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ABSTRACT

Most of the literature on online algorithms and sequential decision-

making focuses on settings with “irrevocable decisions” where

the algorithm’s decision upon arrival of the new input is set in

stone and can never change in the future. One canonical example

is the classic prophet inequality problem, where realizations of a

sequence of independent random variables -1, -2, . . . with known

distributions are drawn one by one and a decision maker decides

when to stop and accept the arriving random variable, with the

goal of maximizing the expected value of their pick. We consider

“prophet inequalities with recourse” in the linear buyback cost

setting, where after accepting a variable -8 , we can still discard -8
later and accept another variable - 9 , at a buyback cost of 5 × -8 .

The goal is to maximize the expected net reward, which is the value

of the �nal accepted variable minus the total buyback cost. Our �rst

main result is an optimal prophet inequality in the regime of 5 ≥ 1,

where we prove that we can achieve an expected reward
1+5
1+25 times

the expected o�ine optimum. The problem is still open for 0 < 5 <

1 and we give some partial results in this regime. In particular, as

our second main result, we characterize the asymptotic behavior

of the competitive ratio for small 5 and provide almost matching

upper and lower bounds that show a factor of 1−Θ
(
5 log( 1

5
)
)
. Our

results are obtained by two fundamentally di�erent approaches:

One is inspired by various proofs of the classical prophet inequality,

while the second is based on combinatorial optimization techniques

involving LP duality, �ows, and cuts.∗
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1 INTRODUCTION

Consider a monopolist seller tasked with selling a single item to

a sequence of arriving buyers. A quintessential problem in online

algorithms and mechanism design — with a wide range of applica-

tions from selling seats in a concert hall to the multibillion dollar

online display advertising industry — is how to allocate this item

in a sequential fashion to the buyers so as to maximize social wel-

fare, that is, to maximize the willingness to pay, or the value of

the allocated buyer.1 Given distributional knowledge about the se-

quence of arriving values, a common approach to this problem is to

design online algorithms that attain the so-called prophet inequal-

ities; the goal there is to evaluate the performance of the online

algorithm relative to an “omniscient prophet”, who knows the en-

tire sequence of values and simply maximizes social welfare by

allocating the item to the highest value buyer. This fundamental

algorithm design question, which can alternatively be described as

an optimal stopping problem, has its roots in the classic work of

Krengel and Sucheston [43] in the 70s and has since been studied

quite extensively in computer science, mathematics, and operations

research.

This signi�cant line of work on prophet inequalities shows that

in many settings of Bayesian allocations and mechanism design

(even beyond single parameter environments), optimal or near-

optimal prophet inequalities can be obtained by using simple and

elegant take-it-or-leave-it pricing rules. For example, the seminal

work of [53] shows that a single threshold algorithm can achieve

the optimal 0.5 competitive prophet inequality in a single item set-

ting when the values are independent of each other. Other examples

include, but are not limited to, obtaining more powerful prophet in-

equalities in special cases such as i.i.d. values or independent values

arriving in a random order [1, 19, 26, 38], and extensions to more

general feasibility environments such as multi-units [4, 35, 41, 55],

matroids [6, 16, 42], matchings [5, 49], general downward closed

1By standard reductions in Bayesian mechanism design, in particular replacing values
withMyerson’s virtual values [47], one can reduce the problem of maximizing expected
revenue to social welfare in single-parameter settings. Hence, alternatively one could
think of maximizing revenue in these applications.
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environments [51], combinatorial valuations [52], and combinato-

rial auctions [22, 32] (see [46] and [20] for comprehensive surveys).

Importantly, one common aspect in all of this existing work in the

literature on prophet inequalities is the assumption that the under-

lying algorithms should only make irrevocable decisions — once

the decision is made for an arriving buyer/random variable, that

decision is set in stone and can never be modi�ed in the future. Re-

laxing this assumption gives more power to an online algorithm, as

it can now hedge against possible early commitments to low-valued

buyers arriving at the beginning of the sequence.

Motivated by some modern applications of Bayesian online allo-

cation in electronic marketplaces and platforms — in particular, the

criticality of maintaining supply e�ciency in cloud spot markets

and online hotel reservation systems through overbooking — we

initiate the study of the single-item prophet inequality problem

with (costly) recourse. More formally, we consider the setting in

which the decision maker is presented with a sequence of inde-

pendent random variables -1, -2, . . . one by one (think of them as

the sequence of values of arriving buyers), where each -8 is drawn

independently from a known distribution �8 . Once -8 is presented

to the decision maker, she has the option of accepting this vari-

able or going to the next round to observe the next variable. In

the vanilla prophet inequality setting, the decision maker stops

once she accepts the �rst variable. We diverge from this setting by

allowing her to accept -8 even after the �rst allocation, but if the

item has already been allocated to a buyer 9 < 8 with value - 9 , the

decision maker should revoke this previous allocation by paying a

cost in addition to losing the original reward - 9 .

We focus on a simple, yet practical and fundamental model for

costly recourse known as the linear buyback setting, which has

been introduced and studied in the literature on online allocations

under adversarial arrivals [9, 11, 23]. In this model, the additional

cost of discarding - 9 is equal to 5 · - 9 , where 5 ≥ 0 is called

the buyback parameter. The goal is to maximize the expected net

reward, de�ned as the value of the �nal accepted variable minus

the total buyback cost.2 From a technical perspective, this is a

natural model, as the resulting problem is invariant under scaling

of the values. The model is also natural from the perspective of

applications, as it captures scenarios where-8 ’s are the willingness-

to-pay of the arriving users of a service, and the decision maker

uses “compensation fees” in the form of a �xed percentage of the

original transfer paid by the user to take back the resource. One

might also imagine scenarios in which the -8 ’s are a sequence of

demand requests (received by a platform during a decision-making

horizon) declaring how long they would like to use a service in

the future (e.g., renting an item for -8 hours next week). Now, the

platform can serve only one request (e.g., because it has only one

rental item) and its service is o�ered at a price of 1 per unit of time

(so giving the service to demand -8 generates a revenue of 1 × -8 ).

The platform also has the option of “outsourcing” the request by

o�ering the user the same service from a third party after paying

a price of 1 + 5 > 1 per unit of time to that third party (e.g., can

2While it seems discarding decisions are made in an online fashion in this model, one
could alternatively frame the problem as an online allocation problem with overbook-
ing, but at the end only the highest allocated value receives the item and the decision
maker must pay the required cancellation cost to discard all the other overbooked
buyers.

borrow the same rental item from a third party to rent to the user

for-8 hours). Hence, if it outsources- 9 , it needs to pay (1+ 5 ) ×- 9 .

The goal of the platform is to decide to whom it should allocate its

own service and to whom it should o�er an outsourced service to

maximize its net pro�t.

To establish prophet inequalities in the above model, we compare

the expected net reward of our algorithms with the prophet bench-

mark E[max
8

-8 ]. Let U (5 ) be de�ned as the optimal competitive

ratio that can be achieved by an online algorithm in our setting.

Knowing the sequence of distributions, one can use polynomial-

time dynamic programming/backward induction to devise an opti-

mal online policy for our problem that maximizes the expected net

reward amongst all online algorithms (note that the state of such a

dynamic programming is essentially the pair of time and the value

of the previous allocation, and hence is polynomial-time solvable

with proper discretization; we detail this later in Section 2). As a

result, U (5 ) can be de�ned as the worst-case ratio of the online

optimum over the o�ine optimum. In the special case of 5 = +∞ (or

alternatively, the version in which no buyback is allowed), our prob-

lem is essentially the classic prophet inequality problem — there-

fore, U (5 ) ∈ [0.5, 1] for any choice of 5 and lim5→+∞ U (5 ) = 0.5.

Intuitively speaking, as 5 decreases, the performance of the best

online algorithm should improve. Furthermore, lim5→0 U (5 ) = 1,

as in the extreme case of zero buyback cost with 5 = 0, a simple

greedy algorithm, performing buyback whenever it has a positive

gain, achieves the exact o�ine optimum. We now ask the following

research question:

Can we characterize the optimal competitive ratio U (5 ), that is,
the worst-case performance ratio of the optimal online algorithm

over the o�ine optimum benchmark, as a function of the buyback

parameter 5 ≥ 0? In particular, (i) can we always obtain a constant

competitive ratio U (5 ) > 0.5 for every �xed 5 > 0? (ii) can we

understand the behavior of U (5 ) in the asymptotic regime when

5 → 0?

1.1 Our Results

Our �rst main result answers the above question a�rmatively

when the buyback parameter is in the range 5 ∈ [1, +∞). More

speci�cally, we show that:

(informal) Theorem I: For any buyback parameter 5 ∈
[1, +∞), there exists a polynomial-time online algorithm

that achieves a competitive ratio U (5 ) = 1+5
1+25 against the

optimum o�ine benchmark. Furthermore, there exists an

instance of = = 2 two-point random variables such that no

online algorithm can obtain a competitive ratio better than
1+5
1+25 .

Note that as 5 becomes smaller, the competitive ratio of the

optimal online policy can only improve; Therefore, as a simple

corollary of the above result, we obtain a constant improvement

over 0.5 for any �xed 5 . Our bad example in the above result is

actually quite intuitive (and a natural generalization of the bad

example for the classic prophet inequality): Consider two random

variables where -1 = 1, and -2 = 1 + 5 with probability 1
1+5 and 0
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otherwise. It is easy to verify that every online algorithm obtains

value at most 1: If it selects-1 = 1, it is indi�erent between ignoring

-2 or performing a buyback, obtaining an expected reward of 1 in

either case. If we ignore -1, we also obtain at most 1, since E[-2] =
1. On the other hand, E[max{-1, -2}] = 1

5 +1 (5 + 1) + 5
5 +1 =

25 +1
5 +1 .

Based on this example, it is quite tempting to conjecture that
1+5
1+25

is the optimal answer for every 5 ≥ 0. Our result above shows that

this is indeed the case for 5 ≥ 1. We also show (in the full version

of the paper) that the same result holds for every instance with

= = 2, that is, with only two variables (regardless of whether 5 ≥ 1

or 0 ≤ 5 < 1). Furthermore, we show that if the random variable

-max ≜ max
8

-8 is bounded within a multiplicative range of 1 + 5 ,

then a simple thresholding algorithm with no buyback achieves the

ratio
1+5
1+25 for all 5 ≥ 0.

However, we show that the bound
1+5
1+25 is actually not possible

to achieve for 0 < 5 < 1 for the general problem. We establish

this result by constructing an instance of the problem with = = 3

variables for which no online algorithm can obtain a competitive

ratio better than
(1+5 )

(√
5 (2−5 )+1

)
(1+5 )

√
5 (2−5 )+35 +1

<
1+5
1+25 for 0 < 5 < 1; we also

conjecture that this bound is tight for = = 3 variables. With the help

of a computer-aided search, we also tried to �nd the worst-case

instance for = = 4, and we observed a continuation of the pattern:

There seems to exist an instance where, for any choice of 0 < 5 <
1
3 ,

the competitive ratio is strictly worse than the ratio obtained by

(1+5 )
(√

5 (2−5 )+1
)

(1+5 )
√
5 (2−5 )+35 +1

. We leave �nishing the investigation of iden-

tifying the worst-case instance for any = as an interesting open

problem.

This investigation suggests that the problem presents new chal-

lenges for smaller values of 5 , since the worst-case instance seems

to employ more and more variables as 5 decreases. Based on this

evidence, it may not be feasible to obtain a closed form for the

competitive ratio as a function of the buyback parameter 5 in the

entire 0 < 5 < 1 regime. Despite the fact that we could establish

a complete characterization of the optimal competitive ratio for

5 ∈ [1, +∞), the problem is still open for 0 < 5 < 1 due to this

issue. Therefore, we attempt only to answer weaker questions in

this regime. In particular, we ask whether it is possible to character-

ize the asymptotic behavior of U (5 ) when 5 → 0 by establishing

(almost) matching upper and lower bounds on the performance

of the online optimum policy. This brings us to our second main

result. We show that:

(informal) Theorem II: For some constant 20 > 0, for any

buyback parameter 5 ∈ [0, 20], there is a polynomial-time

online algorithm that achieves a competitive ratio U (5 ) =
1 − O

(
5 log 1

5

)
against the optimum o�ine benchmark.

Furthermore, for every 5 ∈ [0, 20], there is an instance of

= = Θ

(
log 1

5

)
two-point random variables such that no

online algorithm can achieve a competitive ratio better than

1 − Ω

(
5 log 1

5

)
.

Our online policy in the result above is a simple threshold-greedy

algorithm that works as follows: depending on the value of 5 and

the set of distributions, it chooses a threshold ) . Then it performs

the �rst selection the �rst time an arriving random variable -8
exceeds the threshold ) . After that, it accepts any arriving random

variable -8 as long as it generates a positive marginal gain, that is

-8 > (1+5 )- 9 , where- 9 is the previously accepted random variable

at time 8 . We show that this simple algorithm achieves a competitive

ratio W (5 ) = max



1/©
«

5
5 +1 +

(
2 + 1

5

) 5
1+5 ª®

¬
, 12 + 1

50(1+5 )



, which is

asymptotically 1 − O
(
5 log 1

5

)
for small values of 5 > 0, and is

always strictly larger than 0.5 for all 5 ≥ 0. We note that this algo-

rithm is order oblivious, which means that it only needs to know

the set of arriving distributions — similar to the single threshold al-

gorithm in the classical prophet inequality [53] — and not the order

in which they arrive. Another important feature of this algorithm is

that it can potentially perform an unbounded number of buybacks,

which seems necessary to achieve the asymptotic optimal factor as

5 → 0.

It is also interesting to compare our asymptotic bound of 1 −
Θ

(
5 log 1

5

)
with the best known competitive ratio for small values

of 5 in the adversarial setting, without prior stochastic informa-

tion. In this setting, [9] established the optimal competitive ratio

of 1/(1 + 25 + 2
√
5 (1 + 5 )) for deterministic algorithms and the

follow-up work of [11] established the optimal competitive ratio

of 1/,−1 (−1/4 (1 + 5 )), where,−1 is the non-principal branch

of the Lambert, function.3 Both of these bounds are asymptoti-

cally equal to 1 − Θ

(√
5
)
, which converges to 1 much slower than

1−Θ
(
5 log 1

5

)
. This gap can be interpreted as the “value of informa-

tion” about the arriving distributions in our setting, which turns out

to be critical in obtaining the asymptotically optimal competitive

ratio.

Our results are summarized in Figure 1. Due to constraints on

length, some proofs are omitted. All omitted proofs can be found

in the full version of the paper [25].

1.2 Overview of Our Techniques

Broadly speaking, our results in this paper are obtained using two

fundamentally di�erent approaches: Our �rst approach is based on

combinatorial optimization techniques involving LP duality, �ows,

and cuts, while the second approach is inspired by various proofs

of the classical prophet inequality.

Flow Approach. While it is always possible to set up a nonlinear

mathematical program to characterize the worst-case performance

of the optimal online policy against the prophet benchmark, study-

ing such a program is not always tractable. We get around this issue

by formulating instead a parametric linear program that charac-

terizes the worst-case performance of the optimal online policy,

and studying the program under the worst-case choice of these

parameters. This turns out to involve using LP duality to encode

3The Lambert W function, also called the product logarithm, is the inverse of the
function ~ (G ) = G · 4G . The non-principal branch G =,−1 (~) is the inverse when
G ≤ −1.
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Figure 1: Comparison of di�erent lower and upper bounds

on the competitive ratio. Blue and green curves refer to the

optimal online policy (for 5 → 0, we depict an exaggerated

version of the 1−Θ(5 log 1
5
) curve to emphasize the qualitative

behavior), the red curve is our threshold-greedy algorithm,

and the black curves are optimal bounds in the adversarial

setting [9, 11].

the problem as a certain generalized �ow problem. The generalized

�ow problem has a special structure which is amenable to explicit

solutions; however, discovering this explicit solution (for 5 ≥ 1)

seems to require a rather circuitous route.

In order to set up our parametric linear program, we start by

proving that for every instance of our problem, there must be a

harder instance which is made up of two-point random variables

-8 ∈ {0, E8 }, with E1 ≤ E2 ≤ . . . ≤ E= . This kind of a reduction to

a discrete, monotonic setting is intuitive because it ensures that

information about the maximum value of the random variables we

are observing is revealed as slowly as possible, thereby making the

problem hard for an online decision-maker who gets to see these

variables sequentially.

Formally achieving this reduction depends on being able to care-

fully analyze the optimal online policy using a Bellman recurrence

that describes how much value the policy can obtain starting from

a certain point in the middle of the sequence. We demonstrate that

the reduction to the discrete and monotone setting formally de-

pends only upon verifying a few special properties of the recurrence

(Lemmas 3 and 4).

Once we have an instance in this monotonic form, we can set

up a factor-revealing LP to understand the worst-case competitive

ratio; however, the probabilities @C of the two-point variables must

remain external parameters, since the constraints that determine

the competitive ratio are nonlinear in @C . LP duality reveals an-

other linear program, which we dub “contention resolution with

recourse”. This is somewhat analogous to contention resolution LPs,

where each variable encodes the probability of being at a certain

state during the process and we would like to guarantee a certain

amount of allocation coverage to each state; however it has some

new features: think of each state (8, 9), 8 < 9 as a directed edge from

node 8 to 9 , where this state encodes that the decision maker is at

time 9 and the last variable accepted was at time 8 . The LP has the

form of a generalized �ow in this digraph (with “leakage” along each

edge related to the buyback parameter). We also have capacities

on each edge, related to the �nal policy being implementable in an

online fashion, and the goal of the �ow problem is �nd a generalized

�ow that satis�es certain demands at each node 8 . The task that

remains is to �nd an explicit solution to this LP for every choice of

the probabilities @C .

It turns out that in the worst-case, it is safe to assume that all the

probabilities @C are small. This allows us to reduce (using standard

Riemann sum arguments) the problem of �nding a solution to the

LP for potentially many di�erent values of @C to solving a single

continuous �ow problem. This part of the reduction in our analysis

is inspired by known “variable splitting” methods for other prophet-

inequality-type problems (e.g., [45]) to reduce the problem to the

case with small random variables, but the particular splitting we

employ to make the instance harder is unique to our setting.

Explicitly solving continuous linear programs, such as our con-

tinuous generalized �ow problem, is typically a challenging task.

A key insight in solving our continuous �ow problem is that if

we believe the optimal competitive ratio in a certain range of 5 is

obtained on a particular small instance (for example on 2 variables),

then the structure of the general solution should mimic the solution

for the small example. More precisely, by grouping variables in

a larger instance (or by splitting a continuous interval) into two

blocks, we can view the larger instance as a blow-up of the hard

instance on 2 variables. We therefore hypothesize that the �ow has

a block structure, which allows us to make some natural assump-

tions that reduce the space of possible solutions that we need to

examine to �nd a �ow.

After wemake these assumptions, oneway to prove the existence

of the desired �ow is to use the max-�ow min-cut theorem. We

omit this proof (our �rst) of being able to obtain a factor of
1+5
1+25 for

5 ≥ 1. Instead, we exploit the intuition obtained from the study of

minimum cuts to �nd a feasible �ow explicitly. In the construction

of our �ows, inspired by the structure obtained at a block level, we

posit that certain capacity constraints related to pairs of random

variables that are far enough from each other are tight. We translate

this tightness restriction to certain di�erential equations that can

aid in partially constructing the continuous �ow, and then use the

remaining constraints in our continuous program to construct the

�nal �ow.

It turns out, however, that our 2-block solution cannot extend

to the regime of 5 < 1. Indeed, we are able to use the Bellman

recurrence and its properties to construct examples for which it

is impossible to achieve the factor of
1+5
1+25 . In all the examples

we construct, the random variables satisfy an important property–

if the optimal algorithm accepts a certain variable -8 , then it is

indi�erent between accepting or rejecting -8+1. While we cannot

prove that the worst-case instance on a given number of variables

must always have this structure, it seems plausible that this is true.

Our examples suggest a sequence of intervals �: where the optimal

factor U (5 ) is determined by an instance of this type on : variables;

however, this remains as a conjecture.

Threshold-Greedy Approach. Our second approach is a natural

algorithm motivated by existing proofs of the classical prophet

inequality: We set a threshold ) , wait for the �rst variable above

) ; then, if we are holding a variable -8 and encounter another

variable - 9 > (1 + 5 )-8 , we buyback and swap -8 for - 9 . While

this is certainly not the optimal online policy, it has the advantage
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of being simple and practical, and it requires less prior information

than the LP-based algorithm discussed above. Here, we only need

to know the distribution of-max (in fact certain special quantiles of

-max), and we don’t even need to know the individual distributions

D8 , their ordering, or even the number of variables =.

The analysis of the threshold-greedy algorithm can be viewed as

an extension of the classical prophet inequality; however, with some

signi�cant complications. One of our ideas here is that in the usual

proof of the prophet inequality, we really only count gains from

events where exactly one variable is above the threshold. Some-

what surprisingly, events where multiple variables appear above

) cannot be used to obtain a better prophet inequality; however,

these events provide extremely useful gains in our problem with

buyback. Roughly speaking, if the number of variables above) is : ,

we reach the actual maximum of these variables after at most : − 1

buybacks, and the reward we obtain is at least -max

(1+5 ):−1 . The num-

ber of variables above ) can be approximated by a Poisson random

variable, which can be decoupled from the actual maximum -max

using the FKG inequality. Finally, we can optimize the performance

of the algorithm by carefully choosing the threshold ) .

All of these ideas taken together lead to an almost-optimal lower

bound of 1 − Θ(5 log 1
5
) for small 5 > 0 (we choose ) so that

Pr(-max < ) ) =
5

1+25 ). Furthermore, a separate analysis shows

that this simple algorithm achieves a factor of 1/2+Ω(1/5 ) for any
�xed 5 > 1. This is obviously weaker than the optimal factor of
1+5
1+25 , but it shows that even limited prior information can be used

to obtain an improvement over 1
2 for any buyback parameter.

1.3 Further Related Work

Buyback and Recourse in Online Allocations. The study of the

single item buyback setting under adversarial arrivals originates

from the work [9], in which the optimal competitive ratio for de-

terministic integral algorithms is determined using a modi�cation

of the greedy algorithm. The follow-up work of [11] shows that

the optimal competitive ratio can be achieved by a randomized

algorithm that combines an elegant correlated randomization step

with the greedy algorithm. The recent work of [23] shows an op-

timal competitive primal-dual fractional algorithm for this prob-

lem, which together with a lossless randomized rounding for the

single item buyback setting, yields another optimal competitive

randomized algorithm under adversarial arrivals. Beyond the single

item setting, the buyback setting has also been studied for gen-

eral matroids [9, 11], online matchings [23], and general matroid

intersections [10]. The buyback setting is also the special case of

an unconstrained online allocation with a combinatorial valuation

F (() = (1 + 5 )max8∈( -8 − 5
∑
8∈( -8 , which is nonmonotone

but submodular. Prophet inequalities with submodular combina-

torial valuations are studied in [52], in which they devise an O(1)
competitive algorithm (weaker than our bound) for this general

problem. Another related problem is prophet inequalities with over-

booking [7, 29], where the decision maker is allowed to accept

more random variables than their capacity. We diverge from this

setting by considering a capacity (single item) and a linear cost

for cancellations. Finally, the role of “recourse” (or preemption)

in resource allocation has been studied in other settings. Exam-

ples include, but are not limited to, general online algorithms with

rejection power [8], online submodular maximization with preemp-

tion [13], scheduling [14], online packing with removal cost [36],

online matching with augmentations [15], and designing online

BIC ad mechanisms with cancellations [18]. We diverge from all of

this work by considering the di�erent setting of the classic prophet

inequality with buyback.

Online Contention Resolution and LP Duality. Our generalized

�ow problem is the dual of a speci�c factor-revealing LP for the

worst-case competitive ratio of the optimal online policy against

the prophet benchmark. As mentioned earlier, this �ow problem is

intimately connected to a generalization of the online contention

resolution scheme (CRS) problem when (costly) recourse is allowed.

The OCRS problem is rooted in the seminal work of [17, 30] (in

the o�ine setting) and [33] on performing contention resolution

for various combinatorial optimization problems, and has since

been studied extensively in the CS and OR literature. For exam-

ple, the work of [4] obtains an (almost) optimal OCRS for uniform

matroids, which has been further optimized or simpli�ed [21, 40]

and extended to reusable resources [34]. In a di�erent direction,

the beautiful work of [44] establishes a duality between prophet

inequalities with respect to ex-ante relaxation and OCRS, which

is, at a high level, also connected to our LP approach and other LP

approaches in the literature on obtaining prophet inequalities or

competitive ratios against �uid-approximations in Bayesian online

allocation, e.g., [3–5, 41]. OCRS-based approaches have several ap-

plications in prophet inequalities and Bayesian mechanism design.

Some classic examples are sequential posted pricing [16, 37, 55],

combinatorial auctions [22, 31], adding correlations to prophet in-

equalities [39], prophet inequalities for matchings [28, 50], and the

prophet secretary setting [2, 26].

Optimum Online Policy. Amajor part of the literature on prophet

inequalities focuses on understanding simple algorithms, e.g., a

single threshold, and developing competitive ratios against the

prophet benchmark for these algorithms. However, some recent

work tries to understand the optimum online policy (mostly from

a computational perspective). Some examples are the work of [6]

that establishes a PTAS in the laminar matroid environment, or the

work of [54] that shows how to obtain a PTAS for the optimum

online in a wide range of problems including prophet inequalities

and stochastic probing. On the computational complexity side of

the problem, �nding the optimum online in a combinatorial setting

such as matchings is known to be PSPACE-hard [49]. Moving be-

yond computational aspects, there is a line of work that aims to

understand the advantages of knowing the order, e.g. [48] and the

more recent work of [27]. In our setting, fortunately, the state space

of the DP is not exponentially-sized and hence the optimum online

policy can be computed exactly using polynomial-time backward

induction.

2 DYNAMIC PROGRAMMING FORMULATION
OF THE OPTIMAL POLICY

In this section, in order to develop a more general understanding of

the optimal online policy, we �rst focus on formulating this policy
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as a simple dynamic program given the knowledge of the sequence

of distributions of arriving random variables. We provide some

basic properties of the value function of this DP, which turn out to

be helpful in later parts of our analysis.

To obtain the DP formulation, we can derive a recurrence, also

known as the optimality equation [12], that describes what the opti-

mal expected reward is at each point in the process. Suppose that the

instance consists of a sequence of random variables -1, -2, . . . , -= ,

with known distributions. For C = 0, . . . , = − 1, we de�ne

ΦC (G) = E[optimal reward that an algorithm can obtain,

given that before observing -C+1, it holds value G] .
In this notation, we ignore any buyback cost that the algorithm paid

prior to observing -C+1.We de�ne Φ= (G) = G , which is consistent

with the above since there is no variable -=+1 to observe and the

algorithm simply keeps value G .

The key property is that the functionΦC (G) satis�es the following
recurrence.

Lemma 1.

ΦC−1 (G) = E[max{ΦC (G),ΦC (-C ) − 5 G}] .

Proof. Upon observing -C , we have two options: either we

keep the value G that we held from before, and in the future obtain

expected reward ΦC (G), or we pay the buyback cost 5 G , and accept

value -C , in which case we obtain expected reward ΦC (-C ) − 5 G .

Given the value of -C , the optimal algorithm chooses the better of

the two options, and in expectation obtains E[max{ΦC (G),ΦC (-C )−
5 G}]. □

Since we know Φ= (G) = G , we can use backward induction to

compute the function ΦC for every C = 0, . . . , = − 1, to determine

the optimal algorithm’s behavior. Note that whether the algorithm

accepts or rejects a given value of -C is determined exactly by

which of the two arguments of max{ΦC (G),ΦC (-C ) − 5 G} is larger.
To de�ne the optimal online policy uniquely, let us assume that it

buys back G and accepts -C only if ΦC (-C ) − 5 G > ΦC (G) (but this
choice is not essentially important).

We have the following properties.

Lemma 2. The function ΦC for each C = 0, . . . , = satis�es:

• ΦC is convex,

• ΦC (G) + 5 G is non-decreasing,

• ΦC (G) − G is non-increasing.

The proof proceed by backward induction on C, and is postponed

to the full version of the paper. Particularly important for the sub-

sequent analysis will be the following:

Lemma 3. If at time C , while holding a value G , the optimal policy

buys back G and swaps for a variable-C = E , then it will also buyback

G and swap for -C if -C > E . Formally, if ΦC (E) − 5 G > ΦC (G), then
we also have ΦC (E ′) − 5 G ≥ ΦC (E) − 5 G > ΦC (G) for E ′ > E .

(Note that this is not completely obvious, since holding a higher

value is not necessarily more pro�table — ΦC is not always mono-

tone. Nevertheless the statement above is true.)

Proof. If the optimal policy swaps G for -C = E , this means

that ΦC (E) − 5 G > ΦC (G). This implies that ΦC (E) > ΦC (G), and

by convexity ΦC (~) must be increasing for ~ ≥ E . Hence, for any

E ′ > E , we have ΦC (E ′) > ΦC (E). □

Finally, we mention one more important lemma:

Lemma 4. If G < ~, then ΦC−1 (~) − ΦC−1 (G) ≤ ΦC (~) − ΦC (G).
Given the DP formulation, our ultimate goal is to compare the

performance of the online optimum, that is, Φ0 (0) with that of

the o�ine optimum, that is, E[max
8

-8 ]. In the next section, we

switch to a linear programming formulation to analyze the worst-

case performance of this DP policy with respect to the prophet

benchmark.

3 COMPETITIVE RATIO ANALYSIS VIA
LINEAR PROGRAMMING

In general, one can set up a nonlinear exponential-size mathemat-

ical program to characterize the worst-case performance of the

optimal online policy against the prophet benchmark — in the same

spirit as characterizing the worst-case competitive ratio as the equi-

librium of a zero-sum game played between an algorithmwho picks

an online policy and an adversary who picks the sequence of distri-

butions. In this section, instead of taking this naive approach, we

show how to develop a parametric linear program, where the pa-

rameters somehow encode a lower-dimensional “su�cient statistic”

of the worst-case instance. We then show how this LP characterizes

the worst-case ratio of the optimal online policy and the o�ine

optimum under the worst-case choices of these parameters.

To develop this parametric LP, �rst we need to describe a reduc-

tion that converts any instance to a restricted form, such that the

worst-case competitive ratio does not change when restricting to

these instances.

3.1 Reduction to a Monotonic Sequence of
2-Point Distributions

We claim that without loss of generality, we can consider a sequence

of random variables -8 with 2-point distributions, i.e, -8 ∈ {0, E8 },
where E1 ≤ E2 ≤ . . . ≤ E= . Moreover the probability of each random

variable being the last nonzero one can be made arbitrarily small.

More precisely, we prove the following.

Theorem 5. For any n > 0, if a competitive factor U (5 ) can
be achieved for any instance of the buyback problem with random

variables -8 = E8 · �4 (@8 ), where �4 (@8 ) is a Bernoulli 0/1 random
variable with expectation @8 , 0 ≤ E1 ≤ . . . ≤ E= , @8

∏=
9=8+1 (1 −

@ 9 ) ≤ n , and @1 = 1, then the same competitive factor U (5 ) can be

achieved for any instance with nonnegative random variables of �nite

expectation.

We proceed in a sequence of simple reductions. The �rst step is

to discretize the random variables.

Lemma 6. If a competitive factor U (5 ) can be achieved for any

instance with discrete nonnegative random variables (with �nitely

many possible values), then the same competitive factor U (5 ) can be

achieved for any instance with nonnegative random variables of �nite

expectation.

The second step is to reduce the random variables by “splitting”

to 2-point distributions.
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Lemma 7. If a competitive factor U (5 ) can be achieved for any

instance with scaled Bernoulli random variables (with values in {0, E8 }
for some E8 > 0), then the same competitive factor U (5 ) can be

achieved for any instance with discrete nonnegative random variables.

The third step is to rearrange the sequence of 2-point distribu-

tions, so that the values E8 are non-decreasing. We prove that this

can only make the instance more di�cult.

Lemma 8. If a competitive factor U (5 ) can be achieved for any

instance with scaled Bernoulli random variables (with values in {0, E8 }
for some E8 > 0), and 0 ≤ E1 ≤ . . . ≤ E= , then the same competitive

factor U (5 ) can be achieved for any instance with scaled Bernoulli

random variables.

Proof. Consider an instance �1 with variables -8 = E8�4 (@8 )
and -8+1 = E8+1�4 (@8+1), E8 < E8+1, and the same instance with the

ordering of variables -8 , -8+1 swapped, which we call �2. Suppose

we hold valueG before observing the variables-8 , -8+1, and consider
2 cases:

Case 1. The optimal policy P1 for �1 does not accept -8 even if

nonzero. Then, the value of this variable is irrelevant, and we can

de�ne P2 to accept -8+1 based on whether P1 accepts -8+1, which
yields an equivalent policy.

Case 2. The optimal policy P1 for �1 accepts -8 if -8 = E8 ; i.e.

Φ8 (E8 )− 5 G > Φ8 (G). This also implies that Φ8+1 (E8 )− 5 G > Φ8+1 (G),
by Lemma 4, and Φ8+1 (E8+1) − 5 G ≥ Φ8+1 (E8 ) − 5 G , by Lemma 3.

We de�ne P2 to accept -8+1 if -8+1 = E8+1, and if not, then accept

-8 if -8 = E8 . This yields a policy which performs at least as well as

P1 in each of the 4 possible pairs of values of the variables -8 , -8+1.
The only non-trivial case is when -8 = E8 , -8+1 = E8+1, and P1

accepts -8 and then rejects -8+1. In this case, P1 obtains a value

of Φ8+1 (E8 ) − 5 G which is less than or equal to Φ8+1 (E8+1) − 5 G ,

the value P2 obtains. If P1 accepts -8 and then accepts -8+1, P2

performs better because it pays lesser in buyback costs. In the other

3 when at least of-8 or-8+1 is zero, both policies perform the same.

Therefore, the expected reward of P2 is better than that of P1.

By this argument, if there is any adjacent pair of variables where

E8 > E8+1, we can swap them and obtain an instance where the

optimal reward can only go down. By repeating this swapping op-

eration, we can sort the original instance and obtain an instance

where E1 ≤ E2 ≤ . . . E= . The argument above shows that the mono-

tonic instance is at least as di�cult as the original instance. □

The last reduction step is not necessary for the LP formulation,

but it will be useful later: we can split the random variables further,

to obtain a sequence such that the probability of any random vari-

able being the last nonzero variable is arbitrarily small, and we can

also assume that @1 = 1.

Lemma 9. For any n > 0, if a competitive factor U (5 ) can be

achieved for any instance with scaled Bernoulli random variables

-8 = E8�4 (@8 ), 0 ≤ E1 ≤ E2 ≤ . . . ≤ E= , @8
∏=

9=8+1 (1 − @ 9 ) ≤ n , and

@1 = 1, then the same competitive factor U (5 ) can be achieved for

any instance with scaled Bernoulli variables -8 = E8�4 (@8 ), 0 ≤ E1 ≤
E2 ≤ . . . ≤ E= .

Combining Lemmas 6,7,8,9 implies Theorem 5.

3.2 LP Formulations

Let us now formulate a parametric linear program that captures the

worst-case ratio of the optimal online policy to that of the prophet

benchmark by using the recurrence for the optimal online policy

(Lemma 1). We assume that the instance is in the form provided by

Theorem 5: a sequence of 2-point distributions, -8 = E8�4 (@8 ), and
0 ≤ E1 ≤ E2 ≤ . . . ≤ E= . Lemma 1 then takes the following form:

ΦC−1 (G) = max{ΦC (G), (1 − @C )ΦC (G) + @C (ΦC (EC ) − 5 G)}. (1)

We will formulate an LP with the following variables: Φ8,C , rep-

resenting the value of ΦC (E8 ), and E8 representing the value E8 itself.
We also use Φ0,C to represent ΦC (0) (and it is convenient to assume

that E0 = 0). Note that Φ8,C = ΦC (E8 ) obviously depends on the

E8 ’s, but in the LP formulation these will be independent variables;

the connection between them will be provided by the constraints.

The LP constraints are chosen to be valid for the optimal online

policy: Φ8,C−1 ≥ Φ8,C , and Φ8,C−1 ≥ (1 − @C )Φ8,C + @C (ΦC,C − 5 E8 ).
Another constraint is that Φ8,= = E8 : at the end of the process, the

reward is the value that we are holding. The values should satisfy

0 ≤ E1 ≤ . . . ≤ E= . And �nally, we have a constraint normalizing

the o�ine optimum to be 1:

Lemma 10. Given @1, . . . , @= ∈ [0, 1], the following LP gives the

best possible factor that an online policy can achieve on an instance

in the form -8 = E8�4 (@8 ), 0 ≤ E1 ≤ . . . ≤ E= :

min Φ0,0 s.t

∀0 ≤ 8 < C ≤ =; Φ8,C−1 ≥ Φ8,C

∀0 ≤ 8 < C ≤ =; Φ8,C−1 ≥ (1 − @C )Φ8,C + @C (ΦC,C − 5 E8 )
Φ0,= = 0

∀1 ≤ 8 ≤ =; Φ8,= = E8
∀1 ≤ 8 < =; E8+1 ≥ E8
∀1 ≤ 8 ≤ =; E8 ≥ 0∑=

8=1 E8@8
∏=

9=8+1 (1 − @ 9 ) = 1

The proof follows from the properties of the ΦC (G); we omit the

details.

Now we appeal to LP duality to obtain another LP which will be

much more useful for us. We use the following notation:

@̂C = @C

=∏
9=C+1

(1 − @ 9 ) . (2)

Note that this is exactly the probability that -C = -max (in the

monotonic instance). The dual LP can be written after some simpli-

�cations as follows (again we omit the details).

max Θ s.t

∀1 ≤ C ≤ =; G0,C ≤ @C

(
1 −∑C−1

8=1 G0,8

)
∀1 ≤ B < C ≤ =; GB,C ≤ @C

(∑B−1
8=0 G8,B −

∑C−1
9=B+1 GB,9

)
∀1 < C ≤ =; Θ@̂C ≤ ∑C−1

8=0 G8,C − (1 + 5 )∑=
9=C+1 GC, 9

∀0 ≤ B < C ≤ =; GB,C ≥ 0

This LP has a natural interpretation: G0,C represents the probabil-

ity that -C is the �rst variable that we accept, and GB,C for 1 ≤ B < C

represents the probability that at some point we swap -B for -C .

The �rst constraint expresses the fact that by the time we get to

-C , there is probability 1−∑C−1
8=1 G0,8 that we have not accepted any

variable yet; and this is independent of the probability that -C = EC ,
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which is @C . Therefore, @C (1 −
∑C−1
8=1 G0,8 ) is an upper bound on the

probability that we accept -C . Similarly,
∑B−1
8=0 G8,B −

∑C−1
9=B+1 GB,9 is

the probability that we accepted -B and haven’t discarded it yet by

the time we get to -C . Therefore, @C (
∑B−1
8=0 G8,B −

∑C−1
9=B+1 GB,9 ) is an

upper bound on the probability that we swap -B for -C . We call

these constraints online implementability constraints.

The third constraint expresses the fact that the total probability of

accepting variable-C minus the buyback cost of possibly discarding

it should be at least Θ times the probability that -C = -max. If we

satisfy this constraint, then we recover at least a Θ-fraction of the

contribution of -C to the o�ine optimum.

0 -1 -2 -3 -4 -5 -6 -7 -8

This LP can be viewed as a generalized �ow problem, with GB,C
representing the �ow from node B to node C , each node extracting

a certain demand proportional to Θ, and a certain fraction of the

�ow along each edge being lost due to the buyback cost. In the

following, our goal is to prove that this LP has a solution for 5 ≥ 1

and Θ =
1+5
1+25 , and thereby obtain a prophet inequality for the

buyback problem.

3.3 Solving the LP: Intuition

We describe in this section intuition which will lead us to a feasible

solution for the LP.

If we want to match the hardness factor
1+5
1+25 given by the worst-

case 2-variable example, our solution certainly has to solve this

example optimally. The probabilities in this instance are @̂1 =
5

1+5
and @̂2 =

1
1+5 , and we can �nd an optimal solution of the corre-

sponding dual LP, which gives an algorithm to solve 2-variable

instances in this form. However, this still does not tell us how to

solve a general instance.

If we want to solve every instance in a manner consistent with

this example, we hazard a guess that the solution should have a 2-

block structurewhere the two blocks correspond to variables of total

probability mass ℓ1 =
∑
B∈� @̂B =

5
1+5 , and ℓ2 =

∑
C ∈� @̂C =

1
1+5 . (As

a special case, the 2 blocks could be the 2 variables in the hardness

instance.) Crucially, the �ow at the level of these blocks should

be consistent with the optimal solution for the hard instance on 2

variables. Furthermore, there should be no �ow inside each block,

since this would cause us to incur an additional buyback cost which

we cannot a�ord. Therefore, buyback edges should go only from

� to �, and not within each block. This leads to constraints that

imply the following aggregate �ow between the initial node and

the two blocks:

G0,� =
1 + 5

1 + 25
, G0,� =

5

(1 + 5 ) (1 + 25 ) , G�,� =
1

(1 + 5 ) (1 + 25 ) .

Note that the probabilities @̂C in a given instance do not necessar-

ily allow us to form blocks of exactly the desired sizes ℓ1 and ℓ2.

However, we can always split variables into identical independent

copies with smaller probabilities, in a way similar to Lemma 7, in

order to obtain the desired block size, so this is not an issue.

0 -1, . . . , -0 -0+1, . . . , -=

G0,� =
1+5
1+25

G0,� =
5

(1+5 ) (1+25 )

G�,� =
1

(1+5 ) (1+25 )

Once we postulate that the solution should have this block struc-

ture, it remains to �nd the speci�c �ow from the initial node 0

(G0,B for B ∈ � ∪ �), and the �ow between the two blocks (GB,C for

B ∈ � and C ∈ �). The interpretation of G0,B is that it describes the

probability of -B being selected as our �rst pick. The interpretation

of GB,C is that it describes the probability of swapping from -B in

block � to -C in block �. Since at the beginning of the process, we

can select variables without the online implementability constraint

imposing a signi�cant restriction, G0,B for B in the �rst block is not

very restricted. However, we need to be careful not to make G0,B
too large because that would hamper our ability to select variables

in the second block.

No buyback happens within the �rst block, and hence G0,B is the

only source of acceptance probability in the �rst block. This means

that we should have G0,B ≥ Θ@̂B in the �rst block. On the other

hand, a variable in the second block will never be discarded, and it

can be either selected as our �rst pick or via buyback. Therefore,

we have G0,C ≤ Θ@̂C in the second block. It is natural to assume

that G0,B should be decreasing in B . We also hypothesize that in the

second block, we should accept any nonzero variable if we have not

accepted anything so far; i.e., the online implementability should

be tight: G0,C = @C (1−
∑C−1
B=1 G0,B ). This, together with the block �ow

G0,� , determines G0,C for C ∈ �. For B ∈ �, we choose G0,B to depend

linearly on B in a way that produces the desired block �ow G0,� .

Finding the interblock �ow GB,C is the trickiest part of our so-

lution. We have several constraints to satisfy here, and the more

restrictive constraints appear towards the end of the second block.

Here, we have the maximum de�cit Θ − G0,C , while the online im-

plementability constraint simultaneously takes its most restrictive

form. Therefore, we should try to send as much �ow as possible to

the end of the second block, from every point B ∈ �. Given these con-

straints, we send a �ow GB,C = f (B)@̂B@̂C to a certain interval g (B) ≤
C ≤ =, where f (B) is determined by the online implementability con-

straint and g (B) is chosen so that
∑
g (B )≤C≤= GBC =

1
1+5 (G0,B −Θ)@̂B

is exactly the surplus that we allowed to send from B ∈ �. It remains

to verify that the choices described here form a feasible solution of

the dual LP.

3.4 Solving the LP: Technical Details

Here we show rigorously how to describe the LP solution. Most

details are postponed to the full version of the paper. First, note

from our earlier discussion that it is safe to assume that @̂8 ≤ n for

any �xed n > 0. The �rst step in solving the LP is to reduce the

problem to a continuous version. Intuitively, we can imagine that

we have a continuum of random variables, each of which attains a

nonzero value with in�nitesimal probability. To begin the reduction,

let us write down

G0,B = � (B)@̂B , and GB,C = � (B, C)@̂B@̂C
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for some positive functions � and � . Note that the LP we’re inter-

ested in now has the form:

max Θ s.t.

∀C ≥ 1; � (C) @̂C@C ≤ 1 −∑C−1
8=1 � (8)@̂8

∀C > B; � (B, C) @̂C@C ≤ � (B) +∑B−1
8=1 � (8, B)@̂8 −

∑C−1
9=B+1� (B, 9)@̂ 9

∀C ≥ 1; Θ − � (C) ≤ ∑C−1
8=1 � (8, C)@̂8 − (1 + 5 )∑=

9=C+1� (C, 9)@̂ 9

The next lemma demonstrates that it su�ces to analyze the natural

continuous version of the above LP:

Lemma 11. If there exist non-negative, continuous functions ℎ and

6 with domains [0, 1] and [0, 1] × [0, 1], and ℎ(G) > 0 such that

∀0 ≤ C ≤ 1; Cℎ(C) ≤ 1 −
∫ C

0
ℎ(A )3A

∀0 ≤ B ≤ C ≤ 1; C6(B, C) ≤ ℎ(B) +
∫ B

0
6(A, B)3A −

∫ C

B
6(B, A )3A

∀0 ≤ C ≤ 1; Θ − ℎ(C) ≤
∫ C

0
6(A, C)3A − (1 + 5 )

∫ 1

C
6(C, A )3A .

then U (5 ) ≥ Θ.

The proof of this lemma uses a standard Riemann sum argument,

and the fact that we can assume all the @̂8 are less than n . We

postpone the proof to the full version.

Now we explicitly de�ne such functions ℎ and 6 for 5 ≥ 1.

Further motivation for our choices, and a complete demonstration

that they satisfy the continuous version of the LP, is provided in the

full version of the paper. In the following, we denote by Θ =
1+5
1+25

the desired approximation factor. Let us de�ne

ℎ(C) :=


Θ ·

(
1 + 2

5
(1 − 1+5

5
C)
)

if C ≤ 5
1+5

Θ · 5 2

(1+5 )2C2 if C >
5

1+5

6(B, C) :=
{
ℎ (B )+Θ
1+5 if B ≤ 5

1+5 , C ≥
2Θ

ℎ (B )+Θ

(
≥ 5

1+5

)
0 otherwise.

For 5 ≥ 1, we can show that ℎ and 6 satisfy the continuous

form of our LP with Θ =
1+5
1+25 , by letting � =

{
B | B ≤ 5

1+5

}
and

� = {B | ℎ(B) < Θ} =
{
B | B > 5

1+5

}
, and checking that ℎ is online

implementable (in fact tightly for C ∈ �), and furthermore that:

∫
�

ℎ (B )−Θ
1+5 3B =

∫
�
(Θ − ℎ(C)) 3C = 1

(1+5 ) (1+25 ) ,∫
�
6(B, C) 3C =

ℎ (B )−Θ
1+5 ,∀B ∈ �,∫

�
6(B, C) 3B = Θ − ℎ(C),∀C ∈ �,

6(B, C) ≤ ℎ(B) −
∫
�
6(B, A ) 3A = 5 ℎ (B )+Θ

1+5 ,∀B ∈ �, C ∈ �.

We conclude that we can obtain a competitive ratio of
1+5
1+25 for

the prophet inequality with buyback if 5 ≥ 1.

Remark 1. As mentioned earlier in the introduction, there is a

simple example with only 2 variables, such that no online policy can

obtain better than
1+5
1+25 fraction of the prophet benchmark. So the

competitive ratio bound obtained in this section for 5 ∈ [1, +∞) is
tight.

4 COMPETITIVE RATIO UPPER-BOUNDS FOR
SMALL BUYBACK FACTORS

In the previous section, we showed that the competitive ratio of
1+5
1+25 can be achieved by the optimal online policy when 5 ∈
[1, +∞). Also, we already saw an example with 2 random vari-

ables showing that a factor better than
1+5
1+25 cannot be achieved

(Remark 1). Therefore, it is tempting to conjecture that this bound

is the best possible for all values of the buyback parameter 5 . How-

ever, as we show next, even with = = 3 variables, we can construct

hard instances where any algorithm obtains a factor that is strictly

worse than
1+5
1+25 when 0 < 5 < 1.

Hard Instance with 3 Variables. Building on the intuition for the

worst-case instance with two variables, we consider the following

instance with three variables for G > 1 + 5 :

-1 = 1 -2 =

{
G w.p. 1

G
0 otherwise

-3 =

{
G (1 + 5 ) w.p.

G−1−5
(1+5 ) (G−1)

0 otherwise

Later, we pick G to minimize the competitive ratio. 4 The expected

value of the prophet benchmark is easy to calculate:

E[-max] = 5
1+5 + G 5

(1+5 ) (G−1) +
G (G−1−5 )

(G−1) = G + 5
G−1−G 5

(G−1) (1+5 ) .

To �nd the expected reward for the optimal online algorithm we

can solve the recurrence described in Lemma 1 to calculate Φ0 (0):

Φ0 (0) = G − 5 Φ1 (0) = G − 5 Φ2 (0) = G − 5 G

G − 1
Φ1 (1) = G − 5 Φ2 (1) = G − 5

Φ2 (G) = G

Hence, no online algorithm can get a competitive ratio better than5

min
G

G − 5

G + 5
G−1−G 5

(G−1) (1+5 )
=

(1 + 5 ) (
√
5 (2 − 5 ) + 1)

(1 + 5 )
√
5 (2 − 5 ) + 35 + 1

.

Theminimum competitive ratio is obtainedwhenG =
5 +2+

√
5 (2−5 )
2 ,

and the instance is:

-1 = 1, -2 =



5 +2+

√
5 (2−5 )
2 w.p. 2

5 +2+
√
5 (2−5 )

0 otherwise

-3 =

{
5 +2+

√
5 (2−5 )
2 (1 + 5 ) w.p.

1−
√
5 (2−5 )

(1+5 ) (1−5 )
0 otherwise

Notice that the instance only makes sense when
1−
√
5 (2−5 )

(1+5 ) (1−5 ) ≤ 1,

i.e., when 5 4 ≤ 5 (2 − 5 ) . This happens precisely when 5 ≤ 1.

(Furthermore, G > 1 + 5 only when 5 < 1.)

The above instance suggests that as 5 becomes smaller, the ad-

versary may require a higher number of random variables to push

the optimal online policy to achieve its worst-case competitive ratio.

We conjecture that this instance is indeed the worst-case instance

with = = 3 variables for the competitive ratio of the optimal online

4As it turns out, with this choice of G , this instance has the property that having
accepted-8 , the optimal online algorithm is indi�erent between accepting or rejecting
-8+1 . However, we do not rely on this property in our calculations.

5For all 0 < 5 < 1:
(1+5 ) (

√
5 (2−5 )+1)

(1+5 )
√
5 (2−5 )+35 +1

<
1+5
1+25 .
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policy against the prophet benchmark, and leave it without a proof.

With the help of a computer-aided search, we also tried to �nd the

worst case instance for = = 4, and we observed that there exists an

instance where, for any choice of 0 < 5 <
1
3 , the competitive ratio

is strictly worse than the ratio obtained by
(1+5 )

(√
5 (2−5 )+1

)
(1+5 )

(√
5 (2−5 )+1

)
+35 +1

.

Hard Instances with Multiple Variables. More generally, we con-

struct an example with = Bernoulli variables -8 = E8�4 (?8 ) which
has the property that the optimal policy, while holding a value E8 , is

indi�erent to accepting E8+1 or rejecting it. In terms of ΦC (G), this
means the condition

ΦC (EC−1) = ΦC (EC ) − 5 EC−1 .

We also set ?8 = 1/2, which is not the optimal choice, but simpli�es

the analysis. This example leads to the following hardness result in

the regime of small 5 > 0 (we defer the proof to the full version).

Theorem 12. Given a buyback factor 0 < 5 <
1
16 , there is no

algorithm for the buyback problem which achieves a competitive ratio

better than 1 − 1
2 5 log2

1
165

.

This demonstrates an interesting phenomenon: Recall that for

5 = 0, we can achieve a competitive ratio of 1, simply by performing

buyback whenever possible. For small 5 > 0, we might aim to

achieve a competitive ratio of 1 − 2 5 for some �xed constant 2 > 0.

However, the counterexample shows that this is impossible, and

the optimal competitive ratio U (5 ) as a function of the buyback

factor 5 satis�es U ′ (0) = −∞. As we prove in Theorem 16, the

behavior of the optimal competitive ratio for small 5 > 0 is indeed

1 − Θ(5 log 1
5
).

5 THE THRESHOLD-GREEDY ALGORITHM

In this section, we present a simple algorithm which achieves a

competitive ratio of 1 − Θ(5 log 1
5
) for small 5 > 0, matching

Theorem 12 up to constant factors. This algorithm also gives a

constant improvement over 1/2, for any �xed buyback factor 5 > 0,

but we omit the proof. The algorithm is a simple extension of the

standard threshold algorithm: After setting an initial threshold,

and accepting some variable above the threshold, we buy back and

replace the current variable if and only if this brings positive pro�t.

The Algorithm.

• Set an initial threshold ) (to be determined).

• If a variable -8 arrives and -8 ≥ ) , then select -8 .

• Given a currently selected value -8 , if a variable - 9 arrives

and - 9 > (1 + 5 )-8 , then discard -8 and select - 9 .

An advantage of this algorithm is that is order oblivious, and as

will see ) will depend only on the distribution of -max.

5.1 General Analysis Approach

Let us �rst develop some general formulae to analyze this algorithm.

Lemma 13. Suppose that the algorithm selects at least : variables

and the :-th selected variable is- (: ) . Then the pro�t of the algorithm
is at least - (: )/(1 + 5 ):−1.

Proof. By induction: If the �rst selected variable is - (0) , then
the pro�t at that point is clearly- (0) . Observe also that pro�t never
goes down after future buybacks, so the pro�t at the end is at least

- (0) .
Assuming that the :-th selected variable is - (: ) and the variable

selected just before that was - (:−1) , by induction our pro�t after

selecting - (:−1) was ?:−1 ≥ - (:−1)/(1 + 5 ):−2. After the last

buyback, since we select - (: ) only if - (: )
> (1 + 5 )- (:−1) , and

we pay 5 · - (:−1) for discarding - (:−1) , our pro�t is

?: = ?:−1 + (- (: ) − (1 + 5 )- (:−1) )
≥ - (:−1)

(1+5 ):−2 +
1

(1+5 ):−1 (-
(: ) − (1 + 5 )- (:−1) )

=
- (: )

(1+5 ):−1 ,

as desired. □

Next, consider the classical analysis of the prophet inequality,

which uses the fact that our algorithm achieves expected value at

least) · Pr[-max ≥ ) ] + E[(-max −) )+] · Pr[-max < ) ]. We claim

the following extension of this bound.

Lemma 14. The expected pro�t of our algorithm is

E[�!�] ≥ ) · Pr[-max ≥ ) ] + E
[(

-max

(1 + 5 )( ′
−)

)
+

]
,

where ( ′ =
∑

9 1(- ′
9 ≥ ) ) and - ′

9 is an independent copy of - 9 .

Proof. First, let us note that if the maximum is -8 , and the

algorithm makes \8 picks before -8 , Lemma 4 implies that in the

case that the maximum is above ) , the algorithm obtains at least

max

(
),

-8

(1 + 5 )\8

)
.

It follows that

E[�!�] ≥ ) · Pr[-max ≥ ) ]
+ ∑=

8=1 E

[(
-8

(1+5 )\8 −)
)
+
1(-8 = -max)

]
≥ ) · Pr[-max ≥ ) ]

+ ∑=
8=1 E

[(
-8

(1+5 )
∑
9≠8 1(-9 ≥) ) −)

)
+
1(-8 = -max)

]
,

since clearly, \8 ≤
∑

9≠8 1(- 9 ≥ ) ). Observe that conditioned on

-8 ,

(
-8

(1+5 )
∑
9≠8 1(-9 ≥) ) −)

)
+
is a decreasing function of (- 9 : 9 ≠ 8),

and 1(-8 = -max) is also a decreasing function of (- 9 : 9 ≠ 8). So
we can apply the FKG inequality on the product space of (- 9 : 9 ≠ 8),
for every �xed value of -8 , and replace the variables (- 9 : 9 ≠ 8) in
the �rst expression by independent copies (- ′

9 : 9 ≠ 8). Using the
notation ( ′ =

∑
9 1(- ′

9 ≥ ) ), we obtain that E[�!�] is at least:

) Pr[-max ≥ ) ]

+ ∑=
8=1 E

[(
-8

(1+5 )
∑
9≠8 1(- ′

9
≥) ) −)

)
+
1(-8 = -max)

]

≥ ) Pr[-max ≥ ) ] +∑=
8=1 E

[(
-8

(1+5 )(′ −)
)
+
1(-8 = -max)

]
= ) Pr[-max ≥ ) ] + E

[(
-max

(1+5 )(′ −)
)
+

]
,

as desired. □

We will also use the following useful comparison between sum-

mations of independent Bernoulli variables and a Poisson variable.
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Lemma 15. If ( ′ =
∑=

9=1 1(- ′
9 ≥ ) ), for independent random vari-

ables - ′
1, . . . , -

′
= , and Pr[∀9 ;- ′

9 < ) ] = 4−_ , then ( ′ is stochastically
dominated by a Poisson random variable with mean _. In particular,

for any ℓ ≥ 1,

Pr[( ′ ≤ ℓ] ≥ 4−_
ℓ∑

:=0

_:

:!
.

Proof. Let ?8 = Pr[- ′
8 ≥ ) ], and let.8 be a Poisson random vari-

able with mean _8 = − log(1 − ?8 ), where .8 = 0 whenever - ′
8 < ) .

(Note that Pr[.8 = 0] = 4−_8 = 1 − ?8 = Pr[- ′
8 < ) ].) Hence,

.8 ≥ 1(- ′
8 ≥ ) ), and ( ′ =

∑=
9=1 1(- ′

9 ≥ ) ) ≤ ∑=
9=1 .9 with prob-

ability 1. Finally, note that . =
∑=

9=1 .9 is also a Poisson random

variable, with mean _ = −∑=
9=1 log(1−? 9 ) = − log

∏=
9=1 (1−? 9 ) =

− log Pr[∀9 ;- ′
9 < ) ]. □

5.2 Analysis for Small Buyback Factors

Consider now the case of small 5 (e.g. 5 ∈ (0, 1/2)). We can use Lem-

mas 14 and 15 to get a good bound on the algorithm’s performance

in this regime. We note that this bound beats the optimal random-

ized algorithm for the buyback problem with no information, for

all 5 [11].6

Theorem 16. There is an algorithm which achieves a competitive

ratio of at least

max
0≤G≤1

(1 − G) · G
5

1+5

1 − G + G
25 +1
5 +1

≥ 1

5
1+5 +

(
2 + 1

5

) 5
1+5

.

We remark that the last expression in the theorem follows from

plugging in G =
5

1+25 . For 5 ∈ (0, 12 ), it is easy to see that this is

1−Θ
(
5 log( 1

5
)
)
, indeed, (2+ 1

5
)

5
1+5 < ( 2

5
) 5 = 4

5 ln 2
5 < 1+25 ln 2

5
,

so the competitive ratio is at least 1
5

1+5 +1+25 ln
2
5

> 1 − 25 ln 4
5
.

Proof. From Lemmas 14 and 15, we get: If/ is a Poisson random

variable with mean _ (with 4−_ = Pr[-max < ) ]), and 0 ≤ � ≤ 1 is

any random variable (possibly correlated with -1, . . . , -=), then

E[�!�] ≥ ) Pr[-max ≥ ) ] + E
[(

-max

(1+5 )(′ −)
)
+

]
≥ ) Pr[-max ≥ ) ] + E

[
� ·

(
-max

(1+5 )/ −)
)]

= ) (Pr[-max ≥ ) ] − E[�]) + E
[
� · -max

(1+5 )/
]
.

Recall that Pr[-max ≥ ) ] = 1 − 4−_ . Taking � = 21(-max ≥ ) ):

E[�!�] ≥ ) (Pr[-max ≥ ) ] − E[�]) + E
[
� · -max

(1+5 )/
]

= ) (1 − 4−_) (1 − 2)
+ 2 · E

[
1

(1+5 )/
]
· E[-max1(-max ≥ ) )]

= ) (1 − 4−_) (1 − 2) + 24
−_5
1+5 E[-max1(-max ≥ ) )] .

6The bound presented here is worse than the classical prophet inequality when 5 → ∞
(in which case our bound tends to 1/3) as we are aiming primarily to match the

asymptotic upper bound we obtained of 1 − Θ

(
5 log( 1

5 )
)
.

where E[ 1
(1+5 )/ ] = 4

−_5
1+5 follows from an elementary computation

for the Poisson random variable / . Since

E[-max] ≤ ) Pr[-max < ) ] + E[-max1(-max ≥ ) )]
= )4−_ + E[-max1(-max ≥ ) )],

setting

(1 − 4−_) (1 − 2) = 24
−_5
1+5 4−_

guarantees a competitive ratio of 24
−_5
1+5 . Letting G = 4−_ , and

solving for 2 , we get

2 =
1 − G

1 − G + G
25 +1
5 +1

,

which means we are guaranteed a competitive ratio of

max
0≤G≤1

(1 − G) · G
5

1+5

1 − G + G
25 +1
5 +1

. □

We remark that with � = 1(-max ≥ ) ) 1(/ ≤ 1), we could

have obtained another, di�erent lower bound on the competitive

ratio, better for medium values of 5 . Another reasonable option

is � = 211(-max ≥ ) )2/2 , which can recover approximately the

correct result both near 5 = 0 and 5 = ∞.

6 CONCLUSION AND OPEN PROBLEMS

In this paper, we studied a version of the prophet inequality where

recourse is possible by paying a penalty 5 times the value of the

discarded item. For 5 ≥ 1 we showed that the optimal online al-

gorithm attains a competitive ratio of
1+5
1+25 against the optimal

o�ine solution. We also designed an algorithm which is asymptot-

ically optimal in the regime of small 5 ≥ 0, and studied a simple

threshold-greedy algorithm.

Open problems: The exploration of optimal competitive ratios

U (5 ) for 5 < 1 remains an intriguing avenue for future research.

We conjecture that the 3 variable example presented in section 4

is the worst-case instance on 3 variables, and that we can use this

example to construct a solution to the continuous �ow problem,

using 3 blocks, in the regime where 1
3 ≤ 5 < 1. More generally, we

conjecture that there is a sequence of intervals �: (where �2 = [1,∞),
�3 = [1/3, 1)), and the optimal factor for �: is determined by the

worst-case instance on : variables, and the optimal �ow has a :-

block structure. The problem of identifying the worst case instance

for : ≥ 3 remains open.
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