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ABSTRACT

We study a game played between advertisers in an online ad plat-
form. The platform sells ad impressions by �rst-price auction and
provides autobidding algorithms that optimize bids on each ad-
vertiser’s behalf, subject to advertiser constraints such as budgets.
Crucially, these constraints are strategically chosen by the advertis-
ers, and de�ne an “inner” budget-pacing game for the autobidders.
Advertiser payo�s in the constraint-choosing “metagame” are de-
termined by the equilibrium reached by the autobidders.

Advertiser preferences can be more general than what is implied
by their constraints: we assume only that they have weakly de-
creasing marginal value for clicks and weakly increasing marginal
disutility for spending money. Nevertheless, we show that at any
pure Nash equilibrium of the metagame, the resulting allocation
obtains at least half of the liquid welfare of any allocation and this
bound is tight. We also obtain a 4-approximation for any mixed
Nash equilibrium or Bayes-Nash equilibria. These results rely on
the power to declare budgets: if advertisers can specify only a (lin-
ear) value per click or an ROI target but not a budget constraint,
the approximation factor at equilibrium can be as bad as linear in
the number of advertisers.
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1 INTRODUCTION

In many large online platforms, it is increasingly common for users
to delegate their choices to algorithmic proxies that optimize on
their behalf. Examples include autobidders in online advertising
markets [30, 41, 42], dynamic price adjustment algorithms for sales
or rental platforms like Amazon and Airbnb [2, 4], price prediction
tools for �ights [26, 32], and more. These tools typically employ
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techniques from machine learning to optimize some goal subject to
user-speci�ed constraints or targets.Whenmany users deploy these
algorithmic tools simultaneously, the algorithms are e�ectively
competing against each other. But in addition to the game between
the algorithms, this setup de�nes a metagame between the users,
who are choosing the parameters of their algorithms in anticipation
of the competition. This raises a natural question: how will users

play the metagame, and what is the impact on the market?

We study these questions through the lens of autobidding in
online advertising markets. Online advertising platforms sell indi-
vidual advertising events (like clicks or conversions) by auction,
with a separate auction held for each ad impression. These auctions
are strategically linked and optimal bidding is complicated, but
advertisers can delegate the bidding details to an autobidder. We
focus on online advertising in part because the use of automated
bidding algorithms is very well established in that market, with
all major advertising platforms o�ering integrated autobidding
services [30, 41, 42].

The autobidding paradigm involves three layers: advertisers,
autobidders, and auctions. See Figure 1 for an illustration. Each
advertiser has their own individual autobidding algorithm (often
provided by the platform) that bids on their behalf. An advertiser
provides their autobidder with aggregate instructions like a budget
constraint and/or amaximumbid.1 The autobidder then participates
in many individual auctions, implementing learning algorithms that
use auction feedback to adjust bids in order to maximize the total
value received (e.g., total clicks) while adhering to the speci�ed
constraints. There is by now a very rich academic literature on
the design of autobidding algorithms for various constraints and
auction designs [8, 9, 11, 12, 14, 17] and how a platform might
design its auction rules or prices for such algorithms [7, 24, 29].

From the advertisers’ perspective, the autobidder and auction
layers can be seen as a cohesive mechanism that the advertisers
interact with strategically. The advertiser-speci�ed constraints (e.g.,
budgets) de�ne the mechanism’s message space. However, this is
not a direct-revelation mechanism, and the allowable constraints
do not necessarily capture the intricacies of advertiser preferences.
Indeed, the latter may bemuchmore complex than, e.g., maximizing
a linear value for clicks or other events subject to a budget.2

Thus, while the autobidders play a bidding game amongst them-
selves, the advertisers play a game of constraint selection, hence-
forth called the metagame. The actions in this metagame are the
budgets and any other constraints speci�ed to the autobidders.
These constraints in turn de�ne the bidding game, called the inner

1In our model, maximum bid constraints are equivalent to average return-on-
investment (ROI) constraints, which are common in autobidding. See Remark 2.5.
2And even if the message space does capture advertisers’ preferences, these mecha-
nisms do not generally incentivize truth-telling; see, e.g., [3].
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Figure 1: The metagame of strategic budget selection.

game, played by the autobidders. The outcome of the inner game ul-
timately determines the advertisers’ payo�s. In this paper we focus
on the metagame played by the advertisers, explore its equilibrium
outcomes, and analyze the e�ciency of the market.

Our model. For the inner game, each autobidder receives as in-
put a budget constraint and maximum bid, either of which can be
in�nite. We �rst need to specify the outcome of the inner game
between the autobidders for a �xed choice of constraints. One
potential challenge is that if there are multiple equilibria in the
inner game, the metagame payo�s would be ambiguous and de-
pendent on the details of the learning dynamics. Fortunately, if the
auction format is a �rst-price auction, the inner game has an essen-
tially unique equilibrium known as the �rst-price pacing equilibrium
(FPPE) [20]. Moreover, common learning dynamics are known to
converge quickly to this equilibrium [14]. Given that and the prac-
tical prevalence of �rst-price auctions in the online advertising
market, we will focus on �rst-price auctions in our model and use
FPPE as our predicted outcome of the inner game.3 This approach
allows us to abstract away from the details of the autobidder imple-
mentation; our results are relevant to any learning methods that
converge to the FPPE.

Our model encompasses a broad range of advertiser preferences.
We consider general separable utility models with a weakly con-
cave (not necessarily linear) valuation for events (e.g., clicks) and
weakly convex increasing disutility for spending money. This in-
cludes quasi-linear utility up to a hard budget constraint, but also
allows value-maximizing advertisers, soft budget constraints, de-
creasing marginal value for clicks, etc. We emphasize the distinction
between preferences and constraints: while the autobidders strive
to maximize value given the speci�ed constraints, the advertisers
are optimizing for their more general preferences.

To measure the e�ciency of the overall market, we focus on
the liquid welfare, which is the summation of each advertiser’s
willingness-to-pay given her own type and allocation. This general
de�nition encompasses the classic de�nition of welfare for linear
agents and the original de�nition of liquid welfare for budgeted
agents, respectively [25, 43]. Liquid welfare is also closely related to
compensating variation from economics [31].4 We emphasize that
liquid welfare is determined by the allocation and the advertisers’
true preferences, not the payments or the declared constraints. In

3In contrast, the inner game equilibrium may not be unique for 2nd-price auctions [21],
and �nding any equilibrium is PPAD-hard [18]. So extending to 2nd-price auctions
necessitates taking a stance on equilibrium selection and/or the learning dynamics,
which we leave for future work.
4Compensating variation is the transfer of money required, after some market change,
to return agents to their original utility levels. In our scenario, the “change" is an
allocation of resources, and the compensating variation is the maximum amount the
agents would pay for that allocation; i.e., the liquid welfare.

our results, we compare to the optimal liquid welfare achieved by
any allocation, henceforth called the OPT.

Approximate e�ciency in the metagame. In our baseline model,
we consider a full-information environment where each adver-
tiser’s type (i.e., valuation and disutility for spending money) is
�xed and publicly known. We �rst consider pure Nash equilibria
of the metagame: the advertisers simultaneously declare their con-
straints to their respective autobidders then outcomes and payo�s
are determined by the FPPE of the inner game.

While the FPPE is essentially unique given the choices of the ad-
vertisers, the same is not true for the metagame of constraint selec-
tion. We show through a sequence of examples that the metagame
may have multiple pure Nash equilibria, or none at all. Intuitively,
a unilateral change of budget by one advertiser can substantially
change the equilibrium behavior of all autobidders in the inner
game, leading to a rich strategic environment for the advertis-
ers. Nevertheless, in our main result we prove that at any pure
Nash equilibrium (if one exists), the resulting liquid welfare is a
2-approximation to the OPT and this is tight.5

We also show that at any mixed Nash equilibrium (which is
guaranteed to exist), the resulting expected liquid welfare is at
most a 4-approximation to the OPT. In fact, this approximation
result extends to Bayesian environments, where each advertiser’s
private type is independently drawn from a publicly-known prior.
In this extended setting, we can likewise show that the expected
liquid welfare at any Bayesian Nash equilibrium is at most a 4-
approximation to the expected OPT.

We reiterate that our approximation bounds hold for any (dis-
tribution over) separable preferences of the advertisers.6 We view
the generality of our bounds as a bene�t of the design paradigm of
mechanisms with proxy autobidders, which provide an interface
for advertisers with complex preferences to engage with a simple
and robust auction format.

Importance of budget constraints. Our approximation results high-
light an important practical implication: Simple instructions for au-

tobidders are su�cient to achieve good market outcomes even when

advertisers have much more complex preferences. An interesting
follow-up question arises: Can these instructions be further simpli-
�ed? Is it necessary to provide advertisers with the option to specify
both hard budgets and maximum bids? To answer this, we study
variants of the metagame where advertisers exclusively declare
budget constraints or maximum bid constraints, respectively. We
demonstrate that the budget constraints are crucial. If advertisers
specify maximum bids but not budgets, the resulting approxima-
tion factor at equilibrium can be as bad as linear in the number
of advertisers. On the other hand, all our approximation results
extend to the variant of the metagame with no maximum bid.

Intuitively, the presence of budgets allows advertisers to hedge
against unexpectedly high expenditures, which can have a poten-
tially catastrophic impact on their utility.

5We say that liquid welfare at equilibrium is an U-approximation to the OPT, for some
approximation factor U ≥ 1, if the liquid welfare is at least OPT/U for any vector of
advertiser types.
6To the best of our knowledge, the only other$ (1)-approximation for such separable
utilities in a multi-item auction is due to [6], who study direct bidding in second-
price auctions; their bound applies to pure Nash equilibria under an additional ROI-
optimality re�nement and linear valuations. See Section 1 for further discussion.
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Characterization of equilibria for homogeneous items. To shed
light on the equilibrium structure, we also explicitly characterize
the pure Nash equilibria in the special case where all ad impressions
are homogeneous. We show that a pure Nash equilibrium always ex-
ists in this homogeneous case and can be found in polynomial time.
In fact, there are two distinct types of equilibria, which we call low-
price equilibria and high-price equilibria. There may be multiple
equilibria of each type, corresponding to a range of implementable
per-unit prices. In a low-price equilibrium, all advertisers specify
budget constraints that target their minimal utility-maximizing allo-
cations at a market-clearing price. In a high-price equilibrium, one
or more advertisers forego budget constraints and instead impose
high maximum bids, e�ectively forcing a higher price. This multi-
plicity demonstrates the rich strategic landscape of the metagame,
even in the special case where all ad impressions are identical.

Summary of Techniques. Let us now return to our approximation
results and provide some additional intuition into the proof ideas.
At any pure Nash equilibrium, each advertiser will face a Pareto
curve that represents the tradeo� between the value she receives
and the budget constraint she declares to her autobidder. Increasing
the declared budget allows the advertiser to win more, but at a
potentially decreasing bang-per-buck. The �rst step of our analysis
is to analyze this tradeo�. To that end, we will employ a useful
interpretation of FPPE due to [20]: the inner FPPE of autobidders
corresponds to a market-clearing outcome that assigns a price to
each impression, so that each autobidder obtains a preferred bundle
under those prices. Since increasing one autobidder’s budget has
downstream e�ects on how other autobidders will behave (even
keeping the speci�ed constraints of other advertisers �xed), adjust-
ing one’s budget can cause the market-clearing prices to change.
This gives us the perspective we need to understand an advertiser’s
tradeo� when choosing a budget: the sensitivity of FPPE prices and
market-clearing allocations to budget changes.

Unfortunately, this sensitivity can be unbounded in general.
An advertiser might need to increase their spend by an arbitrary
amount to secure a target increase in allocation. For example, con-
sider two advertisers competing for a single impression type. If
the advertisers set �nite budgets and no maximum bids, then at
FPPE they will spend their budgets exactly and split the item in
proportion to their declared budgets. (See Section 3 for examples
and intuition for FPPE.) This means that if the �rst advertiser sets
a budget of 1, the second advertiser would need to set a budget of 9
to receive 90% of the item (at a price of 10 per unit), but a budget of
99 to receive 99% of the item (at a price of 100 per unit). In such a
scenario, large changes in price might be required to implement a
small change in allocation.

However, a key insight is that this hyper-in�ation only occurs
when one advertiser obtains a very large allocation of an impression
type. As long as an advertiser is not winning an excessive share of
the impressions, the market-clearing prices faced by her autobidder
will not be overly sensitive to small changes in her allocation. This
is our main technical lemma, Lemma 4.2, which relates the rate of
substitution between valuation utility and payment disutility of an
advertiser at equilibrium to the FPPE prices and the share of each
impression she obtains. It implies that if an advertiser is obtaining
signi�cantly less value than she would in the optimal allocation,

then either (a) the prices are low and her allocation is small, in
which case by Lemma 4.2 she can improve her utility by increasing
her budget (contradicting the equilibrium assumption), or (b) her
autobidder must be facing high market-clearing prices. But in the
latter case, we can employ a standard trick for bounding the price of
anarchy: the lost liquid welfare from the advertiser can be charged
against revenue collected from the other advertisers who are paying
these high prices. Here we use the fact that since liquid welfare
measures total willingness to pay, the revenue collected is always a
lower bound on liquid welfare. Putting these pieces together yields
our 2-approximation result for pure Nash equilibrium.

Organization. We formalize the model and provide necessary
preliminaries and notations in Section 2. In Section 3 we study two
simple examples and analyze their pure Nash equilibrium in the
metagame. In Section 4, we present the approximation results of the
liquid welfare at equilibrium. We study the extension of our model
in the Bayesian environments in Section 5, and several variants of
our model under restrictive message space (i.e., advertisers can only
exclusively declare hard budgets, or maximum bids) in Section 6.
Finally, in Section 7 we characterize and prove existence of pure
Nash equilibria for single-item (aka., homogeneous) instances. All
missing proofs are deferred to the full version.

Below we discuss the additional related work.

Incentives in Autobidding. A recent line of work has studied the
incentives of value-maximizing advertisers to truthfully describe
their preferences to their autobidders. [40] show that the advertisers
may bene�t by misreporting their preference to autobidders when
the platform does not have commitment power and can change the
auction rule. [35] conduct an empirical investigation using numeri-
cal examples, illustrating the potential advantages for advertisers
when misreporting to autobidders in a second-price auction. Con-
ceptually closest to our work is [3], who introduce the concept of
auto-bidding incentive compatibility (AIC) and show that �rst-price
auction with uniform bidding satis�es AIC (while many other auc-
tion formats do not). Crucially, all of these works assume that both
advertisers and their autobidders are value-maximizers with similar
constraints, so the advertisers are able to declare their true prefer-
ences to their autobidders. In contrast, in our model the advertisers
are utility-maximizers and they can only give their autobidders
simple constraints (hard budget, maximum bid) that may not be
rich enough to capture their true complex preferences. In particular,
the induced mechanism is not direct-revelation and hence incentive
compatibility does not apply; we focus instead on Nash equilibria.

Metagame between no-regret learning agents. [34] explores the
concept of a metagame involving rational agents who utilize regret-
minimizing learning algorithms to play games on their behalf, and
investigates whether the agents are incentivized to manipulate or
misrepresent their true preferences in various classic games. In [33],
the authors delve into a similar problem but within the context
of auctions involving two agents with linear utility, showing that
agents have incentive to misreport their true values in a second-
price auction when both agents use multiplicative-weights learning
algorithms. On the other hand, they �nd that truthful reporting
forms aNash equilibrium in the �rst-price auctionwhen both agents
use mean-based learning algorithms. Compared to both [34] and
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[33], this present paper considers a di�erent auction setup with
budget constraints, focuses on cases where advertiser preferences
and autobidder instructions are di�erent, and abstracts away from
the learning process by assuming that the autobidders converge to
bidding according to an FPPE of the simultaneous auction game.

Price of anarchy for non-quasi linear agents. There is a long line
of literature about the price of anarchy (PoA) – the approximation
between worst equilibrium and best outcome – in the context of
liquid welfare for non-quasi linear agents. Besides works already
mentioned above, [25] introduce the concept of liquid welfare for
agents with hard budget constraints. They prove the PoA for post-
ing market clearing prices and the clinching auction. [37] design
a sampling mechanism with a better PoA guarantee. All mecha-
nisms studied in [25, 37] are truthful mechanisms. For non-truthful
mechanisms, [15, 16, 19] study the PoA of the simultaneous Kelly
mechanism, while [5] studies the PoA of the simultaneous �rst-price
auction and second-price auction with no over-bidding. [6] studies
the PoA under ROI-optimal pure Nash equilibrium of the simultane-
ous second price auction, establishing a 2-approximation and that
such a pure Nash equilibrium always exists. [1, 22, 23, 36, 39] study
the PoA for the autobidders under various auctions. [27, 28, 38]
study the dynamic of no-regret learning/budget-pacing players
(autobidders) and provide the liquid welfare guarantees. In this
literature [1, 23, 27, 28, 36, 38], similar 2-approximation PoA results
are obtained for autobidders in various auction formats for both
static and dynamic environments. It is important to highlight that
these works treat the autobidder constraints as exogenous and do
not model them as strategic choices, focusing rather on the auction
and autobidders’ interaction. Additionally, except [6], the afore-
mentioned studies assume that agents have a linear disutility for
spending money up to a �xed budget. In contrast, our paper (like
6) considers agents with a general convex disutility function for
spending money with a hard budget.

2 MODEL AND PRELIMINARIES

Agent models. There are = ≥ 2 agents (advertisers) and< divisi-
ble items (impressions). The outcome for agent 8 is (G8 , C8 ), where
G8 = (G81, . . . , G8<) ∈ [0, 1]< is the allocation for each item 9

and C8 ∈ R+ is the payment. Given allocation G8 , agents receives∑
9∈[<] q8 9G8 9 number of clicks, whereq8 9 ∈ R+ is the click-through

rate of each item 9 for agent 8 . The click-through rate can also be
interpreted as conversion rate or other related concepts in di�erent
applications.

Agent 8’s von Neumann–Morgenstern utility is parameterized
by her type (+8 ,F8 ,�8 ): Given outcome (G8 , C8 ), agent 8’s utility
D8 (G8 , C8 ) is de�ned as

D8 (G8 , C8 ) ≜
{
+8

(∑
9∈[<] q8 9G8 9

)
−�8 (C8 ) if C8 ≤ F8

−∞ if C8 > F8

where +8 : R+ → R+ is the valuation function mapping from the
total number of received clicks to agent’s valuation;F8 ∈ R∞+ is the
hard budget;7 and�8 : R+ → R+ is themoney cost functionmapping

7We use notation R∞+ to denote the set of all non-negative real numbers and in�nite,
i.e., R∞+ = R+ ∪ {∞}.

from the payment to the disutility for spending money.8 We assume
+8 is di�erentiable, weakly concave, weakly increasing, and+8 (0) =
0; and money cost function �8 is di�erentiable, weakly convex,
weakly increasing, and �8 (0) = 0. We will also assume that either
F8 < ∞ or �8 (C8 ) > 0 for some C8 . This rules out agents with no
value for money or spending constraint. Wewrite (8 (

∑
9 q8 9G8 9 ) and

'8 (C8 ) as the derivative of+8 and�8 at
∑
9 q8 9G8 9 and C8 , respectively.

Agents with this utility model are called general agents.
Three classic models can be viewed as special cases:

(1) (linear utility) An agent 8 with linear utility with type E8 ∈ R+,
hereafter linear agent, has linear valuation function+8 (

∑
9 q8 9G8 9 ) =

E8 ·
∑
9 q8 9G8 9 where E8 is her value per click, no hard budget (aka.,

F8 = ∞), and identity money cost function �8 (C8 ) = C8 .

(2) (budgeted utility) An agent 8 with budgeted utility with type
(E8 ,F8 ) ∈ R+ × R∞+ , hereafter budgeted agent, has linear valuation
function +8 (

∑
9 q8 9G8 9 ) = E8 ·

∑
9 q8 9G8 9 where E8 is her value per

click, hard budgetF8 , and identity money cost function �8 (C8 ) = C8 .

(3) (value-maximizing utility) A value-maximizing agent 8 with type
(E8 ,F8 ) ∈ R2+, has linear valuation +8 (

∑
9 q8 9G8 9 ) = E8 ·

∑
9 q8 9G8 9

where E8 is her value per click, hard budget F8 , and zero money
cost function �8 (C8 ) = 0 for C8 ≤ F8 . Value-maximizing agents have
been studied extensively in the recent autobidding literature [10].
Clearly, every linear agent is a budgeted agent, and every budgeted
agent is a general agent.

First-price pacing equilibrium for budgeted agents (autobidders).

Before introducing our solution concept, we �rst revisit a pivotal
concept: the �rst-price pacing equilibrium, introduced by [20] to
study budgeted agents (autobidders) in an advertising market.9

De�nition 2.1 (First-price pacing equilibrium). For budgeted agents
with types {(E8 ,F8 )}8∈[=] , a �rst-price pacing equilibrium (FPPE)
is a tuple (?, G, C) of per-unit price ? 9 ∈ R+ for each item 9 , allo-

cation G8 ∈ [0, 1]< , and payment C8 ∈ R+ for each agent 8 that

satis�es the following properties: (highest bang-per-buck) if G8 9 > 0,

then 9 ∈ argmax9 ′∈[<]
E8q8 9 ′
? 9 ′

and E8q8 9 ≥ ? 9 ; (supply feasibility)∑
8∈[=] G8 9 ≤ 1 and equality holds if ? 9 > 0; (payment calculation)

C8 =
∑
9∈[<] G8 9? 9 ; (budget feasibility) C8 ≤ F8 and equality holds if

max9∈[<]
E8q8 9
? 9

> 1.

As noted by [20], the per-unit prices, allocation, and payments in
FPPE can be interpreted as the outcome of a budget-pacing game for
�rst-price auctions, as follows. Each budgeted agent (autobidder) 8
�rst determines an item-independent pacing multiplier U8 = 1 ∧
(min9∈[<]

? 9
E8q8 9

) ∈ [0, 1]. The agent then submits bid U8E8q8 9 for

each item 9 .10 Then the allocation is the highest-bids-win and the
payment is computed under the �rst-price format. As a sanity check,

8Money cost function�8 is interpreted as follows: Agent 8 has an outside option value
for her money, e.g., spending on another advertising platform. Then �8 (C8 ) is the
utility that buyer 8 foregoes by paying C8 to the current platform (seller).
9For ease of presentation, we use an equivalent de�nition of the �rst-price pacing
equilibrium. See the full version for the original de�nition from [20] and the proof of
equivalence.
10Here the goal of each autobidder is to maximize the total value (or equivalently total
number of clicks due to the linear valuation function) received subject to the budget
constraint. Under this interpretation, the pacing multiplier can be considered as the
Lagrangian multiplier of the budget constraint.
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under this interpretation, the “highest bang-per-buck” property is
satis�ed due to the de�nition of pacing scalar U8 and the highest-
bids-win allocation construction.

The FPPE can also be interpreted as a (supply-unaware) com-
petitive equilibrium: if we �x the per-unit price ? 9 for each item
9 , the allocation G8 maximizes the utility of agent 8 subject to her
budget F8 , without accounting for the supply feasibility. We will
occasionally refer to this interpretation.

Lemma 2.1 (Conitzer et al. [20]). For any set of budgeted agents,

FPPE exists. Moreover, the per-unit price of each item and utility of

each budgeted agent are unique.

FPPE is the solution concept of interest for the autobidders,
due to its existence and uniqueness guarantee. Moreover, com-
mon learning dynamics (e.g., dynamic competition of autobidders)
in repeated �rst-price auctions are known to converge quickly
to this equilibrium when budgeted agents use linear strategies
(i.e., identical pacing multipliers for all items) [13]. We denote
? ({(E8 ,F8 )}8∈[=] ), Gf ({(E8 ,F8 )}8∈[=] ), and Cf ({(E8 ,F8 )}8∈[=] ) by
the unique per-unit prices and the corresponding allocation, pay-
ment (under tie-breaking rule f) in the FPPE for budgeted agents
with types {(E8 ,F8 )}8∈[=] , respectively.11

Let’s present two examples to illustrate the concept of FPPE; we
reuse them in Section 3.

Example 2.2 (Two linear agents and single item). Consider two

linear agents and one item, such that the click-through rates are the

same for both agents, i.e., q11 = q21 = 1. Further, the value per click

E1 for agent 1 is greater than or equal to the value per click E2 for

agent 2, i.e., E1 ≥ E2.
In the FPPE, the unique per-unit price for the item is ?1 = E1. If

E1 > E2, the allocation in the FPPE is also unique, with G11 = 1 and

G21 = 0. On the other hand, if E1 = E2, any allocation G11, G21 ∈ [0, 1]
satisfying G11 +G21 = 1, along with the unique per-unit price ?1 = E1,

forms an FPPE.

Example 2.3 (Two budgeted agents and two items). Suppose there

are two budgeted agents and two items. Let us assume that the click-

through rateq8 9 is given by
1
2 +

1
2 I {8 = 9} for each 8 ∈ [2] and 9 ∈ [2],

i.e., each agent 8 favors item 8 than the other item. The value per click

is the same for both agents, i.e., E1 = E2 = 1. Both agents have a

budget constraint ofF1 = F2 =
1
2 .

In the FPPE, both the per-unit price and the allocation are unique.

Speci�cally, we have ?1 = ?2 =
1
2 , and the allocation G8 9 = I {8 = 9}

for each 8 ∈ [2] and 9 ∈ [2]. In other words, both agents receive their

favorite items as per the allocation.

Metagame of strategic budget selection for general agents. An
FPPE is de�ned only for budgeted agents. For more general agents,
we will take inspiration from autobidding platforms in practice and
imagine the agents are provided an interface to report a budgeted
agent’s type that will specify the behavior of an autobidder. This
de�nes a metagame of strategic budget selection for agents with
general utility models:

11We assume that the seller decides a tie-breaking rule f exogenously ex ante. In
real-world applications, the autobidders are expected to e�ectively “implement” such
rule by making micro-adjustments to their bids across time, in order to hit their budgets
in aggregate. Our single-shot model abstracts away from this dynamic behavior, but it
motivates our focus on FPPE allocations. Importantly, our results are independent of
the speci�c choice of f . We omit mentioning f when it is clear from the context.

De�nition 2.4 (Metagame of strategic budget selection). Each gen-

eral agent 8 decides on a message (Ẽ8 , F̃8 ) ∈ (R∞+ )2 as her report to the
seller.12 Given reported message pro�le {(Ẽ8 , F̃8 )}8∈[=] , the seller im-

plements allocationG ({(Ẽ8 , F̃8 )}8∈[=] ) and payment C ({(Ẽ8 , F̃8 )}8∈[=] )
induced by the FPPE, assuming that agents have budgeted utility with

types {(Ẽ8 , F̃8 )}8∈[=] .

Going forward, we will refer to the metagame of budgeted utility
reporting as simply the metagame for the sake of brevity. Similarly,
the FPPE induced by a message pro�le will be referred to as the
inner FPPE. Given the structure of FPPE, the message (Ẽ8 , F̃8 ) re-
ported by agent 8 in the metagame can also be interpreted as the
constraints on themaximum bid Ẽ8 and constraints on themaximum
payment (hard budget) F̃8 that agent 8 speci�es to her autobidder.
The agent has the option to report Ẽ8 = ∞ (F̃8 = ∞), indicating
the absence of any constraint on the maximum bid or maximum
payment, respectively.

Remark 2.5 (Return on Investment Constraints). Another common

type of autobidding constraint is an (aggregate) ROI constraint, which

bounds the ratio between the total number of allocated clicks and the

total payment. We note that, for FPPE, a maximum bid Ẽ8 is equivalent

to an aggregate ROI constraint. Indeed, due to the “highest-bang-per-

buck” property of FPPE, all items allocated to an autobidder have the

same ROI, which is equal to the equilibrium bid. So an ROI constraint

of the form C8 ≤ W
∑
9 q8 9G8 9 excludes equilibrium bids higher than W ,

and a maximum bid of Ẽ8 guarantees an average payment of at most

Ẽ8 per click.

With slight abuse of notations, we use D8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 ), G8 (Ẽ8 ,
F̃8 , Ẽ−8 , F̃−8 ), C8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 ) to represent the utility, allocation
and payment of agent 8 in the metagame when agent 8 reports
message (Ẽ8 , F̃8 ) and other agents report message (Ẽ−8 , F̃−8 ) ≜
{(Ẽ8′ , F̃8′ )}8′≠8 .13 Similarly, we use ? 9 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 ) to represent
the per-unit price of item 9 of the inner FPPE given message pro-
�le {(Ẽ8 , F̃8 ), (Ẽ−8 , F̃−8 )}. The following lemma characterizes the
relationship between agents’ utility, payment, and per-unit prices.
Essentially, for each agent, her payment along with the per-unit
prices of the inner FPPE serve as su�cient statistics for computing
her utility. Its proof is straightforward given the de�nitions of FPPE
and metagame.

Lemma 2.2. In the metagame, for every agent 8 with type {+8 ,F8 ,�8 }
and every message pro�le, let C8 be the payment of agent 8 and ? be

the per-unit prices of the inner FPPE. Then agent 8’s utility D8 satis�es

D8 =

{
+8

((
max9∈[<]

q8 9
? 9

)
· C8

)
−�8 (C8 ) if C8 ≤ F8

−∞ if C8 > F8

Equilibria in the metagame. In the base model, we are interested
in Nash equilibria for agents with public types.

De�nition 2.6. Consider agents with types {(+8 ,F8 ,�8 )}8∈[=] . A
pure Nash equilibrium is a message pro�le {(Ẽ8 , F̃8 )}8∈[=] such that

for every agent 8 and every message (Ẽ†8 , F̃
†
8 ),

D8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 ) ≥ D8 (Ẽ†8 , F̃
†
8 , Ẽ−8 , F̃−8 ).

12We use “ ˜" to denote the budgeted utility model that an agent reports to the seller.
13We use notation −8 to denote other = − 1 agents excluding agent 8 .
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AmixedNash equilibrium is a randomizedmessage pro�le {(ṽ8 , w̃8 )}8∈[=]
such that14 the random messages are mutually independent, and for

every agent 8 and every message (Ẽ†8 , F̃
†
8 ),

E(Ẽ8 ,F̃8 )∼(ṽ8 ,w̃8 ),(Ẽ−8 ,F̃−8 )∼(ṽ−8 ,w̃−8 ) [D8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 )]

≥ E(Ẽ−8 ,F̃−8 )∼(ṽ−8 ,w̃−8 )
[
D8 (Ẽ†8 , F̃

†
8 , Ẽ−8 , F̃−8 )

]
As a sanity check, in both pure/mixed Nash equilibrium, the

utility of every agent 8 is non-negative, since zero utility is always
guaranteed by reporting message (Ẽ8 = 0, F̃8 = 0).

Liquid welfare. We evaluate a particular allocation in terms of
its liquid welfare.

De�nition 2.7 (Liquidwelfare). For agents with types {(+8 ,F8 ,�8 )}8∈[=] ,
the liquid welfare of a (possibly) randomized allocation x is

, (x) ≜
∑

8∈[=],8 (x8 ),

where,8 (x8 ) is agent 8’s willingness to pay for allocation x8 ,

,8 (x8 ) ≜ min
{
F8 , �

−1
8

(
EG8∼x8

[
+8

(∑
9∈[<] q8 9G8 9

)] )}
.

Within the set of feasible randomized allocations, the optimal
allocation that maximizes the liquid welfare is deterministic, thanks
to the weak concavity of the valuation function +8 .

We evaluate the metagame via an approximation of liquid wel-
fare. Speci�cally, we compare liquid welfare of the worst equilibria
against that of the best allocation, over all instances.15

De�nition 2.8 (Price of anarchy). The price of anarchy (PoA) of
the metagame ΓPure (resp., ΓMixed) under pure (resp., mixed) Nash

equilibrium is

ΓPure ≜ sup
=,<,q

sup
{+8 ,F8 ,�8 }8∈ [=]

maxG, (G)
infG∈Pure, (G) ,

ΓMixed ≜ sup
=,<,q

sup
{+8 ,F8 ,�8 }8∈ [=]

maxG, (G)
infx∈Mixed, (x)

where Pure (resp., Mixed) is the set of the deterministic (resp., random-

ized) allocation pro�le induced by all pure (mixed) Nash equilibrium

given types {+8 ,F8 ,�8 }8∈[=] .

3 EXAMPLES: PURE NASH EQUILIBRIUM

Let us revisit Examples 2.2 and 2.3 and analyze pure Nash equilibria
therein. We establish:

Proposition 3.1. In the metagame, pure Nash equilibria might not

exist, even for budgeted agents. When they do exist, the resulting

per-unit prices may not be unique, even for linear agents, due to the

multiplicity of equilibria.

We interpret this proposition as follows. First, although the inner
FPPE of the metagame always exists and its induced per-unit prices
are unique (as per Lemma 2.1), incorporating the strategic behavior
of the advertisers in the meta-game complicates the allocation and

14We use bold symbols (e.g., ṽ, w̃) to denote random variables and their corresponding
distributions.
15Though the inner FPPE of the metagame assumes that each autobidder uses a single
pacing multiplier and conducts “linear bidding”, the price of anarchy compares its
equilibrium e�ciency with the unrestricted optimal allocation. Our approximation
results hold in spite of the restriction to linear bidding in the inner FPPE.

payment outcome. Second, due to the non-existence result, even
budgeted agents may have incentive to misreport their types.16

Finally, despite the non-existence result, we show in Section 7 that
a pure Nash equilibrium always exists for single-item instances and
can be computed in polynomial time.

We start with two auxiliary lemmas on verifying the existence
of pro�table deviations in a pure Nash equilibrium. The �rst lemma
suggests that for a given agent 8 , it su�ces to consider deviations

(Ẽ†8 , F̃
†
8 ) with a restriction that Ẽ†8 = ∞, i.e., no maximum bid con-

straint for her autobidder. Loosely speaking, restricting to deviation

with Ẽ†8 = ∞ simpli�es the analysis since the agent would exhaust

her reported budget F̃†
8 . So, Lemma 2.2 ensures that F̃†

8 along with
the per-unit prices of the inner FPPE serve as su�cient statistics
for computing her utility.

Lemma 3.2. In the metagame, for every agent 8 and every pure Nash

equilibrium {(Ẽ8 , F̃8 ), (Ẽ−8 , F̃−8 )},

D8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 ) = max
Ẽ†8 ,F̃

†
8
D8 (Ẽ†8 , F̃

†
8 , Ẽ−8 , F̃−8 )

= max
F̃†
8
D8 (∞, F̃†

8 , Ẽ−8 , F̃−8 ) .

The second lemma suggests that, for a given agent 8 , it su�ces to
consider the tie-breaking rule of the inner FPPE that favors agent 8 .
Its proof is straightforward given Lemma 3.2.

Lemma 3.3. In the metagame with tie-breaking rule f for the inner

FPPE, for every agent 8 and every pure Nash equilibrium {(Ẽ8 , F̃8 ),
(Ẽ−8 , F̃−8 )}, it satis�es that

Df8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 ) = maxf ′ Df
′

8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 )

whereDf8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 ) andDf
′

8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 ) are agent 8’s util-
ity in the metagame when tie-breaking rules f , f† are selected for

the inner FPPE, respectively; and the maximization on the right-hand

side is taken over all randomized and deterministic tie-breaking rules.

3.1 Example 2.2: Non-Uniqueness

We revisit the linear agents instance from Example 2.2. We prove
that there exists an e�cient pure Nash equilibrium (Claim 3.4),
and also an ine�cient pure Nash equilibrium if E2 is close to E1
(Claim 3.5). In both equilibria, agents report their value per click
(aka., maximum bid) truthfully, while strategically declaring their
budgets.

Claim 3.4. In Example 2.2, a pure Nash equilibrium of the metagame

is achieved when agent 1 reports Ẽ1 = E1 and F̃1 = E2, while agent 2

reports Ẽ2 = E2 and F̃2 = E2.

Proof. In the following argument, we assume E1 > E2. However,
the same argument can be applied in the case of E1 = E2 due to
Lemma 3.3. To save space, we will omit the details of this case.

Given message pro�le ((Ẽ1 = E1, F̃1 = E2), (Ẽ2 = E2, F̃2 = E2)),
the inner FPPE allocates the entire item to agent 1 with per-unit
price E2, i.e., G11 = 1, G21 = 0 and ?1 = E2.

We verify the non-existence of pro�table deviation. Invoking

Lemma 3.2, it is su�cient to consider deviation (Ẽ†8 , F̃
†
8 ) with Ẽ

†
8 =

16For this point, it is crucial that the budgeted agents are utility-maximizers. Indeed,
in the meta-game for budgeted value-maximizing agents, truthful reporting is a Nash
equilibrium (this follows from 3).
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E2 E1

E2

E1

F̃†
1

(a) deviation of agent 1

E2 E1
E2 − E1

E2

E1

F̃†
2

(b) deviation of agent 2

Figure 2: Graphical illustration of each agent 8’s deviation

(∞, F̃†
8 ) in Claim 3.4 for Example 2.2. The solid (resp., dashed)

line is the per-unit price (resp., utility of agent 8).

WE
1

E 2
− W
E 2 E 2 E 1

F̃1

F̃1+F̃2
E1 − F̃1

E2

E1

F̃†
1

(a) deviation of agent 1

WE
2

E 1
− W
E 1

E2 − E1

F̃2

F̃1+F̃2
E2 − F̃2

E2

E1

E 1
− W
E 1

E 1

F̃†
2

(b) deviation of agent 2

Figure 3: Graphical illustration of each agent 8’s deviation

(∞, F̃†
8 ) in Claim 3.5 for Example 2.2. The solid (dashed) line

is the per-unit price (utility of agent 8).

∞ for each agent 8 . In such a deviation, the “budgeted feasibility”
property of FPPE ensures that agent 8 exhausts her budget and pays

exactly F̃†
8 .We nowproceed to analyze each agent 8 individually. For

agent 1, it can be veri�ed that the per-unit price ?†1 and allocation

G†11 of inner FPPE under her deviation (∞, F̃†
1 ) are

?†1 =

{
E2 if F̃†

1 ≤ E2
F̃†
1 if F̃†

2 ≥ E2
, G†11 =

F̃†
1

?†1
=

{
F̃†
1
E2

if F̃†
1 ≤ E2

1 if F̃†
2 ≥ E2

and her utility is maximized at F̃†
1 = E2, which results in the same

utility as she obtains in equilibrium. See Figure 2a for a graphical
illustration. To avoid repetition, we omit a similar argument for
agent 2. See Figure 2b for a graphical illustration. □

Claim 3.5. Consider the metagame in Example 2.2 with
√
5−1
2 E1 ≤

E2 ≤ E1. Let W =
E1E2

(E1+E2 )2 . Then a pure Nash equilibrium is achieved

when agent 1 reports Ẽ1 = E1 and F̃1 = WE1, while agent 2 reports

Ẽ2 = E2 and F̃2 = WE2.

Proof. In the following argument, we assume E1 > E2. However,
the same argument can be applied in the case of E1 = E2 due to
Lemma 3.3. To save space, we will omit the details of this case.

Given message pro�le ((Ẽ1 = E1, F̃1 = WE1), (Ẽ2 = E2, F̃2 = WE2)),
the per-unit price ?1 of the inner FPPE is ?1 = F̃1+F̃2 = W (E1+E2) ≤
E2 < E1. Moreover, the item is allocated to both agents in proportion
to their respective values, i.e., G81 =

E8
(E1+E2 ) .

We verify the non-existence of pro�table deviation. Invoking

Lemma 3.2, it is su�cient to consider deviation (Ẽ†8 , F̃
†
8 ) with Ẽ

†
8 =

∞ for each agent 8 . In such a deviation, the “budgeted feasibility”
property of FPPE ensures that agent 8 exhausts her budget and pays

exactly F̃†
8 .We nowproceed to analyze each agent 8 individually. For

agent 1, it can be veri�ed that the per-unit price ?†1 and allocation

G†11 of inner FPPE under her deviation (∞, F̃†
1 ) are

?†1 =



F̃†
1 + F̃2 if F̃†

1 ≤ E2 − F̃2

E2 if E2 − F̃2 ≤ F̃†
2 ≤ E2

F̃†
1 if F̃†

2 ≥ E2
,

G†11 =
F̃†
1

?†1
=




F̃†
1

F̃†
1 +F̃2

if F̃†
1 ≤ E2 − F̃2

F̃†
1
E2

if E2 − F̃2 ≤ F̃†
2 ≤ E2

1 if F̃†
2 ≥ E2

By considering the �rst-order condition, we observe that agent 1’s
utility, under the mentioned deviation, has two local maximizers:

F̃†
1 = WE1 and F̃

†
1 = E2. However, according to the claim assump-

tion that (
√
5−1)E1
2 ≤ E2, her utility is maximized at F̃†

1 = WE1,
which coincides with her utility in the equilibrium. See Figure 3a
for a graphical illustration. To avoid repetition, we omit a similar
argument for agent 2. See Figure 3b for a graphical illustration. □

Remark 3.1. At the equilibrium of the metagame, each agent 8

faces a Pareto curve (see Figures 2 and 3) that describes how much

value they receive as their reported budget F̃8 increases. Increasing

her reported budget F̃8 causes more impressions and thus clicks to

be won, but at a potentially decreasing bang-per-buck. In particular,

as we mentioned in Section 2, FPPE can be viewed as a competitive

equilibrium, i.e., market-clearing outcome that assigns a price to

each impression. Since increasing budget has downstream e�ects on

how other autobidders will behave (even keeping the reports of other

advertisers �xed), increasing one’s budget can cause prices to increase.

3.2 Example 2.3: Non-Existence

We revisit Example 2.3 and prove non-existence of pure Nash equi-
librium for budgeted agents.

Claim 3.6. In the metagame from Example 2.3, pure Nash equi-

librium does not exist. Consequently, both agents have incentive to

misreport their true types.

To prove this claim, we enumerate all feasible allocations and
argue that each of them cannot be induced by a pure Nash equilib-
rium. We distinguish three cases with di�erent deviation strategy
for each, see Claims 3.7, 3.8 and 3.9. In the �rst case, we argue that
allocations where each agent receives a positive fraction of her less
favored item cannot be induced by a pure Nash equilibrium.

Claim 3.7. In Example 2.3, there exists no pure Nash equilibrium

whose induced allocation G satis�es G12 > 0 and G21 > 0.

Proof. We prove this by contradiction. Suppose there exists a
pure Nash equilibrium as desired. Let ?1, ?2 be the per-unit price
of the inner FPPE. Since G12 > 0 in FPPE, the “highest bang-per-

buck” property implies
q12
?2

≥ q11
?1

and thus ?2 ≤ 1
2?1. Similarly,
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G21 > 0 in FPPE implies ?1 ≤ 1
2?2. Thus, the inner FPPE has zero

per-unit prices, i.e., ?1 = ?2 = 0, which can only be achieved from
message pro�le {(Ẽ8 , F̃8 )} where Ẽ8 = 0 or F̃8 = 0 for each agent 8 .

It is straightforward to verify that (Ẽ†8 = n, F̃†
8 = n) is a pro�table

deviation for each agent 8 with su�ciently small n , which leads to
a contradiction. □

In the second case, we argue that the allocation where each
agent receives her favored item cannot be induced by a pure Nash
equilibrium. Note that this is the allocation induced by FPPE if both
agents report their types truthfully.

Claim 3.8. In Example 2.3, there exists no pure Nash equilibrium

whose induced allocation G satis�es G11 = G22 = 1.

Proof. We prove this by contradiction. Suppose there exists a
pure Nash equilibrium as desired. Let ?1, ?2 be the per-unit price of
the inner FPPE.Without loss of generality,17 we assume ?1 ≥ ?2 and
?1 > 0. The utility of agent 1 is D1 = 1 − ?1. Consider the following
pro�table deviation (Ẽ†8 = ∞, F̃†

8 =
1
2?2). It can be veri�ed that the

per-unit price and allocation of inner FPPE under such a deviation

are ?†1 =
1
2?2 and ?

†
2 = ?2, and G11 = G22 = 1. Consequently, agent

1’s utility under such a deviation is D†1 = 1 − 1
2?2 ≥ D1, which leads

to a contradiction. □

In the �nal case, we argue that allocations where one agent 8
receives her favored item and a positive fraction of less favored
item cannot be induced by a pure Nash equilibrium. At a high-level,
we utilize the relation ?8 = 2?1−8 on per-unit prices of inner FPPE
due to the “highest bang-per-buck” property, and G88 = 1, G8,1−8 > 0.
We then argue that depending on the magnitude of ?8 , either agent
has a pro�table deviation.

Claim 3.9. In Example 2.3, there exists no pure Nash equilibrium

whose induced allocation G satis�es G88 = 1 and G8,1−8 > 0 for some

agent 8 .

4 MAIN RESULTS

In this section, we analyze both pure Nash equilibria and mixed
Nash equilibria of the metagame.

4.1 Pure Nash Equilibrium

We �rst present a tight bound on the price of anarchy under pure
Nash equilibrium.

Theorem 4.1. In the metagame, the price of anarchy under pure

Nash equilibrium is ΓPure = 2.

Example 4.1 (Lower bound of PoA under pure Nash equilibrium).
Consider a scenario with two agents (one linear agent and one bud-

geted agent) and one item. Let us assume that the click-through rates

are the same for both agents, i.e., q11 = q21 = 1. Agent 1 has a budget

utility model with type E1 =  andF1 = 1; while agent 2 has a linear

utility model with type E2 = 1. Here we assume  is a su�ciently

large constant.

17Due to the symmetric of the instance, the same argument can be applied to ?1 ≤ ?2
and ?2 > 0 as well. The remaining case of ?1 = ?2 = 0 is already covered in the proof
of Claim 3.7.

The optimal liquid welfare is 2 − 1
 . This is achieved through an

allocation where budgeted agent 1 receives a 1
 -fraction of the item,

and linear agent 2 receives a  −1
 -fraction of the item. By employing a

similar argument to the one presented in Claim 3.4, we can be veri�ed

that a pure Nash equilibrium is achieved when both agents report

their types truthfully: Ẽ1 = E1 =  , F̃1 = F1 = 1, Ẽ2 = E2 = 1, and

F̃2 = ∞. In this equilibrium, the per-unit price of the inner FPPE

is ?1 = 1, and agent 1 receives the entire item. Consequently, the

achieved liquid welfare is 1. Letting  approach in�nity, the lower

bound of PoA under pure Nash equilibrium is obtained as desired.

In the rest of this subsection we prove the upper bound in The-
orem 4.1: ΓPure ≤ 2. First, we introduce a characterization of the
allocation for each agent and per-unit prices of the inner FPPE.

Lemma 4.2. In the metagame, for every pure Nash equilibrium,

suppose ?, G, C are the per-unit prices, allocation and payment of the

induced FPPE. For every agent 8 , let �8 ≜ { 9 ∈ [<] : G8 9 > 0} be the
subset of items for which agent 8 receives a strictly positive fraction.

Suppose agent 8 does not exhaust her true budgetF8 , i.e., C8 < F8 , then

(8

(∑
9∈[<] q8 9G8 9

)
'8 (C8 )

≤




∑
9 ∈�8

? 9∑
9 ∈�8

(1−G8 9 )q8 9 if �8 ≠ ∅

min9∈[<]
? 9
q8 9

otherwise (i.e., �8 = ∅)

where (8 and '8 are the derivative of valuation function+8 and money

cost function �8 de�ned in Section 2, respectively.

One interpretation of Lemma 4.2 is as follows. First consider a
hypothetical setting where item prices are �xed and the agent is
acting as a price-taker, as in “standard” market equilibrium. Then
it would be optimal for the agent to select items until the marginal
price equals the marginal value-per-unit (i.e., ( (·)) divided by the
marginal cost-per-unit (i.e., '(·)), which can be formulated as the
inequality in Lemma 4.2 with the discounting term (1 − G8 9 ) in
the denominator of the right-hand side removed. However, in our
setting, the agent is not acting as a price-taker: her behavior dis-
torts the prices, and hence distorts the relationship between her
allocation and the prices. Lemma 4.2 shows that this distortion is
proportional to her allocation at equilibrium. If an agent is taking
almost all of the items they care about (G8 9 close to 1 for all 9 in
�8 ), the denominator on the right-hand side is close to 0 and the
distortion is very large. In contrast, as long as a constant fraction
of the items remains, the distortion is small. This is useful for our
e�ciency analysis: roughly speaking, an agent who gets a small
allocation is acting approximately like a price-taker (and thus an
approximate �rst-welfare-theorem analysis applies). On the other
hand, an agent who gets a large allocation is anyway making a
large contribution to the liquid welfare.

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. Fix an arbitrary pure Nash equilibrium
and suppose ?, G, C are the per-unit prices, allocation and payment
of the inner FPPE, respectively. Let G∗ be the optimal allocation
that maximizes the liquid welfare. Consider the following partition
�1

⊔
�2

⊔
�3 of agents based on G , ? , and G∗:

�1 ≜

{
8 ∈ [=] :

∑
9∈[<] ? 9G8 9 = F8

}
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�2 ≜

{
8 ∈ [=] : 8 ∉ �1 ∧

∑
9∈[<] q8 9G

∗
8 9 ≤

∑
9∈[<] q8 9G8 9

}
�3 ≜

{
8 ∈ [=] : 8 ∉ �1 ∧

∑
9∈[<] q8 9G

∗
8 9 >

∑
9∈[<] q8 9G8 9

}
In words, �1 corresponds to every agent 8 who exhausts her true
budgetF8 in the equilibrium; and �2, �3 correspond to the remain-
ing agents divided according to whether their individual allocation
is larger in the equilibrium outcome or in the optimal allocation.

In the following, we compare the willingness to pay (liquid wel-
fare contribution) for agents from �1, �2, �3 separately.

For every agent 8 ∈ �1, note that,8 (G∗8 ) ≤ F8 =,8 (G8 ) where
the inequality holds due to the de�nition of,8 , and the equality
holds due to the de�nition of �1.

For every agent 8 ∈ �2, note that,8 (G∗8 ) ≤ ,8 (G8 ) due to the
fact that,8 is increasing and

∑
9∈[<] q8 9G

∗
8 9 ≤ ∑

9∈[<] q8 9G8 9 in
the de�nition of �2.

For every agent 8 ∈ �3, let �8 ≜ { 9 ∈ [<] : G8 9 > 0} be the
subset of items for which agent 8 receives a strictly positive fraction.
Consider two cases. First, suppose �8 = ∅. Note that

+8

(∑
9∈[<] q8 9G

∗
8 9

)
�8

(∑
9∈[<] ? 9G∗8 9

) (0)
≤

(∑
9∈[<] q8 9G

∗
8 9

)
· (8 (0)(∑

9∈[<] ? 9G∗8 9

)
· '8 (0)

(1 )
≤

(∑
9∈[<] q8 9G

∗
8 9

)
(∑

9∈[<] ? 9G∗8 9

) ·
(
min
9∈[<]

? 9

q8 9

)
≤ 1

where inequality (a) holds due to the concavity (convexity) of valu-
ation function+8 (money cost function�8 ); and inequality (b) holds
due to Lemma 4.2. The above inequality further implies

,8 (G∗8 ) = �
−1
8

©«
+8

©«
∑
9∈[<]

q8 9G
∗
8 9
ª®¬
ª®¬
≤

∑
9∈[<]

? 9G
∗
8 9

Next, suppose �8 ≠ ∅. Let Δ8 ≜
∑

9 ∈�8
? 9∑

9 ∈�8
q8 9

. Due to the “highest

bang-per-buck” property of FPPE,
? 9
q8 9

≥ Δ8 for every item 9 ∈ [<],
and equality holds for 9 ∈ �8 . Note that

,8 (G∗8 )
(0)
≤ ,8 (G8 ) +

+8

(∑
9∈[<] q8 9G

∗
8 9

)
−+8

(∑
9∈[<] q8 9G8 9

)
'8 (,8 (G8 ))

(1 )
≤ ,8 (G8 ) +

+8

(∑
9∈[<] q8 9G

∗
8 9

)
−+8

(∑
9∈[<] q8 9G8 9

)
'8 (C8 )

(2 )
≤ ,8 (G8 ) +

(8

(∑
9∈[<] q8 9G8 9

)
'8 (C8 )

·
∑

9∈[<] q8 9 (G
∗
8 9 − G8 9 )

(3 )
≤ ,8 (G8 ) +

∑
9∈�8

? 9∑
9∈�8

(1 − G8 9 )q8 9
·
∑

9∈[<] q8 9 (G
∗
8 9 − G8 9 )

(4 )
≤ ,8 (G8 ) +

∑
9∈�8

? 9∑
9∈�8

q8 9
·
∑

9∈[<] q8 9G
∗
8 9

(5 )
= ,8 (G8 ) + Δ8 ·

∑
9∈[<] q8 9G

∗
8 9

(6)
≤ ,8 (G8 ) +

∑
9∈[<] ? 9G

∗
8 9

where inequality (a) holds due to the de�nition of,8 and the con-
vexity of money cost function �8 ; inequality (b) holds since '8 is
weakly increasing implied by the convexity of �8 , and,8 (G8 ) ≥ C8
which is implied by the de�nition of,8 and the fact that agent 8’s
utility is non-negative in the equilibrium; inequality (c) holds due
to the concavity of valuation function +8 ; inequality (d) holds due

to Lemma 4.2; and inequality (e) holds since

∑
9 ∈ [<]q8 9 (G∗8 9 −G8 9 )∑
9 ∈ [<] q8 9 (1−G8 9 )

≤∑
9 ∈ [<]q8 9 G∗8 9∑
9 ∈ [<] q8 9

by algebra; equality (f) holds due to the de�nition of

Δ8 ; and inequality (g) holds since
? 9
q8 9

≥ Δ8 for every item 9 ∈ [<].

Putting pieces together, we have the following upper bound of
the optimal liquid welfare, (G∗):

, (G∗) =
∑

8∈[=],8 (G
∗
8 )

≤
∑

8∈�3

∑
9∈[<] ? 9G

∗
8 9 +

∑
8∈�1⊔�2⊔�3

,8 (G8 )

(0)
≤

∑
9∈[<] ? 9 +

∑
8∈�1⊔�2⊔�3

,8 (G8 )
(1 )
≤ 2, (x)

where inequality (a) holds since
∑
8∈�3

G∗8 9 ≤ 1 for every item

9 ∈ [<]; and inequality (b) holds since
∑
9∈[<] ? 9 ≤ , (x) since

all agents receive non-negative utility in the equilibrium. □

4.2 Mixed Nash Equilibrium

Now we present the PoA for the mixed equilibria of the metagame.

Theorem 4.3. In the metagame, the price of anarchy ΓMixed under

mixed Nash equilibrium is in [2, 4].

Note that Example 4.1 also serves as a lower bound for Theo-
rem 4.3, so what remains is to prove the upper bound. We �rst
provide some intuition into the high-level approach. In our analysis
of pure Nash equilibrium, we analyzed the impact of small budget
adjustments given the messages of the other agents. However, in a
mixed Nash equilibrium, the messages (and hence outcomes and
prices) may be random, so the impact of local adjustments less clear.
We instead consider a speci�c budget-setting strategy that each
agent will consider as a deviation. Namely, each agent considers the
expected per-unit prices of the inner FPPE if she were not present,
and then sets a budget equal to the expected total payment of her
part of the optimal allocation under those prices. We use Lemma 2.2
and some other properties of FPPE to characterize the per-unit
prices of the inner FPPE and the agent’s utility under such a de-
viation. Consequently, we obtain an upper bound on the optimal
liquid welfare.

5 EXTENSION I: BAYESIAN ENVIRONMENTS

In this section, we explore the generalization of our model and
results to from full information environments to Bayesian environ-
ments. In this Bayesian metagame extension, rather than assuming
that each agent 8 has a �xed type (+8 ,F8 ,�8 ), we assume that each
agent 8’s type is independently drawn from a type distribution �8 . In
the following, we formally de�ne the solution concept – Bayesian
Nash equilibrium and price of anarchy under Bayesian Nash equi-
librium. Finally, we prove that the price of anarchy under Bayesian
Nash equilibrium is between [2, 4] in Theorem 5.1.
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In Bayesian metagame, a strategy s8 of agent 8 is a stochastic
mapping from agent 8’s type (+8 ,F8 ,�8 ) to a randomized message
(ṽ8 , w̃8 ). The Bayesian Nash equilibrium is de�ned as follows.

De�nition 5.1 (Bayesian Nash equilibrium). For agents with type

distributions {�8 }8∈[=] , a Bayesian Nash equilibrium is a strategy

pro�le {s8 }8∈[=] such that for every agent 8 , every realized type

(+8 ,F8 ,�8 ), and every message (Ẽ†8 , F̃
†
8 ),

E[D8 (Ẽ8 , F̃8 , Ẽ−8 , F̃−8 )] ≥ E
[
D8 (Ẽ†8 , F̃

†
8 , Ẽ−8 , F̃−8 )

]
where the expectation is taken over agent 8’s strategy (Ẽ8 , F̃8 ) ∼
s8 (+8 ,F8 ,�8 ), other agents’ types (+−8 ,F−8 ,�−8 ) ∼ �−8 and corre-

sponding strategies (Ẽ−8 , F̃−8 ) ∼ s−8 (+−8 ,F−8 ,�−8 ).

Clearly, the Bayesian metagame is a generalization of our base-
line model, as every problem instance in the baseline model where
agents have �xed types can be viewed as a problem instance where
agents’ types are drawn from single point-mass distributions in
the Bayesian metagame. As a result of this equivalence, Bayesian
Nash equilibrium also encompasses mixed Nash equilibrium as a
generalization.

Similar to the baseline model, we evaluate the performance of
the Bayesian metagame by measuring the approximation of liquid
welfare. This is done by comparing the worst expected liquid wel-
fare among all possible equilibria with the optimal expected liquid
welfare over the randomness of agents’ type and messages, and
taking the supremum over all instances.

De�nition 5.2 (Price of anarchy in Bayesian environments). The

price of anarchy (PoA) of the metagame ΓBayes under Bayesian Nash

equilibrium is

ΓBayes ≜ sup
=,<,q

sup
{�8 }8∈ [=]

E
[
maxG, (G | {(+8 ,F8 ,�8 )}8∈[=] )

]
infs∈Bayes ,̂ (s | {�8 }8∈[=] )

Here the expectation in the numerator is taken over random type

{(+8 ,F8 ,�8 )}8∈[=] ∼ {�8 }8∈[=] , and, (G | {(+8 ,F8 ,�8 )}8∈[=] ) is
the liquid welfare of allocationG given agents’ types {(+8 ,F8 ,�8 )}8∈[=] .
In the denominator, Bayes is the set of strategy pro�les in all Bayesian

Nash equilibrium given type distributions {� }8∈[=] , and ,̂ (s |
{�8 }8∈[=] ) is the expected liquid welfare under strategy pro�le s de-
�ned as

,̂ (s | {�8 }8∈[=] ) ≜
∑
8∈[=]

,̂8 (s | {�8 }8∈[=] ),

,̂8 (s | {�ℓ }ℓ∈[=] ) ≜ E(+8 ,F8 ,�8 )∼�8 [,8 (x8 (s, (+8 ,F8 ,�8 ), �−8 ))]

for every agent 8 ∈ [=]. Here x8 (s, (+8 ,F8 ,�8 ), �−8 ) is the randomized

allocation of agent 8 with realized type (+8 ,F8 ,�8 ) when agents report
under strategy s, and the randomness is over agent 8’s message, other

agents’ types and their messages.

The main result of this section is the bound on the PoA under
Bayesian Nash equilibrium.

Theorem 5.1. In the Bayesian metagame, the PoA under Bayesian

Nash equilibrium lies in [2, 4].

6 EXTENSION II: RESTRICTED MESSAGES

In this section, our goal is to address the following question: In
the metagame, what information encoded in agents’ messages is es-

sential and cannot be disregarded? Answering this question holds
signi�cant practical implications. For instance, in digital advertising
markets, the platform (seller) possesses control over the design of
the auction interface for advertisers (agents). As a reminder, our
metagame draws inspiration from such an interface where adver-
tisers declare both budget and maximum bid constraints to their
autobidder.

In the proof of Lemma 3.2, we establish that every message

(Ẽ8 , F̃8 ) can be dominated by a message (Ẽ†8 , F̃
†
8 ) with reported

value Ẽ†8 = ∞. Similarly, in the proofs of other results in previous
sections, we often construct deviation strategy with reported value

Ẽ†8 = ∞ and carefully design reported budget F̃†
8 . Loosely speaking,

this indicates that for agents, the strategic decision of their reported

budget F̃ holds greater importance than their reported value (aka

maximum bid) Ẽ .

Motivated by this intuition, we proceed to investigate two vari-
ants of the metagame, wherein agents report either only budgets or
only values. In Section 6.1, we extend our analysis of the price of
anarchy to the variant metagame where agents only report budgets.
On the other hand, in Section 6.2, we present a negative result
demonstrating that the price of anarchy under Bayesian Nash equi-
librium can be as high as linear in the number of agents in the
variant metagame where agents only report values.

6.1 Metagame with Budget Reporting Only

In this subsection, we examine a variant of the metagame where
agents exclusively report their budgets. The de�nitions of pure
Nash equilibrium, mixed Nash equilibrium, and Bayesian Nash
equilibrium are adjusted accordingly to accommodate this variant.

De�nition 6.1 (Metagame with budget reporting only). Each agent
8 decides on a message F̃8 ∈ R∞+ reported to the seller. Given re-

ported message pro�le {F̃8 }8∈[=] , the seller implements allocation

G ({F̃8 }8∈[=] ) and payment C ({F̃8 }8∈[=] ) induced by the FPPE, as-

suming that agents have budgeted utility with types {(∞, F̃8 )}8∈[=] .

In words, in this variant of the metagame with budget reporting
only, the seller treats each agent 8 with general utility model as a
budgeted agent with value per click E8 = ∞ and budget F8 = F̃8
reported from the agent. In this variant, we obtain the same price
of anarchy (PoA) bounds as the original metagame where agents
report both values and budgets.

Proposition 6.1. In the metagame with budget reporting only, the

price of anarchy ΓPure under pure Nash equilibrium is 2, and the price

of anarchy ΓMixed (ΓBayes) under mixed (Bayesian) Nash equilibrium

is between [2, 4].

Another variant for agents with linear valuation functions. In
the remaining of this subsection, we restrict out attention to agents
with linear valuation functions, i.e., +8 (

∑
9 q8 9G8 9 ) = E8 ·

∑
9 q8 9G8 9

where E8 is her value per click. However, agents may still have hard
budget F8 and di�erentiable, weakly increasing, weakly convex
money cost function �8 . For such agents, we denote (E8 ,F8 ,�8 ) by
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their types. We consider another variant of the metagame with
budget reporting only as follows.

De�nition 6.2 (Metagame with budget reporting only and known
linear valuations). Each agent 8 with type (E8 ,F8 ,�8 ) decides on
a message F̃8 ∈ R∞+ reported to the seller. Given reported message

pro�le {F̃8 }8∈[=] , the seller implements allocation G ({F̃8 }8∈[=] ) and
payment C ({F̃8 }8∈[=] ) induced by the FPPE, assuming that agents

have budgeted utility with types {(E8 , F̃8 )}8∈[=] .

In words, in this variant of the metagame with budget reporting
only, the seller knows the value per click E8 of each agent 8 and
treats this agent with type (E8 ,F8 ,�8 ) as a budgeted agent with
value per click E8 and budgetF8 = F̃8 reported from the agent. In
this variant, we still obtain the same price of anarchy (PoA) bounds
as the original metagame where agents report both values and
budgets.

Proposition 6.2. In the metagame with budget reporting only and

known linear valuations, the price of anarchy ΓPure under pure Nash

equilibrium is 2, and the price of anarchy ΓMixed (ΓBayes) under mixed

(Bayesian) Nash equilibrium is between [2, 4].

6.2 Metagame with Value Reporting Only

Let us examine a variant of the metagame where agents only report
their values (i.e., the maximum bid).

De�nition 6.3 (Metagame with value reporting only). Each agent

8 decides on a message Ẽ8 ∈ R∞+ reported to the seller. Given re-

ported message pro�le {Ẽ8 }8∈[=] , the seller implements allocation

G ({Ẽ8 }8∈[=] ) and payment C ({Ẽ8 }8∈[=] ) induced by the FPPE, assum-

ing that agents have budgeted utility with types {(Ẽ8 ,∞)}8∈[=] .

In words, in this variant of the metagame with value reporting
only, the seller treats each agent 8 with general utility model as a
budgeted agent with value per click E8 = Ẽ8 reported from the agent
and budget F8 = ∞ reported from the agent. In this variant, we
present the following negative result on the price of anarchy under
Bayesian Nash equilibrium.

Proposition 6.3. In the metagame with value reporting only, the

price of anarchy ΓBayes under Bayesian Nash equilibrium is at least

Ω(=), even for budgeted agents and a single item.

7 SINGLE-ITEM INSTANCES

To shed light on agents’ strategic behavior in the metagame, this
section focuses on single-item instances. We characterize the pure
Nash equilibrium for single-item instances. All results and analysis
hold for more general instances with homogeneous items: each
agent 8 has the same click-through rate q8 9 for all item 9 , i.e., q8 9 =
q8 9 ′ for every 9, 9 ′ ∈ [<], 8 ∈ [=].

By restricting to single-item instances, the remaining of this
section drops subscript index 9 for the item. Moreover, without loss
of generality, we assume 58 = 1 for all agents and drop it as well.

Before presenting the main result of this section, we introduce
the following two auxiliary notations that are used in the equilib-
rium characterization (Theorem 7.2): �x a per-unit price ? ∈ [0,∞),
de�ne

~8 (?) ≜
F8

?
∧min {G8 ∈ [0, 1] : (8 (G8 ) · (1 − G8 ) ≤ ? · '8 (?G8 )}

I8 (?) ≜
F8

?
∧max {G8 ∈ [0, 1] : (8 (G8 ) ≥ ? · '8 (?G8 )}

Loosely speaking,~8 (?) is the smallest allocation such that the agent
8 has no incentive to weakly increase her reported budget in the
metagame with induced per-unit price ? . Speci�cally, the inequality
in the de�nition ~8 (?) is exactly the inequality of Lemma 4.2 for
single-item instances. On the other side, I8 (?) is the largest allo-
cation such that the agent 8 has a weakly positive marginal utility
when facing a �xed per-unit price ? . If (8 (G8 ) < ? · '8 (?G8 ) for all
G8 ∈ [0, 1], we set I8 (?) = 0. Since valuation function +8 (money
cost function �8 ) is di�erentiable, weakly increasing, weakly con-
cave (convex) and +8 (0) = 0 (�8 (0) = 0), we make the following
observation about ~8 (?) and I8 (?).
Observation 7.1. For every agent 8 ∈ [=], functions~8 (?) and I8 (?)
satisfy the following properties:

(1) Both ~8 (?) and I8 (?) are continuous and weakly decreasing

in ? .

(2) Both ~8 (0) = I8 (0) = 1, lim?→∞ ~8 (?) = lim?→∞ I8 (?) = 0,

and ~8 (G8 ) ≤ I8 (G8 ) for all G8 ∈ R+.
We now present the main result of the section.

Theorem 7.2. In the metagame with a single item, pure Nash equi-

librium always exists. Speci�cally, there exist two types of equilibrium:

(1) (Low-price equilibrium) De�ne non-empty subinterval %! as

%! ≜
{
? ∈ [0,∞) :

∑
8∈[=] ~8 (?) = 1

}
For every ? ∈ %! , there exists pure Nash equilibrium whose

inner FPPE has per-unit price ? . Such equilibrium can be in-

duced by reported message pro�le {(Ẽ8 , F̃8 )}8∈[=] constructed
as

∀8 ∈ [=] : Ẽ8 ≜ ∞, F̃8 ≜ ?~8 (?)
Moreover, min %! is the lowest per-unit price in all pure Nash

equilibrium.

(2) (High-price equilibrium) De�ne non-empty subinterval %� as

%� ≜
{
? ∈ [0,∞) :

∑
8∈[=] ~8 (?) ≤ 1 and

∑
8∈[=] I8 (?) ≥ 1

}
For every ? ∈ %� , if there exists agent 8∗ such that ~8∗ (?) +∑
8∈[=]:8≠8∗ I8 (?) ≥ 1, then there exists pure Nash equilibrium

whose inner FPPE has per-unit price ? . Such equilibrium can

be induced by reported message pro�le {(Ẽ8 , F̃8 )}8∈[=] con-
structed as

8 = 8∗ : Ẽ8 ≜ ?, F̃8 ≜ ∞,
∀8 ≠ 8∗ : Ẽ8 ≜ ∞, F̃8 ≜ ?Ĝ8

where {Ĝ8 }8≠8∗ is an arbitrary solution such that
∑
8≠8∗ Ĝ8 =

1 − ~8∗ (?) and ~8 (?) ≤ Ĝ8 ≤ I8 (?). Moreover, max %� is the

highest possible per-unit price in all pure Nash equilibrium.

By analyzing a two-item budgeted-agent instance from Exam-
ple 2.3, Section 3.2 shows the non-existence of pure Nash equilib-
rium for general instances. In contrast, Theorem 7.2 con�rms the
existence of pure Nash equilibrium for single-item instances.

Since~8 (?) ≤ I8 (?) for all ? ∈ R+ (Observation 7.1), it is straight-
forward to verify that %! ⊆ %� . Moreover, for every ? ∈ %! , it can
be constructed as both low-price equilibrium and high-price equi-
librium (since condition “∃8∗, ~8∗ (?) +

∑
8≠8∗ I8 (?) ≥ 1” is satis�ed
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trivially). A natural question is whether there exists high-price
equilibrium with per-unit price ? ∈ %� such that there exists no
low-price equilibrium with the same per-unit price, i.e., ? ∈ %! . The
answer is yes. Consider Example 2.2:

~8 (?) = max
{
1 − ?

E8
, 0
}
, I8 (?) = I {? ≤ E8 }

%! =

{
E1E2
E1+E2

}
, %� =

[
E1E2
E1+E2 , E1

]
.

Though the reported messages are slightly di�erent, equilibrium
with per-unit price E2 (resp. E1E2

E1+E2 ) described in Claim 3.4 (resp.
Claim 3.5) is equivalent to a high-price (resp. low-price) equilibrium.
In fact, we can extend Example 2.2 and construct natural scenario
with multiple pure Nash equilibria. In those equilibria, the per-unit
prices of inner FPPE are di�erent. Consequently, a �xed agent’s
utility is di�erent in di�erent equilibrium.

Proposition 7.3. In the metagame, for budgeted (or linear) agents

with type {(E8 ,F8 )}, ifF8 > 1
4E8 for all agents, then there exists multi-

ple pure Nash equilibrium. Speci�cally, besides low-price equilibrium

and high-price equilibrium with per-unit price in %! , there also exists

high-price equilibrium with per-unit price in %� \%! .

By utilizing the monotonicity of ~8 (·), I8 (·), we can compute
%!, %� and thus construct equilibrium in Theorem 7.2 in polynomial
time. See the full version for more details.
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