the ’70s and then increased in the ’80s. The third column reports average price-cost margins

(PCM) in $1000. Following equation (1.13), the fourth and fifth columns decompose PCMs

into monopolistic price-cost margins (MPCM) and a Bonacich centrality component (BC).29

The monopolistic margins, given by (αjt−cjt)/2 vary considerably across years ranging from

around $50,000 up to almost $170,000 and suggesting that the linear component of consumer

preferences αjt varies substantially over time. This time variation in preferences can cap-

ture changes in economic conditions, changes in regulation such as the import restriction

on Japanese cars imposed throughout the ’80s and changes in the type and number of car

models available. The product centrality component bjt also shows the same type of time

variation and is, in magnitude, quite close to the monopolistic margins.

29. The decomposition used in Table 1.3 takes into account the fact that products have heterogeneous
own-price elasticities and that firms are multiproduct.
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Figure 1.4 takes a closer look by plotting the monopolistic margins (MPCM) together with

the product centrality (BC) on the left y-axis and the price-cost margins on the right y-axis

over time. Monopolistic margins and product centrality follow a similar cyclical behaviour

suggesting that the main driver could be time variation in consumer preferences αjt, which

affects monopolistic margins but also the Bonacich product centrality through the weights.30

Price-cost margins slightly fluctuate over time and seem to follow the cyclical behaviour of

the other two variables. However, because the scale of the magnitude is way smaller, it is safe

to conclude that PCMs have been basically constant over time, ranging on average between

$3000 and $5000 overall but mostly in between $3000 and $4000 from 1975 onward.

The last two columns of Table 1.3 show what percentage of the monopolistic margins

are captured by car manufacturers (PCM/MPCM) and what percentage of these margins is

lost to competition between products (BC/MPCM). Not surprisingly, given the magnitudes

observed in columns four and three, the last column shows that more than 90% of monopo-

listic price-cost margins are lost to competition, suggesting that the competitive network is

dense and most of the products are close substitutes to each other. The reason for this could

be that, although products are differentiated, a firm faces more than 85 competitors each

year (i.e., Table 1.1 column four) on average, and each product likely has a close substitute

in terms of the observable characteristics we are considering.31 The second to last column

shows the other side of the medal; firms only capture from 2% to 7% of the margins they

could potentially charge in a monopolistic market.

Our estimates suggest that car manufacturers capture only a small fraction of the mo-

nopolistic margins they could charge. However, are those margins as tiny as they look?

To answer this question, I compare the estimated PCMs (as a percentage of the MPCMs)

with the margin a firm would charge in a Cournot game with homogeneous products. In

30. See equation (1.13) and Definition 1.

31. Recall that we are assuming that all characteristics that determine a product’s centrality are observable
to the econometrician.
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Figure 1.4: Decomposition of price-cost margins. All variables are measured in $1000

a homogenous Cournot model with N symmetric firms and linear demand, the equilibrium

(dollar) price-cost margins are given by

phom. cournot − c =
α− c

N + 1
(1.34)

where α is the demand intercept and c is the marginal cost. As a fraction of the monopolistic

price-cost margin, the homogenous Cournot margins are only a function of the number of

firms N

phom. cournot − c

pmonopolist − c
=

α− c

N + 1
· 2

α− c
=

2

N + 1
. (1.35)

In Figure 1.5, I plot the estimated Bertrand PCM/MPCM reported in Table 1.3, together

with the PCM/MPCM for the homogeneous Cournot model derived in equation (1.35) where
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Figure 1.5: PCM/MPCM in Network Bertrand

I set the number of firms N equal to the average number of competitors a given car manu-

facturer faces in a given year (i.e., the number reported in Table 1.1) plus one. The pattern

is clear; the margins firms charge in the Network Bertrand game are consistently above the

margins under the homogeneous Cournot. Depending on the year, Bertrand margins can be

more than three times higher than Cournot.32 More generally, because the average number

of competitors is the same across the two models, the difference between the two curves

can be interpreted as the increase in margins that oligopolistic firms can capture when they

offer differentiated products. Lastly, note that the difference between the Network Bertrand

margins and the homogeneous Cournot margins represents a conservative estimate of the

ability of firms to increase markups when products are differentiated. If we used a homoge-

neous Bertrand as benchmark, the increase would be more significant because firms, under

32. Interestingly, Bertrand margins peak throughout the ’80s when a voluntary export restraint was placed
on exports of automobiles from Japan to the United States, thereby reducing the supply of car models
available.
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homogeneous Bertrand, would be pricing at cost and charge zero margins.

I conclude the section by recovering own and cross-price elasticities implied by the demand

estimates reported in Table 1.2. Recall from Section 1.3 that the (j, l) element of the elasticity

matrix is given by

ϵjl =


− 1

β (1− θjj) if j = l

1
β θjl if j ̸= l

(1.36)

Because θjl is a function of observable product characteristics, we only need an estimate of

1/β to recover both own and cross-price elasticities.

Figure 1.6 plots a heatmap of the elasticity matrix for the year 1990. In that year, there

were 131 car models available (Table 1.1), and Figure 1.6 shows the estimated own and

cross-price elasticities for those models with an estimated own price elasticity larger than

median.33 Two remarks are in order. First, the magnitudes of own and cross-price elasticities

are reasonable, with the own-price elasticities estimated to be negative and larger than the

cross-price elasticities. Second, almost all cross-price elasticities are estimated to be small

and positive. The latter would not be surprising in a model based on logit demand because

that model restricts substitution patterns in a way that makes all products substitutes.

However, this is not true in the linear-quadratic demand model I developed in Section 1.2.

This type of quadratic preference does not impose any restrictions on product substitution

patterns. However, the estimated cross-price elasticities are positive, suggesting that most

car models are indeed substitutes for each other. Moreover, note that the fact that cross-price

elasticities are positive is not a consequence of the fact that all product characteristics are

positive numbers. More formally, having that xjk > 0 for any product j and characteristic k

does not imply that all products are substitutes or, equivalently, that θjl is always positive.

33. This is done for visibility purposes. Estimates remain reasonable if we look at all models with own-price
elasticity above the 25th percentile, reported in Appendix 1.11 Figure 1.7
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Figure 1.6: Matrix of estimated own and cross price elasticities for the year 1990. The products
included are the ones with an estimated own price elasticity above the median.

1.7 Conclusion

This paper studies how product differentiation affects substitution patterns, and firms’

price-cost margins in oligopolistic markets where products are differentiated over multi-

ple attributes and consumers have linear-quadratic preferences. Under these assumptions,

oligopolistic competition in either prices or quantities can be framed as a network game

where a product location in the network is determined by its vector of attributes, and the

network links between products capture the extent with which two products compete. Prod-

ucts with similar characteristics will be closer to each other and will compete more intensely.

On the other hand, products with more unique characteristics will have a more peripheral

location and enjoy more market power.

More precisely, I show that firms’ price-cost margins can be decomposed additively into

a monopolistic component and a product differentiation component. The first component

coincides with the margins a monopolist would charge. In contrast, the second component
43



is proportional to how central a product is in the network as measured by its Bonacich

centrality. Products with higher centrality must give up a more significant fraction of the

monopolistic margins because they face more competition. Furthermore, I showed that this

decomposition holds for both Bertrand and Cournot price-cost margins and can be extended

to allow the presence of multiproduct firms.

In the second part of the paper, I show how to estimate the model using market-level

data on a given industry. Under the assumption that unobserved product characteristics

enter consumer preferences only through the linear component of the utility, a simple linear

IV strategy identifies the demand parameters. Then, marginal costs and margins can be

recovered from the Nash equilibrium pricing equations. In addition, using the decomposition

of price-cost margins, one can quantify what fraction of the potential monopolistic margins

a firm can capture by differentiating its product from its competitors.

In the last part of the paper, I estimate the model using data on the US automobile in-

dustry from 1971 to 1990. I find that it delivers substitution patterns and price-cost margins

comparable to the ones estimated in the literature that models automobile demand start-

ing from individual discrete choice problems. Interestingly, although the linear-quadratic

demand model does not restrict substitution patterns in any way, the estimated cross-price

elasticities are almost always positive, suggesting that cars are substitutes, something the

discrete choice demand framework instead imposes a priori. Finally, I decompose firms’

price-cost margins and find that car manufacturers capture from 2% to 7% of the monop-

olistic margins depending on the year. These margins can be as high as three times the

margins firms would be able to charge if their products were to be homogeneous.
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1.8 Appendix: Proofs

Proof of Proposition 1. Taking the horizontal sum of individual demands in (1.3) it is

easy to check that the aggregate demand system is given by

q(p) =

∫
qi(p)

di

M
(1.37)

=
1

ηβ

(
1

η
IJ +XX ′

)−1

(α− p) (1.38)

where β ≡
∫ 1

βi
di
M and α ≡

∫ αi/βidi∫
1/βidi

. Next, note that

q(p) =
1

ηβ

(
1

η
IJ +XX ′

)−1

(α− p) (1.39)

=
α− p

β
−XΩ−1X ′ (α− p)

β
(1.40)

where Ω ≡ 1
η IK + X ′X. Then let a ≡ α

β − XΩ−1X ′α
β and Θ ≡ XΩ−1X ′ to obtain the

expression in the main text. To complete the proof, we are left to show that θjj ∈ (0, 1) and

that θjl ∈ (−1, 1) for any j ̸= l. To this end, first note that by construction both Θ and

IJ −Θ are positive definite matrices. Then, letting ej be the j-th unit vector, we have that

θjj = e′jΘej > 0 and similarly 1 − θjj = e′j(I − Θ)ej > 0. Next, take any (j, l) pair with

j ̸= l and note that

θjj + θll − 2θjl = (ej − el)
′Θ(ej − el) > 0 (1.41)

where the first equality exploits the fact that Θ is symmetric. From (2.40) and the fact that

θjj < 1 for all j, we can conclude that θjl < 1. To show that θjl > −1 it is enough to repeat

the previous argument using θjj + θll + 2θjl.

Proof of Proposition 2 Because U is the matrix of principal component directions of X,

it is also the matrix whose columns correspond to eigenvectors of X ′X. Then we have,
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assuming without loss that η = 1,

Θ = X(IK +X ′X)−1X ′ (1.42)

= X(IK + UΛx′xU ′)−1X ′ (1.43)

= XU(IK + Λx′x)−1U ′X ′ (1.44)

= X̃(IK + Λx′x)−1X̃ ′ (1.45)

where Λx′x is the diagonal matrix that collects the eigenvalues of X ′X. For η ̸= 1, it is

enough to redefine X =
√
ηX to obtain the same result.

Proof of Proposition 3 The proof presented is for the more general case in which θjj are

heterogeneous across j. The first order condition of (1.10) with respect to pj reads:

αj(1− θjj)−
∑
l ̸=j

θjlαl + cj(1− θjj)− 2(1− θjj)pj +
∑
l ̸=j

θjlpl = 0 (1.46)

after rearranging in vector form and solving for p∗ one obtains

p∗ − c =
1

2

(
IJ − diag(Θ)− A(Θ)

2

)−1

(I −Θ)(α− c)

=
1

2

(
IJ −

(
IJ − diag(Θ)− A(Θ)

2

)−1 A(Θ)

2

)
(α− c)

=
α− c

2
− (IJ − diag(Θ))−1/2

(
IJ − G(Θ)

2

)−1 G(Θ)

2
(I − diag(Θ))1/2

(α− c)

2

=
α− c

2
− (IJ − diag(Θ))−1/2 b

(
G(Θ),

1

2
, (I − diag(Θ))1/2

α− c

2

)
(1.47)

where

G(Θ) ≡ (I − diag(Θ))−1/2A(Θ) (I − diag(Θ))−1/2 (1.48)
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and the last equality is well-defined provided maxj |λj(G)| < 2. Expression (1.13) then

obtains when imposing θjj ≡ θ. To complete the proof for the more general case, I need

to show that G(Θ) preserves the properties of A(Θ). It is immediate to see that G(Θ) is

0-diagonal and symmetric. I am left to show that all its off-diagonal elements gij lie in

(−1, 1). To see this recall that IJ −Θ is positive definite and note that

(IJ − diag(Θ))1/2(IJ −G(Θ))(IJ − diag(Θ))1/2 = IJ −Θ (1.49)

which implies that

1− g2ij = (gijei + ej)
′(IJ −G(Θ))(gijei + ej) > 0 (1.50)

which completes the proof.

Proof of Proposition 4 The proof presented is for the more general case in which θ−jj are

heterogeneous across j. To find Cournot price-cost margins we first need to find the Cournot

equilibrium quantities which are given by

q∗ =
(
2IJ − ηdiag(Θ−)− ηΘ−)−1 α− c

β
(1.51)
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where Θ− ≡ −XX ′. Plugging (1.51) into the aggregate inverse demand one obtains

p∗ − c = α− c− β
(
IJ − ηΘ−) q∗

=
α− c

2
+ η

A(Θ−)
2

(
IJ − ηdiag(Θ−)− η

A(Θ−)
2

)−1
α− c

2

=
α− c

2
+
(
IJ − ηdiag(Θ−)

)1/2(
η
G(Θ−)

2

)(
IJ − η

G(Θ−)
2

)−1

×

×
(
IJ − ηdiag(Θ−)

)−1/2 α− c

2

=
α− c

2
+
(
IJ − ηdiag(Θ−)

)1/2×
× b

(
G(Θ−),

η

2
,
(
IJ − ηdiag(Θ−)

)−1/2 α− c

2

)
(1.52)

where

G(Θ−) ≡
(
IJ − diag(Θ−)

)−1/2
A(Θ−)

(
IJ − diag(Θ−)

)−1/2 (1.53)

where the last equality is well-defined provided η < maxj |λ(G)|/2. Expression (1.18) in the

main text then obtains by replacing θ−jj with θ− for any j and thus completes the proof. Note

that, as mentioned in the main text, without any normalization the elements of the matrix

Θ− can take any value possibly outside (−1, 1). While this is not too much of a problem

mathematically, it is unappealing conceptually because it implies that the adjacency matrix

A(Θ−) can have weights greater than 1 in absolute value.

Proof of Proposition 5 Let f and g denote the inverse demand and demand systems

respectively:

p = f(q) = α− β
(
IJ + ηXX ′) q (1.54)

q = g(p) = (IJ −Θ)
(α− p)

β
(1.55)
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where Θ = XΩ−1X ′ and Ω = 1
η IK + X ′X. Firm j’s first order condition of the Bertrand

problem can be written as

gj(p) + (fj(g(p))− c)
∂gj(p)

∂pj
(1.56)

= gj(p)
∑
l ̸=j

∂fj
∂gk

∂gk
∂pj

+

(
fj(g(p))− c+

∂fj
∂gj

)
∂gj(p)

∂pj
(1.57)

where the second equality differentiates the identity pj ≡ fj(g(p)) with respect to pj . Next,

denote the Cournot equilibrium price pc and note that the above Bertrand FOC evaluated

at pc reduces to

gj(p
c)
∑
l ̸=j

∂fj
∂gk

∂gk
∂pj

= gj(p
c)
∑
l ̸=j

(−βηx′jxk)
θkj
β

< 0 (1.58)

where the last inequality holds because θkj ≥ 0 implies that x′jxk ≥ 0. To see this note that

both IJ −Θ and Θ are positive definite matrices. But this implies that all eigenvalues of Θ

must lie in (0, 1) and, consequently

(IJ + ηXX ′) = (1.59)

=

(
IJ −X

(
1

η
IK +X ′X

)−1

X ′
)−1

(1.60)

= (IJ −Θ)−1 =
∞∑
s=1

Θs ≥ 0, (1.61)

where the last equality is well defined because maxj |λj(Θ)| < 1. Thus, because Θ is non-

negative by assumption we can conclude that x′jxk ≥ 0 if j ̸= k. Because equation (1.58)

holds for all j we can consider the vector of Bertrand FOCs evaluated at the Cournot price
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pc

(IJ −Θ)α + (IJ − diag(Θ))c− 2

(
IJ − diag(Θ)

2
− Θ

2

)
pc < 0 (1.62)

⇔ pb =
1

2

(
IJ − diag(Θ)

2
− Θ

2

)−1

((IJ −Θ)α + (IJ − diag(Θ))c) < pc (1.63)

where pb denotes the Bertrand equilibrium price vector. Then, from Propositions 3 and 4

we can conclude that Bertrand centralities are higher than the ones implied by Cournot:

b̃b ≡ (IJ − diag(Θ))−1/2 bb ≥
(
IJ − ηdiag(Θ−)

)1/2
(−bc) ≡ −b̃c. (1.64)

Proof of Proposition 6 The proof is identical to the proof of Proposition 3 with the

difference that the matrix diag(Θ) must be replaced by H ⊙Θ. The first order condition of

(1.19) with respect to pj is given by

aj + cj −
∑
l∈Jf

θljcl − 2(1− θjj)pj +
∑

l∈Jf/{j}
θljpl +

∑
l ̸=j

θjlpl = 0 (1.65)

and after rearranging in vector form and solving for p∗ one obtains

p∗ − c =
1

2

(
IJ −H ⊙Θ− AH(Θ)

2

)−1

(IJ −Θ)(α− c) (1.66)

=
1

2

[
IJ −

(
IJ −H ⊙Θ− AH(Θ)

2

)−1 AH(Θ)

2

]
(α− c) (1.67)

=
α− c

2
− (IJ −H ⊙Θ)−1/2

(
IJ − GH(Θ)

2

)−1 GH(Θ)

2
× (1.68)

× (IJ −H ⊙Θ)1/2
(α− c)

2
(1.69)

=
α− c

2
− (IJ −H ⊙Θ)−1/2 b

(
GH(Θ),

1

2
, (IJ −H ⊙Θ)1/2

(α− c)

2

)
(1.70)
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where

GH(Θ) ≡ (IJ −H ⊙Θ)−1/2AH(Θ) (IJ −H ⊙Θ)−1/2 (1.71)

and the last equality is well-defined provided maxj |λj(G)| < 2, where λj is the an eigenvalue

of GH(Θ). To complete the proof I need to show that GH(Θ) is a weighted adjacency matrix.

First note that because AH(Θ) = Θ−H⊙Θ is a 0-block diagonal matrix the same holds for

GH(Θ). Next, I show that all its elements gij lie in (−1, 1). To see this recall that IJ − Θ

is positive definite and note that

(IJ −H ⊙Θ)1/2 (IJ −GH(Θ)) (IJ −H ⊙Θ)1/2 = IJ −Θ (1.72)

which implies that (IJ −GH(Θ)) is also positive definite, but then

1− g2ij = (gijei + ej)
′ (IJ −GH(Θ))

(
gijei + ej

)
> 0. (1.73)

So far we have used extensively (IJ −H⊙Θ)1/2, to make sure that this is well defined I need

to show that IJ −H ⊙Θ is positive definite. To see this, note that IJ −Θ > 0 implies that

all its principal submatrices are positive definite, but then all blocks in the block-diagonal

matrix H ⊙ (IJ − Θ) are also positive definite which makes H ⊙ (IJ − Θ) positive definite

as well.
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1.9 Equilibrium existence

Throughout the analysis I have assumed that an interior Nash equilibrium exists. In this ap-

pendix, I provide conditions for the existence and uniqueness of the equilibrium. Specifically,

I show that the following dominance-diagonal type of condition,

(1− θjj)(αj − cj) ≥
∑
k ̸=j

|θjk|(αk − ck) all j (1.74)

ensures that each firm j charges a price pj that belongs to the interval [cj , αj ] when competing

a la Bertrand.34 Recall, that the system of FOCs is linear in the vector of prices p and given

by

(I −Θ)p+ (I − diag(Θ))p = (I −Θ)α + (I − diag(Θ))c.

The above system has a well-defined solution as long as (I − Θ) is non-singular, which is

always the case because (I −Θ) is a positive definite matrix. Moreover, linearity would also

imply that such solution is unique. What we do not know is whether the equilibrium prices

are non-negative and above firms’ marginal costs. The above dominance diagonal condition

ensures that the system of best replies is a self-map over the set ×j∈{1,...,J}[cj , αj ]. To start

with define the linear operator T : RJ → RJ whose jth component is fund j best reply:

Tj(p) =
1

2

αj − cj −
∑
k ̸=j

θjk
1− θjj

(αk − pk)

 .
34. Clearly, there is an implicit assumption here that consumers willingness to pay for the very first unit

αj (e.g., the demand intercept) is greater than the marginal cost cj .
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Next, we can show that whenever p ∈ ×j∈{1,...,J}[cj , αj ], condition (1.74) implies that

Tj ∈ [cj , αj ]. To see this, take any p ∈ ×j∈{1,...,J}[cj , αj ] and note that

cj ≤ Tj(p) ≤ αj

⇔

∣∣∣∣∣∣
∑
k ̸=j

θjk
1− θjj

αk − ck
αj − cj

αk − pk
αk − ck

∣∣∣∣∣∣ ≤ 1

⇔
∑
k ̸=j

|θjk|
1− θjj

αk − ck
αj − cj

αk − pk
αk − ck

≤ 1

is always satisfied when (1.74). Because T maps a closed and bounded set into itself, Bower

fixed point theorem implies that there exists an p∗ ∈ ×j∈{1,...,J}[cj , µj ] such that T (p∗) = p∗.

Moreover, from (2.58) we know that such fixed point is unique, because T is linear.

1.10 Decomposition of Cournot Markups

In this section, I show how to decompose the markups of a given product j in the case

of Cournot competition and formally show that the product centrality measure defined in

Pellegrino (2023), and denoted by 1−χj , is an affine transformation of the Bonacich centrality

measure bj I have been using throughout this paper.

To start with, I make a few notational adjustments to conform my notation to the one

in Pellegrino (2023). I normalize the squared norm of product characteristics to one, i.e., for

any product j, I assume that ||xj ||22 = x′jxj = 1. Following the notation I used in Proposition

4, this normalization is equivalent to set θ− = −1. Also, I set βi ≡ 1 for any consumer i,

which further implies that in the aggregate demand derived in Proposition 1, β = 1 and the

aggregate demand intercept α =M−1
∫
αidi. In matrix form, the aggregate demand and its
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inverse are given by

q =
(
I + ηXX ′)−1

(α− p) (1.75)

p = α− (I + ηXX ′)q. (1.76)

Next, let ν be such that η = ν
1−ν and note that

I + ηXX ′ =
1

1− ν
I +

ν

1− ν
(XX ′ − I) (1.77)

where the ν plays the role of α in the notation of Pellegrino (2023). Next, assuming that

(1− ν) > 0, I can re-scale consumer preferences in 1.1 by (1− ν) to obtain

vi(qi, X) ≡ (1− ν)ui(qi, X) = q′i(αi − p)− 1

2
q′i(I + Σ)qi (1.78)

where Σ ≡ ν(XX ′ − I), I redefined αi ≡ νXαxi + (1 − ν)α
q
i and I already substituted in

for the budget constraint.35 The preferences in (1.78) are exactly the same ones used in

Pellegrino (2023) and the associated aggregate demand and its inverse are

q = (I + Σ)−1 (α− p) (1.79)

p = α− (I + Σ)q. (1.80)

Next, I show how the product centrality measure defined in Pellegrino (2023) and de-

noted by 1 − χj is an affine transformation of product j’s Bonacich network centrality

bj (−Σ, 1/2, (α− c)/2). The steps are similar to the ones in Proposition 4 with Θ− = −Σ.

35. Note that it is not necessary to rescale the outside good qi0 by (1− ν) because I can always normalize
its price to 1/(1− ν) in the budget constraint.
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To start with, note that the Cournot equilibrium quantities are given by

q∗ =

(
1− 1

2
(−Σ)

)−1 α− c

2
. (1.81)

Replacing (1.81) in the inverse demand, we get the price-cost margin decomposition obtained

in Proposition (4)

p∗ − c = α− c+

(
I − 1

2
(−Σ)

)−1 1

2
(−Σ)

α− c

2
(1.82)

=
α− c

2
+ b

(
−Σ,

1

2
,
α− c

2

)
. (1.83)

Next, define product j markups as

µj ≡
pj
cj

(1.84)

and letting bj the j-th component of the vector of Bonacich centralities b, from (1.83) we

obtain

µj =
αj + cj
2cj

+
1

cj
bj = µ̄j +

1

cj
bj (1.85)

where µ̄j denotes the monopolistic markup.

Pellegrino (2023) shows that product j markup is given by

µj = χj + (1− χj)µ̄j (1.86)

where the product j’s centrality 1− χj is defined as

1− χj ≡
1

αj − cj

[(
I +

1

2
Σ

)−1

(α− c)

]
j

(1.87)
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where for a genric vector y, [y]j denotes its j-th component. Combining (1.85) and (1.86)

and solving for χj one obtains

χj = − 2

αj − cj
bj (1.88)

from which it is immediate to see that Pellegrino (2023)’s centrality measure is an affine

transformation of the Bonacich centrality

1− χj = 1 +
2

αj − cj
bj . (1.89)

To complete the argument, I am left to show that from (1.89) I can back out the definition

of product centrality in (1.87). To see this, let χ be the J-vector with j-th component χj

and building from (1.89)

1J − χ = [diag(α− c)]−1 (α− c+ 2b) (1.90)

= [diag(α− c)]−1

[
I −

(
I +

1

2
Σ

)−1

Σ
1

2

]
(α− c) (1.91)

= [diag(α− c)]−1
(
I +

1

2
Σ

)−1

(α− c) (1.92)

where 1J is the J-vector of ones, the first equation is just (1.89) in vector forms, the second

equation substitutes for the definition of Bonacich centrality and the last equation rearrange

terms. Overall, the j-th equation in (1.92) coincides with the definition of product centrality

for product j in (1.87), thus proving that the argument is consistent.
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1.11 Appendix: Additional Figures and Tables

OLS IV-2SLS

Constant -0.1023 -0.1005
(0.0043) (0.0044)

Air (dummy) -0.0179 0.0039
(0.0145) (0.0183)

MP$ 0.0331 0.0368
(0.0104) (0.0104)

HP/WT 0.1432 0.1040
(0.0448) (0.0476)

Space -0.0138 -0.0115
(0.0168) (0.0166)

air×income 0.0001 0.0000
0.0001 0.0001

MP$×income 0.0001 0.0001
0.0001 0.0001

HP/WT×income -0.0005 -0.0003
0.0002 0.0003

Space×income 0.0004 0.0004
0.0001 0.0001

price/income -0.0043 -0.0327
(0.0037) (0.0121)

Fstat (Excluded) - 92.1276
R2 0.8704 0.6257
Observations 2,217 2,217

Table 1.4: Demand estimates. Standard errors are clustered at the model level.
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Figure 1.7: Matrix of estimated own and cross price elasticities for the year 1990. The products
included are the ones with an estimated own price elasticity above the 25th percentile.
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1.12 Appendix: Simulation of the Bertrand Network game

In this section, I perform a simple simulation exercise to summarize and visualize how the

Bertrand Network model works.

Table 1.5 describes the parameters used in the simulation. There is a single market

with J = 30 products and K = 7 characteristics whose values are drawn from a uniform

distribution in between [0, 1]. The demand intercept α is the same across all products and set

to 0.15 whereas marginal costs are heterogeneous across products and drawn from a [.01, .03]

uniform distribution.

Parameter Value

J 30
K 7
α 0.15
c U[0.01, 0.03]
xjk U[0, 1]

Table 1.5: Parameters for simulation of Bertrand network game

Given this parameters, Figure 1.8 plots the underlying Bertrand network. Each product

is a node and the edges capture the degree of substitution between any two products/nodes;

the longer the edge the less substitute are the two products. The location of dots and edges is

exogenous and entirely determined by the realization of the draws of product characteristics.

Conversely, the size of the dots is endogenous and it is proportional to the equilibrium price-

cost margins. The plot shows that nodes that are more peripheral tend to have larger dot

sizes whereas dots that are more central are smaller. The intuition for this result is the

following: peripheral products are more unique or equivalently less central and, per equation

(1.13) will charge higher margins in equilibrium. On the other hand, more central nodes face

more intense competition and must lower their margins.

Figure 1.9 instead is a visualization of Proposition 3 and plots the equilibrium price-
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cost margins on the y-axis against the Bonacich product centrality on the x-axis. It should

be clear by now why the relationship is decreasing; higher centrality implies lower equilib-

rium markups. The noise around the downward sloping relationship is due to the fact that

marginal costs are heterogeneous. By increasing the variance of the distribution of costs,

Figure 1.9 would start looking noisier and the resulting relationship between centrality and

margins might not look as clear. This highlights how empirically it is important to control

for the unobserved costs in order to recover the downward sloping relationship. The same

would be true if we were to introduce heterogeneity in the demand intercept α.

Figure 1.8: Simulated Network. Location is exogenous. Node size is proportional to markups.
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Figure 1.9: Simulated Network. Price-cost margins (y-axis) against Bonacich centrality (x-
axis).
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1.13 Appendix: From linear-quadratic to discrete choice

This section shows how the linear-quadratic demand model nests the discrete choice demand

framework. To see this suppose consumers can only purchase one unit of a product. Under

this assumption consumer i problem can be formalized as

max
(qij)

J
j=1

q′i(αi − p)− βi
2
q′i
(
IJ + ηXX ′) qi (1.93)

s.t. qij ∈ {0, 1} (1.94)
J∑

j=1

qij ≤ 1. (1.95)

From the constraints it is immediate to see that the problem boils down to simply choosing

the product that provides the highest utility

max
j∈{1,...,J}

αij − pj −
βi
2
(1 + ηx′jxj). (1.96)

Next, recalling that αij = ηx′jα
x
i +α

q
ij , redefining the vectors of product characteristics and

preference parameters

x̂j ≡ (x′j , (1 + ηx′jxj)/2)
′ (1.97)

β̂i ≡ (ηαi, βi)
′, (1.98)

and, rewriting α
q
ij = ξ̂j + εij we can write (1.96) following the standard random utility

notation used in empirical applications

max
j∈{1,...,J}

uij ≡ −pj + x̂′jβi + ξ̂j + εij (1.99)

where x̂j is the vector of product j’s characteristics observed by the econometrician, ξ̂j is
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a scalar that captures characteristics or demand shocks unobserved by the econometrician,

βi is a vector of preference parameters capturing how consumer i values different product

attributes and, lastly, εij is a random utility shock.36

By making specific assumptions on the distribution of εij one can recover all standard

models of discrete choice demand, such as logit, probit, nested-logit and random-coefficient

logit.

36. I am implicitly assuming that the econometrician knows or can calibrate η. If this is not the case then
the quadratic term should be treated as unobserved and included in the ξ̂j .
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CHAPTER 2

PLAN MENUS, RETIREMENT PORTFOLIOS, AND

INVESTORS’ WELFARE

2.1 Introduction

Employer-sponsored defined contribution (DC) retirement plans are a crucial component of

the US savings system, holding nearly $11 trillion in assets as of 2021.1 These plans allow

employees to allocate a portion of their pre-tax income towards retirement savings through

a range of investment options, typically mutual funds, to build long-term wealth. For many

workers, the assets held in DC plans are among the most important components of their

balance sheets and are a significant determinant of their future retirement security.2

Despite their importance, many plans do not provide their investors (i.e., employees)

with cost-efficient investment options. For instance, in 2019, over half of the plans failed to

offer low-cost S&P 500 index trackers. Perhaps even more strikingly, one out of every five

plans did not offer an equity fund with a fee below 10 basis points (Figure 2.1).3

A closer look at plan expenses reveals substantial dispersion across sponsors, with the

difference in the average expense between plans at the 75th and 25th percentiles of about 40

basis points (Figure 2.2). To put this in perspective: assuming an annual return of 6%, if an

employee with an annual income of $70,000 contributes 10% to their 401(k) and shifts from

1. Among those, 401(k) are the largest totalling $7.7 trillions. As a share of the US retirement market
assets, employer-sponsored DC plans account for 30%. If one includes individual retirement accounts (IRA),
DC plans account for 63% of the US retirement assets. https://www.icifactbook.org/.

2. According to the 2019 Survey of Consumer Finances (SCF), for a working age household, the av-
erage account balance in a DC plan (including IRAs) was nearly $270,000. More generally, retire-
ment accounts are the second-most commonly held type of financial asset after transaction accounts
(https://www.federalreserve.gov/publications/files/scf20.pdf). See also Badarinza, Campbell and Ramado-
rai (2016).

3. On average, around 50% of plans do not offer the cheapest share class of a fund even though they meet
its minimum investment requirement (Figure 2.10).
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a plan at the 75th percentile to one at the 25th percentile, they could save approximately

$95,000 in investment fees.4

Beyond dispersion, plan expenses are also surprisingly high, with the asset-weighted

average expense ratio for the median plan in the 2019 cross-section close to 40 basis points.5

For context, in that same year, had a retail investor constructed a portfolio of Vanguard

index funds to obtain exposure to all asset classes available in a typical retirement plan, the

expense ratio would have been more than four times lower.6 Additionally, more expensive

plans do not produce better investment performance for their investors (Figure 2.3).7 All

things considered, it is unsurprising that employees have increasingly sought to hold plan

sponsors (i.e., employers) accountable for allegedly violating their fiduciary duties, with high

investment costs emerging as the common theme in many recent 401(k) lawsuits (Mellman

and Sanzenbacher (2018)).8

Why do many plans feature investment options that are less cost-efficient than compa-

rable alternatives in the marketplace? And can policy regulating the design of retirement

plans effectively help reduce these costs and improve investors’ outcomes?

To address the first question we need to understand what drives sponsors’ decisions to

include high-cost funds in their retirement plan. Although sponsors have a fiduciary duty

4. The calculation assumes a working period of 40 years and that the annual return is the same. In
practice, plans with higher expenses tend to have gross of fees returns that are even lower (Table 2.5).

5. These patterns are not limited to the 2019 cross-section. Plan expenses were even higher before 2019.
At the same time, the dispersion in plan expenses has been roughly stable over time (Figures 2.11) and
remains even when comparing plans of similar size (Figures 2.12).

6. In 2019, the expense ratio for a Vanguard equally-weighted portfolio of retail index funds, including its
International equity index funds (VEMAX, VEUSX, VPADX), US Equity funds (VGSLX, VFIAX, VIMAX,
VSMAX) and Bond Fund (VBTLX) is below 10 basis points. By retail, I mean that the minimum investment
required is none or limited. Figure 2.13 compares the expense for the median plan against this portfolio of
Vanguard index funds over time.

7. Table 2.5 and Figure 2.3 show that the plan-level (gross of fees) performance tends to be lower for
more expensive plans. Similar patterns have been found in the context of active investing (Gil-Bazo and
Ruiz-Verdu (2009)) contrasting what frictionless models with rational investors predict (Berk and Green
(2004)).

8. I provide more details of some recent 401(k) lawsuits in Appendix 2.14.
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Figure 2.1: Plan quality for the year 2019.
’No S&P 500’ is the share of plans without
an S&P 500 tracker with a fee below 10bp.
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Figure 2.2: Distribution of asset-weighted
and unweighted average plan expense ratio
across plans for the year 2019.

to design their plan in the investors’ best interest, agency frictions may reduce sponsors’

sensitivity to funds’ fees and make them value attributes other than fees when constructing

their plan menu. For example, sponsors may favor the inclusion of funds affiliated with

their plan provider (a.k.a recordkeeper, Pool, Sialm and Stefanescu (2016)) or may favor the

inclusion of costlier funds to reduce direct fees paid to the recordkeeper (Badoer, Costello

and James (2020), Bhattacharya and Illannes (2022), Pool, Sialm and Stefanescu (2022)).9

Addressing the second question requires understanding how investors allocate their con-

tributions across the options available in their plan. Their investment behavior is crucial to

evaluate policies regulating the design of retirement plans. For instance, if many investors are

inactive because of inertia (Madrian and Shea (2001), Beshears, Choi, Laibson and Madrian

(2009), Choi (2015)), policies mandating the inclusion of low-cost funds, like an S&P 500

9. Plan sponsors outsource administrative tasks such as maintaining employees’ account balances to plan
providers (a.k.a recordkeeper), which are often vertically integrated into fund provision. Employers can
compensate plan providers either directly or indirectly by offering expensive funds that pay higher kickbacks.
Part of this compensation can also cover for services, like financial advising, that I do not observe. Differences
in unobserved services can explain the observed dispersion in plan expenses. Figure 2.14 shows that the
dispersion in plan expenses remains substantial even when comparing employers within the same industry,
size and plan provider. This suggests that variation in unobserved services across providers or employers
cannot be the major source of differences in plan expenses.
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Figure 2.3: Binned scatter of plan (gross) performance and average plan expense correspond-
ing to the specification in the second column of Table 2.5. Expenses and performance are
yearly demeaned and measured in percentage points.

tracker, might be ineffective. This is because inactive investors are unlikely to reallocate

their contributions to the new low-cost option.

From a supply-side perspective, funds’ competition incentives are key to rationalize ex-

cessive fees and to predict how these fees will respond to policy changes. Understanding

competition in this space requires a model that accounts for how funds set fees in response

to sponsors’ incentives to include them in their plan and in response to investors’ incentives

to substitute toward competitors’ funds available in the plan.

In this paper, I combine tools from finance and industrial organization to develop a struc-

tural model of plan menu choice, retirement portfolio choice and fee competition between

funds providers. The model features a two-layer demand system where, in the first layer,

sponsors construct their retirement plan and, in the second layer, plan investors form their

retirement portfolio from the options available in their plan menu.

Plan sponsors compose their menu by selecting investment options from the pool available

in their recordkeeper’s network of funds.10 In modelling sponsors’ preferences, I accommo-

10. When forming their plan menus sponsors might not be aware of all available options. Part of this is
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date for two types of agency frictions. First, sponsors have a taste for funds’ affiliation.

Everything else equal, a fund affiliated with the plan recordkeeper will be more likely to

be included in plan menus. Second, sponsors’ fee sensitivity can be arbitrarily misaligned

to that of investors. This captures how the compensation structure between sponsors and

recordkeepers might incentivize the former to favor the inclusion of expensive funds. I model

sponsors’ menu choice as a two-stage multiple discrete choice problem. First, sponsors decide

whether to include or not a particular investment category. Once this decision is made, they

proceed to choose the options within that category that offer the highest indirect utilities.

Sponsors face some cost to adding more than one option within each category, which the

model captures by assuming that the number of options included is drawn randomly with

decaying probability.11

In the second layer, plan investors allocate their contributions among the options avail-

able in their menu. Unlike in much of the prior IO literature, investors preferences are tied

to a standard portfolio problem, with risk aversion over the variance of returns. These pref-

erences drive substitution patterns between funds, and unlike in most structural IO demand

models, this framework generally allows funds to be either complements or substitutes to

each other. In modelling how this type of demand system determines funds’ fee-setting in-

centives, I rely on tools I develop in a related paper (Loseto (2023)), which exploits the close

relationship between standard demand systems and the network games literature (Ballester,

Calvó-Armenagol and Zenou (2006)). To capture investors’ inertia, I allow for the possibility

because different recordkeepers have different pre-existing relationships with specific mutual fund providers.
In fact, plan-level data indicates that recordkeepers’ networks of funds are far from perfectly overlapping
(Figure 2.15).

11. Adding options may be costly for several reasons. First, sponsors fiduciary duty is not limited to the
design of the retirement menu but also requires them to monitor the included options and provide plan
investors with up-to-date information about their performance. Second, sponsors’ asset base (i.e., the total
contributions) is limited, and with too many options, it could be challenging to meet the minimum investment
requirements required by investment funds. In estimation, I calibrate this probability to match the observed
distribution of the number of funds included within each category (Figure 2.9). In Appendix 2.11, I offer a
simple microfoundation for the optimal choice of the number of options to be included within each category
building on the Stigler (1961) simultaneous search model.
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that some investors do not make an active investment decision. Instead, they default their

asset allocation into the plan default option, typically a Target-Date fund (TDF).

I estimate sponsors’ and investors’ preferences using comprehensive plan-level data. This

information is collected from 401(k) plan menus and asset allocations as reported by plan

sponsors on form F5500 to the Department of Labor (DOL).12 Specifically, I compute the

probability of a given investment fund being included in a plan from the observed plan menus.

The observed variation in these inclusion probabilities enables me to identify and estimate

plan sponsors’ preferences. Similarly, the observed variation in plan-level asset allocations

allows me to identify plan investors’ preferences. To account for the possible endogeneity

of investment fees, I exploit the granularity of the data to control for unobserved demand

shocks along several dimensions, including investment category fixed effects, sponsors fixed

effects, funds’ brand fixed effects and a fixed effect for passive funds. To further ensure

that the residual variation in fees is uncorrelated with unobserved demand shocks, I use two

types of cost-shifter instruments: funds’ turnover ratios and a Hausman-type instrument.

Funds’ turnover measures trading-related transaction costs passed on to investors through

higher fees (Pástor, Stambaugh and Taylor (2020)).13 As for the Hausman strategy, it uses

the average fee charged by funds within the same fund provider but from other investment

categories as an instrument for funds’ fees (Hausman (1996)).

Model estimates indicate that plan sponsors are less sensitive to fees than plan investors.

This is particularly evident when comparing them to investors actively forming their retire-

ment portfolios, who are over twice more elastic to fees than sponsors.14 This misalignment

in sponsors’ and investors’ elasticity to fees suggests that sponsors may not adequately inter-

12. See Section 2.3 for more details on the data.

13. Pástor, Stambaugh and Taylor (2020) show how funds’ profit-maximizing behaviour implies that funds’
optimal fee must depend on funds’ trading costs which are a function of funds’ turnover.

14. In Appendix 2.13 I model sponsors’ preferences as a weighted average of their true preferences and
investors’ preference and estimate that sponsors weigh their own preferences nearly three times more than
investors’ preferences.
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nalize their employees’ preferences when constructing retirement plan menus. The estimates

also indicate that sponsors have a strong preference for including funds affiliated with their

recordkeeper. Quantitatively, being affiliated with the plan recordkeeper increases the inclu-

sion probability by 0.36 percentage points, a magnitude four times higher than what a 10

basis points reduction in funds’ fees would lead to.

I model supply as a differentiated Bertrand oligopoly where funds providers set fees

simultaneously before sponsors make their plan menu decisions and plan investors form

their portfolios. Funds compete along two margins. First, they compete to be included in

sponsors’ plan menus and internalize how agency frictions reduce sponsors’ fee elasticity.

Second, conditional on inclusion, they compete for plan investors’ assets. When setting fees,

they internalize investors’ inertia, and that the likelihood of facing close competitors is low

because sponsors tend to include no more than one fund in each investment category (Figure

2.9).15

After estimating sponsors’ and investors’ demands, I use the Nash-Bertrand equilibrium

conditions to recover funds’ marginal costs and price-cost margins. The median fund, span-

ning all fund types, charges a margin of 14 basis points. Given the median expense ratio, this

translates to a markup of approximately 20%. Looking at passive funds and TDFs specifi-

cally, their estimated marginal costs indicate that these funds are more efficient than others.

However, they do not fully transfer these efficiency gains to investors. This is especially

evident for TDFs, where the estimated median markup stands at about 39% nearly twice

the median markup observed across all funds.

TDFs’ pricing power arises from two forces. First, they are often funds affiliated with

15. While most sponsors aim to provide investors with a broad range of investment categories (e.g., Large
Cap Value, etc.) they typically offer only one fund per category (Figure 2.9). Although this plan structure
helps manage risk, it could weaken competition between funds, as price competition is more intense when
products are more alike e.g., when funds belong to the same category. Consistent with this Bertrand-type
of intuition, plan-level data suggests that fees are inversely correlated with the number of options offered
within a specific category (Table 2.6).
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the plan recordkeeper. Sponsors value this affiliation, making these funds more likely to

be included in plan menus. Second, following the 2006 Pension Protection Act, they were

designated as a qualified default option (QDIA) for employer-sponsored retirement plans,

allowing them to attract demand from inactive investors who are inelastic to fees. A recent

study by Vanguard finds that the share of plan investors holding a single TDF increased

from 20% in 2010 to 54% in 2019, suggesting that the fraction of inactive investors might be

far from negligible.16 Model estimates match this evidence closely, indicating that two out

of five investors did not make an active investment decision and that the fraction of inactive

investors more than doubled over time from around 25% in 2010 to nearly 60% in 2019.

In the last part of the paper, with the estimated demand and supply parameters, I

explore a series of counterfactuals to quantify the effects of plan design policies on plan

investors’ welfare. In the first counterfactual, I eliminate agency frictions whereby plan

sponsors favor the inclusion of funds affiliated with their recordkeeper. This policy turns

out to be ineffective: sponsors simply substitute from affiliated funds to similarly expensive

unaffiliated funds and overall costs for investors do not meaningfully decrease. In other words,

eliminating sponsors’ preference for affiliated funds does not make them more responsive to

fees.

In the second set of counterfactuals, I consider policies that mandate the inclusion of

a low-cost equity index fund tracking the S&P 500 and the inclusion of a low-cost TDF.

Mandating the inclusion of low-cost equity S&P 500 funds leads to an increase in investors’

surplus of about 2%. The increase is modest because investors value lower fees, but they also

want to diversify across the available funds, dampening the incentive to substitute toward

the low-cost index fund. Moreover, this policy only benefits active investors, leaving inactive

investors’ surplus unchanged. Mandating the inclusion of low-cost TDFs increases investors’

surplus by about 11%, a magnitude more than five times larger than the previous policy.

16. The study is based on an examination of retirement plan data from 5 million defined contribution plan
participants across Vanguards recordkeeping business. See ’How America Saves’, Vanguard (2022).
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This policy is more effective because it also benefits inactive investors who reallocate their

entire portfolio to the low-cost TDF.

Lastly, I consider a policy that caps funds’ expense ratios at 50 basis points. Under this

policy, sponsors can only offer funds with expenses below this cap.17 Investors’ outcomes

further improve, with an increase in surplus of approximately 14%. This policy is effective

because it affects the entire menu of options by limiting the inclusion of the most inefficient

funds. It benefits inactive investors because it replaces the most inefficient TDFs, and it

benefits active investors by reducing the costs of all options available in the plan menu.

The rest of the paper proceeds as follows. Section 2.2 describes how this paper contributes

to the literature. Section 2.3 describes the data. Section 2.4 sets up the demand side of the

model. Section 2.5 focuses on the supply side and characterizes the equilibrium fees. Section

2.6 estimates the demand side of model. Section 2.7 turns to the supply side and recovers

funds’ price-cost margins. Section 2.8 presents the results of policy counterfactuals and

Section 2.9 concludes.

2.2 Contributions to the Literature

This paper contributes to the literature that studies retirement investing and the design of

retirement plans. A large part of this literature has focused on the demand side by studying

401(k) enrollment decisions with a particular focus on the role of automatic enrollment into

default options (Madrian and Shea (2001), Beshears, Choi, Laibson and Madrian (2009),

Carroll, Choi, Laibson, Madrian and Metrick (2009), Choi (2015)), behavioural biases in

retirement investing (Benartzi and Thaler (2001), Huberman and Jiang (2006), Benartzi

and Thaler (2007), Tang, Mitchell, Mottola and Utkus (2010)), the demand for financial

advice (Chalmers and Reuter (2020), Reuter and Richardson (2022)), and the implications

17. Under this policy, most of active funds will not find profitable to operate in the retirement market.
Nevertheless, investors’ surplus improves because most of these funds do not generate enough alpha to justify
their expenses (Jensen (1968), Gruber (1996), Carhart (1997), Fama and Kenneth (2010)).
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of automatic enrollment on saving behaviour over the life-cycle (Choukhmane (2021), Duarte,

Fonseca, Goodman and Parker (2022)).

Another part of the literature has looked at the supply side and has mainly focused

on empirically examining the role of agency frictions between plan providers (i.e., record-

keepers) and plan sponsors (i.e., employers). Pool, Sialm and Stefanescu (2016) show that

plan providers vertically integrated into fund provision tend to favor affiliated funds, Ba-

doer, Costello and James (2020) provide evidence of how plan providers trade-off direct fees

from the sponsor with indirect fees paid by funds via revenue-sharing agreements and Pool,

Sialm and Stefanescu (2022) show that funds paying revenue-sharing fees are more likely to

be included in a plan and less likely to be deleted. More recently, Gropper (2023) shows

how employers distort plan menus to reduce litigation risk. They do so by reducing the

number of options offered, which reduces employees’ retirement wealth. Building on this

evidence, Bhattacharya and Illannes (2022) take a more structural perspective and develop

a model where revenue-sharing fees are the outcome of a bargaining game between spon-

sors and recordkeepers. Yang (2023) instead models employers’ dynamic decision to switch

plan provider and shows how switching costs can rationalize a sizable share of the observed

dispersion in plan expenses.

This paper lies in between these two strands of work. Its primary contribution is to

develop and estimate a structural model of plan menu choice, retirement portfolio choice

and fee competition between differentiated fund providers. I model sponsors’ menu choice

as a multiple discrete choice problem building on the workhorse discrete choice frameworks

developed in Berry (1994) and Berry, Levinsohn and Pakes (1995). I accommodate for agency

frictions by allowing sponsors’ preferences to depend on funds’ characteristics that relate to

the identity of the plan recordkeeper, without modelling the latter as separate agents. For

example, I allow sponsors to have a taste for whether or not a fund is affiliated with its

recordkeeper. Moreover, by modelling and identifying sponsors’ and investors’ preferences
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separately, I can allow their sensitivity to expenses to be arbitrarily misaligned and capture

agency frictions whereby sponsors favor expensive funds to reduce the direct fees paid to the

recordkeeper.

A key goal of the paper is to quantify the effects of alternative plan design policies on

investors’ welfare. To this end, I incorporate investors’ portfolio decisions into the model.

After sponsors’ menus have been chosen, I assume plan investors with quadratic preferences

(Markowitz (1952)) form their retirement portfolio from the options available in their menu.

In a recent contribution, Egan, MacKay and Yang (2023) also model retirement portfolio

choice as a mean-variance problem and show how variation in expense ratios can identify

investors’ beliefs and risk aversion separately. I complement their work in two ways. First, I

extend their methodology by also allowing investors to be inactive with some probability, in

which case, investors’ contributions are defaulted into some of the available TDFs. Second, I

develop the supply side and characterize the Nash-Bertrand equilibrium fees when investors

have mean-variance demand rather than discrete choice demand.

I assume funds compete in a differentiated oligopoly by setting fees simultaneously a la

Nash-Bertrand and use the implied first-order conditions to recover funds’ marginal costs and

price cost margins. This links my paper to the empirical industrial organization literature on

imperfect competition in the mutual fund industry. Most of this literature models investment

decisions on the demand side as a standard discrete choice problem. This is done either

because the focus is on competition between financially homogeneous products such as S&P

index funds (Hortaçsu and Syverson (2004)), ESG and non-ESG funds that track the same

underlying index (Baker, Egan and Sarkar (2022)) and variable annuities (Koijen and Yogo

(2022)), or because investors are assumed to be risk neutral (Massa (2003), Roussanov, Ruan

and Wei (2021)).

No paper in this literature has modeled fee competition between differentiated funds

when investors have mean-variance preferences and characterized the resulting equilibrium
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fees. To the best of my knowledge this is the first paper to do so. Specifically, I show how the

quadratic structure of investor preferences implies that equilibrium fees can be decomposed

into three components. One of these components, which I refer to as ’Hotelling markdown’, is

equivalent to the vector of Bonacich centralities of a network in which funds are the network

nodes and funds’ substitution patterns are (inversely) proportional to the network edges.

This markdown captures how much a monopolist should give up when it faces competitors

that are closer in the space of product characteristics. A more central fund faces more similar

competitors and must charge lower fees (e.g., has a higher Hotelling markdown).

In a related paper (Loseto (2023)), I develop part of this decomposition in the context of

price competition between multi-product firms selling differentiated products to consumers

with quadratic preferences. Building on a growing literature on linear-quadratic network

games (Ballester, Calvó-Armenagol and Zenou (2006), Ushchev and Zenou (2018), Pellegrino

(2023)), I show how a firm’s Bonacich network centrality fully summarizes its pricing power:

firms that are more central charge lower prices because their products are not sufficiently

differentiated from their competitors products. The characterization of the equilibrium fee I

provide in this paper is more general because the network is ex-ante unknown to players (e.g.,

funds do not know which plan will include them), and players’ actions influence the resulting

network structure (e.g., when setting fees, funds influence their plan inclusion probability).18

Lastly, my paper joins a growing literature at the intersection between industrial or-

ganization and financial economics that uses structural models to study market structure

and competition. This literature has looked at mortgages (Allen, Clark and Houde (2014),

Benetton (2021), Robles-Garcia (2021), Agarwal, Grigsby, Hortaçsu, Matvos, Seru and Yao

18. Grice and Guecioueur (2023) also study fee competition between investment providers from a network
perspective. Building on Grice (2023), they propose a model of competition between fund families where the
competitive network is micro-founded from investors’ imperfect consideration. My model instead features
competition at the fund level and belongs to the class of network games studied in Loseto (2023) where
the underlying network is determined by assets’ characteristics, thereby allowing for arbitrary substitution
patterns between products. Moreover, in the model I am considering, the network structure is unknown to
players because investment providers set fees before plan sponsors design their retirement menu.
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(2021)), credit cards (Nelson (2020)), loans (Cuesta and Sepúlveda (2020), Benetton, Buchak

and Robles-Garcia (2022)), banking (Egan, Hortaçsu and Matvos (2017), Buchak, Matvos,

Piskorski and Seru (2018), Buchack, Matvos, Piskorski and Seru (2022)), municipal bonds

(Brancaccio, Li and Schüroff (2020)), auctions (Hortaçsu and McAdams (2010), Kastl (2011),

Richert (2021)), variable annuities (Koijen and Yogo (2022)) and the market of financial ad-

vice (Egan (2019), Bhattacharya, Illanes and Padi (2020)).

2.3 Institutional Setting and Data Sources

In this section I describe what is an employer-sponsored retirement plan and overview its

administrative structure. After that I describe the data sources and provide some summary

statistics about my sample of retirement plan menus and the investment options available

therein.

2.3.1 What is an employer-sponsored retirement plan?

Employer-sponsored retirement plans are savings vehicles designed to assist employees in ac-

cumulating wealth for their retirement years. Although there are various types of employer-

sponsored retirement plans, the most common is the defined contribution plan. At its core,

a defined contribution plan is a retirement plan in which an employee makes regular con-

tributions. The final amount available upon retirement is not pre-determined but instead

depends on the contributions made and on the returns obtained from the investment options

available in the plan.

Under a DC plan, employees contributions represent a percentage of their salary which

is subtracted from their paycheck before taxes, thereby reducing their current taxable in-

come. The gains in the retirement account grow tax-deferred, implying taxes are not due

until funds are withdrawn during retirement years. Withdrawals from a DC plan before a

certain age (typically between 59 and 60) can result in penalties. After reaching retirement
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age, participants might withdraw distributions as lump sums, period payments or annuities.

Importantly, all withdrawals at this point are subject to standard income tax.

Employers play a crucial role in the provision and design of these type of plans. First,

many employers offer to match a portion of the employee’s contributions. For example, an

employer might contribute 50 cents for every dollar the employee contributes, up to a certain

percentage of the employee’s salary (typically around 6%). More importantly, employers are

in charge of selecting and monitoring which investment options, typically mutual funds, are

to be included in the plan. Once the employee decides what percentage of their income to

contribute, they typically have the autonomy to allocate their contributions, together with

the part matched by their employer, across the options available within their plan. In many

cases, to help less financially savvy employees or those who do not make an active investment

choice, plan sponsors include options, such as TDFs, known as Qualified Default Investment

Alternative (QDIA) to be used as default option when an employee contributes to the plan

without specifying how their contribution should be invested.

Figure 2.4 summarizes graphically the structure of a DC plan. Plan sponsors typically

hire recordkeepers to assist in the design of their retirement menu and to perform admin-

istrative tasks such as maintaining account balances. Most recordkeepers, like for example

Fidelity, are also providers of investment funds and it is not uncommon for retirement plans

to include funds from the recordkeeper product line. Overall, a retirement plan consists in

a set of assets, spanning a broad range of investment categories, selected by sponsors and

recordkeepers. Under the Employee Retirement Income Security Act (ERISA), plan spon-

sors are fiduciaries to their employees and are subject to litigation risk if their retirement

plan is not designed in the employees’ best interest. The inclusion of high-cost investment

options or the lack of low-cost options are among the main triggers of some recent lawsuits,

as I describe in Appendix 2.14.
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Sponsor/Employer (p) Recordkeeper (p)

Investors/Employee (i)

Category Asset (j) Fee (bp.)

Large Cap Vanguard 500 Ix 4 bp.

Balanced Fidelity Freedom 2050 65 bp.

Bond PIMCO Tot. Return 46 bp.

Plan Menu (p)

$$

$$

Figure 2.4: Administrative structure of a defined-contribution employer-sponsored retire-
ment plan.

2.3.2 Data

The primary data source for this study is collected from Form 5500. This form is annually

filed by employers with the Department of Labor (DOL) in adherence with the ERISA

regulations. Within this form, Schedule H provides detailed information about retirement

plan menus. Specifically, it contains data regarding the investment options offered within an

employer’s retirement plan and the plan-level dollar allocation to each of these options.

Although Form 5500 filings are available for download from the DOL website, information

about plan menus comes in a non-standardized format, stored in pdf images, that would need

to be digitized manually. I acquired the digitized version of these filings for the years 2010

to 2019 from BrightScope Beacon who collects and digitizes these data directly from the

publicly available DOL filings. Overall, the data covers more than 90% of total plan assets

in each year from 2010 to 2019, digitizing an average of 55,000 plans per-year.19

I complement this data with additional information from the DOL Form 5500, including

the number of plan participants and the identity of each plan recordkeeper. Also, I obtain

19. See Table 2.7 for more details on the data coverage.
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N Mean SD p5 p25 p50 p75 p95
Tot. Assets (mln.) 60798 27.85 59.15 1.78 5.55 11.15 25.11 107.64
N. of participants 60798 475.19 597.08 118.00 160.85 250.10 494.83 1723.87
N. of options 60798 24.72 14.46 12.96 17.88 21.55 26.91 47.86
N. of categories 60798 14.96 3.27 9.55 13.00 15.00 17.01 20.00
Affiliated (%) 60798 25.13 27.56 0.00 0.64 14.33 43.24 82.33
Target Date (%) 60798 78.36 37.63 0.00 73.17 100.00 100.00 100.00
Passive (%) 60798 92.17 23.67 17.35 100.00 100.00 100.00 100.00
Avg. expense (pp.) 60798 0.63 0.21 0.26 0.49 0.63 0.76 0.98
Avg. expense (w.) 60798 0.51 0.24 0.11 0.35 0.51 0.66 0.93
Assets per participants ($ thous.) 60742 50.50 60.80 4.84 17.50 35.05 64.67 143.73
Equity 60798 0.60 0.09 0.46 0.56 0.61 0.66 0.73
Bond 60798 0.18 0.06 0.09 0.14 0.18 0.21 0.28
Balanced 60798 0.17 0.09 0.02 0.13 0.17 0.22 0.31
N. of years 60798 5.33 2.90 1.00 3.00 5.00 8.00 10.00
N. of recordkeepers 60798 1.20 0.47 1.00 1.00 1.00 1.00 2.00

Table 2.1: Plan level summary statistics for the years 2010 to 2019. Each variable is first
averaged within plan across years and then tabulated across plans. The variable ’N’ is the
number of plans and the variable ’N. of years’ is the number of years a plan is observed in
the sample. Sample is for sponsors with number of participants between 100 and 5000.

data on funds’ historical expense ratios from the Center for Research in Security Prices

(CRSP) and merge those in the main dataset using funds’ tickers. BrightScope also provides

data on funds’ expense ratios, but the historical expenses are only available starting from

2016.20

Table 2.1 provides some summary statistics for the plans in my sample. Following Bhat-

tacharya and Illannes (2022), I focus on plans whose number of participants is between 100

and 5000, representing roughly 95% of the whole sample.21 The average plan has close to

30 millions dollars in assets and around 475 participants. Both measures of plan size are

right-skewed due to the presence of large plans, with the median plan having assets ranging

around 10 millions and 250 plan participants.

20. Before 2016, BrightScope reports the most recent funds’ expense ratio which I replace with the one
obtained from CRSP.

21. Vary large plan sponsors are more likely to engage in private negotiations with recordkeepers and
mutual fund providers to obtain fees that are lower than fees available in the mutual fund market. These
privately negotiated fees are not available in the BrightScope data.
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Looking at the characteristics of the investment menu, the average plan offers 25 invest-

ment options across 15 different investment categories. For the average plan, one out of four

options is affiliated with the plan recordkeeper. Moreover, most of the plans offer at least a

TDF fund and a passive fund. Turning to plan expenses, the average expense ratio charged

by the average plan is of about 63 basis points. This is more than 10 basis point higher

than its asset-weighted average, suggesting that plan investors tilt their allocations toward

cheaper funds.

Table 2.8 reports some summary statistics for the funds offered in the sample of plan

menus I observe. Excluding cash accounts and common stocks, there are 5600 distinct funds

for which at least a ticker identifier is available.22 In my sample of plans, the average fund

manages 191 million dollars of retirement assets and has an average portfolio share of about

3%. The distribution of assets is right-skewed, with the median fund having 7 millions in

assets. Interestingly, the share of plan assets allocated into a given fund varies significantly

across plans, with the average standard deviation of the portfolio share across funds being

as large as 3%.

The data also suggests that sponsors review their menu of investment options often. In

Table 2.8, the penultimate row reports the average fraction of years a fund is included within

a plan menu. On average, a fund is offered in only half of the years that I observe the plan

menu, implying that sponsors regularly modify their menu offerings. The same does not

appear to be true when looking at plans’ recordkeepers, with more than 75% of plans having

the same recordkeeper over the sample period (Table 2.1).

2.4 Demand

This section describes the two-layer demand side of the model. I start from the first layer

where I describe sponsors’ preferences and the menu choice problem they face. After that, I

22. The same fund may have multiple tickers, one for each different share class.

80



derive funds’ plan inclusion probabilities implied by sponsors’ demand. Next, I turn to the

second layer of demand where I first describe investors’ preferences and then derive individual

and aggregate asset demand systems.

2.4.1 Sponsors’ menu choice problem

Throughout the paper I will index plan sponsors by p and mutual funds by j. All vectors

are in bold. The goal of sponsor p is to choose a set of mutual funds to include into its

retirement plan. Typically sponsors hire recordkeepers to help in designing and managing

their plan menu and, empirical evidence suggests that the set of funds sponsors consider to

being with is strongly influenced by the recordkeeper identity. From a modelling point of

view, I capture this by allowing for heterogeneity in sponsors’ consideration sets.23 Formally,

I assume that sponsor p considers with positive probability a subset Np ⊂ N of all mutual

funds available. Empirically, I assume that fund j belongs to Np if I observe at least one

plan that includes j and shares the same recordkeeper as p. In other words, sponsors with

the same recordkeeper have the same consideration set.

Sponsor p’s random utility from including fund j is given by

ujp = Vjp(θp) + εjp (2.1)

with the non-random utility part, Vjp, defined as

Vjp(θp) = w′
jpθp + ζj (2.2)

where wj is the vector of fund j’s observed characteristics including its expense ratio, past

returns and an indicator for whether j is a fund affiliated with p’s recordkeeper, ζj captures

23. In principle sponsors can choose/change their recordkeeper. Yet, the data suggests that sponsors tend
to stick with the same recordkeeper over time (Table 2.1). This motivates why I to abstract from modelling
recordkeepers and sponsors as separate agents.
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characteristics, possibly correlated with fees, unobserved to the econometrician and, εjp is a

random preference shock distributed as T1EV. When modeling the preferences of sponsors

I place no restrictions on their parameters, θp, thereby allowing for such preferences to

be arbitrarily misaligned from those of plan investors. In Appendix 2.13 I show how plan

investors’ preferences can be nested into sponsors’ preferences and how to interpret the

parameters θp as a weighted average between sponsors’ true preference parameters and

investors’ preference parameters.24

The preference specification in (2.1) captures two types of agency frictions that have

been documented in the literature. First, the indicator for funds’ affiliation allows for the

possibility that sponsors prefer to include funds affiliated with the plan recordkeeper (Pool,

Sialm and Stefanescu (2016)).25 If the preference coefficient on the affiliation indicator is

positive, an affiliated fund will be more likely to be included than an otherwise identical

unaffiliated fund. Second, sponsors might be willing to include expensive funds to reduce

their direct payments to the recordkeeper (Badoer, Costello and James (2020), Bhattacharya,

Illanes and Padi (2020)). If this incentive is strong enough, it will affect the estimated

preference coefficient on funds’ fees and will likely reduce sponsors’ elasticity to funds’ fees.

I assume that funds are classified into investment categories indexed by g ∈ {1, ..., G}

and model the menu choice as a two-stage decision problem. In the first stage, sponsors

choose which category to offer in their plan and this decision is made independently across

categories. For each selected investment category, in the second stage, sponsors evaluate the

options available making within category comparisons and selecting the options providing

the highest indirect utility.

To complete the decision problem, I need to specify how the number of options to be

24. Identifying and estimating how much sponsors weigh their investors preferences requires additional
assumptions. In Appendix 2.13 I provide more details and find that sponsors weigh their own preferences
three times more than their investors preferences.

25. The data suggests that affiliated fund are nearly twice more likely to be included in a plan, even when
comparing employers within the same industry and with similar size (Figure 2.19).
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included within each selected category is chosen. I assume that this number is drawn ran-

domly from a geometric distribution with parameter q, rather than modelling this choice as

the outcome of a rational decision problem.26 This implies that the probability of n options

being included in a given category is given by:

q(n) ≡ q(1− q)n−1 for n = 1, 2, ... (2.3)

This modelling assumption is guided by the empirical observation that sponsors tend not

to include more than one option per investment category. Figure 2.9 plots the empirical

distribution of the number of options offered within investment category and shows how in

nearly 70% of instances sponsors only include one option per category.27 The probability

then decays as the number of options included increases, consistent with the presence of

some cost that sponsors incur when adding more than one option within the same cate-

gory. In estimation, I calibrate q to match the observed empirical distribution allowing for

heterogeneity at the year-recordkeeper-category level.

2.4.2 Funds’ plan inclusion probabilities

In this section I derive funds’ inclusion probabilities implied by sponsors’ menu choice prob-

lem described in the previous section. To this end, I will analyze sponsors’ decision problem

backward.

Consider sponsor p who has chosen to offer category g and needs to select n investment

funds within g. At this stage, p ranks all the options according to (2.1) and selects the n

26. As I explain in Appendix 2.11, where I offer a simple microfoundation for the optimal choice of the
number of options included within an investment category, incorporating such decision in the full model
would considerably complicate its estimation.

27. For each year-plan-category pair I count the number of funds offered and plot the resulting distribution
in Figure 2.9.
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options {j1, ..., jn} such that

uj1 > uj2 > ... > ujn . (2.4)

Fund j will be included in p’s plan if and only if uj is ranked among first nth highest utilities.

Letting jz be the option with the zth highest utility, the probability that j is included in

plan p is given by

ϕ1:njp ≡
n∑

z=1

ϕzjp

where ϕzjp is the probability that j is ranked in the zth position i.e.,

ϕzjp ≡ Pr{j = jz}.

Under the assumption that the random utility shocks are distributed as T1EV, an analytical

expression for each ϕzjp can be derived. For z = 1, ϕ1jp corresponds to the standard logit

choice probability

ϕ1jp =
exp(Vj(θp))∑
k∈g exp(Vk(θp))

. (2.5)

For z = 2, ϕ2jp is the probability that j provides the 2nd highest utility which equals the

sum of probabilities of all utility rankings where uj is the 2nd largest utility. In a world in

which there are only 4 options, say {j, k, l,m},

ϕ2jp = Pr{ukp > ujp > ulp > ump}+ Pr{ukp > ujp > ump > ulp}

+ Pr{ulp > ujp > ukp > ump}+ Pr{ulp > ujp > ump > ukp}

+ Pr{ump > ujp > ukp > ulp}+ Pr{ump > ujp > ulp > ukp}.
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In Appendix 2.11 I show that the independence of irrelevant alternatives (IIA) property

of the logit model implies ϕ2jp can be written as follows for an arbitrary number of options:

ϕ2jp =
∑
j1 ̸=j

exp(Vj1p)∑
k exp(Vkp)

exp(Vjp)∑
k ̸=j1

exp(Vkp)
.

The above expression can be further generalized that to the case in which we want to compute

the probability of j being ranked in an arbitrary position zth

ϕzjp =
∑

(j1,...,jz−1)∈g/{j}

z−1∏
z′=1

exp(Vjz′p)∑Ngp

z′′=z′ exp(Vjz′′p)
·

exp(Vjp)∑Ngp

z′′′=z
exp(Vjz′′′p)

where Ngp ⊂ Np is the set of funds that p considers in category g.

Moving backward in sponsor p’s menu choice problem, the probability that n options are

chosen from investment category g is given by q(1 − q)n−1 so that, conditional on g being

offered, the probability of j being included in p’s plan is just

∞∑
n=1

q(1− q)n−1ϕ1:nj .

The choice of whether or not to include category g is assumed to depend on sponsors’

expected utility from the highest ranked option, which under our T1EV assumption, is given

by

E[uj1p] = log

∑
k∈g

exp(Vkp(θp))

 .

The probability that p decides to offer investment category g as part of its retirement plan
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equals

λgp =
exp(E[uj1p])

1 + exp(E[uj1p])

which can be interpreted as the probabilistic outcome of a binary choice logit problem.

Combining all pieces together, it can be shown that the unconditional probability of fund

j being included in sponsor p plan can be written as

ϕjp(θp) = λgp(θp) ·
∞∑
n=1

(1− q)n−1ϕnjp(θp) (2.6)

where I make explicit its dependence on the vector of preference parameters θp, (1− q)n−1

is the probability that p includes a number of options greater or equal than n and ϕnj is the

probability that j is ranked in the nth position.28

Equation (2.6) extends the expression of the logit choice probabilities to the case in which

decision makers can select more than a single option and where the number of option chosen

is determined by the parameter q. Expression (2.6) collapses to the standard discrete choice

logit probability if we assume sponsors can only include one fund within each investment

category. This corresponds to setting q = 1, which implies that

ϕjp(θp) = λgp(θp) · ϕ1jp(θp) =
exp(Vjp(θp))

1 +
∑

k∈g exp(Vkp(θp))
.

In this more general context, the decision of not including investment category g plays the

role of the outside option in standard discrete choice models, with mean indirect utility

normalized to 0.

Overall, equation (2.6) represents sponsor p individual demand for investment funds be-

longing to investment category g. Assuming sponsors preferences θp follow some distribution

28. I provide details on the derivation in Appendix 2.11
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Fθ, we can derive fund j’s aggregate demand as

ϕj =

∫
ϕjp(θp)dFθ(θp). (2.7)

The data counterpart to (2.7) corresponds to the share of plans that include fund j as part

of their retirement menu. In Section 2.6 I estimate the distribution of sponsors preference

parameters by matching (2.7) to these observed inclusion probabilities.

2.4.3 Investors’ retirement portfolio problem

Consider investor i who allocates its dollar contribution A across the investment funds avail-

able in plan p, indexed by j ∈ {1, ..., Jp}, and a cash account j = 0. In practice, not all plan

investors make an active investment decision and many of them are automatically defaulted

into one of the options available which often corresponds to a TDF fund or a balanced fund.

I denote this default option j = d and assume that with probability δ investor i does not

make an active investment decision. In this case, i’s contribution will be allocated entirely to

fund d. Conversely, with probability (1− δ) investor i makes an active investment decision

and allocates A across all options available including d.

Conditional on making an active investment decision, investor i forms its retirement port-

folio by choosing the vector of portfolio weights a ≡ (a1, ..., aJp) to maximize the following

linear-quadratic utility:29

Up(a) ≡
Jp∑
j=1

aj(w
′
jβ − fj + ξj)︸ ︷︷ ︸

linear utility component

− γ

2

Jp∑
j=1

a2j︸ ︷︷ ︸
naive diversification

− γ

2

∑
j,k

gjkajak︸ ︷︷ ︸
funds substitutability

. (2.8)

The preferences defined in (2.8) capture the idea that investors value funds along three

29. In equation (2.8) I have already substituted for the portfolio share on the cash account a0 using the
constraint that a0 + a′1 = 1 and assuming that returns on the cash account are normalized to 0.
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margins. The first is a ’perfect substitute’ margin that pushes them to allocate their entire

contribution to the fund with the highest linear utility component. This component depends

on observed funds’ characteristics wj , fees fj , and on unobserved characteristics ξj . If this

were the only margin, investors’ portfolio problem would collapse to a standard discrete

choice problem with investors’ indirect utility for fund j given by w′
jβ − fj + ξj .

In the context of investment choices, standard portfolio theory predicts that investors

should diversify across assets to reduce risk (Markowitz (1952)). The second margin captures

this incentive. Specifically, it captures investors’ incentives to naively diversify across the

available options which, in the context of retirement investing, has been shown to be a key

determinant of individual portfolio allocations (Benartzi and Thaler (2001), Huberman and

Jiang (2006)).

The third margin captures how investors perceive substitutability between funds. I as-

sume that investors perceive fund j and fund k as substitutable if they belong to the same

investment category, in which case the term gjk = 1. If funds belong to different invest-

ment categories gjk = 0. This implies that investors will have an incentive to diversify more

across funds from different categories rather than across funds within the same category. As

I explain in more detail later on, this assumption is motivated by the empirical evidence

that investment categories fixed effects explain a substantial fraction of the observed plan-

level portfolio allocation, suggesting that investors’ allocate across styles rather than among

individual funds (Barberis and Shleifer (2003)). Conversely, funds’ loadings on standard

risk factors (Fama and French (1992), Carhart (1997)) have negligible explanatory power,

especially after controlling for investment categories fixed effects.
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2.4.4 Plan asset demand system

Letting Gp be the Jp×Jp matrix whose (j, k) element is gjk, under the previous assumptions,

investor i’s optimal portfolio allocation is given by

ai(fp) =


ed if i inactive

1
γ (I +Gp)

−1(Wpβ + ξp − fp) if i active
(2.9)

where ed is a unit vector that takes value of 1 in its d element corresponding to the default

option and Wp is the matrix of observed characteristics for the funds available in plan p.

In the data I do not observe asset allocations at the individual level. Therefore, I need to

aggregate individual investors demands to obtain the plan level demand system. Letting sp

be the Jp vector of plan p portfolio shares, Ap plan p total wealth and defining η ≡ (β, γ, δ)

as the vector of demand parameters, we can sum demands across all investors in plan p to

obtain:

sp(f ;η) ≡
∑
i∈Ip

A

Ap
ai(f) = δed +

1− δ

γ
(I +Gp)

−1(Wpβ + ξp − fp). (2.10)

Empirically, I can use variation in the observed plan level allocations to estimate the demand

system in (2.10). To this end, it is useful to multiply both sides of (2.10) by (I + Gp) to

obtain a demand system where only own fees and own demand shocks enter each equation:

s̃p(f ;η) = δẽd +Wpβ̃ − γ̃fp + ξ̃p. (2.11)

where s̃p ≡ (I +Gp)sp, ẽd ≡ (I +Gp)ed, β̃ ≡ β(1− δ)/γ and ξ̃ ≡ ξ(1− δ)/γ. Because s̃p

is observed, I can estimate (2.11) via linear methods.

Before turning to the supply side, a couple of remarks are in order. First, so far I

have assumed that investors’ preferences are homogeneous. In this way, the parameters of
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the plan-level demand system are the same as the ones for the individual demand system.

From an empirical perspective, the nature of the data and the linear structure of the demand

system prevent me from learning about unobserved heterogeneity in preference parameters.30

Nevertheless, in Appendix 2.11, I show how to interpret the parameters in (2.10) as weighted

averages of the heterogeneous individual parameters. Second, I am assuming that the default

option is the same for each individual. This is done only for expositional purposes and in

the estimation and in Appendix 2.11 I allow for the presence of multiple default funds.

Lastly, in setting the supply side profit maximization problem, I will be working with a

version of equation (2.10) that I rearrange slightly as follows:

sp(f ;η) = δed +
(1− δ)

γ
(I −Kp)(µp − f) (2.12)

where µp ≡ Wpβ + ξp and the matrix Kp is defined as

Kp ≡ G̃p(I + G̃′
pG̃p)

−1G̃′
p,

with G̃p a matrix with Jp rows, one for each fund in plan p, and a number of columns

equal to the number of investment categories. The jth row of G̃, denoted g̃j , equals 1 in

correspondence of fund j’s category and 0 otherwise. The matrix Gp that appears in (2.10)

is the outer product of G̃p, e.g., Gp = G̃pG̃
′
p with gjk = g′jgk.

Rewriting aggregate asset demand as in (2.12) helps in visualizing own and cross substi-

tution patterns across different assets. In particular, the fee elasticity between asset j and

30. Recall that I do not observe portfolio allocations at the individual level. One way to introduce hetero-
geneity would be adding interaction terms between funds’ characteristics, such as fees, and observable plan
characteristics. Egan, MacKay and Yang (2023) take this approach to uncover heterogeneity in investors’
risk aversion.

90



asset l is proportional to

∂sj
∂fl

∝


−(1− κjj) = −

(
1− g̃′j(I + G̃pG̃

′
p)

−1g̃j

)
if j = l

κjk = g̃′j(I + G̃pG̃
′
p)

−1g̃l if j ̸= l

(2.13)

which is always between (−1, 1) if j ̸= k and between (−1, 0) if j = l. If one defines G̃ as

the matrix of funds’ factor loadings, ∂sj
∂fl

measures how close/correlated asset j and l are

in terms of their risk exposures g̃j and g̃l respectively.31 When G̃ is the matrix of funds

categories fixed effects the same interpretation applies but the substitution patterns are by

construction sparse.

2.5 Supply

I model supply as a differentiated Bertrand oligopoly where investment advisors set fees

simultaneously before sponsors make their plan menu decisions and plan investors form

their portfolios. I assume that the same fund charges the same fee across different plans

because, although funds can price discriminate by offering different share classes, almost all

the observed variation in fees is across funds and not across share classes within the same

fund.32

Let P be the number of plan sponsors, Ap the dollar wealth of plan p and Sjp ⊆ 2Np be

the set of all possible menus where p includes fund j. Fund j chooses its fee fj to maximize

the following expected dollar profit

max
fj

P · (fj − cj) ·
∫
p
Ap

 ∑
S∈Sjp

ϕp(S,f ;θp)sjp(f ;ηp|S)

 dF (Ap,θp,ηp) (2.14)

31. I provide more details in Appendix 2.11

32. Additionally, in the context I am considering, 401(k) sponsors are almost always treated as institutional
investors and many investment providers offer a specific share class for the retirement plans market.
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where ϕp(S,f ;θp) is the probability that sponsor p chooses plan menu S and, conditional

on menu S, sjp(f ;ηp|S) is fund j’s portfolio weight within plan p

sjp(f ;ηp|S) =


1−δp
γp

(
(1− κSjj)(µjp − fj)−

∑
l ̸=j,l∈S κ

S
jl(µlp − fl)

)
if j ̸= d

δp +
1−δp
γp

(
(1− κSdd)(µjp − fj)−

∑
l ̸=j,l∈S κ

S
dl(µlp − fl)

)
if j = d

where I made explicit the dependence of the elements of K on the realized menu S and allow

investor parameters to depend on p.

Problem (2.14) is particularly complex to solve because it requires investment providers

to internalize how a marginal increase in fees affects (i) investors portfolio allocation sj

conditional on a given menu S, (ii) the probability that plan menu S is chosen and (iii) trade-

off these changes across all possible plan menus S and plan sponsors p. From a computational

perspective, given the large number of funds available in the market, the number of possible

plan menus in Sjp would be too large to make the computation of (2.14) and its derivatives

feasible.33 To overcome these difficulties, I will simplify funds’ pricing problem in a way that

allows me make the problem computationally tractable while at the same time preserving the

two dimensions along which funds’ compete in the retirement market, namely, competition

for plan inclusion and competition for plan asset allocations.

To simplify problem (2.14) I will assume that funds only consider the effect of a marginal

change in fees on their aggregate inclusion probability and not on the probability of any

of the possible menus being selected by the sponsor. Equivalently, I assume funds do not

take into account that changing fees influences the probability that a particular menu is

33. Goeree (2008) faces a similar problem when estimating a discrete choice demand model with imperfect
consideration. She overcomes the computational burden by simulating consumers consideration sets. My
case is more complex because investors’ consideration sets, or equivalently plan menus, are the outcome
of sponsors’ menu choice problem. Moreover, consideration probabilities in my case are not independent
for products that belong to the same investment category. Lastly, in my case prices affect consideration
probabilities which means that derivatives of consideration probabilities will enter firms’ first order conditions.
This will be true for both own consideration probabilities but also competitors consideration probabilities.
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chosen but only consider how it affects their total likelihood of being included. With this

assumption, fund j fee setting problem can be rewritten more compactly as

max
fj

P · (fj − cj) ·
∫
Apϕjp(f ;θp)sjp(f ;ηp)dF (Ap,θp,ηp) (2.15)

where ϕjp(f ; θp) is the probability that p includes j as defined in (2.6) and sj(f ;ηp) is the

expected portfolio allocation of fund j within plan p and is given by

sjp(f ;ηp) =


1−δp
γp

(
(1− κ̄

p
jj)(µjp − fj)−

∑
l ̸=j κ̄

p
jl(µlp − fl)

)
if j ̸= d

δp +
1−δp
γp

(
(1− κ̄

p
dd)(µjp − fj)−

∑
l ̸=j κ̄

p
dl(µlp − fl)

)
if j = d

(2.16)

with,

κ̄
p
jl ≡


∑

S∈Sjp∩Slp
ϕp(S,f ;θp)
ϕjp(f ;θp)

κSjl = ϕlp(f , θp) · E[κSjl|j, l ∈ S] if j ̸= l∑
S∈Sjp

ϕp(S,f ;θp)
ϕjp(f ;θp)

κSjj = E[κSjj |j ∈ S] if j = l

(2.17)

Problem (2.15) can be obtained from (2.14) after dividing and multiplying the term in the

round brackets by ϕjp and exploiting the linear structure of sjp to rewrite the expectation

over S more compactly. The resulting term collapses to sjp(f ;ηp) as defined in (2.16),

which represents the asset demand from plan p investors that fund j expects before sponsor

p chooses its plan menu. Asset characteristics affect this expected demand through the

matrix K̄p, whose (j, l) element, defined in (2.17), captures how much competitive pressure

j expects from competitor l. The latter depends on how likely is fund l to be included in

plan p and, conditional on that, on how close substitute asset j and asset l are.34

My restriction on funds’ fee-setting behavior assumes that funds do not internalize how

34. This measure of substitutatibility is given by the second term in (2.17) E[κS
jl|j, l ∈ S;f ]. This is an

expectation because κS
jl depends on the whole menu S and not only on fund j and fund l characteristics.

Formally, this can be seen from the definition of κjl in (2.13) where κjl depends on the characteristics of all
competitors through the weighting matrix (I + G̃′

pG̃p)
−1.
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fees affect the elements κ̄jl. A constructive way to impose this restriction could be assuming

that funds believe sponsors will include at most one fund per investment category, thereby

assigning positive probability only to plan menus containing funds from different categories.

Formally, this would require funds to have a biased belief q̂ = 1 about the parameter q

governing the distribution of the number of funds included within each category. In practice,

we know that most plans do not include more than one option per category (Figure 2.9),

making this assumption perhaps not so unreasonable. Under this assumption, I show in

Appendix 2.11 that κ̄jl would not depend on fj because plan inclusion decision are assumed

to be independent across investment categories. Moreover, this assumption is one of the

sufficient conditions that allows me to prove existence of a Bertrand-Nash equilibrium.35

2.5.1 Nash equilibrium fees

In this section I derive the Nash equilibrium fees implied by problem (2.15) assuming that

funds take K̄ as given. Denoting by sj(f) fund j expected dollar asset allocation, the first

order conditions with respect to fj is given by the usual Bertrand pricing equation

sj(f) + (fj − cj) ·
∂sj(f)

∂fj
= 0. (2.18)

The difference between the current setting and standard oligopolistic problems is that

funds are competing along two dimensions, namely, they compete for being included in a

plan and, conditional on plan inclusion, they compete for plan investors’ allocations. These

two layers of competition are enclosed in ∂sj(f)/∂fj which is made of the following two

35. In Appendix 2.11 I show that when q̂ = 1, sponsors preferences are homogeneous and a particular
dominance diagonal condition on the jacobian of the demand system is satisfied there exists a Bertrand-
Nash equilibrium.
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terms

∂sj(f)

∂fj
=

∫
Ap

∂ϕjp
∂fj

(f ;θp)sjp(f ;ηp)dF (Ap,θp,ηp)︸ ︷︷ ︸
demand loss from marginal sponsor

−
∫
Ap(1− δp)γ

−1
p ϕjp(f ;θp)(1− κ̄

p
jj)dF (Ap,θp,ηp)︸ ︷︷ ︸

demand loss from marginal investor

< 0. (2.19)

Expression (2.19) captures the classic expected revenue loss from marginal consumers not

willing to buy at higher price. In this context, the reduction in demand comes from two

forces (i) the marginal sponsor not willing to include j in its plan and (ii) the marginal

plan investors reducing its allocation to fund j. Equation (2.18) then tells us that, for given

competitors fees, fund j will choose fj that equalizes the profit reduction from losing the

marginal sponsors and investors to the profit gain from charging the inframarginal ones an

higher fee.

The linear structure of investors asset demand allows me to go beyond this standard

intuition and to offer a novel characterization of the Nash equilibrium fees that sheds light

on the forces driving price competition in this market. To this end, I will define the following

variables,

ϕ̄j ≡
∫
Ap(1− δp)γ

−1
p ϕjpdFp; κ̃jl ≡ ϕ̄−1

j

∫
Ap(1− δp)γ

−1
p ϕjpκ̄

p
jldFp

µ̄j ≡ ϕ̄−1
j

∫
Ap(1− δp)γ

−1
p ϕjp[I − K̄p]′jµpdFp; µ̃ ≡ (I − K̃)−1µ̄

δ̄ ≡ ϕ̄−1
j

∫
ApϕjpδpdFp; ιj ≡ −ϕ̄−1

j

∫
Ap

∂ϕjp
∂fj

sjp(fj − cj)dFp

where I suppressed all functions’ arguments and [I −K̄p]j denotes the jth row of the matrix

I − K̄p. Next, I rewrite (2.18) in vector form for all funds in terms of these variables to
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obtain

δ̄ed + (I − K̃) (µ̃− f)− ι− (I − diag(K̃))(f − c) = 0

By rearranging this system of Bertrand FOCs, I reach one of the paper’s key findings, which

decomposes equilibrium fees into three components:

f∗ =
µ̃+ c

2︸ ︷︷ ︸
monopolist fee

− h

(
K̃, µ̃− c

2

)
︸ ︷︷ ︸

Hotelling markdown

−

(
I − diag(K̃)

2
− K̃

2

)−1
ι

2︸ ︷︷ ︸
plan inclusion markdown

(2.20)

where for simplicity I assumed that there is no default fund.36

Equation (2.20) decomposes the fees charged by funds in an interior Nash equilibrium into

three terms. The first term represents the vector of fees funds would charge as monopolist.37

From these fees there are two types of markdowns that need to be subtracted to account

for the two dimension of competition driving pricing incentives in this market. The plan

inclusion markdown in (2.20) captures the optimal reduction in fees required to increase

the probability of being included in a plan. If funds knew that they will be included with

certainty i.e., ϕjp ≡ 1, the plan inclusion markdown would disappear because ιj = 0. The

Hotelling markdown h(·) instead captures the optimal reduction in fees required to compete

against similar funds. The simple Hotelling (1929) model predicts that when two firms

located on a line are closer to each other, they will charge lower margins. The same intuition

carries over in this more general setting. Funds that are closer to their competitors have an

higher h an must lower their fee.

The natural question at this point is, what does being closer to competitors mean in this

context and how does that relate to h? Loosely speaking a fund is closer to its competitors

36. All derivations are presented in Appendix 2.11

37. The price charged by a monopolist facing a linear demand q(p) = a−p with marginal cost c, is (a+c)/2.
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when its characteristics are less differentiated from competitors’ characteristics. In practice,

this measure of proximity/differentiation is embedded in the asset demand cross-substitution

patterns through the matrix K defined in (2.13). Fund j and fund l are closer substitutes if

their characteristics are closer as measured by κjl. The proximity of each fund to all other

competitors is summarized by the vector h(·) which is defined as

h

(
K̃, µ̃− c

2

)
≡

(
I − (K̃ − κ0I)

2(1− κ0)

)−1
(K̃ − κ0I)

2(1− κ0)

µ̃− c̃

2
(2.21)

where for expositional purposes I assumed that κ̃jj ≡ κ0. Expression (2.21) is a measure

of proximity because it is equivalent to the Bonacich network centrality measure studied in

Bonacich (1987).38 This network centrality measure appears in (2.20) because the Bertrand

fee-setting game belongs to a broader class of network games first studied in Ballester et al.

(2006).39 The main insight from this literature is that Nash equilibrium actions will generally

depend on a player’s network centrality. In this case, funds’ equilibrium fees depend on

how central a fund is in the competitive network. A more central fund faces more similar

competitors and charges lower margins.

So far, I have assumed that a Nash equilibrium exists. Given the complexity of funds’

pricing problem deriving general results about existence and uniqueness is not an easy task.

Nonetheless, in Appendix 2.11 I provide sufficient conditions for existence and uniqueness

of an interior Bertrand-Nash equilibrium for some particular cases. Specifically, I start by

showing that when funds know with certainty which plan menus will include them (e.g.,

38. For any zero-diagonal adjacency matrix A, positive scalar δ > 0 and non-zero vector u, the vector of
Bonacich centralities is defined as b(A,u) ≡ (I − δA)−1δAu.

39. More details are provided in Appendix ??.
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ϕjp = 1 if p includes j) then the following dominance diagonal condition

(1− κ̃jj)(µ̃j − cj) >
∑
l ̸=j

|κ̃jl|(µ̃j − cl) all j,

ensures that the Bertrand-Nash equilibrium is interior, with f∗j ∈ (cj , µ̃j) for all j, and

unique. Moreover, I am also able to show that when sponsors’ preference are homogeneous

and funds believe that sponsors will include at most one fund per category (e.g., q̂ = 1) there

exists a Nash-equilibrium even when funds’ do not know with certainty which plan menus

will include them.

2.6 Demand Identification and Estimation

In this section I describe how to identify and estimate the model. I estimate sponsors’ pref-

erences from variation in the observed plan inclusion probabilities and investors’ preferences

from variation in the observed plan-level portfolio allocations. After that, I turn to the sup-

ply side and recover funds’ marginal costs and markups using the demand estimates together

with the Nash-Bertrand equilibrium conditions.

2.6.1 Identification and estimation of sponsors’ preferences

The menu choice model developed in Section 2.4 provides us with an analytical expression for

the expected probability that fund j is included in a retirement plan for a given distribution

of sponsors’ preference parameters θp ∼ F (θp; θ̄) which I assume to be parametrized by the

vector θ̄:

ϕj(θ̄) =

∫
λgp(θp) ·

∞∑
n=1

(1− q)n−1ϕnjp(θp)dF (θp; θ̄), (2.22)
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where λgp(θp) is the probability that plan p offers category g and ϕnjp(θp) is the probability

that j is the fund with the nth highest utility.

The data counterpart to equation (2.22) is the share of retirement plans that include

fund j. The estimation strategy is then to find the vector of parameters θ̄ that makes the

model implied inclusion probabilities in (2.22) as close as possible to the observed ones.

As q → 1, expression (2.22) collapses to the standard random-coefficient logit formula for

product market shares

ϕj(θ̄) =

∫
exp(Vjp(θp))

1 +
∑

k∈g exp(Vkp(θp))
dF (θp; θ̄),

considered in the workhorse demand models of Berry (1994) and Berry, Levinsohn and Pakes

(1995).

In estimation, I compute the observed inclusion probability for each fund at the year-

recordkeeper-category level, where I define an investment category as the interaction between

the standard investment categories and an indicator for passive funds. In this way, an index

fund and active fund from say Large-Cap-Growth would be classified into two different

categories Large-Cap-Growth-Active and Large-Cap-Growth-Passive. I refer to a particular

year-recordkeeper-category combination as a market, indexed by t, and denote the share of

retirement plans in market t that offer fund j as ϕ̂jt.

I allow for the possibility that funds’ fees are correlated with sponsors’ demand shocks

ζjt. These shocks enter sponsors’ mean utilities Vjpt(θp) = w′
jptθp + ζjt and are observed

by market participants, including investment funds, but unobserved to the econometrician.

If funds set fees after observing ζjt or have better information about these demand shocks,

demand and supply simultaneity would bias preference parameters estimates. I account for

this type of price endogeneity in two ways. First, I exploit the granularity of the data to

absorb unobserved heterogeneity in demand along three dimensions: (i) time by including
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year fixed effects, (ii) product quality by including funds’ brand fixed effects, and (iii) fi-

nancial characteristics by including investment category fixed effects. Second, I instrument

funds’ fees with funds’ turnover ratios which capture trading-related costs that funds incur

when selling and buying securities. The instrument is relevant as long as profit maximizing

funds optimally pass these costs to investors through higher fees (Pástor, Stambaugh and

Taylor (2020)). The identifying assumption is that the variation in funds’ turnover ratio

not explained by time, brand, investment category and passive fixed effects enters sponsors’

demand only through fees.

A large literature in finance has studied the relationship between funds’ turnover and

funds’ investment performance. The results are mixed: Carhart (1997) finds a negative

cross-sectional relationship, Wermers (2000) and Kacperczyk, Sialm and Zheng (2005) find

no relationship, and Pástor, Stambaugh and Taylor (2017) find a positive time-series relation-

ship. Regardless of the sign of such relationship, if investors chase performance (Chevalier

and Ellison (1997)) and my set of fixed effects does not control for that appropriately, the

exclusion restriction might not hold because turnover may correlate with unobserved demand

shocks. In Appendix 2.12 I provide supporting evidence for the validity of the instrument

(e.g., the residual turnover) by showing that it does not correlate with standard measure of

current and future investment performance for the funds in my sample.

To estimate sponsors preferences I use a nested-fixed point algorithm similar to the one

developed in Berry et al. (1995).40 To start with, I assume that the distribution of sponsors

preference parameters is normal with mean µθ̄ and variance Σθ̄ (e.g., θ̄ = (µθ̄,Σθ̄)) and

write sponsor p mean utility as

Vjt(θ̄) = v̄jt +w′
jtΓθ̄νp

40. See Appendix 2.11 for more details.
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where v̄jt ≡ w′
jtµθ̄ + ζjt is the homogeneous component of preferences, νp ∼ N(0, I) are

random tastes for funds’ characteristics and ΓθΓ
′
θ = Σθ. The estimation algorithm starts

with a guess of θ̄ and then for each market t finds the vector v̄t(θ̄) that matches observed

and model-implied inclusion probabilities:

ϕ̂t = ϕt(v̄t(θ̄)).

After that, the demand residuals ζt(θ̄) = v̄t(θ̄) − Wtµθ̄ are computed for each market.

The last step exploits the orthogonality condition between ζjt and an appropriate vector of

instruments Zjt, E[ζjt|Zjt] = 0 to form the GMM norm

ζ(θ̄)′ZΩ(θ̄)Zζ(θ̄). (2.23)

The algorithm keeps searching over θ̄ until (2.23) is minimized.

2.6.2 Estimates of sponsors’ preferences

Table 2.2 presents the estimates of sponsors’ preference parameters. The first column reports

the estimates of the means of the preference distribution and the second column reports the

corresponding standard deviations. These estimates minimize the GMM objective (2.23)

following the estimation algorithm I discussed in the previous section.

In the estimation of sponsors’ preferences I include five characteristics, two of them are

continuous and three of them are binary. The two continuous characteristics are funds’

expense ratios, measured in basis points (bp.), and funds’ returns in the previous year gross

of expenses, measured in percentage points (pp.). Because I absorb investment category

fixed effects, returns are relative to the average return of funds within the same category.

The three binary characteristics are indicators for whether a fund is affiliated with the

sponsor’s recordkeeper, for whether a fund is a target date and their interaction. Including an
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indicator for affiliated funds allows me to accommodate for the presence of agency frictions

whereby sponsors favor the inclusion of funds belonging to their recordkeeper product line.

The inclusion of an indicator for TDFs instead captures the possibility that sponsors have a

preference for funds that rebalance plan investors allocation automatically as they age. These

type of funds have been created specifically for retirement investing and, after the Pension

Protection Act of 2006, qualify as default option for plan participants who do not make an

active investment decision. Since then, TDFs’ market share in the retirement market has

been growing substantially and it is reasonable to think that sponsors may have a preference

for such funds even if just to comply with current regulations and reduce liability risk.

The parameter estimates reported in the first column of Table 2.2 suggest that spon-

sors value more whether a fund is affiliated, and especially if it is an affiliated TDF, rather

than how cost-efficient such fund is or how it performed relative to its investment category.

The preference coefficient for funds’ affiliation is large and significant. The preference co-

efficient on funds’ expense ratios is negative and significant but its magnitude is small if

compared with the coefficient on funds’ affiliation; on average sponsors are willing to pay 44

bp (=0.88/0.02) more in fees for an affiliated fund. On the other hand, plan sponsors do

not seem to value funds’ returns gross of fees, as the estimated coefficient is close to zero.

I also allow for heterogeneity around the mean of sponsors’ sensitivity to fees and report

the estimated standard deviation in the second column of Table 2.2. Although modest in

magnitude, the estimated heterogeneity is significant at conventional significance levels.

To get a better understanding of the estimated magnitudes, I report the median marginal

effect of each characteristic on the inclusion probabilities in the third column of Table 2.2.

The marginal effect is the unit change in the expected probability of being included in a

plan for a unit increase in the corresponding characteristic. For instance, the first number

in the third column tells us that, on average, a ten basis points increase in expenses reduces

the plan inclusion probability by almost 0.1 percentage points. On the other hand, the
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Employers preference parameters

Mean S.D. Marginal Effect (pp.)
Expense Ratio (bp.) -0.020 0.002 -0.008

(0.002) (0.000)
Affiliated (dummy) 0.879 - 0.363

(0.046)
Target (dummy) -0.371 - -0.123

(0.088)
Target × Affiliated 0.194 - 0.081

(0.096)
Gross returns (pp.) 0.004 - 0.002

(0.001)

Median fee elasticity -1.77
q (Calibrated) 0.70
GMM objective (df) 6.74 (1)

Table 2.2: Two-step GMM estimates of plan sponsor preferences. Robust standard errors are
reported in parentheses. Year, category, passive and fund brand fixed effects are included.
For the marginal effects, inclusion probabilities are in percentage points.

marginal effect of being an affiliated fund is almost four times larger. These magnitudes

are far from being negligible given that the median inclusion probability in the estimation

sample is roughly 0.52%. The marginal effect of a one percent increase in funds’ gross returns

is instead substantially smaller, which is not surprising given how small its corresponding

preference coefficient is.

The bottom part of Table 2.2 presents some additional information including information

about sponsors’ elasticity to fees. With the model estimates, I compute the elasticity of

inclusion probabilities to fees for each fund-market combination and report the median of

this distribution in the bottom part of Table 2.2. The latter is around around 1.77, suggesting

that sponsors’ demand is not too elastic to funds’ fees.

As mentioned before, I allow for the possibility that funds’ fees are endogenous but treat

other characteristics as predetermined and independent of demand shocks.41 In estimation

I instrument for fees using a third order polynomial of funds’ turnover ratios. Overall I

41. This assumption is often used in the empirical industrial organization literature where product char-
acteristics are assumed to be determined before demand shocks are realized.
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have seven moments, four included characteristics and three instruments function of funds’

turnover, to estimate six model parameters, five means and one standard deviation. The

resulting GMM objective is of 6.74 and rejects the overidentifying restriction at the 1%

level. This may be due to the fact that there does not seem to be too much heterogeneity in

sponsors’ preferences even though the model allows for it. The estimates for the homogeneous

model are indeed similar (Table 2.9) and come with a GMM objective of 4.57 which, although

not perfect, it is not rejected at conventional significance levels.

The nature of the data allows me to assess the heterogeneity of the estimates more

directly. I do so along several dimensions. First, I split the sample based on plan size as

measured by the number of plan participants and find that smaller plans are less responsive to

fees and tend to have a stronger preference for affiliated funds than large plans (Table 2.10).

This is consistent with smaller sponsors having less bargaining power and being less willing to

pay or search for cheaper investment options (Bhattacharya and Illannes (2022)).42 Second, I

split the sample before and after 2014 and find that sponsors have become more elastic to fees

over time (Table 2.11). This is consistent with sponsors, as well as plan investors, becoming

more attentive to fees in response to regulatory interventions mandating the disclosure of

funds’ fees and performance (Kronlund, Pool, Sialm and Stefanescu (2021)).

In Table 2.12 I account for sponsors’ inertia by including the lagged plan inclusion prob-

ability as an additional characteristic that affects sponsors’ demand for a given fund. In-

tuitively, if sponsors’ menus are sticky because of switching costs, we would expect funds’

inclusion probabilities to persist over time. If inertia is an important driver of menu choices

we would also expect past inclusion probabilities to explain a substantial fraction of the

cross-sectional variation in the current inclusion probabilities, possibly reducing the impor-

tance of other characteristics such as fees and funds’ affiliation. The estimates in Table 2.12

42. The fact that smaller sponsors are more likely to include expensive funds could also reflect the presence
of fixed costs in plan provision. For instance smaller sponsors might not have the asset base to access the
cheapest share classes of a fund. The model accounts for this because sponsors’ consideration sets depend
on the size group in Table 2.10.
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confirm these intuitions. The coefficient on past inclusion probabilities is large, positive and

significant, suggesting that sponsors’ inertia is an important driver of plan menu choices.

Moreover, when accounting for inertia, the estimated sponsors’ sensitivity to fees is lower,

with an estimated elasticity to fees of about 1.3. The estimated parameters suggest that,

on average, sponsors are willing to pay 17 basis point in fees for a 1% increase in the past

inclusion probability.

As an additional robustness check, in the second part of Table 2.9, I estimate sponsors’

preferences allowing for heterogeneity in the parameter q governing the distribution of the

number of options included within each investment category. Specifically, I estimate q at

the year-recordkeeper-category level and find substantially similar results. The reason is

that the empirical distribution of the number of options included within each category is

essentially the same along several dimensions of heterogeneity one might consider. For ex-

ample, in Figures 2.16 and 2.17 I plot such distribution for small and large plans, measured

by the number of plan participants, and before and after the year 2014. In both cases the

distribution of the number of options included within an investment category is virtually

unchanged. Similarly, in Figure 2.18 I plot the distribution of the number of options in-

cluded within each category by broad asset classes and find that, except for bond funds, the

distribution is almost identical to the one for the full sample.

2.6.3 Identification and estimation of investors’ preferences

The identification of investors’ preferences follows closely the logic for the identification of

sponsors’ preferences. The main difference is that the identifying variation comes from varia-

tion in the observed portfolio allocations rather than variation in plan inclusion probabilities.

The estimation of plan investors’ preferences is different and simpler than the estimation

of sponsors’ preferences because investors’ demand is linear in preference parameters or some
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known function of those. To see this recall that plan p portfolio shares are given by

sp(fp;ηp) = δep +
(1− δ)

γ
(I +Gp)

−1(Wpβ + ξp − fp) (2.24)

which, after multiplying both sides by I + Gp, becomes a system of estimating equations

whose RHS only depends on own demand shocks and whose LHS is an observed linear

transformation of the observed plan-level portfolio allocations

s̃p(fp;ηp) = δẽp +Wpβ̃ − γ̃fp + ξp (2.25)

with s̃p ≡ (I + Gp)sp, ẽd ≡ (I + Gp)ed, β̃ ≡ β(1 − δ)/γ and ξ̃ ≡ ξ(1 − δ)/γ. Equation

(2.25) can be estimated via linear regression methods.

As before, I allow for the possibility that funds’ fees are correlated with plan investors’

demand shocks ξp. If funds make their price-setting decision after observing ξp, demand and

supply simultaneity would bias preference parameters estimates. To account for this type

of price endogeneity I follow the same approach I used for the identification of sponsors’

preferences. First, I exploit the granularity of the data to absorb unobserved heterogeneity

in demand by including time, funds’ brand, passive and investment category fixed effects.

In this case, because the estimation is at the fund-plan level I am also able to include

plan/sponsors’ fixed effects to absorb plan-level preference shocks. Second, I instrument

funds’ fees with funds’ turnover ratio which captures trading costs that are pass on to

investors through higher fees. Again, the identifying assumption is that variation in funds’

turnover ratio not explained by time, brand, category, passive and plan fixed effects enters

investors’ demand only through fees.43

To assess the robustness of my estimates, I also implement an Hausman-type of identifi-

cation strategy to account for the endogeneity of fees. Specifically, following Egan, MacKay

43. In Appendix 2.12 I provide more details on using funds’ turnover as instrument for funds’ fees.
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and Yang (2023), I instrument the fee charged by any given fund with the average expense

ratio charged by the same fund provider in other investment categories. This instrument will

be relevant when a providers cost of operating a mutual fund is correlated with its costs of

operating its other mutual funds and when these costs are pass on to investors through fees.

The instrument will be excluded if investors’ residual demand shocks for any given fund (af-

ter controlling for the above series of fixed effects) are uncorrelated with the fees charged by

the same fund provider on its funds in other investment categories. The resulting estimates

are very similar to the ones I obtain when using funds’ residual turnover as instrument for

fees.

I estimate investors’ preferences applying linear IV to equation (2.25) under the as-

sumption that funds’ turnover ratios Zj are mean-independent of investors’ demand shocks,

formally, I require that E[ξjp|Zj ] = 0. To compute the LHS of (2.25) I need to specify

which asset characteristics form the matrix Gp = G̃pG̃
′
p. In classic portfolio theory G̃p

would include characteristics capturing the correlation structure between assets. Perhaps

the most natural way to proceed would be to construct G̃p after estimating funds’ loadings

onto some underlying risk factors from the time-series of funds’ returns and then, for each

plan, compute the variance-covariance matrix of the funds available, Gp.

Although common in practice, I do not follow this approach and instead use funds’ clas-

sification into investment categories to construct G̃p. The reason I do so is that funds’

loadings on standard factors do not seem to explain the retirement portfolio allocations ob-

served in the data, whereas investment category fixed effects do. Table 2.13 presents the

R-squared from regressing observed portfolio allocations on categories and funds’ factors

loadings. Factors alone explain close to 4% of the observed variation in portfolio shares

whereas investment categories fixed effects alone explain more than three times that. More

importantly, after absorbing categories fixed effects, factors’ R2 drops substantially to 0.1%

suggesting that factors explanatory power was just proxing for investment category classifi-
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cations. In a world in which investors’ allocation decisions depend on assets’ factor structure

we would expect factor loadings to have some power in explaining the observed portfolio

shares.

Based on this evidence, I use investment categories to model how plan investors interpret

assets substitution patterns. I do so by creating a three level nesting structure of asset

categories. The first level consists into three broad asset classes Equity, Allocation and

Bond. Then I create a second level for each of these classes. For instance, funds belonging

to the Equity class are further classified into Equity-Large, Equity-Mid, Equity-Small and

Equity-International. In the third level, Equity-Large fund are further classified into Equity-

Large-Blend, Equity-Large-Growth and Equity-Large-Value and similarly for other second

level categories. I consider each of these levels as a separate asset characteristic corresponding

to a column of the matrix G̃p; for instance if j is an Equity-Large-Value fund then the jth row

of G̃p is a vector g̃j that takes value 1 for the Equity, Equity-Large and Equity-Large-Value

columns and 0 everywhere else. The outer product of this matrix of category indicators

Gp = G̃pG̃
′
p is then a three-block diagonal matrix whose element (j, l) element gjl = g̃′j g̃l

equals 3 if fund j and l belong to the same 3rd level category (e.g., both are Equity-Large-

Value funds), equals 2 if they belong to the same 2nd level but to a different 3rd level

category, equals 1 if they only belong to the same 1st level and equals 0 otherwise.44

2.6.4 Estimates of investors’ preferences

Table 2.3 presents the estimates of investors’ preference parameters based on the linear spec-

ification in equation (2.25). The first three columns present some OLS estimates whereas the

fourth column reports the IV estimates from instrumenting funds’ fees with funds’ turnover

ratios. The estimates reported correspond to the coefficients on the RHS of equation (2.25).

44. Another way to see this is thinking about Gp as a quadratic interaction of fixed effects where each level
of classification is a fixed effect. I provide an illustrative example in Appendix 2.11.
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Besides funds’ expenses, I assume that past returns gross of fees and funds’ affiliation en-

ter the set of asset characteristics Wp determining the linear component of plan investors’

preferences Wpβ − fp + ξp. Investment categories also enter this linear component of in-

vestors’ utility because I absorb category fixed effects in all specifications. If one interprets

this linear component as investors’ subjective expectations about assets’ returns, the implicit

assumption is that investors’ subjective beliefs depend on funds’ past returns relative to their

corresponding investment category.

The OLS estimates broadly suggest that plan investors dislike fees, like returns and have

a preference for funds’ that are affiliated with their sponsor recordkeeper. A closer look at

the magnitudes further reveals that plan investors care more about funds’ returns than their

sponsors because, in this case, the preference coefficient on returns and its corresponding

marginal effect are substantially larger.45 This is consistent with sponsors designing their

plan to merely comply with regulation and minimize liability risk. Current ERISA regulation

indeed prescribes that sponsors are not liable for funds’ market performance to the extent

that their plan includes high quality options compared to the alternative available in the

market. Because fees are known whereas performance is uncertain, it is not surprising

that sponsors care more about fees rather than gross performance as they cannot be held

accountable for the latter.

Plan investors seem to value funds’ affiliation less than their sponsors. For the latter,

funds’ affiliation is a crucial driver of plan inclusion decisions whereas for plan investors the

importance of funds’ affiliation is more modest although not irrelevant. This is consistent

with agency frictions mostly biting at the plan design stage where sponsors tend to favor

affiliated funds when constructing their retirement plan (Pool, Sialm and Stefanescu (2016)).

Agency frictions could potentially spillover to the investment stage if, for instance, record-

45. Nevertheless, investors, like sponsors, still care much more about fees relative to returns. Although the
coefficient magnitudes are similar, in Table (2.3) fees are measured in percentage points whereas returns are
measured in decimal form.
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Plan investors preference parameters

OLS IV ME
Expense ratio (γ̃) -0.004 -0.011 -0.012 -0.044 -0.098

(0.001) (0.001) (0.001) (0.004)
Affiliated (β̃1) 0.001 0.004 0.017 0.015 0.034

(0.000) (0.000) (0.001) (0.001)
Gross returns (β̃2) 0.002 0.012 0.013 0.020 0.043

(0.001) (0.001) (0.001) (0.001)
Fraction inactive (δ) 0.267 0.290 0.407 0.371 -

(0.006) (0.006) (0.008) (0.009)

Median fee elasticity -0.225 -0.645 -0.688 -2.517 -
Median fee elasticity (active) -0.306 -0.909 -1.162 -4.002 -

Fstat - - - 82.55 -
R2 0.24 0.25 0.42 0.82 -
Fund brand FE N Y Y Y -
Employer FE N N Y Y -

Table 2.3: Estimates of plan investors preferences. All specifications include year, category
and passive fixed effects. Expense ratios are in percentage points (pp.). R2 for IV columns
is first stage. ME are the (median) marginal effects for portfolio allocations in pp. for a
basis point increase in expenses or a pp. increase gross returns.

keepers also offered advising services to plan investors and were to push investors towards

affiliated funds. Although I am not aware of any empirical evidence on mis-advising for

the particular context I am considering, a theoretical literature in financial economics con-

templates this possibility (Inderst and Ottaviani (2012a), Inderst and Ottaviani (2012b)).

The coefficient on fees increases moving from the first to the third column of the OLS

estimates. In particular, it more than doubles when I control for fund brand fixed effects.

This is consistent with fund brands potentially capturing a good amount of unobserved

heterogeneity in investors’ preferences for particular fund brands thereby making funds of the

same investment provider (and within the same category) perceived as more substitutable

to each other. The same happens to the coefficient on funds’ gross returns which is not

surprising as we expect investors to care about returns net of fees. Including plan (or

equivalently sponsor) fixed effects does not affect too much fees and returns coefficients

but triples the coefficient on funds’ affiliation suggesting that the extent with which agency
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frictions matter might depend on sponsor-level unobservables such as sponsors bargaining

power in negotiations with the recordkeeper (Bhattacharya and Illannes (2022)). Lastly,

after controlling for sponsor fixed effects, the model estimates that nearly two out of five

investors do not make an active investment decision.

I report the IV estimates in the fourth column of Table 2.3. All coefficients, except for

the one on funds’ fees, are largely unchanged. Conversely, the coefficient on funds’ expenses

is almost four times larger. The discrepancy between OLS and IV estimates is common in

contexts where prices and quantities are determined simultaneously in equilibrium. OLS

estimates often imply inelastic demand curves because the observed variation in quantity

and prices is also due to shifts in demand. However, after instrumenting for prices, the

resulting estimates recover demand curves that are much more elastic. This pattern emerges

clearly when looking at the elasticity to fees of investors’ portfolio allocations, which I report

in the second part of Table 2.3. Plan investors’ portfolio allocations are inelastic under OLS

but become elastic after instrumenting funds’ fees with funds’ turnover ratios. The median

elasticity is around 2.5, almost 50% larger than sponsors’ elasticity, indicating that sponsors

may not be internalizing investors’ preferences when constructing their plan menu. The

misalignment in elasticities increases even more if we consider investors who actively form

their retirement portfolio. The median fee elasticity for active investors is around 4, over

twice larger than sponsors’ elasticity to fees. The estimates remain largely unchanged if I

use Hausman instruments instead of funds’ residual turnover ratios (Table 2.14).

To get a better sense of the magnitudes the last column of Table 2.3 reports the marginal

change in investors’ portfolio allocations implied by a unit change of the corresponding

characteristic. The change in allocations is measured in percentage points per basis point

increase in expenses and per percentage point increase in gross returns. A 10 basis points

increase in fees reduces the corresponding portfolio allocation by nearly 1%. This magnitude

is not small if one considers that the average retirement portfolio allocation is of about 3%.
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Figure 2.5: Cross-sectional estimates of
plan investors median portfolio elasticity
to funds’ fees. Dashed vertical line corre-
sponds to the DOL fee disclosure reform.
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Figure 2.6: Cross-sectional estimates of
plan investors median portfolio elasticity to
funds’ fees. Dark blue squared-dashed line
is the median sponsor elasticity.

Conversely, a 1 percentage point increase in past gross returns increases the corresponding

portfolio allocation by a modest 0.04%. Because I am absorbing category fixed effects, the

latter should be interpreted as the effect of a 1% increase in funds’ performance, measured

relative to the corresponding investment category, on their plan-level portfolio allocation.

The modest magnitude suggests that plan investors do not chase performance as much as

documented for the whole mutual fund industry (Chevalier and Ellison (1997)).

The model estimates provided in Table 2.3 pool together all cross-sections from 2010 to

2019, although the identifying variation remains cross-sectional because I always include year

fixed effects. That being said, nothing prevents me from estimating investors’ preferences

separately for each observed cross-section of plan menus and assess how such estimates have

changed over time.

Figure 2.5 plots the estimated median fee elasticity for each cross-section from 2010 to

2019. Two broad patterns emerge. First, investors seem to have become more sensitive to fees

over time, with a sharp drop in the estimated elasticity from 2011 to 2013. Second, investors

have become more inactive, with the estimated elasticity for active investors diverging from
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the elasticity of all investors. The first pattern could be a consequence of the regulatory push

that required plan sponsors and investment providers to disclose investment fees to plan

investors. Specifically, starting from the year 2012 the Department of Labor (DOL) required

plan sponsors to disclose information about funds’ expenses and performance directly to plan

investors and recent empirical evidence suggests that investors have become significantly

more attentive to fees as a consequence of that (Kronlund, Pool, Sialm and Stefanescu

(2021)). Sponsors’ elasticity has also been decreasing over time from around -1.3 in 2010 to

about -3.4 in 2019 (Figure 2.6). Except for the years before the DOL reform, sponsors tend

to be less elastic to fees than investors, especially if compared to active investors.

The second pattern is likely a symptom of the growth in the demand and supply of TDFs

following the 2006 Pension Protection Act which identified TDFs as one of the qualified de-

fault investment alternatives for retirement plans. Since then, TDFs have become a constant

component of retirement plan menus with more than 80% of sponsors offering at least one

TDF in their plan as of 2019 (Figure 2.20). At the same time, plan investors have been in-

creasing their TDFs holdings, with the average portfolio share of TDFs across plans growing

three-folds from approximately 10% in 2010 to more than 30% as of 2019 (Figure 2.21).46

My model attributes this increase in TDFs’ portfolio share to the presence of more inactive

investors. Indeed, the estimated fraction of inactive investors increases from roughly 25% in

2010 to 60% in 2019 (Figure 2.7), matching closely the share of investors holding a single

TDF as reported by Vanguard (2022). This large increase in the share of investors that do

not actively form their portfolio explains why the estimated fee elasticity for active investors

diverges from the fee elasticity of all investors and why the latter moves closer to sponsors’

estimated elasticity (Figure 2.6).

46. Interestingly, this increase in TDFs’ market shares has not been accompanied by a reduction in TDFs
fees. Relatively to other type of funds TDFs have experienced a much lower decline in fees (Figure 2.22 and
2.23)
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Figure 2.7: Cross-sectional estimates of the fraction of inactive investors (black). Share of
plan investors in Vanguard plans holding a single TDF.

2.7 Price-cost Margins and Fee Decomposition

In this section I combine the estimates of sponsors’ and investors’ preferences together with

the Nash-Bertrand first order conditions derived in (2.19) to recover funds’ price-cost mar-

gins. After that, I exploit the characterization of equilibrium fees derived in equation (2.20)

to decompose the observed variation in fees into the monopolist margin, the Hotelling mark-

down and the plan inclusion markdown.

2.7.1 Recovering funds’ price-cost margins

To begin with, I rewrite funds’ profit maximization problem making explicit its dependence

on the various dimensions of variation I have in the data. I index time periods (i.e., years)

by t and recordkeepers by r. Next, I denote by Rjt the set of recordkeepers that include

fund j in their network of funds and by Prt the set of retirement plans administered by

recordkeeper r. I assume that funds set fees simultaneously in each period before sponsors

form their retirement menu but knowing which recordkeeper networks they belong to. I
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rewrite problem (2.14) as follows:

max
(fjt)t

∑
t

∑
r∈Rjt

Prt · (fjt − cjt) ·
∫
ϕrjpt(f ;θp)s

r
jpt(f ;ηp)ApdF (Ap,θp,ηp) (2.26)

where I made explicit the dependence of the inclusion probabilities and portfolio shares on

the identity of the plan recordkeeper. This dependence is a consequence of the fact that

different recordkeepers have different networks of funds.

The first order condition associated with problem (2.26) imply the following price-cost

margins for fund j:

fjt − cjt = −
∑

r∈Rjt
Prt ·

∫
ϕr
jpts

r
jptApdFp(∑

r∈Rjt
Prt ·

∫ ∂ϕr
jpt

∂fjt
srjptApdFp

)
−
(∑

r∈Rjt
Prt ·

∫
ϕr
jpt(1− δp)γ

−1
p (1− κ̄r,p,tjj )ApdFp

)
(2.27)

where the two addends in the denominator represent the revenue loss from the marginal

sponsor and the revenue loss from the marginal investor respectively.

By plugging in (2.27) the estimated distributions of sponsors’ and investors’ preference

parameters one obtains the margins charged by funds in an interior Nash-Bertrand equi-

librium. I report the estimated margins and marginal costs in Table 2.4. The first set of

columns presents the estimates for the full sample of funds, whereas the remaining sets of

columns focus on active funds, passive funds and TDFs respectively.47 Starting from the

sample of all funds the estimates suggest that the median fund charges a margin of about

14 basis points and a median markup around 20%.

Perhaps not surprisingly things change when looking at passive funds. The median

passive fund has a marginal cost more than three times lower than the median fund among all

funds and charges a margin that is around 6 basis points. Interestingly, although the absolute

margin for the median passive fund is twice smaller than the margin for the median fund

47. I provide more details on the derivation in Appendix 2.11
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All Funds Active Funds Passive Funds Target Date Funds

Fee MC PCM Fee MC PCM Fee MC PCM Fee MC PCM
p25 43 27 8 63 45 9 9 2 3 13 2 8
p50 74 58 14 85 70 15 22 13 6 32 19 14
p75 101 87 19 109 95 21 45 36 10 52 39 15

Mean 73 59 14 85 70 15 29 21 8 37 26 11

Table 2.4: Price cost margins and marginal costs implied by the Nash-Bertrand first order
conditions. Magnitudes are in basis points.

among all funds, in relative terms, it charges a markup of about 30%. This is suggestive of the

fact that, although passive funds are typically perceived as more homogeneous products, they

still enjoy substantial market power and do not pass all their cost efficiency down to investors

(Hortaçsu and Syverson (2004)). Compared to all funds taken together, the distribution of

costs for passive funds is more skewed, with the average fund bearing a marginal cost of

about 21 basis points. However, the absolute margin charged by the average fund is similar

to the median suggesting that the skewness is mostly driven by the cost structure.

The estimated margins and costs for Target Date Funds are reported in the last set

of columns of Table 2.4. Starting from the fees, we can see that TDFs tend to be more

expensive than passive funds but cheaper than all funds taken together, with the median

and average TDFs charging an expense ratio of about 32 and 37 basis points respectively.

On the other hand, the estimated cost structure for TDFs is not too dissimilar to the one

for passive funds, suggesting that TDFs, although being cost-efficient investment vehicles,

charge higher margins to investors. This is particularly evident for the most efficient TDFs.

In fact, the margins for the TDFs in the 50th and 25th percentiles are of 14 and 8 basis

points respectively, with a median markup of about 39%.

TDFs’ pricing power comes from two sources. First, most TDFs are funds affiliated with

the plan recordkeeper. Because sponsors value funds’ affiliation, inclusion probabilities will

be elastic to TDFs’ fees. Second, TDFs are the default option in the vast majority of plans,
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allowing them to capture assets from inactive investors who do not respond to fees. Recent

empirical evidence suggests that TDFs charge excessive fees because they are structured as

funds of funds and, as such, their expenses reflect multiple layers of fees. Moreover, the vast

majority of a TDF’s holdings are funds that belong to same fund family as the TDF itself

and, some TDFs tend not to include the cheapest share classes of such funds (Brown and

Davies (2021), Sandhya (2011)).48

2.7.2 Decomposition of equilibrium fees

In this section I decompose the observed fees exploiting the decomposition derived in equation

(2.20). Specifically, I use the estimated preference parameters and the estimated marginal

costs to decompose the observed fees into (1) monopolistic fee, (2) Hotelling markdown and

(3) plan inclusion markdown. I perform this decomposition for each year of the sample from

2010 to 2019 and obtain the following decomposition for each fund j in each year t

fjt =
µ̃jt + cjt

2
− hjt − ῑjt (2.28)

where ῑjt is the jth component of the vector

(
I − diag(K̃t)

2
− K̃t

2

)−1
ιt
2
. (2.29)

To get a sense of the magnitudes, Table 2.15 shows the average of each of the three

components across all funds and cross-sections. The first column reports the average observed

fee which is about 66 basis points.49 The last three columns instead show the averages for

48. Agency frictions not only impact TDFs fee setting behavior but also their risk-taking incentives as
recently documented by Balduzzi and Reuter (2018).

49. This fee is slightly lower than the overall average fee because, to reduce the computational burden, I
performed the decomposition only including the 200 largest funds in each recordkeeper network of funds.
On average the 200 largest funds accounted for more than 80% of the AUM managed by the recordkeeper.

117



each of the three components respectively. A monopolist, on average would charge a fee of

about 120 basis points but, because of competition, it needs to give up about 44% of such

fee. On average, the two competitive markdowns reduce the monopolist fee by nearly 54

basis points. The contribution of each of those is similar, suggesting that competition for

entering investors’ choice sets and competition in terms of product characteristics are equally

important. On average, the Hotelling and inclusion markdowns each erode more than 20%

of the fee a monopolist would be able to charge to its consumers.

Figure 2.24 repeats the same exercise for each cross-section from 2010 to 2019. The black

solid line represents the average fee and shows its declining trend from around 80 basis points

in 2010 to nearly 50 basis points in 2019. The decomposition sheds light on the sources of

this decline. The blue bars suggest that the decline in fees is not a consequence of changes in

investors willingness to pay, as captured by µ̃, nor of changes in technological primitives as

captured by funds’ marginal costs c. The monopolist fee (µ̃+ c)/2 indeed has been roughly

stable over time fluctuating between 100 and 130 basis points. On the other hand, the two

markdowns seem to be the driver of such declining trend in fees. In absolute terms, they went

from reducing the monopolist fee by about 29 basis points in 2010 to nearly 78 basis points

in 2019. In relative terms, they accounted for a 27% reduction of the monopolist fee in 2010

which has more than doubled over time, accounting for a 59% reduction in 2019. Overall,

these patterns are consistent with both sponsors and investors becoming more sensitive to

funds’ expenses.

2.8 Counterfactuals

In this section I evaluate the effects of three policy counterfactuals regulating the design of

retirement plans. First, I consider the elimination of agency frictions whereby sponsors favor

funds affiliated with their plan recordkeeper. Second, I consider the effects of a policy that

mandates the inclusion of low-cost options such as low-cost S&P 500 index funds trackers or
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low-cost TDFs. Lastly, I consider a policy that caps funds’ expenses.

For all counterfactuals, I quantify how the policy in question impacts plan investors

welfare and plan expenses relative to the status quo. The latter corresponds to the welfare

and expenses computed for the observed plan menus, plan expenses and portfolio allocations.

The main takeaway is that mandating the inclusion of low-cost default options and imposing

expense ratio caps are the most effective policies. Assuming that sponsors do not value funds’

affiliation does not improve investors’ outcomes because nothing prevents them to include

expensive options that are not affiliated. Similarly, mandating the inclusion of low-cost index

funds has only a modest effect on welfare and expenses. The reason is that sponsors will

still be including expensive funds and investors will still be investing in those either because

they are inactive or for diversification purposes. Mandating the inclusion of low-cost TDFs

improves outcomes because inactive investors benefit from having access to cheaper default

options.

To measure investors surplus I rely on the quadratic specification of investors’ portfolio

problem defined in (2.8). At the optimal portfolio allocation, the surplus for active investor

i in plan p can be written as,50

ISi ≡
1

2

Jp∑
j=1

aji(f ;ηp)(µjp − fj)

where µjp = w′
jpβ+ ξjp. Investors’ surplus is the sum of the areas below the demand curves

of each asset. Because preferences are quadratic and, in turn, the demand for each asset is

linear, this area corresponds to a rectangular triangle with height given by (µjp − fj) and

base given by given by aj . Integrating over all active investors we obtain the average surplus

50. See Appendix 2.11 for a derivation.
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for a plan p active investor:

ISactive
p =

1

2

Jp∑
j=1

sactive
jp (f ;ηp)(µjp − fj)

where

sactive
jp ≡

∑
i∈Ip,active

A

(1− δ)Ap
aji.

To obtain a complete welfare measure I need to incorporate the surplus of inactive in-

vestors. Because, in the model I do not specify any preference for these investors, I define

their surplus as

ISinactive
p =

1

2
(µd − fd)

where d is plan p’s default option. The surplus for a plan p investor is given by

ISp = δ · ISinactive
p + (1− δ) · ISactive

p

and, the overall surplus is then

∫
ISp(f ;ηp)dF (ηp). (2.30)

Each counterfactual amounts to (1) imposing the policy, (2) solve for funds’ counterfac-

tual equilibrium fees, (3) simulate sponsors’ plan menus under the counterfactual policy, (4)

compute investors’ counterfactual portfolios and compute their surplus from equation (2.30)

. Because investors have preferences over their portfolio allocations, their surplus is mea-
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sured in units of (subjective) excess returns net of fees (e.g., µjp − fj). For active investors,

I recover µjp from their estimated preference parameters by computing µjp = w′
jpβ̂ + ξ̂jp,

where ξ̂jp are obtained from the residuals of the linear regression in (2.11) multiplied by the

estimated γ̃. For inactive investors, I use the average annual (excess) return to measure µd.

2.8.1 Eliminating preference for affiliated funds

The first counterfactual I consider restricts sponsors’ preferences by forcing them not to

value funds’ affiliation when constructing their plan menu. Under this restriction, holding

every other characteristic constant, an affiliated fund and a non-affiliated fund will have the

same likelihood of being included in a given plan. A practical way to implement such policy

would be issuing penalties for sponsors that are found to be favoring affiliated funds even

though they exhibit worse performance than otherwise similar alternatives (Pool, Sialm and

Stefanescu (2016)).

The second row of Table 2.16 presents the results from this counterfactual exercise and

shows that such policy would be ineffective, leaving investor surplus and plan expenses almost

unchanged. In fact, plan expenses decrease by 1 basis point and investor surplus decreases

by 3 basis points.

This policy is ineffective because removing sponsors’ preference for affiliated funds does

not prevent them from including expensive funds that are not affiliated with their record-

keeper. For this reason, counterfactual plan expenses remain unchanged as well as sponsors’

sensitivity to funds’ fees.

Investors’ surplus is also almost unaffected. The slight decrease in their surplus could be

either because investors have a small preference for affiliated funds or because affiliated funds

are not systematically worse than other alternatives. For example, in many cases TDFs are

affiliated with the plan recordkeeper and, we know that their expenses are typically below

average (Table 2.4) and are particularly valued by inactive investors.
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Figure 2.8: Dollar change in surplus and average plan expense relative to the status quo
for an investor holding a retirement account of $35,000 under different plan design policies.
Magnitudes are in dollars-per-year.

2.8.2 Mandating the inclusion of low-cost options

The second set of counterfactuals studies the effect of policies mandating the inclusion of

low-cost investment options. I consider both the inclusion of low-cost index funds that track

the S&P 500 and the inclusion of low-cost TDFs. Both policies improve investors’ outcome

and lead to a reduction of the average plan expenses relative to the status quo.

Mandating the inclusion of at least one low-cost index fund increases investors’ surplus by

2% and decreases the average plan expense by 10% relative to the status quo. In magnitudes,

the surplus for an investor with a $35,000 account balance increases by about $20 per year

(Figure 2.8). To add perspective, in the last column of Table 2.16 I consider the dollar savings

over 40 years for an household receiving an annual income of $70,000 and contributing 10%

to its 401(k) every year.51 Such household would save approximately $12,000 in fees after

the implementation of this policy.

While one might have expected significant impact from such a policy, its actual effects are

relatively modest. This is noteworthy because I selected low-cost funds renowned for being

51. For such computation I assume an annual return of 6%.
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both affordable. Each comes with an expense ratio well under 10 basis points, complemented

by a 5-star Morningstar rating. My selection includes the Vanguard 500 Index fund (VFIAX)

and ETF (VOO), Fidelity 500 Index Fund (FXAIX), Schwab S&P 500 Index Fund (SWPPX),

Blackrock iShare Core S&P 500 ETF (IVV), and SPDR S&P 500 ETF (SPY).

Despite this, there are a couple of key reasons why this policy has had only a modest

effect on investors’ welfare. Firstly, although investors value lower fees, they also want to

diversify across all assets available. As such, they will substitute toward the low-cost index

only up to the point that does not hurt their diversification needs. This in practice requires

maintaining part of the holdings into more expensive funds. Secondly, a significant segment

of investors remain inactive in their investment approach. Instead of actively selecting funds,

they default their contributions to the available TDF. The addition of a low-cost index fund

does not alter the behavior of this group. Furthermore, it’s worth noting that nearly half

of sponsors already incorporate these type of funds in their existing offerings, implying that

the potential welfare gains only come from the half the sponsors not offering those type of

funds as part of their plan menu.

Investors’ outcome improves if, instead of mandating low-cost index funds, the policy

mandates the inclusion of low-cost TDF. In this case, investor surplus increases by 11% and

the average plan expense decreases by 23%. In magnitudes, the surplus for an investor with a

$35,000 account balance increases by nearly $100 per year, an increase five times larger than

the one obtained by mandating a low-cost S&P 500 tracker. Similarly, an household with a

$70,000 income who contributes 10% to its 401(k) account would be saving $28,832 in fees

over a 40 years period, an amount twice larger than the savings under a policy mandating

the inclusion of low-cost S&P 500 trackers.

Why is it more effective to mandate the inclusion of low-cost TDFs than simply focusing

on low-cost index funds? The primary reason lies in the benefit distribution: low-cost TDFs

serve both active and, especially, inactive investors because they are used as qualified default
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options. In contrast, mandating low-cost index funds predominantly benefits active investors,

leaving inactive ones with no benefit in terms of reduced fees. Additionally, while TDFs

often carry higher fees compared to index funds, the most affordable TDFs have expense

ratios closely aligned with the ones charged by low-cost index funds. Take, for instance, the

Fidelity Freedom Index series and the Vanguard Target Retirement series both offer TDFs

with expense ratios under 10 basis points.

2.8.3 Capping funds’ expenses

The last counterfactual I consider studies the effect of a 50 basis point expense ratio cap.

Under this policy sponsors are allowed to include in their menu only funds with an expense

ratio below 50 basis points. As a consequence, all funds whose marginal cost is higher than

50 basis point will exit the market. The latter are in most cases active funds, as more than

3/4 of passive funds and TDFs have an expense ratio below 50 basis points (Table 2.4).

This policy increases investor surplus by 14% and decreases the average plan expenses

by 30%, corresponding to an increase in surplus of about 33 basis points and a decrease in

plan expenses of about 15 basis points. A plan investor with a balance account of $35,000

enjoys an increase in surplus of about $120 dollars per-year whereas an investor contributing

10% of its $70,000 income is expected to save about $36,000 in fees over 40 years.

Perhaps not surprisingly, this policy is the most effective among the ones I considered

thus far. On the one hand, it benefits inactive investors by eliminating the right-tail of

expensive TDFs. On the other, it benefits active investors by ensuring that all investment

options available are not excessively expensive.

Before concluding, one remark is in order. My analysis so far abstracted away from

extensive margin considerations and implicitly assumed that sponsors would be always will-

ing to provide a retirement plan to their employees. In practice, plan provision could be

affected by these type of policies. For example, under a 50 basis point expense ratio cap,
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it is likely that recordkeepers would lose revenues from revenue-sharing fees unless sponsors

themselves compensate such loss by increasing their direct payments to their recordkeepers

(Bhattacharya and Illannes (2022)). Some sponsors may be unwilling or might not have the

resources to bear such costs and, consequently, might decide not to offer a retirement plan

to their workers in the first place.

A plausible solution to minimize the extensive margin repercussions of these type of poli-

cies would be implementing such policies while at the same time subsidizing plan sponsors

to incentivize plan provision. In practice, these type of subsidies have been already intro-

duced in the 2019 SECURE Act to push small business to offer a retirement plan to their

employees.

2.9 Conclusions

This paper proposes an equilibrium model of retirement plan menu choice, portfolio choice

and fee competition between investment providers to uncover the factors contributing to

the design high-cost employer-sponsored retirement plans and quantify the welfare effects of

policies regulating plan design.

The model features a two-layer demand system where, in the first layer, sponsors choose

their retirement plan and, in the second layer, plan investors form their retirement portfolio

from the options available in their menu. On the supply side, investment funds compete by

setting fees simultaneously while accounting for the two layers of demand. Funds compete

for being included in a plan menu and for the plan assets.

I estimate the model using comprehensive data on retirement plan menus. Model esti-

mates suggest that plan sponsors are less responsive to funds’ fees than plan investors and

value other fund characteristics, such as funds’ affiliation with the plan recordkeeper. I use

the estimated demand parameters to recover funds’ price-cost margins and marginal costs

from the implied Nash equilibrium conditions. Funds enjoy significant pricing power. This
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is particularly evident for Target-Date-Funds (TDFs), who, although almost as cost-efficient

as index funds, charge double the margins, with an implied median markup of about 34%.

In the last part of the paper, I consider four policy counterfactuals that regulate the design

of plan menus and quantify their effect on plan investors’ welfare. The first counterfactual

shuts down sponsors’ preferences for funds’ affiliation. The second set of counterfactuals

considers mandating the inclusion of low-cost options. The last counterfactual instead im-

poses a 50 basis point cap on funds’ expense ratios. Among those, requiring the inclusion

of low-cost TDFs and capping expense ratios are the most effective in improving investors’

outcomes. Specifically, mandating the inclusion of low-cost TDFs increases investors’ surplus

by 11%, whereas a 50 basis points expense ratio cap leads to a 14% increase. Both policies

also significantly reduce average plan expenses by 23% and 30%, respectively.

An important caveat of my analysis is that it abstracts from extensive margin consid-

erations. In particular, it assumes that these types of regulations do not affect sponsors’

incentives to offer a retirement plan in the first place. In practice, imposing expense ratio

caps might reduce plan provision (Bhattacharya and Illannes (2022)). A practical solution

would be pairing these policies with plan provision subsidies. Quantifying the optimal sub-

sidy scheme and the effect of this combination of policies on plan investors’ welfare is an

important direction for future research.
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2.10 Appendix: Additional Figures and Tables
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Figure 2.9: Distribution of number of options offered within investment category.
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Figure 2.10: Within in fund × year share of employers who meet minimum investment
required for cheapest share class but offer a more expensive one. The black line is the
average share of employers without cheapest share class.
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Figure 2.11: Distribution of average asset-weighted plan expense over time. Expenses are
measured in percentage points
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Figure 2.12: Distribution of plan expenses by plan size groups. Plan size is measured in
number of participants.
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Figure 2.13: Median asset-weighted plan expense (dot-solid). Average expense ratio for
a portfolio of Vanguard retail index funds (triangle-dashed). Expenses are measured in
percentage points.
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Figure 2.14: Within recordkeeper × six-digit NAICS dispersion in expenses. Other controls
include plan assets, number of participants, and number of options.
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Figure 2.15: Average overlap in recordkeepers’ network of funds. A fund belongs to a
recordkeeper’s network if it is offered in a plan managed by that same recordkeeper. The
red bars represent the average fraction of funds that belong to the network of any two of the
10 largest recordkeepers. The turquoise bars represent the asset-weighted overlap.
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Figure 2.16: Distribution of number of options within category by plan size.
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Figure 2.17: Distribution of number of op-
tions within category pre and post 2014.
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Figure 2.18: Distribution of number of op-
tions within category by asset class.
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Figure 2.19: Coefficient from regressing log(inclusion probability) on affiliation dummy. In-
clusion probability is the share of 401(k) plans offering a given fund. Inclusion probabilities
are computed at the (year × size group × industry × recordkeeper) level for each fund. Size
groups are based on the number of plan participants. Industry is the 2-digit NAICS.
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Figure 2.20: Share of retirement plans that offer at least one Target-Date-Fund (TDF).
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Figure 2.21: Average portfolio share across plan menus by asset class. Equity includes both
US and International Equity funds. Balanced includes aggressive, moderate and conservative
allocation funds that are not Target Date Funds (TDFs).
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Figure 2.22: Secular decline in fees by fund
type. The sample includes only funds avail-
able since 2010. The series for each type of
fund has been shifted by the average fee as
of 2010.
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Figure 2.23: Secular decline in fees by fund
type. The sample also includes funds intro-
duced after 2010. The series for each type
of fund has been shifted by the average fee
as of 2010.
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Figure 2.24: Cross-sectional decomposition of the average expense ratio into monopolist fee,
hotelling markdown and plan inclusion markdown as defined in equation (2.20). Magnitudes
are in basis points.
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Plan performance Plan performance Plan performance Plan performance

Plan expenses -0.76 -0.38 -0.44 -0.06
(0.01) (0.01) (0.01) (0.01)

Weighted Y Y N N
Year FE N Y N Y
R2 0.02 0.19 0.01 0.10

Table 2.5: Fund performance is the difference between fund return and the average category
return. Plan performance is the average performance (possibly asset weighted) of all funds
in the plan. Returns are gross of fees. Returns and fees are in percentage points.

Exp. Ratio Exp. Ratio Exp. Ratio

log(# opt. in cat) -0.047 -0.077 -0.051
(0.001) (0.001) (0.002)

R2 0.07 0.27 0.62
Year FE Y Y Y
Sponsor FE N Y Y
Fund brand FE N N Y

Table 2.6: Dependent variable is funds’ expense ratio. Independent variable is the number
of funds within an investment category. Expense ratios are in percentage points.
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Employers preference parameters

Homogeneous preferences Heterogeneous q
Mean Marg. Effect (pp.) Mean Marg. Effect (pp.)

Expense Ratio (bp.) -0.021 -0.008 -0.023 -0.009
(0.002) - (0.002) -

Affiliated (dummy) 0.823 0.328 0.852 0.330
(0.044) - (0.044) -

Target (dummy) -0.414 -0.165 -0.463 -0.179
(0.084) - (0.084) -

Target × Affiliated 0.242 0.097 0.403 0.156
(0.104) - (0.101) -

Gross returns (pp.) 0.004 0.002 0.004 0.002
(0.001) - (0.001) -

Median fee elasticity -1.83 -2.03
q (Calibrated) 0.70 0.66
GMM objective (df) 4.57 (2) 4.33 (2)

Table 2.9: Two-step GMM estimates of plan sponsor preferences. Robust standard errors are
reported in parentheses. Year, category, passive and fund brand fixed effects are included.
For the marginal effects, inclusion probabilities are in percentage points. For the heteroge-
neous q specification, q varies at the year-recordkeeper-category level.

Employers preference parameters

(0, 200] (200, 500] (500, 1000] > 1000

Mean Marg. Effect (pp.) Mean Marg. Effect (pp.) Mean Marg. Effect (pp.) Mean Marg. Effect (pp.)
Expense Ratio (bp.) -0.019 -0.011 -0.017 -0.011 -0.024 -0.016 -0.026 -0.018

(0.004) - (0.003) - (0.005) - (0.005) -
Affiliated (dummy) 1.173 0.678 0.903 0.549 0.914 0.615 0.732 0.497

(0.074) - (0.055) - (0.075) - (0.075) -
Target (dummy) -0.228 -0.132 -0.249 -0.151 -0.340 -0.229 -0.451 -0.307

(0.133) - (0.105) - (0.160) - (0.176) -
Target × Affiliated -0.096 -0.055 0.147 0.090 -0.111 -0.075 -0.217 -0.148

(0.142) - (0.122) - (0.161) - (0.170) -
Gross returns (pp.) 0.002 0.001 0.004 0.003 0.005 0.003 0.003 0.002

(0.002) - (0.002) - (0.002) - (0.003) -

Median fee elasticity -1.65 -1.50 -1.98 -2.08
q (Calibrated) 0.70 0.70 0.70 0.70
GMM objective (df) 3.91 (2) 2.91 (2) 1.56 (2) 2.76 (2)

Table 2.10: Two-step GMM estimates of plan sponsor preferences for plans with number
of participants below the median (small) and above the median (large). Robust standard
errors are reported in parentheses. Year, category, passive and fund brand fixed effects are
included. For the marginal effects, inclusion probabilities are in percentage points.
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Employers preference parameters

Before 2014 After 2014
Mean Marg. Effect (pp.) Mean Marg. Effect (pp.)

Expense Ratio (bp.) -0.014 -0.007 -0.029 -0.010
(0.003) - (0.004) -

Affiliated (dummy) 0.788 0.383 0.875 0.287
(0.064) - (0.062) -

Target (dummy) -0.399 -0.194 -0.477 -0.157
(0.126) - (0.117) -

Target × Affiliated 0.381 0.185 0.158 0.052
(0.156) - (0.142) -

Gross returns (pp.) 0.003 0.001 0.004 0.001
(0.002) - (0.002) -

Median fee elasticity -1.37 -2.40
q (Calibrated) 0.70 0.70
GMM objective (df) 4.88 (2) 6.38 (2)

Table 2.11: Two-step GMM estimates of plan sponsor preferences for the pre 2014 and post
2014 subsamples. Robust standard errors are reported in parentheses. Year, category, passive
and fund brand fixed effects are included. For the marginal effects, inclusion probabilities
are in percentage points.

Sponsors preference parameters

No inertia Yes inertia
Mean Marg. Effect (pp.) Mean Marg. Effect (pp.)

Expense Ratio (bp.) -0.023 -0.009 -0.015 -0.006
(0.003) - (0.003) -

Affiliated (dummy) 0.828 0.338 0.510 0.208
(0.045) - (0.045) -

Target (dummy) -0.453 -0.185 -0.097 -0.040
(0.090) - (0.088) -

Target × Affiliated 0.236 0.096 0.265 0.108
(0.101) - (0.106) -

Gross returns (pp.) 0.003 0.001 0.004 0.002
(0.002) - (0.002) -

log(Lag inclusion prob.) - - 0.259 0.106
- - (0.003) -

Median fee elasticity -1.97 -1.30
q (Calibrated) 0.70 0.70
GMM objective (df) 6.68 (2) 3.41 (2)

Table 2.12: Two-step GMM estimates of plan sponsor preferences accounting for inertia in
menu choices. Robust standard errors are reported in parentheses. Year, category, passive
and fund brand fixed effects are included. For the marginal effects, inclusion probabilities
are in percentage points. Sample is restricted to plans observed for at least two consecutive
years.
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Projected R2 R2
alpha 0.006 0.051
beta 0.039 0.083
category 0.143 0.182
alpha | category 0.000 0.182
beta | category 0.002 0.184
category | fund provider 0.117 0.203

Table 2.13: Dependent variable is plan-level portfolio allocations. All specification include
plan × year fixed effects. Beta are 3 Fama-French plus Momentum and 3 bond factors.

Plan investors preference parameters

OLS IV-Turnover IV-Hausmann ME
Expense ratio (γ̃) -0.004 -0.011 -0.012 -0.044 -0.040 -0.098

(0.001) (0.001) (0.001) (0.004) (0.003)
Affiliated (β̃1) 0.001 0.004 0.017 0.015 0.016 0.034

(0.000) (0.000) (0.001) (0.001) (0.001)
Gross returns (β̃2) 0.002 0.012 0.013 0.020 0.020 0.043

(0.001) (0.001) (0.001) (0.001) (0.001)
Fraction inactive (δ) 0.267 0.290 0.407 0.371 0.375 -

(0.006) (0.006) (0.008) (0.009) (0.008)

1st Stage 1st stage
Turnover ratio - - - 0.028 - -

(0.000)
Hausman IV - - - - -0.208 -

(0.002)

Median fee elasticity -0.225 -0.645 -0.688 -2.517 -2.263 -
Median fee elasticity (active investors) -0.306 -0.909 -1.162 -4.002 -3.621 -

Fstat - - - 82.55 86.69 -
R2 0.24 0.25 0.42 0.82 0.82 -
Fund brand FE N Y Y Y Y -
Employer FE N N Y Y Y -

Table 2.14: Estimates of plan investors preferences. All specifications include year, category
and passive fixed effects. Expense ratios are in percentage points (pp.). R2 for IV columns
is first stage. ME are the (median) marginal effects for portfolio allocations in pp. for a
basis point increase in expenses or a pp. increase gross returns. Turnover and Hausman IV
are standardized.

Equilibrium decomposition of observed fees

Fee Monopolist fee Hotelling markdown Plan inclusion markdown
65.75 119.44 25.15 28.54

Table 2.15: Decomposition of fees following equation (2.20). All magnitudes are in basis
points. The figures shown are averages across time and funds.
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2.11 Appendix: Model derivations

In this Appendix I provide more formal derivations of the results introduced in the main

text.

Derivation of ranking probabilities. Consider the simple example in the main text where

we have four options {j, k, l,m} and we want to compute the probability that option j is

ranked 2nd in terms of sponsors’ indirect utilities. For simplicity I drop sponsor subscript

p. The probability that j is ranked 2nd equals to the sum of all possible utility rankings in

which uj is the second highest:

ϕ2j = Pr{uk > uj > ul > um}+ Pr{uk > uj > um > ul}

+ Pr{ul > uj > uk > um}+ Pr{ul > uj > um > uk}

+ Pr{um > uj > uk > ul}+ Pr{um > uj > ul > uk}. (2.31)

Next, consider any of the six rankings above, say the first one and note that

Pr{uk > uj > ul > um} =
exp(Vk)∑

s∈{j,k,l,m} exp(Vs)
·

exp(Vj)∑
s′∈{j,l,m} exp(Vs′)

· exp(Vl)∑
s′′∈{l,m} exp(Vs′′)

(2.32)

Expression (2.32) can be derived analytically by integrating over the T1EV extreme value

shocks and is known as ranked-ordered-logit (ROL),52 which can be interpreted as a sequen-

tial multinomial logit decision problem.

Expression (2.32) applies analogously to all six terms in (2.31) and implies that ϕ2j only

depends on how the first two choices are ranked but not on the order of the 3rd and 4th

choices. To see this consider the sum of the first two terms on the RHS of (2.31) and note

52. For more details see Beggs, Cardell and Hausman (1981).
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that from (2.32) we can factor out the first two factors of each addend and that the sum of

the last factors equals. Overall we obtain

Pr{uk > uj > ul > um}+ Pr{uk > uj > um > ul} =

=
exp(Vk)∑

s∈{j,k,l,m} exp(Vs)
·

exp(Vj)∑
s′∈{j,l,m} exp(Vs′)

.

Applying the same steps for all three lines in (2.31), the three term expression in the main

text obtains.

Derivation of unconditional plan inclusion probability. Letting λgp the probability

that p chooses to offer category g, q(1− q)n−1 the probability that p includes n funds from

category g and ϕ1:nj the probability that j is chosen conditional on n options and g being

offered, the unconditional probability that j ends up being in p’s retirement plan can be

rearranged as follows

ϕjp = λgp ·

( ∞∑
n=1

q(1− q)n−1ϕ1:njp

)

= λgp ·

( ∞∑
n=1

q(1− q)n−1
n∑

z=1

ϕzjp

)

= λgp ·
∞∑
z=1

∞∑
n=z

q(1− q)n−1ϕzjp

= λgp ·
∞∑
z=1

ϕzjp(1− q)z−1
∞∑
n=z

q(1− q)n−z

= λgp ·
∞∑
z=1

ϕzjp(1− q)z−1

where the latter coincides with expression (2.6) provided in the main text.

Heterogeneous individual investors. Let us consider the case in which individual in-

vestors have heterogeneous preferences. Formally, let Ai, δi, βi and γi be individual specific.
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Moreover, assume that there is a subset D ⊂ Jp of default funds and denote by di investor

i’s default fund. Under these assumptions i’s demand system is given by

ai(f) =


edi if i defaults

1
γi
(I +G)−1(µi − f) o.w

(2.33)

where to save on notation I defined µi ≡ Wβi+ξi. To obtain the aggregate demand system

let us define the following weighted averages

µp ≡
∑
i∈Ip

(1− δi)γ
−1
i∑

i∈Ip(1− δi)γ
−1
i

µi

γp ≡

∑
i∈Ip

Ai

Ap

1− δi
γi

−1

δdp ≡

(∑
i∈Idp Ai

Ap

) ∑
i∈Idp

Ai∑
i∈Idp Ai

δi

where Ip is the set of plan p investors and Idp is the set of investors that have fund d as

default option. Then taking the horizontal sum of the ai it is easy to check that the plan

level demand system is given by

sp(f ;ηp) =
∑
d∈D

δdped +
1

γp
(I +Gp)

−1(µp − f).

Overall, the estimated parameters from the aggregate demand system ηp = (δdp, γp,µp) are

weighted averages of the underlying individual investors parameters.

Derivation of aggregate demand system in (2.12). To show that equations (2.10) and

144



(2.12) are equivalent it is enough to note that

(I − G̃(I + G̃′G̃)−1G̃′)(I +G) = (2.34)

= (I − G̃(I + G̃′G̃)−1G̃′)(I + G̃G̃′) = (2.35)

= I − G̃(I + G̃′G̃)−1G̃′ + G̃G̃′ − G̃(I + G̃′G̃)−1G̃′G̃G̃′ (2.36)

= I + G̃(I − (I + G̃′G̃)−1 − (I + G̃′G̃)−1G̃′G̃)G̃′ (2.37)

= I + G̃(I + G̃′G̃)−1(I + G̃′G̃− I − G̃′G̃)G̃′ = I (2.38)

Next, I show that κjj ∈ (0, 1) and κjl ∈ (−1, 1) for all j and l. To see this, consider note

that by construction Kx and I − Kx are positive definite matrices. The let ej be the jth

unit vector and note the definition of positive definite matrix implies that

κjj = e′jKxej > 0 and 1− κjj = e′j(I −Kx)ej > 0. (2.39)

Next, take any (j, l) pair with j ̸= l and note that

κjj + κll − 2κjl = (ej − el)
′Kx(ej − el) > 0 (2.40)

where the first equality exploits the fact that Kx is symmetric. From (2.40) and the fact

that κjj < 1 for all j, we can conclude that κjl < 1. To show that κjl > −1 it is enough to

repeat the previous argument using κjj + κll + 2κjl.

Derivation of expected κjl under biased beliefs about q. Suppose that fund j believes

that sponsors will include at most one fund per investment category. This means that funds

evaluate inclusion probabilities assuming that q = 1 and will assign positive probabilities

only to menus S that include at most one fund per category.

Denoting by GS the set of categories included in menu S, by jg a generic option from

category g and by gj the investment category fund j belongs to, the probability that such
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menu S ∈ Sjp is chosen by sponsor p can be factored us

ϕp(S) = ϕjp
∏

g∈GS/gj

ϕjgp
∏
jg′p

(1− λjg′p) (2.41)

where the factorization is a consequence of the fact that inclusion decision are made inde-

pendently across investment categories.

Next, consider fund j and fund l and note that

κ̄jl =
∑

S∈Sjp

ϕp(S)

ϕjp
κSjl (2.42)

=
∑

S∈Sjp

 ∏
g∈GS/gj

ϕjgp
∏
jg′p

(1− λjg′p)

κSjl (2.43)

which does not depend on fj because inclusion probabilities of competitors funds belonging

to different categories do not depend on fj .

Derivation of equilibrium fees decomposition. Recall the system of Bertrand FOCs’

derived in the main text

δ̄ed + (I − K̃) (µ̃− f)− ι− (I − diag(K̃))(f − c) = 0 (2.44)

which can be rearranged as

2

(
I − diag(K̃)

2
− K̃

2

)
f = (I − K̃)µ̃+ (I − diag(K̃))c− ι. (2.45)

Next define

ι̃ ≡

(
I − diag(K̃)

2
− K̃

2

)−1
ι

2
(2.46)
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and rewrite the system of FOCs as

f =
1

2

(
I − diag(K̃)

2
− K̃

2

)−1 [
(I − K̃)µ̃+ (I − diag(K̃))c

]
− ι̃

= c+
1

2

(
I − diag(K̃)

2
− K̃

2

)−1

(I − K̃)(µ̃− c)− ι̃

= c+
1

2

(
I − diag(K̃)− K̃ − diag(K̃)

2

)−1

(I − K̃)(µ̃− c)− ι̃

=
µ̃+ c

2
−

(
I − diag(K̃)− K̃ − diag(K̃)

2

)−1
K̃ − diag(K̃)

2

µ̃− c

2
− ι̃

=
µ̃+ c

2
− (I − diag(K̃))−1/2

(
I − G(K̃)

2

)−1
G(K̃)

2
(I − diag(K̃))1/2

µ̃− c

2
− ι̃

where

G(K̃) ≡ (I − diag(K̃))−1/2(K̃ − diag(K̃))(I − diag(K̃))−1/2. (2.47)

Expression (2.21) in the main text obtains by setting diag(K̃) = k0I. For the case in which

there is a default fund the same steps apply after redefining µ̃ = µ̃+ δ̄(I − K̃)−1ed.

Estimation algorithm. Before starting the estimation, I draw a vector νs of random taste

parameters for s = 1, ..., S simulated sponsors from a normal N(0, I) and store it. Then the

algorithm proceeds as follows.

Step 0: Guess Γθ

Step 1: For a given guess of the vector of the mean utility mean utility v̄(k). Compute the

following variables for each fund j, market t

1.1 for each simulated sponsor s calculate the following objects
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- the probability that j’s category g is included by sponsor s

λgst(Γθ, v̄
(k)
t ) =

∑
l∈g exp(v̄

(k)
lt +w′

ltΓθνs)

1 +
∑

l∈g exp(v̄
(k)
lt +w′

ltΓθνs)

- for n = {1, 2, 3} calculate the ranking probabilities

ϕn
jst(Γθ, v̄

(k)
t ) =

∑
(j1,...,jn−1)∈g/{j}

n−1∏
n′=1

exp(v̄
(k)
jn′ t +w′

jn′ tΓθνs)∑Ngp

n′′=n′ exp(v̄
(k)
jn′′ t +w′

jn′′ tΓθνs)

·
exp(v̄

(k)
jt +w′

jtΓθνs)∑Ngp

n′′′=n exp(v̄
(k)
jn′′′ t +w′

jn′′′ tΓθνs)

- compute the probability that sponsor s includes fund j

ϕ1:3jst(Γθ, v̄
(k)
t ) = ϕ1jst(Γθ, v̄

(k)
t ) + (1− qt)ϕ

2
jst(Γθ, v̄

(k)
t ) + (1− qt)

2ϕ3jst(Γθ, v̄
(k)
t )

where qt is calibrated to match the empirical distribution of the number of options

within investment category in market t. The typical values for qt are of 0.7 or

higher so that (1 − qt)
n−1 decays quite fast in n. In simulations, I find that

stopping at n = 3 works well in recovering the true parameters. Moreover the

computational burden of calculating ϕnjst for n ≥ 4 is non negligible.

1.2 approximate the RHS of (2.22) with

ϕSjt(Γθ, v̄
(k)
t ) =

1

S

S∑
s=1

λgst(Γθ, v̄
(k)
t ) · ϕ1:3jst(Γθ, v̄

(k)
t )

Step 2: For each t update the mean utility vector by computing v̄
(k+1)
t as

v̄
(k+1)
t = v̄

(k)
t + log(ϕ̂t(Γθ, v̄

(k)
t ))− log(ϕS

t (Γθ, v̄
(k)
t )) (2.48)
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Step 3: For each t Repeat Step 1 and Step 2 until

||v̄(k+1)
t − v̄

(k)
t ||∞ < ϵ (2.49)

for some tolerance level ϵ.

Step 4: Recover sponsors’ preference parameters µθ that enter sponsors’ utility linearly

µθ(Γθ) = (W ′Z(Z ′Z)−1Z ′W )−1W ′Z(Z ′Z)−1Z ′v(Γθ) (2.50)

where W is a matrix of funds’ characteristics with number of rows equal to the total number

of observations N̄ =
∑

tNt and number of columns equal to the number of characteristics

and Z is including both excluded and included instruments.

Step 5: Recover demand residuals

ζ(Γθ) = v(Γθ)−Wµθ (2.51)

and compute the GMM norm

ζ(Γθ)
′ZΩ(Γθ)Z

′ζ(Γθ) (2.52)

where Ω(Γθ) = (Z ′Z)−1 in the first GMM estimation step and then is updated to Ω(Γθ) =

Z ′diag(ζ(Γθ)
2)Z =

∑
j,t ζ

2
jt(Γθ)ZjtZ

′
jt.

Interior equilibrium existence and uniqueness. Consider first the case in which funds

know with certainty which plan menu will include them. Formally, this means that ϕjp = 1

when p includes fund j and zero otherwise which further implies that the ι in equation (2.21)
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equals zero. Given this, the system of funds’ best replies becomes linear in f :

(I − K̃)f + (I − diag(K̃))f = (I − K̃)µ̃+ (I − diag(K̃))c (2.53)

because inclusion probabilities do not depend on fees anymore and with that also K, µ̃ do

not depend on fees. A well-defined solution is then guaranteed to exist as long as (I − K̃) is

invertible. Moreover, linearity would also imply that such solution is unique.

What we do not know is whether this solution is such that equilibrium fees are non-

negative. In what follows I show that the following dominance-diagonal condition

(1− κ̃jj)(µ̃j − cj) >
∑
k ̸=j

|κ̃jk|(µ̃k − ck) all j (2.54)

implies that the system of best replies is a self-map over the interior of the set ×j∈{1,...,J}[cj , µ̃j ]

which ensures that equilibrium fees are positive and above marginal costs. I start by defining

the following linear operator T : RJ → RJ whose j-th component is fund j’s best reply

Tj(f) ≡
1

2

µ̃j −∑
k ̸=j

κ̃jk
1− κ̃jj

µk + cj +
∑
k ̸=j

κ̃jk
1− κ̃jj

fk

 . (2.55)

Assumption (2.54) implies that T is a self-map in the interior of ×j∈{1,...,J}[cj , µ̃j ]. To see

this take any f ∈ ×j∈{1,...,J}[cj , µ̃j ] and note that

cj < Tj(f) < µ̃j (2.56)

⇔

∣∣∣∣∣∣
∑
k ̸=j

κ̃jk
1− κ̃jj

µ̃k − ck
µ̃j − cj

µ̃k − fk
µ̃k − ck

∣∣∣∣∣∣ < 1 (2.57)

⇔
∑
k ̸=j

|κjk|
1− κ̃jj

µ̃k − ck
µ̃j − cj

µ̃k − fk
µ̃k − ck

< 1 (2.58)

is always satisfied when (2.54) holds and f ∈ ×j∈{1,...,J}[cj , µ̃j ]. Because T maps a closed
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and bounded set into itself, Bower fixed point theorem implies that there exists an f∗ ∈

×j∈{1,...,Jp}[cj , µj ] such that T (f∗) = f∗. Moreover, from (2.58) we know that such fixed

point is interior and unique, because T is linear.

We can also show that in this interior equilibrium each fund manages a positive amount

of asset. To see this, consider fund j’s first order condition evaluated at the optimum

sj(f
∗)− (1− κ̃jj)(f

∗
j − cj) = 0 (2.59)

which implies that

sj(f
∗) = (1− κ̃jj)(f

∗
j − cj) > 0 (2.60)

where the latter inequality holds because we just proved that f∗j > cj for all j and (1−κ̃jj) >

0 follows from the fact that I −K is positive definite and that κ̃jj is just an average of the

κjj across plans:

κ̃jj = ϕ̄−1
j

∫
1{j ∈ Sp}(1− δp)γ

−1
p Apκ

Sp
jj dFp

with

ϕ̄j =

∫
1{j ∈ Sp}(1− δp)γ

−1
p ApdFp. (2.61)

Lastly I show that the equilibrium is stable. To see this define the following variable

f̂j ≡
fj − cj
µ̃j − cj

(2.62)
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and note that fund j best reply can be rewritten as

f̂j =
1

2

1−∑
k ̸=j

κ̃jk
1− κ̃jj

µ̃k − ck
µ̃j − cj

(
1− fk − ck

µ̃k − ck

) (2.63)

Defining the linear mapping on the above RHS as T̂ : RJ → RJ , it can be shown that this

mapping is a self-map into [0, 1]J under assumption (2.54). Additionally, this mapping is a

contraction in the L∞ norm.

||T̂ (f̂1)− T̂ (f̂0)||∞ = max
j

|T̂j(f̂1)− T̂j(f̂0)| (2.64)

= max
j

∣∣∣∣∣∣
∑
k ̸=j

κjk
1− κjj

µk − ck
µ̃j − cj

(f̂1k − f̂0k)

∣∣∣∣∣∣ (2.65)

≤ max
j

∑
k ̸=j

|κjk|
1− κjj

µk − ck
µj − cj

|f̂1k − f̂0k| (2.66)

< max
k

|f1k − f0k| (2.67)

which ensures that the unique equilibrium is also stable.

Next, I consider the case in which sponsor preferences are homogeneous θp ≡ θ and funds

do not know with certainty whether or not they will be included in sponsors’ retirement

menus (e.g., ϕj ∈ (0, 1)). For simplicity, I also assume that there is only one recordkeeper or

equivalently that all recordkeerpers have the same network of funds. Under this assumptions,

I will show that a Nash-Bertrand equilibrium exists when funds believe that sponsors include

at most one fund per category and the previous dominance diagonal condition holds.

To start with, note that fund j problem in any given period simplifies to

max
fj

P · (fj − cj) · ϕj(f j ;θ)

∫
sjp(f ;ηp)ApdF (ηp, Ap) (2.68)
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where fund j expected portfolio share is given by

sjp(f ; ηp) =
∑
S∈Sj

γ̃p
ϕ(S;θ)

ϕj(f ;θ)

(1− κSjj)(µjp − fj)−
∑

l ̸=j,l∈S
κSjl(µlp − fl)


= γ̃p(1− κ̄jj)(µjp − fj)− γ̃p

∑
l ̸=j

∑
S∈Sj

κSjl1{l ∈ S}ϕ(S;θ)
ϕj(θ)

(µlp − fl)

= γ̃p(1− κ̄jj)(µjp − fj)− γ̃p
∑
l ̸=j

ϕlE[κ̄Sjl|j, l ∈ S](µlp − fl)

= γ̃[I − K̄]′j(µp − f)

with

κ̄jl ≡


E[κ̄Sjj |j ∈ S] if j = l

ϕl(f ;θ)E[κ̄Sjl|j, l ∈ S] if j ̸= l.

Overall, fund j pricing problem can be written more compactly as

max
fj

P · (fj − cj) · ϕj(f j ;θ) · [I − K̄]′j(µ− f) · γ̃Ā (2.69)

where for simplicity I assumed that investors preferences are homogeneous too.53

In what follows, I first prove a lemma that provides conditions ensuring that funds’

problem is concave and then show that funds’ objective satisfies such conditions under the

previous assumptions. Equilibrium existence will then follow directly from Kakutani fixed

point theorem.

Lemma 1. Let π(f) be a continuous and strictly concave function π′′(f) < 0 that is uniquely

maximized at f∗ and is such that π(f∗) > 0. Let ϕ(f) a continuous and decreasing function

53. This assumption is irrelevant for the existence result.
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such that

ϕ(f) ∈ (0, 1) (2.70)

ϕ′(f) = −ϕ(f)(1− ϕ(f)) < 0 (2.71)

then the function ϕ(f)π(f) is concave on a compact set [f, f ] with unique interior maximizer

f∗∗ ≤ f∗.

Proof: Because π is continuous and π(f∗) > 0, we can construct [f, f ] such that π(f) > 0

for all f ∈ [f, f ] and f∗ ∈ [f, f ].

Next suppose there exists a f∗∗ ∈ (f, f) such that

ϕ′(f∗∗)π(f∗∗) + ϕ(f∗∗)π′(f∗∗) = 0 (2.72)

which can be rearranged as

−ϕ
′(f∗∗)
ϕ(f∗∗)

=
π′(f∗∗)
π(f∗∗)

(2.73)

Taking the second order condition

ϕ′′(f∗∗)π(f∗∗) + 2ϕ′(f∗)π′(f∗) + ϕ(f∗∗)π′′(f∗∗) < 0 (2.74)

The last term of the above is negative by assumption. The sum of the first two terms is also
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negative:

ϕ′′(f∗∗)π(f∗∗) + 2ϕ′(f∗)π′(f∗) < 0 (2.75)

⇔ ϕ′′

ϕ′
+ 2

π′

π
> 0 (2.76)

⇔ ϕ′′

ϕ′
− 2

ϕ′

ϕ
> 0 (2.77)

⇔ −(1− 2ϕ) + 2(1− ϕ) = 1 > 0 (2.78)

where the latter equivalence uses the fact that ϕ′′ = −ϕ′(1 − 2ϕ). This shows that if an

interior f∗∗ that satisfies the necessary FOC exists then it is always a maximum which

implies that ϕ(f)π(f) is concave on [f, f ].

Lastly, we can show that such p∗∗ indeed exists and is interior. To see this evaluate the

FOC at f and note that under the above assumptions the following

ϕ′(f)π(f) + ϕ(f)π′(f) > 0 (2.79)

holds by choosing f sufficiently low (for instance choosing f = marginal cost such that

π(f) = 0) and by noting that π′(f) > 0 because f < f∗. Then evaluate the FOC at f and

note that

ϕ′(f)π(f) + ϕ(f)π′(f) < 0 (2.80)

which implies, by continuity that there exists an interior f∗∗ that satisfies the FOC. More-

over, it must be the case that f∗∗ < f∗.

Overall, conditions all conditions of the lemma hold and we can be assured that fund j

objective in (2.69) is concave in fj which ensures that funds’ best replies fj(f−j) are proper

functions. Thus, all conditions of Kakutani fixed point theorem are satisfied and a Nash
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equilbrium exists (see MWG chp. 8 Proposition 8.D.3).

Funds’ maximization problem in (2.69) satisfies the conditions in the previous lemma

after defining π(fj) ≡ (fj − cj) · [I − K̄]′j(µ − f). First note that, because funds’ believe

that sponsors include at most one fund per category we have that

ϕj(fj) = λgϕ
1
j =

exp(Vj(θ))

1 +
∑

l exp(Vl(θ))

which is decreasing in fj and such that

ϕ′j = −θfϕj(1− ϕj) < 0.

Next, note that because funds’ believe that q = 1, the matrix K does not depend on fj

as I showed in previous derivations. This in turn implies that π(fj) is quadratic in fj and

thus concave fj if and only if

(1− κ̄jj) > 0.

The latter holds because κ̄jj = E[κSjj |j, l ∈ S] and κSjj ∈ (0, 1) for any S as I showed in

previous derivations. Because π is globally concave in fj it admits a unique maximum, f∗j .

Moreover we have f∗j > cj whenever the previous dominance diagonal holds:

(1− κ̄j)(µj − cj) >
∑
l ̸=j

|κ̄jl|(µl − cl) (2.81)
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and fl ∈ [cl, µl] for all l. To see this note that the above condition implies that

(1− κ̄j)(µj − cj) >
∑
l ̸=j

|κ̄jl|(µl − cl)

≥
∑
l ̸=j

|κ̄jl|(µl − fl)

>
∑
l ̸=j

κ̄jl(µl − fl)

where the last two inequalities holds whenever fl ∈ [cl, µl]. But note that the previous

inequality corresponds to fund j FOC (when maximizing π) evaluated at fj = cj

∂π(fj)

∂fj
= (1− κ̄jj)(µj − fj)−

∑
l ̸=j

κ̄jl(µl − fl)− (1− κ̄jj)(fj − cj)
∣∣∣
fj=cj

= (1− κ̄j)(µj − cj)−
∑
l ̸=j

κ̄jl(µl − fl) > 0.

Then it must also be the case that π(f∗j ) > 0, if not setting fj = cj would lead to higher π

which would be a contradiction.

Microfoundation of the distribution of the number of options. In what follows I

offer a simple microfoundation for the distribution of the number of options sponsors include

in any given category building on the Stigler (1961) simultaneous search model.

Sponsor p first commits to include n investment options in investment category g and

then conditional on n, selects the n options providing her with the n highest utilities. I

assume that sponsors choose n before observing their random utility shocks εjp but knowing

the mean utility of each option Vj(θp). From this perspective the utility sponsor p derives

from option j is distributed as

ujp ∼ T1EV (Vj). (2.82)
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I assume that sponsors incur a cost c(n) for including n options which is increasing, convex

in n and is such that c(1) < E[uj1p]. The benefit from choosing n options is given by

n∑
s=1

E[ujsp] (2.83)

where js is the option that provides the sth highest utility. Overall, sponsor p problem

becomes

max
n≥1

n∑
s=1

E[ujsp]− c(n). (2.84)

The are two main differences between this model and the Stigler (1961) model. First, in this

case the agent commits to consume n options whereas in Stigler (1961) the agent commits

to sample n options and among those to consume the one with the highest utility. Second,

in this model after committing to n, sponsor p observes the realized utility of all options

available but has chosen to only consume the n highest whereas in the Stigler (1961) model

the agent observes the utility realizations of the searched options only, and among those

selects the highest.

The solution to the above problem is given by the n∗ such that the marginal benefit from

chosing to include n∗ + 1 options is lower than the change in the cost

E[ujn∗+1
] ≤ c(n∗ + 1)− c(n∗). (2.85)

Heterogeneity in the cost of adding options cp or in the benefits ujp across sponsors would

produce a different n∗p for each sponsors. In the data such distribution of n∗ corresponds to

the one plotted in Figure 2.9 suggesting that most sponsors do not include more than one

option and that the likelihood decreases geometrically in the number of options.

In estimation I do not attempt to estimate the distribution of costs cp that matches the
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observed distribution in Figure 2.9 because it would complicate substantially the estimation

of sponsor preferences. First, it would require estimating such distribution at each iteration

of the estimation algorithm because the optimal number of options n∗ itself depends on

sponsors preference parameters. Second, it would require finding a solution to problem

(2.84) which is non-convex without further restrictions.

To keep estimation tractable I instead model sponsors’ choice of n as a random draw from

the empirical distribution which I parametrize as geometric with parameter q. In estimation

I allow for such distribution to be heterogeneous at the recordkeeper-year-category level. In

general, the distribution of the number of options included within each category looks similar

to the one in Figure 2.9 for many cuts of the data I have considered.

Derivation of investor surplus. Consider active investor i in plan p. Investor i has

preferences over its retirement portfolio allocation ai given by

ui(ai) = a′i(µ− f)− γ

2
a′iV ai

where

V ≡ I +X(2)X
′
(2).

Investor i’s demand implied by the previous problem is

ai(f) =
1

γ
V −1(µ− f).
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Next, combine the expression for ai with the expression for ui(ai) as follows

ui(ai) = a′i(µ− f)− γ

2
a′iV ai

= ai(f)
′(µ− f)− 1

2
ai(f)

′(µ− f)

=
1

2
ai(f)

′(µ− f),

which is the measure of investors’ surplus provided in the main text.

Example of category-based correlation structure. Consider a plan menu with 8 assets

classified in the following four investment categories ’Equity-Growth’, ’Equity-Value’, ’Bond-

Government’ and ’Bond-Corporate’. Also assume that there are two assets for each of the

four categories.

The vector of characteristic for a given asset j, g̃j , has six elements corresponding to the

1st level characteristics (Equity, Bond) and 2nd level characteristics (Equity-Growth, Equity-

Value, Bond-Gov, Bond-Corp). If asset j is an Equity-Value fund its vector of characteristics

is given by:

g̃j = (1, 0, 0, 1, 0, 0)′. (2.86)

With the assumption that there are two assets within each category the 8×8 outer-
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product matrix Gp is given by:

Gp = G̃pG̃
′
p =



2 2 1 1 0 0 0 0

2 2 1 1 0 0 0 0

1 1 2 2 0 0 0 0

1 1 2 2 0 0 0 0

0 0 0 0 2 2 1 1

0 0 0 0 2 2 1 1

0 0 0 0 1 1 2 2

0 0 0 0 1 1 2 2


Funds’ investment category classifications capture cross-substitution patterns between assets.

In this example investors treat Equity and Bond assets as independent and within Equity,

Growth and Value assets as less substitutable than the two Growth or the two Value assets.
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2.12 Appendix: Turnover ratios & identification

To consistently estimate sponsors’ and investors’ preferences I instrument funds’ fees with

funds’ turnover ratios which capture trading costs that are typically pass on to investors

through fees. In this appendix, I first provide more details on how a fund’s turnover is

computed and, after that, I discuss a possible threat to identification. Lastly, to motivate

the relevance of the instrument, I provide an illustrative example of how funds’ turnover

might affect funds’ fees.

2.12.1 Funds’ turnover ratios.

I obtain data on funds’ turnover from CRSP, which reports it at fiscal year frequency.

Turnover for fund j in year t is defined as

turnoverjt =
min(buysjt, sellsjt)

Average TNAjt

where the numerator is the smaller of the funds’ total purchases and sales over fiscal year t

and the denominator is the average total net asset value (TNA) in year t. This measure is

the one that the SEC requires funds’ to report each year.

A key advantage of this measure is that by taking the minimum between sales and

purchases it excludes turnover arising from trading activities triggered by persistent inflows

or outflows. For example, if a fund experiences substantial inflows most of the trading activity

will be implemented to buy more securities or increase current portfolio positions. In this case

though, because of the min() in the numerator, the turnover reported will capture the sales

and not the purchases. Similarly, if a fund experiences substantial outflows, the turnover

measure will likely pick up the fund’s purchases. Overall, because flows are notoriously

persistent, this measure of turnover is largely immune to flows and instead will capture

discretionary trading decision from funds’ managers (Pástor, Stambaugh and Taylor (2017)).
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From an identification perspective, this property of the turnover measure is particularly

appealing because it makes it mechanically less dependent of persistent demand shocks.

Nonetheless, the measure is not completely independent of demand shocks that generate

non-persistent inflows or outflow and, as such, may be a non valid instrument if it correlates

with some driver of funds’ flows.

2.12.2 Identification: turnover vs. performance

Funds’ performance is a well-known driver of funds’ flows (Chevalier and Ellison (1997)) and

recent research suggests that active funds achieve better performance when they trade more

and have higher turnover ratio (Pástor, Stambaugh and Taylor (2017)).54 If investors’ chase

performance and turnover determines or is correlated with performance then the exclusion

restriction I employ to identify sponsors’ preferences would be violated.

To reduce the concern about this potential identification threat I check whether my

instrument i.e., the residual turnover after absorbing funds’ brand, year, category and passive

fixed effects, shows significant correlation with some measures of investment performance and

find that this is not the case.

Table 2.17 presents a correlation table between the residualized turnover (i.e., the instru-

ment), the residualized expense ratio (i.e., the endogenous variable) and three measures of

investment performance; (i) a fund’s (gross of fees) alpha from a three Fama-French factor

regression plus Momentum, (ii) a BrightScope-category-adjusted measure of performance

computed as the difference between a fund’s gross return and the return of the correspond-

ing BrightScope category and (iii) a Morningstar-category-adjusted measure of performance

computed as the difference between a fund’s gross return and the return of the corresponding

54. The turnover-performance relationship is non-significant for passive funds. Also, for active funds, the
relationship is stronger over time rather than across funds.
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turnover ratio expense ratio alpha MS adj. return BS adj. return

turnover ratio 1.00 0.16 -0.00 0.00 -0.02
expense ratio 0.16 1.00 0.01 -0.01 0.01
alpha -0.00 0.01 1.00 0.49 0.54
MS adj. return 0.00 -0.01 0.49 1.00 0.69
BS adj. return -0.02 0.01 0.54 0.69 1.00

Table 2.17: Correlation table of instrument (turnover ratio) with fund performance mea-
sures. Turnover ratio and expense ratios are residuals after absorbing funds’ brand, year
and category fixed effects. Performance measures are yearly-demeaned.

Morningstar-category-adjusted.

Turnover and expense ratio exhibit a positive correlation confirming that the instrument

has a strong first stage. Conversely, turnover does not seem to be correlated with any of

the performance measure considered, alleviating the concern of a possible violation of the

exclusion restriction.

To check the statistical significance of these correlations I present a series of binscatter

plots where I regress the instrument on the above mentioned measures of performance and

on the endogenous variable. Figure 2.25 shows the strong and significant correlation between

turnover and expense ratio. The other set of figures (2.26, 2.27, 2.28) instead show that there

is no significant correlation between the instrument and investment performance. Lastly,

in Figures (2.29, 2.30, 2.31) I check whether turnover correlates with performance in the

following year and still find no evidence of a significant correlation, again alleviating the

concern of a possible violation of the exclusion restriction.
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Figure 2.25: Expense ratio is residual ex-
pense ratio after absorbing funds’ brand,
year and category fixed effects. Instru-
ment is residual turnover ratio.
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Figure 2.26: Performance is yearly-
demeaned alpha from 3 FF factors plus
Momentum. Instrument is residual
turnover.
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Figure 2.27: Performance is yearly-
demeaned (gross) return relative to
BrightScope category return. Instrument
is residual turnover.
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Figure 2.28: Performance is yearly-
demeaned (gross) return relative to Morn-
ing Star category return. Instrument is
residual turnover.
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Figure 2.29: Performance is next period
yearly-demeaned (gross) return relative to
BrightScope category return. Instrument
is residual turnover.
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Figure 2.30: Performance is next period
yearly-demeaned (gross) return relative to
Morning Star category return. Instru-
ment is residual turnover.
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Figure 2.31: Performance is next period yearly-demeaned alpha from 3 FF factors plus
Momentum. Instrument is residual turnover.
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2.12.3 How does turnover affect fees?

Figure (2.25) provides evidence of a strong relationship between turnover (i.e., the instru-

ment) and fees (i.e., the endogenous variable). In this section, I show how a simple model in

which funds’ maximize their fee revenue requires fund managers to pass trading costs onto

investors via higher fees.

Following Pástor, Stambaugh and Taylor (2020), consider fund j who optimally chooses

its fees fj to maximize its dollar profit:

max
fj

(fj − cj(tj))Aj(fj , tj)

where Aj is the dollar AUM of the fund, cj is the marginal cost of operating the fund and

tj is the fund turnover. In a world in which investors chase performance it is reasonable to

assume that a fund’s AUM depend on the level of fees and turnover. For example, when

investors are rational and supply capital perfectly elastically a la Berk and Green (2004),

the AUM of fund j must be such that investors expect zero returns net of fees and trading

costs:

µj(tj)− fj − qj(Aj , tj) = 0 (2.87)

where µj is fund j expected return gross of fees and qj is a per-dollar trading cost. The

return generated by the fund may depend on its turnover if, for instance, higher skilled

managers trade more (Pástor, Stambaugh and Taylor (2017)). A fund trading cost might

depend on its size (Berk and Green (2004)) and on its portfolio turnover (Pástor, Stambaugh

and Taylor (2020)). Overall, investors’ behaviour (i.e., equation (2.87)) will determine fund

j’s demand Aj(fj , tj) as a function of fees and turnover.

Funds’ turnover ratio can also affect its operating costs. For example, funds that trade

more might incur in higher operating costs (e.g., higher more research analysts) and may
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need to implement more rewarding compensation structures for their portfolio managers

which force the fund to charge higher advisory fees to its investors (Ma, Tang and Gomez

(2019)).

The optimal fee charged by fund j will then depend on a fund turnover or expected

turnover tj

fj = cj(tj) +
Aj(fj , tj)

∂Aj(fj , tj)/∂fj
.

Overall, funds’ optimizing behaviour explains why we observe a positive relationship

between trading costs and fees (Pástor, Stambaugh and Taylor (2020)). Funds’ managers

pass trading costs to investors to maximize dollar profits which provides a rationale for using

turnover as a cost-shifter instrument for fees.
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2.13 Appendix: Nesting investors & sponsors preferences

In Section 2.4 I assumed that sponsors have their own preference parameters over funds’

attributes. When making their plan inclusion decisions sponsors evaluate the suitability of

each fund based of their preference parameters which I denoted by θp. In this appendix

I illustrate how sponsors’ estimated parameters can be interpreted as a weighted average

of what I refer to as sponsors’ ’true’ preference parameters, denoted by θsp and investors

preference parameters denoted by θip.

To this end, suppose sponsor p random utility from including fund j is given by

ujp = χV
sponsor
jp (θsp) + (1− χ)V investor

jp (θip) + ζj + εjp

where the weight (1− χ) ∈ (0, 1) captures how much sponsors account for investors prefer-

ences when making their plan inclusion decisions.

As before, let us assume that sponsors mean utility V sponsor
jp (θsp) is linear in funds’ char-

acteristics, formally V
sponsor
jp = w′

jpθ
s
p. The parameter vector θsp captures how much a

non-altruistic sponsor (e.g., χ = 1) would value funds’ attributes. For example, a non-

benevolent sponsor might prefer to include expensive funds (i.e., its ’true’ fee parameter is

positive θspf > 0) to maximize its recordkeeper revenues from indirect compensations (Bhat-

tacharya and Illannes (2022)). If sponsors internalize their investors utility then sponsors’

parameters estimated starting from the preference specification in (2.1) will also reflect part

of investors preferences. To see this suppose that investors mean utility V investor
jp (θip) is also

linear in funds’ characteristics i.e., V investor
jp (θip) = w′

jpθ
i
p. Then, it is straightforward to see

that the parameter θp we estimated in the main text is a weighted average of sponsors’ and
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investors’ preferences

ujp = w′
jp (χθ

s
p + (1− χ)θip)︸ ︷︷ ︸

≡θp

+ζj + εjp. (2.88)

At this point there are two challenges. First, investors’ indirect utility is more complex

than the simple linear specification I used just above. Second, it is unclear how we can

identify and estimate χ. In what follows, I explain why I abstract from the first challenge

and, under the assumption that investors utility is linear, I will illustrate what restrictions

are needed to identify χ and I will provide an estimate of it.

Assuming that investors indirect utility is linear in funds’ characteristics is not consistent

with the quadratic type of preferences I specified when defining investors’ portfolio problem.

Under those type of preferences investors indirect utility depends on the characteristics of all

the funds included in the plan menu because investors optimally diversify across the funds

available. In other words, investors indirect utility depends on the menu sponsors choose

on their behalf. For this reason, nesting investors’ utility into sponsors random utility is

not straightforward because it would require sponsors taking expectation over all possible

menus that could be chosen. Thus, I will take a different approach and specify the utility

investors derive from having fund j in their menu as a linear function of j characteristics.

This would be consistent with a demand model, like Berry (1994), in which plan investors

make a discrete choice among the options available in their plan, which under the appropriate

coefficient restrictions, would be observationally equivalent to the asset demand derived from

mean-variance preferences (Koijen and Yogo (2019)).

With the assumption that V investor
jp is linear in funds characteristics we can identify and

estimate χ as follows. First, we need to obtain an estimate of investors’ preferences θ̂
i
p and

an estimate of θ̂p. Second we need to assume that at least one fund characteristic enters

investors’ preferences but is excluded from sponsors’ preferences. For example, if investors
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Preference parameters

Active Investors All Investors

χ 0.749 0.749

Expense ratio (f , bp.)
θpf -0.021 -0.021
θipf -0.039 -0.025
θspf -0.019 -0.019

Affiliation (a)
θpa 0.823 0.823
θipa 0.276 0.174
θspa 1.040 1.040

Return (r, pp.)
θpr 0.004 0.004
θipr 0.025 0.016
θspr 0 0

Table 2.18: Estimated investors and sponsors parameters assuming investors make their
portfolio choice according to a discrete choice demand with linear random utility.

care about past returns but sponsors do not (i.e., θspr = 0) then χ will be determined by

χ = 1−
θ̂pr

θ̂ipr
.

Table 2.18 presents the estimates of sponsors and investors preferences assuming that

active investors solve a discrete choice portfolio problem and that past returns gross of fees

enter investors preferences but not sponsor preferences. Under this assumption investors’

preference parameters θi can be estimated from the following linear regression:

log(sactive
jpt ) = w′

jptθ
i,active + ψpt + ξjpt (2.89)
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where sactive
jpt is the active investors portfolio share of fund j in plan p and year t, ξjpt is

an unobserved demand shock possibly correlated with fees and ψpt are plan-by-year fixed

effects which are needed to absorb the inclusive value component of investors discrete choice

problem.55 The data does not distinguish between portfolio shares of inactive v. active

investors. To recover the latter I use the estimated fraction of inactive investors and obtain

the portfolio share of the active as

sactive
jp = sjp1{j ̸= d}+

sjd − δd
1− δd

1{j = d}.

To account for the endogeneity of fees I use funds’ turnover ratio as instrument. The param-

eters θp are estimated from the menu choice problem I developed in Section 2.6. Specifically,

I use the estimates reported in the left column of Table (2.9). Assuming inactive investor

preference parameters is equal to 0 I can recover the preference weighting as

χ = 1−
θ̂pr

θ̂ipr(1− δ)
(2.90)

The estimates suggest that preference misalignment are important in this market. Spon-

sors weight their own preferences roughly three times more (0.75/0.25) than their investors

preferences. Looking at the estimated coefficients, it appears that the largest misalignment

is in the preference for fund affiliation. Furthermore, consistent with previous results, spon-

sors tend to tolerate higher fee more than their investors and particularly so if compared to

active investors. Active investors marginal dis-utility from higher fees is twice larger than

the one of their sponsors.

55. Plan-by-year fixed effect absorb the following term ln(1 +
∑

j∈Spt
exp(V investors

jpt )) which is plan-year

specific. Logit demand implies is given by sjpt =
exp(V investors

jpt )

1+
∑

j′∈Spt
exp(V investors

j′pt )
.
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2.14 Appendix: 401(k) Lawsuits

This appendix provides details about some recent 401(k) lawsuits. I start by providing some

background on 401(k) regulations building on (Mellman and Sanzenbacher (2018)) and then

offer few specific examples of recent lawsuits.

The design of 401(k) retirement plans is governed by the Employee Retirement Income

Security Act of 1974 (ERISA), with the Department of Labor (DOL) in charge of updating

and enforcing such regulation. The law specifies that plan sponsors (i.e., employers) have a

fiduciary duty to their plan investors requiring them to design and administer the plan in

the ’sole benefit’ of plan participants.

While the regulation is clear about the role of plan sponsors as fiduciaries, it provides

almost no guidance on how to fulfill such duty in practice. For example, not much is said

about how plan fiduciaries should select the type and number of investment options or

determine a reasonable level of fees. Instead of laying out specific regulations or guidance,

the DOL’s general approach to overseeing 401(k)s has been through its own enforcement

actions or through privately initiated litigation. Overall, plan fiduciaries are often left to

guess what practices comply with ERISA and may only become aware of an alleged violation

from a DOL investigation or lawsuit.

Typically there are two reasons that trigger 401(k) lawsuits. First, the inclusion of

inappropriate investment options and second, the inclusion of options charging excessive fees.

The former was the most common cause after the Great Recession mainly as a consequence

of the inclusion of poor-performing employers’ own stock. However, this kind of lawsuit has

become less common since a 2014 Supreme Court ruling in the case of Dudenhoeffer v. Fifth

Third Bancorp indicating that plan fiduciaries will not be held liable for failure to predict the

future performance of the employers stock. Since then, most lawsuits involved allegations

of excessive investment and administrative fees. In what follows, I describe a few recent

examples.
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Allen v. M&T Bank Corp (2016). The Plaintiff (Allen) alleges that the Defendant

(M&T) breached their fiduciary duties by retaining their proprietary funds within the plan

despite the availability of similar lower cost and better performing investment options. Ac-

cording to the plans Form 5500 filed for 2010, of the 22 mutual fund investment options in

the Plan, 8 were from proprietary M&T mutual funds, representing over 30% of all mutual

fund investments. However, these proprietary mutual funds charged significantly higher fees

than average for performance that most often trailed both the Fund benchmarks and the

mutual fund averages.

The Plaintiff provides some specific examples. For instance, the Wilmington Large Cap

Value Institutional lagged the performance of a more reasonably priced alternative, Vanguard

Equity Income Fund Admiral Shares. The Wilmington fund charged an expense ratio of

1.17%, higher than the Large Cap Value average of 0.83% and the 0.21% fee charged by

the Vanguard Equity Income Fund Admiral Shares. A similar observation is made for the

Wilmington Funds Small Cap Growth Institutional Fund charging an expense ratio of 1.39%

against the 0.40% fee charged by Vanguard Stragic Small Cap Equity Fund.

Creamer v. Starwood Hotels & Resorts Worldwide Inc (2016). The Plaintiff

(Creamer) alleges that the Defendant (Starwood Hotels & Resorts Worldwide, Inc.) serially

breached its fiduciary duties in the management, operation and administration of its em-

ployees 401(k) plan. It failed to ensure that fees charged to participants were reasonable.

It caused plan participants who invested in index funds to pay seven times more than a

reasonable fee. Indeed, the Starwood Plan received from the BrightScope rating service a

score of only 61. The top BrightScope rating for peer plans was 90. The Plaintiff highlights

that this difference would require sixteen years of additional by Starwood employees to reach

the same level of savings as peer plan participants. Starwood participants lost savings of

$110,871 per participant.

The Plaintiff also provides some specific examples. For instance, the BlackRock LifePath
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Index funds (the plan TDF) just hold other BlackRock index funds. BlackRock Life Path

2050 Index Fund institutional shares have net operating expenses of 0.20%. The 2050 Index

Fund is a fund that invests all of its assets in other BlackRock funds. 52% of the Life

Path Index Fund was invested in the BlackRock Russell 1000 Index Fund. The Russell 1000

Index fund had net operating expenses of 0.08%. Thus, the fee paid by plan participants is

0.20% plus 0.08% for a total of 0.28%. In contrast, the Vanguard Institutional Index Fund

Institutional Shares had a total expense ratio of only 0.04% so the plan has chosen funds

with fees that are 700% more than the comparable Vanguard fund - a difference of 24 basis

points

McCorvey v. Nordstrom, Inc. (2017). The Plaintiff (McCorvey) alleges that the

Defendant (Nordstrom) failed to adequately and prudently manage the plan. It allowed

unreasonable fees to be incurred by participants and failed to use lower cost investment

vehicles. The annual operating fees charged for many of the plans investment options were

substantially higher than reasonable management and operating fees of comparable funds,

both index and actively managed funds. These fees were up to 16 times higher than com-

parable index funds, and up to 2.7 times higher than comparable actively managed funds.

The Plaintiff highlights that the high fee funds in the Nordstrom plan could have been

easily replaced by lower cost index funds, TDF, or actively managed funds. For example,

the PIMCO Total Return charging 46 basis points in fees could have been replaced by the

Vanguard High Dividend Yield Index Fund charging 15 basis points or the Vanguard Growth

and Income Fund Admiral Shares (an active fund) charging 23 basis points. Similarly, the

average expense ratio for the set of TDFs available in Nordstrom (42 basis points) could

have been five times lower by replacing it with Vanguard Institutional Target Date Funds

whose average expense was around 9 basis points.

Pledger v. Reliance Trust (2015). The Plaintiff (Pledger) alleges that the Defendant
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(Reliance Trust) breached its fiduciary by providing to the plan investment options that

contained unreasonable management fees when cheaper versions of the same investments

were available to the plan, as were other high-quality, low-cost institutional alternatives.

The Plaintiff also alleges that the plan recordkeeper (Insperity) and the Defendant engaged

in self-dealing by offering higher-cost investments to the plan’s participants, because Re-

liance selected those investments in order to pay a larger amount of revenue-sharing to the

recordkeeper.

Schapker v. Waddell & Reed Fin. Inc (2017). The Plaintiff (Schapker) alleges that

the Defendants (WR Financial) selected the investment opportunities made available to the

plan participants. During the Class Period, more than 97% of the investment opportunities

made available to the plan participants were established and managed by WR Financial or its

affiliates. Only one unaffiliated investment optionout of dozens of funds offered each yearwas

ever offered to plan participants. Because nearly all the investment options the Defendants

made available to plan participants were established and managed by WR Financial or its

affiliates, the Defendants caused the plan to pay its own Sponsor, WR Financial.

Further the Plaintiff points out that the fees charged to plan participants for their invest-

ments were in excess of the fees typically charged by unaffiliated companies for comparable

mutual funds and products, and the performance levels of the investment options within

the plan were worse than the performance achieved by unaffiliated companies for compa-

rable mutual funds and investment products. Defendants could have selected comparable

investment products from unaffiliated companies that cost less and performed better than

the proprietary branded investment products to which the Defendant limited the plan par-

ticipants.
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CHAPTER 3

OLIGOPOLISTIC COMPETITION, FUND PROLIFERATION,

AND ASSET PRICES

3.1 Introduction

The US mutual fund industry has witnessed a tremendous shift from active to passive in-

vesting in the past two decades. The share of assets under management (AUM) held in

passive equity funds increased from about 20% at the beginning of 2000 to 50% in the first

quarter of 2020 (Figure 3.1), making the passive industry the dominant one in the US equity

market. While this shift from active to passive is a well-known fact, less is known about the

competitive dynamics within the passive industry and their implications for asset prices and

investors’ welfare.

We start this paper by highlighting two facts about the structure of the passive mutual

fund industry. First, the industry is concentrated in a handful of large fund families. Figure

3.2 plots the market share of the five biggest families for three different cap-based categories

within the US passive equity industry: Large Cap, Mid Cap and Small Cap. In each category,

the market share of the top five families has been roughly steady over time and amounts to

more than 80% of the market.

Second, perhaps not surprisingly, the number of passive investment vehicles such as index

funds and ETFs have been increasing in the past 20 years. More interestingly, Figure 3.3

shows how the average number of passive funds per fund family evolved over time, separately

for the five biggest families (blue line) and the rest of them (red line). The pattern is striking:

not only do the five biggest families manage more assets, but they do so by deploying many

more funds relative to their competitors. In each investment category, this gap in the number

of funds has been increasing over time, suggesting that fund proliferation might be a key
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mechanism through which these investment firms compete. To maintain their market shares,

the largest families keep introducing new funds to capture household investors’ demand.

To rationalize these patterns, we develop and estimate a dynamic oligopoly model of the

mutual fund industry. A key component of our model is the distinction between individual

mutual funds and fund families which we also refer to as management companies. While

there exists an extensive literature that studies the mutual fund industry, most of it focuses

on funds and disregards the role of management companies.1 In practice, management

companies are responsible for relevant decisions that shape the competitive environment in

which funds operate. They decide if and when to introduce new funds, choose the investment

sector in which to operate their new funds and establish the investment style of the new

funds they create (e.g., the investment mandates). To accommodate the presence of both

management companies and funds, to emphasize the key role of fund initiation and to analyze

the competitive forces that drive the dynamics of this industry, our model builds on two layers

of Cournot competition. In the inner layer, mutual funds compete by choosing quantities

and make a profit from fees (as a percentage of their AUM) determined, in equilibrium, by

the investment service demand of a representative household investor. In the outer Cournot

layer, an oligopoly of heterogeneous management companies compete with each other by

deciding how many funds to operate.

On top of allowing the number of funds to emerge endogenously in equilibrium, the

model links the technological primitives of the asset management industry, such as marginal

costs and scale economies, to the elasticity of asset demand. We close the model and derive

the equilibrium price that clears the asset market under the assumptions of strict mandates

and a fixed supply of shares. After setting up the model, in Proposition 7, we analytically

prove the existence and uniqueness of a steady state equilibrium in which the number of

1. Some exceptions are Massa (2003), Gaspar, Massa and Matos (2006), Bhattacharya, Lee and Pool
(2013), Berk, Binsbergen and Liu (2017), Betermier, Schumacher and Shahrad (2022) and Ørpetveit (2021).
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Figure 3.1: Left Axis: AUM in trillions of $ for both passive and active equity industry.
Right Axis: Share of AUM held in the passive industry.

funds and the index price are constant. While we characterize the steady-state equilibrium

analytically, we further solve the full model numerically. To do so, we develop a nested fixed

point numerical routine that, for given parameter values, solves for the optimal equilibrium

path to a given terminal condition. At each point in time, the path for the number of funds

created is a pure strategy Markov Perfect Nash equilibrium of the dynamic game between

management companies, and the path for asset prices clears the asset market in every period.

Secondly, we push forward the recent asset pricing literature that studies the role of

institutional investors in determining asset market movements.2 Contrary to the traditional

assumptions that investors are atomistic and that their demand shocks are uncorrelated, this

literature documents how asset demand is far from perfectly elastic and how demand shocks

affect equilibrium asset prices. Intuitively, the large size of these investors and the presence

of specific investment mandates contribute to generating correlated demand shocks, which

2. See for instance, Petajisto (2009) Basak and Pavlova (2013), Koijen and Yogo (2019), Haddad, Huebner
and Loualiche (2022) and Pavlova and Sikorskaya (2022).
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Figure 3.2: Market share of the five biggest investment companies by investment strategy.
Market shares are in terms of end-of-year assets under management (AUM).

will inevitably impact asset prices. Our model links the mutual fund industry technology

fundamentals to equilibrium asset prices: the price impact of large institutional investors is

micro-founded from technology primitives such as fund initiation costs and scale economies.

A reduction in initiation costs pushes companies to introduce more products, which will

lower the equilibrium fees and, in turn, attract more demand from households. Then, under

fixed supply, asset prices will increase to clear the excess demand triggered by the initial

reduction in initiation costs.

The second part of the paper turns to the estimation of the model using data on US pas-

sive equity funds. We do so by matching two types of data moments, the average per-period

fund initiation rate and the average rate at which this fund initiation rate grows. In our

model, these moments inform the two parameters that characterize the cost of introducing

new funds for management company j, the linear cost parameter cj and the adjustment

cost parameter δj . In the data, we compute these moments separately for each of the five
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Figure 3.3: Average number of funds per management company. Funds with different share
classes count as a single fund.

biggest management companies and the remaining companies pooled together.3 For each of

the five biggest companies, we then obtain an estimate of their fund initiation costs, and we

show how our model can match the pattern of fund proliferation observed (and targeted)

in our data. As a validation check, we also show how our dynamic model’s time series of

equilibrium fees closely follows the observed (but untargeted) time series of expense ratios.

Next, with our estimated model, we perform counterfactual exercises to study the welfare

effects of removing the largest management companies from the market. We do so for

each of the top 5 largest companies Blackrock, Charles Schwab, Fidelity, State Street and

Vanguard, one at the time. The welfare effects of removing any one of those companies

are large and heterogeneous. We estimate that removing Blackrock or Vanguard from the

market would reduce household welfare by 25% and 9.2%, respectively. Such a large welfare

3. Our model only focuses on passive funds, and for the estimation of the model, we will pool all the non-
top five companies into one entity which we refer to as the outside company, so that the overall number of
companies used in estimation will be 6. As shown in figure (3.12), more than 80% of the market is controlled
by the top 5 companies, so the outside group consists of a set of small companies.
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loss is a consequence of the fact that although Blackrock and Vanguard are the largest

asset managers, they are also the most efficient ones. To further corroborate our finding,

in a second set of counterfactuals, we replace Blackrock with two different management

companies with a cost structure analogous to Charles Schwab, which we estimate to be less

efficient. The resulting welfare loss is slightly smaller than before and amounts to a 20%

reduction in household welfare. Overall, our counterfactual exercises suggest that restricting

the largest management companies to favor competition might ultimately hurt investors’

welfare if those companies are also the most efficient ones.

Finally, in Proposition 8, we provide a closed-form expression of the equilibrium asset

price multiplier with respect to investors’ wealth. Our estimates imply that a 1% increase in

household wealth increases the valuation of the equity index by 5.5%, which is in line with

what the recent asset pricing literature has found. In the context of our model, the inelasticity

of asset demand is driven by the structure of the asset management industry. The presence

of large and multiproduct management companies exacerbates the price impact of a demand

or cost shock. In Section 3.6.4, we perform a comparative static exercise and show that a

reduction in fund initiation costs pushes management companies to introduce more funds

which in turn reduces fees and further increases household demand for the index. Under

fixed supply, asset prices will need to be higher to clear the asset market. Overall, our model

rationalizes the high price multiplier often found in the empirical asset pricing literature

through the competitive dynamics of large, heterogeneous and multiproduct management

companies.

The rest of the paper proceeds as follows. Section 3.2 reviews the literature. Section 3.3

describes the model. Section 3.4 proves uniqueness and existence of the symmetric steady-

state. Section 3.6 calibrates and estimates the model. Section 3.7 concludes.
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3.2 Related Literature

Our paper contributes to the broad literature that studies theoretically and empirically the

industrial organization of the asset management industry. Dermine, Neven and Thisse (1991)

is one of the first contributions that considers strategic competition between funds. In their

model, funds face demand from mean-variance investors with heterogeneous risk-aversion and

choose where to locate on the mean-variance frontier. The equilibrium displays an Hotelling

like property in which only two types of funds are supplied, one fully invested in the risk-free

and the other fully invested in the market. Nanda, Narayanan and Warther (2000) propose

a model of the mutual fund industry in which investors’ heterogeneity in terms of liquidity

needs implies that different load fee structures arise in equilibrium. Hortaçsu and Syver-

son (2004) show that presence of investors’ search costs play a crucial role in rationalizing

why homogeneous S&P 500 index funds with different fees are supplied. In our model we

abstract from investors’ heterogeneity but allow for multi-product management firms with

heterogeneous production technologies who compete in a two-layers Cournot oligopoly.

Within this literature, a few papers highlight the importance of management companies

in shaping the market structure and the proliferation of products in the asset management

industry. Massa (2003) argues that fund families are incentivized to offer a broad menu of

funds because investors value the possibility to switch across different funds belonging to

the same family at no cost. Khorana and Servaes (1999) empirically analyze the determi-

nants of mutual fund starts and show that scale and scope economies are among the factors

that induce fund families to launch new funds. More recently, Betermier, Schumacher and

Shahrad (2022) provide empirical evidence that incumbent families set up a large number

of new funds in order to deter entry. The role of fund families and product proliferation are

also crucial elements in our dynamic model.4 In each period fund families decide how many

4. The importance of multi-product management companies is not limited to shaping the market structure
of the industry. Gaspar, Massa and Matos (2006) provide empirical evidence of how fund families transfer
performance across member funds to maximize family profits. Bhattacharya, Lee and Pool (2013) show
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new funds to introduce taking into account that operating more funds will generate scale

economies next period but will increase competition and reduce profits of existing funds.

Our work also contributes to the recent asset pricing literature that highlights the role

of institutional investors in determining asset prices movements. In a static mean-variance

framework Petajisto (2009) shows how the presence of demand for asset management services

is enough to generate downward sloping demand curves for stocks. Starting from a simple

portfolio choice problem Koijen and Yogo (2019) develop an equilibrium asset pricing model

in which portfolio weights are function of stock characteristics. The model is estimated to

match investors holdings and used in several applications to highlight the role of institutions

in determining asset market movements. More recently, Haddad, Huebner and Loualiche

(2022) extended the Koijen and Yogo (2019)’s characteristics-based framework by allowing

investors to compete between each other in setting their trading strategies. They show that

this type of strategic competition reduces the competitiveness of the stock market leading

to inelastic demand curves.5 In our model equilibrium asset prices are also related to the

competitive behavior of large multi-product institutional investors. In particular, we show

how technology primitives such us scale economies in the production of asset management

services impact equilibrium asset prices.

Recently, the importance of large institutional investors has been also shown to be rele-

vant for the efficiency of asset prices. In a recent paper, Kacperczyk, Nosal and Sundaresan

that large families offer mutual funds that only invest in other funds in the family and how these type of
funds provide insurance against liquidity shocks. Berk, Binsbergen and Liu (2017) argue that fund families
exploit their private information about their managers skill and create value by reallocating capital efficiently
among managers. Ørpetveit (2021) shows empirically that management companies improve the quality of
their existing funds in response to higher competition.

5. Many other papers have included institutional investors in asset pricing models among which He and
Krishnamurthy (2013) and Basak and Pavlova (2013). The former paper develops a dynamic model in which
institutional investors are constrained in their portfolio choice and study the impact on risk premia in bad
times. The latter studies the asset pricing effects of delegated portfolio managers who care about their
performance relative to a benchmark in a dynamic economy. More recently, Pavlova and Sikorskaya (2022)
develop an empirical measure of benchmarking intensity and provide evidence of inelastic demand of active
managers for stocks in their benchmarks.
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(2022) consider an asset market with an oligopoly of large investors of exogenous sizes and

study how market concentration affects price informativeness.6 Although we abstract from

the role price informativeness, our model endogenizes flows and market concentration leaving

heterogeneity in production technologies to be the fundamental model primitive.

Finally, motivated by the increasing regulatory scrutiny toward the growth of index

investing,7 Schmalz and Zame (2023) propose a static equilibrium model with heterogeneous

investors and show that the presence of an index fund might hurt investors’ welfare if one

takes into account the general equilibrium effect on asset prices. When the index fund enters

the market or lowers its fee investors increase their stock holdings relative to their bond

holdings, which leads to higher asset prices and, in turn, to lower asset returns. Although

our model is different in several respects, we also look at how investors’ welfare changes when

the structure of the asset management industry changes, while taking into account the effects

on asset prices. Our counterfactual analysis in section (3.6.3) suggests that restricting the

largest passive asset managers to favor competition might reduce investors’ surplus. This

happens because the largest management companies are far more efficient than the rest of

market and thus the efficiency loss that results from removing them hurts investors despite

asset prices increase.

6. With the rise of passive investing the literature that studies how the presence of large passive investors
affects the information embedded in asset prices is growing. See for instance: Bai, Philippon and Savov
(2016), Baruch and Zhang (2022), Bond and Garcia (2022), Farboodi, Matray, Veldkamp and Venkateswaran
(2021), Coles, Heath and Ringgenberg (2022), Malikov (2021) and Sammon (2022).

7. Regulators and antitrust legal scholars are investigating the consequences of the rise of passive investing
on various economic outcomes. The trigger of many of the regulatory concerns has been a recent and growing
literature that studies the anticompetitive effects of common ownership (Azar, Schmalz and Tecu (2018)),
Posner, Scott Morton and Weyl (2017), Anton, Ederer, Gine and Schmalz (2017), Azar and Vives (2021),
Backus, Conlon and Sinkinson (2021)). This literature asks whether product firms that share common
owners, which in most cases are large passive asset managers, have less incentive to compete.
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3.3 Model

Time is discrete and indexed by t ∈ {1, 2, ...}. We consider an economy populated by three

types of agents: a representative household , mutual funds and management companies.

The representative household allocates wealth between the mutual fund sector and a risk-

free asset to finance consumption and takes expected return, variance and fees as given.

The mutual fund sector is populated by a discrete number of identical funds that internalize

household demand and that optimally choose their size to maximize dollar revenues. Each

fund invests in the same underlying index and takes the total number of operational funds as

given. Finally, each management company is responsible for fund initiation. Specifically, at

each time t, each management company controls a number of pre-existing funds that carries

from previous periods and chooses the number of new funds to create. We close the model

and derive equilibrium market prices by assuming that mutual funds have a strict mandate

to invest in the underlying index and that the index is available in fixed supply. The major

contribution of the model is to describe the competitive dynamics of the mutual fund industry

assuming that not only mutual funds but also management companies simultaneously and

dynamically compete a la Cournot. Despite the complications created by the two layers

of Cournot competition, we provide sufficient conditions under which the model admits a

unique steady-state equilibrium.

We now proceed to describe in details the problem solved by each agent in the model.

3.3.1 Household

In each period, a representative household with log utility over consumption decides how

much of its current wealthAt to consume and how much to invest in the financial market. The

investment opportunity set consists of two broad asset classes, namely a risk-free asset with

return normalized to zero and a mutual fund sector. The mutual fund sector is populated
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by a discrete number of identical funds that invest in the same underlying index and that

charge fee ft at time t.8 Because all mutual funds are identical, each household is indifferent

between investing in any specific fund and it will only choose the fraction of wealth to invest

in the aggregate mutual fund sector. The size of each individual fund will then be determined

via Cournot competition.

We assume that the index tracked by each mutual fund pays a constant dollar dividend

D and we denote by Pt the index price at time t. Next, we define the net of fee index return

at time t+ 1 as

1 + Rt+1 =
Pt+1 +D

Pt
− ft. (3.1)

Our representative household knows D and ft but is not able to foresee the equilibrium path

of asset prices. In other words, the household is not able to anticipate the effect that actions

of mutual funds and management companies have on equilibrium asset prices. Instead, he

perceives the index log net returns to evolve as a Gaussian stationary process

rt+1 ≡ log (1 + Rt+1) = ρt − ft + σtεt+1

where εt+1 ∼ N (0, 1).9 Letting wt denote the portfolio weight on the mutual fund sector,

the problem solved by the representative household at time t is

V (At) = max
Ct,wt

Et

[ ∞∑
s=t

βs−t log(Cs)

]
(3.2)

s.t. At+1 = (1 + wtRt+1)(At − Ct) (3.3)

8. We will discuss this product homogeneity assumption in Section 3.3.5.

9. When simple net returns are sufficiently small log(1 +Rt+1) ≈ Rt+1 = Pt+1+D
Pt

− ft − 1 so that ρt can
be interpreted has the household subjective belief about the next period capital gain and dividend yield.
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with associated Euler equation given by

1 = Et

[
β

(
Ct+1

Ct

)−1

(1 + Rt+1)

]
(3.4)

Under standard arguments, which we detail in Appendix 3.8, the household optimally con-

sumes Ct = (1−β)At and invests βAt in the financial market. Moreover, household optimal

portfolio allocation is given by

wt =
µt − ft

σ2t
. (3.5)

where µt ≡ ρt + σ2t /2.

3.3.2 Mutual Funds

In any period t, each mutual fund takes the total number of funds in the market nt as

given and chooses its market share to maximize dollar profits. Given the optimal market

share chosen by each fund, the equilibrium fee at time t is pinned down by the demand of

the representative household in (3.5). In other words, we are assuming that, at each time

t, mutual funds compete simultaneously and repeatedly a la Cournot. Each mutual fund

internalizes that a higher individual market share leads to a higher market share of the

aggregate mutual fund industry and to a lower fee that the household is willing to pay.

Let wit denote the weight on mutual fund i in the portfolio of the representative house-

hold, and consider to rewrite household demand in (3.5) as

ft = µt − wtσ
2
t (3.6)
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Then fund i at time t solves

max
wit

ftwitβAt

subject to

ft = µt − wtσ
2
t

wt =

nt∑
i=1

wit

Taking the first order condition with respect to wit we obtain fund i best response

wit =
µt

σ2t
− wt. (3.7)

Summing across funds yields the Cournot total quantity

wt =
µtnt

σ2t (nt + 1)
, (3.8)

and by replacing (3.8) in (3.6) we recover the equilibrium fee

ft =
µt

nt + 1
. (3.9)

Finally, we solve for the symmetric equilibrium wit by replacing (3.8) in (3.7)

wit =
µt

σ2t (nt + 1)
. (3.10)

In equilibrium at time t and conditional on nt, each mutual fund i realizes dollar profits

πt(nt) = ftwitβAt =
µ2t

σ2t (nt + 1)2
βAt.
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To save notation, we will rewrite dollar profits gained by each fund as

πt(nt) =
πt

(nt + 1)2
(3.11)

where πt ≡
µ2t
σ2t
βAt.

3.3.3 Management Companies

Consider an oligopoly ofM multi-product management companies indexed by j ∈ {1, 2, . . . , M}.

Each management company j enters time t with njt−1 pre-existing funds and chooses the

number of funds njt to operate in the current period with the objective of maximizing the

present discounted value of dollar profits. Equivalently, the decision of management com-

pany j to operate njt funds at time t requires the creation or deletion of n′jt = njt − njt−1

funds.

While pre-existing funds do not carry any cost for the controlling management company,

opening a new fund is costly. We allow the initiation cost to depend on the size of man-

agement companies and we parameterize the cost of creating a new fund for management

company j at time t as

Cj
(
njt, njt−1; cj , δj

)
= cjn

′
jt + δj

(
n′jt
njt−1

)2

njt−1 (3.12)

where cj > 0 is the linear component of the initiation cost and δj captures an additional cost

of adjusting the menu of funds, which we assume decreasing in the size of the management

company, i.e. in the number of pre-existing funds njt−1. The suggested functional form for

Cj (·) implies that management companies with a higher number of pre-existing funds face

a lower initiation cost and it is motivated by the newly documented evidence that largest

management companies are responsible for most of fund creation. We interpret this evidence
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as suggesting that largest management companies face a lower cost of initiating a new fund

and we incorporate this empirical fact in the model. Holding njt−1 constant, the parameter

δj captures how costly is for company j to adjust its menu of funds. A lower δj and a higher

njt−1 both reduce j’s cost of launching a new fund.

What is the trade-off that management companies face when initiating a new fund?

First, in the current period, there is an ambiguous effect on profits. On one hand, profits

increase because the company operates one additional fund thereby increasing its market

share. On the other hand, creating one additional fund increases competition in the mutual

fund sector, leading to a decrease in fee ft and profit πt(nt). Second, expanding the current

menu of funds carries the additional benefit of reducing the initiation cost in future periods.

Overall, management company j at time t solves the following dynamic problem

V
(
njt−1

)
= max

njt
njt

πt
(nt + 1)2

− Cj
(
njt, njt−1; cj , δj

)
+ βV

(
njt
)

(3.13)

subject to

n′jt = njt − njt−1

nt =
M∑
j=1

njt

Effectively, we are considering a dynamic game in which management companies compete

simultaneously a la Cournot. For each management company j, the optimal strategies

n−jt = (nj′t)j′ ̸=j chosen by the other enter management companies j′ ̸= j enter the problem

only through the total number of funds nt = njt +
∑

j′ ̸=j nj′t.
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3.3.4 Financial Market

The last aspect of the model that still has to be addressed is how the price of the index in

which mutual funds are invested will be pinned down in equilibrium. To this end, we assume

that mutual funds have a strict mandate to invest in the underlying index and that the index

is available in fixed supply Q̄. Letting Qit denote the number of index shares demanded by

mutual fund i at time t, then the assumption of strict mandate requires

QitPt = witβAt ∀i, t (3.14)

Equation (3.14) simply states that, if mutual fund i has a strict mandate to invest in the

index, then, at any time t, the dollar investment in the index (left hand-side) has to equal the

total assets under management of mutual fund i (right hand-side). Summing (3.14) across

funds and imposing market clearing yields

Pt =
wt(βAt)

Q̄
=

µtnt

σ2t (nt + 1)

βAt

Q̄
(3.15)

where in the second equality we used equation (3.8). In equilibrium, the wealth At of the

representative household will evolve according to the following law of motion:

At+1 = βAt

[
1 + wt

(
Pt+1 +D

Pt
− ft − 1

)]
(3.16)

= βAt

[
1 +

(
µtnt

σ2t (nt + 1)

)(
Pt+1 +D

Pt
− ft − 1

)]
(3.17)

= βAt + Q̄ (D +∆Pt+1 − ftPt) (3.18)

where the second equality substitutes for the equilibrium portfolio weight wt in (3.8) and

the third equality uses expression (3.15). We stress that, because the household is not

able to internalize the effect on asset prices coming from the actions of mutual funds and
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management companies, then the law of motion of wealth derived in (3.18) will not in general

be equivalent to the budget constraint used in (3.3).

3.3.5 Discussion of model assumptions

Before turning to the definition of equilibrium and proving existence and uniqueness of a

steady state, we now discuss in detail some of our modelling assumptions. Although in some

cases restrictive, all of the assumptions are needed to balance the model tractability and its

ability to capture what we believe are the most relevant dynamics of the industry.

Myopic portfolio choice. In our model the optimal portfolio choice is myopic because

our representative household has log preferences over consumption. Unless the belief process

is independent and identically distributed over time, relaxing this assumption would affect

our household portfolio choice in a way that would prevent us from obtaining a closed form

solution for the portfolio weight wt. In the case in which the belief process is time-varying the

optimal portfolio choice would need to account for the incentives to hedge intertemporally.

The resulting asset demand function would only be defined implicitly, making it hard to set

up the supply side oligopolistic game in a tractable way. Overall, although the incentives

to hedge intertemporally are important, our static demand framework allows us to derive a

simple demand for asset management services in each period and to enrich the dynamics on

the supply side without losing tractability.

Product homogeneity. In our model all funds are identical and in equilibrium will charge

the same fee and manage the same amount of AUM. In practice though the funds offered by

a management company are never perfectly identical. Even within the same investment cat-

egory, funds in a company’s menu might have slightly different holdings, different managers,

different fee structures, tax benefits and so on. Allowing for this type of product hetero-

geneity would require extending the model in two directions: on the supply side, we would

need to introduce some dimension of horizontal differentiation and characterize a fund with
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a vector of both portfolio (e.g., type of holdings, factor exposures, etc.) and non-portfolio

(e.g., management tenure, advertising, fund age etc.) characteristics. On the demand side,

we would need to modify households’ preferences for all these product characteristics to be

valuable.

Product differentiation is without any doubt an important dimension through which

investment firms compete to attract investors with heterogeneous preferences.10 However, it

should also be clear that introducing horizontal differentiation in our equilibrium framework

would make it intractable and that is why we abstract from it. To further back up our

homogeneity assumption, Tables 3.7 and 3.8, present some characteristics of the top 30

passive funds supplied in the Large Cap and Mid Cap sectors in 2018. The exposures to

the 4 Carhart factors, the alphas and the gross-returns are similar across all funds especially

within but also across the two sectors. Also, note that our model can be easily extended

to include multiple index sectors with sector specific investors that do not substitute across

sectors.11

Overall, we believe that this homogeneity assumption could be a good modelling com-

promise that would still allow us to study the competitive and asset pricing implications of

fund proliferation while keeping the model tractable.

Investor learning. A large body of the literature on mutual funds has studied the so called

flow-performance relationship.12 According to the literature, past performance attracts new

10. Kostovetsky and Warner (2020) develop a textual measure of product differentiation and show that
more differentiated/unique funds are able to attract higher inflows at least the first few years upon intro-
duction. Abis and Lines (2022) use a k-mean mean clustering algorithm based on a textual analysis of fund
prospectuses and show that funds are differentiated in groups and that investors withdraw money if funds
tend to diverge from their prospectus strategy. Ben-David, Franzoni, Kim and Moussawi (2022) provide
evidence that specialized ETFs that track niche portfolios are supplied to cater investors heterogeneous
beliefs.

11. The case in which investors substitute across sectors, say because of diversification motives, would
substantially complicate the oligopolistic game between funds and management companies. The reason is
that funds are now also competing across sectors with products that have different characteristics.

12. See for instance the two seminal contributions Chevalier and Ellison (1997) and Sirri and Tufano (1998).
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inflows regardless of whether performance persists or not. Building on this empirical findings,

theoretical models studying the flow-performance relationship typically feature a learning

component in which investors learn about unobserved managerial skills from past perfor-

mance.13 In our model we do not have investor learning because we are focusing on passive

investment vehicles that track an underlying index. Therefore, we decided to not include

investor learning in our dynamic model.

3.4 Equilibrium

3.4.1 Equilibrium definition

We are now ready to define the equilibrium of our dynamic game. Following the indus-

trial organization literature on dynamic oligopolies, we restrict our attention to Markovian

strategies i.e., strategies that are function of payoff relevant state variables.14 From problem

(3.13), we can see that the payoff relevant state-variables for management company j are

its menu of funds active in the previous period njt−1 as well as competitors’ menu of funds

active in the previous period (nj′t−1)j′ ̸=j . Indeed, management companies j′ ̸= j choose

an optimal strategy (nj′t)æ′ ̸=j which is a function of (nj′t−1)j′ ̸=j . Because (nj′t)æ′ ̸=j enter

company j’s problem through nt, then the optimal strategy of each management company

depends on its own menu of pre-existing funds as well as the menu of pre-existing funds of

all its competitors. To preserve computational tractability, for each management company

j, we restrict attention to strategies that are function only of company j’s own state (in our

13. The seminal contribution here is Berk and Green (2004) which rationalizes the flow-performance rela-
tionship in a model with rational investors who learn about managers’ alphas. More recently, Roussanov,
Ruan and Wei (2021) extends the Berk and Green (2004) to allow for search friction as in Hortaçsu and
Syverson (2004).

14. See for instance, Maskin and Tirole (1988), Ericson and Pakes (1995) and for a self-contained review
Aguirregabiria, Collard-Wexler and Ryan (2021).
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case, njt−1) and denote the policy function by αj : [0,∞) → [0,∞).15

Definition 2. An equilibrium of our dynamic model consists in a profile of strategies α∗ =

(α∗j )
M
j=1 with α∗j : [0,∞) → [0,∞), a path of asset prices (Pt)

∞
t=1 and wealth (At)

∞
t=1 such

that:

(1) in any period t, α∗ = (α∗j )
M
j=1 is a pure strategy Markov perfect equilibrium such that for

all j

α∗
j (njt−1) = argmax

njt

{
njt

πt
(1 + nt)2

− cj(njt − njt−1)− δj

(
njt − njt−1

njt−1

)2

njt−1 + βV (njt)

}

where njt denotes the number of company j’s funds active in the current period, njt−1 the

the number of company j’s funds active in the previous period, nt = njt +
∑

j′ ̸=j nj′t with

nj′t = α∗j′(nj′t−1) and πt =
µ2t
σ2
βAt.

(2) in any period t the asset market clears,

Pt =
µtnt

σ2t (1 + nt)

βAt

Q̄
,

and the path of wealth solves,

At+1 = βAt + Q̄ (D +∆Pt+1 − ftPt) .

Before discussing existence and uniqueness of our equilibrium a few remarks are in order.

First, our restricted Markovian strategies allow us to treat the Bellman of each of the M

management companies as an independent single-agent dynamic problem. In other words,

the strategy of each player does not depend on other players’ states and thus, we can compute

the envelope condition as in the standard single-agent frameworks. Second, we will assume

15. Weintraub, Benkard and Van Roy (2008) show that this restriction is appropriate in oligopolies with
many firms and that as the number of firms increases the equilibrium converges to the unrestricted Markov
perfect equilibrium.
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that, when adjusting their menu of funds, management companies do not internalize the

price impact generated by their actions. The profit earned by each management company

indeed depends on expected returns and asset prices through the term πt and asset prices

in turn depend on the total number of funds nt. Nonetheless we assume throughout that

management companies take πt as given.

3.4.2 Steady state definition and existence

While the computational complexity of the general model will require a numerical solution,

we are able to formally characterize a steady-state equilibrium of our model characterized

by

• nj,t = nj > 0 for any management company j and time t;

• Pt = P > 0 for any time t;

• At = A > 0 for any time t.

In other words, we are able to formally characterize a steady-state with constant index price,

constant household wealth, and in which the dynamic game between management companies

resolves with each company having incentive to keep the same number of funds over time.

We now turn to provide sufficient conditions for the existence and uniqueness of such

a steady state equilibrium. We start by assuming that household subjective beliefs are

constant over time, that is µt = µ and σ2t = σ for all t. We maintain this assumption from

here throughout the paper. It follows that, in steady state, the term πt in (3.13) is also

constant over time and equal to

πt ≡ π =
µ2

σ2
βA.
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Proposition (7) provides sufficient conditions under which such steady state exists and is

unique.

Proposition 7. Let π̃ ≡ D
1−β

βµ2

σ2
, assume Mπ̃ > (1− β)c with c =

∑
j cj and, without loss

of generality, let Q̄ = 1. Then, there exists a unique steady-state {(nj)Mj=1, P, A} such that:

(1) for any management company j and any period t, njt = nj = α∗j (nj) satisfies

nj =
1 + n

2
− (1− β)

2π
cj(1 + n)3 (3.19)

where n =
∑M

j=1 nj and π = µ2

σ2
βA;

(2) the market clearing price Pt = P , the wealth At = A and the total number of funds

n solve simultaneously

A =

(
1

1 + ζ(n)

)
D

1− β
(3.20)

P =
µ

σ2
n

1 + n

(
1

1 + ζ(n)

)
β

1− β
D (3.21)

π̃(M + n(M − 2)) = (1− β)c(1 + n)3 (1 + ζ(n)) (3.22)

where

ζ(n) ≡ µ2

σ2
β

1− β

n

(1 + n)2
. (3.23)

Moreover, nj > 0 and company j remains active if π
(1+n)2

> (1− β)cj .

Proof: See Appendix 3.8.

Equations (3.20) and (3.21) describe the equilibrium wealth and asset prices as functions

of the equilibrium number of funds. Equation (3.20) suggests that the steady-state wealth

A is proportional to the present discounted value of future dollar dividend D where the con-

stant of proportionality depends on n, i.e. on the competitive outcome among management
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companies. In particular, it is easy to notice that ζ(n) > 0 and ζ ′(n) < 0 for n > 1. Thus,

when competitive forces push companies to initiate a higher number of funds n, then ζ(n)

declines and the steady-state wealth A increases. In the limit for n→ ∞, then ζ(n) = 0 and

A = D/(1− β), i.e. the steady state wealth converges to the present discounted value of the

dollar dividend D.

Similarly, according to equation (3.21), higher steady-state n leads to a higher index

price P . In the limit for n → ∞, we now have P = µ
σ2

β
1−βD. More generally, equation

(3.21) relates the equilibrium index price to the marginal cost of initiating new funds and

thus microfounds the price impact of institutional investors in terms of the technological

primitives of the asset management industry. In section 3.6.4, we will use equations (3.20),

(3.21) and (3.22) to characterize the steady-state index price multiplier with respect to

household wealth and we will show that this suggested measure of price impact crucially

depends on the competitive outcome in the mutual fund sector. We will further perform

a comparative static exercise to explore how the steady-state equilibrium, including the

suggested measure of elasticity, vary with the dollar dividend D and the total fund initiation

cost c.

While the result in Proposition (7) guarantees existence and uniqueness of a steady state

in which all companies have no incentives to create additional funds and the index asset price

is constant, we know less about the path {(njt)Mj=1, Pt}
T
t=1 that leads to such steady state.

In the next section we provide a numerical algorithm that, for a given initial condition on the

number of active funds (nj0)Mj=1 and a given terminal date T , finds the optimal path if such

path exists. The algorithm can be used to solve the model numerically and thus to derive

the optimal path that, for given initial conditions, leads to the steady-state characterized

in this section. For the purpose of this paper, we will use the algorithm to solve the model

numerically and estimate the unobserved parameters in the cost function of management

companies.
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3.4.3 Numerical solution for the equilibrium path

The complexity of the problem prevents us from deriving formal properties of the equilibrium

path out of the steady state. While formalizing its existence, convergence and stability

properties is beyond the scope of the paper, the goal of our model is still quantitative and,

as we will see in the next sections, we will estimate the model using data from the US mutual

fund industry. With such goal in mind, in this section we propose a numerical procedure

that, given proper initial and terminal conditions, allows to derive the equilibrium path if

such path exists.

Our algorithm amounts to solving two fixed points, one nested into the other, that

for a given set of initial conditions and parameter values, finds the optimal path of fund

initiation, index price and household wealth. The numerical procedure can be summarized

in the following steps:

Step 0. Set exogenous parameters to be kept constant throughout the algorithm:

- Fix exogenous parameters
{
σ, D, µ, M, (cj)

M
j=1, (δj)

M
j=1, Q̄, β

}
.

- Fix the initial household wealth A0.

- Fix the initial number of funds managed by each company j, (nj0)Mj=1.

- Fix a terminal date T and the terminal number of funds managed by each company j,

(njT )
M
j=1.

Step 1. Solve the inner loop for a given path of asset prices (Pt)
T
t=1 and household wealth

(At)
T
t=1 as follows:

- Construct the path for (πt)
T
t=1.

- Guess a path for the number of funds managed by each company j:
((

n
(k)
jt

)T
t=1

)M

j=1
.
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- Use euler equation (3.35) to find a new path
((

ñ
(k)
jt

)T
t=1

)M

j=1
.

- Update the path of funds using

n
(k+1)
jt = n

(k)
jt + χn

(
ñ
(k)
jt − n

(k)
jt

)
∀j, t. (3.24)

- Repeat until convergence.

Step 2. Run the outer loop to find the equilibrium path of index price and household wealth:

- Guess a path of prices
(
P
(q)
t

)T
t=1

and household wealth
(
A
(q)
t

)T
t=1

.

- Run inner loop as in Step 1 to obtain
((

n
(q)
jt

)T
t=1

)M

j=1
.

- Use market clearing in (3.15) and the law of motion of wealth in (3.18) to find new

paths
(
P̃
(q)
t

)T
t=1

and
(
Ã
(q)
t

)T
t=1

.

- Update price and wealth using

P
(q+1)
t = P

(q)
t + χp

(
P̃
(q)
t − P

(q)
t

)
(3.25)

A
(q+1)
t = A

(q)
t + χa

(
Ã
(q)
t − A

(q)
t

)
(3.26)

- Repeat until the maximum of ||P (q+1)−P (q)||∞ and ||A(q+1)−A(q)||∞ is below some

tolerance

To sum up, for a given set of parameter values, the routine just described starts in Step

2 with a guess for the equilibrium index price and wealth. It then moves to the inner loop

(Step 1) and solves for the equilibrium number of funds taking the path of index price and

wealth as given. Finally, it returns to Step 2 to update the equilibrium price and wealth.

This routine is repeated until convergence. It is a nested procedure because the fixed point
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that solves for the Markov perfect Nash equilibrium is solved within each iteration of the

fixed point that solves for the market clearing price and wealth evolution.

3.5 Data

Before turning to the estimation of our model we overview our data sources and how we

constructed our estimation dataset.

3.5.1 Data sources

We obtained data on US mutual funds from the Center for Research in Security Prices

(CRSP) which we accessed through the Wharton Research Data Services (WRDS). The

data provide detailed information on US mutual funds at monthly frequency starting from

1961 but we restrict the sample from year 2000 to 2020 for the reasons we describe in the

following subsection.

The data is at the share class level but we collapse everything at the fund-by-year level.

Moreover, we focus on US domestic equity funds that, according to the CRSP investment

objective classification, belong to the Large Cap, Mid Cap and Small Cap sectors. Among

those, we identify passive funds as either index funds or ETFs as classified by CRSP. The

resulting sample contains around 16,500 fund-by-year observations of which around 3,700

are passive investment vehicles.

Table (3.5) presents some summary statistics of our data. The average amount of asset

under management at the end of year is around 2 billions but the distribution is quite skewed

due to the presence of extremely large funds. The average monthly gross return in a given

year is around 0.9%, with an average monthly alpha of 0.04% and an average market beta

of 0.97. These latter are estimated for each year and each fund from a monthly regression

of gross returns on the 3 Fama-French factors plus momentum including observations from
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the previous 3 years. Finally, the average market share at the management company level

is around 1.7%, although also in this case the distribution is very skewed because, for most

years, more than 50% of the market is captured by the five biggest management companies.

Table (3.6) replicates table (3.5) restricting the sample to passive funds only. As expected

passive funds tend to be cheaper with an average expense ratio of 0.5% and larger, managing

an average of 5.7 billions of assets. On average passive funds also seem to deploy more funds

with an average of 4.5 funds per management company.

3.5.2 Data construction

We now discuss in detail the way we constructed our final dataset which we will use for

estimating the model in the next section.

Filling missing of fund and company identifiers. Information about US mutual funds

collected by CRSP is provided at the share class level. Data on returns and asset under

management are at the monthly frequency whereas information on fund characteristics are

provided quarterly. The first thing we do is to aggregate all share classes of the same fund

in one single observation so that the resulting dataset is at the fund level. To this end, we

exploit a grouping variable constructed by CRSP (denoted by crsp_cl_grp) that contains

an unique code for all share classes that belong to the same fund. This variable is available

starting from 1999 which is the main reason for why we restrict our sample to start from

2000. To identify funds of the same share class when crsp_cl_grp is not available we rely on

the WFICN identifiers and on fund names. Fund names in CRSP are useful because contain

three types of information: the name of the management company, followed by the name of

the fund, followed by the type of share class. The former two are separated by a colon while

the latter by a semicolon. Following this rule we parse each fund name in each month in

three parts and then assign the same crsp_cl_grp to funds with the same fund name (i.e.,

the same second part of the name) in the same quarter. This procedure leaves us with 625
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share class by quarter observations with a missing crsp_cl_grp out of more than 2 millions

share class by quarter observations.

Key to our analysis is the role of management companies as fund initiators. In the data,

we identify the management company that offers each fund using a unique management

company identifier mgmt_cd, provided by CRSP, which is available starting from December

1999. Roughly 11% of share class by quarter observations have a missing mgmt_cd which

we refill again exploiting the information available in the fund name. The first part of each

fund name corresponds to the name of the management company; whenever missing we

assign the same mgmt_cd to funds that feature the same management company name in

the same quarter. This procedure fills around 60% of the missing mgmt_cd. Whenever this

procedures fails because of mistakes in fund name spellings we refill mgmt_cd manually.16

Overall, we were not able to identify the controlling management company for less than 1%

of share class by quarter observations.

Aggregation of share classes and further cleaning. After the refilling procedure, we

merge the quarterly level data on funds’ characteristics (which include the crsp_cl_grp and

mgmt_cd identifiers) with the monthly data on returns and AUM. Then, for each month

we aggregate share classes of the same fund into one observation based on the crsp_cl_grp

identifier. To do so we sum the end of month AUM of all share classes and take averages

of other relevant variables, such as monthly returns and expense ratios, weighting by the

AUM at the end of the previous month. Finally we only keep domestic equity funds and, to

remove incubation bias, we drop funds that we observe for less than 12 months and whose

16. In some cases, mergers and acquisitions between companies create mismatches between fund names
and the mgmt_cd code provided by CRSP which we manually correct whenever possible. For instance, after
Blackrock acquired the iShare business from Barclays in June 2009 the mgmt_cd has not been updated
accordingly. In this case there were two mgmt_cd codes "BZW" and "BLK" for Blackrock but we replaced
"BZW" with "BLK" after 2009. Similarly, we replaced "PDR", the mgmt_cd for PDR services LLC owned
by the American Stock Exchange, with "SSB" the mgmt_cd for State Street Bank which acquired the SPDR
ETF license from PDR services LLC in 2005.
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AUM are less than 15 millions.17 The resulting dataset contains around 650,000 fund by

month observations.

Dataset for model estimation. Our model focuses on homogenous passive investment

vehicles that track an underlying index. In the data we identify passive funds using the

variables et_flag and index_fund_flag and consider as passive both index funds and ETFs.

Moreover, we restrict ourselves only to the Large Cap, Mid Cap and Small Cap sectors as

identified by the crsp_cl_grp variable constructed by CRSP.18 The reason is that more than

half of pure index funds belong to these sectors and, as shown in Table 3.8 these products

seem to be sufficiently homogeneous in terms of the risk-return profile they offer. Finally,

we collapse everything at the year level and we obtain a dataset of 16,500 fund by year

observations of which 3,700 are passive.

3.6 Model estimation

Using the numerical algorithm discussed in section 3.4, we now turn to estimate the model

and discuss the results. Specifically, in section 3.6.1, we provide details of the estimation

procedure. In section 3.6.2, we comment on the results, including the ability of the model to

match targeted as well as untargeted moments. We then turn in section 3.6.3 to perform a

series of counterfactuals devoted to assessing the contribution of each management companies

to fund proliferation, fee and household surplus. Finally, section 3.6.4 shows that the model

is suitable to speak to a growing literature that focuses on the asset pricing implications of

inelastic demand for financial assets. Despite being completely untargeted, we estimate that

a 1% increase in household wealth increases the steady-state valuation of the equity index

17. To identify domestic equity funds we exploit the variable crsp_obj_cd which classifies funds based on
their investment style. The variable is constructed by CRSP building on Strategic Insights, Wiesenberger,
and Lipper objective codes

18. Funds classified to belong to these sectors determine their holdings primarily on market capitalization
considerations.
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by 5.5%. The resulting 5.5 steady-state multiplier is not only aligned with what the previous

literature has documented, but it also provides an alternative microfoundation of inelastic

markets, namely the competition among oligopolistic investment management companies.

3.6.1 Estimation procedure

The estimation procedure relies on calibrating a subset of the parameters while inferring a

second subset of parameters from data. Because our model abstracts from product differen-

tiation, we estimate the model to match features of mutual funds classified as either Large

Cap or Mid Cap in CRSP. In other words, we limit ourselves to passive funds that track

reasonably mature firms and exclude instead mutual funds that track growing or developing

companies. Table 3.1 summarizes the calibrated inputs.

Parameter Description Value
D
P0

Dividend yield 2.14%

σ Volatility 25.09%

µ Expected return 6.12%

β Discount factor 0.98

M Number of management companies 6

A0 Initial wealth 1.00

Q̄ Supply of shares 1.00

T Terminal date (years) 20

Table 3.1: Calibrated inputs

From our dataset, we estimate a dividend yield on the Russell 2000 equal to 2.14%. We

then calibrate the dollar dividend D to match a dividend yield equal to 2.14% at time t = 0.

We set household expected return µ to match the average return on the Russell 2000 index

which we estimate equal to 6.12%. Similarly, we set the return volatility σ to match the

standard deviation of the Russell 2000, equal to 25.09%. Since our attention is focused on
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Large Cap and Mid Cap funds, we use the Russell 2000 rather than the S&P500 as the

counterpart of the equity index in our model. We set the number of management companies

equal to 6. This choice is motivated by the newly documented evidence that the top five

management companies behave very differently compared to other management companies

and are responsible for most of mutual fund proliferation. For this reason, we directly model

competition among the top five firms and classify all other management companies in one

residual group (from here on, we will refer to this residual group as the outside management

company, indexed by j = 0). We identify the top management companies as the five firms

with the highest average annual market share throughout our sample.19 We further normalize

both household initial wealth A0 and the supply of index shares Q̄ to one. Finally, we set

the terminal date T = 20 to match the length of our dataset which ranges between 2000 and

2020. For the purpose of our solution algorithm, we then use as terminal condition (njT )
5
j=0

the number of funds that we observe in our dataset for each management company in 2020.

While all the parameters discussed so far can be easily obtained from data or can be

reasonably linked to observables, the same is not true for the parameters (cj)5j=0 and (δj)
5
j=0

that characterize the cost function of the management companies in our model. For this

reason, we estimate both set of parameters directly from data using the following estimation

procedure.

Let θ = (cj , δj)
5
j=0 denote the set of parameters to be estimated. We estimate θ by

solving

min
θ

S∑
s=1

5∑
j=0

(
Λsj(θ)− Λsj

)2
. (3.27)

where Λsj(θ) denotes the sth moment for management company j implied by the model and

19. The market share of a given management company in a given year is simply computed as the sum of
net assets across all funds operated by the management company, rescaled by the sum of net assets across
all funds that appear in our dataset in a given year.
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expressed as a function of the unknown parameters in θ. On the other hand, we denote by

Λsj the empirical analogue of Λsj(θ) observed in the data.

From the problem solved by a generic management company j in our model, it can

be noticed that cj governs the linear trend in its menu of funds. Thus, for given initial

condition nj0 on the number of funds that management company j operates at time t = 0,

cj is tightly linked to the average number of funds that management company j originates

in each period. Differently from cj , δj governs how costly is for management company j to

adjust and restructure its menu of funds. Specifically, given two management companies j

and j′ at time t with njt−1 = nj′t−1, if δj < δj′ then adjusting the menu of funds is less

costly for company j. In other words, management company j can more easily adapt its

supply of funds without incurring in large adjustment costs. In mathematical terms, δj is

directly related to the curvature across time in the equilibrium number of funds offered by

company j, with lower δj translating into higher curvature in the equilibrium path.

Informed by the above discussion, we select the following two moments for a given man-

agement company j

Λ1j =
T∑
t=1

∆njt
T

∀j (3.28)

Λ2j =
T∑
t=1

∆
(
∆njt

)
T

∀j (3.29)

In words, Λ1j captures the average creation rate in absolute terms of management com-

pany j, which allows to pin down cj . On the contrary, Λ2j captures the concavity/convexity

of management company j creation rate over time, and it allows to pin down δj . For each

of the top five management companies, both moments are computed from the time-series of

the number of funds operated by the management company between 2000 and 2020. For
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the outside management company, both moments are computed from the time-series of the

average number of funds operated by non-top five management companies over the same

time interval. Finally, notice that the estimation problem involves 6× 2 = 12 moments and

6× 2 = 12 unknowns, so that it is exactly identified.

Concretely, we employ the following steps to obtain an estimate of θ:

- At the end of each iteration in the nested fixed loop described in section 3.4.3, we

compute Λ1j(θ) and Λ2j(θ) for any management company j.

- Given Λ1j and Λ2j from data, we form the objective function in equation (3.27).

- We iterate over θ until the objective is minimized

The minimization works robustly and it takes around three seconds to solve one iteration

on a standard portable computer.

We conclude this section by reporting in table 3.2 summary statistics for the six man-

agement companies used in our estimation procedure. In reporting the last row, we first

construct the outside management company by averaging in each year across all non-top five

management companies and by subsequently averaging in the time-series.20

The top five management companies have reported, on average, a cumulative market

share of 85.76%. In other words, differentiating the top five management companies and

regrouping all other firms allow modeling directly more than 80% of the market on average.

A second relevant feature of the data is a clear positive relation between the average mar-

ket share and the average number of controlled funds. This feature is consistent with the

mechanisms in our model where, given the absence of fund differentiation, a management

company can increase its market share only by increasing the number of funds it operates.

The last three columns in table 3.2 further provide three set of parameters that directly

20. This practice has the shortcoming that average market shares do not generally sum to one, but it
has the advantage that the outside management company can be interpreted as a representative "small"
management company.
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Management company Share Num. of funds nj0 njT Λ1j Λ2j

Vanguard 46.73% 6.95 4 9 0.25 0.00

State Street 17.25% 6.24 1 10 0.45 -0.05

Blackrock 9.89% 11.90 2 13 0.55 -0.36

Fidelity 9.61% 3.10 2 8 0.30 0.05

Charles Schwab 2.28% 2.62 2 4 0.10 0.00

Outside MC 0.17% 1.78 1.33 1.97 0.03 -0.01

Table 3.2: Summary statistics and estimated inputs

enter the estimation procedure. Columns (4) and (5) report the number of funds that each

management company used to operate in year 2000 and 2020 respectively, which we employ

as initial and terminal conditions in the model estimation. Columns (6) and (7) provide

the empirical analogue of the moments we use to estimate the model. Blackrock and State

Street are characterized by the highest absolute rate of fund creation Λ1j but also by the

most concave transition pattern Λ2j . These features already point to the presence of both a

low linear cost cj and low adjustment cost δj . Both the rate of fund creation, as well as the

concavity of the transition pattern, are lower for Vanguard, Fidelity and Charles Schwab,

but well above the corresponding moments reported for the outside management company.

Interestingly, Fidelity is the only management company with positive Λ2j , determined by the

fact that Fidelity started engaging in fund creation only in recent years, after 2015. These

features of data are confirmed by figure 3.4, which reports the time-series of the number of

funds controlled by the top 5 management companies.

3.6.2 Results

We use the procedure as well as the moments discussed in section 3.3 to estimate the model.

We start by reporting in table 3.3 the estimated vector of parameters θ across the six man-

agement companies considered in the estimation. For a direct comparison between estimated
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Figure 3.4: Number of funds operated by each of the top five management companies over
time.

parameters and target moments, we reinclude nj0, Λ1j and Λ2j in table 3.3 as well.

Management company nj0 njT Λ1j Λ2j cj δj

Vanguard 4 9 0.25 0.00 0.0099 7.9003

State Street 1 10 0.45 -0.05 0.0007 3.0815

Blackrock 2 13 0.55 -0.36 0.0004 0.0001

Fidelity 2 8 0.30 0.05 0.0871 5.7127

Charles Schwab 2 4 0.10 0.00 0.0584 7.6989

Outside MC 1.33 1.97 0.03 -0.01 0.0238 5.0298

Table 3.3: Estimated parameters

With the lowest linear cost cj and the highest speed of adjustment δj , Blackrock is

the most efficient management company.21 Such efficiency allowed Blackrock to increase

21. In the estimation we considered Blackrock and Barclays an unique entity even before their merger in
2009 when Blackrock acquired the Barclays’ iShare business. Before the acquisition Blackrock market share
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massively the number of controlled funds from 2 to 13 throughout the sample, with 0.55

funds created on average in each year. Compared to the beginning of our sample, Blackrock

managed to become an absolute industry leader by 2020. The second most efficient firm is

State Street. While in 2000 State Street was controlling only one fund (less than the average

number of funds controlled by the outside management companies), it managed to create

0.45 funds per year on average, concluding the 2020 with 10 funds, second only to Blackrock.

In 2000, Vanguard controlled more funds than any other management companies. The rate

of fund creation, however, has been lower for Vanguard than for Blackrock and State Street.

Finally, Fidelity and Charles Schwab appear as the least efficient firms among the top five

management companies, although Fidelity experienced a significant bounce up that started

in 2015.

We next turn to validate our estimated parameters. Using the estimated vector of param-

eters θ, we reconstruct the time-series of njt for each management company j ∈ {0, ..., 5} as

implied by the model solution. We further average njt across the top five management com-

panies j ∈ {1, .., 5} in each period. Figure 3.5 compares the time-series of n0t and
∑5

j=1
njt
5

in model vs data.

The model is able to exactly match the high creation rate observed for the top man-

agement companies as well as the low rate of fund creation observed for other management

companies. Despite our model is estimated from a set of exactly identified equations, we

believe these estimates provide a useful quantitative benchmark to explain dynamics in this

industry. This is confirmed by the fact that the estimated model is able to match extremely

closely also untargeted moments and, in particular, the secular decline in average fee charged

by Mid and Large Cap passive funds. Figure 3.6 compares the value-weighted fee observed

was small whereas Barclays was one of the top 5, the opposite happens after the acquisition. Another way
to interpret this is thinking to iShare to be itself a multi-product company and according to our estimate
the most efficient one. In practice, although the owner of the iShare business changed, iShare has always
been one of the market leader since the early 2000.
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Figure 3.5: Time-series of the average number of funds operated by the top five management
companies as well as the number of funds operated by the outside management company
in model vs data. In data, the time-series of the number of funds operated by the outside
management company is computed as simple average of the number of funds operated by all
non-top five management companies

in data against the equilibrium fee implied by the model and estimated using equation (3.9).

Lastly, we compare the revenues gained by top five management companies with the

revenues gained by the outside management company in the estimated model. We report

the output in figure 3.7.

Management companies compete with each other over time and try to gain market share

by creating new funds. As the number of funds in the market increase, the equilibrium fee

declines and revenues decline as well both for top five management companies and for the

outside management company. However, because the top five management companies are

more efficient than the outside management company, they can efficiently use fund initiation

as a tool to saturate the market, leading the outside management company to earn close to

zero revenues by the end of the sample.
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Figure 3.6: Time-series of value-weighted fee from data and equilibrium fee estimated from
the model. The value-weighted fee from data is estimated, for each year, by averaging the
expense ratio reported by CRSP for each fund with weights proportional to lagged total net
assets.

3.6.3 Counterfactuals and welfare analysis

We now turn to the key section of the paper. Using the estimated model, we perform a series

of counterfactuals devoted to understand the contribution of each management company to

the secular decline in fees and to consumer surplus.

For each management company j ∈ {0, .., 5} we start by fixing the initial number of

funds nj0 at the level observed in 2000, the beginning of our sample. We further fix cj and

δj to the estimates obtained and discussed in section 3.6.2. Using the calibrated parameters

in Table 3.1, we numerically solve for the model equilibrium over a long horizon which we

set equal to T = 100 years. The model solution allows us to derive the equilibrium path for

the number of funds njt held by each management company, the total number of funds nt,

the fee ft and the revenues earned by each management company j. We further construct

consumer surplus as
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Figure 3.7: Estimated time-series of average revenues gained by the top five management
companies and by the outside management company in the estimated model.

S =
99∑
t=0

βt log(Ct) + β100
log(C100)

1− β

The equation for S implicitly assumes that household consumption remains constant at

C100 for all t ≥ 100. While this assumption is not an equilibrium outcome, setting the

terminal date T = 100 so far away in the future implies that the terminal value β100 log(C100)
1−β

only accounts for 2.74% of household overall surplus S.

Given the model solution, we perform a series of counterfactuals devoted to understand-

ing the impact of each management company on equilibrium outcomes. Specifically, we solve

the model after removing each management company j, one at a time. For each of the re-

maining management companies j′ ̸= j, we keep the same initial condition nj′0 and the same

estimates c′j and δ′j . This procedure allows us to construct the counterfactual equilibrium

215



path for number of funds, fee, revenue and consumer surplus that would have prevailed if

management company j had not been operational.

Figure 3.8 provides the results of our counterfactual analysis. Each bar is labelled after

the name of the management company that is excluded in the counterfactual of interest.

Figure 3.8: Percentage change in average number of funds, average fee, revenues and con-
sumer surplus in each counterfactual compared to the model solution. For number of funds,
we report the percentage change in average number of funds, where the average is computed
across time. For the fee, we report the percentage change in the average fee, where the
average is computed across time. For revenues, we report the percentage change in average
revenues, where the average is computed across time and management companies.

We start from discussing the top-left panel, which reports the percentage change in av-

erage number of funds in each counterfactual compared to the model solution. Removing

Vanguard would lead to the largest decline in the number of funds operating in the market

and equal to 31.95%. Removing Blackrock and State Street would also lead to a signifi-
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cant decline in the number of funds, equal to 21.00% and 19.20% respectively. Excluding

Charles Schwab would decrease the number of operating funds by 14.10% while, interestingly,

excluding Fidelity would leave the number of funds basically unaltered.

Turning to fees, the pattern is symmetric compared to the one seen for the number of

funds. Removing Vanguard and Blackrock would significantly decrease competition in the

mutual fund industry, leading to a 45.88% and 33.71% increase in the average fee respectively.

The counterfactual increase in fee would be lower but still significant after removing State

Street or Charles Schwab, equal to 21.32% and 16.12% respectively. The large increase in

fees after removing Vanguard would significantly boost management companies revenues by

57.75%. The increase in average revenue would instead lie between 28.02% and 39.25% if

any other management company is removed from the market.

Finally, we turn to household surplus. Removing Blackrock would lead to the largest

decline in household surplus, equal to 24.64%. This is expected since Blackrock is by far

the most efficient firm based on the estimates discussed in section 3.6.2. The second largest

decline in household surplus is equal to 9.19% and is observed after removing Vanguard.

Removing other management companies would lead to a change in household surplus between

−4.57% and 8.02%.

Overall, the results so far suggest that large and efficient management companies play a

crucial role in shaping the competition in the mutual fund sector. At the same time, the de-

cline in household surplus may appear mechanical since removing any management company

from the market would trivially lead to lower competition in the mutual fund sector. Lower

competition would in turn increases equilibrium fees thereby reducing household welfare. We

show that this is not the case. Specifically, we conduct a counterfactual where Blackrock is

replaced by two additional management companies equal to Charles Schwab. This implies

that the number of management companies competing in the industry increases from 6 to

7. We report in figure 3.9 the percentage change in the number of funds, fee, revenues and
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household surplus between this counterfactual and the model solution.

Figure 3.9: Percentage change in average number of funds, average fee, revenues and con-
sumer surplus in the counterfactual where Blackrock is replaced by two firms identical to
Charles Schwab. For number of funds, we report the percentage change in average number
of funds, where the average is computed across time. For the fee, we report the percentage
change in the average fee, where the average is computed across time. For revenues, we re-
port the percentage change in average revenues, where the average is computed across time
and management companies.

Replacing Blackrock with two less efficient firms would lead to a 6.23% increase in the

average number of funds while leaving the average fee basically unaltered. While relatively

more inefficient management companies can eventually substitute Blackrock funds, they can

do so only over the long run while smoothing fund creation over time. This gradual substi-

tution leads to a large a decrease in household surplus, equal to 19.46%. Thus, constraining

efficient management companies in favor of competition is not necessarily the optimal solu-

tion for a policy maker interested in maximizing household welfare.
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3.6.4 Asset pricing implications

In this section, we go back to the steady-state equilibrium that we are able to characterize

analytically and, within this equilibrium, we use the estimates from section 3.6.2 to connect

the competitive response of management companies to the evidence of inelastic demand for

financial assets that the previous literature has documented. In particular, we estimate that

a reduction in initiation costs c that induces a 1% increase in the steady-state wealth A

increases the valuation of the equity index by 5.5%. In other words, the steady-state of our

estimated model implies a multiplier ξ of household wealth on the equity index price equal

to 5.5.

We start with the following proposition that provides a closed-form expression for the

multiplier ξ in the steady-state of the model.

Proposition 8. Under the conditions detailed in section 3.4.2, the steady-state multiplier ξ

is given by

ξ ≡ dP

dA

A

P
=

(
1− 1

n(1 + n)

1 + ζ(n)

ζ ′(n)

)
(3.30)

with ζ(n) > 0 and ζ ′(n) < 0 for n > 1.

Proof: See Appendix 3.8.

We use the estimates for {cj}5j=0 derived and discussed in section 3.6.2 to compute

c =
∑5

j=0 cj . Moreover, we use equations (3.20), (3.21) and (3.22) to solve for the steady-

state wealth A, index price P and number of funds n. Thus, we have all the inputs needed

to produce an estimate for the steady-state multiplier ξ using equation (3.30). Details about

the inputs used to estimate ξ are provided in Table 3.4. For completeness and to ease

comparison, we reinclude in table 3.4 also parameters that have been already introduced but

that enters the expression of ξ.
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Parameter Description Value

c Estimated initiation cost 0.18

P Steady-state index price 0.54

A Steady-state financial wealth 0.66
D
P Steady-state dividend yield 0.03

n Steady-state total number of funds 5.8

ξ Steady-state multiplier 5.5

Table 3.4: Estimated multiplier

Our estimated steady-state multiplier of 5.5 was untargeted in the estimation, yet very

aligned to estimates that the previous literature has reported. Among others, Gabaix and

Koijen (2021) estimates a macro equity multiplier equal to 5 and shows that previous es-

timates range approximately between 1.5 and 5.5. Our estimate is thus consistent with

previous work. Yet, to our knowledge, no previous work has microfounded the macro equity

multiplier starting from the competitive dynamics of passive mutual funds and dominant

management companies.

We conclude this section by performing a comparative static exercise in the steady-state

of our model, where we vary the dollar dividend D and fund initiation costs c around the

values reported in Table 3.4.

We start from varying c in Figure 3.10 and we flag in red the estimates we obtain in

our model. The top left panel shows the steady state fee as function of c. Not surprisingly,

the equilibrium fee increases with the initiation costs. From the perspective of our model,

higher costs will push management companies to supply less funds. Lower competition in the

mutual fund sector would then endogenously lead to higher fees. The top right panel looks

at the equilibrium index price P and shows that as initiation costs rise, the equilibrium

index price decreases. From the top left panel we know that higher initiation costs are

passed-through investors via higher fees which in turn reduce household demand for the
220



Figure 3.10: Equilibrium comparative static with respect to initiation costs c.
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equity index. Finally, via market-clearing, lower demand for the equity index leads to a

lower equilibrium price. Higher initiation costs also lead to lower equilibrium wealth A as

shown in the bottom left panel. Once again, the mechanism for this outcome is driven by the

competitive incentives in the mutual fund sector. Higher costs lead to lower fund creation

and higher fees resulting in redistribution of wealth from household to mutual funds and

management companies.

Lastly, the bottom right panel shows how the multiplier ξ varies with initiation costs.

Increasing initiation costs from 0.01 to 0.3 decreases the steady-state multiplier from 13

to 4. To understand this result, consider first the case when c is small. As A increases,

management companies find it optimal to create additional funds to collect part of the

increase in wealth. Because c is small, management companies are able to initiate a large

number of funds thereby significantly increasing competition in the mutual fund sector. As

the equilibrium fee declines, household optimally invests a larger fraction of its wealth in the

stock market, leading to an increase in the equity index price by market clearing. However,

when c is higher, the creation of new funds becomes more and more costly for management

companies. Thus, when A increases, management companies abstain from creating a large

number of new funds. The result is that the level of competition in the mutual fund sector

stays low, fees decline less and household increases less its demand for the equity index. The

ultimate result is that, by market clearing, P increases but it increases less compared to the

case of lower c.

Next, in Figure 3.11 we consider the comparative static of the same variables with respect

to the dollar dividend D. As before, the top left panel shows the comparative static for the

equilibrium fees. In this case, a higher dollar dividend leads to a decline in fees because a

higher D increases the rate at which wealth accumulates. To accommodate the increase in

asset demand, management companies create more funds. The stronger competition in the

mutual fund sector ultimately leads to lower fees. Turning to the comparative static for P
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Figure 3.11: Equilibrium comparative static with respect to dividend D.
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(top right panel) and A (bottom left), we notice that, differently from initiation costs, D

affects the equilibrium price and wealth both directly and indirectly through the equilibrium

number of funds n. Starting from the top right panel, we see that the index price increases

with D. Indeed, a higher dividend increases the rate at which household wealth accumulates

which in turn increases household demand for the equity index. Moreover, management

companies accommodate the increase in demand by creating additional funds, leading to a

decrease in fees and to a further increase in household demand. Both the direct effect on

wealth as well as the indirect effect through n contribute to increasing household demand,

ultimately leading to an increase in the index price through market clearing.

Turning to the bottom left panel, we can see that the equilibrium wealth increases with

the dollar dividend D. The dividend affects the equilibrium wealth directly because it

mechanically increases the rate at which wealth accumulates and indirectly through fund

initiation. In other words, higher D directly increases wealth accumulation rate and indi-

rectly prompts management companies to increase the number of funds, given the increase

in demand. Stronger competition in the mutual fund sector leads to a decline in fees which

further and indirectly accelerate wealth accumulation. This indirect effect is summarized

by the term 1
1+ζ(n)

in equation (3.20). Because 1
1+ζ(n)

is an increasing function of n, it

contributes to amplify the initial and direct increase in D.

Finally, the bottom right panel describes how the steady-state multiplier varies with D.

Notice that the steady-state multiplier depends on D only indirectly, through n. Consider

first the case of small D. In this case, household demand for the equity index is relatively low

with the consequence that management companies are constrained to manage a relatively

limited menu of funds. It follows however that any increase in household wealth is particu-

larly attractive for management companies and they respond by creating to an increase in A

by creating a higher number of funds compared to the case of high D. The larger response of

management companies in turn leads to a larger decline in fee, a larger increase in household
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demand and, ultimately, to a larger increase in the equity index price via market clearing.

3.7 Conclusions

In this paper, we propose a model where the competitive dynamics in the mutual fund indus-

try are driven by the decisions of heterogeneous and multi-product management companies

to initiate new funds. We provide sufficient conditions that guarantee existence and unique-

ness of a steady state equilibrium characterized by a constant number of funds operated by

each management company and a constant index price. In addition, we develop a numeri-

cal algorithm that solves for the equilibrium path of the number of funds created by each

management company and the equilibrium market clearing asset price.

In the second part of the paper, we estimate the model using data on US passive equity

funds that operate in the Large and Mid Cap sectors. For each of the five biggest management

companies, we estimate their cost of initiating new funds and match the fund proliferation

patterns observed in the data with the ones implied by our model. Moreover, to further

validate the model, we show how the model implied time series of equilibrium fees closely

follows the observed time series of average expense ratio.

With our estimated model parameters, we study several counterfactuals to understand

the contribution of each management company to the secular decline in fees and the surplus of

our household investors. In the first set of counterfactuals, we remove, one at the time, each

of the top 5 management companies from the market. In all cases, investor surplus decreases

substantially, although the magnitude is heterogeneous and depends on how efficient the

removed company is. Removing the most efficient management company, Blackrock, reduces

household welfare by 25%. In a second set of counterfactuals, we perform a similar exercise.

However, instead of simply removing the most efficient company from the market, we replace

it with two less efficient companies. Interestingly, investor surplus still goes down with a
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reduction of about 20%. The key insight is that restricting efficient management companies

to favor competition might ultimately hurt investor welfare.

Finally, we turn to the asset pricing implications of our model. Modelling competition

across management companies in an asset market equilibrium framework allows us to micro-

found the price impact of large institutional investors through their technological primitives.

A reduction in initiation costs pushes companies to create more funds, reducing equilibrium

fees and increasing household asset demand for the equity index. The index price will then

need to increase to clear this excess demand. Lastly, we derive a closed-form expression for

the steady-state multiplier of the equity index price with respect to household wealth. Using

our initiation cost estimates, we find that a 1% increase in household wealth implies a 5.5%

increase in the steady-state index price. While this estimate is aligned with previous results

in the literature, we microfound the equity multiplier through the competitive forces among

large, heterogeneous and multiproduct investment companies.
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3.8 Appendix: Derivations and Proofs

Derivation of HH portfolio allocation. Under the assumption of log utility, it is easy

to verify that consuming a constant fraction of wealth is optimal for HH. In particular, from

the Euler equation (3.4) and the budget constraint, one can verify that Ct = (1 − β)At is

the optimal consumption in each period.

To derive the optimal portfolio allocation wt, denote the log consumption and log wealth

by ct ≡ log(Ct) and at ≡ log(At) respectively so that ct = log(1 − β) + at. The budget

constraint in logs is then

∆at+1 = log(1 + wtRt+1) + log(1− β) (3.31)

≈ wtrt+1 +
1

2
wt(1− wt)σ

2
t + log(1− β) (3.32)

where ∆at+1 ≡ at+1 − at, rt+1 ≡ log(1 + Rt+1) and the second line follows the log-linear

approximation of log portfolio returns in Campbell and Viceira (2002). Next, note that

under the assumption that rt+1 is a Gaussian stationary process, we can take logs on both

sides of (3.4) to obtain

Et[∆ct+1] = log(β) + ρt − ft +
1

2
σ2t +

1

2
Vt[∆ct+1]− Covt[∆ct+1, rt+1].

Moreover, because we normalized the return on the risk-free to zero, the above expression

boils down to

µt − ft +
1

2
σ2t = Covt[∆ct+1, rt+1]. (3.33)

Lastly, approximation (3.32) and the constant consumption-wealth ratio imply that we can
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solve for wt in (3.33) to obtain

wt =
ρt + σ2t /2− ft

σ2t
. (3.34)

Proof of Proposition 7. For given πt, company j’s Euler equation implied by problem

(3.13) is given by

πt
(1 + nt)2

+ δjβ

(
njt+1 − njt

njt

)[
njt+1

njt
+ 1

]
=

2πtnjt

(1 + nt)3
+ (1− β)cj + δj

(
njt − njt−1

njt−1

)
(3.35)

If a steady {(nj)Mj=1, P, A} exists, then for given P and A, nj must satisfy (3.35) which

boils down to

nj =
1 + n

2
− (1− β)

2π
cj(1 + n)3 (3.36)

where π = βAµ2

σ2
. Summing across j, the steady state total number of funds n in the market

solves

β
µ2

σ2
A(M + n(M − 2)) = (1− β)(1 + n)3c (3.37)

Moreover, given the steady state fee

f =
µ

n+ 1
(3.38)
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we can rewrite the equations that pin down the steady state P and A as

P =
µn

σ2(1 + n)
βA (3.39)

A = βA+D − µ

1 + n
P (3.40)

where without loss of generality we normalized Q̄ = 1. From (3.39) and (3.40) we can solve

for A and P as function of n and other parameters

P =

 µ
σ2

β
1−β

n
1+n

1 + ζ(n)

D (3.41)

A =

(
1

1 + ζ(n)

)
D

1− β
(3.42)

where

ζ(n) ≡ µ2

σ2
β

1− β

n

(1 + n)2
. (3.43)

The steady-state n can then be found by substituting (3.42) into (3.37)

π̃

(
1

1 + ζ(n)

)
(M + n(M − 2)) = (1− β)(1 + n)3c (3.44)

which can be rearranged more conveniently as

π̃ (M + n(M − 2)) = (1− β)c

[
(1 + n)3 +

µ2

σ2
β

1− β
n(1 + n)

]
(3.45)

with π̃ ≡ D
1−β

βµ2

σ2
.

To show existence and uniqueness, note that at n = 0, the LHS of (3.45) is greater than

its RHS provided π̃M > (1−β)c. Next, note that the LHS increases in n at a constant rate,

whereas the RHS increases in n at an increasing rate. Thus, there will be one and only one
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n > 0 at which (3.45) is satisfied ■

Proof of Proposition 8. Consider an increase in fund initiation costs c and note that the

only way this change in costs affects the equilibrium wealth A and asset prices P is through

the effect on n. Differentiating (3.41) and (3.39) with respect to n gives

dA

dn
= − ζ ′(n)

1 + ζ(n)

D

1− β

dP

dn
=

µ

σ2
n

1 + n
β
dA

dn
+

1

(1 + n)2
µ

σ2

(
1

1 + ζ(n)

)
β

1− β
D

Next, take the ratio of the two expressions above and note that

P

A
=

µ

σ2
β

n

1 + n
(3.46)

we obtain

dP

dA
=
P

A

(
1− 1

n(1 + n)

1 + ξ(n)

ξ′(n)

)
(3.47)

with

ζ ′(n) =
µ2

σ2
β

1− β

1− n

(1 + n)3
(3.48)

which is negative for n > 1 ■
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3.9 Appendix: Figures

Figure 3.12: Market share of the five biggest investment companies in the passive industry.
Market shares are in terms of end-of-year assets under management (AUM).
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Figure 3.13: Average number of passive funds per management company. Funds with differ-
ent share classes count as a single fund.

Figure 3.14: Average asset-weighted fee across passive funds. Funds with different share
classes count as a single fund.
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3.10 Appendix: Tables

Obs. Mean Std. Dev p5 p25 p50 p75 p95
AUM (bln.) 16552 2.00 13.41 0.02 0.08 0.28 0.96 5.76
Gross return (%) 16159 0.89 1.79 -2.52 -0.07 1.09 2.04 3.27
Expense Ratio (%) 16160 1.06 0.48 0.19 0.83 1.11 1.35 1.83
Passive 16552 0.22 0.42 0.00 0.00 0.00 0.00 1.00
Alpha (%) 13552 0.04 0.59 -0.47 -0.12 0.02 0.19 0.54
Market beta 13552 0.97 0.21 0.77 0.91 0.98 1.03 1.18
Market sharev(%) 16552 1.80 4.45 0.01 0.08 0.33 1.07 10.28
# of funds per company 16552 3.79 3.31 1.00 1.00 3.00 5.00 11.00

Table 3.5: Summary statistics of the full sample. All variables are winsorized at 1% and
99% levels. Returns and alpha are monthly. The expense ratio is annual.

Obs. Mean Std. dev. p5 p25 p50 p75 p95
AUM ( bln.) 3697 5.70 27.72 0.02 0.09 0.42 1.89 18.10
Gross return (%) 3620 0.94 1.75 -2.12 -0.02 1.11 2.04 3.12
Expense Ratio 3621 0.48 0.42 0.08 0.20 0.35 0.60 1.57
Alpha (%) 3112 0.04 0.51 -0.31 -0.07 0.00 0.09 0.37
Market beta 3112 0.97 0.15 0.83 0.94 0.98 1.01 1.09
Market share (%) 3697 3.88 7.59 0.01 0.10 0.47 3.29 20.11
# of funds per company 3697 4.48 3.95 1.00 1.00 3.00 6.00 13.00

Table 3.6: Summary statistics for the passive sample. All variables are winsorized at 1% and
99% levels. Returns, alpha and expense ratios are monthly. The expense ratio is annual.
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