
A Selective Preprocessing Offloading Framework for

Reducing Data Traffic in DL Training

Meng Wang
University of Chicago

Chicago, IL, USA
wangm12@uchicago.edu

Gus Waldspurger
University of Chicago

Chicago, IL, USA
gusw@uchicago.edu

Swaminathan Sundararaman
IBM Research

San Jose, CA, USA
swami@ibm.com

Abstract

Deep learning (DL) training is data-intensive and often bot-
tlenecked by fetching data from remote storage. Recognizing
that many samples’ sizes diminish during data preprocessing,
we explore selectively offloading preprocessing to remote
storage tomitigate data traffic.We conduct a case study to un-
cover the potential benefits and challenges of this approach.
We then propose SOPHON, a framework that selectively
offloads preprocessing tasks at a fine granularity in order
to reduce data traffic, utilizing online profiling and adaptive
algorithms to optimize for every sample in every training
scenario. Our results show that SOPHON can reduce data
traffic and training time by 1.2-2.2x over existing solutions.

CCS Concepts: • Computingmethodologies→Machine

learning; • Computer systems organization → Cloud

computing.

Keywords: Systems for DL Training, Cloud Storage, Prepro-
cessing Offloading

ACM Reference Format:

Meng Wang, Gus Waldspurger, and Swaminathan Sundararaman.
2024. A Selective Preprocessing Offloading Framework for Reducing
Data Traffic in DL Training. In 16th ACMWorkshop on Hot Topics in

Storage and File Systems (HOTSTORAGE ’24), July 8–9, 2024, Santa

Clara, CA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/
10.1145/3655038.3665947

1 Introduction

Deep Learning (DL) has become a pivotal technology across
various domains, including computer vision, natural lan-
guage processing, and audio processing [1–5]. Concurrently,
cloud platforms have increasingly come to provide special-
ized services to facilitate DL training [6–8].

This work is licensed under a Creative Commons Attribution International
4.0 License.
HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0630-1/24/07.
https://doi.org/10.1145/3655038.3665947

DL training is characterized by its intense computational
and data requirements [9–21], necessitating substantial stor-
age for vast datasets, CPU resources for data preprocessing,
and powerful GPUs for executing complex neural network
models. The sheer volume of data used in DL training, now
scaling to tens or even hundreds of terabytes [20, 22], sur-
passes the local storage capacities of most cloud compute
nodes. As a result, cloud DL training typically decouples stor-
age from compute, executing training on compute nodes that
fetch data from remote storage clusters such as distributed
file systems or object stores [23–26] to handle the extensive
data volume requirements.
However, the bandwidth for data transfer from remote

storage to compute nodes is often constrained, frequently
becoming a critical bottleneck for DL workloads and limiting
GPU utilization [18–21]. As GPUs become faster, this data
fetch bottleneck becomes increasingly problematic.
A variety of strategies have been proposed to mitigate

data fetch bottlenecks. Existing approaches mainly focus on
selectively caching data in local storage or memory [16–20,
27, 28]. However, these methods are limited by the capacities
of local storage andmemory—a limitation that becomesmore
pronounced as datasets continue to increase in size. Other
solutions explore storing preprocessed dataset in remote
storage for repeated use across all epochs [29–31]. However,
this approach risks compromising training accuracy, since
the variability introduced by random data transformations
during preprocessing is crucial for effective learning.

While previous studies [32–36] have delved into offloading
preprocessing, their focus has been on alleviating CPU-based
preprocessing bottlenecks by offloading tasks to additional
CPU nodes, missing the opportunity to mitigate data fetch
traffic. Furthermore, many of these works offload preprocess-
ing operations en masse, and all of them apply a uniform
approach across all data samples. This coarse-grained ap-
proach overlooks the fact that, as we demonstrate in our
paper, a great portion of samples reach a minimum size dur-
ing intermediate stages of the preprocessing pipeline.
In our paper, we utilize preprocessing offloading differ-

ently: by observing that many data samples exhibit size re-

ductions at intermediate stages of the preprocessing pipeline,

we propose to selectively offload parts of preprocessing for

certain samples to the remote storage server. Given that the
bandwidthwithin a storage cluster (intra-cluster) is generally

63

https://doi.org/10.1145/3655038.3665947
https://doi.org/10.1145/3655038.3665947
https://doi.org/10.1145/3655038.3665947
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3655038.3665947&domain=pdf&date_stamp=2024-07-08

HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Meng Wang, Gus Waldspurger, and Swaminathan Sundararaman

Operation Data Data To Near
Selective Partial Selective Storage

tf.data svc — — — —

GoldMiner ✔ — — —

FastFlow — ✔ — —

cedar ✔ — — —

SOPHON ✔ ✔ ✔ ✔

Table 1. Existing Offloading [32–35] vs. SOPHON.

much greater than that between the storage and compute
clusters (inter-cluster) [37–40], our approach seeks to pre-
process larger samples within the storage cluster itself. This
methodology aims to minimize data traffic between remote
storage and compute nodes by transmitting smaller, partially
preprocessed samples, thereby optimizing network usage
and enhancing training efficiency.

Crafting the optimal strategy for preprocessing offloading
is complex. Our analysis of specific DLworkloads’ prepropre-
cessing pipelines reveals several insights: not every workload
necessitates offloading, not every sample benefits from it,
and offloading can incur varying levels of additional CPU
load on the remote server, potentially creating new bottle-
necks. Thus, an effective solution must address three critical
questions: (1) Does a particular workload require preprocess-
ing offloading to mitigate network traffic? (2) Which specific
samples should undergo offloading? (3) For those samples
identified, which preprocessing operations are most suitable
for offloading?

In response, we introduce SOPHON (SelectivelyOffloading
PreprocessingwithHybridOperationsNear-storage), a frame-
work designed to selectively offload DL preprocessing tasks
to remote storage servers with the goal of reducing data
transfer traffic. SOPHON has two key components: (1) A
two-stage profiler that collects essential metrics for making
offloading decisions. Offloading is activated only when the
workload is identified as I/O-bound during profiling. (2) A de-
cision engine that determines which samples to offload and
identifies the specific operations to offload for each chosen
sample, striking a balance between reducing traffic and man-
aging CPU overhead. Together, these components enable
SOPHON to provide tailored offloading strategies to meet
the unique needs and constraints of each training scenario.
As Table 1 shows, SOPHON is the first work that imple-

ments data-selective offloading for DL preprocessing, where
"data-selective" refers to selecting specific samples for of-
floading based on each individual sample’s characteristics.
Our evaluation results demonstrate that SOPHON can

effectively enhance training efficiency, achieving a 1.2-2.2x
reduction in training time over existing solutions.
SOPHON is tailored for specific DL training workloads

where remote IO is a bottleneck. It may not offer advantages
in certain scenarios, such as with Large Language Models.
Further details are discussed in Section 5.

We also discuss future work in Section 6.

Sample A Sample B
0

1000

2000

S
a

m
p
le

 S
iz

e
 (

K
B

)

(a) Sample Size in Preprocessing

Raw JPEG

Decoded

RdResizeCrop

RandFlipped

ToTensor

Normalized

0 500 1000
Sample Size (KB)

0.0

0.5

1.0

C
D

F

(b) CDF of Sample Size

Raw-OpenImages

Raw-ImageNet

After RandResizeCrop

0 10 20 30

Size Reduction / Prep time (MB/s)

0.0

0.5

1.0

C
D

F

(c) CDF for Ratio of Sample
Size Reduction to Prep Time

RN50 VGG11 RN18

Model

0

50

100

G
P

U
 U

ti
liz

a
ti
o

n
 (

%
)

(d) GPU Utilization
 for different workloads

Figure 1. Analysis of Preprocessing Pipeline. The figures

are explained in Section 2.

2 Preprocessing Analysis

A typical DL training iteration entails: (1) Fetching data from
storage, (2) Preprocessing data on CPUs, (3) Transferring
data to GPUs, (4) Forward propagation for predictions, (5)
Backward propagation for parameter updates.
In this section, we analyze the preprocessing pipeline of

a specific DL workload, revealing opportunities and chal-
lenges in minimizing data traffic through strategic offloading
of preprocessing tasks. Our investigation is anchored in a
case study on image classification workloads. We employ
the official PyTorch example training script, sourced from
its GitHub repository [41], conducting experiments on sub-
sets of two key datasets in computer vision DL research:
OpenImages [22] and ImageNet [42].

The workload’s preprocessing pipeline consists of five key
operations: (1) Decode: Converts raw binary (e.g., JPEG) to
an image object for manipulation via Python libraries like
PIL; (2) RandomResizedCrop: Crops a random image sec-
tion and resizes it to a specified size; (3) RandomHorizon-

talFlip: Flips the image horizontally at random; (4) ToTen-
sor: Transforms the PIL Image from a uint8 ([0,255]) list to a
float Tensor, scaling to [0.0, 1.0]. (5) Normalize: Normalizes
the tensor image with mean and standard deviation.

Bymeasuring file sizes before and after each preprocessing
step and assessing the preprocessing time cost, we arrived
at several key findings:
Finding #1: Variations in file size across the preprocess-

ing steps highlight opportunities for reducing data transfers

through preprocessing offloading. For example, as illustrated
in Figure 1a, Sample A’s size drops from 462KB raw JPEG to
151KB post RandomResizedCrop—when the image is cropped
and resized to 224x224 pixels, with each pixel’s R/G/B value
represented by 1 byte. This suggests that offloading Decode

64

A Selective Preprocessing Offloading Framework for Reducing Data Traffic in DL Training HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

and RandomResizedCrop to the remote storage server before
network transmission can notably reduce data traffic.
Finding #2: The observation that the minimum file size oc-

curs before the final preprocessing step suggests a decomposed

preprocessing offloading approach. Existing offloading frame-
works often consider the entire preprocessing as a singular
unit [32, 33], missing opportunities for data traffic reduction.
As depicted in Figure 1a, the file size post-Normalize is 4x
larger than after RandomResizedCrop and RandomHorizon-
talFlip, due to the ToTensor operation converting pixel values
from 1 byte per R/G/B to 4 byte floats. Thus, to minimize
network traffic, an offloading framework should permit the
selective offloading of specific preprocessing operations.
Finding #3: The varied impact of preprocessing offloading

across different images necessitates finer-grained decision mak-

ing. For instance, Sample B’s smallest file size occurs in its
raw JPEG format, as shown in Figure 1a. Thus, unlike Sam-
ple A, Sample B would transfer more efficiently without any
preprocessing offloading. As further illustrated by Figure 1b,
while 76% of OpenImages exhibit size reductions post certain
preprocessing operations, 24% are smallest in their raw JPEG
format and should not undergo offloading. A similar pattern
is observed with ImageNet, with 26% of images benefiting
from offloading, while 74% do not, underscoring the need
for a tailored offloading strategy.
Finding #4: Preprocessing traffic reductions have varying

CPU costs. Reflecting on previous research, preprocessing
tasks are notably CPU-intensive [17, 32, 33]. When such
tasks are offloaded to remote storage nodes, which typically
possess lesser CPU capabilities compared to compute nodes,
considerable CPU overhead is incurred. This scenario high-
lights the need for weighing this overhead against efficiency
gains. To better understand this tradeoff, we measured pre-
processing time for each operation and image in the 12GB
subset, with the raw data cached in memory and processed
using 8 CPU cores running in parallel. For each image, we
then calculated the preprocessing time cost needed to offload
in order to reach the minimum data transfer.

As illustrated in Figure 1c, the ratio of file size reduction
to preprocessing time across the OpenImages dataset serves
as an indicator of the trade-off between network traffic sav-
ings and the CPU time cost. Notably, 24% of images attain
their minimum size in raw JPEG and thus exhibit a ratio
of 0 and do not need offloading. For the remaining 76% of
images, this ratio varies, necessitating a refined offloading
strategy that prioritizes images yielding the highest network
traffic savings per unit of CPU time, particularly when CPU
resources at the storage node are limited.

Finding #5: DL workloads exhibit varying demands for pre-

processing offloading, which calls for customized offloading de-

cisions. As depicted in Figure 1d, the GPU utilization across
three distinct models—trained using the same configuration
of a V100 GPU, ample CPUs, and constrained bandwidth
to remote storage—is different. Specifically, ResNet50, with

Figure 2. SOPHON Design Overview.

high GPU compute intensity, achieves near-maximal GPU
utilization, rendering it less susceptible to gains from pre-
processing offloading. Conversely, ResNet18, with lighter
GPU compute requirements, spends about 65% of its time in
a data-fetching idle state, suggesting considerable offload-
ing benefits. Hence, the decision regarding preprocessing
offloading should not only factor in image size and prepro-
cessing time but also account for the resource demands and
characteristics of each workload.

3 Design

Based on Finding #1, there exists a substantial opportunity to
improve data fetching efficiency in DL training through the
strategic offloading of preprocessing tasks. However, Find-
ings #2-5 also highlight several challenges that need to be
addressed in order to fully capitalize on these opportunities.
An efficient offloading framework must: (1) assess the need
for preprocessing offloading to mitigate network traffic for
specific workloads, (2) choose appropriate data samples for
preprocessing offloading, and (3) select the precise prepro-
cessing operations to offload for each sample.

To tackle these challenges, we introduce SOPHON (Selecti-
vely Offloading Preprocessing with Hybrid Operations Near-
storage), a solution engineered to selectively offload DL pre-
processing to remote storage servers, aiming at minimizing
data transfer traffic. SOPHON is designed to systematically
navigate each of these decision points, utilizing online data
analysis and adaptive algorithms to tailor offloading deci-
sions to the unique demands of each training scenario.
SOPHON has two key components: a two-stage profiler

that collects essential metrics for informed offloading de-
cisions, and a decision engine that determines the optimal
offloading strategy using these metrics.

Figure 2 illustrates how SOPHON works. ⃝𝑎 The profiler
first assesses GPU, CPU, and I/O throughput to determine if
the given DL workload needs offloading to reduce I/O con-
straints.⃝𝑏 If the workload is I/O-bound, SOPHONmoves to
the second profiling stage, noting the time and size changes
for each preprocessing step across all samples. ⃝𝑐 With de-
tailed metrics and knowledge of compute and storage node
resources, SOPHON formulates the best offloading plan per
sample. ⃝𝑑 Offloading directives for each sample are then
incorporated into data fetch requests to the storage server, de-
tailing the specific operations for offloading. ⃝𝑒 The storage

65

HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Meng Wang, Gus Waldspurger, and Swaminathan Sundararaman

server processes these operations as instructed, sending back
the partially processed data to the compute node.⃝𝑓 Finally,
the compute node finishes any remaining preprocessing and
forwards the data to GPUs for training.

3.1 Two-Stage Profiler

To minimize the profiling overhead while collecting essen-
tial metrics for informed offloading decisions, our approach
harnesses a two-stage profiling process.

Inspired by Finding #5 and borrowing the idea from [17],
the first stage briefly assesses the primary bottleneck within
the workload by measuring GPU, I/O, and CPU throughput.
This is achieved by executing 50 batches under three distinct
settings: (1) model training on the GPU using synthetic data
to eliminate CPU or I/O delays, (2) data retrieval from re-
mote storage, devoid of CPU or GPU processing to isolate I/O
throughput, and (3) CPU-intensive preprocessing on the data
cached during the second setting to gauge CPU throughput.
This approach provides insights into the workload’s through-
put demands with minimal overhead (a typical training job
spans over 50 epochs, each with thousands of batches). If
the workload is I/O-bound, SOPHON proceeds to the second
profiling stage; otherwise, it defaults to the standard training
without offloading. CPU-bound scenarios may benefit from
other solutions to mitigate preprocessing delays [32, 33].
In the second stage, we collect details on CPU time for

preprocessing and changes in each sample’s size through
all preprocessing operations. This stage, requiring detailed,
sample-specific data, involves processing the entire dataset,
potentially incurring significant overhead. To minimize this,
we use an on-the-fly profiling method: we proceed with the
first training epoch without offloading any preprocessing
tasks and collect essential per-sample metrics. This approach
effectively lowers profiling overhead, facilitating efficient
acquisition of performance data.

We currently assume identical CPU types on compute and
storage nodes, allowing preprocessing times profiled on the
compute node to be used for the storage node. We plan to
explore heterogeneous CPU scenarios in the future.

3.2 Offloading Policy

Leveraging the metrics obtained through comprehensive
profiling, SOPHON determines the most advantageous of-
floading strategy based on Findings #2-4.
Our strategy evaluates the potential size reduction and

required preprocessing time for each data sample to reach
its minimum size. Samples showing size reduction compared
to their raw forms are considered for offloading. SOPHON
measures offloading efficiency by the ratio of size reduction
to preprocessing time, where a higher ratio suggests bet-
ter potential for data traffic reduction per CPU time spent.
Therefore, samples are selected for offloading in descending
order of efficiency, prioritizing those with the most signifi-
cant effect on reducing data traffic.

SOPHONmakes the decision based on four keymetrics: (1)
TG: The GPU time for one training epoch; (2) TCC: The CPU
time on the compute node for local preprocessing, calculated
as the total local preprocessing time divided by the CPU
core count; (3) TCS: The CPU time on the storage node for of-
floaded preprocessing tasks, determined by dividing the total
offloaded preprocessing time by the storage node’s available
CPU core count; (4) TNet: The time for data transfer from
remote storage to the compute node over one epoch, derived
from the total data traffic and the network bandwidth.
The first step uses a baseline profile without any offload-

ing, characterized by 𝑇𝑁𝑒𝑡 as the predominant metric due
to the I/O-bound nature of the workload and 𝑇𝐶𝑆 being 0
(no offloading). From this point, SOPHON selects the sample
with the highest offloading efficiency, effecting a reduction
in both 𝑇𝐶𝐶 and 𝑇𝑁𝑒𝑡 while elevating 𝑇𝐶𝑆 . The goal is to
aggressively minimize network traffic until it ceases to be
the limiting factor. This iterative selection of high-efficiency
samples continues until either of two conditions is met: (1)
𝑇𝑁𝑒𝑡 ceases to be the predominant metric, or (2) no further
samples with positive offloading efficiency remain. Through
this algorithm, SOPHON minimizes network traffic without
imposing excessive preprocessing load on the storage server.

3.3 Why Not Preprocess Just Once

One could contemplate a strategy where samples are se-
lectively preprocessed just once to minimum size and then
stored for reuse across all epochs. While this simplifies the
process, it risks diminishing training accuracy. Random aug-
mentations, typically applied during online preprocessing,
are crucial for DL training accuracy and should be performed
in each epoch. In contrast, our solution retains the original
training’s preprocessing logic and preserves accuracy.

4 Evaluation

We implement SOPHON in Python on top of PyTorch 1.8.0 in
around 990 LOC. We utilize the gRPC framework to facilitate
communication for data fetch requests and responses.
We evaluate SOPHON with small-scale experiments to

quickly gauge its performance and demonstrate its benefits.
We plan to use more realistic settings in the future.

WorkloadBenchmarks:Webenchmark the performance
of SOPHON on image classification tasks within DL train-
ing. We utilize the official PyTorch example training script,
taken directly from its GitHub repository [41]. We train the
AlexNet model, which is characterized as compute-light and
thus is easily bottlenecked by data fetching. We conduct ex-
periments on subsets of two popular datasets in computer
vision DL research: a 12GB subset of OpenImages [22] and
an 11GB subset of ImageNet [42].

Experiment Setup: We use a two-node setup: one as the
compute node equipped with an RTX-6000 GPU , and the

66

A Selective Preprocessing Offloading Framework for Reducing Data Traffic in DL Training HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

other as the storage server node. Both nodes utilize two In-
tel Xeon Gold 6126 @ 2.60GHz processors. On the compute
node, we allocate 48 logical cores to eliminate preprocessing
bottlenecks in the original workload, thereby making I/O the
bottleneck. The storage node’s CPU allocation is varied to
assess the impact of CPU overhead introduced by offloading
preprocessing. To simulate a bandwidth-constrained environ-
ment, we cap the network throughput at 500 Mbps. Further-
more, on the storage node, datasets are cached in memory to
mirror the frequently assumed condition where intra-cluster
bandwidth vastly exceeds inter-cluster bandwidth [37–40].
Simulation of Real-World Configuration:While we

use small subsets that technically could fit into local storage,
our experiments consistently fetch data from the remote stor-
age node. This mimics real-world scenarios where datasets
exceed local storage capacities. For example, the full Open-
Images dataset totals 18TB [19, 43]. Each subset used in our
experiments comprises over 40,000 images, randomly se-
lected from the original dataset to represent the variety in
sizes and preprocessing costs found in the full dataset.

We limit the network bandwidth to 500 Mbps to introduce
a remote I/O bottleneck even when training with a single
RTX-6000 GPU. In practical scenarios, training ResNet50 on
ImageNet with 8 V100 GPUs requires nearly 16 Gbps of I/O
bandwidth to fully utilize GPUs [19, 20], and even a 10 Gbps
network could cause a significant remote I/O bottleneck.

Additionally, on the storage node, we cache the datasets in
memory to ensure that the intra-node data read bandwidth
is much higher than the network bandwidth between our
two nodes. This setup mimics typical real-world conditions
where the aggregate intra-cluster bandwidth of distributed
storage systems greatly surpasses the inter-cluster network
bandwidth, a common assumption in prior research [37–40].

Baselines: We establish several baselines for comparison:
No-Off, the original training pipeline without preprocess-
ing offloading; All-Off, with all preprocessing operations
of all samples offloaded to the storage node; FastFlow [33],
a preprocessing offloading framework designed to alleviate
CPU bottlenecks, which treats all preprocessing operations
as a single unit and does not differentiate between data sam-
ples; and Resize-Off, which offloads only the Decode and
RandomResizedCrop operations to the storage node, based
on the observation that resizing reduces many images’ sizes.

Our evaluation of SOPHON spans two distinct scenarios:
one with ample CPU cores at the remote storage, and another
where CPU resources are limited.

4.1 Ample CPU Cores on Storage Node

We start our evaluation using a storage node with ample
(48) CPU cores to maximize the benefits of preprocessing
offloading. Figure 3 displays both training times and data
traffic per epoch for all offloading policies.
All-Off has the longest training time across all policies,

increasing data traffic by 1.9x for OpenImages and 5.1x for

0

400

800

1200

E
p

o
c
h

 T
im

e
 (

s
)

(a) Epoch
 Time

OpenImages ImageNet

No-Off All-Off FastFlow Resize-Off SOPHON

0

20

40

60

D
a

ta
 T

ra
ff
ic

 (
G

B
)

OpenImages ImageNet

(b) Data
 Traffic

Figure 3. SOPHON’s effect with ample CPU cores.

SOPHON cuts traffic/epoch time when storage node has ample CPUs.

0 1 2 3 4 5
Remote Prep CPU cores #

0

200

400

600

800

E
p
o
c
h
 T

im
e
 (

s
)

(a) Epoch Time

No-Off All-Off FastFlow Resize-Off SOPHON

0 1 2 3 4 5
Remote Prep CPU cores #

0

10

20

30

D
a
ta

 T
ra

ff
ic

 (
G

B
) (b) Data Traffic

Figure 4. SOPHON’s effect with limited CPU cores.

SOPHON finds the best solution when storage node has limited CPUs.

ImageNet when compared to No-Off. This is due to the data
being converted into float tensors, which results in substan-
tially larger sizes for most samples.

FastFlow chooses to not offload preprocessing in the eval-
uated setups. This decision is informed by its coarse-grained
profiling analysis, which indicates that offloading all opera-
tions would lead to increased training time.
Resize-Off reduces data traffic by 2x for the OpenImages

dataset compared to No-Off due to the large raw sizes of most
images (76% of samples become smaller after Decode and
RandomResizedCrop.) However, Resize-Off increases traffic

by 1.3x compared to No-Off for the ImageNet dataset due to
its smaller average image size (only 26% of samples become
smaller after Decode and RandomResizedCrop.)

SOPHON improves performance for both datasets, thanks
to its fine-grained offloading. For OpenImages, SOPHON
achieves a 2.2x reduction in data traffic compared to No-Off,
outperforming Resize-Off by not offloading preprocessing
for samples that do not benefit. Unlike Resize-Off, SOPHON
manages to reduce data traffic by 1.2x for ImageNet, thereby
reducing training time. Selectively offloading preprocessing
steps based on which images become smaller during pre-
processing allows SOPHON to treat each sample optimally.

4.2 Limited CPU Cores on Storage Node

Next, we evaluate SOPHON’s efficacy by varying the number
of CPU cores allocated for preprocessing on the storage node.
We focus on the OpenImages dataset, which has demon-
strated greater benefits from preprocessing offloading. We
don’t include results for the ImageNet dataset due to space
constraints. Figure 4 shows the results for OpenImages.

67

HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Meng Wang, Gus Waldspurger, and Swaminathan Sundararaman

All-Off results in the longest training time due to increased
data traffic. Additionally, training time is further increased
when only 1 CPU core is allocated for remote preprocessing,
as the remote CPU overhead creates a bottleneck.
FastFlow consistently decides against preprocessing of-

floading as it anticipates that offloading all operations would
increase the training time.

Resize-Off achieves the lowest data traffic among all con-
figurations. However, its training time is not optimal as it
offloads an excessive amount of preprocessing to the remote
server, causing CPU overhead to create a new bottleneck.
When the storage node has ≤ 2 CPU cores available for
preprocessing, Resize-Off performs even worse than No-Off.

Finally, SOPHON exhibits the shortest training time among
all policies, effectively balancing the trade-off between data
traffic reduction and offloaded CPU overhead. Notably, there
are diminishing returns for training time when allocating ad-
ditional CPU cores. For instance, the transition from 0 cores
to 1 leads to a 22-second reduction in epoch time, whereas
moving from 4 to 5 CPU cores results in only a 9-second
reduction. This demonstrates SOPHON’s proficiency in se-
lecting samples for offloading with the highest efficiencies,
optimizing outcomes even under CPU constraints.

5 Discussion

While our work manages to reduce remote data traffic for
specific DL training workloads, we understand that it might
not help in some scenarios. Below we discuss the use cases
of SOPHON and scenarios where it might not be beneficial.
Remote I/O bottleneck in DL Training: DL training

often involves large datasets to enhance model accuracy. For
instance, the Google OpenImages dataset totals 18TB [19, 43].
Such large datasets often exceed local storage capacities,
leading to the use of remote cloud storage services to fetch
data during training. In some GPU clusters, 97.3% of DL jobs
store their data in cloud storage [20], resulting in a separation
between GPU clusters and remote storage.
The rapid advancement in GPU computation speeds ne-

cessitates high-speed data transfers to avoid data stalls [16–
20, 27, 28]. Furthermore, GPU clusters often run hundreds
or thousands of DL training jobs simultaneously, putting
substantial strain on the network between GPU clusters and
remote storage. For example, a 400 V100 GPU cluster re-
quires an aggregate I/O bandwidth of 200Gbps [20], while
Azure’s maximum egress bandwidth is only 120Gbps [44].
This remote I/O bottleneck is likely to worsen in the future
due to the fast evolvement of GPUs [20].

SOPHON is effective for such scenarios where remote I/O
bottlenecks may occur, as it reduces remote data traffic.

DL Training with Essential Need for Online Prepro-

cessing: Many DL training jobs, especially computer vision
models, require online preprocessing to enhance training ac-
curacy. These workloads provide opportunities for SOPHON
to reduce data traffic via selective preprocessing offloading.

Near Storage Processing Support:Modern cloud stor-
age services increasingly support near-storage data process-
ing, facilitating the offloading strategies of SOPHON. For
instance, Ceph enables near-storage data processing through
dynamic object interfaces [45]. Similarly, Amazon S3 Object
Lambda allows users to submit custom data processing code
that is executed automatically before data is returned [46].

ScenariosWhere SOPHONMightNotWork: SOPHON
may not help for Large Language Models (LLMs), where
input data preprocessing is less critical for accuracy, limiting
opportunities for preprocessing offloading. Though LLMs are
becoming more popular, a substantial number of DL training
jobs still exist in current clusters. This is because LLMs are
often very expensive to run, while many DL models can
achieve satisfactory accuracy at a much lower cost.

SOPHON assumes CPU-based preprocessing and currently
doesn’t support GPU-based strategies like NVIDIA DALI
[47]. However, we believe our findings also points to new
opportunities in GPU-based preprocessing scenarios. For ex-
ample, one can selectively split preprocessing tasks between
GPUs and CPUs to reduce CPU-GPU data transfers.
SOPHON doesn’t help when the entire dataset can fit

into local storage and thus remote I/O is not needed. For
such training scenarios, many prior works have focused on
alleviating the potential local I/O bottleneck through effcient
caching and prefetching strategies[16, 17, 27].

6 Conclusion and Future Work

We reveal opportunities and challenges in reducing data traf-
fic through strategic preprocessing offloading in DL training.
We propose SOPHON, a framework that selectively offloads
preprocessing tasks to minimize data traffic, utilizing online
profiling and adaptive algorithms to optimize for every sam-
ple. Our preliminary results demonstrate that SOPHON can
effectively reduce data traffic and training time.
Future Work: We plan to design a strategy to selectively

compress preprocessed data, further reducing data traffic
while considering potential CPU overhead increases. Ad-
ditionally, we aim to extend support to environments with
heterogeneous CPU types across compute and storage nodes.

Furthermore, we intend to explore the implementation of
SOPHON in multi-tenant environments. We plan to develop
a scheduler to efficiently allocate storage-side CPUs among
multiple jobs, maximizing global training efficiency.
We will also study a wider variety of DL training work-

loads across various domains and conduct evaluations in
more comprehensive settings.

7 Acknowledgments

We thank Jayashree Mohan, our shepherd, and the anony-
mous reviewers for their tremendous feedback and com-
ments. This work was supported by funding from NSF (grant
Nos. CCF-2119184 and CNS-2027170).

68

A Selective Preprocessing Offloading Framework for Reducing Data Traffic in DL Training HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
Residual Learning for Image Recognition. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016.
[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet

Classification with Deep Convolutional Neural Networks. In
Proceedings of the 26th Conference on Neural Information Processing

Systems (NIPS), 2012.
[3] Karen Simonyan and Andrew Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[4] Alex Graves, Abdel rahman Mohamed, and Geoffrey Hinton. Speech
recognition with deep recurrent neural networks. In IEEE

International Conference on Acoustics, Speech and Signal Processing

(ICASSP), 2013.
[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018.

[6] Google Cloud Deep Learning VM Images.
https://cloud.google.com/deep-learning-vm.

[7] Azure Machine Learning - ML as a Service.
https://azure.microsoft.com/en-us/products/machine-learning.

[8] Amazon SageMaker. https://aws.amazon.com/sagemaker/.
[9] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xuanzhe Liu,

and Xin Jin. Multi-resource interleaving for deep learning training. In
Proceedings of the ACM Special Interest Group on Data Communication

(SIGCOMM), 2022.
[10] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong

Guo. Optimus: An Efficient Dynamic Resource Scheduler for Deep
Learning Clusters. In Proceedings of the 2018 EuroSys Conference

(EuroSys), 2018.
[11] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay

Chidambaram. Looking Beyond GPUs for DNN Scheduling on
Multi-Tenant Clusters. In Proceedings of the 16th Symposium on

Operating Systems Design and Implementation (OSDI), 2022.
[12] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi

Li, Yihui Feng, Wei Lin, and Yangqing Jia. AntMan: Dynamic Scaling
on GPU Clusters for Deep Learning. In Proceedings of the 14th

Symposium on Operating Systems Design and Implementation (OSDI),
2020.

[13] Lijie Xu, Shuang Qiu, Binhang Yuan, Jiawei Jiang, Cedric Renggli,
Shaoduo Gan, Kaan Kara, Guoliang Li, Ji Liu, Wentao Wu, Jieping Ye,
and Ce Zhan. In-Database Machine Learning with CorgiPile:
Stochastic Gradient Descent without Full Data Shuffle. In Proceedings

of the 2022 ACM SIGMOD International Conference on Management of

Data (SIGMOD), 2022.
[14] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian

Sivathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, Fan Yang, , and Lidong Zhou. Gandiva:
Introspective Cluster Scheduling for Deep Learning. In Proceedings of

the 13th Symposium on Operating Systems Design and Implementation

(OSDI), 2018.
[15] S. Chaudhary, R. Ramjee, M. Sivathanu, N. Kwatra, , and

S. Viswanatha. Balancing efficiency and fairness in heterogeneous
GPU clusters for deep learning. In Proceedings of the 2020 EuroSys

Conference (EuroSys), 2020.
[16] Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park,

Hadi Salman, and Aleksander Madry. FFCV: Accelerating Training by
Removing Data Bottlenecks. In 2023 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2023.
[17] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay

Chidambaram. Analyzing and Mitigating Data Stalls in DNN
Training. In Proceedings of the 47th International Conference on Very

Large Databases (VLDB), 2021.

[18] Nikoli Dryden, Roman Böhringer, Tal Ben-Nun, and Torsten Hoefler.
Clairvoyant prefetching for distributed machine learning I/O. In
Proceedings of International Conference on High Performance

Computing, Networking, Storage and Analysis (SC), 2021.
[19] Abhishek Vijaya Kumar and Muthian Sivathanu. Quiver: An

Informed Storage Cache for Deep Learning. In Proceedings of the 18th

USENIX Symposium on File and Storage Technologies (FAST), 2020.
[20] Hanyu Zhao, Zhenhua Han, Zhi Yang, Quanlu Zhang, Mingxia Li, Fan

Yang, Qianxi Zhang, Binyang Li, Yuqing Yang, Lili Qiu, Lintao Zhang,
and Lidong Zhou. SiloD: A Co-design of Caching and Scheduling for
Deep Learning Clusters. In Proceedings of the 2023 EuroSys Conference

(EuroSys), 2023.
[21] Lipeng Wang, Songgao Ye, Baichen Yang, Youyou Lu, Hequan Zhang,

Shengen Yan, and Qiong Luo. DIESEL: A Dataset-Based Distributed
Storage and Caching System for Large-Scale Deep Learning Training.
In 49st International Conference on Parallel Processing (ICPP), 2020.

[22] Open Images Dataset V7 and Extensions.
https://storage.googleapis.com/openimages/web/index.html.

[23] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The Hadoop Distributed File System. In Proceedings of the

26th IEEE Symposium on Massive Storage Systems and Technologies

(MSST), 2010.
[24] GlusterFS. https://www.gluster.org.
[25] Azure Blob Storage.

https://azure.microsoft.com/en-us/products/storage/blobs.
[26] Amazon S3. https://aws.amazon.com/s3/.
[27] Derek G. Murray, Jiří Šimša, Ana Klimovic, and Ihor Indyk. tf.data: A

Machine Learning Data Processing Framework. In Proceedings of the

47th International Conference on Very Large Databases (VLDB), 2021.
[28] Chih-Chieh Yang and Guojing Cong. Accelerating Data Loading in

Deep Neural Network Training. In 2019 IEEE 26th International

Conference on High Performance Computing, Data, and Analytics

(HiPC), 2019.
[29] Alexander Isenko, Ruben Mayer, Jeffrey Jedele, and Hans-Arno

Jacobsen. Where Is My Training Bottleneck? Hidden Trade-Offs in
Deep Learning Preprocessing Pipelines. In Proceedings of the 2022

ACM SIGMOD International Conference on Management of Data

(SIGMOD), 2022.
[30] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and

Shivaram Venkataraman. The Case for Unifying Data Loading in
Machine Learning Clusters. In The 11th USENIX Workshop on Hot

Topics in Cloud Computing (HotCloud), 2019.
[31] Gyewon Lee, Irene Lee, Hyeonmin Ha, Kyung-Geun Lee, Hwarim

Hyun, Ahnjae Shin, and Byung-Gon Chun. Refurbish Your Training
Data: Reusing Partially Augmented Samples for Faster Deep Neural
Network Training. In Proceedings of the 2021 USENIX Annual

Technical Conference (ATC), 2021.
[32] Andrew Audibert, Yang Chen, Dan Graur, Ana Klimovic, Jiří Šimša,

and Chandramohan A. Thekkath. tf.data service: A Case for
Disaggregating ML Input Data Processing. In Proceedings of the 14th

ACM Symposium on Cloud Computing (SoCC), 2023.
[33] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun,

Goeun Kim, and Woo-Yeon Lee. FastFlow: Accelerating Deep
Learning Model Training with Smart Offloading of Input Data
Pipeline. In Proceedings of the 49th International Conference on Very

Large Databases (VLDB), 2023.
[34] Hanyu Zhao, Zhi Yang, Yu Cheng, Chao Tian, Shiru Ren, Wencong

Xiao, Man Yuan, Langshi Chen, Kaibo Liu, Yang Zhang, Yong Li, and
Wei Lin. GoldMiner: Elastic Scaling of Training Data Pre-Processing
Pipelines for Deep Learning. In Proceedings of the 2023 ACM SIGMOD

International Conference on Management of Data (SIGMOD), 2023.
[35] Mark Zhao, Emanuel Adamiak, and Christos Kozyrakis. cedar:

Composable and optimized machine learning input data pipelines.
arXiv preprint arXiv:2401.08895, 2024.

69

https://cloud.google.com/deep-learning-vm
https://azure.microsoft.com/en-us/products/machine-learning
https://aws.amazon.com/sagemaker/
https://storage.googleapis.com/openimages/web/index.html
https://www.gluster.org
https://azure.microsoft.com/en-us/products/storage/blobs
https://aws.amazon.com/s3/

HOTSTORAGE ’24, July 8–9, 2024, Santa Clara, CA, USA Meng Wang, Gus Waldspurger, and Swaminathan Sundararaman

[36] Mark Zhao, Niket Agarwal, Aarti Basant, Buğra Gedik, Satadru Pan,
Mustafa Ozdal, Rakesh Komuravelli, Jerry Pan, Tianshu Bao, Haowei
Lu, Sundaram Narayanan, Jack Langman, Kevin Wilfong, Harsha
Rastogi, Carole-Jean Wu, Christos Kozyrakis, and Parik Po.
Understanding Data Storage and Ingestion for Large-Scale Deep
Recommendation Model Training. In Proceedings of the 49th Annual

International Symposium on Computer Architecture (ISCA), 2022.
[37] Shushi Gu, Fugang Wang, Qinyu Zhang, Tao Huang, and Wei Xiang.

Global repair bandwidth cost optimization of generalized
regenerating codes in clustered distributed storage systems. IET
Communications, 15(19):2469–2481, 2021.

[38] Vitaly Abdrashitov, N. Prakash, and Muriel Médard. The storage vs
repair bandwidth trade-off for multiple failures in clustered storage
networks. In IEEE Information Theory Workshop (ITW), 2017.

[39] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick P. C. Lee, Weichun
Wang, and Wei Chen. Exploiting Combined Locality for Wide-Stripe
Erasure Coding in Distributed Storage. In Proceedings of the 19th

USENIX Symposium on File and Storage Technologies (FAST), 2021.
[40] Meng Wang, Jiajun Mao, Rajdeep Rana, John Bent, Serkay Olmez,

Anjus George, Garrett Wilson Ransom, Jun Li, , and Haryadi S.
Gunawi. Design Considerations and Analysis of Multi-Level Erasure

Coding in Large-Scale Data Centers. In Proceedings of International

Conference on High Performance Computing, Networking, Storage and

Analysis (SC), 2023.
[41] PyTorch ImageNet example training script. ImageNet training in

PyTorch. https://github.com/pytorch/examples/tree/main/imagenet.
[42] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. In International Journal of

Computer Vision (IJCV), 2015.
[43] Open Images Dataset Github.

https://github.com/cvdfoundation/open-images-dataset.
[44] Scalability and performance targets for standard storage accounts.

https://learn.microsoft.com/en-
us/azure/storage/common/scalability-targets-standard-account.

[45] Noah Watkins and Michael Sevilla. Using lua in the ceph distributed
storage system. In Proceedings of the Lua Workshop, pages 16–17, 2017.

[46] Amazon S3 Object Lambda.
https://aws.amazon.com/s3/features/object-lambda/.

[47] NVIDIA DALI. https://developer.nvidia.com/dali.

70

https://github.com/pytorch/examples/tree/main/imagenet
https://github.com/cvdfoundation/open-images-dataset
https://learn.microsoft.com/en-us/azure/storage/common/scalability-targets-standard-account
https://learn.microsoft.com/en-us/azure/storage/common/scalability-targets-standard-account
https://aws.amazon.com/s3/features/object-lambda/
https://developer.nvidia.com/dali

	Abstract
	1 Introduction
	2 Preprocessing Analysis
	3 Design
	3.1 Two-Stage Profiler
	3.2 Offloading Policy
	3.3 Why Not Preprocess Just Once

	4 Evaluation
	4.1 Ample CPU Cores on Storage Node
	4.2 Limited CPU Cores on Storage Node

	5 Discussion
	6 Conclusion and Future Work
	7 Acknowledgments
	References

