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ABSTRACT

We study the ramification on the cohomology of a smooth proper surface X in mixed charac-

teristic, when X degenerates to a surface over Fp with rational singularities, with a focus on

the case of rational double points. We find that the associated monodromy action of inertia

depends on a formal affine neighborhood of the singularity, and under sufficient restrictions

on characteristic p, it is tamely ramified and generated by a conjugacy class representative

of an appropriate Weyl group related to the singularity. This naturally extends to a similar

monodromy characterization of general rational singularities. Along the way we extend to

mixed characteristic some results of Brieskorn and Slodowy concerning simultaneous resolu-

tions of surface singularities. We also compare our Weyl group actions to certain Springer

representations constructed by Borho and MacPherson, via the notion of relative perversity

as developed by Hansen and Scholze.
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CHAPTER 1

INTRODUCTION

Let K be a complete discrete valuation field with valuation ring OK of mixed characteristic

(0, p). The celebrated Néron–Ogg–Shafarevich theorem, first proven for elliptic curves and

then generalized to abelian varieties by Serre–Tate ([54]), states that an abelian variety X

over K has good reduction, meaning that there exists a smooth proper model X → Spec(OK)

with generic fiber X, if and only if the natural action of GK = Gal(K/K) on the étale

cohomology group H1
ét(XK ,Qℓ) for ℓ ̸= p is unramified, i.e. it restricts to a trivial action of

inertia IK . Here IK is defined as the kernel of the surjection GK → Gk, where Gk is the

absolute Galois group of the residue field k.

1.1 Good reduction beyond abelian varieties.

For a general smooth proper variety X over K there is a subtler relationship between

good reduction and ramification, i.e. the nontriviality of the monodromy action of IK on

Hn(XK ,Qℓ). A necessary condition for good reduction is that Hn(XK ,Qℓ) is unramified for

all n and ℓ ̸= p, however the converse often fails. For example, there are smooth curves X of

genus g ≥ 2 with unramified H1
ét(XK ,Qℓ), which nevertheless do not have good reduction

over K or any finite extension of K ([43], §2.4). Instead, Oda has established that, if X

is a smooth proper curve of genus g ≥ 2, it admits good reduction if and only if a certain

GK -action on the pro-ℓ completion of the geometric étale fundamental group πét
1 (XK)ℓ is

unramified ([48]). More recently, Liedtke–Matsumoto have shown that a K3 surface X with

unramified H2(XK ,Qℓ) admits good reduction after a finite unramified base extension, under

the stricter assumption that X admits a potentially semistable model ([43], Thm. 1.3).
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1.2 Bad reduction of surfaces and singularities.

In this article, we will consider degenerations (i.e. reductions) of a smooth proper surface

X/K. More specifically, we focus on Galois representation H2
ét(XK ,Qℓ) and relate the types

of singularities that may appear on reductions of X to the ramification of H2
ét(XK ,Qℓ).

Any smooth surface X admits an integral proper flat model X → Spec(OK): by Nagata’s

compactification theorem ([62, Tag0F3T]) there exists a proper scheme X → Spec(OK) with

an open immersion X ↪−→ X , and up to normalizing X and taking the closure of X in X

we get that X is reduced and dominates Spec(OK), so X is integral, proper and flat over

Spec(OK). The special fiber Xk is called the reduction (mod p) of X.

One can ask in general how ‘badly’ singular the reduction Xk is. When X is strictly

semistable, i.e. Xk is a simple normal-crossings (snc) divisor in X , Rapoport–Zink have

shown ([51]) that the nearby cycles spectral sequence abutting to H2
ét(XK ,Qℓ) gives rise to a

weight filtration on H2
ét(XK ,Qℓ). Since the weight-monodromy conjecture holds for surfaces

in mixed characteristic (loc. cit., Satz 2.13), the weight filtration coincides up to shift with

the monodromy filtration induced from the IK -action. This allows one to determine the full

monodromy action on H2
ét(XK ,Qℓ) by computing the IK -action on the graded pieces of the

weight filtration. These graded pieces are related to the cohomology of special fiber Xk, which

admits a nice combinatorial description by the snc property. For general semistable schemes,

a cornerstone theorem concerning their ramification is the unipotency of the IK -action ([3]).

In a somewhat orthogonal direction, one can suppose instead that the proper smooth

surface X admits an integral model X with Xk having isolated singularities of a certain kind.

Typically X will not be semistable, and so the monodromy action of IK on H2
ét(XK ,Qℓ) is at

worst quasi-unipotent ([3], Exposé I). One can ask whetherX admits a potentially semistable

or even smooth model, and how the monodromy depends on the type of singularities of Xk.

The interest in surface singularities over k ≃ Fp here is twofold. Firstly, there has been

recent progress on our understanding of positive and mixed characteristic singularities; see

2
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[45] for a ring-theoretic approach using perfectoid techniques. Secondly, the relationship

with monodromy actions has not been explored a lot beyond varieties acquiring ordinary

double points, which have been classically studied in [4].

A recent result of D. Kim ([40]) investigates the monodromy action on H2
ét(XK ,Qℓ)

related to an integral model X acquiring ordinary double points on the special fiber. Via

an explicit calculation of a suitable semistable model of X and the Rapoport–Zink spectral

sequence of [51], it is shown that the monodromy action factors through Gal(L/K) ≃ Z/2,

the Galois group of the unique ramified quadratic extension L of K. Thus IK acts trivially

on H2(XK ,Qℓ) or through a nontrivial quadratic character, dependent on a formal affine

neighborhood of the singularity in X .

1.3 Main theorem.

In this paper, we establish a generalization of [40] to a natural class of surface singularities

over k = Fp, that of rational double points. These singularities are also known in the literature

as simple (surface) singularities, ADE singularities, Kleinian or du Val singularities. Rational

double points have the benefit of being amenable to mixed-characteristic extensions, while

still being ‘mildly’ singular with easily computable minimal resolutions. Moreover, there is a

McKay correspondence-type relation between rational double points and Lie algebras: each

class of a rational double point has a minimal resolution whose exceptional divisor possesses

a dual graph isomorphic to a Dynkin diagram of ADE type, and therefore such a class

corresponds to a simple simply-laced Lie algebra (over C or Fp for sufficiently large p > 0;

see Section 2.1 for details).

We aim to characterize the associated monodromy IK -actions for models X of X which

degenerate into surfaces Xk having rational double point singularities. Instead of finding a

semistable model of X, we investigate the possible formal affine neighborhoods of the singu-

larities of Xk in X via their explicit miniversal deformations. These miniversal deformation
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equations are determined by X
K̆

, so throughout this paper (unless stated otherwise) we

assume K = K̆ is the completion of its maximal unramified extension. In particular the

special fiber Xk and its singularity live over k = k.

We adapt classical results of Tjurina, Brieskorn and Slodowy ([16], [57], [64]) regarding

so-called simultaneous resolutions of singularities to the mixed characteristic setting, yield-

ing that X admits a smooth model X̃ after a finite base-change L/K. Results of Artin ([7])

show that X̃ exists at worst in the category of algebraic spaces, and its fibers are (alge-

braic) surfaces. Dependent on a restriction on the characteristic p and on a formal affine

neighborhood of each singularity, we can make the monodromy IK -action precise:

Theorem 1.3.1. Suppose (K,OK , k) is the data of a complete DVR of mixed characteristic

(0, p) with p sufficiently good, and let X/K be a smooth proper surface with an integral

model X over OK so that Xk has a unique rational double point. Let W be the Weyl group

associated to the Dynkin diagram corresponding to the rational double point.

(i) The monodromy IK-action on H2
ét(XK ,Qℓ) factors through a cyclic subgroup ⟨w⟩ of

W , dependent up to conjugacy on a formal affine neighborhood of the singularity.

(ii) The Weyl element w acts on H2
ét(XK ,Qℓ) via a Springer W -representation, and X

achieves good reduction after a ramified base-change of degree ord(w).

(iii) In the case of An-singularities, for every Weyl conjugacy class there exists an element

w in the class and a model X degenerating to An-singular surface Xk so that w acts

as the monodromy operator on H2
ét(XK ,Qℓ).

In particular we recover the results of [40], which in this terminology deal with A1-

singularities (ordinary double points). The main novelty here is to bridge the gap between

the characteristic zero and characteristic p cases of monodromy actions on cohomology, since

for big enough p the classification of rational double points over C and Fp is the same. In
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particular we find that, if the action of monodromy is tame, then the monodromy operator

acts in the same way as the complex monodromy operator for such singularities. As far as

we know, there has not been a thorough investigation of the relationship between conjugacy

classes of Weyl groups and degenerations to (rational double point or otherwise) singularities,

even over C. We hope to further explore this relationship in the future.

We remark here that Theorem 1.3.1 naturally generalizes to Xk having any finite number

of rational double points, as we may choose disjoint formal affine neighborhoods at each

singularity. In this case, the monodromy acts via a product of Weyl group elements, one

for each singularity of a fixed Dynkin type. There is also a natural generalization to arbi-

trary (surface) rational singularities, by using the methods of [67] to reduce the situation to

rational double points, and the monodromy acts factors through a product of Weyl groups.

There are also possible applications of Theorem 1.3.1 to questions regarding monodromy

characterizations of reductions of K3 surfaces in mixed characteristic, as part of the topic of

derived equivalences of K3 surfaces (see [32]); we hope to explore this direction in the future

as well.

1.4 Outline of the proof.

The main tools for the proof of Theorem 1.3.1 are a theorem of Berkovich ([10]) and the

Grothendieck–Springer resolution. Via Berkovich’s argument we may relate the nearby cycles

of special fiber Xk to the “formal” nearby cycles of the completion of Xk at the singularity,

and show that the monodromy action on H2(XK ,Qℓ) depends on a formal neighborhood

of the singularity. We may then ‘embed’ the local picture into the miniversal deformation

of the singularity and use a mixed-characteristic incarnation of the Grothendieck–Springer

resolution.

Over C, the Grothendieck–Springer resolution (or Grothendieck alteration) π : g̃ → g

furnishes a connection between simple Lie algebras g and simple surface singularities, which

5



are exactly the (complex) RDPs. This connection was studied by Brieskorn in the ’70s,

following a conjecture of Grothendieck ([16]), and full details were written up in ([57]). The

Grothendieck alteration may be thought of as an enhancement of simultaneous resolutions

of surface singularities on the algebro-geometric side, and as a generalization of the Springer

resolution Ñ → N on the representation-theoretic side. Concretely, one may realize RDPs

as generic points in the subregular nilpotent orbit of the nilpotent cone N of g. In turn, g is

connected to the singularity via its Dynkin diagram, which is isomorphic to the dual graph

of the exceptional divisor in the minimal resolution of the singularity. These considerations

still make sense for Chevalley algebras over Spec(OK).

After a ramified base-change via the Weyl cover, we may simultaneously resolve all sin-

gularities appearing on the nilpotent cone, and in particular we obtain a resolution of the

singularity in our model X by pulling back along an appropriate base-change on Spec(OK).

Using a recent notion of relative perversity from Hansen–Scholze ([29]), we may describe

the associated monodromy W -action of the Weyl cover as an action on the relatively per-

verse sheaf Rπ∗Qℓ[dim g], which ends up being the Springer W -action as constructed by

Borho–MacPherson ([13]). Along the way we also derive an ℓ-adic instance of the Springer

correspondence and relate Springer theory to the study of nearby cycles over a larger (i.e. > 1-

dimensional) mixed-characteristic base. This gives a p-adic picture analogous to the interac-

tion between Springer theory and nearby cycles in the complex setting. The upshot is that,

in sufficiently large characteristic p, we may describe explicitly the resulting ramification in

the cohomology of X by factoring the IK -action through a restriction of the Springer W -

representation associated with the singularity of Xk. In the case of An-singularities we can

furthermore check by hand that the monodromy IK -action can lie in any Weyl conjugacy

class.
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1.5 Connections with other work.

Our results are parallel to results of Shepherd-Barron ([55], [56]), who extended the Grothendieck–

Springer resolution and some related results of Brieskorn to “good” characteristic, via a dif-

ferent method and in the context of groups instead of Lie algebras. Shepherd-Barron also

extended arguments of Artin ([7]) regarding simultaneous resolutions to show that one also

gets so-called Weyl covers for Brieskorn’s resolutions in all characteristics. In small charac-

teristic, however, he notes that “one does not have a formula for the action of any reflection

of W ” on the relevant cohomology groups ([56], Introduction). Our approach is instead a

natural extension of the methods described in ([57], [58]), and at the cost of restricting the

characteristic we may describe what the corresponding W -action must be.

1.6 Organization of this thesis.

Section 2 contains some background on rational double points, simultaneous resolutions

and (miniversal) deformations of isolated singularities in the mixed-characteristic setting.

Section 3 covers the necessary Lie-theoretic notions including the description of the nilpotent

cone as a fiber of the adjoint quotient and the Grothendieck–Springer resolution, in the

context of Chevalley algebras over a mixed-characteristic DVR. Section 4 extends results of

Slodowy ([57]) regarding the construction of suitable transverse slices to nilpotent orbits in

Lie algebras. Finally Section 5 presents the main argument, involving tools from the study

of perverse sheaves and nearby cycles to determine our desired monodromy action in terms

of certain Springer representations of the Weyl group.

1.7 Notations and conventions.

All rings are commutative with unity. OK denotes a complete mixed-characteristic discrete

valuation ring of type (0, p), meaning fraction field K has characteristic zero and residue

7



field k is algebraically closed of characteristic p > 0. Unless otherwise stated, we will assume

K = K̆ = K̂unr is the completed maximal unramified extension of K in a fixed separable

closure K, so that OK may be identified with the Witt vectors W (k) of k. The maximal

tamely ramified extension of K is denoted by Ktr. The inertia subgroup of GalK is IK =

Gal(K/Kunr), the pro-p wild inertia subgroup of IK is P = Gal(K/Ktr) and the tame

inertia is defined as I/P , which is topologically generated by one element.

On the geometric side we define (Spec(OK), Spec(K), Spec(k)) = (S, η, s) to be the data

of a (complete) trait, with generic point η and closed point s = s. Separable closures are

denoted with a bar, e.g. η = Spec(K). Residue fields of points x → X of a scheme X are

denoted by k(x), e.g. K = k(η).

On the Lie-theoretic side, g, b, h will denote respectively a semisimple Lie algebra along

with a choice of Borel and Cartan subalgebra, and W = W (g) will denote the Weyl group

associated to (the Dynkin diagram of) g. The Coxeter number of g is denoted by Cox(g).

For an affine S-scheme X with an action of an S-group scheme G, X//G denotes the affine

GIT quotient with coordinate ring OS [X]G.

Unless otherwise stated, Hi denotes étale cohomology Hiét.

8



CHAPTER 2

RATIONAL DOUBLE POINTS AND THEIR MINIVERSAL

DEFORMATIONS

This section gives some relevant background on rational double points and simultaneous

resolutions. Sections 2.3-2.5 describe explicitly the miniversal deformations of these singu-

larities. While the results are known to the experts, the associated deformation problems in

this setting have a mixed-characteristic base OK = W (k) instead of k, so for completeness

we develop the mixed characteristic case here.

2.1 Rational double points.

Let X be an algebraic surface over an algebraically closed field k. A rational singularity

x ∈ X(k) is a normal singularity (i.e. OX,x normal) for which there exists a resolution

f : X̃ → X satisfying Rif∗OX̃ = 0 for i ≥ 1.

By Zariski’s Main Theorem, the reduced exceptional divisor E = f−1(x)red is a union

of smooth rational curves Ei, elucidating the term ‘rational singularity’ (see [17], Lemma

3.8). Rational double points are a particular class of rational singularities pinning down the

self-intersections of the exceptional divisors Ei:

Definition 2.1.1. A normal surface singularity (X, x) is a rational double point (henceforth

RDP) if its minimal resolution f : X̃ −→ X has reduced exceptional divisor E = ∪Ei so

that all Ei are smooth rational curves with self-intersection E2
i = −2.

There are various equivalent characterizations of RDPs; for example, they are surface

singularities (X, x) whose Zariski tangent space mx/m
2
x has dimension 3 and OX,x has mul-

tiplicity 2 (hence the term ‘double points’). The tangent space dimension here implies RDPs

are regularly embedded in codimension 1 and are hence hypersurface singularities. Since

9



smooth points have local rings of multiplicity 1 and tangent spaces of dimension 2, this

characterization makes apparent that RDPs are the ‘mildest’ surface singularities one can

ask for.

Example 2.1.2. The following examples may give a rough indication on where RDPs stand

within the zoo of surface singularities.

(i) Suppose E ⊂ P2k is an elliptic curve and CE ⊂ A3
k is the cone over E. The exceptional

divisor of the resolution C̃E → CE of the singularity at the origin is E again, hence

this singularity is not rational (it is instead an “elliptic singularity”).

(ii) The image of the Veronese embedding P1 ↪−→ Pd is a rational normal curve Cd of degree

d. The cone C ⊂ Ad+1 has a rational singularity at the origin since the exceptional

divisor E ≃ Cd. However E2 = −d, so for d ≥ 3 it is not a rational double point.

(iii) The simplest rational double point is the origin in the affine cone {x2 + y2 + z2 = 0},

which is also known as an ordinary double point..

One property RDPs enjoy is that they are absolutely isolated, meaning they can be

resolved after a finite number of blowups at points; in fact, each blowup yields an RDP of

different type until they are all resolved (see [62, Tag 0BGB]).

A crucial fact about RDPs is that in appropriate characteristic (see Definition 2.1.4

below) they are taut, i.e. completely determined up to isomorphism by the dual graph

of their minimal resolution. This is classical over C, and has been extended to positive

characteristic by [8]:

Theorem 2.1.3. Let X be a projective surface over k.

(i) ([17], Thm. 3.32, [6]) If E is a connected curve on X with smooth rational curve

components Ei so that E2
i = −2, then the only possible dual graphs for E are the

Dynkin diagrams An, Dn, E6, E7 and E8.
10
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(ii) ([8]) If x ∈ X(k) is an RDP and char(k) is very good (see Definition 2.1.4) then up

to analytic isomorphism ÔX,x ≃ k[[x, y, z]]/(f(x, y, z)), where f(x, y, z) and the dual

graph of the minimal resolution of x are given by the table below:

f(x, y, z) Dual graph

z2 + x2 + yn+1 An

z2 + x2y + yn−1 Dn

z2 + x3 + y4 E6

z2 + x3 + xy3 E7

z2 + x3 + y5 E8

A polynomial f(x, y, z) defining an RDP is usually called a ‘normal form’. Since the

notion of ‘good characteristic’ will be ubiquitous in this paper, we record the definition here.

Definition 2.1.4. Given a semisimple simply-laced Lie algebra g over k of characteristic

p > 0, so that its Dynkin diagram has components An, Dn or En, we say p is

(a) good with respect to g if p ̸= 2 if g has any Dn components, p ̸= 2, 3 if g has any

E6, E7 components and p ̸= 2, 3, 5 if g has any E8 components (note there are no p

restrictions for An components).

(b) very good with respect to g if it is good and for any An component we have p ∤ n+ 1

(c) sufficiently good with respect to g if p ∤ |W (g)| i.e. it does not divide the order of the

associated Weyl group.

For simple Lie algebras it is automatic that sufficiently good ⇒ very good ⇒ good.

We will revisit this definition in Remark 3.2.3 for a more intuitive explanation of these

restrictions.

Theorem 2.1.3 identifies RDPs with the corresponding simple simply-laced Lie algebras

of the specified Dynkin type, so we can refer to p being (very) good for the singularity, the
11



Lie algebra or the Dynkin diagram interchangeably. Theorem 2.1.3 is no longer true when

p is not good, and there is more than one equation describing an RDP with the same dual

graph; see ([8]) for details.

Remark 2.1.5. We have the following byproduct of the proof of Theorem 2.1.3. We may

resolve RDP x ∈ X(k) by iterated blowups along points, and at each step we get an RDP of

different Dynkin type. All the Dynkin diagrams corresponding to each RDP appearing in the

resolution process are subdiagrams of the Dynkin diagram of x. Conversely, all subdiagrams

of the Dynkin diagram of x correspond to these ‘intermediate’ RDPs during the iterated

blowup process.

2.2 Simultaneous resolutions.

We next describe a particularly rare notion of resolving singularities of schemes in families.

In order to be consistent with [7], we enlarge the category of schemes to include separated

algebraic spaces, though in practice we will only resolve schemes.

Definition 2.2.1. Let f : X −→ S be a finite-type morphism of separated algebraic spaces.

A simultaneous resolution is a commutative diagram
X̃ X

S̃ S

f̃

π

f

ψ

where f̃ is smooth, π is proper, ψ is a finite surjection and for all geometric points s̃ → S̃

with image s = ψ(s̃)→ S, the induced morphism on the fibers

πs : X̃s̃ −→ Xs ×S S̃

is a resolution of the singularities of Xs,red. If S = Spec(k) is a point then we recover the

usual notion of a resolution π : X̃ → X of algebraic spaces over k ([62, Tag 0BHV]).

12
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Remark 2.2.2. One generally needs to impose some assumptions on the fibers, e.g. geo-

metrically reduced and excellent, in order for resolutions of singularities to exist in the first

place. There are also explicit examples of projective maps X → S whose simultaneous res-

olution X̃ is not a scheme (see Remark 2.2.8), so in general one needs to consider algebraic

spaces. In practice, however, f will be a morphism of henselianized (localized) schemes and

the schematic fibers will be equipped with the reduced-induced subscheme structure, so we

will not need to mention the above assumptions.

Example 2.2.3. We expound on why simultaneous resolutions rarely exist with the following

examples (cf. [41], Ex. 4.27). Assume that f : X −→ S is flat, where S is a smooth curve

with a fixed closed point s, and that the generic fiber of f is smooth..

(i) If f is a family of curves so that Xs is a reduced singular curve then a simultaneous

resolution does not exist; any resolution will introduce an exceptional locus E in X̃

and E ∩ X̃s is a singular set in X̃s.

(ii) If f is a general family of varieties so that Xs has dimension ≥ 3 and is a complete in-

tersection with (at worst) isolated singularities, then X is Q-factorial ([28], XI.3.13.(ii))

and hence it is well-known that X admits no small resolutions. Therefore the excep-

tional locus will be a divisor and X̃s cannot be smooth as in the previous example.

There are more examples of obstructions to constructing simultaneous resolutions and it

is difficult to come up with sufficiency conditions for their existence. In light of this, it is a

surprising theorem that, after a ramified base-change, simultaneous resolutions do exist for

families of surfaces acquiring RDP singularities. The following was independently discovered

by Brieskorn and Tjurina, then generalized by Brieskorn in the complex setting and by Artin

in the algebraic setting:

Theorem 2.2.4 ([15],[64], [7]). Let f : X −→ S be a flat morphism of schemes and s a

closed point of S so that Xs is a surface with a unique RDP x ∈ Xs. Let f̂ : X(x) −→ S(s)
13



be the induced map of the associated henselianized schemes X(x) and S(s). Then there exists

a finite surjection ψ : S̃ −→ S(s) of henselian schemes, branched over a Cartier divisor

∆ ⊂ S(s), so that f̂ admits a simultaneous resolution f̃ : X̃ −→ S̃ fitting into the following

diagram:

X̃ X(x) ×S S̃ X

S̃ S(s)

f̃

π1 π2

□ f̂

ψ

Here f̃ is smooth and π1, π2 form the Stein factorization of proper map π = π2 ◦π1. Cartier

divisor ∆ is called the discriminant divisor (or the ramification locus) of map f̂ .

Remark 2.2.5. In the complex-analytic category one can replace the henselizations with f̂

being a map of germs of singularities (X , x)→ (S, s).

Remark 2.2.6. Suppose X , S are complex schemes and S is affine. Brieskorn’s theorems

show that the Galois group of the finite cover S̃ → S is the Weyl group W of the Dynkin

diagram associated to the RDP in Xs (cf. Theorem 2.1.3). Moreover, the pullback ψ∗∆

of the discriminant divisor is a hyperplane arrangement in affine space S̃, determined up

to sign by the root system of the Dynkin diagram. These results do not follow from the

algebraic methods of Artin ([7]), but later results of Shepherd-Barron ([56]) showed that a

“suitable polarization” of Artin’s simultaneous resolution functor ResX/S yields that S̃ → S

is a so-called Weyl cover in the algebraic setting too.

Example 2.2.7. Let S = Spec(OK) be a strictly henselian trait with residue characteristic

p ̸= 2, uniformizer π, closed point s = Spec(k) and generic point η = Spec(K). Let

X = V (x2 + y2 + z2 − πN ) ⊆ A3
S (N ≥ 1) be a threefold, flat over S, with singular fiber Xs

over k; note the special fiber Xs = V (x2 + y2 + z2) ⊆ A3
k has an ordinary double point at

the origin.

Suppose N = 2n is even. Blowing up X along ideals (x, z ± πn) gives two different small

resolutions X± −→ X ; smallness here is a consequence of both ideals defining non-Cartier
14



Weil divisors on X . Both X−,X+ are smooth over S with generic fibers (X±)η ≃ Xη over

K. Viewing Xs as a hyperplane section V (πN ) ∩ X and setting u = z − πn, the universal

property of blowing up gives

(X+)s ≃ Bℓ(x,u)(X )×X V (x2 + y2 + u2) = Bℓ(x,y,u)V (x2 + y2 + u2)

i.e. (X+)s −→ Xs is the minimal resolution of Xs,red, since a single blowup resolves the

ordinary double point. In this situation there exists a birational map f : X− 99K X+

induced by (x, z − πn)→ (x, z + πn); it is known as the Atiyah flop.

Suppose now N = 2n+1 is odd. In this case X does not admit a simultaneous resolution

over S (e.g. when N = 1, the obstruction is the smoothness of total space X ). To repeat

the arguments of the previous paragraph we pass to the unique ramified quadratic extension

L = K(
√
π) of K so that XL = V (x2 + y2 + z2 + π2NL ) now admits small resolutions by

blowing up along ideals (x, z±πN ). We thus have a simultaneous resolution after base-change

Spec(OL)→ Spec(OK), ramified over the closed point s.

Remark 2.2.8. Simultaneous resolutions need not exist in the category of schemes when one

considers more ‘global’ contexts of simultaneously resolving projective families. As Artin’s

example in ([7], p. 330) shows, if X → Spec(OK) is a projective family so that the generic

fiber Xη is a quartic K3 surface of geometric Picard rank 1 (such K3 surfaces exist; see [65],

Thm. 3.1), and the special fiber Xs a nodal quartic, then localizing at the node we obtain a

situation like that of Example 2.2.7 and neither X− nor X+ are schemes. By ([7], Thm. 1)

however, simultaneous resolutions of surfaces will be at worst algebraic spaces whose fibers

are schemes, since this is true for any smooth 2-dimensional algebraic space.

A second important point is that simultaneous resolutions are generally non-unique, e.g.

Example 2.2.7 yields two non-isomorphic resolutions X−, X+ related by a flop X− 99K X+.
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2.3 Formal deformations of singularities.

In what follows, let S = Spec(OK) be a complete DVR with algebraically closed residue field

k and uniformizer π. Let X → S be a flat proper surface with special fiber Xk containing

a unique RDP x. We may choose affine coordinates so that the local ring of the singularity

has the form

R0 = ÔXk,x ≃
k[[x, y, z]]

f(x, y, z)

with f(x, y, z) = 0 the normal form of the rational double point (2.1.3). We aim to describe

the possibilities of what ÔX ,x, the completed local ring of the model X at point x (viewed

as a point in X ) can look like, by interpreting ÔX ,x as an appropriate deformation of the

singularity. We next clarify the notion of deformations we will use.

Notation 2.3.1. Write V0 = Spec(R0) for the affine scheme of the singularity, and Artk

resp. Ârtk for the category of artinian local, resp. complete noetherian local rings with

residue field k. Both types of rings become canonically W (k)-algebras via the unique lift of

the natural surjection W (k) ↠ k. For R in Ârtk we set

Rn = R/mn+1
R , R = R/πR, Rn = R/(π,mn+1

R ) ≃ R/mn+1
R

so that Rn is in Artk and R resp. Rn are complete noetherian local, resp. artinian local

k-algebras; note R ≃ lim←−Rn and R ≃ lim←−Rn. We will also call

Tm(R) = mR/m
2
R, Tm(R)red = mR/(π,m

2
R) ≃ mR/m

2
R

the cotangent, resp. reduced cotangent spaces of R ∈ {Artk, Ârtk}; they are both naturally
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k-vector spaces. To V0 we associate two deformation functors

DefV0 : Artk → Set, D̂efV0 : Ârtk → Set

R ∈ {Artk, Ârtk} 7−→ {isoclasses of deformations V → Spec(R)}

The tangent space DefV0(k[ε]) parametrizes so-called 1st-order deformations of V0 and has

a canonical k-vector space structure. For R in Ârtk we will call a deformation V → Spf(R)

of V0 formal, with the understanding that it arises as an inverse limit of deformations of V0

over artinian local rings. We give a preliminary lemma on what such deformations can look

like.

Lemma 2.3.2 ([31], Thm. 9.2). Let V0/k be an affine hypersurface singularity defined by

polynomial f(x, y, z).

(i) For any small extension ϕ : Ri+1 → Ri in Artk and deformation Vi = Spec
(Ri[x,y,z]

I

)
of V0 we have I = (Fi) principal and any flat lift of Vi to a deformation Vi+1 →

Spec(Ri+1) is of the form

Spec
(Ri+1[x, y, z]

(Fi+1)

)
, Fi+1 ≡ Fi mod (kerϕ)

(ii) If R ∈ Ârtk then any formal deformation V → Spf(R) of V0 is of the form

Spf
(R[[x, y, z]]

(F )

)
, F ≡ f mod mR

Remark 2.3.3. In plainer language, Lemma 2.3.2 says that deformations of affine hyper-

surfaces are still hypersurfaces; more generally, it is true that deformations of local complete

intersections are also local complete intersections.

To the deformation theory of V0 we may associate the Lichtenbaum-Schlessinger functors
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Ti(V0) = Exti(ΩR0
, R0), where T0(V0) is just the tangent module of R0. It is known ([66],

Prop. 6.4) that T1(V0) parametrizes first-order deformations of V0 and T2(V0) contains an

obstruction space for their liftings. By the explicit description of V0 we can be more precise:

Lemma 2.3.4. We have DefV0(k[ε]) ≃ Ext1(ΩR0
, R0) ≃ R0/J where J = (fx, fy, fz) is the

Jacobian ideal, and Ext2(ΩR0
, R0) = 0. In particular, deformations of V0 are unobstructed.

Proof. The first isomorphism is ([53], Thm. 2.4.1 (iv)). The conormal sequence associated

to V0 ↪−→ A3
k is

0 −→ (f)/(f)2 −→ ΩA3
k
⊗R0 −→ ΩR0

−→ 0

which is exact on the left by ([66], Lemma 4.7) and so dualizing we get exact sequence

0 −→ Ω∨R0
−→ (ΩA3

k
⊗R0)

∨ d∗−→ ((f)/(f)2)∨ ∂−→ Ext1(ΩR0
, R0) −→ 0 (2.3.1)

with ∂ surjective as ΩA3
k
⊗ R0 is free over R0. The map (f)/(f)2 → ΩA3

k
⊗ R0 is given by

the Jacobian matrix f 7→ df and (f)/(f)2 ≃ R0 is free of rank 1, hence the adjoint map d∗

has image J = (fx, fy, fz). So via the boundary map ∂ we get Ext1(ΩR0
, R0) ≃ R0/J and,

as a byproduct of exact sequence (2.3.1), Ext2(ΩR0
, R0) = 0.

Definition 2.3.5. The k-vector space

T1(V0) = R0/J ≃
k[[x, y, z]]

(f, fx, fy, fz)

is called the Tjurina algebra of the singularity in V0. It has finite dimension since V (f, fx, fy, fz)

is supported on the unique singular point - in general, for isolated singularities, the Tjurina

algebra is finite-dimensional.
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2.4 The Kodaira–Spencer map.

This section follows ([66], §6). Given a formal deformation ϕ : V → Spf(R) of V0, we aim to

attach to it a k-linear map Tm(R)
∨
red → T1(V0) defined in the following steps.

An element of Tm(R)
∨
red corresponds to a map R → k[ε] which, by W (k)-linearity and

ε2 = 0, factors through a map R → R1; write ϕ1 for the base-change of ϕ along this map.

Set

ϕ0 : V0 ×k Spec(R1) −→ Spec(R1)

to be the trivial deformation of V0 over R1 so that ϕ0, ϕ1 ∈ DefV0(R1). By Lemma 2.3.2, both

ϕ0, ϕ1 embed as hypersurfaces in A3
R1

, defined by ideals I0, I1 ⊂ R1[[x, y, z]] respectively. If

I = (f) is the ideal of V0 in k[[x, y, z]], we may lift a section F ∈ I to sections F0 ∈ I0, F1 ∈ I1.

By virtue of the square-zero extension

0 −→ mR1
−→ R1 −→ k −→ 0

the difference F0−F1 lies in mR1
⊗k k[[x, y, z]], and its image [F0−F1] under k[[x, y, z]] ↠ R0

depends only on the choice of F . Hence F 7→ [F0 − F1] yields an element

ν ∈ Homk[[x,y,z]](I,mR1
⊗k R0) ≃ mR1

⊗k HomR0
(I/I2, R0) = mR1

⊗k ((f)/(f)2)∨

Homomorphism ν is well-defined in general for any two deformations of V0 over an artinian

R; see ([66], Prop. 2.8) for more details. We will only be using it in the following definition.

Definition 2.4.1. The Kodaira–Spencer map is a k-linear map KSϕ : Tm(R)
∨
red −→ T1(V0)

defined as the image of homomorphism ν described above under map

id⊗ ∂ : mR1
⊗k ((f)/(f)2)∨ −→ mR1

⊗k Ext1(ΩR0
, R0) ≃ Homk(Tm(R)

∨
red,T

1(V0))
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where ∂ is the boundary map induced from the conormal exact sequence (2.3.1) of V0 ↪−→ A3
k.

By construction, map ν depends only on ϕ, hence the Kodaira–Spencer morphism de-

pends only on ϕ - it is well-defined by ([66], Prop. 4.11) and satisfies various functorial

properties (loc. cit., Prop. 6.10). We note the following:

Proposition 2.4.2 ([66], Prop. 6.11). Let ϕ : V → Spf(R) be a formal deformation of

V0 and for α ∈ (mR/m
2
R)
∨ ≃ Hom(R, k[ε]) let fα : R → k[ε] be the corresponding map.

Then the induced 1st-order deformation f∗αϕ : V1 = V ×R Spec(k[ε])→ Spec(k[ε]) defines a

conormal exact sequence via V0 ↪−→ V1, and KSϕ(α) ∈ T1(V0) is this extension class.

2.5 Miniversal deformations in mixed characteristic.

We can now describe a class of deformations of V0 from which all others are induced in

a certain ‘minimal’ way. Recall that if ϕ : V → Spf(R) is a formal deformation of V0

and hR = Hom(R,−) : Ârtk → Set is the Hom functor of R, then ϕ induces a natural

transformation

hR → D̂efV0

Definition 2.5.1.

(i) ϕ is versal when this natural transformation is formally smooth, i.e. if B ↠ A in Ârtk

then the map

hR(B)→ hR(A)×D̂efV0(A)
D̂efV0(B)

induced from the obvious commutative diagram is a surjection.

(ii) ϕ is miniversal if it is versal and the Kodaira–Spencer map KSϕ is an isomorphism.

By Lemma 2.3.4 and the definitions in Notation 2.3.1, it is clear that this definition of

miniversality coincides with the more common one (see e.g. [31], §15). We also note that
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versality is usually stated in terms of artinian local rings, but one can deduce versality in

the above (more general) case from the artinian one ([66], Lemma 7.3).

Proposition 2.5.2 (Schlessinger criteria, [31] Thms. 16.2, 18.1). DefV0 admits a miniversal

deformation if and only if the tangent space DefV0(k[ε]) is finite-dimensional. In particular

there exists a miniversal deformation when V0 has isolated singularities.

Proposition 2.5.3. If ϕ : V → Spf(R) is a formal deformation of V0 such that R is a power

series algebra over W (k) and the Kodaira-Spencer map KSϕ is an isomorphism, then ϕ is

miniversal.

Proof. Suppose R = W (k)[[t1, · · · , tn]] and KSϕ is an isomorphism. By Proposition 2.5.2

there exists a miniversal formal deformation ψ : W → Spf(S), yielding by versality a homo-

morphism f : S → R and hence a map df : Tm(S)red → Tm(R)red, dual to the differential

map of reduced tangent spaces. Since KSϕ,KSψ are isomorphisms and KSψ = KSϕ ◦ df

by the functoriality of the Kodaira–Spencer construction ([66], Prop. 6.10 (b)), df is an

isomorphism.

It remains to show f is an isomorphism. We will use df to construct a map g : R → S

so that the dual differentials of (non–reduced) cotangent spaces

D(f ◦ g) : mR/m2
R → mR/m

2
R, D(g ◦ f) : mS/m2

S → mS/m
2
S (2.5.1)

are surjective, then by functoriality of differentials ([66], Lemma 7.5) f ◦ g and g ◦ f will be

isomorphisms so that in particular f is an isomorphism.

To construct g: Observe Tm(R)red ≃ k[t1, · · · , tn]/(t1, · · · , tn)2 has generators t1, · · · , tn.

As df is an isomorphism, we can pick basis {gi, · · · , gn} of mS/(π,m2
S) so that df(gi) = ti

and lift them to a set of representatives gi ∈ mS . On artinian quotients we define

gm : Rm =
W (k)[t1, · · · , tn]
(π, t1, · · · , tn)m

−→ Sm, t
(m)
i 7−→ g

(m)
i
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where t(m)
i , g

(m)
i denote the images of ti, gi under R → Rm, S → Sm respectively. Since

R ≃ lim←−Rm, S ≃ lim←−Sm this defines a homomorphism g = lim←− gm : R → S mapping

ti 7→ gi, which by construction induces a surjection dg : mR/m
2
R

↠ mS/m
2
S
. In turn dg

induces surjections mm
R
/mm+1

R
↠ mm

S
/mm+1

S
and as the source and target of this map are

respectively the kernels of Rm+1 → Rm and Sm+1 → Sm, we inductively get surjections

Rm ↠ Sm; the base case is R1 ≃ k⊕mR/m
2
R
↠ S1 ≃ k⊕mS/m

2
S
. Since Rm = Rm/πRm, by

Nakayama’s lemma we get that the lifts gm : Rm → Sm are surjective, and since Rm, Sm are

artinian local rings we get g = lim←− gm surjective, hence the dual differential Dg : mR/m2
R →

mS/m
2
S is surjective. Repeating the exact same argument for f : S → R yields a surjection

Df : mS/m
2
S → mR/m

2
R. Thus the maps in (2.5.1) are surjective and we are done.

We now come to the crux of this section: describing the miniversal deformations of V0.

Proposition 2.5.4 (see [66], Example 7.17). Let r = dimk T1(V0), R = W (k)[[t1, · · · , tr]]

and choose elements g1, · · · , gr in W (k)[[x, y, z]] so that {g1, · · · , gr} forms a basis of T1(V0).

Consider the hypersurface V = V (F ) ⊂ A3
R defined by the vanishing of power series

F (x, y, z, t1, · · · , tr) = f(x, y, z) +
r∑
i=1

tigi(x, y, z) ∈ W (k)[[x, y, z, t1, · · · , tr]] (2.5.2)

Then V → Spec(R) induces a miniversal deformation of V0.

Proof. In view of Proposition 2.5.3, it suffices to show the Kodaira–Spencer map KSϕ is an

isomorphism; we may set n = r in the proof of Proposition 2.5.3 since n there was defined

to be the dimension of Tm(R)red ≃ T1(V0). Let Tm(R)red = ⟨t1, · · · , tr⟩ ≃ mR1
for ti the

images of indeterminates ti mod (π,m2
R) and by abuse of notation denote the (dual) basis

of Tm(R)red also by ti, then we claim KSϕ(ti) = gi so that KSϕ maps a basis to a basis and

hence is a k-linear isomorphism.

Now Proposition 2.4.2 says that ti corresponds to a map f : R1 → k[ε] mapping ti 7→

ε, tj ̸=i 7→ 0 via duality on k-vector space mR1
and KSϕ(ti) is the extension class in T1(V0)
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of the pullback of deformation ϕ via R→ R1 → k[ε] to the 1st-order deformation f∗ϕ, i.e.

Spec
( W (k)[[x, y, z, t1, · · · , tr]]
f(x, y, z) +

∑r
i=1 tigi(x, y, z)

⊗fk[ε]
)
≃ Spec

( k[ε, x, y, z]

f(x, y, z) + εg̃i(x, y, z)

)
f∗ϕ−→ Spec(k[ε])

where g̃i is the image of gi in k[ε, x, y, z]. To compute this extension class we trace through

the definition of the Kodaira-Spencer map: we have two first-order deformations, ϕ1 = f∗ϕ

and the trivial deformation ϕ0 : V0 ×k Spec(k[ε]) → Spec(k[ε]), with corresponding lifts of

f ∈ (f) ⊂ k[x, y, z] being f + εg̃i and f , viewed as elements of k[ε, x, y, z]. Then map ν in

the definition of the Kodaira–Spencer map sends f 7→ [f + εg̃i − f ] = [εg̃i] ∈ (ε) ⊗k R0,

hence in the quotient (ε)⊗k R0 → R0 → R0/J = T1(V0) (where J is the Jacobian ideal) we

get exactly the class gi. Thus KSϕ(ti) = gi.

Example 2.5.5. Let R0 be the local ring of an An−1 singularity f(x, y, z) = x2 + z2 + yn.

A basis of the Tjurina algebra in good characteristic (see Definition 2.1.4) is given by

k[[x, y, z]]

(f, fx, fy, fz)
≃ k[[y]]

yn−1
≃
n−2⊕
i=0

k · yi

so that T1(Spec(R0)) has dimension r = n− 1 and we may choose gi(x, y, z) = yi−1. Then

F (x, y, z) = x2 + z2 + yn + tn−1y
n−2 + · · ·+ t2y + t1

is a miniversal deformation of Spec(R0) with base W (k)[[t1, · · · , tn−1]].

We return to the setting in the beginning of Section 2.3, namely X/S is a flat proper

surface with special fiber Xk containing an RDP x ∈ Xk(k).

Corollary 2.5.6. For ÔX ,x the completed local ring of X at x→ Xk ⊂ X we have

ÔX ,x ≃
W (k)[[x, y, z]]

F (x, y, z)
(2.5.3)
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for some polynomial F (x, y, z) that is the pullback of (2.5.2) under W (k)[[t1, · · · , tr]]→ W (k)

induced by versality. Here f(x, y, z) is the normal form of singularity x, r is the dimension

of the Tjurina algebra of the singularity and the ti are specialized to elements in the maximal

ideal mW (k) = (π) of W (k).

Proof. This is immediate from Proposition 2.5.4 once we establish (2.5.3) for some power

series F (x, y, z) ∈ W (k)[[x, y, z]], which is the content of Lemma 2.3.2.

Remark 2.5.7. While a priori we speak of miniversal deformations as maps of formal

schemes V → Spf(R), we can regard the miniversal deformation of Proposition 2.5.4 as

an algebraic deformation over henselian scheme Spec(W (k)[[t1, · · · , tr]]). This is more gen-

erally due to a theorem of Elkik which states that formal deformations of affine schemes

with isolated singularities are algebraic ([24]). Thus, by replacing X with an affine étale

neighborhood of the singularity in Corollary 2.5.6, we may and do consider the (miniversal

or otherwise) deformations of RDPs as usual scheme morphisms over a henselian base.
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CHAPTER 3

THE GEOMETRY OF THE GROTHENDIECK ALTERATION

We now collect the necessary Lie-theoretic prerequisites in order to define miniversal defor-

mations of RDP singularities in terms the adjoint quotient of Lie algebras. The main goal is

to define and study the classical Grothendieck–Springer resolution over base Spec(OK) in-

stead of C (Section 3.5). To this end, Sections 3-3.3 extend the relevant notions of nilpotent,

semisimple and (sub)regular elements to the setting of Chevalley algebras over OK .

3.1 Chevalley bases and Chevalley algebras.

Throughout this section we work over base S = Spec(OK), whereOK is a mixed-characteristic

complete DVR with algebraically closed residue field k and fraction field K; the correspond-

ing closed and generic points of S are respectively s and η.

We recall the existence of Chevalley bases. Let gη be a semisimple Lie algebra over

algebraically closed field K of characteristic zero, h a fixed Cartan subalgebra and Φ the

corresponding root system with a basis ∆ of simple roots. Via the Cartan decomposition

gη = h⊕
⊕
α∈Φ

gα,η

one may choose {eα ∈ gα,η | α ∈ Φ} forming a Z-basis for each 1-dimensional space gα,η

and {hβ ∈ h | β ∈ ∆} fundamental coroots subject to certain compatibility relations ([34],

§25.2). Set {eα, hβ} forms a Chevalley basis with corresponding Chevalley Z-algebra

gZ =
⊕
β∈∆

Zhβ ⊕
⊕
α∈Φ

Zeα

One can also construct an associated group scheme G over Z, the Chevalley group, playing

the role of the Lie group of gZ; ([34], §25.4) discusses the adjoint case but we may always
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take G to be the simply-connected cover of the adjoint group. We may further base-change

to OK so that g becomes a free OK -module and G is a group scheme over S. We call g a

Chevalley algebra of ADE type if gη is simple of ADE type.

From now on we fix a simple, simply-connected, split Chevalley group scheme G/S and

a torus and Borel T ↪−→ B. We have B = T ⋊ Ru(B) where Ru(B) is the unipotent

radical, a smooth normal subgroup S-scheme in B, and so T ≃ B/Ru(B). We write g, h, b

and nb respectively for the Chevalley algebras of G, T,B and Ru(B), so that h, b, nb form

respectively a Cartan, a Borel and the nilradical of the Borel.

One still has a notion of the adjoint action of G on g ([19], §5.1) and hence the adjoint

action of T decomposes g into weight spaces

g = h⊕
⊕
α∈Φ

gα (3.1.1)

where each gα is a rank 1 free OK -module and Φ consists of characters α : T → Gm.

3.2 Root data and adjoint Weyl actions.

Retaining the assumptions and notations of Section 3.1, let T/S be a maximal torus of split

group scheme G and let r = dimS(T ) = rkS(g) be the rank of the associated Chevalley

algebra g. By the split hypothesis there exists a free Z-module X∗(T ) of rank r so that

T ≃ Hom(X∗(T ),Gm)⊗Z OK , i.e. h ≃ Lie(T ) ≃ X∗(T )∨ ⊗Z OK

Set X∗(T ) = X∗(T )∨ for the Z-dual. The Cartan decomposition of g (see Equation (3.1.1))

yields a set Φ ⊂ X∗(T )\{0} of roots α : T → Gm,OK
and a corresponding set of coroots

α∨ ∈ Φ∨ ⊂ X∗(T )\{0}.

Definition 3.2.1. The 4-tuple (X∗(T ),Φ, X∗(T ),Φ∨) is a root datum for (G, T ) and the
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quotient W = WG(T ) = NG(T )/T is the Weyl group associated to (G, T ).

See ([19], Prop. 5.1.6) for a proof that the 4-tuple in Definition 3.2.1 satisfies the con-

ditions of being a root datum; the Weyl group W is identified with the usual Weyl group

associated to Φ and is in particular generated by the set of reflections

{sα = id− α∨ ⊗Z α | α ∈ Φ}

From this description it follows that W is a finite and constant group scheme over S.

We record here two natural actions of the Weyl group on affine spaces, which will be

useful for us later on.

Definition 3.2.2. Let W be the Weyl group associated to (G, T ) and h = Lie(T ).

(i) The adjoint action Ad : G → End(g) restricts to an action NG(T ) × h → h, since

Adg(h) ∈ h for g ∈ NG(T )(OK) and h ∈ h(OK). In particular the adjoint T -action on

h is trivial since T is abelian, and so the adjoint action descends to the adjoint Weyl

action W → End(h), w 7−→ Adnw for a lift nw ∈ NG(T ) of w ∈ W . As G is simple,

we may identify h ≃ h∨ ≃ X∗(T )⊗Z OK so that the adjoint Weyl action is identified

with the natural reflection action of W on X∗(T )⊗Z OK .

(ii) There natural action of W on G/T via (gT ) · w = gnwT for a lift nw ∈ NG(T ) is the

right multiplication action of W . This also yields a natural action on G/T ×S h via

(gT, h) ·w = (gnwT,Ad
n−1w

(h)), which we will make use of later (see Proposition 3.5.3).

Remark 3.2.3 (Good primes and torsion primes). Given a reduced root system Φ ⊂ X∗(T ),

a prime p is said to be torsion for a simply-connected Lie group G if there exists a Z-closed

root subsystem Φ′ ⊆ Φ so that the quotient of Z-lattices ZΦ∨/Z(Φ′)∨ has p-torsion. An

equivalent definition of a good prime p is that there is no Z-closed root subsystem Φ′ ⊆ Φ

so that ZΦ/ZΦ′ has p-torsion, i.e. the good primes are exactly the non-torsion primes ([57],
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§3.13). Similarly, a prime p is very good if it is good and p does not divide |(ZΦ∨)∗/ZΦ|. See

(loc. cit., §3.6) for a table of the values of |(ZΦ∨)∗/ZΦ| in the case of g simple simply-laced;

it turns out that the only good but not very good case of prime p occurs when p | n+1 and

g is of Type An.

3.3 Nilpotent and semisimple elements of Chevalley algebras.

We now come to the definition of the nilpotent scheme and nilpotent sections. Recall that,

when g is a Lie algebra over k, the nilpotent variety Ng is a reduced closed subscheme of

g that is the Zariski closure of the nilpotent elements, and by Galois descent Ng is also

well-defined over non-algebraically closed fields.

Proposition 3.3.1 ([21], Thm. 4.12). For a Chevalley OK–algebra g, there exists a unique

closed S-subscheme N sch
g ⊂ g that is reduced and (N sch

g )s ≃ Ngs for geometric points s→ S.

Here the right-hand side denotes the usual nilpotent variety over a field.

Proof. Existence is shown more generally in ([19], Thms. 4.6 and 4.12) so we only discuss

uniqueness in our particular case. Suppose X, Y are closed reduced S–subschemes in AS so

that on geometric fibers Ys ≃ Xs ↪−→ Ank and both Xs, Ys are reduced, then we claim X ≃ Y .

The Zariski closure Xη of Xη is reduced as Xη is an open reduced subscheme of X, hence

so is X ′ = Xη ∪Xs. Since both X ′, X are reduced closed subschemes of AnS with the same

points, X ′ = X. A similar argument for Y yields

Y = Y η ∪ Ys ≃ Xη ∪Xs = X

Since nilpotent schemes behave well under base–change, we will refer to the nilpotent

scheme N sch
g as Ng for any Chevalley OK -algebra. We can also define:
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Definition 3.3.2. An OK–valued section x ∈ g(OK) is fiberwise nilpotent if xs ∈ Ng(k)

and xη ∈ Ng(K). Equivalently x is an OK–valued section of Ng.

For x ∈ g(OK), we can define the centralizer CG(x) as follows. Through the adjoint

action Ad : G× g→ g we obtain a functor CG(x) so that on OK–algebras R,

CG(x)(R) = {g ∈ G(R) | Adg(x) = x}

By ([21], Lemma 2.1), CG(x) is represented by a closed S–subgroup scheme of G, which we

denote by CG(x); over algebraically closed fields, the reduced scheme underlying CG(x) is

the usual centralizer.

Definition 3.3.3. A section x ∈ g(OK) is regular if its centralizer subscheme CG(x) satisfies

dim(CG(x)s) = dim(CG(x)η) = r where r = rank(G). By upper-semicontinuity of fiber

dimension for group schemes, it suffices to have dim(CG(x)s) = r since dim(CG(x)) ≥ r for

semisimple G (see [35], §1.6).

Definition 3.3.4. For a Lie algebra g over an algebraically closed field we call x ∈ g

subregular if dim(CG(x)) = r + 2. For non-regular elements x one has dim(CG(x)) ≥ r + 2

so that subregular elements are are the next “closest” to being regular; see ([35], §4.11) for

more details.

If g is now a Chevalley OK–algebra, a nilpotent section x ∈ Ng(OK) is called fiberwise

subregular if both xs ∈ Ng(k), xη ∈ Ng(K) are subregular nilpotent elements; if we do not

require x to be (fiberwise) nilpotent then subregularity in this setting may not make sense

(cf. Example 3.3.6).

Definition 3.3.5 ([14], §4.1.5, [1] Exposé XIV.2). An element x ∈ g(OK) is called fiberwise

semisimple if xs ∈ g(k(s)) is semisimple for all geometric points s → S. An element

x ∈ g(OK) is called regular semisimple if it lies in some Cartan h ⊂ g and for all geometric
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points s we have

hs =
⋃
n≥0

(ker(adnxs))

This union may be thought of as the centralizer of x so that it has fiberwise dimension equal

to rank(gs). Regular semisimple elements form an open set grs ⊂ g.

By ([1], Exposé XIV.2), set grs is S–fiberwise dense in g and its construction commutes

with base-change, whence it gives the usual notion of regular semisimple elements of Lie

algebras over a field, i.e. x ∈ gk so that CG(x)◦ is a maximal torus in Gk. This also makes

the density of the semisimple locus in g apparent.

Similar methods as in ([21], Lemma 2.1) yield that the functor of regular sections in g is

represented by an open subscheme greg ⊂ g over S. In the case of good characteristic, ([14],

Lemma 4.1.6) gives grs ⊂ greg so that both are S–fiberwise dense in g.

Example 3.3.6. We discuss a couple of pathologies that may occur in Chevalley algebras,

which justify the various “fiberwise” conditions in the previous definitions.

(i) The subregular notion need not behave well in fibers. Let

x =


0 1 0

0 0 p

0 0 0

 ∈ sl3(OK), p = char(k) > 3

then xη ∈ sl3(k(η)) is regular nilpotent but special fiber xs ∈ sl3(k) is subregular. In

general we get that x stays in the same (adjoint) nilpotent orbit if it satisfies a purity

assumption in the sense of [20], i.e. constant centralizer dimension on the fibers — see

(loc. cit., Prop. 5.10).

(ii) Regular semisimple elements (see Definition 3.3.5 below) can become nilpotent regular
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or non-regular elements. Let p > 2 and

x =

p 1

0 −p

 , y =

p 0

0 −p

 (in sl2(OK))

then xη, yη are regular semisimple but xs is regular nilpotent and ys is subregular

nilpotent. For x, even though dimOK
(CG(x)) is locally constant, centralizer CG(x) is

not flat.

3.4 The adjoint quotient.

This section and the next are based on some Lie-theoretic observations in [52] and ([14], §4),

which hold in greater generality than base scheme S = Spec(OK). In our situation however

we may provide simplified proofs and constructions suitable to our purposes.

We retain the notations and assumptions of Section 3.1 for Chevalley group G and

Chevalley algebra g. As an integral scheme, g has coordinate ring SymOK
(g∨). The ad-

joint action Ad : G→ End(g) yields the categorical quotient g//G = Spec((SymOK
(g∨))G),

whose coordinate ring consists of the adjoint G–invariants. Since the restriction of the

adjoint action of G to h factors through the Weyl group W = NG(T )/T , we get a map

SymOK
(g∨)G → SymOK

(h∨)W ; its schematic version is the Chevalley map h//W → g//G.

The natural inclusions SymOK
(g∨)G ↪−→ SymOK

(g∨) and SymOK
(h∨)W ↪−→ SymOK

(h∨)

yield categorical quotient maps

ψ : h −→ h//W, χ : g −→ g//G

Map ψ is a finite branched cover, and χ is known as the adjoint quotient. For the

properties of the counterparts of these morphisms over algebraically closed fields, we refer to

[57], §3.10, §3.12 and §3.14. We note here that, by virtue of the Jordan decomposition, two
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elements x1, x2 ∈ g(k) have χ(x1) = χ(x2) if and only if xss
1 ∈ AdG(xss

2 ) for their semisimple

parts, so that g//G may be thought of as the space of semisimple conjugacy classes of G in

g and χ maps x to the class of its semisimple part [xss].

Proposition 3.4.1 ([14], Thms. 4.1.10 and 4.1.14). Suppose that G, g, h,W are as above, r =

rk(G) and that char(k) = p is very good for G. Then the Chevalley map is an isomorphism

h//W ≃ g//G ≃ ArOK
and the formation of categorical quotient g//G commutes with base-

change.

Note the conditions of both Theorems 4.1.10 and 4.1.14 of [14] are satisfied; p being (very)

good implies G root-smooth in the terminology of (loc. cit.) and the étale-local assumption

on S is trivial since OK equals its strict henselization.

Before we investigate the adjoint quotient χ we need a preliminary lemma.

Lemma 3.4.2 ([52], 4.1.3). Let f : X → Y be a morphism of finite-type S–schemes with

X flat over S. If the base-changed morphism fs : Xs → Ys is smooth over the closed point

s→ S then f is smooth.

Proof. From the fibral criterion of flatness ([62, Tag 00MP]) we get f flat. The smooth locus

U ⊆ X is open and dense, so we are done if it contains all closed points x → X. For such

an x, the residue field k(f(x)) of f(x) → Y has characteristic p. Since fs is smooth, x is a

smooth point of X ×S Spec(k(f(x))→ s. Hence x lies in U .

Proposition 3.4.3. Let χ : g −→ g//G be the adjoint quotient morphism as above.

(i) χ is flat and its restriction χreg : greg → g//G is a smooth surjection.

(ii) The geometric fibers of χ are normal of codimension r, and the nilpotent scheme is

Ng ≃ χ−1(0).

Proof. Most of the proof is in ([14], 4.1.18, 4.2.6) but in our case of S = Spec(OK) we may

be more specific. For (i), note that g//G commutes with base-change (Proposition 3.4.1) so
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we may pass to geometric fibers s, η, whence the respective adjoint quotients χη, χs have

(geometric) irreducible fibers of codimension r ([57], §3.10(iv) and §3.14). Since g//G is

smooth and the fibers have the same dimension, we get χ flat by miracle flatness ([62, Tag

00R4]). Now note that greg is nonempty and S–fiberwise dense in g, hence it is reduced and

therefore flat over S. To show that χreg : greg → g//G is smooth we can reduce via Lemma

3.4.2 to showing χreg
s : g

reg
s → gs//Gs is smooth, which follows from ([57], §3.10 Thm. (vi)).

For the surjectivity of χreg we refer to ([52], Thm. 4.3.3), where a Kostant section1 S ⊂ greg

is constructed so that S ≃ g//G via χ.

We next consider (ii). Let h ∈ g//G ≃ h//W be an OK–section with geometric generic

and special fibers hη, hs. By ([57], §3.10 Thm. (ii)) we have that g
reg
s ∩ χ−1s (hs) is open

and dense in χ−1s (hs), and a similar statement holds for greg
η ∩ χ

−1
η (hη), thus greg intersects

fiber χ−1(h) in an open, S–fiberwise dense set. In particular, fibers χ−1(h) are generically

smooth, hence flat over S. Since the geometric fibers χ−1s (hs), χ
−1
η (hη) are normal ([57],

§3.10 Thm. (v)), we get χ−1(h) normal over S by ([46], Thm. 23.9). In particular, for the

nilpotent scheme Ng we have established that Ng(K) = χ−1η (0) and Ng = χ−1s (0), and

furthermore both Ng and χ−1(0) are reduced. We conclude Ng ≃ χ−1(0) as schemes.

Proposition 3.4.4. Quotient map ψ : h → h//W is finite flat, the natural W–action on

hrs = grs ∩ h is free and CG(h) ≃ T for any h ∈ hrs(OK).

Proof. Finiteness of ψ is automatic as W is finite, and we have ψ flat by the fibral criterion

of flatness and miracle flatness; note that the criteria apply because both h and h//W are

smooth ([57], §3.15 Remark (ii)). To show that the W–action on hrs is free, it suffices to show

that the natural map W ×S hrs → hrs×S hrs, (w, h) 7→ (w(h), h) is a scheme monomorphism,

and by ([27], 17.2.6) it suffices to check so on closed points of S. So we can reduce to the

algebraically closed field case, where by ([52], Lemma 2.3.3) we have that W acts freely on

1. One can think of the Kostant section as a Slodowy slice transverse to the unique regular nilpotent orbit
at a regular representative x ∈ g(OK); see Sections 4.1 and 4.3 for the theory of slices over Spec(OK).
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hrs
s and moreover CGs

(hs) ≃ Ts for hs ∈ hrs
s (k). For an alternative (equivalent) viewpoint

see ([39], §VI.7).

From the above proposition we obtain a finite étale cover ψrs : hrs → hrs//W , and W

acts freely-transitively on its fibers. Therefore:

Corollary 3.4.5. Morphism ψrs : hrs → hrs//W is a Galois cover with Galois group W .

3.5 Relative Grothendieck–Springer resolutions.

We retain the notations and assumptions of Section 3.1 for Chevalley group G/S and Cheval-

ley algebra g. The free OK -module b obtains a B-module structure via the adjoint action

of B on b and we can therefore form the following associated bundle (also known as adjoint

bundle)

g̃ := G×B b = G×S b//B, b · (g, x) = (gb−1,Adb(x)) for b ∈ B, g ∈ G, x ∈ b (3.5.1)

with the induced B-action on G×S b indicated on the right.

Lemma 3.5.1. g̃ is a smooth Zariski-locally trivial G–torsor over G/B with fiber b.

Proof. Note that any two Borels B1, B2 in G are conjugate étale-locally on S ([19], 5.2.11)

so G/B exists as a smooth projective S–scheme ([19], 2.3.6) and its generic and special fibers

are correspondingly the flag varieties of Gη and Gs. In this case π : G→ G/B makes G into

a B–torsor on G/B, inducing π̃ : g̃ → G/B, [g, x] 7→ π(g) so that g̃ is a fiber bundle over

G/B with fiber b. Adjoint bundle g̃ is furthermore equipped with a G-action induced from

the (left) G–action on G/B, so that π̃ is G–equivariant.

We get that g̃ is a scheme by pulling an open affine cover {Ui} of G/B to an open

affine cover π̃−1(Ui) of g̃, the affineness of π̃ being a consequence of ([37], §5.14). Now we

can construct Zariski-local sections G/B ⊃ Ui → G for the (a priori étale-locally trivial)
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B–torsor π. It suffices to construct a composition series of S–subschemes for B so that

successive quotients are Gm or Ga, since Gm and Ga–torsors are Zariski-locally trivial if and

only if they’re étale-locally trivial ([26], XI.5.1). Since B = T ⋊ Ru(B), and T ≃ Grm,OK

whileRu(B) ≃
∏
α>0 Uα decomposes into “root groups” Uα ≃ Ga (i.e. so that Lie(Uα) = gα)

we can build our composition series as in ([19], 5.1.16).

Local triviality implies G×G/B Ui ≃ B × Ui and we can lift to Zariski-local sections for

g̃ since Ui×G/B g̃ ≃ (Ui×G/BG)×B b ≃ Ui×b. Now g̃ is smooth since b is (see [37] §5.16),

so g̃ is indeed a Zariski-locally trivial smooth G–torsor.

We have a closed immersion g̃ ↪−→ G×B g ≃ G/B ×S g into a trivial G–torsor over G/B

(which can be checked on the fibers of S), yielding an equivalent description of g̃ as

g̃ = {(B′, x) ∈ G/B ×S g | x ∈ Lie(B′)}

From this description, we can define a dominant morphism

π : g̃ −→ G/B ×S g −→ g, [g, x] 7−→ (gB,Adg(x)) 7−→ Adg(x) (3.5.2)

It follows that π is proper since G/B is projective over S. The formation of g̃ commutes

with base-change on S and on geometric points s, η we obtain maps πs : g̃s → gs and πη :

g̃η → gη as base-changes of (3.5.2). The maps πs, πη are commonly known as Grothendieck–

Springer resolutions as defined e.g. in ([58], §3.3). They are particular types of simultaneous

resolutions (see Section 2.2).

Lemma 3.5.2. π : g̃ −→ g is finite over the open dense locus greg ⊂ g.

Proof. As the formations of g̃, π commute with base-change we may check this over the

closed point s, where it suffices to show x ∈ greg(k) if and only if x is contained in finitely

many Lie algebras of Borel subgroups Bs ⊂ Gs; this is found in ([57], §3.8, §3.14). We thus
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get quasi-finiteness, hence finiteness of π|greg since it comes from base-changing the proper

map π.

Since π is proper, dominant and generically finite, we may call it the Grothendieck alter-

ation. Another map of interest is χ̃ : g̃→ h, constructed as follows: given our choice of Borel

B, b/nb = Lie(B/Ru(B)) is the “universal Cartan” and χ̃ is (B′, x) 7→ x mod nb. More

precisely, there exists a short exact sequence of torsors

0 −→ G×B nb −→ g̃ −→ G×B Lie(B/Ru(B)) −→ 0

induced from nb ↪−→ b, since all terms are locally trivial over S. Now B acts trivially on

Lie(B/Ru(B)) as the latter is an abelian subalgebra, so that

G×B Lie(B/Ru(B)) ≃ G/B × Lie(B/Ru(B)) ≃ G/B × h

and χ̃ is the projection of g̃ → G/B × h onto the second factor. Note χ̃ is flat by miracle

flatness and the fibral criterion of flatness ([62, Tag 00MP]), hence smooth by Lemma 3.4.2

as χ̃s is identified with the smooth morphism g̃s → hs defined in ([58], §3.3).

Proposition 3.5.3. Keeping notations as above, the morphisms π and χ̃ fit into a commu-

tative diagram

g̃ g

h h//W

χ̃

π

χ

ψ

(3.5.3)

so that, S–fiberwise, πs and πη induce the Grothendieck–Springer resolutions on gs resp.

gη. In particular, restriction g̃rs := π−1(grs) → grs is a W–torsor, g̃reg := π−1(greg) ≃

greg ×h//W h and χ̃ : g̃rs → hrs is W–equivariant.

Proof. The maps πs, πη are the respective Grothendieck–Springer resolutions for gs, gη by
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the discussion preceding Lemma 3.5.2. For the commutativity of (3.5.3) it suffices to have

the map b→ h//W (induced by inclusion and χ) factoring through

b
pr−→ b/nb ≃ h

ψ−→ h//W

since χ̃ is induced by map pr. Thus, it suffices to check this on global sections, whence

SymOK
(h∨)W SymOK

(h∨)

SymOK
(g∨)G SymOK

(g∨) SymOK
(b∨)

≃

Over field-valued points we note χ̃([g, h + n]) = h for h ∈ h, n ∈ nb, and so the com-

mutativity of the diagram amounts to the fact that the semisimple part of Adg(h + n) is

conjugate to h ([58] §3.3).

We next prove the statements involving g̃rs, g̃reg as follows. Define X = G/T ×S hrs,

equipped with the W–action of Definition 3.2.2 (ii). We aim to show g̃rs ≃ X, which also

defines a W–action on g̃rs. By ([27], 17.9.5) it suffices to show the corresponding map over

k and K is an isomorphism, whence it holds by the proof of ([39], Thm. 9.1)2. Moreover

X//W ≃ grs over k and K, so this isomorphism extends over S again by ([27], 17.9.5).

To show W acts transitively on the S–fibers of g̃rs → grs, it suffices as before to pass

to geometric fibers and use g̃rs ≃ X. Say (g1T, h1), (g2T, h2) ∈ X mapping to Adg1(h1) =

Adg2(h2) ∈ grs. Then Ad
g−12 g1

(h1) = h2 so nw = g−12 g1 ∈ NG(T ) since nw conjugates the

two centralizers CG(h1), CG(h2), which are both T as h1, h2 ∈ hrs. Letting w = [n−1w ] ∈ W

we obtain (g1T, h1) ·w = (g2T, h2), establishing that W acts freely transitively on the fibers.

Thus g̃rs → grs is a W–torsor.

Now greg ×h//W h is smooth over S since greg → h//W is (by Proposition 3.4.3), and its

restriction greg ×S hrs is furthermore a W–torsor over grs by base-changing along W–torsor

2. Note the terminology of ([39]) differs from the standard one - what they call “regular” is regular
semisimple in our terminology.
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hrs → hrs//W . Then morphism g̃rs = g̃reg|grs→ greg ×S hrs is W–equivariant as both source

and target map to h via projection, so we have an isomorphism of W–torsors over grs, which

extends to all of greg by uniqueness of normalizations; see ([14], 4.2.12). In light of the

specified W–action on g̃rs, we likewise obtain that χ̃g̃rs is W–equivariant.
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CHAPTER 4

INTEGRAL SLODOWY SLICES

We now extend Slodowy’s construction of transverse slices ([57], §5) to our setting of Cheval-

ley OK–algebras, with the intention of proving a Grothendieck simultaneous resolution state-

ment for slices (Section 4.6). Throughout, G will be an affine group scheme, in particular

either a Lie group over an algebraically closed field or a split, simple, simply-connected

Chevalley group over S = Spec(OK). T ⊂ B denote a fixed choice of torus and Borel, and

the corresponding Lie algebras over k or S are h ⊂ b ⊂ g.

4.1 Remarks on Slodowy slices.

We review the theory of transverse slices to G–orbits from ([57], §5) in a slightly more general

setting.

Definition 4.1.1. Let G act on an integral scheme X over S. A transverse Slodowy slice to

the orbit G · x of x ∈ X is a locally closed subvariety S ⊆ X so that x ∈ S(OK), the action

morphism α : G×S → X, α(g, s) = g · s is smooth and the dimension of S is minimal with

respect to these two conditions.

Based on their definition, we can deduce some useful properties of Slodowy slices.

Lemma 4.1.2 ([57], §5.1 Lemma 3). Suppose X is smooth and affine with the adjoint action

of Chevalley group G over S, Y is another S-scheme with trivial G-action and f : X → Y is

a G-invariant morphism. Let x, y ∈ X(OK) lie in the same G-orbit in X and assume that

centralizers CG(x), CG(y) are smooth. Suppose S1,S2 are Slodowy slices transverse to the

orbit at x resp. y. Then (S1, x), (S2, y) are ètale-locally isomorphic over Y . In particular

the henselizations of S1 at x and S2 at y are isomorphic.

Proof. We may assume x = y (since y = g · x for some g ∈ G). As CG(x) is smooth,

Lie(CG(x)) ⊂ g is identified with the Chevalley subalgebra of adx-invariants ([19], 2.2.4),
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inducing an S-splitting g = Lie(CG(x))⊕ g1 for some complementary OK -module g1. Then

the rest of the proof of ([57], §5.1, Lemma 3) goes through: choose a projection p : G → g

étale at the identity (cf. loc. cit., §5.1 Lemma 1’s proof) and set G1 = p−1(V ), G2 = {g−1 |

g ∈ G1} inside G. By construction, the induced action maps µi : Gi × Si → X are étale at

(1, x) and hence so are the base–changed maps arising from cartesian diagrams

(G1 × S1)×X S2 S2 (G2 × S2)×X S1 S1

G1 × S1 X G2 × S2 X
µ1 µ2

We furthermore have (G1 × S1) ×X S2 ≃ (G2 × S2) ×x S1 via (g, s) 7→ (g−1, g · s). Hence

we can choose a neighborhood of (1, x) inside this space, with étale maps to S1,S2.

Remark 4.1.3. The condition of centralizer CG(x) being smooth over S is satisfied in the

case X = g and x ∈ g(OK) a fiberwise subregular nilpotent section (cf. Definition 3.3.3) -

note that by ([20], Thm. 1.1), the centralizer satisfies all relevant ‘purity’ assumptions.

Lemma 4.1.4 ([57] §5.1, Lemma 2). If G acts on schemes X, Y with respective action maps

αX , αY , S ⊂ X is a locally closed integral subscheme and f : X → Y is a G-equivariant

morphism, then the following diagram is cartesian and the top arrow is smooth if the bottom

arrow is smooth:

G× (S ×Y X) X

G× S Y

id×f

αX

f

αY

4.2 Jacobson–Morozov in characteristic p.

The aim of the next few sections is to construct a suitable Slodowy slice S over S, transverse

to a chosen S–fiberwise nilpotent element x ∈ g. The goal is to use slice S to describe a

miniversal deformation of RDP xs ∈ N ∩ S and a simultaneous resolution for slices (see

Section 4.6). We first make some remarks on sl2–representation theory in characteristic

p > 0, following ([57], §7.1).
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Definition 4.2.1. Let k be algebraically closed of characteristic p and fix a standard basis

{h, x, y} for sl2(k). A representation ρ : sl2 → gln is called good (in the sense of ([57], §7.1))

when ρ(x)p−1 = ρ(y)p−1 = 0; for p = 0 we posit that all sl2–representations are good.

If V is an n-dimensional (n < p) k-vector space with basis {v1, · · · , vn}, we can define

an irreducible sl2–representation ρn on V as follows:

ρn(x)v1 = 0, ρn(y)vn = 0

ρn(x)vi+1 = i(n−i)vi mod p, ρn(y)vi = vi+1, ρn(h)vi = (n−2i+1)vi mod p for i ≤ n−1

Theorem 4.2.2 ([57], §7.1). Any good sl2-representation ρ is completely reducible and de-

composes into a sum of good irreducible sl2–representations of the above form. For each

n < p there is a unique n–dimensional good irreducible representation.

Denote by Vn the unique n–dimensional good irreducible sl2–representation. Vn decom-

poses further into weight spaces Vn(k), which are 1-dimensional eigenspaces for the action of

ρn(h) as multiplication by k and −n + 1 ≤ k ≤ n − 1. Then the nilpotent endomorphisms

ρn(x), ρn(y) respectively induce isomorphisms Vn(k)
∼→ Vn(k + 2) and Vn(k)

∼→ Vn(k − 2);

they also respectively annihilate the highest weight space Vn(n − 1) and the lowest weight

space Vn(−n+ 1).

Theorem 4.2.3 (Jacobson–Morozov, [63] Thm. 1.1). Let G be a simple Lie group over k

with Lie algebra g. Suppose p = 0 or p > Cox(g). For each nilpotent x ∈ g(k) there is a

completion to an sl2–triple {h, x, y} coming from a faithful representation ρ : sl2 → g with

x = ρ(x0), y = ρ(y0), h = ρ(h0) for {h0, x0, y0} the standard basis of sl2(k). The triple

{h, x, y} is unique up to CG(x)–conjugation and the composite representation ad ◦ ρ : sl2 →

gl(g) is a good representation.

Remark 4.2.4. According to [63], restriction p > Cox(g) is optimal for the uniqueness of
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sl2-triple {h, x, y} up to conjugation, and it improves previous bounds such as 4Cox(g)− 2

appearing in [57].

4.3 Slodowy slices via Jacobson–Morozov.

Let G denote a split, simple, simply-connected Chevalley group of Type An over S with

Chevalley algebra g. Consider the setting of Section 4.1, with G acting on X = g via the

adjoint action and x ∈ g(OK) an S-fiberwise subregular nilpotent element; this condition

ensures both generic and special fibers xη, xs remain in the respective (unique) subregular

nilpotent orbit of gη, gs. In view of Lemma 4.1.2 we may construct a suitable Slodowy slice

at x, transverse to the (adjoint) subregular nilpotent orbits of gη, gs and any other Slodowy

slice at x will be étale-locally isomorphic to it. Moreover this allows us to replace x with

another representative in its nilpotent orbit, so we may assume x has a ‘standard’ form.

Proposition 4.3.1. Assume p > Cox(g). There is a choice of subregular nilpotent repre-

sentative x ∈ g(OK) extending to a section of sl2-triples {h, x, y} ⊂ g(OK) i.e. {hη, xη, yη}

and {hs, xs, ys} are sl2-triples respectively in gη and gs.

Proof. It is clear by the restrictions (see Theorem 4.2.3) that fiberwise subregular x induces

unique sl2-triples in Lie algebras gη, gs up to the action of Lie(CG(x)) ⊂ g(OK). Subregular

nilpotent elements in Type An have standard Levi form in characteristic zero, i.e. they are

regular nilpotent in a Levi subalgebra l corresponding to a parabolic p ⊆ g determined by a

subset of simple roots I ⊂ ∆. In this case, if we denote the simple roots as ∆ = {α1, · · · , αn},

the corresponding Levi and subregular representative are

l = hη ⊕
n−1⊕
i=1

gαi,η, xsubreg =
n−1∑
i=1

eαi (4.3.1)

where Chevalley basis elements eαi are viewed as root vectors in gη (see Section 3.1). By the

discussing preceding this proposition we may replace our subregular x with the “standard”
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representative x = xsubreg in Equation (4.3.1), which has this form because it is a regular

representative in l (see e.g. [52], Lemma 3.1.1); as vectors eαi form a Z–basis for g, clearly

x ∈ g(OK) still.

We now complete x to an sl2–triple {x, y, h}. By ([18], §3.6) an element h =
∑
aihαi ∈ hη

satisfies [h, eαi ] = dieαi if and only if the weights of the Dynkin diagram corresponding to

x are (d1, · · · , dn). Up to relabeling we have di = 2 for i ̸= n, dn = 0 (see loc. cit., 3.6.4).

Therefore condition [h, x] = 2x yields a system of equations

n∑
j=1

aj
⟨αj , αi⟩
⟨αj , αj⟩

=
n∑
j=1

ajCj,i = di, 1 ≤ i ≤ n (4.3.2)

where C is the Cartan matrix of g. This gives a unique h with OK–coefficients if and only if

det(C) = n+ 1 is invertible in OK , which is granted by the restriction p > Cox(g) = n+ 1.

For y =
∑
bie−αi , a simple calculation using the Chevalley relations yields

n−1∑
i=1

aihαi = h = [x, y] =
[ n−1∑
i=1

eαi ,
n−1∑
i=1

bie−αi
]
=
n−1∑
i=1

bihαi

so coefficients bi = ai are still in OK . Since [h, y] = −2y follows from [h, x] = 2x, we have

constructed an sl2-triple in g(OK); one can check that ai mod p ̸= 0 so that the mod p

reductions {h, x, y} still form a subregular sl2-triple in gs.

Lemma 4.3.2. Fix an integral sl2-triple {h, x, y} as in Proposition 4.3.1. Then OK-module

g/adx(g) is free of rank r + 2.

Proof. By assumption x ∈ g(OK) so adx(g) ⊂ g and quotient g/adx(g) is an OK -module.

Consider {hη, xη, yη} as an sl2-triple in the K-Lie algebra gη, then the dimension of K-vector

space gη/adxη(gη) is the dimension of the centralizer Cgη(xη), which is r+2 by subregularity.

So g/adx(g) is a rank r + 2 module, possibly with torsion.

Now consider the mod p sl2-triple {hs, xs, ys} inside gs. Since p > Cox(g), gs is a good
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sl2–representation decomposing into irreducible good sl2–representations Vd1 , · · · , Vdr . Each

irreducible representation Vdi decomposes further into di 1–dimensional eigenspaces

Vdi(−di + 1), · · · , Vdi(di − 1)

for the action of adhs and by sl2–theory adxs maps Vdi(k) isomorphically to Vdi(k + 2) (cf.

Section 4.2). So

gs/adxs(gs) ≃
r⊕
i=1

Vdi(−di + 1) (4.3.3)

is the direct sum of all lowest weight eigenspaces. Furthermore as adx annihilates all highest

weight eigenspaces Vdi(di − 1), the number of irreducible components of sl2-representation

g (and hence the dimension of gs/adxs(gs) equals r + 2, the dimension of the centralizer of

subregular xs.

Since forming module quotients commutes with base–change, identification (g/adx(g))⊗

k ≃ gs/adxs(gs) implies equidimensionality of the fibers of g/adx(g), hence it is flat over

OK and therefore it is a free rank r + 2 module.

Corollary 4.3.3. Retaining the notation of Lemma 4.3.2, if a denotes a free OK-submodule

of g complementary to adx(g) then S = x+ a is a Slodowy slice transverse at x fiberwise to

the nilpotent orbits of xs and xη.

Proof. The choice of such an a is possible via Lemma 4.3.2 since g/adx(g) is free. We observe

in the special fiber S := S⊗k = xs+as that as is a complement to adxs(gs) in gs and hence

isomorphic to
⊕

i Vdi(−di + 1) (in the notation of the proof of Lemma 4.3.2). It forms a

Slodowy slice in the traditional sense by ([58], §2.4) and is transverse at xs to the subregular

orbit. The action map µ : G × S → g is smooth, since by Lemma 3.4.2 it suffices to check

smoothness on the special fiber, where µ : Gs × S → gs is precisely the smooth action map

of Slodowy slice S. Since dim(S) = dim(S) by flatness, we have checked that S satisfies all

conditions of a transverse Slodowy slice.
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We may identify a ≃ ker(ady) so that S = x + ker(ady) by Corollary 4.3.3; this is the

standard formula for Slodowy slices.

4.4 Spaltenstein slices.

We now consider Chevalley algebras of type Dn or En1. In this case we may construct

a transverse Slodowy slice which works for all good characteristics, thus improving on the

restriction p > Cox(g). Following [59], let G be a simple simply-connected split group

scheme over S with corresponding Chevalley algebra g as before, and fix a maximal torus,

Borel T ⊂ B in G and a fiberwise subregular nilpotent x ∈ g(OK).

It is known (cf. [18], §8.2 and §8.4) in the simply-laced cases Dn, En that x is a distin-

guished nilpotent and so by the classification of nilpotent orbits in good characteristic there

exists a unique distinguished parabolic P ⊂ G which contains B and corresponds to the

orbit of x; for the notions of distinguished elements and subgroups we refer to [59] and ([18],

§8). We may therefore define a 1–parameter subgroup λ : Gm,S −→ T so that, with respect

to a root basis ∆ ⊂ Φ of G and root system ΦP ⊂ Φ of P we have

⟨α, λ(t)⟩ =


0, α ∈ ∆, −α ∈ ΦP

2, α ∈ ∆, −α ̸∈ ΦP

where ⟨−,−⟩ : X∗(T ) × X∗(T ) → Z is the pairing induced from perfect duality on the

(co)character lattices.

Theorem 4.4.1 ([59]). Let λ : Gm,S −→ T be constructed as above and let g =
⊕

i g(i) be

the Z–graded decomposition of g into eigenspaces for the induced Gm–action

g(i) = {x ∈ g(OK) | Adλ(t)(x) = tix ∀ t ∈ Gm(OK)}

1. The construction in this section should work for An types as well, thereby eliminating the need for
explicit sl2–triples; see ([12], 7.1.4).
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Then x ∈ g(2) and there exists an affine Gm–stable subspace a ⊂ g complementary to [x, g],

so that S = x+a is a Slodowy slice, transverse at x fiberwise to the nilpotent orbits of xs, xη.

We will call such slices S Spaltenstein to differentiate them from the slices constructed

in Corollary 4.3.3 via Jacobson–Morozov. The proof in (loc. cit.) carries over to OK since

rk[x, g] = dimk[xs, gs] as a consequence of dimk CGs
(xs) = dimOK

CG(x), and one concludes

that [x, g] is a direct factor of g, hence it is free as in Lemma 4.3.2. Furthermore g(i) ⊂ [x, g]

for i > 0 so there exists an affine Gm–stable complement a ⊂
⊕

i≤0 g(i) i.e. a = g/[x, g].

The action map µ : G×S → g, (g, s) 7→ Adg(s) for S = x+ a is smooth in a neighborhood

of (1, 0), so by virtue of the homogeneous Gm–action it is smooth (see e.g. [57], §7.4 Cor.

1).

Remark 4.4.2. We can also extend Proposition 4.3.1 to the Dn and En cases by writing

down a suitable subregular representative x ∈ g(OK), (e.g. [18], §5. produces such an x for

g of type Dn), and then finding h, y is a computational exercise in the vein of the proof of

Proposition 4.3.1. We chose to consider Spaltenstein slices here so that we can relax the

assumption p > Cox(g) to just p being a good prime.

4.5 Gm–actions and Gm–deformations.

Suppose we have constructed a suitable transverse slice S at a fixed fiberwise subregular

nilpotent x ∈ g(OK); if g is of type An, the slice is S = x + ker(ady) for {x, y, h = [x, y]}

forming an integral sl2–triple, while for the other simply–laced types S is a Spaltenstein

slice constructed as in Section 4.4. The goal of this section is to discuss some Gm–actions

on slices S and relate them to the notion of Gm-equivariant deformations.

We first define a 1–parameter subgroup λ : Gm,S → T when g is of type An, similar

to Section 4.4. Let x be a fiberwise subregular nilpotent section of g and complete it to an

sl2–triple {x, y, h} over S (Section 4.3). Then {xs, ys, hs} defines a good sl2-representation
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on gs (Theorem 4.2.3). Let Vdi be an irreducible summand of this representation, the unique

irreducible good sl2-representation of dimension di, and let {v1, · · · , vdi} be a basis. There

exits a Gm-action on Vdi by linearly extending

t · vk = tdi−2k+1vk t ∈ Gm, k ≤ di (4.5.1)

Definition 4.5.1. If g ≃
⊕

i Vdi is the decomposition of g into irreducible good sl2-

representations, there is a uniquely defined Gm-action λ : Gm → Aut(g) which operates

on each summand Vdi by the rule (4.5.1). It commutes with the Lie bracket of g and hence

factors through a 1–parameter subgroup, still denoted λ. We call λ a 1–parameter subgroup

adapted to xs.

This decomposition holds over OK since gη ≃ gs. Moreover, by abuse of notation we

denote by Vdi the OK–module generated by the Z–basis {v1, · · · , vdi} for the k–vector space

Vdi in (4.5.1). Note that λ(Gm) ⊆ T and the action of adhs decomposes g into eigenspaces

g =
⊕
i∈Z

g(i), g(i) = {v ∈ g | Adλ(t)(v) = tiv ∀ t ∈ Gm}

which also function as eigenspaces for the λ-action ([57] §7.1, §7.3). In particular x ∈ g(2) and

λ coincides with the 1–parameter subgroup constructed for Spaltenstein slices S (Theorem

4.4.1).

Definition 4.5.2. Let λ be as above and m : Gm → Aut(g) be the usual left–multiplication

action.

(i) The action

µ : t · v = m(t2)Adλ(t−1)(v), v ∈ g

fixes the element x and preserves the Slodowy slice S. Moreover it is a contracting

action on S, i.e. it extends to an action A1
S → Aut(S) with 0 · s = x for all s ∈ S.
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(ii) Let S̃ be the preimage of S under the Grothendieck alteration π. Define an action on

g̃ via

µ̃ : t · [g, v] = [λ(t−1)g, t2v], t ∈ Gm(OK), g ∈ G(OK), v ∈ g(OK)

This action preserves S̃.

By the definition of µ, µ̃ we have that the Grothendieck alteration π : S̃ −→ S is Gm,S–

equivariant, and a simple calculation yields that χ̃ : S̃ → h is also Gm,S–equivariant when

h ≃ ArS is equipped with contracting Gm,S–action t · h = t2h; in this case, the action

contracts h to the origin.

We next equip h//W with a Gm,S–action so that the adjoint quotient χ : S → h//W be-

comes Gm,S–equivariant. By ([23], §6 Théoréme 3 and Corollaire), if p is a good prime2 then

Sym(X∗(T ))W is a graded polynomial OK -algebra with homogeneous generators χ1, · · · , χr

of (homogeneous) degrees d1, · · · , dr, and furthermore

Sym(X∗(T )⊗Z k)
W ≃ Sym(X∗(T ))W ⊗Z k

Thus the degrees di of the generators χi are the same as their mod p versions, which are

recorded in ([57], Table in p. 112). As T is split we also have

h ≃ Spec(SymOK
(X∗(T ))), h//W ≃ Spec(SymOK

(X∗(T ))W ) ≃ Spec(OK [χ1, · · · , χr])

Define a Gm,S–action on h//W by linearly extending t·χi = t2diχi. The following proposition

carries over to the relative setting without change.

Proposition 4.5.3 ([57], §7.4 Prop. 1). The adjoint quotient χ : S −→ h//W is Gm,S–

equivariant with respect to action µ on S and the above action on h//W .

2. Actually, p non-torsion suffices; see Remark 3.2.3.
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Remark 4.5.4. Note that the Gm,S–action µ defined on S has the opposite weights of

the Gm,S–actions defined in ([52], §4.3) and ([14], §4.2.4) for the Kostant slice S. Both

constructions are essentially equivalent; we chose this formulation so as to get a contraction

on h and stay consistent with the weight conventions discussed in ([57], §7.4) and ([61], §2).

We now explain the notion of Gm-deformations. Suppose X0 is a singular hypersurface

with a Gm-action so that it is Gm-equivariantly isomorphic to V (f) for some weighted–

homogeneous polynomial f(x1, · · · , xn). Here weighted homogeneity means that there exists

a tuple (d, k1, · · · , kn) so that for any monomial

ai1,··· ,inx
i1
1 · · ·x

in
n

appearing in f we have
∑
j ijkj = d. In this case we can study the Gm–equivariant deforma-

tion theory of X0 ≃ V (f) by replacing the objects and maps of the associated deformation

functors in Section 2.3 with (formal) schemes equipped with a Gm,S–action and Gm,S–

equivariant morphisms. In particular we may speak of Gm,S–miniversal deformations.

It is not obvious that Gm,S–miniversal deformations exist. The following theorem is

based on the existence of general miniversal deformations and is proven by checking the

definition of miniversality after equipping all objects with a Gm–action.

Theorem 4.5.5 ([57], §2.5 Thm). Suppose f ∈ k[x, y, z] is weighted–homogeneous and de-

fines a hypersurface V (f) with isolated singularities in A3
k. Then there exists a Gm,S–

miniversal deformation of V (f) over S = Spec(W (k)).

Example 4.5.6. Let us compare the Gm–actions for a specific RDP surface. Polyno-

mial f(x, y, z) = z2 + x2 + y4 defines an A3–singularity (Theorem 2.1.3) and is weighted–

homogeneous with weights (2, 1, 2). Its miniversal deformation is given by

V (F ) −→ Spec(OK [[t1, t2, t3]]), F (x, y, z, t1, t2, t3) = z2 + x2 + y4 + t1y
2 + t2y + t3
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(see Example 2.5.5). Polynomial F is weighted–homogeneous with weights (2, 1, 2, 2, 3, 4)

and as a result base Spec(OK [[t1, t2, t3]]) admits a Gm,S–action with weights (2, 3, 4), while

total space V (F ) admits a Gm,S–action with weights (2, 1, 2, 2, 3).

On the other hand, for the subregular orbit in sl4 (the unique Lie algebra of type A3),

one may compute its decomposition into good irreducible sl2–representations (see [57], §7.4

Example) as

sl4 ≃ V4 ⊕ V2 ⊕ V ′2 ⊕ V
′′
2 ⊕ V0

where sl2–modules Vi have highest weight i. By inspecting the weights of the µ-action of

Definition 4.5.2 we get weights (6, 4, 4, 4, 2); note that in both Sections 4.3 and 4.4, a basis for

S (up to translation with x) is given by a choice of lowest weight vectors for each irreducible

sl2–summand, and there is an identification S ≃ Spec(OK [x1, · · · , x5]) by choosing xi to be

dual to the lowest–weight vectors. This is why we get the aforementioned weights (cf. [57],

p. 110). For h//W we have that the homogeneous degrees of the fundamental generators

are (2, 3, 4) (see [58], Table in p. 112); this also follows directly from reading off the degrees

of symmetric polynomials σ2, σ3, σ4.

Note that if we double the weights of the Gm–action on V (F ), then up to reordering

variables the miniversal deformation ϕ : V (F ) → Spec(OK [[t1, t2, t3]]) and χ : S → h//W

are both Gm,S–equivariant with the same Gm–weights on source and target.

The previous example illustrates a more general principle, which we will clarify in The-

orem 4.6.2 in the next section.

4.6 Grothendieck alterations for transverse slices.

We retain the assumptions of Section 4.5 and fix a Slodowy slice S at a fiberwise subreg-

ular nilpotent section x of g (either by the Jacobson–Morozov method or the Spaltenstein

method). Let π : S̃ −→ S be the restriction of the Grothendieck alteration on S and define
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Gm,S–actions µ, µ̃ on S, S̃ as in Section 4.5.

Proposition 4.6.1. Consider the following commutative diagram induced by restricting di-

agram (3.5.3)

S̃ S

h h//W

χ̃res

π

χres

ψ

(4.6.1)

to S and its preimage S̃ under the Grothendieck alteration. Then this diagram induces

S-fiberwise a simultaneous resolution of the singularities of χ : S → h//W .

Proof. Let α : G × S → g, α̃ : G × S̃ → g̃ denote the respective restrictions of the adjoint

action of G on g and g̃. By G–invariance of the adjoint quotient χ and its resolution χ̃, their

restrictions to S, S̃ yield commutative diagrams:

G× S g G× S̃ g̃

S h//W S̃ h

α

p2 χ

α̃

p2 χ̃

χres χ̃res

(4.6.2)

As χ ◦ α is flat and p2 is flat and surjective, χres is flat ([62, Tag 02JZ]). Since π : S̃ → S

comes from base-changing proper morphism g̃→ g, it is also proper. Applying Lemma 4.1.4

to π : g̃ → g we get that α̃ : G × S̃ → g̃ smooth, so as p2, χ̃ are smooth, it follows that

χ̃res is smooth as well. We may therefore base–change to the special fiber by Lemma 3.4.2

(since formation of diagram (4.6.1 commutes with base–change) and check that we have a

simultaneous resolution for S → hs//W , where S = S ⊗ k is a Slodowy slice over k. In this

setting, the statement is true by ([57], §5.3 Corollary).

For ease of notation we will henceforth refer to χres, χ̃res as χ and χ̃ respectively, when no

confusion can arise. We now relate Proposition 4.6.1 (i.e. diagram (4.6.1)) to the miniversal
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deformation of an RDP singularity and its minimal resolution. What follows is essentially

the main theorem of [57]; the study of miniversal deformations of minimal resolutions in this

context is due to [50].

Theorem 4.6.2. Let χ : S −→ h//W denote the localization of map χ obtained by henselian-

izing S and h//W at x and 0 respectively. Let S̃ be the preimage of S under the Grothendieck

alteration and χ̃ : S̃ −→ h the associated map as in diagram (4.6.1). Assume p = char(k) >

n + 1 if g is of Type An, otherwise assume p is good for g. Then χ is a Gm,S–miniversal

deformation of the RDP xs ∈ (N ∩S)(k) and χ̃ is a miniversal deformation of the minimal

resolution of xs.

Proof. Let r be the rank of RDP xs and consider morphism χ first. By Proposition 2.5.4 there

exists a miniversal (algebraic) deformation of xs, which we denote as ϕ : V (F ) → Spec(R)

for some F ∈ OK [[x, y, z, t1, · · · , tr]] and R = OK [[t1, · · · , tr]]. By Theorem 4.5.5 there exists

a Gm,S–action on V (F ) and Spec(R) making ϕ a Gm,S–miniversal deformation.

We know that χ−1(0) = N ∩S has an RDP singularity at xs and χ is Gm,S–equivariant

with respect to action µ on S and the “Weyl exponents” action on h//W (Proposition 4.5.3),

hence by miniversality we get a Gm,S–equivariant morphism f : h//W −→ Spec(R). It suf-

fices to show f is an isomorphism, and by the fibral isomorphism criterion ([27], Cor. 17.9.5)

it suffices to show fs : hs//W −→ Spec(R ⊗ k) is an isomorphism over geometric point

s = Spec(k). So we reduce to showing the statement over k of sufficiently good characteris-

tic, whence it follows from ([57], §8.7 Thm) by comparing the Gm–weights on each of hs//W

and Spec(R⊗ k). For χ̃, the statement holds by ([55], Thm. 3.4).

Remark 4.6.3. Shepherd-Barron in ([55], Thm. 4.6) has also shown the above theorem via

different methods and in good characteristic; the proof similarly contains a passage from

characteristic zero to positive characteristic. In particular we may assume that p is good for

Theorem 4.6.2 to be true.
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Remark 4.6.4. The statement a priori concerns formal miniversal deformations, but since

we are dealing with affine (isolated) singularities these deformations are algebraic (see Re-

mark 2.5.7). We may therefore consider the henselianized versions of χ, χ̃ when we re-

fer to the simultaneous resolution diagram (4.6.1) and without loss of generality write

h//W ≃ Spec(OK [[t1, · · · , tr]]).

53



CHAPTER 5

THE MONODROMY WEYL ACTION

We now come to the central part of the article, the description of monodromy actions in

terms of Weyl groups. We discuss the relevant W -actions in Section 5.6, along with the

proof of the main theorem. In order to construct said W -actions, multiple tools from the

theory of nearby cycles and (relative) perverse sheaves need to be combined, so we explain

these concepts next.

5.1 Classical nearby cycles.

Throughout this section we work in the small étale topos setting. Our base scheme is a

strictly henselian trait S = Spec(OK) with closed point s = Spec(k) and generic point

η = Spec(K). We denote geometric points with a bar, e.g. η, with the understanding that

the underlying residue field is separably closed (e.g. η = Spec(Ksep)). Whenever appropriate

we assume OK is complete.

Given a finite-type S-scheme X, we denote by Db(X) the bounded derived category of

Qℓ-sheaves on X, where ℓ ̸= p = char(k). Most of the formalism below is usually developed

first for finite coefficient rings Z/ℓn, but standard reductions via inverse limits and taking

(−) ⊗Zℓ
Qℓ yield the same statements for Qℓ-coefficients, so we choose not to belabor this

point.

Definition 5.1.1. Let X → S be a finite-type S-scheme with generic fiber Xη, geometric

generic fiber Xη and special fiber Xs. Denote the respective inclusions by

Xη Xη X Xs

j

j i

(i) The nearby cycles functor is RΨX : Db(Xη) → Db(Xs), F 7−→ i∗Rj∗(Fη), where Fη

is the pullback of F to Xη. Complex RΨX(F) is naturally equipped with an action of

inertia I = Gal(η/η) = GalK ([4], Exposé XIII §1.3).
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(ii) For F ∈ Db(X), adjunction map F → Rj∗(Fη) gives an exact triangle

i∗F ϕ−→ RΨX(F) −→ RΦX(F)
[1]
−→ (5.1.1)

defining the vanishing cycles functor RΦ : Db(X)→ Db(Xs) as the cone of map ϕ.

Nearby and vanishing cycles have various functorial properties. For example, if f : X →

Y is a morphism of S-schemes inducing maps fη : Xη → Yη and fs : Xs → Ys between the

geometric generic and special fibers, there are natural maps

RΨY (Rfη∗Fη) −→ Rfs∗RΨX(F), F ∈ Db(X) (5.1.2)

f∗sRΨY (F) −→ RΨX(f∗ηFη), F ∈ Db(Y ) (5.1.3)

Map (5.1.2) is an isomorphism when f is proper, and map (5.1.3) is an isomorphism when f

is smooth. Moreover the natural I-action extends to RΦX(F), making exact triangle (5.1.1)

I-equivariant ([4], Exposé XIII, 2.1.7.1, 2.1.7.2, 2.1.2.4).

Given an S-scheme X with F ∈ Db(X) and a point x ∈ Xs, let X(x) denote the strict

henselization of X at x→ X. Then the stalks of the nearby cycles are computed as

(RΨXF)x ≃ RΓ(X(x) ×S η,Fη)

We adopt the terminology of Illusie (cf. [36], §1.3) in saying that X(x) represents an ℓ-adic

Milnor ball and generic fiber X(x) ×S η represents an ℓ-adic Milnor fiber, consistent with

the classical fact that stalks of (complex) nearby cycles compute the cohomology of Milnor

fibers.

Example 5.1.2. A more direct relationship with the classical Milnor fiber can be seen as

follows. Assume X is a flat relative surface over S, smooth outside an isolated rational
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singularity on the special fiber x → Xs, then RΦXQℓ is supported on the physical point x

and we obtain (R0ΦXQℓ)x ≃ (R0ΨXQℓ)x/Qℓ ≃ 0 and (RiΦXQℓ)x ≃ (RiΨXQℓ)x for i > 0.

In this case we have ([4], Exposé XVI)

(RiΦXQℓ)x ≃


Λr, i = 2

0, i ̸= 2

where r ≥ 1 is the dimension of the stalk as a Qℓ-vector space. This can be thought of as the

ℓ-adic analogue of the topological Milnor fiber being a bouquet of n-spheres, hence having

only top cohomology.

Since we will only deal with nearby cycles of families X → S acquiring isolated rational

singularities, it is worth re-emphasizing that RiΨXQℓ ≃ RiΦXQℓ for i > 0. Hence any

statements regarding stalks of nearby cycles should be compatible with analogous statements

in the complex setting, where people usually consider so-called “vanishing homology”.

Remark 5.1.3. In the case that x is a hypersurface singularity locally defined by the van-

ishing of a weighted–homogeneous polynomial f(x, y, z) (such as the normal form of an RDP

as defined in Theorem 2.1.3), we have that the dimension of the Tjurina algebra dim(T1)

(see Definition 2.3.5) equals the Milnor number µ = length(Ext1(Ω1
X/S

,OX)). If the I-

action on RΨXQℓ is tamely ramified, meaning the action factors through tame quotient

I ↠ It ≃ I/P , we have r = µ = dim(T1). More generally the Deligne–Milnor conjecture

states that dim(T1) = r+Sw(R2ΨXQℓ), where the Swan conductor term measures the wild

ramification of the nearby cycles ([4], Exposé XVI, Conj. 1.9).

We will see that under our restrictions on the characteristic p, for a surface family X/S

acquiring RDP singularities we have RΨXQℓ ≃ (RΨXQℓ)P (the wild inertia invariants)

i.e. RΨXQℓ are identified with the tame inertial nearby cycles RΨtr
XQℓ = i

∗Rjtr∗ Qℓ, where

jtr : Xηtr ↪−→ X is induced from inclusion ηtr = Spec(Ktr)→ S.
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5.2 Nearby cycles on formal schemes.

In this section we assume S = Spec(OK) is a complete local trait. In [10], Berkovich

constructs a nearby cycles functor variant for a class of formal schemes over Spf(OK), which

includes finite-type schemes X/S completed along a closed subscheme of the special fiber

Y ⊆ Xs ([10], §1). Denote by X the formal completion X̂Y . Its special fiber Xs is identified

with finite-type scheme Y , and the generic fiber Xη is a rigid-analytic space over K.

There exists an equivalence between formal schemes étale over X and formal schemes

étale over Xs ([10], Prop. 2.1.(i)) and so composing the associated functor Xs → X with

the generic fiber functor X→ Xη induces a map of sites ν : (Xη)qét −→ (Xs)ét. The source

endows Xη with its quasi -etale site, where the quasi-etale covers of analytic spaces are defined

in the sense of ([9], §3). There exists also a natural morphism of sites µ : (Xη)qét −→ (Xη)ét.

Definition 5.2.1. For an étale sheaf F ∈ Db(Xη), RΨBer
X (F) = Rν∗µ∗(F) defines the

Berkovich nearby cycles functor RΨBer
X : Db(Xη) −→ Db(Xs). It is a sheaf naturally equipped

with a Gal(η/η) = GalK -action ([10], Rem. 2.6).

The crux of this construction is a comparison theorem with the algebraic nearby cycles

defined on X/S: the rough idea is that RΨXQℓ|Y depends only on the formal completion X

along Y , hence on a formal neighborhood of Y . The comparison theorem below is stated for

étale sheaves of torsion prime to p, though as we have remarked before the statement works

for Qℓ as well.

Theorem 5.2.2 ([10], Thm. 3.1, Cor. 3.5). Let X , Y,X be as above. Let F be an étale

constructible sheaf on Xη with torsion prime to p, and denote by F̂ its pullback to Xη.

Suppose Y/S is proper (e.g. finite). Then there exist canonical isomorphisms

RnΨXF|Y≃ RnΨBer
X (F̂), RΓ(Y,RΨXF) ≃ RΓ(Xη,F)

compatible with the action of Gal(η/η) on either side.
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Corollary 5.2.3. Suppose X is a proper flat surface over S with smooth generic fiber Xη

and special fiber Xs having exactly one RDP x ∈ Xs(k). Then the Gal(η/η)-action on

H2
et(Xη,Qℓ) depends only on a formal affine neighborhood of x in X .

Proof. Let

ÔXs,x ≃
k[[x, y, z]]

f(x, y, z)

be the completed local ring at the RDP singularity, f the normal form describing the RDP.

By Corollary 2.5.6

ÔX ,x ≃
OK [[x, y, z]]

F (x, y, z)
, F (x, y, z) ≡ f(x, y, z) mod p

for some polynomial F (x, y, z) that is the pullback of a miniversal equation of the RDP as in

Corollary 2.5.6. Now by the comparison of Berkovich (Theorem 5.2.2), we obtain a canonical

Galois-equivariant isomorphism

(R2ΨXQℓ)x ≃ H2((Spf(ÔX ,x))η,Qℓ) (5.2.1)

where the generic fiber of the formal completion of X along x is Xη = Spf(ÔX ,x))η, a rigid-

analytic variety over η, and the right-hand side denotes Berkovich’s ℓ-adic cohomology for

analytic spaces ([10], §3). Now let Y → S denote the affine relative surface

Y = Spec
(OK [x, y, z]

F (x, y, z)

)
, Ys = Spec

( k[x, y, z]
f(x, y, z)

)

having the same RDP at y → Ys as x → Xs. We have ÔY,y ≃ ÔX ,x and so (5.2.1) gives

(R2ΨXQℓ)x ≃ (R2ΨYQℓ)y Galois-equivariantly. To compare this with the Galois action

H2
ét(Xη,Qℓ), we use the nearby cycles spectral sequence:

E
ij
2 = Hi(Xs,RjΨXQℓ) =⇒ Hi+j(Xs,RΨXQℓ) ≃ Hi+j(Xη,Qℓ)
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Since R2ΨXQℓ is a skyscraper sheaf supported on x, the E2-page is

H0(Xs,R2ΨXQℓ) 0 0

0 0 0

H0(Xs,Qℓ) H1(Xs,Qℓ) H2(Xs,Qℓ)

d2

hence the spectral sequence degenerates at E2 and E
p,q
2 = grFp H

p+q(Xη,Qℓ) for the abutt-

ment filtration F •. Looking at the nontrivial graded pieces yields E0,2
2 = H2(Xη,Qℓ)/E

2,0
2

i.e. we obtain H2
ét(Xη,Qℓ) ≃ (R2ΨXQℓ)x ⊕ H2(Xs,Qℓ) with trivial inertia action on

H2(Xs,Qℓ) and the induced monodromy Gal(η/η)-action on the stalks of RΨXQℓ; the latter

claim follows from the Galois-equivariance of the E2-page of the spectral sequence.

5.3 Nearby cycles on a Grothendieck topos.

Since we will need to describe nearby cycles of ℓ-adic sheaves over bases of dimension > 1,

we collect here their general formalism and properties in amenable situations. In order to

do this, we will need the language of oriented toposes; for a modern English reference, see

([36], §1).

We retain the conventions of Section 5.1 and consider S-schemes f : X → S, g : Y → S.

Bounded derived category of étale sheaves Db(X) is assumed to have coefficient ring Z/ℓn,

but the statements below will also work for Qℓ-coefficients.

Definition 5.3.1. The left oriented 2-product topos X
←
×S Y is the Grothendieck topos

defined in a universal way by the data of 2-commutative diagram

X
←
×S Y Y

X S

p1

p2

g
τ
f

(5.3.1)
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where X, Y and S denote the étale toposes associated to the schemes and τ : g ◦ p2 → f ◦ p1

is a 2-morphism. From these data we get a defining site for X
←
×S Y with the following

covering families: for maps U → V ← W étale over X → S ← Y put {Ui → V ← W} a

covering of U → V ← W where {Ui} → U is a covering, and {U → V ← Wi} a covering

of U → V ← W where {Wi} → W is a covering. The third type of families is given by

coverings {U → V ′ ← W} of U → V ← W for which the induced square

V ′ W ′

U V W

□

is cartesian; note the individual maps V ′ → V , W ′ → W need not be coverings in this case

([36], 1.1.1).

Maps between such oriented toposes X ′
←
×S′ Y ′ −→ X

←
×S Y are defined by the data of

maps {X ′ → X,S′ → S, Y ′ → Y } and appropriate 2-morphisms between these maps ([36],

1.1.2).

A special case is is (Y, g) = (S, id), where the oriented product X
←
×S S is called the

vanishing topos of X/S. The points of the vanishing topos consist of triples (x, η, sp) where

x→ X, η → S are geometric points together with a specialization morphism sp : η → S(f(x)).

Definition 5.3.2 (Nearby cycles over general bases).

(i) There exists a unique morphism Ψ : X −→ X
←
×S S compatible with diagram (5.3.1),

by the universal property of products. The derived pushforward

RΨf = RΨ∗ : Db(X) −→ Db(X
←
×S S)

is the nearby cycles functor relative to f .

(ii) Let (x, η, sp) be a point of X
←
×S S with x over a geometric point s → S, η ∈ S and

sp : η → S(s) a fixed specialization. There exists a unique map S(η) → S(s) compatible
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with the specialization and map η → S(η) ([62, Tag 08HR]). We therefore have natural

inclusions

is : Xs ↪−→ X(s) = X ×S S(s), jsη : X(η) = X ×S S(η) → X(s)

and RΨsη = i∗sRjsη∗ : Db(X(η)) −→ Db(Xs) is the sliced nearby cycles functor.

The two nearby cycles are related as follows: one identifies topos Xs
←
×S η as sheaves on

Xs together with a Gal(η/η)-action, and by functoriality we have a morphism of toposes

←
i (s,η) : Xs = Xs

←
×S η −→ Xs

←
×S S

←
is−→ X

←
×S S

Then RΨsη = (
←
i (s,η))

∗RΨf . See ([36], §1.3 and §1.4) for details. We mention in passing

that one can also define a vanishing cycles functor RΦf in the topos setting, but we will not

use it; the construction is given in (loc. cit., 1.2.4).

Nearby cycles in this generality still satisfy functorial properties. An important example

is the case of S–schemes f : X → S and g : Y → S and a map h : X → Y of S–schemes.

Then the induced commutative diagram

X X
←
×S S Xs

Y Y
←
×S S Ys

h

Ψf

←
h

←
i X,(s,η)

hs

Ψg

←
i Y,(s,η)

(5.3.2)

yields RΨg(Rh∗F) ≃ R
←
h ∗RΨfF for F ∈ Db(X); furthermore, if h is proper, then formation

of R
←
h ∗ commutes with base–change on X and S, so that in particular diagram (5.3.2)
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induces an isomorphism (see [49], Lemme 8.1.1)

RΨsg,η(Rh∗F) = (
←
i Y,(s,η))

∗RΨg(Rh∗F) ≃ R(hs)∗(
←
i X,(s,η))

∗RΨfF = R(hs)∗RΨsf,ηF

(5.3.3)

There are natural generalizations of ℓ–adic Milnor fibers to this setting (cf. Section 5.1).

Given a point (x, η, sp) of X
←
×S S with x over s and a sheaf F ∈ Db(X), the stalks of nearby

cycles may be computed via ([2], Exposé VII, §5.8) as

RΨsη(F)x ≃ RΨf (F)(x,η,sp) ≃ RΓ(X(x) ×S(s) S(η),F) (5.3.4)

The scheme X(x) ×S(s) S(η) is called the Milnor tube at (x, η, sp); it contains Milnor fiber

X(x) ×S(s) η as a closed subscheme.

Example 5.3.3. We relate these constructions to the classical nearby cycles. Let S be a

strictly henselian trait with closed point s, generic point η and geometric generic point η.

Note S(s) = S and S(η) = η. For f : X → S of finite type we have

X
←
×S S = (Xη

←
×S S) ∪ (Xs

←
×S S) = Xη ∪Xs ∪ (Xs

←
×S η)

where the last (nontrivial) topos on the right is identified with sheaves on Xs together with

a Gal(η/η)-action. The classical nearby cycles RΨX(F) for F ∈ Db(Xη,Λ) are

RΨX(Fη) = RΨf (F)|Xs
←
×Sη

and are therefore identified with the sliced nearby cycles RΨsη(F). The restriction map is

induced from Xs → X and η → S. Moreover, for a geometric point x → Xs, the Milnor

tube X(x) ×S S(η) ≃ X(x) ×S η is identified with the Milnor fiber.

In general, nearby cycles RΨfF need not be well-behaved; for example, it may not be
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constructible. Furthermore, base-changing via S′ → S yields cartesian squares

X ′ X X ′ X

S′ S X ′
←
×S′ S′ X

←
×S S

g

f ′ f Ψf ′

g

Ψf

←−
g

and the associated base-change map

(
←−
g )∗RΨfF −→ RΨf ′(g

∗F)

is not always an isomorphism: see ([36], 1.7(d)) for a classical example of Deligne which

shows that for the origin blowup f : Ã2
k → A2

k, RΨfQℓ is not constructible and does not

commute with base-change on A2
k. Moreover, for any point in the exceptional divisor and a

nonzero point on A2
k, the associated Milnor tube is not of finite type.

Nevertheless, a special case where all the above assertions are true is the following.

Theorem 5.3.4 (Deligne, [36] 1.7.(c)). Let f : X → S be separated and finite-type, and

F ∈ Dbc(X). Let Z be the complement of the largest open set U ⊆ X so that f |U is universally

locally acyclic over S. If Z → S is quasifinite, then RΨfF is constructible and its formation

commutes with any base-change S′ → S.

Remark 5.3.5. We call (f,F) Ψ-good in this case. It follows from the theorem that the sliced

nearby cycles RΨsη(F) are also constructible and commute with base-change; in particular the

cohomology of Milnor tubes as computed in (5.3.4) restricts isomorphically to the cohomology

of Milnor fibers:

(RΨfF)(x,η,sp)
∼−→ RΓ(X(x) ×S(s) η,F) (5.3.5)

5.4 Relative perverse sheaves and the Grothendieck alteration.

We retain the conventions of Section 5.1. In this section we will discuss a recent notion of

relative perverse t-structures on Dbc(X) for S–schemes X, which is compatible (in a sense)
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with the absolute perverse t-structures on the geometric fibers i.e. Dbc(Xη) and Dbc(Xs). As

before we may assume the underlying coefficient field to be Qℓ.

Following [29], we define a full subcategory of Db(X)

p/SD(X)≤0 := {F ∈ Db(X) | F|Xs
∈ pD(Xs)

≤0 for all geometric points s→ S} (5.4.1)

where (pD≤0, pD≥0) denotes the absolute perverse t-structure for schemes over fields. In the

particular case of S = Spec(OK), one just restricts F to Xη and Xs and checks perversity

in the usual absolute sense.

It can be shown that (5.4.1) forms the connective part of a t-structure on Db(X) and the

goal is then to show that the coconnective part p/SD(X)≥0 has the required description in

analogy with (5.4.1) and further induces a t-structure on the bounded derived category of

constructible complexes Dbc(X).

Theorem 5.4.1 ([29], Thm. 6.1). Let f : X → S be a finite-type S–scheme. The full

subcategories (p/SD≤0,p/S D≥0) of Db(X) define a unique t-structure on Db(X), the relative

perverse t-structure, so that

(i) A sheaf F ∈ Db(X) is in p/SD(X)≤0, resp. p/SD(X)≥0, if and only if F|Xs
∈

pD(Xs)
≤0 and F|Xη

∈ pD(Xη)
≤0, resp. F|Xs

∈ pD(Xs)
≥0 and F|Xη

∈ pD(Xη)
≥0.

(ii) For any morphism g : S̃ → S with induced base-change g̃ : X
S̃
→ X, pullback functor

g̃∗ : Db(X)→ Db(X
S̃
) is t-exact with respect to the relative perverse t-structure, hence

commutes with the associated truncations (τ≤0, τ≥0).

(iii) For any open and closed decomposition j : U ↪−→ X and i : Z ↪−→ X into S-schemes,

the relative perverse t-structure on Db(X) is obtained by gluing (recollement) from the

relative perverse t-structures on Db(U) and Db(Z).

We note that (ii) and (iii) are formal consequences of (i), once the perverse t-structure

properties have been established. We also note that if S = Spec(k) is a field and X is a
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finite-type k-scheme, the relative perverse t-structure is identified with the usual (middle)

perverse t-structure on Db(X), while if X = S then the relative perverse t-structure coincides

with the standard t-structure on Db(S). In view of (ii), relative perverse sheaves on X pull

back to absolute perverse sheaves on Xη and Xs.

We apply the notion of relative perversity to the setting of Chevalley algebras g over

S = Spec(OK) and their associated bundles g̃. Recall the setting of Sections 3.4 and 3.5,

so that in particular g is a simple simply-laced Chevalley OK -algebra and p = char(k) is

very good for g. The Grothendieck alteration π : g̃ −→ g restricts to a Galois W -torsor

πrs : g̃rs −→ grs over the regular semisimple locus (Proposition 3.5.3).

For Lie algebras g over algebraically closed field k, the above fact is classically known

and furthermore it implies that the (absolute) perverse sheaf

F = Rπ∗Qℓ[dim g]

is equipped with a W -action, constructed by Borho–MacPherson (who attribute it originally

to Lusztig) in the following way: π is a small morphism so in particular F is an IC sheaf, i.e.

the intermediate extension of local system G = πrs
∗ Qℓ ([13], §1.8). Sheaf G is W -equivariant

and W acts by “deck transformations”, so by the functoriality of the intermediate extension

functor, this W -action uniquely extends to F (loc. cit., §2.6 Proposition1).

We next show that this result of Borho–MacPherson extends to the relative Grothendieck

alteration π in the setting of Chevalley OK -algebras, where now F is relatively perverse and

in particular an “intermediate extension” object in Db(g). By an IC sheaf in this setting we

mean that, if j : grs ↪−→ g is the inclusion of the open dense subscheme of regular semisimple

elements, then F ≃ j!∗G.

Theorem 5.4.2. Let π : g̃ −→ g denote the Grothendieck alteration of Chevalley OK-algebra

1. Note that Borho–MacPherson state a more general version here, in terms of a parabolic subgroup
P ⊂ G; we need only take P to be a Borel for our purposes.
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g. Then:

(i) Complex F = Rπ∗Qℓ[dim g] ∈ Dbc(g) is relatively perverse.

(ii) Complex F is an IC sheaf.

Proof. Denote by j : gη ↪−→ g and i : gs ↪−→ g the respective open and closed immersions

of the geometric generic and special fibers, with the understanding that gη is Lie algebra

gη = gK so that the constructions of Sections 3.4 and 3.5 make sense for it too. Part (i) is

immediate from Theorem 5.4.1 since proper base-change gives

F|gη= j∗Rπ∗Qℓ[dim g] ≃ R(πη)∗Qℓ[dim g]

and F|gs≃ R(πs)∗Qℓ[dim g] as the formation of g̃ commutes with base-change on S in good

characteristic. Thus, both restrictions are perverse sheaves on gη and gs, respectively; in

fact they are IC sheaves by the reasoning in ([13], §1.8).

For (ii), let j′ : grs ↪−→ g and i′ : g′ = g \ grs ↪−→ g denote respectively the open and

closed immersions of the regular semisimple elements and their complement. Denote by

pH0 the composition τ≤0 ◦ τ≥0 of the relative perverse truncation functors, which is itself a

cohomological functor, and set G = j′∗F . We wish to show

F ≃ j′!∗(G) = im(pH0(j′!G)→
pH0(j′∗G))

Note that G is a lisse sheaf on grs via proper base-change along cartesian diagram

g̃rs g̃

grs g

πrs

j̃′

π
j′

That is, j′∗F ≃ πrs
∗ Qℓ[dim g] and πrs is a Galois W -torsor (Proposition 3.5.3), so that

πrs
∗ Qℓ[dim g] is lisse by algebraic Ehresmann ([47], Thm. 20.2). Moreover F = pH0(F) (via
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the perversity established in (i)) sits in long exact sequences

· · · −→ pH0(j′!G) −→ F −→
pH0(i′∗i

′∗F)
[1]
−→ · · · (5.4.2)

· · · −→ pH0(i′∗i
′!F) −→ F −→ pH0(j′∗G)

[1]
−→ · · · (5.4.3)

which are respectively coming from the standard triangles (in the derived setting)

j′!j
′∗F → F → i′∗i

′∗F
[1]
→, i′∗i

′!F → F → j′∗j
′∗F

[1]
→ (5.4.4)

Set C1 = i′∗i
′∗F = Cone(j′!G → F) and C2 = i′∗i

′!F [1] = Cone(F → j′∗G). In order to show

F ≃ j′!∗G it suffices to show F ↪−→ pH0(j′∗G) and pH0(j′!G) ↠ F i.e. the respective kernel

and cokernel vanish. So it suffices to have pH0(C1) = 0 and pH−1(C2) = 0.

A brief note on why checking the above two conditions is enough: suppose pH0(j′!G) ↠ F ,

then via right-exactness of i′∗ we have pH ◦ (i′)∗ right-exact ([5], Lemma A.7.14) so that

pH0(i′∗ ◦ pH0(j′!G)) ↠
pH0(i′∗F). Now pH0 ◦ i′∗ ◦ pH0 ◦ j′! is left-adjoint to

pH0 ◦ j′∗ ◦ pH0 ◦ i′∗ ≃ pH0 ◦ j′∗ ◦ i′∗ = 0

where the penultimate equivalence is due to the perverse t-exactness of j′∗ and i′∗. Hence

pH0(i′∗F) = τ≥0(i′∗F) = 0, meaning i′∗F ∈ p/SD(g′)≤−1. The dual argument for F ↪−→
pH0(j′∗G) gives i′!F ∈ p/SD(g′)≥1, altogether giving the familiar IC sheaf conditions for F

as a result of recollement ([11], 1.4.24).

Consider pH0(C1) first; it is enough to show j∗pH0(C1) = i∗pH0(C1) = 0 since if pH0(C1)

had nonempty support, the support would intersect the supports of either of these complexes.

Now j∗ is perverse t-exact by Theorem 5.4.1 (ii), so applying j∗ to the first triangle in (5.4.4)
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and then taking pH0, which commutes with j∗, we obtain

· · · −→ pH0(j∗j′!G) −→ j∗F −→ pH0(j∗C1)
[1]
−→ · · · (5.4.5)

Since grs represents the open subfunctor in g of regular semisimple elements, the following

diagram is cartesian

grs
η grs

gη g

j′η

jrs

j′

j

(5.4.6)

where jrs : grs
η → grs is induced from η → S and j′η : grs

η → gη is the open immersion induced

from j′. Hence base-change yields j∗j′! ≃ j′η!j
rs∗ and

jrs∗G = jrs∗j′∗F ≃ j′∗η (j
∗F) = j

′∗
η (R(πη)∗Qℓ[dim g])

so that the long exact sequence (5.4.5) is

· · · −→ pH0(jη!(R(πη)∗Qℓ[dim g])|grs
η
) −→ R(πη)∗Qℓ[dim g] −→ pH0(j∗C1)

[1]
−→ · · · (5.4.7)

Now the second-left arrow in (5.4.7) is surjective since R(πη)∗Qℓ[dim g] is an IC sheaf, and

j∗pH1(j′!j
′∗F) = 0 since j′!j

′∗ is right t-exact, again by recollement ([11], Prop. 1.4.12). We

therefore get j∗pH0(C1) ≃ pH0(j∗C1) = 0. A similar argument yields i∗pH0(C1) = 0, via

long exact sequence

· · · −→ pH0(i∗j′!G) −→ i∗F −→ pH0(i∗C1)
[1]
−→ · · · (5.4.8)

and i∗j′!G ≃ j′s!i
rs∗G ≃ j′s!R(πs)∗Qℓ[dim g]|grs

s
coming from base-change along diagram
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grs
s grs

gs g

j′s

irs

j′

i

(5.4.9)

where irs is induced from s→ S and j′s is the base-change of j′. We therefore yield pH0(C1) =

0. For pH−1(C2) we argue in an analogous manner, namely we apply t-exact functors j∗, i∗ to

the right triangle in (5.4.4) and show j∗pH−1(C2) = i∗pH−1(C2) = 0. For j∗pH−1(C2) = 0

the reasoning is parallel to showing j∗pH0(C1) = 0, since j∗j′∗ ≃ j′η∗j
rs∗ via flat base-change

along diagram (5.4.6); once again we reduce to j∗F being an IC sheaf and pH−1(j′∗j′∗F) = 0

as j′∗j′∗ is left t-exact ([11], Prop 1.4.12). Now t-exactness of i∗ yields exact sequence

· · · −→ i∗pH−1(C2) −→ i∗F −→ pH0(i∗j′∗G)
[1]
−→ · · · (5.4.10)

induced from the right triangle in (5.4.4), but we cannot immediately conclude by a standard

base-change theorem. Consider instead the open/closed decompositions

g̃rs j̃′−→ g̃
ĩ′←− g̃′ := g̃ \ g̃rs

g̃rs
s

j̃′s−→ g̃s
ĩ′s←− g̃′s = g̃s \ g̃rs

s

induced from the respective decompositions on g, gs and their Grothendieck alterations π, πs.

Together with ĩ : g̃s → g̃, ĩrs : g̃rs
s → g̃rs, these maps fit into commutative diagrams

g̃rs
s g̃rs g̃′s g̃′

g̃s g̃ g̃s g̃

j̃′s

ĩrs

j̃′ ĩ′s

ĩ|g̃′s

ĩ′

ĩ ĩ

(5.4.11)
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by the same token as before. We aim to show i∗j′∗G ≃ j′s∗i
rs∗G. Via the Grothendieck alter-

ation π, diagram (5.4.9) and the left diagram in (5.4.11) fit into the following commutative

cube diagram (5.4.12), all of whose faces are cartesian:

g̃rs
s g̃rs

g̃s g̃

grs
s grs

gs g

ĩrs

πrs
s

j̃′s
πrs

j̃′ĩ

πs
irs

j′s j′
i

π
(5.4.12)

Here πrs, πrs
s denote the obvious restrictions of π. Now, suppressing that π∗ is derived

for notation purposes, i∗j′∗G becomes

i∗ ◦ j′∗ ◦ j′∗ ◦ π∗Qℓ[dim g] ≃ i∗ ◦ j′∗ ◦ πrs
∗ ◦ j̃′∗Qℓ[dim g]

≃ i∗ ◦ π∗ ◦ j̃′∗ ◦ j̃′∗Qℓ[dim g] ≃ πs∗ ◦ ĩ∗ ◦ j̃′∗ ◦ j̃′∗Qℓ[dim g] ≃ πs∗ ◦ ĩ∗ ◦ j̃′∗Qℓ[dim g]

via proper base-change along the right-face and front-face diagrams, and similarly j′s∗irs∗G

becomes

j′s∗ ◦ irs∗ ◦ j′∗ ◦ π∗Qℓ[dim g] ≃ j′s∗ ◦ irs∗ ◦ πrs
∗ ◦ j̃′∗Qℓ[dim g]

≃ j′s∗ ◦ πrs
s∗ ◦ ĩrs∗ ◦ j̃′∗Qℓ[dim g] ≃ πs∗ ◦ j̃′s∗ ◦ ĩrs∗ ◦ j̃′∗Qℓ[dim g] ≃ πs∗ ◦ j̃′s∗Qℓ[dim g]

via proper base-change along the right-face and back-face diagrams. Then i∗j′∗G ≃ j′s∗i
rs∗G

precisely when ĩ∗j̃′∗Qℓ ≃ j̃′s∗Qℓ, ignoring the dimension shifts. To show this, take the stan-

dard exact triangle (on g̃)

ĩ′∗̃i
′ !Qℓ −→ Qℓ −→ j̃′∗Qℓ

[1]
−→ (5.4.13)
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We have ĩ′ !Qℓ ≃ Qℓ[−2](−1) by Lemma 5.4.3, which we prove right after this theorem.

Applying the t-exact functor ĩ∗ : Dbc(g̃) → Dbc(g̃s) induces the following diagram from tri-

angle (5.4.13) and the two diagrams in (5.4.11), where the vertical arrows are base-change

morphisms:

ĩ∗̃i′∗Qℓ[−2](−1) Qℓ ĩ∗j̃′∗Qℓ

ĩ′s∗̃i|∗g̃′sQℓ[−2](−1) Qℓ j̃′s∗Qℓ

≃ ≃

+1

h

+1

The left vertical arrow is an isomorphism by proper base-change, and so is the middle

vertical arrow, hence h is also an isomorphism (eg. by the five lemma). We conclude that

i∗j′∗G ≃ j′s∗i
rs∗G and so the long exact sequence (5.4.10) is

· · · −→ i∗pH−1(C2) −→ R(πs)∗Qℓ[dim g] −→ pH0(j∗sR(πs)∗Qℓ[dim g]|grs
s
)

[1]
−→ · · · (5.4.14)

so that i∗pH−1(C2) = 0 as R(πs)∗Qℓ[dim g] is an IC sheaf. This yields F ≃ j′!∗G = j′!∗j
′∗F

so F is indeed an IC sheaf on g.

Lemma 5.4.3. Let g be a Chevalley OK–algebra so that gη and gs are simple Lie algebras

of the same Dynkin type, and fix a torus h and Borel b. Let χ̃ : g̃→ h be the adjoint bundle

associated to (b, h) and write ĩ′ : g̃\ g̃rs → g̃ for the inclusion of the complement of the

preimage of grs under the Grothendieck alteration. Then ĩ′!Qℓ ≃ Qℓ[−2](−1).

Proof. Call g̃′ = g̃\ g̃rs, then we aim to show that g̃′ is smooth over S. We first show it is

flat. As a consequence of Proposition 3.5.3, restricting χ̃ to χ̃′s : g̃′s → hs ≃ Ark we have

that every fiber is smooth over k, so we get flatness of χ̃s as follows: if y = χ̃′s(x), the

associated local homomorphism OAr,y → Og̃′s,x
has regular source and a regular fiber ring

F = Og̃′s,x
/myOg̃′s,x

, so we may pick a regular system of parameters (x1, · · · , xr) for OAr,y

and (y1, · · · , ys) in Og̃′s,x
so that their images in F form a regular system of parameters. We
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have

dim(Og̃′s,x
) = dim(OAr,y) + dim(F )

so (x1, · · · , xr, y1, · · · , ys) generates the maximal ideal of Og̃′s,x
and so Og̃′s,x

is regular. Then

by miracle flatness ([62, Tag 00R4]) we get χ̃′s flat. Since every fiber of χ̃′s is smooth and

reduced, we get in fact that χ̃′s is smooth, hence g̃′s is smooth over k and a similar analysis

yields g̃′η smooth over K.

The same local algebra argument in the previous paragraph yields g̃′ flat over S, with a

minor modification on the local rings: if Spec(OK) → g̃′ is an OK -valued section mapping

the closed point to x ∈ g̃′, then it suffices to show the induced local homomorphism OK →

Og̃′,x is flat, which follows from ([46], Thm. 23.7 (ii)2) as Og̃′,x ⊗ k ≃ Og̃′s,xs
. Now as

the generic and special fiber are smooth we get that g̃′ is also smooth over S. Then the

proof of ([5], Thm. 2.2.13) shows pair (g̃′, g̃) is smooth of relative codimension 1, so that

ĩ′!Qℓ ≃ Qℓ[−2](−1), completing the claim.

Corollary 5.4.4. Let S ⊂ g be a relative Slodowy slice at a fiberwise subregular nilpotent

OK-section x ∈ Ng(OK). Let πS : S̃ := π−1(S) −→ S be the restriction of the Grothendieck

alteration to S̃. Then FS = RπS∗Qℓ[dimS] is a relative IC sheaf.

Proof. The arguments of Theorem 5.4.2 carry over to this setting as soon as we have that

the version of πS over a geometric point of Spec(OK) is a small morphism. So we reduce to

the case of k an algebraically closed field, x ∈ Ng(k) a subregular nilpotent element in Lie

algebra g over k, and S the canonical Slodowy slice at x, transverse to its orbit (‘canonical’

here means that, in light of Lemma 4.1.2, any such Slodowy slice has locally the form of the

slice described in ([57], §7.4)).

In this setting we know S is transverse to every adjoint G-orbit ([57], §7.4 Corollary).

2. Note that the assumption that B is flat in loc. cit. is not needed; see Theorem 51 on the modernized
edition at https://aareyanmanzoor.github.io/assets/matsumura-CA.pdf.
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Take a stratification of g into locally closed subsets

g = X−1 ⨿ (X0 \X−1)⨿
∐
n≥1

Xn, X−1 = grs, Xn = {x | dim(π−1(x)) = n} (n ≥ 0)

which, after a possible refinement, induces a stratification on S. By transversality, S∩Xn = ∅

since S meets only the regular and subregular orbit in Ng, so S = S1 ⨿ S2 ⨿ S3 where

Si = S ∩Xn−2, and for any y ∈ Si we have

dim(π−1S (y)) ≤ 1

2
(dim(S)− dim(Si))

with equality if and only if i = 0 (where we get the dense open stratum S ∩ grs. The

only nontrivial case is y ∈ S3 as dim(π−1S (y)) = 1; since by Theorem 4.6.2 we have that

S −→ h//W realizes a miniversal deformation of surface singularity x ∈ Ng ∩ S, locus S3

consists of the nearby singularities lying over discriminant divisor ∆ ⊂ h//W , hence by

flatness dim(S3) = r − 1. The above inequality therefore is just 1 < 3
2 .

5.5 Weyl–Springer actions.

We retain the definitions and assumptions of Section 3.1. In the setting of Proposition

3.5.3 and Theorem 5.4.2, we have seen that the Grothendieck alteration π restricted to

πrs : g̃rs −→ grs is a finite étale W -torsor so that G = Rπ∗Qℓ|grs ≃ πrs
∗ Qℓ is a lisse sheaf on

grs. To describe the W -action on it, we define an auxiliary geometric vector bundle related

to g̃ as follows. Let

g̃T := {(gT, x) ∈ G/T ×S g | x ∈ Adg(h)} ↪−→ G/T ×S g (5.5.1)

Here quotient G/T is represented by a smooth quasi-affine S-scheme via ([19], Thm. 2.3.1).

Projection to the second factor in (5.5.1) yields a morphism ρ : g̃T −→ g; note ρ is not
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necessarily proper like π, since G/T is in general only fiberwise quasi-affine. Projection to

the first factor yields a morphism g̃T −→ G/T , and the arguments of Lemma 3.5.1 (except

Zariski-local triviality) carry over to show:

Lemma 5.5.1. g̃T is a smooth étale-locally trivial G-torsor over G/T with fiber h.

Define a right W -action on g̃T via (gT, x) ·w = (gnwT, x) where nw ∈ NG(T ) is a lift of

w. The map

G/T ×S h −→ g̃T , (gT, h) 7→ (gT,Adg(h)) (5.5.2)

is a W -equivariant isomorphism, where the left-hand side is equipped with the W -action

described in Definition 3.2.2 (ii). We also define a morphism ϕ : G/T ×S grs −→ G/B×S grs

via (gT, x) 7→ (gB, x) and set g̃rs
T = {(gT, x) ∈ g̃T | x ∈ grs}.

Lemma 5.5.2. Restricting ϕ to G/T ×S hrs induces an isomorphism g̃rs
T ≃ g̃rs.

Proof. It is clear that G/T ×S hrs ≃ g̃rs
T via the isomorphism in (5.5.2) since grs = AdG(hrs).

As before, by the fibral isomorphism criterion ([27], 17.9.5) it suffices to pass to geometric

points η and s of base S and show we have an isomorphism over K and k. This is the content

of ([38], §13.4 Lemma); we only explain the bijection input over field k.

If (gT, h) ∈ g̃rs
T (k) then h ∈ gLie(T )g−1 i.e. gTg−1 ⊆ CG(h) = T , so g ∈ NG(T )

and we may write ρ−1(h) = {(nwT, h) | w ∈ W}. Similarly if (gB, h) ∈ g̃rs(k) we have

h ∈ Lie(gBg−1) so h ∈ Lie(T ′) for some maximal torus T ′ ⊆ gBg−1. At the same time

T ′ ⊆ CG(h) = T so T ′ = T and T, g−1Tg are conjugate in B, say via b ∈ B(k). It follows

that gb = nw ∈ NG(T ) so gB = nwB and π−1(h) = {(nwB, h) | w ∈ W}. Hence ϕ maps

ρ−1(h) bijectively to π−1(h).

Corollary 5.5.3. ρrs : g̃rs
T → grs is a finite étale W -torsor and G = πrs

∗ Qℓ ≃ ρrs∗ Qℓ.

Proof. This is a direct consequence of Proposition 3.5.3 since ρrs = πrs ◦ ϕ and πrs is a

finite étale W -torsor. By Lemma 5.5.2 we have a W -equivariant isomorphism g̃rs
T ≃ g̃rs so

G ≃ πrs
∗ ◦ ϕ∗Qℓ = ρrs∗ Qℓ.
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The upshot of this construction is that we may define the W -action on G explicitly via

its description as ρrs∗ Qℓ. The stalk of constant sheaf Qℓ at any geometric point x → g̃rs
T

is generated by a distinguished basis element vx, and for w ∈ W we have an isomorphism

iw : w∗Qℓ → Qℓ so that the map on stalks is vx·w−1 7−→ vx via the right W -action on g̃rs
T .

Applying finite map ρrs∗ to all iw and using ρrs ◦ w = ρrs we have

ρrs∗ Qℓ = (ρrs ◦ w)∗Qℓ ≃ ρrs∗ w∗Qℓ
iw−→ ρrs∗ Qℓ (5.5.3)

where the rightmost map is denoted iw again by abuse of notation. By functoriality this is

an automorphism of ρrs∗ Qℓ and on each stalk at ρrs(x) we have

(ρrs∗ Qℓ)ρrs(x) = ⟨vx·u−1 | u ∈ W ⟩

so that (5.5.3) maps basis vectors vx·u−1
iw7−→ vx·(u−1w). One checks iw1w2 = iw1 ◦ iw2 and

so we obtain an algebra homomorphism

Qℓ[W ] −→ End(ρrs∗ Qℓ) ≃ End(πrs
∗ Qℓ)

Via the intermediate extension functor we get an induced action on F = Rπ∗Qℓ as follows;

recall here that j′ : grs ↪−→ g, i′ : g \ grs ↪−→ g are the open/closed decompositions of g coming

from the gluing construction.

Lemma 5.5.4. Sheaf F ≃ j′!∗G is W -equivariant via canonical isomorphism

EndPerv(grs)(G) ≃ EndPerv(g)(j
′
!∗G)

Proof. Both perverse sheaf categories here are assumed to come from the relative perverse
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t-structures defined in Section 5.4. Via adjunction

Hom(G,G) = Hom(j′∗j′!G,G) ≃ Hom(j′!G, j
′
∗G) ≃ Hom(pH0(j′!G),

pH0(j′∗G)) (5.5.4)

where the last (canonical) isomorphism follows from j′!G ∈
p/SD≤0, j′∗G ∈ p/SD≥0. Since i′∗

is t-exact, for any E in Perv(g \ grs) we have

Hom(pH0(j′!G), i
′
∗E) = Hom(j′!G, i

′
∗E) = Hom(i′∗ ◦ j′!G, E) = 0

so pH0(j′!G) has no nontrivial quotient objects from i′∗Perv(g \ grs). Similarly, by the

gluing construction we have i′! ◦ j′∗ = 0 hence pH0(j′∗G) has no nontrivial subobjects from

i′∗Perv(g \ grs). So by the definition of j′!∗G, the right-hand side in (5.5.4) is precisely

End(j′!∗G) and the W -equivariance follows formally (see e.g. [39], §III.15.3).

Definition 5.5.5.

(i) For a general OK -section x of the nilpotent scheme Ng, we denote by

Bx := π−1(x) = g̃ ×g imx

its projective Springer fiber with the reduced subscheme structure coming from g̃. Here

imx is the closure of the image of section x : Spec(OK)→ Ng.

(ii) The Springer representations are Hi(Bx,Qℓ) equipped with a W -action inherited from

the W -action on F = Rπ∗Qℓ constructed above, by taking stalks and proper base-

change.

If we consider the special fiber xs ∈ Ng(k) of x, then by Proposition 3.5.3 we get that

the special fiber of Bx is Bxs , the usual Springer fiber corresponding to a nilpotent element

of gs. Since Bx is projective over O, and the proper base-change isomorphism is canonical
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([25], Thm. 7.3.1), we obtain an isomorphism of W -modules

Hi(Bx,Qℓ) ≃ Hi(Bxs ,Qℓ)

where the right-hand side has the classical Springer action of W defined via the method of

Borho–MacPherson ([13], §2.6). In fact, in very good characteristic more is true:

Lemma 5.5.6. We have Hi(Bxs ,Qℓ) ≃ Hi(Bxη ,Qℓ) canonically as Galois modules.

Proof. Let f : Bx → Spec(OK) be the projective structure map and let ν : B̃x → Bx be the

normalization; concretely we have∐r
i=1(P1S)i = B̃x Bx =

⋃r
i=1(P1S)i

S = Spec(OK)

ν

f̃
f

where structure map f̃ is proper and smooth. In particular Rif̃∗Qℓ is a local system on S

and so on stalks we have

(Rif̃∗Qℓ)s
∼−→ (Rif̃∗Qℓ)Iη ≃ (Rif̃∗Qℓ)η (5.5.5)

Here the first isomorphism is the cospecialization map given by the data of an étale sheaf

on S. Now by proper base–change (as f̃ and the special and generic fiber counterparts

f̃s, fs, f̃η, fη are all proper) we have

Hi(Bxs ,Qℓ) ≃ Ri(fs)∗Qℓ
∼→ Ri(f̃s)∗Qℓ ≃ (Rif̃∗Qℓ)s

Hi(Bxη ,Qℓ) ≃ Ri(fη)∗Qℓ
∼→ Ri(f̃η)∗Qℓ ≃ (Rif̃∗Qℓ)η

Hence, together with isomorphism (5.5.5) we have Hi(Bxs ,Qℓ) ≃ Hi(Bxη ,Qℓ) canonically.
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The case of interest here is i = 2, whence

H2(Bxs ,Qℓ) ≃
r⊕
i=1

Qℓ(−1) ≃ H2(Bxη ,Qℓ)

where the I–action factors through the mod ℓn cyclotomic characters on the Tate twists,

hence is trivial as K = Kunr. The essential ingredient here is that x is fiberwise subregular

and characteristic p is very good, so that both the generic and special subregular Springer

fibers are the same arrangement of r projective lines ([68], §1.3.8).

The above lemma may be interpreted as a ‘shadow’ of the more general principle that,

even though a priori our base scheme is Spec(OK), the adjoint quotient χ and its “resolved”

version χ̃ have the same properties over K and over k of very good characteristic.

We now make a few remarks on the nature of Springer representations. The surprising fact

about them is that the W–action on Hi(Bx,Qℓ) is not induced by a “physical” W–action on

the Springer fiber. Nevertheless, Springer ([60], Thm. 6.10) defined a natural correspondence

between Hi(Bx,Qℓ) and representations of Weyl group (by a manner different from Borho–

MacPherson).

Theorem 5.5.7 (Springer correspondence). Assume G is a simple, simply–connected, simply–

laced Lie group G over algebraically closed field k of good characteristic, and let x ∈ N (k)

be a nilpotent element and C = CG(x)/CG(x)
◦ be the connected component group of its

centralizer. Set n = dim(Bx) and let χ be the character of an irreducible representation of

C. There is a natural graded W -action on H•(Bx,Qℓ) commuting with the C-action, and in

particular

H2n(Bx,Qℓ) ≃
⊕
χ∈Ĉ

χ⊗ Vx,χ

where each non-zero χ-isotypic component Vx,χ is an irreducible W -representation. Further-

more each irreducible representation of W appears as a Vx,χ for a unique (up to conjugacy)
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pair (x, χ).

The convention we use here is that the trivial W -representation corresponds to x regular

nilpotent and trivial χ, and the sign W -representation corresponds to x = 0, where one

investigates the cohomology of the full flag variety B. This is the opposite convention of [60]

but coincides with [13]; in fact the Springer representations we consider differ from [60] by a

twist of the sign character.

In our setting, x is subregular (so n = 1) and C is trivial for the ADE-type Lie algebras

since the centralizer is connected ([57], §7.5 Lemma 4). In this case it is known (see e.g. [68],

§1.5.17) that the corresponding Springer representation on H2(Bx,Qℓ) ≃ Qrℓ is isomorphic to

the irreducible reflection representation ofW on h∨, which in the An-case (whereW = Sn+1)

is just the standard Sn+1-representation.

5.6 Monodromy Weyl actions and the proof of the main theorem.

We now go back to the setting of Sections 5.1 and 5.2, assuming in particular S = Spec(OK)

is a complete trait and char(k) is very good. Since we require notation from previous sections

as well, we gather here the relevant objects.

Notation 5.6.1. Let X/S be an integral proper flat surface with smooth generic fiber Xη

and singular special fiber Xs containing a unique RDP xs ∈ Xs(k). Let r be the rank of the

Dynkin diagram associated to the RDP (Theorem 2.1.3 (ii)).

If g is the rank–r simple Chevalley OK -algebra associated to RDP xs, we may identify

xs with a generic point of the unique subregular orbit inside the nilpotent cone of the Lie

k-algebra gs ([57], §6.4 Thm.). Extend xs to a fiberwise subregular element x ∈ g(OK)

(Definition 3.3.4) and let S be the affine relative Slodowy slice which is transverse at x in

the sense of Section 4.1.

Unless noted otherwise, Sh, resp. S̃h denote the geometric fibers of χ, resp. χ̃ over geometric

points (i.e. field-valued points) h → h//W and h → h. The respective generic and special
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fibers will be denoted (S)η and (S)s, and similarly for S̃ so that we can distinguish them

from the geometric fibers of χ, χ̃.

By Corollary 5.2.3 the monodromy action of I = Gal(η/η) on H2(Xη,Qℓ) depends only

on Spec(ÔX ,xs), which by Remark 2.5.7 we can view as an algebraic deformation of the

affine singularity Spec(ÔXs,xs) over base S. In other words, by Theorem 4.6.2 we have two

cartesian diagrams

X(xs) = Spec(ÔX ,xs) S Z = S ×h//W h h

S h//W S h//W

χ ψ

ϕ ϕ

(5.6.1)

where ϕ is induced by miniversality, and the right diagram is the pullback of ϕ along finite

cover ψ. Here χ is a map of henselianized schemes, h and W are part of the Lie algebraic data

associated to RDP xs (see Section 4.6) and by Remark 4.6.4 we may identify the miniversal

base as

h//W ≃ Spec(OK [[t1, · · · , tr]])

Lemma 5.6.2. Let X/S, xs ∈ Xs(k) and ψ : h→ h//W be as above.

(i) There exists a finite ramified extension L/K and its associated trait SL = {ηL, s},

which is minimal with respect to the following property: the base-change XL/SL admits

a local affine model of the RDP singularity xs ∈ Xs(k) which has a simultaneous

resolution.

(ii) If Bxs is the exceptional divisor of the minimal resolution of Xs induced by the simul-

taneous resolution of XL, then the stalks of the nearby cycles are

(RΨXQℓ)xs
∼−→ RΓ(Bxs ,Qℓ) (5.6.2)
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and the isomorphism is Gal(η/η)-equivariant.

Proof. For part (i), note that S → h//W maps s 7→ 0 ∈ h//W (k) and η 7→ hrs//W (K) since

the generic fiber Xη is smooth. Thus, Z is a finite flat, generically étale S-scheme and so in

particular it is S-affine, say Z = Spec(R) for some OK -algebra R. By assumption R⊗OK
K

is a finite étale K-algebra, whence

R⊗OK
K ≃

∏
i

Li

is a finite product of finite separable extensions Li/K, totally ramified since K = K̆. From

the right diagram in (5.6.1) we obtain a cartesian diagram∐
i Spec(Li) hrs

η hrs//W

ψrs

where ψrs is a Galois W -cover, hence we get a transitive W -action on
∐
i Spec(Li). So all

extensions Li/K are isomorphic and we may fix one L = Li with Galois group Gal(L/K) =

W1 ⊆ W , the stabilizer of Spec(L) inside
∐

Spec(Li).

Since R is excellent, we can replace it with its normalization R −→ R̃ ≃
∏
iOLi

which

is finite over R. In particular we get a map

SL = Spec(OL) −→ Z̃ = Spec(R̃) −→ h

and via Theorem 4.6.2 we may produce a fiber product from this map and the ‘versal’

simultaneous resolution χ̃ : S̃ −→ h. In other words, define Y via the cartesian square

Y = SL ×h S̃ S̃

SL h

χ̃ (5.6.3)
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By the universal property of pullbacks we get a unique map

πL : Y −→ X(xs),L = X(xs) ×S SL ≃ Spec(ÔX ,xs ⊗OK
OL)

We show πL is the desired simultaneous resolution, i.e. that Y simultaneously resolves the

RDP singularity of the local affine neighborhood X(xs),L in XL. Scheme Y is smooth over

SL via pullback in (5.6.3) and πL is proper as the base–change of proper morphism π : S̃ →

S ×h//W h along SL → h. Lastly we need only pass to the special fiber and note that, via

proper base–change, the induced map (πL)s : Ys → (X(xs),L)s = (X(xs))s is just the minimal

resolution of surfaces S̃0 → S0, where the subscript denotes the fiber over zero, so we are

done.

To show that L/K has minimal degree, let M/K be any finite extension so that XM has

a local model of the singularity over SM = Spec(OM ) admitting a simultaneous resolution.

Via diagram (5.6.1) we obtain a non-zero morphism

SM −→ Z̃ ≃
∐
i

Spec(Li) −→ SL

exhibiting M as an extension of L as well.

Finally, we show (ii). Part (i) together with ([7], Thms. 1 and 2) implies that over base

SL there exists a simultaneous resolution π̃L : X̃ → XL, where X̃ is an algebraic space; note

π̃L is obtained from the ‘local model’ resolution πL of (i). Since the fibers of X̃ are smooth

2–dimensional, they are schemes themselves, thus in particular RΨX̃Qℓ makes sense as a

sheaf on X̃s. Since the map of generic fibers (π̃L)ηL : X̃ηL → (XL)η is an isomorphism by

construction, proper base-change gives

RΨXQℓ = RΨXL((π̃L)η∗Qℓ) ≃ R(π̃L)s∗RΨX̃Qℓ ≃ R(π̃L)s∗Qℓ
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as X̃ is smooth. Passing to the stalk at singularity xs ∈ Xs(k) yields (5.6.2) since the

exceptional divisor is π̃−1L (xs) by definition.

We now advance towards defining a W -action on the nontrivial nearby cycles stalk

(RΨXQℓ)xs ≃ RΓ(Bxs ,Qℓ) mimicking the monodromy Weyl action defined in ([58], §4.2

and §4.3); we will eventually identify this new action with the Springer W -action as it is

given in Theorem 5.5.7.

By Lemma 5.5.2 we have that

χ̃rs : g̃rs ≃ G/T ×S hrs −→ hrs

is just the projection to the second factor, whence we can restrict the simultaneous resolution

diagram (3.5.3) to obtain a cartesian square

g̃rs grs

hrs hrs//W

χ̃rs

πrs

χrs

ψrs

where the horizontal maps are Galois W -torsors. The content of the following lemma ensures

the square stays cartesian when we restrict the Grothendieck alteration to the Slodowy slice

(or, equivalently, when we restrict diagram (4.6.1) to the regular semisimple locus). Below

we set Srs = S ×g grs and S̃rs = S̃ ×g̃ g̃
rs3.

Lemma 5.6.3 ([61], Lem. 3). The following diagram is cartesian.

S̃rs Srs

hrs hrs//W

χ̃rs

πrs

χrs (5.6.4)

3. One needs to ensure these fiber products are nonempty. To this end, one observes that Sη and Ss
intersect only regular and subregular orbits, which are nonempty ([57], §5.5).
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The desired W -action will in a sense follow from the “monodromy” of diagram (5.6.4).

We first note a ‘homotopical’ lemma for ℓ-adic cohomology. It is originally due to Springer

([61], Prop. 1) but Laumon has generalized it to the relative scheme setting ([42], Lemme

5.5), and this is the version we use.

Lemma 5.6.4. Let f : X → S be an S-scheme endowed with a Gm,S-action contracting X

to a section p : Y ≃ S and let F be a Gm-equivariant sheaf on X. Then Rf∗F ≃ p∗F|Y .

Lemma 5.6.5. If S̃0 is the fiber of χ̃ over the zero OK-section of h, then we have canonical

isomorphisms

Hi((S̃)η,Qℓ)
∼−→ Hi((S̃0)η,Qℓ)

∼−→ Hi(Bxη ,Qℓ) (5.6.5)

Hi((S̃)s,Qℓ)
∼−→ Hi((S̃0)s,Qℓ)

∼−→ Hi(Bxs ,Qℓ) (5.6.6)

Proof. Recall that, by Definition 4.5.2, S, S̃ and h are equipped with appropriate Gm,S-

actions so that both Rπ∗Qℓ and Rχ̃∗Qℓ are Gm,S-equivariant sheaves; the first and last

actions contract S and h to x and the origin, respectively. Let f : S̃ → S and g : S → S be

the structure morphisms over S = Spec(OK), then by the Leray spectral sequence

E
pq
2 = Rpg∗(Rqπ∗Qℓ) =⇒ Rp+qf∗Qℓ

By Lemma 5.6.4, since the Gm,S-action on S contracts it to the fiberwise nilpotent subregular

section x ≃ S (with image im(x) ⊂ S), we have Epq2 = 0 for p > 0 and

Rqf∗Qℓ ≃ E
0q
2 = Rqπ∗Qℓ|im(x) (5.6.7)

Let j : η ↪−→ S and i : s ↪−→ S be the inclusions of the geometric generic and special points of
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the trait. By properness of π and base-change, (5.6.7) yields

j∗Rqf∗Qℓ ≃ j∗xηR
qπ∗Qℓ ≃ Hq(Bxη ,Qℓ) (5.6.8)

i∗Rqf∗Qℓ ≃ i∗xsR
qπ∗Qℓ ≃ Hq(Bxs ,Qℓ) (5.6.9)

where jxη : xη ↪−→ S and ixs : xs ↪−→ S are the inclusions of the generic and special fibers of

section x into S. Now the absolute version of the aforementioned Leray spectral sequence

E
pq
2 = Hp(S,Rqπ∗Qℓ) =⇒ Hp+q(S̃,Qℓ) yields isomorphisms

Hq((S̃)η,Qℓ)
∼−→ Hq(Bxη ,Qℓ), Hq((S̃)s,Qℓ)

∼−→ Hq(Bxs ,Qℓ) (5.6.10)

by ([61], Lemma 2), since (S)η and (S)s are Slodowy slices over K resp. k in the usual

sense ([57], §5.1). Proper base-change maps are canonical, hence all isomorphisms in (5.6.8),

(5.6.9) and (5.6.10) are canonical. Applying the same Leray spectral sequence argument to

the map π0 : S̃0 −→ S0, which is still Gm,S-equivariant (loc. cit., Lemma 2), we obtain after

base–change again that Hi((S̃0)η,Qℓ) ≃ Hi(Bxη ,Qℓ) and Hi((S̃0)s,Qℓ) ≃ Hi(Bxs ,Qℓ), so

that altogether we get the canonical isomorphisms (5.6.5), (5.6.6) induced from inclusions

Bx ↪−→ S̃0 ↪−→ S̃.

Proposition 5.6.6. For a geometric point h→ hrs//W we have Hi(Sh,Qℓ)
∼−→ Hi(Bxs ,Qℓ).

Proof. Note that h necessarily specializes to 0 ∈ h//W (k). We first investigate the case where

the residue field of h is k, following [61]: let h be a lift of h along W -cover ψ : h → h//W

and let L be the line connecting h and 0 in h, χ̃L : S̃L −→ L the Gm-equivariant restriction

of χ̃ to L. Note S̃L is Gm-stable by the action µ̃ defined in Section 4.5 (factoring through

Gm,S → Gm,k).

We claim E := Riχ̃L∗Qℓ is a lisse sheaf. E|L\{0} is locally constant since the map

Gm× S̃h −→ S̃L \ S̃0 given by (t, s) 7→ µ̃(t, s) is an étale covering. Now by ([62, Tag 03Q7])
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the stalk at zero is

E0 = Hi(S̃L ×L L(0),Qℓ), L(0) = Spec(Osh
L,0)

Applying the argument of Lemma 5.6.5 to Gm-equivariant map χ̃L (i.e. looking at

its associated Leray spectral sequence) we observe (Riχ̃L∗Qℓ)0
∼→ Hi((S̃)s,Qℓ) and hence

E0 ≃ Hi((S̃0)s,Qℓ) by Lemma 5.6.5, Equation (5.6.6).

As L(0) is a DVR there is a unique generic (geometric) point ηL of L(0) with specialization

ηL → 0. We then have

EηL ≃ Hi(S̃ηL ,F) ≃ Hi(S̃L ×L L(0),Qℓ)

with the first isomorphism due to E|L\{0} being locally constant, and the second isomorphism

due to χ̃L being smooth and ([22], p. 56). Altogether we get that cospecialization E0 → Eη

is bijective, so by the criterion for local constancy of sheaves ([62, Tag 0GJ7]) we conclude

that E is lisse. In particular Hi(S̃h,Qℓ) ≃ Hi((S̃0)s,Qℓ) ≃ Hi(Bxs ,Qℓ). We have S̃h ≃ Sh
via Lemma 5.6.4, since the Grothendieck alteration induces an isomorphism over the regular

semisimple locus, so altogether we get the desired isomorphism.

The case of h having zero-characteristic residue field works similarly by using Lemma

5.6.5, which yields Hi(Sh,Qℓ) ≃ Hi(Bxη ,Qℓ). By Lemma 5.5.6 we are therefore done.

We isolate from the proof a Weyl action of interest. Let αh : Hi(Sh,Qℓ) → Hi(Bxs ,Qℓ)

denote the isomorphism of Proposition 5.6.6. By Lemma 5.6.3, h → hrs is a lift of h and

so Sh ≃ S̃h. In the proof of Proposition 5.6.6 we constructed an isomorphism Hi(S̃h,Qℓ) ≃

Hi(Bxs ,Qℓ) and so in particular Hi(S̃h,Qℓ) ≃ Hi(S̃w·h,Qℓ), where w · h → hrs is a w–

translate of h under the reflection W–action on hrs. Thus h = ψ(h) = ψ(w · h) and
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Hi(S̃w·h,Qℓ) ≃ Hi(Sh,Qℓ), altogether giving the composite automorphism

Hi(Bxs ,Qℓ)
α−1h−→ Hi(Sψ(h),Qℓ) ≃ Hi(Sψ(w·h),Qℓ)

αw·h−→ Hi(Bxs ,Qℓ) (5.6.11)

Corollary 5.6.7. The Gal(L/K)-action on H2(Bxs ,Qℓ) is the restricton of the “monodromy”

W–action coming from the automorphisms αw·h ◦ α−1h in (5.6.11).

Proof. By Lemma 5.6.2 there exists a finite extension L/K so that the singularity of X/S

admits a simultaneous resolution. We therefore have that the monodromy action of Gal(η/η)

factors through finite quotient Gal(L/K), and we get a map Spec(OL)→ h with closed point

s 7→ 0 and generic point ηL 7→ h ∈ hrs; let h be the geometric point over h (NB. this is

different than h defined in Proposition 5.6.6; here h→ hrs).

We also set χ′ : S ′ → h to be the base–change of χ along ψ : h→ h//W . The singularity

xs ∈ Xs(k), viewed as the generic point in the subregular orbit of S0, is fixed by the W–cover,

so that χ′ is still a map of henselianized schemes (S ′ completed at xs and h completed at 0).

Let RΨ0
hQℓ ∈ Db(S ′0) be the sliced nearby cycles corresponding to data (xs, h, sp) with

sp : h → 0 (Definition 5.3.2). If i : S ′0 ↪−→ S
′ and j : S ′ ×h h(h) → S

′ are the respective

immersions, with j induced by the specialization map sp, we have

RΨ0
hQℓ = i∗Rj∗Qℓ

Now the Grothendieck alteration π : S̃ → S has Stein factorization S̃ → S ′ → S; we

denote S̃ → S ′ also by π. Then π is proper, and so the formation of

R←π ∗ : Db(S̃
←
×h h) −→ Db(S ′

←
×h h)

commutes with base–change on S ′ and h (see Section 5.3). Note that χ̃ : S̃ → h is smooth,

so RΨχ̃Qℓ ≃ Qℓ ([36], Ex. 1.7(b)) and in particular base–changing to S ′0 → S
′ and 0 → h
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yields (cf. Equation (5.1.2))

RΨ0
hQℓ ≃ R(π0)∗Qℓ (5.6.12)

Here π0 : S̃0 → S ′0 is the induced minimal resolution of surface S ′0, and the left-hand side

is RΨ0
h(R(π(h))∗Qℓ) ≃ RΨ0

hQℓ since π(h) : S̃ ×h h(h) → S ′ ×h h(h) is an isomorphism

by construction. Moreover the stalk of RΨ0
hQℓ at xs is equipped via (5.6.12) with the

monodromy W -action specified after the proof of Proposition 5.6.6.

On the other hand, by Proposition (3.4.3) χ′ is smooth (hence locally acyclic) outside the

finite set of isolated singularities of each fiber. Therefore by Theorem 5.3.4 the sliced nearby

cycles RΨ0
hQℓ are Ψ-good, i.e. they commute with any base-change on h. Base-changing to

Spec(OL) ↪−→ h yields the following computation of Milnor tube cohomology (see Remark

5.3.5 and Equation (5.3.4))

(RΨ0
hQℓ)xs ≃ RΓ(S ′ ×h h(h),Qℓ)

∼−→ RΓ(S ′ ×h h,Qℓ) ≃ (RΨXQℓ)xs (5.6.13)

where the middle restriction isomorphism is a consequence of Ψ-goodness and the last iso-

morphism follows upon identifying S ′×h Spec(OL) ≃ X(xs). The right-hand side of (5.6.13)

is naturally equipped with the monodromy Gal(L/K)-action (Section 5.1), so via this restric-

tion we see that the Gal(L/K)–action on H2(Bxs ,Qℓ) comes from restricting the monodromy

W -action on H2(Bxs ,Qℓ).

Remark 5.6.8. Implicit in Corollary 5.6.7 is the fact that the monodromy W -action on

H2(Bxs ,Qℓ) comes from the action of πét
1 (hrs//W ) on the stalks H2(S̃h,Qℓ) of local sys-

tem R2χ̃∗Qℓ, as explained in ([61], §5). This retrieves the cohomological version of the

monodromy results in ([58], §4.2-4.3). In the complex situation, Slodowy proves a stronger

result, i.e. that Bxs is homotopy-equivalent to a general fiber of χ̃ and so we get a W -action

on the homotopy type of Bxs . By comparison, we obtain a weaker result here because we

cannot pass to the differentiable category the way Slodowy does over C.
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So far we have defined two W -actions on H2(Bxs ,Qℓ), the Springer W -action and the

monodromy W -action. We next show that they coincide, by adapting the argument of ([33],

§1.9) to our ℓ-adic setting. Since Bxs is defined over k, in the following proposition we may

work over k instead of S.

Proposition 5.6.9. The Springer and monodromy W -actions on H2(Bxs ,Qℓ) coincide.

Proof. Let h → 0 be a specialization from a point in hrs//W (k) and consider its associated

cospecialization map H2((S0)s,Rπ∗Qℓ)
cosp−→ H2(Sh,Rπ∗Qℓ). Since Rπ∗Qℓ|Sh≃ πrs

∗ Qℓ and

πrs is a finite étale W -cover, we have

H2(Sh,Rπ∗Qℓ) = H2(Sh, π
rs
∗ Qℓ) ≃ H2

( ∐
w∈W

S̃w·h,Qℓ
)
≃ H2((S̃0)s,Qℓ)⊗Qℓ[W ]

where h is a chosen lift of h in hrs yielding all other lifts w·h, and the last isomorphism follows

from Proposition 5.6.6. The right-hand side is further identified with Hi(Bxs ,Qℓ) ⊗ Qℓ[W ]

via Lemma 5.6.5, equipped with the monodromy W -action on the left. On the other hand

by proper base-change we have

H2((S0)s,Rπ∗Qℓ) ≃ H2(Bxs ,Qℓ) ≃ H2((S̃0)s,Qℓ)

with the latter isomorphism again due to Lemma 5.6.5, and the right-hand side is equipped

with the Springer W -action coming from the left-hand side and the Springer W -action on

Rπ∗Qℓ. These W -modules fit together into diagram

H2(Sh,Rπ∗Qℓ)
⊕

w∈W H2(S̃w·h,Qℓ) H2(Bxs ,Qℓ)⊗Qℓ[W ]

H2((S0)s,Rπ∗Qℓ) H2((S̃0)s,Qℓ) H2((S̃0)s ×W ·h,Qℓ) ≃ H2(Bxs ,Qℓ)⊗Qℓ[W ]

≃ ≃

cosp

≃ i

≃

where the bottom-right isomorphism is the Künneth map, the bottom row has H2(Bxs ,Qℓ)

equipped with the Springer W -action and the top row has H2(Bxs ,Qℓ) equipped with the
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monodromy W -action. The image of i is by definition H2(Bxs ,Qℓ)⊗Qℓ[W ]W ≃ H2(Bxs ,Qℓ),

so the right vertical isomorphism identifies the monodromy and Springer W -actions on

H2(Bxs ,Qℓ).

We conclude this section with the proof of parts (i) and (ii) of the Main Theorem 1.3.1.

Proof of Theorem 1.3.1 (i), (ii). By assumption p = char(k) is sufficiently good, so

p ∤ |Gal(L/K)| and hence the monodromy action of Gal(η/η) is tame, hence generated by

the Kummer character tℓ. We may therefore identify Gal(L/K) = ⟨tℓ⟩ with a cyclic subgroup

⟨w⟩ of W , and so by Proposition 5.6.9, Theorem 5.5.7 and Corollary 5.2.3 we have that the

monodromy action on H2(XK ,Qℓ) is the restriction to ⟨w⟩ of the reflection action of W on

h∨ ≃ H2(Bxs ,Qℓ). This retrieves (i), and by construction we achieve good reduction after

base-change L/K, yielding (ii) as well.

Corollary 5.6.10. Suppose the base S = Spec(OK) of model X intersects the discriminant

divisor ∆ ⊂ h//W transversely, then Gal(L/K) is a multiple of the Coxeter number.

Proof. As a consequence of Theorem 1.3.1 we have an equivalent description of the action

of monodromy in the complex case and the tame mixed-characteristic case. We may thus

identify the fundamental homogeneous generators of OK [h]W with coordinates on h//W ≃

Spec(OK [[t1, · · · , tr]]) so that the highest degree of a fundamental generator is Cox(g). Then

the line Spec(OK) is transverse to the discriminant if and only if all W -invariant polynomials

of degree < Cox(g) vanish on Spec(OK) ([58], p. 38). Conversely any Coxeter element

w ∈ W acting as a reflection on h ≃ h∨ has a 1-dimensional eigenspace for eigenvalue ζN ,

N = Cox(g), which is mapped to a transversal line in h//W under a degree-Cox(g) cover.

Since L is a field extension on which X/S admits a simultaneous resolution, we have that

Cox(g) = ord(w) | Gal(L/K).

A rephrasing of the above Corollary says that if S transversely intersects the discriminant

locus, then the monodromy Gal(η/η) acts through a Coxeter class in W .
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5.7 Explicit monodromy actions on degenerations.

This section concerns part (iii) of Theorem 1.3.1. For certain types of singularities we

may directly compute (up to conjugacy) the elements acting as monodromy operators on

H2(Xη,Qℓ). We assume the situation in Notation 5.6.1 once more, i.e. we work over a

complete trait S = Spec(OK) and consider flat proper surfaces X/S so that Xs has a

singularity of type An and p = char(k) is sufficiently good for the singularity (p > n + 1).

After coordinate change we have an affine neighborhood of the singularity (see Example

2.5.5)

Spec
( OK [[x, y, z]]

x2 + z2 + yn+1 + unπanyn−1 + · · ·+ u2πa2y + u1πa1

)
−→ Spec(OK) (5.7.1)

where ui ∈ O×K . In this case W = Sn+1 and the W -cover h −→ h//W is given in coordinates

by

Spec
(OK [[s1, · · · , sn+1]]

s1 + · · ·+ sn+1

)
−→ Spec(OK [[t1, · · · , tn]]),

(s1, · · · , sn+1) 7−→ σi(s1, · · · , sn+1), i = 2, · · · , n+ 1 (5.7.2)

where σi are the symmetric polynomials of i-th degree (see [64], §3 or [15], §2.7). The

full monodromy group W acts on H2(Bx,Qℓ) ≃ Qnℓ via the standard symmetric Sn+1-

representation. We also know in this case ([64]) that the base-changed miniversal family

over h is given by

V = {x2 + z2 + (y − s1) · · · (y − sn+1) = 0}

after suitably multiplying variables si by units in OK . Family V may then be simultaneously

resolved by means of the graph of the map

V −→ P1 × · · · × P1, (x, y, z) 7−→
([
x :

k∏
i=1

(y − si)
])n+1

k=1
(5.7.3)
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We describe here a general principle that will allow us to pass between the mixed-

characteristic setting of Spec(K) and the equal-characteristic setting of Spec(k((t))). The

following is a direct application of Abhyankar’s lemma ([26], §XIII.5).

Lemma 5.7.1. Let T = Spec
(OK [[t, u]]

tu− π

)
and Spec(OK), Spec(k[[t]])→ T be the fiber maps

induced respectively from u 7→ 1, u 7→ 0. Restricting to the open dense scheme T
[1
t

]
≃

Gm,OK
and the associated maps Spec(K) → Gm,OK

← Spec(k((t))) yields an isomorphism

of (tame) étale fundamental groups

πtame
1 (Spec(K), η)

∼−→ πét
1 (Gm,OK

, η)
∼←− πtame

1 (Spec(k((t))), s)

Under our restrictions on the characteristic, the ramified covers of K that we consider

are automatically tame, so in what follows we may view family (5.7.1) as a family over

Spec(k[[t]]) with parameter t instead of π for the purposes of ramification theory. We use this

fact implicitly in the statements below.

Proposition 5.7.2. Suppose we have a factorization x2+z2+(yr1−v1πb1) · · · (yrk−vkπbk)

of the family in (5.7.1) so that ri, bi ≥ 1, (ri, bi) = 1 and vi ∈ O×K . Then the associated

model achieves good reduction after a totally ramified base-change of order lcm(r1, · · · , rk)

and the element w ∈ Sn+1 acting as the monodromy operator has cycle-type (r1, · · · , rk).

Proof. Let f(y) = (yr1 − v1π
b1) · · · (yrk − vkπ

bk) ∈ OK [y]. By assumption f(y) = yn+1

for the mod π polynomial, and by the Newton polygon of f we get slopes µi = − biri , which

may appear with multiplicity (equal to the number of factors of form yri − πbi). Since OK

is henselian and the degrees ri are coprime to bi we get that each factor is irreducible by

Gauss’s lemma, hence the degree of its splitting field is divisible by ri. On the other hand

ri < p and OK contains all roots of unity prime to p so the splitting field degree is exactly

ri, yielding an ri-cycle in Sn+1.

Since any element of Sn+1 can be written as a product of disjoint cycles and disjoint
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cycles commute, we observe that f(y) splits after an extension of degree lcm(r1, · · · , rk),

corresponding to an element of cycle-type (r1, · · · , rk) as we may reorder the factors in

decreasing order of ri. The base-changed model then admits a (small) resolution of the

form (5.7.3) where the si correspond to the roots of f(y); in other words we get a smooth

model obtained as a base-change of S̃ → h to Spec(OL), where OL/OK is the unique totally

ramified extension of OK of degree lcm(r1, · · · , rk). Conjugacy classes in Sn+1 bijectively

correspond to cycle-types of this form, which proves the last statement.

Corollary 5.7.3 (Part (iii) of Theorem 1.3.1). Any conjugacy class in Sn+1 may act as the

monodromy operator on a surface family degenerating to an An-singularity.

For An-singularities, we derive another proof of Corollary 5.6.10 using the explicit equa-

tion of the miniversal deformation.

Corollary 5.7.4. Assume Spec(OK) intersects the discriminant divisor ∆ transversely,

then for the resulting model with an An-type singularity at the special fiber we have that

monodromy acts a Coxeter element.

Proof. We assume again that there is an affine étale neighborhood of the singular point in X

of the form {x2+ z2+ f(y) = 0} for f(y) = yn+1+ unπ
anyn−1+ · · ·+ u2π

a2y+ u1π
a1 with

ai ≥ 1 (otherwise the proof of Proposition 5.7.2 shows that we get a singularity of Am-type

for m < n when we reduce mod π). Viewing Spec(OK) as a line inside h//W , it intersects

∆ transversely exactly when it is not tangent to the tangent cone of ∆. The tangent cone

is V (σn+1) for σn+1 the (n + 1)-th symmetric polynomial generator of Sn+1. When the

affine étale neighborhood of the singular point in X is smooth, we satisfy the non-tangency

condition.

By the Jacobian criterion we see that the point corresponding to ideal (x, y, z, π) is

singular if and only if a1 ≥ 2 so we have a1 = 1. In this case f(y) is Eisenstein, hence

irreducible in OK by Gauss’s lemma. The Galois group of its splitting field therefore contains

93



an element of order n+1 i.e. an (n+1)-cycle, and it is cyclic, hence generated by an (n+1)-

cycle. We thus get the conjugacy class of Coxeter elements in Sn+1.

5.8 Higher rational singularities and beyond

The results of this chapter apply to rational singularities of multiplicity 2, but the argument

can be adapted to rational singularities of higher multiplicity. In [67], Wahl extends the ar-

gument of Brieskorn–Slodowy to general rational singularities by incorporating some results

of Artin ([7], §1 and §4).

The idea is as follows: given a rational singularity Spec(R), where R is a normal 2-

dimensional local ring with structure map to C, we have a space of deformations DefR and a

(smooth) space of deformations admitting a simultaneous resolution ResR along with a finite

morphism Φ : ResR → DefR ([7], Thm. 1). In the case of RDPs Φ is surjective (as every

deformation of an RDP admits a simultaneous resolution), but for higher multiplicities it is

not, and one calls its image the Artin component ArtR, an irreducible component of DefR.

If we take X = ˜Spec(R) → Spec(R) to be the minimal resolution of the rational singu-

larity, we may interpret ResR as a space of versal deformations of X. As the exceptional

divisor E ⊂ X contains rational curve components of various multiplicities, one may blow

down any (−2)-curves to obtain an intermediate variety X → Y → Spec(R), where Y now

contains RDPs corresponding to the blown-down (−2)-curves.

The method of Brieskorn–Slodowy may be adapted in this case to show that ResR =

DefX → DefY is finite Galois with Galois group
∏
iWi, where each Wi is the Weyl group

associated to a (largest) connected (−2)-configuration in the dual graph of divisor E, hence

corresponds to each RDP in Y . A cohomological argument due to Lipman ([67], §2) then

shows DefY ↪−→ DefR so that we overall get a finite branched cover ResR → ArtR with Galois

group
∏
iWi, similar to the RDP case h→ h//W .

The arguments of Wahl a priori work over C, but due to their functorial nature and
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results from this Chapter we can also extend the step involving DefX → DefY to mixed

characteristic, and then adapt Lipman’s argument to this setting too. Thus we get a complete

description of the monodromy of rational singularities in mixed characteristic, parallel to

results of Shepherd-Barron ([56]); details are currently being written up in a forthcoming

paper.

5.9 An application to K3 surfaces

In [32], Hassett–Tschinkel study invariants of derived equivalences of K3 surfaces defined over

C or local fields of equal and mixed characteristic. By a derived equivalence between two

K3 surfaces X and Y we mean an equivalence between Db(X) := Db(OX -Mod) and Db(Y ),

the respective bounded derived categories of coherent sheaves on X and Y .

One of their main results ([32], Prop. 31) is that, for derived equivalent K3 surfaces

defined over C((t)), the monodromy operator on H2 acting via a product of Weyl groups is

equivalent to both X, Y admitting integral models with an RDP K3 surface reduction. The

construction of such a model crucially uses the Torelli theorem and the relation between

monodromy and Weyl groups in the ADE case, which up to now was only available in the

complex case.

Our main theorem extends this observation when X, Y are also defined over a mixed

characteristic complete field, as long as the residue characteristic p is good (i.e. we are in

the tame ramification case). The argument of [32] applies in this context as well and we

find that the RDP reduction of a K3 surface depends only on a monodromy characterization

of its H2
ét, hence it depends only on the derived equivalence class of X. We summarize our

findings as follows.

Corollary 5.9.1. For a K3 surface defined over a mixed characteristic complete field with

suitably good residue characteristic p, admitting a model with RDP reduction is a derived

invariant.
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APPENDIX A

RELATIVE PERVERSITY OF NEARBY CYCLES

Throughout we use the following conventions: S is a noetherian scheme of finite type

over Z, and f : X → S is a noetherian S-scheme of finite type.

Such schemes admit a dimension function ([2], Exposé XIV) as follows: δS : |S| → Z

maps s 7→ dim({s}) and via f we obtain a canonical dimension function for X:

δ(x) = δS(f(x)) + trdeg(k(x)/k(f(x))) (A1)

For schemes equipped with dimension functions, the natural perverse t-structure we con-

sider is

pD≤0(X) = {F ∈ Db(X) | Hi(Fx) = 0 for i > −δ(x), x→ X} (A2)

It can be shown that the truncation functors preserve Db
c(X), that this perverse t-

structure is stable under Verdier duality and that any other choice of dimension function δ

would yield the same t-structure up to a locally constant shift. In the case of X/k finite-type

over a field this recovers the usual notion of middle perversity.

When S is a strictly henselian trait andX/S has a dimension function as in (A1), Drinfeld

has shown the following:

Proposition A1 ([11], Appendix A). If F ∈ Dbc(Xη,Λ) is perverse then RΨF [−1] ∈

Dbc(Xs,Λ) is also perverse.

The discrepancy between this result and perversity of nearby cycles without shift ([11],

Prop. 4.4.2) comes from a difference in the choice of dimension function δ; in this case, the

t-structure on Xη is shifted to the left by codim{η}(s) = 1.

We now return to the setting of Section 5.3 and consider nearby cycles over base S of

dimension ≥ 2. Let η ̸= s be two points of S so that s = s and η specializes to s. We may

check the perversity of the sliced nearby cycles (Definition 5.3.2) as follows:
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Lemma A2. Let K be the residue field of η in the above setting. Then there exists a

discrete valuation ring OK with fraction field K and a morphism Spec(OK) → S mapping

generic point ηK 7→ η and closed point sK 7→ s.

Proof. Omitted; see ([30], II.4.4) for a related statement.

Associated to RΨf (F) ∈ Db(X
←
×SS) we have the sliced nearby cycles RΨsη(F) ∈ Db(Xs),

which is also given by i∗Rj∗F|X(η)
, where i : Xs ↪−→ X and j : X(η) = X ×S S(η) → X(s).

We may also consider a variant of the slice construction given by

RΨs : Db(X)→ Db(Xs
←
×S S) (A3)

where RΨs(F) = (i
←
×S idS)∗RΨ(F). This is what Lu–Zheng call “sliced” nearby cycles in

[44] (and they refer to our sliced nearby cycles as “shredded” as RΨsη is a further restriction

of RΨs).

In the case where S is local henselian, we have an equivalence of Xs
←
×S S with the

fiber product of toposes X ×←
S
S (see [44], Lemma 4.1) and so, following Hansen–Scholze,

we call RΨs(F) relatively perverse if the slice RΨsη(F|X(η)
) ∈ Db(Xs) is perverse for all

specializations η → S(η) → S(s) = S. We may assume here η is a physical point of S and

the construction of RΨsη makes a choice of a geometric point η → η.

In good cases we may confirm that nearby cycles are relatively perverse in this sense:

Proposition A3. Suppose that pair (f,Qℓ) is Ψ-good and s → S is a geometric point so

that S = S(s). Then for any η ∈ S specializing to s we have that RΨsηQℓ[−codim{η}(s)] is

perverse.

Proof. By Lemma 2 we may construct a morphism ϕ : Spec(OK) → S from a DVR OK

with fraction field K = k(η) such that ϕ(ηK) = η and ϕ(sK) = s. By Ψ-goodness, formation

of RΨsηQℓ commutes with base-change ϕ, so if ϕ′ : XOK
→ X and ϕ′′ : XOK ,sK

←
×OK

ηK →
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Xs
←
×S η are the base-change morphisms induced by ϕ we have

(ϕ′′)∗RΨsηQℓ ≃ RΨ
sK
ηK ((ϕ′)∗Qℓ) ≃ RΨQℓ (A4)

where the right-hand side denotes the classical nearby cycles for XOK
→ Spec(OK) as in

([4], Exposé XIII). The latter is a sheaf on XOK ,sK

←
×OK

ηK ≃ XOK ,sK × BG, where

G = Gal(k(η)/k(η)). Thus there is a natural monodromy action of G on RΨsηQℓ and

Drinfeld’s argument (Proposition 1) adapts without change to show that RΨsηQℓ is perverse

up to a shift. The shift is determined by the difference between the naive t-structures on Xs

and Xη ↪−→ X(η), which the dimension function shifts to the left by codim{η}(s).

By the hypotheses on S coming from the above proposition, we yield the relative perver-

sity of RΨsQℓ.
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[11] A. A. Bĕılinson, J. Bernstein, and P. Deligne. Faisceaux pervers. In Analysis and

topology on singular spaces, I (Luminy, 1981), volume 100 of Astérisque, pages 5–171.

Soc. Math. France, Paris, 1982.

[12] R. Bezrukavnikov, I. Mirković, and D. Rumynin. Localization of modules for a

semisimple Lie algebra in prime characteristic. Ann. of Math. (2), 167(3):945–991,

2008. ISSN 0003-486X,1939-8980. doi:10.4007/annals.2008.167.945. URL https:

//doi.org/10.4007/annals.2008.167.945. With an appendix by Bezrukavnikov

and Simon Riche.

[13] W. Borho and R. MacPherson. Partial resolutions of nilpotent varieties. In Analysis

and topology on singular spaces, II, III (Luminy, 1981), volume 101 of Astérisque, pages

23–74. Soc. Math. France, Paris, 1983.

[14] A. Bouthier and K. Česnavičius. Torsors on loop groups and the Hitchin fibration. Ann.

Sci. Éc. Norm. Supér. (4), 55(3):791–864, 2022. ISSN 0012-9593,1873-2151.

100

https://doi.org/10.1016/0021-8693(74)90102-1
https://doi.org/10.1016/0021-8693(74)90102-1
https://doi.org/10.1016/0021-8693(74)90102-1
https://doi.org/10.1007/BF01231772
https://doi.org/10.1007/BF01231772
https://doi.org/10.1007/BF01231772
https://doi.org/10.1007/s002220050078
https://doi.org/10.1007/s002220050078
https://doi.org/10.1007/s002220050078
https://doi.org/10.4007/annals.2008.167.945
https://doi.org/10.4007/annals.2008.167.945
https://doi.org/10.4007/annals.2008.167.945


[15] E. Brieskorn. Über die Auflösung gewisser Singularitäten von holomorphen

Abbildungen. Math. Ann., 166:76–102, 1966. ISSN 0025-5831,1432-1807.

doi:10.1007/BF01361440. URL https://doi.org/10.1007/BF01361440.

[16] E. Brieskorn. Singular elements of semi-simple algebraic groups. In Actes du Congrès In-

ternational des Mathématiciens (Nice, 1970), Tome 2, pages 279–284. Gauthier-Villars

Éditeur, Paris, 1971.

[17] L. Bădescu. Algebraic surfaces. Universitext. Springer-Verlag, New York, 2001. ISBN

0-387-98668-5. doi:10.1007/978-1-4757-3512-3. URL https://doi.org/10.1007/97

8-1-4757-3512-3. Translated from the 1981 Romanian original by Vladimir Maşek

and revised by the author.

[18] D. H. Collingwood and W. M. McGovern. Nilpotent orbits in semisimple Lie algebras.

Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York,

1993. ISBN 0-534-18834-6.

[19] B. Conrad. Reductive group schemes. In Autour des schémas en groupes. Vol. I, volume

42/43 of Panor. Synthèses, pages 93–444. Soc. Math. France, Paris, 2014. ISBN 978-2-

85629-794-0.

[20] S. Cotner. Centralizers of sections of a reductive group scheme. arXiv e-prints, art.

arXiv:2203.15133, Mar. 2022. doi:10.48550/arXiv.2203.15133.

[21] S. Cotner. Springer isomorphisms over a general base scheme. arXiv e-prints, art.

arXiv:2211.08383, Nov. 2022. doi:10.48550/arXiv.2211.08383.

[22] P. Deligne and J. F. Boutot. Cohomologie étale: les points de départ. In Cohomologie

étale, volume 569 of Lecture Notes in Math., pages 4–75. Springer, Berlin, 1977. ISBN

3-540-08066-X; 0-387-08066-X. doi:10.1007/BFb0091518. URL https://doi.org/10

.1007/BFb0091518.
101

https://doi.org/10.1007/BF01361440
https://doi.org/10.1007/BF01361440
https://doi.org/10.1007/978-1-4757-3512-3
https://doi.org/10.1007/978-1-4757-3512-3
https://doi.org/10.1007/978-1-4757-3512-3
https://doi.org/10.48550/arXiv.2203.15133
https://doi.org/10.48550/arXiv.2211.08383
https://doi.org/10.1007/BFb0091518
https://doi.org/10.1007/BFb0091518
https://doi.org/10.1007/BFb0091518


[23] M. Demazure. Invariants symétriques entiers des groupes de Weyl et torsion. Invent.

Math., 21:287–301, 1973. ISSN 0020-9910,1432-1297. doi:10.1007/BF01418790. URL

https://doi.org/10.1007/BF01418790.

[24] R. Elkik. Algébrisation du module formel d’une singularité isolée. In Quelques problèmes

de modules (Sém. Géom. Anal., École Norm. Sup., Paris, 1971–1972), volume No. 16

of Astérisque, pages 133–144. Soc. Math. France, Paris, 1974.

[25] L. Fu. Etale cohomology theory, volume 13 of Nankai Tracts in Mathematics. World

Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. ISBN 978-981-4307-72-7;

981-4307-72-6. doi:10.1142/9789814307734. URL https://doi.org/10.1142/978981

4307734.

[26] A. Grothendieck. Revêtements étales et groupe fondamental. Fasc. II: Exposés 6, 8 à

11. Institut des Hautes Études Scientifiques, Paris, 1963. Troisième édition, corrigée,

Séminaire de Géométrie Algébrique, 1960/61.

[27] A. Grothendieck. Éléments de géométrie algébrique. IV. Étude locale des schémas et des

morphismes de schémas IV. Inst. Hautes Études Sci. Publ. Math., (32):361, 1967. ISSN

0073-8301,1618-1913. URL http://www.numdam.org/item/PMIHES_1967__32__5_0/.

[28] A. Grothendieck. Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz

locaux et globaux (SGA 2). Vol. 2:vii+287, 1968. Augmenté d’un exposé par Michèle

Raynaud, Séminaire de Géométrie Algébrique du Bois-Marie, 1962.

[29] D. Hansen and P. Scholze. Relative perversity. Comm. Amer. Math. Soc., 3:631–668,

2023. ISSN 2692-3688. doi:10.1090/cams/21. URL https://doi.org/10.1090/cams

/21.

[30] R. Hartshorne. Algebraic geometry, volume No. 52 of Graduate Texts in Mathematics.

Springer-Verlag, New York-Heidelberg, 1977. ISBN 0-387-90244-9.
102

https://doi.org/10.1007/BF01418790
https://doi.org/10.1007/BF01418790
https://doi.org/10.1142/9789814307734
https://doi.org/10.1142/9789814307734
https://doi.org/10.1142/9789814307734
http://www.numdam.org/item/PMIHES_1967__32__5_0/
https://doi.org/10.1090/cams/21
https://doi.org/10.1090/cams/21
https://doi.org/10.1090/cams/21


[31] R. Hartshorne. Deformation theory, volume 257 of Graduate Texts in Mathematics.

Springer, New York, 2010. ISBN 978-1-4419-1595-5. doi:10.1007/978-1-4419-1596-2.

URL https://doi.org/10.1007/978-1-4419-1596-2.

[32] B. Hassett and Y. Tschinkel. Rational points on K3 surfaces and derived equivalence.

In Brauer groups and obstruction problems, volume 320 of Progr. Math., pages 87–

113. Birkhäuser/Springer, Cham, 2017. ISBN 978-3-319-46851-8; 978-3-319-46852-5.

doi:10.1007/978-3-319-46852-5_6. URL https://doi.org/10.1007/978-3-319-468

52-5_6.

[33] R. Hotta. On Springer’s representations. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28

(3):863–876 (1982), 1981. ISSN 0040-8980.

[34] J. E. Humphreys. Introduction to Lie algebras and representation theory, volume Vol.

9 of Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1972.

[35] J. E. Humphreys. Conjugacy classes in semisimple algebraic groups, volume 43 of Math-

ematical Surveys and Monographs. American Mathematical Society, Providence, RI,

1995. ISBN 0-8218-0333-6. doi:10.1090/surv/043. URL https://doi.org/10.1090/

surv/043.

[36] L. Illusie. Around the Thom–Sebastiani theorem, with an appendix by Weizhe

Zheng. Manuscripta Math., 152(1-2):61–125, 2017. ISSN 0025-2611,1432-1785.

doi:10.1007/s00229-016-0852-0. URL https://doi.org/10.1007/s00229-016-085

2-0.

[37] J. C. Jantzen. Representations of algebraic groups, volume 107 of Mathematical Surveys

and Monographs. American Mathematical Society, Providence, RI, second edition, 2003.

ISBN 0-8218-3527-0.

103

https://doi.org/10.1007/978-1-4419-1596-2
https://doi.org/10.1007/978-1-4419-1596-2
https://doi.org/10.1007/978-3-319-46852-5_6
https://doi.org/10.1007/978-3-319-46852-5_6
https://doi.org/10.1007/978-3-319-46852-5_6
https://doi.org/10.1090/surv/043
https://doi.org/10.1090/surv/043
https://doi.org/10.1090/surv/043
https://doi.org/10.1007/s00229-016-0852-0
https://doi.org/10.1007/s00229-016-0852-0
https://doi.org/10.1007/s00229-016-0852-0


[38] J. C. Jantzen. Nilpotent orbits in representation theory. In Lie theory, volume 228 of

Progr. Math., pages 1–211. Birkhäuser Boston, Boston, MA, 2004. ISBN 0-8176-3373-1.

[39] R. Kiehl and R. Weissauer. Weil conjectures, perverse sheaves and l’adic Fourier

transform, volume 42 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge.

A Series of Modern Surveys in Mathematics [Results in Mathematics and Related

Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag,

Berlin, 2001. ISBN 3-540-41457-6. doi:10.1007/978-3-662-04576-3. URL https:

//doi.org/10.1007/978-3-662-04576-3.

[40] D. Kim. Ramification in the cohomology of algebraic surfaces arising from ordinary

double point singularities. J. Number Theory, 208:335–345, 2020. ISSN 0022-314X,1096-

1658. doi:10.1016/j.jnt.2019.08.006. URL https://doi.org/10.1016/j.jnt.2019.0

8.006.

[41] J. Kollár and S. Mori. Birational Geometry of Algebraic Varieties. Cambridge Tracts

in Mathematics. Cambridge University Press, 1998. doi:10.1017/CBO9780511662560.

[42] G. Laumon. Transformation de Fourier homogène. Bull. Soc. Math. France, 131(4):

527–551, 2003. ISSN 0037-9484,2102-622X. doi:10.24033/bsmf.2454. URL https:

//doi.org/10.24033/bsmf.2454.

[43] C. Liedtke and Y. Matsumoto. Good reduction of K3 surfaces. Compos. Math., 154

(1):1–35, 2018. ISSN 0010-437X,1570-5846. doi:10.1112/S0010437X17007400. URL

https://doi.org/10.1112/S0010437X17007400.

[44] Q. Lu and W. Zheng. Duality and nearby cycles over general bases. Duke Math. J.,

168(16):3135–3213, 2019. ISSN 0012-7094,1547-7398. doi:10.1215/00127094-2019-0057.

URL https://doi.org/10.1215/00127094-2019-0057.

104

https://doi.org/10.1007/978-3-662-04576-3
https://doi.org/10.1007/978-3-662-04576-3
https://doi.org/10.1007/978-3-662-04576-3
https://doi.org/10.1016/j.jnt.2019.08.006
https://doi.org/10.1016/j.jnt.2019.08.006
https://doi.org/10.1016/j.jnt.2019.08.006
https://doi.org/10.1017/CBO9780511662560
https://doi.org/10.24033/bsmf.2454
https://doi.org/10.24033/bsmf.2454
https://doi.org/10.24033/bsmf.2454
https://doi.org/10.1112/S0010437X17007400
https://doi.org/10.1112/S0010437X17007400
https://doi.org/10.1215/00127094-2019-0057
https://doi.org/10.1215/00127094-2019-0057


[45] L. Ma and K. Schwede. Singularities in mixed characteristic via perfectoid big Cohen-

Macaulay algebras. Duke Math. J., 170(13):2815–2890, 2021. ISSN 0012-7094,1547-7398.

doi:10.1215/00127094-2020-0082. URL https://doi.org/10.1215/00127094-2020-0

082.

[46] H. Matsumura. Commutative ring theory, volume 8 of Cambridge Studies in Advanced

Mathematics. Cambridge University Press, Cambridge, 1986. ISBN 0-521-25916-9.

Translated from the Japanese by M. Reid.

[47] J. S. Milne. Lectures on Étale cohomology (v2.21), 2013. Available at

https://www.jmilne.org/math/CourseNotes/lec.html.

[48] T. Oda. A note on ramification of the Galois representation on the fundamental group

of an algebraic curve. II. J. Number Theory, 53(2):342–355, 1995. ISSN 0022-314X,1096-

1658. doi:10.1006/jnth.1995.1095. URL https://doi.org/10.1006/jnth.1995.1095.

[49] F. Orgogozo. Modifications et cycles proches sur une base générale. Int.

Math. Res. Not., pages Art. ID 25315, 38, 2006. ISSN 1073-7928,1687-0247.

doi:10.1155/IMRN/2006/25315. URL https://doi.org/10.1155/IMRN/2006/25315.

[50] H. Pinkham. Résolution simultanée de points doubles rationnels. In M. Demazure,

H. C. Pinkham, and B. Teissier, editors, Séminaire sur les Singularités des Surfaces,

volume 777 of Lecture Notes in Mathematics, pages viii+339. Springer, Berlin, 1980.

ISBN 3-540-09746-5. Held at the Centre de Mathématiques de l’École Polytechnique,

Palaiseau, 1976–1977.

[51] M. Rapoport and T. Zink. Über die lokale Zetafunktion von Shimuravarietäten. Mon-

odromiefiltration und verschwindende Zyklen in ungleicher Charakteristik. Inventiones

mathematicae, 68(1):21–101, 1982.

105

https://doi.org/10.1215/00127094-2020-0082
https://doi.org/10.1215/00127094-2020-0082
https://doi.org/10.1215/00127094-2020-0082
https://www.jmilne.org/math/CourseNotes/lec.html
https://doi.org/10.1006/jnth.1995.1095
https://doi.org/10.1006/jnth.1995.1095
https://doi.org/10.1155/IMRN/2006/25315
https://doi.org/10.1155/IMRN/2006/25315


[52] S. Riche. Kostant section, universal centralizer, and a modular derived Sa-

take equivalence. Math. Z., 286(1-2):223–261, 2017. ISSN 0025-5874,1432-1823.

doi:10.1007/s00209-016-1761-3. URL https://doi.org/10.1007/s00209-016-176

1-3.

[53] E. Sernesi. Deformations of algebraic schemes, volume 334 of Grundlehren der mathema-

tischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-

Verlag, Berlin, 2006. ISBN 978-3-540-30608-5; 3-540-30608-0.

[54] J.-P. Serre and J. Tate. Good reduction of abelian varieties. Ann. of Math. (2), 88:

492–517, 1968. ISSN 0003-486X. doi:10.2307/1970722. URL https://doi.org/10.2

307/1970722.

[55] N. I. Shepherd-Barron. On simple groups and simple singularities. Israel J. Math.,

123:179–188, 2001. ISSN 0021-2172,1565-8511. doi:10.1007/BF02784125. URL https:

//doi.org/10.1007/BF02784125.

[56] N. I. Shepherd-Barron. Weyl group covers for Brieskorn’s resolutions in all character-

istics and the integral cohomology of G/P . Michigan Math. J., 70(3):587–613, 2021.

ISSN 0026-2285,1945-2365. doi:10.1307/mmj/1593741747. URL https://doi.org/10

.1307/mmj/1593741747.

[57] P. Slodowy. Simple singularities and simple algebraic groups, volume 815 of Lecture

Notes in Mathematics. Springer, Berlin, 1980. ISBN 3-540-10026-1.

[58] P. Slodowy. Four lectures on simple groups and singularities, volume 11 of Communica-

tions of the Mathematical Institute, Rijksuniversiteit Utrecht. Rijksuniversiteit Utrecht,

Mathematical Institute, Utrecht, 1980.

[59] N. Spaltenstein. Existence of good transversal slices to nilpotent orbits in good charac-

teristic. J. Fac. Sci. Univ. Tokyo Sect. IA Math, 31(2):283–286, 1984.
106

https://doi.org/10.1007/s00209-016-1761-3
https://doi.org/10.1007/s00209-016-1761-3
https://doi.org/10.1007/s00209-016-1761-3
https://doi.org/10.2307/1970722
https://doi.org/10.2307/1970722
https://doi.org/10.2307/1970722
https://doi.org/10.1007/BF02784125
https://doi.org/10.1007/BF02784125
https://doi.org/10.1007/BF02784125
https://doi.org/10.1307/mmj/1593741747
https://doi.org/10.1307/mmj/1593741747
https://doi.org/10.1307/mmj/1593741747


[60] T. A. Springer. Trigonometric sums, Green functions of finite groups and represen-

tations of Weyl groups. Invent. Math., 36:173–207, 1976. ISSN 0020-9910,1432-1297.

doi:10.1007/BF01390009. URL https://doi.org/10.1007/BF01390009.

[61] T. A. Springer. A purity result for fixed point varieties in flag manifolds. J. Fac. Sci.

Univ. Tokyo Sect. IA Math., 31(2):271–282, 1984. ISSN 0040-8980.

[62] Stacks project authors. The stacks project. http://stacks.math.columbia.edu.

[63] D. I. Stewart and A. R. Thomas. The Jacobson–Morozov theorem and complete re-

ducibility of Lie subalgebras. Proc. Lond. Math. Soc. (3), 116(1):68–100, 2018. ISSN

0024-6115,1460-244X. doi:10.1112/plms.12067. URL https://doi.org/10.1112/plms

.12067.

[64] G. N. Tjurina. Resolution of singularities of flat deformations of double rational points.

Funkcional. Anal. i Priložen., 4(1):77–83, 1970. ISSN 0374-1990.

[65] R. van Luijk. K3 surfaces with Picard number one and infinitely many ratio-

nal points. Algebra Number Theory, 1(1):1–15, 2007. ISSN 1937-0652,1944-7833.

doi:10.2140/ant.2007.1.1. URL https://doi.org/10.2140/ant.2007.1.1.

[66] A. Vistoli. The deformation theory of local complete intersections. arXiv e-prints, art.

alg-geom/9703008, Mar. 1997. doi:10.48550/arXiv.alg-geom/9703008.

[67] J. M. Wahl. Simultaneous resolution of rational singularities. Compositio Math., 38(1):

43–54, 1979. ISSN 0010-437X,1570-5846. URL http://www.numdam.org/item?id=CM_

1979__38_1_43_0.

[68] Z. Yun. Lectures on Springer theories and orbital integrals. In Geometry of moduli

spaces and representation theory, volume 24 of IAS/Park City Math. Ser., pages 155–

215. Amer. Math. Soc., Providence, RI, 2017. ISBN 978-1-4704-3574-5.

107

https://doi.org/10.1007/BF01390009
https://doi.org/10.1007/BF01390009
http://stacks.math.columbia.edu
https://doi.org/10.1112/plms.12067
https://doi.org/10.1112/plms.12067
https://doi.org/10.1112/plms.12067
https://doi.org/10.2140/ant.2007.1.1
https://doi.org/10.2140/ant.2007.1.1
https://doi.org/10.48550/arXiv.alg-geom/9703008
http://www.numdam.org/item?id=CM_1979__38_1_43_0
http://www.numdam.org/item?id=CM_1979__38_1_43_0

	Acknowledgments
	Abstract
	1 Introduction
	1.1 Good reduction beyond abelian varieties.
	1.2 Bad reduction of surfaces and singularities.
	1.3 Main theorem.
	1.4 Outline of the proof.
	1.5 Connections with other work.
	1.6 Organization of this thesis.
	1.7 Notations and conventions.

	2 Rational double points and their miniversal deformations
	2.1 Rational double points.
	2.2 Simultaneous resolutions.
	2.3 Formal deformations of singularities.
	2.4 The Kodaira–Spencer map.
	2.5 Miniversal deformations in mixed characteristic.

	3 The geometry of the Grothendieck alteration
	3.1 Chevalley bases and Chevalley algebras.
	3.2 Root data and adjoint Weyl actions.
	3.3 Nilpotent and semisimple elements of Chevalley algebras.
	3.4 The adjoint quotient.
	3.5 Relative Grothendieck–Springer resolutions.

	4 Integral Slodowy slices
	4.1 Remarks on Slodowy slices.
	4.2 Jacobson–Morozov in characteristic p.
	4.3 Slodowy slices via Jacobson–Morozov.
	4.4 Spaltenstein slices.
	4.5 Gm–actions and Gm–deformations.
	4.6 Grothendieck alterations for transverse slices.

	5 The monodromy Weyl action
	5.1 Classical nearby cycles.
	5.2 Nearby cycles on formal schemes.
	5.3 Nearby cycles on a Grothendieck topos.
	5.4 Relative perverse sheaves and the Grothendieck alteration.
	5.5 Weyl–Springer actions.
	5.6 Monodromy Weyl actions and the proof of the main theorem.
	5.7 Explicit monodromy actions on degenerations.
	5.8 Higher rational singularities and beyond
	5.9 An application to K3 surfaces

	A Relative perversity of nearby cycles
	References

