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ABSTRACT

This thesis studies various problems that arise in the study of Mean Field Games and Mean Field

Control. First we prove that a hypoelliptic MFG system with local-coupling is well posed, extend-

ing results from the the parabolic literature. Next, we show that a first-order local MFG system, as

well as the planning problem, admit smooth solutions and characterize their long time behavior in

one dimension. Finally, we show that for smooth, but not necessarily convex data, there exists a

open and dense region, in which the value function in Mean Field Control, as well as the optimal

controls, converge at a rate of 1
N .
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CHAPTER 1

INTRODUCTION

This thesis is concerned with problems arising in Mean Field Games (MFG for short) and Mean

Field Control (MFC for short). MFG were introduced by Lasry and Lions [286, 282, 284], and at

the same time, in a particular setting, by Caines, Huang, and Malhamé [239]. The theory studies

asymptotic equilibria of N−player games, for large N, of weakly interacting agents. Such games

arise naturally in numerous fields such as economics, networks and traffic control to name a few.

In the aforementioned applications, analyzing equilibrium states, such as Nash equilibria, is a

notoriously challenging problem. The main idea of MFG is to exploit the fact that under suitable

assumptions, as N−becomes large, agents become indistinguishable. Consequently, each agent’s

decision depends on the distribution of the others. In turn, as N tends to infinity, this leads to a

more tractable game with a continuum of players. What MFG propose is to study the equilibria

in the infinite population game and then infer qualitative and quantitative properties for the finite

game. This last step is achieved by establishing asymptotic convergence to the infinite regime.

Broadly speaking, we may separate the study of the aforementioned games in two categories.

The first category addresses non-cooperative games and a typical application is the study of Nash

equilibria. The second one concerns cooperative games, and a model example is that of the central

planner. This thesis will primarily focus on the latter, however in both setups the primary tool for

the analysis of the limiting system and the convergence problems, is the MFG system, which we

introduce next.

The MFG system is a coupled system of an HJB equation, and a Fokker-Planck equation (FP for

short). It typically reads


−∂tu − ν∆u + H(x,Du) = F(x,m(t)), u(T, x) = G(x,m(T )), x ∈ Rd,

∂tm − ν∆m − div(mHp(x,Du)) = 0, m(t0) = m0.

(MFG)
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Systems like (MFG) capture the equilibrium state for a population, with initial density m0. The

backwards HJB equation describes the evolution in time of a generic agent, while the FP equa-

tion provides the evolution of the density of the players. Due to their forward-backward structure,

(MFG) falls outside the scope of the classical theory of evolution equations and their study neces-

sitates the development of new approaches.

Although there exist many variants of system (MFG), we mention the following important subcat-

egories:

• When diffusion is present, that is ν > 0, it is called a second order system, for ν = 0 we say

its a first order system. The former case corresponds to stochastic games while the latter to

deterministic.

• When the coupling terms F,G take inputs in P(Rd) it is called a non-local system. In this

case, agents interact only through the distribution of the others. Moreover, typically in this

case F,G have a regularizing effect on the distribution.

• Lastly, when the couplings F,G depend on the density, that is F = F(x,m(t, x)), then the

system is called local. We may interpret this coupling as each agent being affected by the

surrounding players.

It is important to note that in all the above cases, the MFG system is expected to have uniqueness

and stability when the couplings are increasing, in a appropriate sense, in the measure argument.

Finally, in all of the above, in order to avoid technical steps related to boundary conditions, when

(MFG) is studied in a bounded domain it is common to do so over the torus Td.

The study of system (MFG) and its variants, whether as a standalone problem or related to regu-

larity in MFC (see Chapter 4), lead to many interesting questions on their own. Here we will focus

on:

1. Existence and uniqueness of solutions. In Chapter 2, we study this question for a hypoelliptic

version of a local, MFG system.
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2. Regularity of solutions and long time behavior. In Chapter 3, we study this question for a

one-dimensional, local and first-order MFG system.

3. Stability with respect to m0. In Chapter 4, we study this question, among others, were we

establish convergence rates for Mean Field Control problems.
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CHAPTER 2

HYPOELLIPTIC MEAN FIELD GAMES SYSTEM

2.1 Introduction

The goal of this chapter is to establish the well posedness (existence and uniqueness) of solutions

of the local, hypoelliptic Mean Field Games system



−∂tu − ∆3u + 3 · Dxu + H(D3u) = F(t, x, 3,m(t, x, 3)) in (0,T ) × Rd × Rd,

∂tm − ∆3m − 3 · Dxm − div3(mHp(D3u)) = 0, in (0,T ) × Rd × Rd,

u(T, x, 3) = G(x, 3,m(T, x, 3)),m(0, x, 3) = m0(x, 3).

(2.1.1)

The Hamiltonian H : Rd → R is convex, the coupling term F : [0,T ] × Rd × Rd × R→ R as well

as the terminal cost function G : Rd × Rd × R→ R are increasing in m, and m0 : Rd × Rd → R is

a given probability density.

As described in the introduction, systems like (2.1.1) formally describe the equilibrium of an N-

player game, when N tends to infinity, of indistinguishable players, where each player makes

decisions based on the distribution of the other co-players. In this setup, it is natural to interpret x ∈

Rd as the position and 3 ∈ Rd as the velocity of such players. More precisely, the players control

their accelaration in order to minimize the cost introduced by the coupling F and the Hamiltonian

H, which leads to the Hamilton-Jacobi-Bellman equation (HJB for short). The optimal feedback is

then given by the vector field −(3,DpH(D3u)), under which, their distribution changes according

to the degenerate Fokker-Planck equation (FP for short). As far as applications are concerned, we

refer to the flocking model in Carmona and Delarue [97], and for a first order system we refer

to Bardi and Cardaliaguet [21], Griffin and Meszaros [225] and Achdou, Mannucci, Marchi and

Tchou [2]. Finally, we mention that the general form of (2.1.1) is reminiscent of Boltzmann-type

equations, which have been investigated in the MFG context by Burger, Lorz, Wolfram [68] in a
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setting different to the one used here.

Although there has been extensive study of non-degenerate second-order mean field games, with

a local or non-local coupling, less has been done in the degenerate setting, an example of the

latter being hypoelliptic MFG. In this setting, when the degeneracy is a sum of squares, Dragoni

and Feleqi studied in [157] the ergodic problem; see also Feleqi, Gomes and Tada [175]. When

H(p) = 1
2 |p|

2, Camilli in [71], obtained, using the Hopf-Cole transformation, weak solutions to

(2.1.1) with uncoupled terminal data. We remark that the assumptions of Camilli appear almost

complementary to the ones in this work, as the existence of solutions in [71] is established for

terminal data that have to be unbounded since they need to be superquadratic. For results in the

case of non-Hörmander degenerate systems, we refer to Cardaliaguet, Graber, Porretta and Tonon

in [83], who study, using a variational approach, degenerate MFG systems, for Hamiltonians with

super-linear growth and no coupling on the terminal data of the HJB equation.

Our goal is to show existence and uniqueness for quadratic and Lipschitz Hamiltonians, under

similar assumptions as that of Porretta in [325], where existence and uniqueness of renormal-

ized solutions was established in the non-degenerate setting. We work with two different types of

Hamiltonian H, that is, with linear or quadratic growth. Furthermore, the degeneracy is not a sum

of squares, that is, L is not of the form L :=
k∑
i, j

ai jXiX j, for some vector fields Xi satisfying Hörman-

ders condition . In the context of hypoelliptic operators, the degenerate operator L := ∂t−∆3+3·Dx

is the simplest and historically the first one to be studied.

The first result addresses the case of a Lipschitz Hamiltonian, whereas the latter the case of

quadratic Hamiltonian.

Theorem 1. Assume that H, F,G, and m0 satisfy 2.2,2.2,2.2, and 2.2. Then, there exists a unique

weak solution (u,m) of (2.1.1), according to Definition 1. Moreover, there exists a constant C > 0,

such that,

∥ − ∂tu + 3 · Dxu∥L2([0,t]×Rd×Rd) + ∥∆3u∥L2([0,t]×Rd×Rd)

+∥ − ∂tm + 3 · Dxm∥L2([0,t]×Rd×Rd) + ∥∆3m∥L2([0,t]×Rd×Rd) ≤
C

T − t
.
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Furthermore, if F also satisfies 2.2, there exists a constant C = C(F,G,H,T,m0) > 0, such that

sup
t∈[0,T ]

∥m(t)∥2 + sup
t∈[0,T ]

∥Dm(t)∥2 + ∥D
2
3,3m∥2 + ∥D3Dxm∥2 ≤ C,

and

sup
t∈[0,T ]

∥u(t)∥2 + sup
t∈[0,T ]

∥Du(t)∥2 + ∥D
2
3,3u∥2 + ∥D3Dxu∥2 ≤ C.

The second result is about renormalized solutions as in Definition 4.

Theorem 2. Assume that H, F,G, and m0 satisfy (2.2),(2.2),(2.2), and (2.2). Then, there exists a

unique pair (u,m), of renormalized solutions of the MFG system (2.1.1). Furthermore, assume that

F,G are only functions of m. Then, there exists a constant C = C(m0, F,G,T ) > 0, such that

∫
Rd×Rd

G′(m(T, x, 3))|Dm(T, x, 3)|2dxd3 +
∫ T

0

∫
Rd×Rd

F′(m(t, x, 3))|Dm(t, x, 3)|2

+m
2d∑

k=1
mD3ukHpp(D3u)D3ukdxd3 ≤ C.

The existence of a solution, in the case of Lipschitz Hamiltonians, is established using a Schauder

fixed point theorem as follows. Fix a probability density m0. Given µ ∈ X := C([0,T ]; L2(Rd ×

Rd)), let uµ ∈ C([0,T ]; L2(Rd×Rd)), with D3u ∈ L2([0,T ]×Rd×Rd), be the unique, distributional

solution of 
−∂tu − ∆3u + 3 · Dxu + H(D3u) = F(t, x, 3, µ) in (0,T ) × Rd × Rd,

u(T, x, 3) = G(µ(T, x, 3)) in Rd × Rd,

and m the unique distributional solution of


∂tm − ∆3m − 3 · Dxm − div3(mDpH(D3uµ)) = 0 in (0,T ) × Rd × Rd,

m(0, x, 3) = m0(x, 3) in Rd × Rd.
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Set Φ(µ) = m. We need to show that Φ is X−valued, continuous, and compact. The two aforemen-

tioned properties follow easily once we show that Φ(m) ∈ L∞ with appropriate bounds. Compact-

ness does not follow immediately, because of the degenerate x−direction. To work with that, we

localize in time the results in Bouchut [59].

For Theorem 2, we rely on the work in [325] and mostly adapt the arguments in the hypoellip-

tic setting. In particular, given a Hamiltonian H with quadratic growth (exact assumptions are

given later), we consider a sequence of Lipschitz pointwise-approximations and the corresponding

solutions provided by Theorem 1 and show compactness in the appropriate spaces. The main tech-

nical difficulties and deviations from [325] are the gradient estimates in hypoelliptic equations with

L1−data, which are briefly described next. Let Hϵ be a suitable pointwise Lipschitz approximation

of a quadratic Hamiltonian H and (mϵ , uϵ) the corresponding weak solutions. In order to show

that there exists a limit which is a renormalized solution, we must show the convergence (up to a

subsequence) of uϵ ,mϵ in L1([0,T ] × Rd × Rd) and of the gradients D3(uϵ ∧ k),D3(mϵ ∧ k) of the

truncations in L2([0,T ]×Rd ×Rd). The compactness of uϵ in L1 follows by the results of DiPerna

and Lions in [151], while the convergence of the gradients is due to an appropriate transformation

similar to the one used by Porretta in [323] and the references therein. This important transforma-

tion is studied in the Appendix. Finally, for the FP equation, the crucial bound as pointed out in

[325] is that, for some independent of ϵ, C > 0,

∥mϵ |Hϵ
p(D3uϵ)|2∥1 ≤ C. (2.1.2)

This estimate is crucial in the following way. If mϵ is a solution to the FP equation (2.1.1), a priori,

the best independent of ϵ estimate for mϵHϵ
p(D3uϵ) is in L1([0,T ] × Rd × Rd). However, to obtain

fractional gradient estimates we need bounds in Lr for some r > 1. The main observation that

allows us to obtain this under condition (2.1.2), is the following: Due to hypoellipticity, higher

integrability of mϵHϵ
p(D3uϵ) should yield higher integrability for mϵ , while under condition (2.1.2)

higher integrability of mϵ should also yield higher integrability for mϵHϵ
p(D3uϵ). We show that it
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is possible to combine the above gains and obtain higher integrability with bounds independent of

ϵ and therefore use the results from [59].

2.1.1 Organization of Chapter 2

In section 1, we state all the assumptions and definitions used throughout the chapter. In section

2, we study the backwards HJB and FP equations with L2−terminal/initial data respectively. The

main estimates come from Theorems 17 and 18. We also obtain results regarding the hypoelliptic

FP equation and, in particular, we establish fractional gradient bounds. Finally, we establish The-

orem 1. Section 3 is devoted to the proof of Theorem 2. Finally, in the appendix (section 4) we

show an important technical result for the hypoelliptic HJB equation and we give the statements of

the theorems we will use from [59].

2.1.2 Notation and Terminology

Throughout the chapter, d ∈ N := {1, · · · ,∞}, T > 0 is the terminal time, t ∈ [0,T ] is the

time variable, x ∈ Rd and 3, v ∈ Rd, and vectors in [0,T ] × Rd × Rd always appear in the order

(t, x, 3). For p ∈ [1,∞], Lp([0,T ] × Rd × Rd)+ and Lp(Rd × Rd)+, are the non-negative functions

of Lp([0,T ] × Rd × Rd) and Lp(Rd × Rd) respectively. For s > 0,W s,p(Rd × Rd) is the usual

fractional Sobolev space and Ds = (−∆)s/2, we refer for example to [148] for the definition of

fractional Sobolev spaces. If ϕ = ϕ(t, x, 3) : [0,T ] × Rd × Rd → R or ϕ = ϕ(x, 3) : Rd × Rd → R,

we write D2ϕ = D2
x,3ϕ, for the hessian in the space variables, ∆3ϕ :=

d∑
i=1

∂3i3iϕ, Dϕ := (Dxϕ,D3ϕ)

and div3(ϕ) :=
d∑

i=1
∂3iϕ. For a function F(t, x, 3,m) : [0,T ] × Rd × Rd × R → R or G(x, 3,m) :

Rd × Rd × R → R, we use the notations D(x,3)F = (∂x1 F, · · · , ∂xd F, ∂31 F, · · · , ∂3d F), Fm = ∂mF,

and similarly for G. Throughout the chapter when we reference a standard sequence of mollifiers

ρn : Rd × Rd → [0,∞) we mean that ρn(x, 3) := n2dρ( x
n ,
3
n ) where ρ ∈ C∞c (Rd × Rd), such that

ρ ≥ 0 and
∫
Rd×Rd ρ(x, 3)dxd3 = 1. Moreover in all the proofs constants are subject to change from

line to line and they only depend on the quantities/functions stated in the statement of the result.
10



Finally, we will often use the terminology dimensional constant referring to a constant that only

depends on the dimension.

2.2 Assumptions/Definitions

We split this section in two subsections, one for Lipschitz Hamiltonian and one for quadratic.

Lipschitz Hamiltonian and weak solutions

As far as the data are concerned, we assume the following, for the case of Lipschitz Hamiltonian:

[H1] (Lipschitz Hamiltonian) The Hamiltonian H : Rd → R, is C1(Rd), convex, H ≥ 0, H(0) = 0,

and there exists an LH > 0, such that,

|H(p2) − H(p1)| ≤ LH |p2 − p1| for all p1, p2 ∈ R
d. (H1.1)

[F1] (Coupling term) The coupling term F = F(t, x, 3,m) : [0,T ]×Rd×Rd×R→ R, is continuous,

strictly increasing and locally Lipschitz in m, that is, for all L > 0, there exists a constant

cL > 0 such that |F(t, x, 3,m2) − F(t, x, 3,m1)| ≤ cL|m2 − m1| for all 0 ≤ m1,m2 ≤ L, and

F(t, x, 3, 0) ∈ L2([0,T ] × Rd × Rd). Finally, we assume that F ≥ 0.

[G1] (Terminal data for u) The coupling term G = G(x, 3,m) : Rd × Rd × R → R, is continuous,

strictly increasing and locally Lipschitz in m (in the same sense as F above), and G(x, 3, 0) ∈

L2(Rd × Rd). Finally, we assume that G ≥ 0.

[M1] (Initial density) The initial density m0 : Rd × Rd → R, satisfies m0 ∈ L∞([0,T ] × Rd ×

Rd)+,
√

m0 ∈ L1(Rd × Rd), (|x|2 + |3|4)m0 ∈ L1(Rd × Rd), log(m0) ∈ L1
loc(Rd × Rd), Dm0 ∈

L2(Rd × Rd) and
∫
Rd×Rd m0(x, 3)dxd3 = 1.
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[R1] (Regularity) Assume that F,G satisfy 2.2,2.2 and that for every L > 0, there exists a c0 =

c0(L) > 0, such that,

c0 ≤ |Fm(t, x, 3,m)|, |Gm(x, 3,m)|, for all (t, x, 3,m) ∈ [0,T ] × Rd × Rd × [0, L].

Furthermore, we assume that there exists a constant C > 0, such that,

|D(x,3)F(t, x, 3,m)| + |D(x,3)G(x, 3,m)| ≤ C|m| for all (t, x, 3,m) ∈ [0,T ] × Rd × Rd × R.

Remark 1. We note that assumption 2.2 implies in particular that m0 log(m0) ∈ L1(Rd × Rd).

Next we state the definition of a weak solution.

Definition 1. Assume that H,G, F, and m0 satisfy 2.2,2.2,2.2 and 2.2. A pair (u,m) ∈ L2([0,T ] ×

Rd × Rd) × L2([0,T ] × Rd × Rd) is a weak solution of the system (2.1.1), if

u ∈ C([0,T ]; L2(Rd × Rd),D3u ∈ L2([0,T ] × Rd × Rd)),

m ∈ C([0,T ]; L2(Rd × Rd)),D3m ∈ L2,D1/3
x m ∈ L2([0,T ] × Rd × Rd),m ∈ L∞([0,T ] × Rd × Rd),

the system (2.1.1) holds in a distributional sense.

Quadratic Hamiltonian and renormalized solutions

For the case of a quadratic Hamiltonian H, we assume the following:

[H2] For the Hamiltonian H : Rd → R we assume that it is convex, continuous and there exist

constants c > 0,C > 0 such that, for all p ∈ Rd,

0 ≤ H(p) ≤ C|p|2, (H2.1)
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Hp(p) · p − H(p) ≥ cH(p), (H2.2)

|Hp(p)| ≤ C|p|. (H2.3)

[F2] For the coupling term F : [0,T ]×Rd ×Rd ×R→ R, we assume that it satisfies 2.2 and with

bounds that possibly depend on L > 0, one of the following hold:

fL(t, x, 3) := sup
m∈[0,L]

F(t, x, 3,m) ∈ L1(R × Rd × Rd), (F2.1)

fL(t, x, 3) := sup
m∈[0,L]

F(t, x, 3,m)/m ∈ L∞(R × Rd × Rd). (F2.2)

[G2] For the coupling term G : Rd ×Rd ×R→ R, we assume that it satisfies 2.2 and with bounds

that possibly depend on L > 0, one of the following hold:

gL(x, 3) := sup
m∈[0,L]

G(x, 3,m) ∈ L1(Rd × Rd), (G2.1)

gL(x, 3) := sup
m∈[0,L]

G(x, 3,m)/m ∈ L∞(Rd × Rd). (G2.2)

Remark 2. The above conditions on F,G yield that if (F2.1) and (G2.1) hold, then

F(x, 3, t,m) ≤ fL(t, x, 3) +
m
L

F(t, x, 3,m), G(x, 3,m) ≤ gL(x, 3) +
m
L

G(x, 3,m),

for every m ≥ 0, L > 0. While if (F2.2) and (G2.2) hold, then,

F(t, x, 3,m) ≤ fL(t, x, 3)m +
m
L

F(x, 3,m),G(x, 3,m) ≤ gL(x, 3)m +
m
L

G(x, 3,m).

Conditions (F2.1), (G2.1) do not allow for F,G to depend only on m due to the unbounded domain,

while conditions (F2.2), (G2.2) do allow for dependence only on m. Typical examples for the
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coupling are of the form

F(t, x, 3,m) = a(t, x, 3)h1(m) + h2(m)

where for assumption (2.2) we need h2(0) = 0, h1 ≥ 0, strictly increasing and locally Lipschitz

continuous and finally a ≥ 0, a ∈ L2 ∩ L∞ and continuous. For assumption (2.2) we need to also

assume that

• In the case of (F2.1), a ∈ L1 and h2(m) = 0.

• While for the case of (F2.2), we may also impose a ∈ L∞ and that h1(m) = mq1 , h2(m) = mq2

for some q1, q2 ∈ [1,∞).

Next, we define renormalized solutions for equations of the form


∂tm − ∆3m − 3 · Dxm − div3(mb) = 0 in (0,T ) × Rd × Rd,

m(0, x, 3) = m0(x, 3) in Rd × Rd,

(2.2.1)

where b : [0,T ] × Rd × Rd → R, m0 : Rd × Rd, and equations of the form


−∂tu − ∆3u + 3 · Dxu + H(D3u) = f in (0,T ) × Rd × Rd,

u(T, x, 3) = g(x, 3) in Rd × Rd.

(2.2.2)

Remark 3. Regarding our notation, in the rest of the chapter, we will follow the convention that

capital letters F,G are be used when referring to the MFG system, while lower case letters f , g

will be used for general HJB equations.

Our definitions are in the same spirit as in [325].

Definition 2. Let m ∈ C([0,T ]; L1(Rd × Rd)+) and b : [0,T ] × Rd × Rd → R, such that m|b|2 ∈

L1([0,T ] × Rd × Rd). We say that m is a renormalized solution of (2.2.1), if

lim
n→∞

1
n

∫
n<m<2n

|D3m|2dxd3dt = 0,

14



and for each S ∈ W2,∞(R), S (0) = 0, the function S (m) satisfies in the distributional sense,

∂tS (m) − ∆3S (m) − 3 · DxS (m) − div3(S ′(m)mb) + S ′′(m)|D3m|2 + S ′′(m)mbD3m = 0,

S (m)(0) = S (m0).

Definition 3. Let u ∈ C([0,T ]; L1(Rd × Rd)+), with D3u ∈ L2([0,T ] × Rd × Rd), f ∈ L1([0,T ] ×

Rd × Rd), g ∈ L1(Rd × Rd). We say that u is a renormalized solution of (2.2.2), if

lim
n→∞

1
n

∫
n<m<2n

|D3u|2dxd3dt = 0,

and for each S ∈ W2,∞(Rd), S (0) = 0, the function S (u) satisfies in the distributional sense,

−∂tS (u) − ∆3S (u) + 3 · DxS (u) + S ′(u)H(D3u) = S ′(u) f , S (u(T )) = S (g).

Definition 4. Assume that H,G, F, and m0 satisfy 2.2,2.2,2.2, and 2.2. A pair (m, u) ∈ C([0,T ]; L1(Rd×

Rd)+) ×C([0,T ]; L1(Rd ×Rd)+), is a renormalized solution of the MFG system (2.1.1), if m, u are

renormalized solutions to the corresponding equations according to Definitions (2.2.1), (2.2.2),

respectively.

Remark 4. In general the notions of renormalized and distributional solutions are distinct. How-

ever under suitable conditions we may show they are equivalent. We do not explore this direction

in the present work, although it should follow with similar methods as in the non degenerate case,

see Porretta [325] and for results on the whole space Porretta [326].

2.3 The well possedness in the case of Lipschitz Hamiltonian

All the equations in the rest of the section should be understood in the distributional sense, unless

stated otherwise. We divide this section in four parts. In the first two we study the HJB equation
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and the FP equation separately, in the third section we use these bounds to obtain weak solutions

to the MFG problem, and in the last part we show a regularity result for these weak solutions.

2.3.1 Estimates for the Hamilton-Jacobi-Bellman equation

Theorem 3. Let g ∈ L2(Rd×Rd)∩L∞(Rd×Rd)+, f ∈ C([0,T ]; L2(Rd×Rd))∩L∞([0,T ]×Rd×Rd)+,

and a Hamiltonian H : Rd → R, which satisfies 2.2. Then, there exists a unique solution u ∈

C([0,T ]; L2(Rd × Rd)), with D3u ∈ L2([0,T ] × Rd × Rd) of (2.2.2). Furthermore, there exists a

C = C(T,LipH) > 0, such that

sup
t∈[0,T ]

∥u(t)∥2 + ∥D3u∥2 ≤ C(∥g∥2 + ∥ f ∥2)

and for each t ∈ [0,T ],

∥∂tu − 3 · Dxu∥L2([0,t]×Rd×Rd) + ∥∆3u∥L2([0,t]×Rd×Rd) ≤
C

T − t

(
∥ f ∥2 + ∥g∥2

)
.

Finally, there exists a constant C = C(T, d, ∥ f ∥∞, ∥g∥∞) > 0, such that ∥u∥∞ ≤ C, in particular C

does not depend on the Lipschitz constant of the Hamiltonian H.

Proof. First we address the issue of existence. Consider the Banach space X := {v ∈ L2([0,T ] ×

Rd × Rd)} : ∥v∥X < ∞}, where

∥v∥X = sup
0≤t≤T

e−λt∥v(t)∥2 +
( ∫ T

0

∫
Rd×Rd

e−λs|D3v|2dxd3dt
)1

2 ,

for some λ > 0 to be determined later. We define the map T : X → X by T (w) = u, where u is the

solution to 
∂tu − ∆3u + 3 · Dxu = f − H(D3w) in (0,T ) × Rd × Rd,

u(0, x, 3) = g(x, 3),
(2.3.1)

where in the above we took the equation forward in time only for notational simplicity. The goal
16



now is to show that T is a contraction on X if λ is large enough. But indeed if CH > 0 is the

Lipschitz constant of H, then for T (w1) = u1,T (w2) = u2 by testing against u2−u1 in the equation

of their difference (see the end of this proof on how we justify this), we have

∂t

∫
Rd×Rd

(u2 − u1)2(t, x, 3)dxd3 + 2
∫
Rd×Rd

|D3(u2 − u1)|2dxd3

≤ CH

∫
Rd×Rd

|D3(w2−w1)||u2−u1|dxd3 ≤ CHϵ

∫
Rd×Rd

|D3(w2−w1)|2dxd3+
CH
4ϵ

∫
Rd×Rd

|u2−u1|2dxd3.

The above imply

∂t
(
e−

CH
4ϵ t

∫
Rd×Rd

|u2−u1|2dxd3
)
+2e−

CH
4ϵ t

∫
Rd×Rd

|D3(u2−u1)|2dxd3 ≤ CHϵe
−

CH
4ϵ t

∫
Rd×Rd

|D3(w2−w1)|2dxd3,

and thus by Grönwall, if we let λ = CH
4ϵ we have

∥u2 − u1∥2X ≤ 4CHϵ∥w
2 − w1∥2X .

Therefore for ϵ > 0 small enough the above map is a contraction in X and thus has a unique

fixed point. Regarding the estimates, we need to test against u in 2.2.2. First need to establish

integrability for u. To this end, note that since H, f , g ≥ 0, if w is the solution of


−∂tw − ∆3w + 3 · Dxw = f in (0,T ) × Rd × Rd,

w(0, x, 3) = g(x, 3) in Rd × Rd,

then by standard comparison we have that

0 ≤ u(t, x, 3) ≤ w(t, x, 3) for all (t, x, 3) ∈ [0,T ] × Rd × Rd.

17



Finally, note that from our assumptions on f , g

w ∈ Lp, for all p ∈ [2,∞] therefore u ∈ Lp for all p ∈ [2,∞].

Now that we may test against u in the equation, the fact that u ∈ C([0,T ]; L2(Rd × Rd)) is easy

to see due to our assumptions on f . The first estimate is obtained by simply testing against u and

using the fact that H is Lipschitz with H(0) = 0. To justify this however, we need to address

the integration by parts that occurs. To this end let ϕ : [0,∞) → [0, 1], be a smooth function

such that ϕ(s) = 1 for 0 ≤ s ≤ 1 and ϕ(s) = 0 for s ≥ 2. For R > 0 we consider the function

ψR(x, 3) = ϕ( |x|
2+|3|2

R ). Testing against uψ2
R in equation 2.2.2 yields

−∂t

∫
Rd×Rd

1
2
|u|2ψ2

Rdxd3 +
∫
Rd×Rd

|D3u|2ψ2
Rdxd3

+

∫
Rd×Rd

2uD3uD3ψRψR + 2ψR3 · DxψRu2 + H(D3u)uψ2
Rdxd3 =

∫
Rd×Rd

f uψ2
Rdxd3.

In what follows the constant C > 0 may change from line to line, however it is independent of

R > 0. We note that

∫
Rd×Rd

∣∣∣∣2ψR3·DxψRu2
∣∣∣∣ = ∫

Rd×Rd

∣∣∣∣2x · 3
R

ψRϕ
′(
|x|2 + |3|2

R
)u2

∣∣∣∣ ≤ ∫
Rd×Rd

|x|2 + |3|2

R
ψRϕ

′(
|x|2 + |3|2

R
)u2

≤

∫
Rd×Rd

2ψRϕ
′(
|x|2 + |3|2

R
)u2 ≤ C

∫
|x2|+|3|2≥R

u2.

Moreover,

∫
Rd×Rd

∣∣∣∣2uD3uD3ψRψR

∣∣∣∣dxd3 ≤
1
4

∫
Rd×Rd

|D3u|2ψ2
Rdxd3 +C

∫
|x|2+|3|2≥R

u2dxd3

and ∫
Rd×Rd

H(D3u)uψ2
Rdxd3 ≤

∫
Rd×Rd

1
4
|D3u|2ψ2

R +Cu2ψ2
Rdxd3,
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∫
Rd×Rd

f uψ2
Rdxd3 ≤ ∥ f ∥2∥u∥2.

Collecting all the above estimates we have that

−∂t

∫
Rd×Rd

1
2
|u|2ψRdxd3+

∫
Rd×Rd

|D3u|2ψ2
Rdxd3 ≤ C(∥ f ∥2∥u∥2+

∫
Rd×Rd

u2ψ2
Rdxd3+

∫
|x2|+|3|2≥R

u2),

recalling that 0 ≤ u ≤ w ∈ L2, the result follows by Grönwall and letting R→ ∞.

The second estimates are due to Theorems 17 and 19 in the Appendix. Finally the L∞−bounds

follow by similar arguments as in [136], Proposition A.3.

□

2.3.2 Degenerate Fokker-Planck equation

All the equations should be understood in the distributional sense, unless stated otherwise. In this

subsection we study the following equation


∂tm − ∆3m − 3 · Dxm − div3(mb) = 0 in (0,T ) × Rd × Rd,

m(0, ·, ·) = m0(·, ·) in Rd × Rd.

(2.3.2)

The purpose of this subsection is to show the following theorem:

Theorem 4. Let b ∈ L∞([0,T ]×Rd×Rd) and m0 a density which satisfies 2.2. Then, there exists a

unique distributional solution m ∈ C([0,T ]; L2(Rd × Rd)) of equation (2.3.2). Furthermore, there

exists a C = C(T, ∥b∥∞) > 0, such that

sup
t∈[0,T ]

∥m(t)∥2+∥D3m∥L2([0,T ]×Rd×Rd)+∥D
1/3
x m∥L2([0,T ]×Rd×Rd)+∥D

1/3
t m∥L2([0,T ]×Rd×Rd) ≤ C∥(1+|3|2)m0∥2

and a C0 = C0(∥b∥∞,T, ∥m0∥2, ∥m0∥∞) > 0, so that

∥m∥∞ ≤ C0.
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Moreover, m(t) is a probability density for all t ∈ (0,T ]. Finally, if (T − t)div3(b) ∈ L2([0,T ] ×

Rd × Rd), it follows that

[mt − 3 · Dxm], (T − t)∆3m ∈ L2([0,T ] × Rd × Rd).

The main two assertions in the theorem above are, firstly, the fractional gradient estimates and,

secondly, the L∞−bounds. The gradient estimates are the result of Theorem 18, in the appendix.

The L∞−bounds can be obtained with a De Giorgi type argument similar to the one found for

example in F. Golse, C. Imbert, C. Mouhot and A. Vasseur in [211], thus we only provide the main

steps in Proposition 11 at the Appendix. For a survey on the De Giorgi type arguments we refer to

Mouhot [315]. First a proposition.

Proposition 1. Assume that m ∈ L2([0,T ] × Rd × Rd), b ∈ L∞ ∩ L2([0,T ] × Rd × Rd) and

m0, which satisfies 2.2, satisfy equation (2.3.2) in the distributional sense. Then, |3|2m, |3|2D3m ∈

L2([0,T ] × Rd × Rd).

Proof. We may assume that the data are smooth and bounded and obtain the general case by

approximation. We test the equation with |3|4m (see Lemma (1), on how we may justify this) to

obtain
d
dt

∫
Rd×Rd

|3|4|m|2dxd3 +
∫
Rd×Rd

|3|4|D3m|2dxd3

= −4
∫
Rd×Rd

m|3|23 · D3mdxd3 − 4
∫
Rd×Rd

|m|2|3|23 · bdxd3 −
∫
Rd×Rd

m|3|4D3m · bdxd3

≤
1
4

∫
Rd×Rd

|3|4|D3m|2dxd3 +C
∫
Rd×Rd

|m|2(1 + |3|4)dxd3

+4∥b∥∞

∫
Rd×Rd

|m|2(1 + |3|4)dxd3 +
∫
Rd×Rd

|m|2|3|4dxd3 +
1
4

∫
Rd×Rd

|D3m|2|3|4dxd3.

It is easy to see that sup
t∈[0,T ]

∥m(t)∥2 ≤ C∥m0∥2, therefore the result follows by Grönwall since,

d
dt

∫
Rd×Rd

|m|2|3|4dxd3 ≤ C
∫
Rd×Rd

|m|2|3|4dxd3 +C∥m0∥
2
2.
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□

Proof. (Theorem 4) Proposition 1, together with Theorem 18, gives us the result. □

2.3.3 Existence of Solutions via the fixed point argument

In this section we show the main theorem.

Theorem 5. Let G,H, F and m0 satisfy 2.2,2.2,2.2 and 2.2. Then, there exists a unique solution to

system (2.1.1), according to definition (1).

Proof. As mentioned in the introduction, we apply Schauder in the following setting. Let C0 > 0

be the constant from Theorem 4 and consider the closed convex subset X := C([0,T ]; L2(Rd ×

Rd))∩{m : ∥m∥∞ ≤ L} of C([0,T ]; L2(Rd×Rd)+), where L > 0, such that 1
C0

max{∥m0∥∞, ∥m0∥2} ≤

L. For µ ∈ X, let uµ be the solution of


−∂tuµ − ∆3uµ − 3 · Dxuµ + H(D3uµ) = F(t, x, 3, µ(t, x, 3)) in (0,T ) × Rd × Rd,

uµ(T, x, 3) = G(µ(T, x, 3)) in Rd × Rd,

provided by Theorem 3. For this uµ, we then solve

∂tm − ∆3m − 3 · Dxm − div3(mHp(D3u)) = 0, m(0) = m0.

We set Φ(µ) = m which due to the choice of L and the bounds on m implies that m ∈ X. It

remains to show that the map is continuous and compact in order to apply Schauder’s Fixed Point

Theorem. Continuity is straightforward to check with our given assumptions and will be omitted.

For compactness, we proceed as follows. Due to the domain being unbounded we first show that

lim
N→∞

sup
µ∈X
∥Φ(µ)1B(0,N)c∥2 = 0, where B(0,N) := {(t, x, 3) ∈ [0,T ] × Rd × Rd : |(x, 3)| ≤ N}. This
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follows directly by the same argument as in Lemma 1. Furthermore, from Theorem 4, we have

∥m∥2 + ∥D
s
t,x,3m∥2 ≤ C∥m0∥2 for some s > 0.

Thus, by Kolmogorov–M. Riesz–Fréchet (see for example Brezis [61], Theorem 4.26 and Corol-

lary 4.27) we have compactness of the map. Uniqueness follows from the by-now classical Lasry-

Lions monotonicity argument, which we omit. □

We conclude this section with some crucial estimates, which follow directly from the by-now clas-

sical Lasry-Lions argument under assumptions 2.2 and 2.2, so we omit the proof. The computations

can be found for example in [325].

Proposition 2. Assume that H : Rd → R, F : [0,T ] × Rd × Rd × R → R, m0 : Rd × Rd → R

and G : Rd × Rd × R → R satisfy 2.2,2.2,2.2 and 2.2. Let (u,m) be the weak solution of the MFG

system provided by Theorem 1. Then, there exists a constant C = C(∥m0∥1, ∥m0∥∞,T ), such that

∫
Rd×Rd

G(x, 3,m(T ))dxd3 +
∫ T

0

∫
Rd×Rd

F(x, v, t,m)mdxd3ds

+

∫ T

0

∫
Rd×Rd

m
[
Hp(D3u) · D3u − H(D3u)

]
dxd3 ≤ C.

(2.3.3)

Furthermore, we have the following L1 estimates

sup
t∈[0,T ]

∥u(t)∥1 + ∥F(·,m)∥1 + ∥F(·,m)m∥1 + ∥G(·,m(T ))∥1 + ∥G(·,m(T ))m(T )∥1

+∥H(D3u)∥1 + ∥m|Hp(D3u)|2∥1 ≤ C.
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2.3.4 Further Regularity of Solutions to the Mean Field Games System, for

Lipschitz Hamiltonian

In this section we study the gain of regularity for solutions to the MFG system (2.1.1). In particular,

we derive appropriate energy estimates by taking advantage of the coupling.

Theorem 6. Let F,G satisfy 2.2,2.2 with constant c0, H,m0 satisfy 2.2,2.2 and (u,m) be a weak so-

lution to system (1), according to Definition (1). Then, there exists a constant C = C(c0, F,G,H,m0) >

0, such that

sup
t∈[0,T ]

∥m(t)∥2 + sup
t∈[0,T ]

∥Dm(t)∥2 + ∥D
2
3,3m∥2 + ∥D3Dxm∥2 ≤ C

and

sup
t∈[0,T ]

∥u(t)∥2 + sup
t∈[0,T ]

∥Du(t)∥2 + ∥D
2
3,3u∥2 + ∥D3Dxu∥2 ≤ C.

Proof. For i ∈ {1, · · · , d} and h ∈ R \ {0}, we denote

δh(u)(t, x, 3) :=
u(t, x + hei, 3) − u(t, x, 3)

h
, δh(m)(t, x, 3) :=

m(t, x + hei, 3) − m(t, x, 3)
h

mh := m(t, x + hei, 3),m
0 := m(t, x + hei, 3),D3u

h := D3u(t, x + hei, 3),D3u
0 := D3u(t, x, 3)

Hh := H(D3u(t, x + hei, 3)),H
0 := H(D3u(t, x, 3)),

Fh := F(t, x, 3,m(t, x + hei, 3)), F
0 := F(t, x, 3,m(t, x, 3)),

δx,hF :=
F(t, x + hei, 3,m(t, x + hei, 3)) − F(t, x, 3,m(t, x + hei, 3))

h
,

δx,hG :=
G(x + hei, 3,m(T, x + hei, 3)) −G(x, 3,m(T, x + hei, 3))

h
.

The equations for δhu, δhm read as follows,


−∂tδ

hu − ∆3δhu + 3 · Dxδ
hu + Hh−H0

h = Fh−F0

h + δx,hF,

δhu(T ) = Gh−G0

h + δx,hG.
(2.3.4)

23




∂tδ

hm − ∆3δhm − 3 · Dxδ
hm − div3(

mhHh
p−m0H0

p
h ) = 0,

δhm(0) = δhm0

(2.3.5)

Testing against δhu in (2.3.5), yields

[ ∫
Rd×Rd

Gh −G0

h
δhm(T )dxd3

]
1
+

[ ∫ T

0

∫
Rd×Rd

δhm[
Fh − F0

h
]dxd3dt

]
2

+

[ ∫ T

0

∫
Rd×Rd

−δhm
Hh − H0

h
dxd3dt +

∫ T

0

∫
Rd×Rd

D3δhu
mhHh

p − m0H0
p

h

]
3

= −

∫ T

0

∫
Rd×Rd

δx,hFδhmdxd3dt +
∫
Rd×Rd

δhm0δ
hu(0)dxd3 −

∫
Rd×Rd

δx,hGδmh(T )dxd3

In the following, we refer to the terms based on the enumeration of the brackets. For the first

bracketed term using the monotonicity of G we have

∫
Rd×Rd

Gh −G0

h
δhm(T )dxd3 =

∫
Rd×Rd

∫ 1

0
G′(m0(T ) + s(mh − m0)(T ))ds|δhm|2(T )dxd3 ≥ c0

∫
Rd×Rd

|δhm|2(T )dxd3,

while for the second term again using the monotonicity of F

∫ T

0

∫
Rd×Rd

δhm
Fh − F0

h
dxd3dt =

∫ T

0

∫
Rd×Rd

|δhm|2(t)
∫ 1

0
F′(m0(t) + s(mh − m0)(t))dsdxd3dt

≥ c0

∫ T

0

∫
Rd×Rd

|δhm|2(t)dxd3dt.

We may rewrite the third term as in the proof of uniqueness to see that it is non-negative by the

convexity of H, indeed it can be written as

∫ T

0

∫
Rd×Rd

mh

h2

[
H(D3u) − H(D3uh) − Hp(D3uh)D3(u − uh)

]
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+
m
h2

[
H(D3uh) − H(D3u) − Hp(D3u)D3(uh − u)

]
dxd3dt ≥ 0.

Continuing, for the right hand side we estimate as follows

δx,hF =
∫ 1

0
∂xi F(t, x + shei, 3,m(t, x + hei, 3))hds,

hence,

∥δx,hF∥2 ≤ C∥m∥2,

and similarly for δx,hG. Thus,

−

∫ T

0

∫
Rd×Rd

δx,hFδhmdxd3dt +
∫
Rd×Rd

δhm0δ
hu(0)dxd3 −

∫
Rd×Rd

δx,hGδmh(T )dxd3

≤
c0
2

∫ T

0

∫
Rd×Rd

|δmh|2dxd3dt +
c0
2
∥δmh(T )∥2 +C sup

t∈[0,T ]
∥m(t)∥22 + ∥δ

hm0∥2∥δ
hu(0)∥2.

Gathering everything together we obtain

∥δhm(T )∥22 + ∥δ
hm∥22 ≤ C∥δhm0∥2∥δ

hu(0)∥2. (2.3.6)

We now turn to (2.3.4). Test, against δhu to obtain

sup
t∈[0,T ]

∥δhu(t)∥2 + ∥D3δ
hu∥2 ≤ C(∥δhm(T )∥2 + ∥δ

hm∥2)

and using this estimate in (2.3.6) provides

∥δhm(T )∥2 + ∥δ
hm∥2 ≤ C = C(inf F′, inf G′,T,LipH ,LipF ,LipG, ∥Dxm0∥2).
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Testing against δhm in (2.3.5) yields

sup
t∈[0,T ]

∥δhm(t)∥2 + ∥D3δ
hm∥2 ≤ C(∥δhm0∥2 + ∥D3δ

hu∥2) ≤ C.

Since the bounds are independent of h, we have shown that

sup
t∈[0,T ]

∥Dxm(t)∥2 + sup
t∈[0,T ]

∥Dxu(t)∥2 + ∥D3Dxu∥2 + ∥D3Dxm∥2 ≤ C.

Now, using these bounds, we repeat the process for the derivatives with respect to 3. We use

completely symmetric notation as in the above case, for example δh
3u := u(t,x,3+hei)−u(t,x,3)

h . The

equations satisfied by δh
3u, δ

h
3m are similar with the exception of the 3 · Dx term. They read


−∂tδ

h
3u − ∆3δ

h
3u + e3,iDxuh + 3 · Dxδ

h
3u +

Hh−H0

h = Fh−F0

h + δ3,hF,

uh(T ) = Gh−G0

h + δ3,hG

and 
∂tδ

h
3m − ∆3δ

h
3m − e3,iDxmh − 3 · Dxδ

h
3m − div3(mh Hh

p−H0
p

h + δhmH0
p) = 0,

δh
3m

0 = δh
3m0.

The argument is completely symmetrical with the only difference being the presence of Dxuh,Dxmh.

However, these terms are bounded from the previous case. We thus obtain bounds of the form

sup
t∈[0,T ]

∥D3m(t)∥2 + sup
t∈[0,T ]

∥D3u(t)∥2 + ∥D
2
3,3u∥2 + ∥D

2
3,3m∥2 ≤ C.

□
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2.4 Quadratic Hamiltonian

In this section we will show existence and uniqueness for renormalized solutions to the MFG

system. All the ideas and proofs in this section are entirely motivated or even parallel to the

original work in [325].

To motivate some of the technical steps we outline the strategy. The plan is to approximate a given

Hamiltonian H with quadratic growth by a sequence of Lipschitz Hamiltonians Hϵ(see bellow for

definition), for which we have shown the existence of solutions (uϵ ,mϵ) in the previous section

and show that these solutions converge to a renormalized solution. A crucial structural estimate,

as pointed out in [325], is that sup
ϵ
∥mϵ |Hϵ

p(D3uϵ)|2∥1 < ∞, which is shown in Proposition 2. This

estimate, along with L2−bounds on D3uϵ , allows us to conclude the convergence (up to a subse-

quence) to a renormalized solution of {mϵ}ϵ . The bounds for the HJ equation are straightforward

and mostly follow the classical techniques of the non-degenerate case, with the exception of the

L1−compactness for the uϵ which is due to Theorem 10 in [151] and the technical Lemma in the

Appendix.

In the rest of the chapter we consider a fixed Hamiltonian H that satisfies 2.2. Furthermore, fol-

lowing [325], we consider the following Lipschitz approximations

Hϵ(p) :=
H(p)

1 + ϵH
1
2 (p)

for ϵ > 0. (2.4.1)

The following are shown in [325]

Proposition 3. The functions Hϵ are Lipschitz in p and satisfy

Hϵ
p · p − Hϵ(p) ≥ cHϵ(p), |Hϵ

p|
2 ≤ CHϵ ,

for some constants c > 0,C > 0 independent of ϵ.
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2.4.1 Analysis of Degenerate Fokker-Planck equation

In this subsection, we study the following Fokker-Planck equation


∂tm − ∆3m − 3 · Dxm − div3(mb) = 0 in (0,T ) × Rd × Rd,

m(0, x, 3) = m0(x, 3) in Rd × Rd,

(2.4.2)

Our approach is a parallel of the techniques from [55] in the Hypoelliptic case.

Definition 5. We say that m is a weak solution of (2.4.2), if m ∈ L1 ∩ L∞([0,T ] × Rd × Rd), with

D3m ∈ L2([0,T ] ×Rd ×Rd), m0 satisfies 2.2, m|b|2 ∈ L1([0,T ] ×Rd ×Rd), and (2.4.2) is satisfied

in the distributional sense.

Lemma 1. Let (m, b,m0) be a weak solution of (2.4.2) according to definition 5. Then, there exists

a constant C = C(d,T, ∥m|b|2∥1, ∥(1 + |x|2 + |3|2)m0∥1), such that for all t ∈ [0,T ]

∫
Rd×Rd

(|x|2 + |3|2 + 1)m(t, x, 3)dxd3 ≤ C.

Proof. Formally the result follows immediately by testing against (|x|2+|3|2) and applying standard

methods. However, this needs to be justified given that (|x|2+|3|2) is unbounded. This requires some

technical steps which we present in detail, hence the lengthy computations. First assume that b,m0

are smooth and compactly supported. For R > 0 consider a bump function ψR : Rd × Rd → [0, 1],

such that ψR

∣∣∣∣B(0,R)
≡ 1 and spt(ψR) ⊂ B(0,R+1). Fix a t0 ∈ [0,T ] and let ϕR : [0, t0]×Rd×Rd → R

be the smooth solution of the adjoint equation (see for example E. Priola [330], Theorem 5.3)


−∂tϕR − ∆3ϕR + 3 · DxϕR + b · D3ϕR = 0 on [0, t0) × Rd × Rd,

ϕR(t0, x, 3) = (|x|2 + |3|2)ψR(x, 3) on Rd × Rd.

(2.4.3)

A priori, ϕR is bounded by a constant depending only on R, b,T . We claim that there exists a
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constant C > 0 independent of R > 0, such that

ϕR(t, x, 3) ≤ C(1 + |x|2 + |3|2) for all (t, x, 3) ∈ [0, t0] × Rd × Rd.

Indeed, for A, B > 0 large enough to be determined later, let w(t, x, 3) = Ce−At(1 + |x|2 + |3|2) −

B(t − t0), which satisfies

−∂tw − ∆3w + 3 · Dxw + b · D3w = Ce−At(A(1 + |x|2 + |3|2) − 2d + 23 · x + b · 3) + B

≥ (B − 2dCe−At − ∥b∥2∞) +Ce−At(A −
3
2

)(|x|2 + |3|2) ≥ 1,

if A, B > 0 are large enough. In particular let A = 2 and for any choice of C > 0 we set B =

1 + 2dCe−2t − ∥b∥2∞, so that the above inequality is satisfied. Furthermore, at t = t0 we have that

w(t0, x, 3) = Ce−2t0(|x|2 + |3|2) ≥ (|x|2 + |3|2)ψR(x, 3) = ϕR(t0, x, 3) for all (x, 3) ∈ Rd × Rd,

if say C > e2t0 , in particular however C can be chosen independent of R > 0. Finally, for each

R > 0 fixed, the function

E(t, x, 3) = w − ϕR

is coercive in (x, 3), that is for each fixed t ∈ [0, t0],

lim
|(x,3)|→∞

E(t, x, 3) = ∞.

Thus by classical arguments we find that the minimum of E is achieved at t = t0, which shows the

claim. To conclude the proof of the Lemma, we test against ϕR in equation (2.4.2), which yields

∫
Rd×Rd

m(t0)(|x|2 + |3|2)ψR(x, 3)dxd3 =
∫
Rd×Rd

ϕR(0, x, 3)m0(x, 3)dxd3
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≤ C
∫
Rd×Rd

m0(|x|2 + |3|2 + 1)dxd3 = C∥m0(1 + |x|2 + |3|2)∥1.

With the above bounds we may now test equation (2.4.2) against (1 + |x|2 + |y|2), which yields

∂t

∫
Rd×Rd

(1 + |x|2 + |3|2)m(t)dxd3 =
∫
Rd×Rd

2dm(t) − 2x · 3m(t) + 2m(t)3 · bdxd3

≤ 2dm(t)+
∫

(1+|x|2+|3|2)m(t)+m|3|2+m|b|2dxd3 ≤ (2d+2)
∫
Rd×Rd

(1+|x|2+|3|2)m(t)dxd3+∥m|b|2∥1,

and so by Grönwall we obtain that for some constant C = C(d,T, ∥m|b|2∥1, ∥(1+|x|2+|3|2)m0∥1) > 0

∥(|x|2 + |3|2 + 1)m0∥1 ≤ C.

The general case follows by approximation with smooth data. □

In the following Proposition we will need the following estimate, which may be found in in Folland

[195].

Proposition 4. [[195], Theorem 5.14] Let Γ denote the fundamental solution of the operator ∂t −

∆3 − 3 · Dx in the space Rd × Rd. Assume that p, q ∈ (1,∞) are such that

1
p
=

1
q
−

1
Q + 2

,

where Q = d + 2. For a function f ∈ Lq we define

g(t, x, 3) :=
∫ T

0

∫
Rd×Rd

D3Γ(t − s, x, 3, y,w) f (s,w, y)dydwds.

Then, there exists a constant C = C(p, q, d) such that

∥g∥p ≤ C∥ f ∥q.

30



Proposition 5. Let (m, b,m0) be a weak solution of (2.4.2), according to definition 5. Then, there

exists a dimensional constant C = C(d) > 0 and a constant C0 = C0(m0) > 0, such that

∥m|b|2∥d+4
d+3
+ ∥m∥d+4

d+2
≤ C∥m|b|2∥1 +C0.

Proof. Let Γ denote the fundamental solution of the operator ∂t − ∆3 − 3 · Dx. From the equation

satisfied by m we obtain

m(x, 3, t) = −
∫ t

0

∫
Rd×Rd

D3Γ(t − s, x, 3, y,w)mb(s,w, y)dydwds +C(m0)(t, x, 3)

where

C(m0)(t, x, 3) =
∫
Rd×Rd

Γ(t, x, 3, y,w)m0(y,w)dydw.

From Proposition (4) above, we have that

∥m∥p ≤ C∥mb∥q

where
1
p
=

1
q
−

1
Q + 2

,

and Q = d + 2. Moreover, by Hölder

∫ T

0

∫
Rd×Rd

|m|q|b|qdxd3dt

≤
( ∫ T

0

∫
Rd×Rd

|m|
q

2−q dxd3dt
)2−q

2
( ∫ T

0

∫
Rd×Rd

m|b|2dxd3
)q

2 = C∥m∥
q
2

q
2−q
.

Hence, we can have a gain of integrability if we require that

p =
q

2 − q
⇐⇒

2 − q
q
=

1
q
−

1
Q + 2

⇐⇒
1
q
− 1 = −

1
Q + 2

⇐⇒
1
q
=

Q + 1
Q + 2

,
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therefore

q =
Q + 2
Q + 1

and p =
Q + 2

2Q + 2 − Q − 2
=

Q + 2
Q

.

□

Proposition 6. Let (m, b,m0) be a weak solution of (2.4.2) according to Definition 5, with b ∈

L2([0,T ] × Rd × Rd;Rd). Then, there exists a constant C(∥m0 log(m0)∥1, ∥m|b|2∥1) > 0 such that

sup
t∈[0,T ]

∥m(t) log(m(t))∥1 + ∥D3(
√

m)∥2 ≤ C.

Proof. For δ > 0, define w(x) = log(x + δ) and W(x) = (x + δ) log(x + δ) − δ log(δ). Test against

w(m) in (2.4.2) (m ∈ L∞ ∩ L1 and so w(m) ∈ L∞,W(m) ∈ L1) to obtain that for each t ∈ [0,T ]

∫
Rd×Rd

W(m(t))dxd3 +
∫ t

0

∫
Rd×Rd

|D3m|2

(m + δ)
dxd3ds = −

∫ t

0

∫
Rd×Rd

m
m + δ

D3m · bdxd3dt

+

∫
Rd×Rd

W(m0)dxd3

≤
1
2

∫ T

0

∫
Rd×Rd

|D3m|2

(m + δ)
dxd3dt +

1
2
∥m|b|2∥1 +

∫
Rd×Rd

W(m0)dxd3.

Letting δ→ 0 yields

∫
m(t) log(m(t))dxd3 +

∫ T

0

∫
Rd×Rd

|D3m|2

m
dx3ds ≤ C(∥m|b|2∥1 + ∥m0 log(m0)∥1)

where C > 0 is a universal constant. It remains to show that m(t) log(m(t) ∈ L1. This is shown for

example in [151], under the conditions

1. ∥m(t)(1 + |x|2 + |3|2)∥1 < ∞

2.
∫
Rd×Rd m(t) log(m(t)) < ∞.

Condition 1 follows from Lemma 1, while condition 2 is shown above. □
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We now proceed with gradient estimates for the measure.

Theorem 7. Let (m, b,m0) be a weak solution of (2.4.2) according to Definition 5. Then, there

exist s ∈ (0, 1) and q ∈ (1,∞), such that

∥Dsm∥q ≤ C,

where C depends only on m0, d,T, ∥m|b|2∥1 and in particular not on ∥D3m∥2.

Proof. The constant C > 0 that appears in this proof is subject to change from line to line and

depends only on m0, d,T . The technique that follows is the same as in [55]. In the original

equation (2.4.2) we test against ϕ(m) for ϕ(s) = s for s ∈ [0, 1] and ϕ(s) = 1, s ≥ 1, ϕ(s) = 0, s ≤ 0.

This yields ∫
Rd×Rd

Φ(m(t))dxd3 +
∫ T

0

∫
Rd×Rd

ϕ′(m)|D3m|2 =

−

∫ T

0

∫
Rd×Rd

ϕ′(m)D3mHpmdxd3dt +
∫
Rd×Rd

Φ(m0)dxd3

≤
1
2

∫ T

0

∫
Rd×Rd

ϕ′(m)|D3m|2dxd3 +
∫
|m|≤1

|m|2|b|2dxd3 +C(m0).

Since |m|2 ≤ |m| on |m| ≤ 1, we obtain

∫
{|m|≤1}

|D3m|2dxd3 ≤ C.

For k ∈ N we define ϕk by

ϕk(s) :=



0, s ≤ k − 1,

s − (k − 1), s ≤ k,

1, s ≥ 1,

(2.4.4)
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and Φk(t) :=
∫ T
0 ϕk(s)ds. Testing against ϕk(m) in the equation yields

∫ T

0

∫
Rd×Rd

Φk(m(T )) +
∫ T

0

∫
Rd×Rd

ϕ′k(m)|D3m|2dxd3dt

= −

∫ T

0

∫
Rd×Rd

ϕ′kD3mbmdxd3dt +
∫
Rd×Rd

Φk(m0)dxd3.

(2.4.5)

Additionally ∫
Rd×Rd

Φk(m0)dxd3 ≤ ∥m0∥2 + ∥m0∥1 ≤ C

and

0 ≤
∫ T

0

∫
Rd×Rd

Φk(m(T )).

For Ak := {k − 1 ≤ |m| ≤ k}, k ∈ N, equation (2.4.5) yields

∫
Ak

|D3m|2dxd3dt ≤
1
2k

∫
Ak

m|D3m|2dxd3 +Ck
∫

Ak

m|b|2dxd3 +C, for all k ∈ N.

Moreover, ∫
Ak

m|D3m|2dxd3dt ≤ k
∫

Ak

|D3m|2dxd3dt

hence, by summing for k = 2, · · · , for λ > 1, we obtain

∫
|m|≥1

|D3m|2

(1 + m)λ
dxd3dt ≤

∞∑
k=1

k
(1 + k)λ

∫
Ak

m|b|2dxd3dt +
C
kλ

< ∞.

Thus, ∫
m>1
|D3m|qdxd3 ≤

[ ∫
m>1

|D3m|2

(1 + m)λ
]q/2[ ∫

m>1
(1 + m)

λq
2−q dxd3

]2−q
2 .

Next, using that

(a + b)λ ≤ 2λ max{aλ, bλ} ≤ C(aλ + bλ)

and

|{|m| > 1}| ≤ ∥m∥1 = 1,
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we obtain

∫
|m|>1

(1 + m)
λq

2−q dxd3 ≤ C
(
|{m > 1}|

λq
2−q +

∫
Rd×Rd

|m|
λq

2−q dxd3
)
≤ C(1 +

∫
Rd×Rd

|m|
λq

2−q dxd3).

Hence, ∫
m>1
|D3m|qdxd3 ≤

[ ∫
m>1

|D3m|2

(1 + m)λ
]q/2(

1 +
∫
Rd×Rd

|m|
λq

2−q dxd3
) 2−q

2 . (2.4.6)

Integrate in time inequality (2.4.6), and apply Hölders inequality for 2
q ,

2
2−q , to obtain for some

C = C(T, λ, q, ∥ D3m

(1+m)
λ
2

1m≤1∥2) > 0

∫
m>1
∥D3m(t)∥qqdxd3dt ≤

( ∫
m>1

|D3m|2

(1 + m)λ
dxd3dt

)q
2
(
1 +

∫ T

0
∥m(t)∥

λq
2−q
λq

2−q dt
dt

) 2−q
q

≤ C(1 +
( ∫ T

0
∥m(t)∥

λq
2−q
λq

2−q

dt
) 2−q

2 )

The Fractional Gagliardo-Niremberg inequality gives us

∥m(t)∥σ ≤ C∥Dsm∥θq∥m(t)∥1−θρ ,

where
1
σ
= θ(

1
q
−

s
n

) +
1 − θ
ρ

, (2.4.7)

and C = C(s, q, n, θ, ρ) > 0, we refer for example to [62]. We can easily obtain the following time

dependent version,

∫ T

0
∥m(t)∥σσdt ≤ C sup

t
∥m(t)∥σ(1−θ)

1

∫ T

0
∥Dsm∥θσq dt ≤ C

∫ T

0
∥Dsm∥θσq dt.

Set

θ =
q
σ
, ρ = 1, σ =

λq
2 − q

,
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which implies that
1
σ
=

q
σ

(
1
q
−

s
n

) + 1 −
q
σ
=

1
σ
−

qs
σn
+ 1 −

q
σ

thus,
qs
σn
= 1 −

q
σ
=⇒ σ =

qs
n
+ q =⇒ σ = q(

s
n
+ 1)

and so

q(
s
n
+ 1) =

λq
2 − q

=⇒ λ = (2 − q)(1 +
s
n

)

which is a valid choice as long as

(2 − q)(1 +
s
n

) > 1 =⇒ q < 2 −
n

n + s

thus our restrictions on q is that

1 < q < 2 −
n

n + s
.

Continuing with the above analysis for the above choices of parameters we obtain

∫
m>1
∥D3m(t)∥qqdxd3dt ≤ C(1 +

( ∫ T

0
∥m(t)∥σσdt

)2−q
2 ) ≤ C

(
1 +

∫ T

0
∥Dsm∥qqdt

)2−q
2 .

Therefore for some α ∈ (0, 1)

∥D3m∥q ≤ C(∥D3m1m≤1∥q + ∥D3m1m>1∥q)

≤ C(1 + ∥D3m∥α1∥D3m1m≤1∥
1−α
2 + ∥Dsm∥

2−q
2

q ),

and by using the estimate from Proposition 6, we obtain

∥D3m∥1 = ∥
√

mD3
√

m∥1 ≤ ∥D3
√

m∥2,
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therefore

∥D3m∥q ≤ C(1 + ∥Dsm∥
2−q

2
q ).

By Theorem 19, we have that

∥Ds
xm∥q ≤ C(1 + ∥D3m∥q + ∥m|b|2∥q + ∥m∥q)

≤ C(1 + ∥Dsm∥
2−q

2
q )

Thus by choosing q so that ∥m|b|2∥q + ∥m∥q ≤ C from Proposition 5, the result follows.

□

Theorem 8. Let {(mn, bn,m0)}n∈N be a sequence of weak solutions to (2.4.2) according to defini-

tion 5, such that

sup
n∈N

(
∥mn|bn|2∥1 + ∥b

n∥2
)
< ∞.

Then, the set {mn}n∈N is compact in L1([0,T ] × Rd × Rd).

Proof. From Proposition 7, we have that

∥mn∥r + ∥Dsmn∥q ≤ C for all n ∈ N and some r > 1, s ∈ (0, 1).

The result about the compactness in L1([0,T ] × L1(Rd × Rd)) now follows by the results in [338],

with a slight modification due to the unbounded domain. We sketch the argument. For R > 0,

let ϕR(x, 3) := ψR(x)ψR(3), where ψR are standard non-negative cutoff functions with support in

B(0,R) ⊂ Rd. The, equation satisfied by mR := mϕR, reads

∂tmR − ∆3mR − 3 · DxmR − div3(mRb) = D3ϕRmb − m∆3(ϕR) − 2D3ϕRD3m − m3 · Dxϕ
R.

Next for 1
p+

1
q = 1, we set X := W s,q(BRd×Rd (0,R)), B := Lq(BRd×Rd (0,R)) and Y := W−1,p(BRd×Rd (0,R)).

Space X embeds compactly in B and B embeds continuously in Y . Since mR
n are bounded in
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Lq(0,T, X) and ∂tmR
n is bounded in Lq(0,T,Y) ⊂ L1((0,T ),Y). Therefore from Corollary 4 in

[338], for each fixed R > 0 the sequence mR
n is compact in Lq(0,T, B) = Lq(0,T, BRd×Rd (0,R)) ⊂

L1(0,T, BRd×Rd (0,R)). Combining the above with the estimate sup
n,t

∫
B(0,R)c mn(t, x, 3)dxd3 →

0 as R→ ∞, from Lemma 1, yields the strong convergence in L1([0,T ] × Rd × Rd). □

Proposition 7. Let {(mn, bn,m0)}n∈N be a sequence of weak solutions to (2.4.2) according to defi-

nition 5, such that

sup
n∈N

(
∥mn|bn|2∥1 + ∥b

n∥2
)
< ∞

and

bn → b almost everywhere, for some b ∈ L2([0,T ] × Rd × Rd).

Then, there exists a m ∈ L1([0,T ]×Rd ×Rd), such that up a subsequence mn → m,mnbn → mb in

L1([0,T ]×Rd ×Rd). Furthermore, the set {mn}n∈N is compact in C([0,T ];P1(Rd ×Rd)). Finally,

m is a distributional solution of (2.4.2).

Proof. From Theorem 8, there exists an m ∈ L1([0,T ]×Rd ×Rd) and a subsequence(still denoted

by {mn}n∈N) such that ∥mn − m∥1 → 0. Furthermore, from Lemma 1 we have that

lim sup
R→∞

sup
n∈N

∫ T

0

∫
Bc

R

|mn||bn|dxd3

≤ lim sup
R→∞

sup
n∈N

( ∫ T

0

∫
Bc

R

|mn|dxd3dt
)1

2
( ∫ T

0

∫
|mn||bn|2dxd3dt

)1
2 = 0.

The above combined with Proposition 5 yields that the sequence {mnbn}n∈N is uniformly inte-

grable, which together with the almost everywhere convergence gives us that the limit m is in fact

a distributional solution of (2.4.2).

Next, we show the claim about the compactness in C([0,T ];P1(Rd × Rd)). From Lemma 1 the

set {mn(t)}n∈N is compact in P1(Rd × Rd) for each t ∈ [0,T ]. The result about compactness in

C([0,T ];P1(Rd × Rd)), will follow once we obtain Hölder time continuity. However this follows

by typical arguments such as the one found in the notes of Cardaliaguet [73]. □
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Theorem 9. Let {(mn, bn,m0)}n∈N be a sequence of weak solutions to (2.4.2) according to defi-

nition 5. Assume furthermore that sup
n
∥bn∥2 < ∞, and that the assumptions of Proposition 7 are

satisfied. Then, the limit m provided by Proposition 7 is a renormalized solution according to

Definition 2.

Proof. Let S : R → R, such that S ∈ W1,∞(R) and that S ′ has compact support. Then, for each

n ∈ N we have

∂tS (mn)−∆3S (mn)− 3 ·DxS (mn)−div3(S ′(mn)mnbn)+S ′′(mn)D3mnmnbn+S ′′(mn)|D3mn|2 = 0.

(2.4.8)

Since {mn|bn|2}n∈N is uniformly bounded in L1([0,T ] × Rd × Rd), we obtain that

lim
k→∞

sup
n∈N

1
k

∫
k<mn<2k

|D3mn|2dxd3ds = 0,

just as in Theorem 6.1 of [325]. It remains to show that for a fixed k ∈ N, we have the following

convergence D3(mn ∧ k) → D3(m ∧ k) strongly in L2. To show the strong convergence of the

truncations, it is enough to show that

∥D3 log(1 + mn) − D3 log(1 + m)∥L2([0,T ]×Rd×Rd) → 0.

The argument that follows is entirely due to DiPerna-Lions in [151]. We only present some of

the main estimates since we have a slightly different setup. We look at gn = log(1 + mn) and

the corresponding equation they satisfy. From Proposition 6 we have that sup
n∈N
∥D3gn∥2 < ∞ and

so without loss of generality we may assume that D3gn converges weakly in L2 to D3g, where

g = log(1 + m). Therefore, there exists a non-negative bounded measure µ (in the sense that∫ T
0

∫
Rd×Rd dµ < ∞) on (0,T ) × Rd × Rd such that

|D3gn|2 → |D3g|2 + µ
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in the distributional sense. It remains to show that µ is identically zero. First, for each n ∈ N we

let β = log(1 + t) and gn = β(mn). The functions gn satisfy

∂tgn − ∆3gn − 3 · Dxgn − div3(
mn

1 + mn bn) = |D3gn|2 +
mn

1 + mn bnD3gn

gn(0) = log(1 + m0).

Again, just as in [151], we set Φn
s,R(t) = exp(st ∧ R) and Ψn

s,R(t) :=
∫ T
0 Φ

n
s,R(θ)dθ, for some

0 < s < 1. Test the equation against Φn
s,R(gn)ϕ, where ϕ ∈ Cc((0,T )), which yields

−

∫ T

0

∫
Rd×Rd

Ψn
s,R(gn)ϕ′(t)dxd3dt

+

∫ T

0

∫
Rd×Rd

sϕ|D3gn|21gn≤RΦ
n
s,R(gn) + sΦn

s,R(gn)1gn≤RD3gn mn

1 + mn bndxd3dt

=

∫ T

0

∫
Rd×Rd

Φn
s,R(gn)ϕ|D3gn|2 + ϕΦn

s,R(gn)
mn

1 + mn bnD3gn,

or equivalently

−

∫ T

0

∫
Rd×Rd

Ψn
s,R(gn)ϕ′(t)dxd3dt =∫ T

0

∫
Rd×Rd

ϕΦn
s,R(gn)

[(
|D3gn|2 − s|D3gn|21gn≤R

)
+

mn · bn

1 + mn

(
D3gn − sD3gn1gn≤R

)]
dxd3dt

(2.4.9)

= (I) + (II).

Now we bound each term,

|(I)| ≤ ∥ϕ∥∞

∫ T

0

∫
Rd×Rd

(1 − s)
∫ T

0

∫
Rd×Rd

|D3gn|2Φn
s,R(gn)dxd3dt

+ exp(sR)
∫ T

0

∫
Rd×Rd

Φn
s,R(gn)|D3gn|21gn>R.
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Using the fact that

|Φn
s,R(gn)| ≤ (1 + mn)s,

we obtain

|D3gn|2Φn
s,R(gn) ≤

|D3mn|2

(1 + mn)2−s ≤
|D3mn|2

mn .

Furthermore,

Φn
s,R(gn)|D3gn|21gn>R ≤ exp(sR) exp(−R)

|D3mn|2

mn ,

where in the last inequality we used that

Φs,R(t) = exp(sR) for t > R, and
1

1 + mn 1gn>R ≤ exp(−R).

Thus, from Proposition 6, for some C = C(∥m0∥1, ∥m0 log(m0)∥1, ∥ log(1 + m0)∥1, sup
n

(∥bn∥2 +

∥mn|bn|2∥1)) we have the bound

|(I)| ≤
(
(1 − s)∥ϕ∥∞

+ exp(−(1 − s)R)
) ∫ T

0

∫
Rd×Rd

|D3mn|2

mn dxd3dt ≤ C
(
(1 − s)∥ϕ∥∞ + exp(−(1 − s)R)

)
,

where in the last inequality is due to Proposition 6. For the second term we work as follows

|(II)| ≤ (1 − s)
∫ T

0

∫
Rd×Rd

Φs,R(gn)
|mn||bn|

(1 + mn)
|D3gn|dxd3dt

+

∫ T

0

∫
Rd×Rd

Φs,R(gn)
|mn||bn|

(1 + mn)
|D3gn|1mn>Rdxd3dt.

For the first term above we use

Φs,R(gn)
|mn||bn|

(1 + mn)
|D3gn| ≤

|mn||bn|

(1 + mn)2−s |D3m
n| ≤ mn|bn|2 +

|D3mn|2

mn ,
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while for the second integral

Φs,R(gn)
|mn||bn|

(1 + mn)
|D3gn|1gn>R ≤ exp(−(1 − s)R)

(
mn|bn|2 +

|D3mn|2

mn

)
,

hence

|(II)| ≤ C
(
(1 − s) + exp(−(1 − s)R)

)
.

Thus passing to the limit in (2.4.9), we obtain

∣∣∣∣ ∫ T

0

∫
Rd×Rd

ϕ′(t)Ψs,R(g)dxd3dt
∣∣∣∣ ≤ C(1 + ∥ϕ∥∞)

(
(1 − s) + e−(1−s)R

)
. (2.4.10)

Now that we have obtained these bounds we obtain the result just as in [151], section III. The

only difference in the proof is the divergence term, which however causes no technical difficulties.

We provide the details next. For ϵ > 0 let ρϵ be a standard sequence of mollifiers. The equation

satisfied by gϵ := ρϵ ⋆ g where g solves

∂tg − ∆3g − 3 · Dxg − div3(
m

1 + m
b) = |D3g|2 + µ +

m
1 + m

bD3g

reads

∂tgϵ−∆3gϵ−3 ·Dxgϵ−div3(ρϵ⋆(
m

1 + m
b)) = ρϵ⋆ |D3g|2+ρϵ⋆(

m
1 + m

bD3g)+ρϵ⋆µ+rϵ . (2.4.11)

Testing against ϕΦs,R(gϵ) in (2.4.11) yields,

−

∫ T

0

∫
Rd×Rd

ϕ′(t)Ψs,R(gϵ)dxd3dt

≥

∫ T

0

∫
Rd×Rd

ϕ(t)
[
− |D3gϵ |2Φ′s,R(gϵ) + Φ′s,R(gϵ)D3gϵρϵ ⋆ (

m
1 + m

b) + ρϵ ⋆ |D3g|2Φs,R(gϵ)+

ρϵ ⋆ (
m

1 + m
bD3g)Φs,R(gϵ)

]
ϕ(t)Φs,R(gϵ)ρϵ ⋆ µdxd3dt − ∥rϵ∥1∥ϕ∥∞∥Φs,R(gϵ)∥∞.
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We let ϵ → 0 and using that Φs,R ≥ 1 obtain

−

∫ T

0

∫
Rd×Rd

ϕ′(t)Ψs,R(g)dxd3dt

≥

∫ T

0

∫
Rd×Rd

ϕ(t)
[
|D3g|2Φs,R(g) − |D3g|2Φ′s,R(g)

]
+ϕ(t)

[ m
1 + m

bD3gΦs,R(g) − Φ′s,R(g)D3g
m

m + 1
b
]
dxd3 +

∫ T

0

∫
Rd×Rd

ϕ(t)dµ

≥

∫ T

0

∫
Rd×Rd

(1 − s)ϕ(t)|D3g|2(g)1g≤R + ϕ(t)|D3g|21g>R

+

∫ T

0

∫
Rd×Rd

(1 − s)ϕ(t)
m

m + 1
bD3gΦs,R(g)1g≤R + ϕ(t)

m
m + 1

bD3gΦs,R(g)1g>R,

where in the last equality we used that Φs,R ≥ 1. Next we bound the terms in the RHS

∣∣∣∣ ∫ T

0

∫
Rd×Rd

(1 − s)ϕ(t)|D3g|2(g)1g≤R + ϕ(t)|D3g|21g>R

∣∣∣∣
≤ (1 − s)C∥ϕ∥∞∥D3

√
m∥2 + ∥ϕ∥∞e−R∥D3

√
m∥2,

while for the rest of the terms

∣∣∣∣ ∫ T

0

∫
Rd×Rd

(1 − s)ϕ(t)
m

m + 1
bD3gΦs,R(g)1g≤R + ϕ(t)

m
m + 1

bD3gΦs,R(g)1g>R

∣∣∣∣
≤ (1 − s)∥ϕ∥∞

(
∥m|b|2∥1 + ∥D3

√
m∥2

)
+ ∥ϕ∥∞e−R(1−s)

(
∥m|b|2∥1 + ∥D3

√
m∥2

)
.

Hence combining the estimates above with estimate (2.4.10), we obtain

∫
ϕdµ ≤ C((1 − s) + e−R(1−s))

letting R→ ∞ and then s ↑ 1 yields
∫
ϕdµ ≤ 0, for all ϕ ≥ 0 and since µ ≥ 0 it follows that µ ≡ 0.

Finally, we show that m ∈ C([0,T ]; L1(Rd ×Rd)). Let ρn be a standard sequence of mollifiers (see
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section 1 for definition) and mn := ρn ⋆ m. The functions mn satisfy

∂tmn − ∆3mn − 3 · Dxmn − div3(ρn ⋆ (mb)) = rn, mn(0) = ρn ⋆ m0, (2.4.12)

where rn = Kn ⋆ m and Kn is given by

Kn := n2d 3

n
Dxρ(

x
n
,
3

n
),

and so rn → 0 strongly in L1([0,T ] × Rd × Rd). From Lemma A.1 in [136], we have that mn ∈

C([0,T ]; L2(Rd × Rd)). For any S ∈ C∞c (R), the function S (mn) satisfies



∂tS (mn) − ∆3S (mn) − 3 · DxS (mn) − div3(S ′(mn)ρn ⋆ (mb)) = −S ′′(mn)|D3mn|
2

−S ′′(mn)D3mnρn ⋆ (mb) + S ′(mn)rn,

S (mn)(0) = S (ρn ⋆ m0).

For n, k ∈ N, we test against S (mn) − S (mk) in the equation satisfied by their difference which

yields for all t ∈ [0,T ]

∫
Rd×Rd

|S (mn) − S (mk)|2(t)dxd3 +
∫ t

0

∫
Rd×Rd

|D3(S (mn) − S (mk))|2dxd3dt

= −

∫ t

0

∫
Rd×Rd

D3(S (mn) − S (mk))
(
S ′(mn)ρn ⋆ (mb) − S ′(mk)ρk ⋆ (mb)

)
dxd3dt

1

−

∫ t

0

∫
Rd×Rd

(
S (mn) − S (mk)

)(
S ′′(mn)|D3mn|

2 − S ′′(mk)|D3mk|
2
)
dxd3dt

2

−

∫ t

0

∫
Rd×Rd

(
S (mn) − S (mk)

)(
S ′′(mn)D3mnρn ⋆ (mb) + S ′(mn)rn − S ′′(mk)D3mkρk ⋆ (mb)

3

+S ′(mk)rk
)
dxd3dt

3
+

∫
Rd×Rd

|S (mn) − S (mk)|2(0)dxd3
4
.
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As noted in [325] (Remark 3.9) we have that

|ρn ⋆ (mb)|2 ≤ [ρn ⋆ (m|b|2)]mn. (2.4.13)

For the first boxed term the following hold

D3(S (mn))→ D3S (m) strongly in L2([0,T ] × Rd × Rd) as n→ ∞,

while from (2.4.13), we obtain

|S ′(mn)ρn ⋆ (mb)|2 ≤ (S ′(mn))2mn[ρn ⋆ (m|b|2)] ≤ CS [ρn ⋆ (m|b|2)],

where CS := ∥(S ′(x))2x∥∞. Since [ρn ⋆ (m|b|2)] → m|b|2 strongly in L1([0,T ] × Rd × Rd) by

Dominated Convergence Theorem we obtain

S ′(mn)ρn ⋆ (mb)→ S ′(m)mb strongly in L2([0,T ] × Rd × Rd),

therefore the first term can be bounded by a functionω(n, k) such that lim
n,k

ω(n, k) = 0 independently

of t. For the second term we note that

S ′′(mn)|D3mn|
2 → S ′′(m)|D3m|2 strongly in L1([0,T ] × Rd × Rd),

while S (mn) → S (m) strongly in L1([0,T ] × Rd × Rd) with sup
n
∥S (mn)∥∞ < ∞ therefore it can

also be bounded like the first term. For the third term, from (2.4.13) we have

|S ′′(mn)D3mnρn ⋆ (mb)| ≤
1
2
|S ′′(mn)||D3mn|

2 + |S ′′(mn)mn|[ρn ⋆ (m|b|2)]

and since the right hand side of the above inequality converges strongly in L1 by Dominated Con-
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vergence we obtain that

S ′′(mn)D3mnρn ⋆ (mb)→ S ′′(m)D3m · mb strongly in L1([0,T ] × Rd × Rd),

while S ′(mn)rn converges strongly to 0 in L1([0,T ]×Rd×Rd) just as in step 3, section III of [151].

Finally the fourth term clearly vanishes as n, k → ∞. Thus taking the sup over t we obtain

lim
t,n,k

∫
Rd×Rd

|S (mn) − S (mk)|2(t)dxd3 = 0.

The above show that S (m) ∈ C([0,T ]; L2(Rd × Rd)) for all S ∈ C∞c (Rd × Rd) and so Tk(m) ∈

C([0,T ]; L2(Rd × Rd)) for all k ∈ N where Tk is the truncation at k. To conclude, since for all

R > 0

∥m(t) − m(s)∥L1(Rd×Rd) ≤ ∥m(t) − m(s)∥L1(BR) + ∥m(t) − m(s)∥L1(Bc
R)

and due to the bounds of Lemma 1, we obtain that for some C = C(R) > 0 and C1 = C1(m0, b) > 0

∥m(t) − m(s)∥L1(Rd×Rd) ≤ C(R)∥Tk(m(t)) − Tk(m(s))∥2 + 2 sup
θ∈[0,T ]

∥m(θ) − Tk(m(θ))∥1 +
C1

R2 .

Furthermore by Proposition 6,

∥m(θ) − Tk(m(θ))∥1 =
∫

m(θ)>k
|m|(θ)dxd3 ≤

A(∥m0 log(m0)∥1)
log(k)

,

where A > 0 is the constant provided by Proposition 6. Putting everything together we obtain

∥m(t) − m(s)∥1 ≤ CR∥Tk(m(t)) − Tk(m(s))∥2 +
A

log(k)
∥m0 log(m0)∥1 +

C1

R2 .

Thus given an ϵ > 0, first we fix an R > 0 such that C1
R2 ≤

ϵ
3 and a k ∈ N such that

A
log(k)

∥m0 log(m0)∥1 <
ϵ

3
,
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then we find a δ > 0 such that

|t − s| < δ =⇒ CR∥Tk(m(t)) − Tk(m(s))∥2 <
ϵ

3

and so m ∈ C([0,T ]; L1(Rd × Rd)). □

2.4.2 Analysis of the Hamilton-Jacobi-Bellman equation

In this section we will study the bounds for the HJB equation


−∂tu − ∆3u + 3 · Dxu + H(D3u) = f (t, x, 3) in (0,T ) × Rd × Rd,

u(T, x, 3) = g(x, 3) in Rd × Rd.

(2.4.14)

Definition 6. Let H : Rd → R be a convex Lipschitz function such that H ≥ 0, f ∈ L1∩L∞([0,T ]×

Rd × Rd), f ≥ 0, (|x|2 + |3|2) f ∈ L1([0,T ] × Rd × Rd) g ∈ L1 ∩ L∞(Rd × Rd), g ≥ 0, (|x|2 + |3|2)g ∈

L1(×Rd×Rd) and u ∈ C([0,T ]; L2(Rd×Rd))∩L1(Rd×Rd) with D3u ∈ L2([0,T ]×Rd×Rd), u ≥ 0.

We say that (u,H, f , g) is a weak solution of (2.4.14), if the equation is satisfied in the distributional

sense.

Our starting point is the following compactness theorem found in the Appendix of [151].

Theorem 10 (Appendix of P.-L. Lions, DiPerna [151]). Assume that un, f n ∈ L1([0,T ] × Rd ×

Rd), gn ∈ L1(Rd × Rd) satisfy in the distributional sense

∂tun − ∆3un + 3 · Dxun = fn, un(0) = gn.

If gn, fn are uniformly bounded in L1 with

lim
R→∞

sup
n∈N

∫ T

0

∫
|(x,3)|≥R

| f n|dxd3dt = 0 (2.4.15)
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and

lim
R→∞

sup
n∈N

∫
|(x,3)|≥R

|gn
0|dxd3 = 0, (2.4.16)

then the sequence {un}n∈N is compact in L1((0,T ) × Rd × Rd).

Theorem 11. Let f n ∈ L1([0,T ]×Rd×Rd), gn ∈ L1(Rd×Rd) be non-negative, uniformly integrable

sequences and Hn : Rd → R Lipschitz convex Hamiltonians. Assume that {(un,Hn, f n, gn)}n∈N

are weak solution to (2.4.14) according to definition 6. Then, the sequence {un} is compact in

L1((0,T ) × Rd × Rd) and

sup
n∈N

(
sup

t∈[0,T ]
∥un(t)∥1 + ∥H

n(D3un)∥1
)
< ∞,

lim
R→∞

sup
n

(
sup

t∈[0,T ]

∫
B(0,R)c

|un|(t)dxd3 +
∫

B(0,R)c
Hn(D3un)dxd3dt

)
= 0.

Proof. By the same arguments as in Lemma 1, we can justify testing against 1 in the HJB equation

to obtain the uniform L1 estimates on un,Hn(D3un). To show compactness in L1 we work as

follows. Let L := −∂t − ∆3 + 3 · Dx and since Hn ≥ 0, f n ≥ 0, gn ≥ 0 the functions un are

non-negative and satisfy

Lun ≤ f n in (0,T ) × Rd × Rd, un(T ) = gn in Rd × Rd.

For each n ∈ N, let wn be the solution of

Lwn = f n in (0,T ) × Rd × Rd, wn(T ) = gn in Rd × Rd.

Since L(wn − un) ≥ 0 and wn(T ) = un(T ) we have that

0 ≤ un ≤ wn. (2.4.17)
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Since f n, gn are uniformly integrable, by Theorem 10 the set {wn}n∈N is compact in L1 and so in

particular uniformly integrable and from (2.4.17) we see that {un}n∈N are also uniformly integrable.

For R > 0, let ϕR : Rd×Rd → [0, 1] be cutoff functions defined just as in Lemma 1. Testing against

ϕR in

Lun + H(D3un) = f n, un(T ) = gn

yields for some dimensional constant C > 0

∫
Rd×Rd

un(t)ϕRdxd3 +
∫ t

0

∫
Rd×Rd

Hn(D3un)ϕRdxd3dt ≤

C
R
∥un∥1 +

∫ t

0

∫
Rd×Rd

f nϕRdxd3dt +
∫ t

0

∫
Rd×Rd

gnϕR +C
∫

R<|(x,3)|<2R
undxd3

and since the sequence {un}n∈N is uniformly integrable we see that the terms on the right vanish

uniformly in n as R ↑ ∞. Finally with the estimate

lim
R→∞

sup
n∈N

∫
R<|(x,3)|

Hn(D3un)dxd3dt = 0

the compactness for un in L1 follows immediately by Theorem 10 with f̃ n = f n − Hn(D3un). □

Theorem 12. Let (u,H, f , g) be a weak solution of (2.4.14), according to Definition 6. Then, there

exists a constant C = C(d,T ) > 0, such that

sup
t∈[0,T ]

∥u(t)∥2 + ∥uH(D3u)∥1 + ∥D3u∥2 ≤ C
(
∥ f ∥∞∥ f ∥1 + ∥g∥1∥g∥∞

)
. (2.4.18)

Proof. The result follows by testing against u in (2.4.14) and applying Grönwall. □

Proposition 8. Let {(un,Hn, f n, gn)}n∈N, be weak solutions of (2.4.14), according to Definition 6,

such that

∥ f n∥1 + ∥g
n∥1 ≤ C for all n ∈ N,
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and

un → u strongly in L1([0,T ] × Rd × Rd).

Then, the limit u belongs to L2([0,T ] × Rd; H1(Rd
v )) and

D3un → D3 in Lq
loc([0,T ] × Rd × Rd),

for all q < 2, up to a subsequence almost everywhere.

Proof. The equation for un − um is

−∂t(un − um) − ∆3(un − um) + 3 · Dx(un − um) = f n − f m,

(un − um)(T ) = gn − gm.

For ϵ > 0, we define

ϕ(s) :=



s, for s ∈ [−ϵ, ϵ],

−ϵ, for s ≤ −ϵ,

ϵ, for s ≥ ϵ,

and Φ(t) :=
∫ t
0 ϕ(s)ds ≥ 0. We test against ϕ(un − um) in the equation for the difference, which

yields ∫
Rd×Rd

Φ(un − um)(t)dxd3 +
∫ T

0

∫
Rd×Rd

ϕ′(un − um)|D3(un − um)|2dxd3

≤

∫
Rd×Rd

Φ(un − um)(T )dxd3 +
∫ T

0

∫
Rd×Rd

ϕ(un − um)( f n − f m)dxd3dt

≤ Cϵ∥gn − gm∥1 + ϵ∥ f
n − f m∥1 ≤ Cϵ.

Therefore, ∫
|un−um|≤ϵ

|D3(un − um)|2dxd3dt ≤ Cϵ.
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Thus, fixing a radius R > 0 and a q < 2 we obtain

∫
B(0,R)

|D3(un − um)|qdxd3 ≤
∫

B(0,R)∩{|un−um|≤ϵ}
|D3(un − um)|qdxd3dt

+

∫
B(0,R)∩|un−um|>ϵ

|D3(un − um)|qdxd3dt ≤ CRdϵ +CRd |{|un − um| > ϵ}|θ

for some θ = θ(q) ∈ (0, 1). Since un converges in L1, we have that lim
n,m→∞

|{|un − um| > ϵ}| = 0 and

so D3un → D3u in Lq([0,T ] × B(0,R)) for all R > 0. □

Proposition 9. Assume that {(un,Hn, f n, gn)}n∈N are weak solutions to (2.4.14) according to

Definition 6, such that {gn}n∈N ⊂ L1(Rd × Rd) is uniformly integrable, { f n}n∈N and {gn}n are

bounded subsets of their respective L∞ spaces, and for some u, f , un → u, f n → f , f n → f , in

L1([0,T ] × Rd × Rd) and almost everywhere. Then, up to a subsequence, for each τ ∈ [0,T ), we

have that

Hn(D3un)→ H(D3u) in L1([0, τ] × Rd × Rd)

and,

D3un → D3u in L2([0, τ] × Rd × Rd).

Proof. From Proposition 8 by choosing a subsequence if necessary we can assume that Hn(D3un)→

H(D3u) almost everywhere, furthermore since sup
n
∥ f n∥∞ + ∥gn∥∞ < ∞, for some C > 0 we have

that ∥un∥∞ ≤ C for all n ∈ N. Denote by L := −∂t − ∆3 + 3 · Dx and test against (T − t)eλ(un−uk) in

the equation

L(un − uk) + [Hn(D3un) − Hk(D3uk)] = f n − f k.

Which yields,

∫
Rd×Rd

T
1
λ

(eλ(un−uk) − 1)(0)dxd3 −
∫ T

0

∫
Rd×Rd

1
λ

(eλ(un−uk) − 1)(s)dxd3ds
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+

∫ T

0

∫
Rd×Rd

(T − s)eλ(un−uk)|D3(un − uk)|2 + (T − s)eλ(un−uk)
(
Hn(D3un) − Hk(D3uk)

)
dxd3ds

=

∫ T

0

∫
Rd×Rd

eλ(un−uk)
(

f n − f k
)
dxd3ds.

Next using the strong convergence of un, f n and that un is uniformly bounded in L∞, we obtain

that for some function ω(n, k) such that lim
n,k→∞

ω(n, k) = 0

∫ T

0

∫
Rd×Rd

(T − s)λeλ(un−uk)|D3(un − uk)|2dxd3ds

+

∫ T

0

∫
Rd×Rd

(T − s)eλ(un−uk)
(
Hn(D3un) − Hk(D3uk)

)
dxd3ds ≤ ω(n, k)

If n > k we have that Hk ≤ Hn, hence by the convexity of H

∫ T

0

∫
Rd×Rd

(T − s)λeλ(un−uk)|D3(un − uk)|2dxd3ds

+

∫ T

0

∫
Rd×Rd

(T − s)eλ(un−uk)
(
Hn(D3un) − Hn(D3uk)

)
dxd3ds ≤ ω(n, k)

=⇒

∫ T

0

∫
Rd×Rd

(T − s)λeλ(un−uk)|D3(un − uk)|2dxd3ds

+

∫ T

0

∫
Rd×Rd

(T − s)eλ(un−uk)Hn
p(D3uk)D3(un − uk)dxd3ds ≤ ω(n, k).

Letting n → ∞ and using that D3un → D3u almost everywhere and weakly in L2, while un → u

strongly in L1 with ∥un∥∞ ≤ C and |Hn
p(D3uk)| ≤ |Hp|(D3uk) thus Hn

p(D3uk)→ Hp(D3uk) strongly

in L2, yields ∫ T

0

∫
Rd×Rd

(T − s)λeλ(u−uk)|D3(u − uk)|2dxd3ds

+

∫ T

0

∫
Rd×Rd

(T − s)eλ(u−uk)Hp(D3uk)D3(u − uk)dxd3ds ≤ ω(k).
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From 2.2, there exists a constant C > 0 such that

Hp(D3uk)D3(u − uk) = −(Hp(D3u) − Hp(D3uk)) · D3(u − uk) + Hp(D3u)D3(u − uk)

≥ −C|D3(u − uk)|2 + Hp(D3u)D3(u − uk)

=⇒

∫ T

0

∫
Rd×Rd

(T − s)eλ(u−uk)(λ −C)|D3(u − uk)|2dxd3ds

+

∫ T

0

∫
Rd×Rd

(T − s)eλ(u−uk)Hp(D3u)D3(u − uk)dxd3ds ≤ ω(k)

and again by the weak convergence of D3(u − uk) in L2 and the strong convergence of uk to u in

L1 with uniform bounds we obtain

∫ T

0

∫
Rd×Rd

(T − s)eλ(u−uk)(λ −C)|D3(u − uk)|2dxd3ds ≤ ω(k).

Finally, the result follows since by choosing λ > C and using that ∥u − uk∥∞ ≤ C we obtain that

for some constant c0 > 0 depending only on H

c0

∫ T

0

∫
Rd×Rd

(T − s)|D3(u − uk)|2dxd3ds ≤ ω(k).

□

Theorem 13. Assume that {(un,Hn, f n, gn)}n∈N are weak solutions to (2.4.14) according to Defini-

tion 6, such that f n → f in L1, gn → g, weakly in L1, un → u in L1 and D3un → D3u almost every-

where and Hn(D3un)→ H(D3u) in L1
loc((0,T ]; L1(Rd×Rd)), where H(D3u) ∈ L1([0,T ]×Rd×Rd).

Then, we have that u ∈ C((0,T ]; L1((Rd × Rd)).

Proof. The result follows by the fact that Lu ∈ L1, where L := −∂t − ∆3 + 3 · Dx, see for example

[151]. □
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2.4.3 Existence and uniqueness for the quadratic case

In this subsection, we will establish the existence and uniqueness of renormalized solutions for the

MFG system.

Theorem 14. Assume that H : Rd → R, F : [0,T ] × Rd × Rd × R → R, m0 : Rd × Rd → R and

G : Rd ×Rd ×R→ R satisfy 2.2,2.2,2.2 and 2.2. Then, there exists a unique renormalized solution

(m, u) of system (2.1.1), according to Definition 4.

Proof. The proof is divided in two steps. First we show the result for F,G bounded in their respec-

tive L∞−spaces and let the Hamiltonians Hϵ vary. While in the second case we show the result for

a fixed quadratic Hamiltonian H while letting Fn,Gn vary. The reason for this approach is so that

we can always have bounds on D3un in L2. Indeed in the first case the bounds follow by Theorem

12 and are due to the ∆3 term while in the second case the bounds are a result of Theorem 11 and

are due to ∥H(D3un)∥1 ≤ C.

First Case: For Hϵ , as defined in (2.4.1), we consider the solutions (mϵ , uϵ ,m0) provided by

Theorem 1. From Proposition 2 above, we have that for some C > 0 independent of ϵ

∥mϵ |Hϵ
p(D3uϵ)|2∥1 ≤ C, for all ϵ > 0, (2.4.19)

furthermore, by Theorem 12 and our assumptions on Hϵ we have that

∥Hϵ
p(D3uϵ)∥2 ≤ C, for all ϵ > 0.

Therefore, from Theorem 8, we may extract a subsequence mn, which is convergent in L1([0,T ] ×

Rd×Rd) and almost everywhere to some m. From Remark 2, we have that the sequence {F(t, x, 3,mn)}n∈N

is uniformly integrable, indeed in the case fL := sup
m∈[0,L]

F(t, x, 3,m) ∈ L1 the claim holds just as
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[325], while in the case fL := sup
m∈[0,L]

F(t, x, 3,m)/m ∈ L∞ since

0 ≤ F(t, x, 3,mn) ≤ fL(t, x, 3)mn +
mn

L
F(t, x, 3,mn)

the result follows due to uniform bound on ∥F(t, x, 3,mn)mn∥1 from Proposition 2 and the conver-

gence of mn in L1. Since mn → m almost everywhere, we obtain

F(·,mn(·))→ F(·,m(·)) strongly in L1([0,T ] × Rd × Rd).

By choosing a further subsequence if necessary, Theorem 11, Lemma 1 and Proposition 8, yield a

u ∈ C([0,T ]; L1(Rd × Rd)) ∩ L2([0,T ] × Rd; H1(Rd
3 )), such that

un → u almost everywhere and strongly in L1([0,T ] × Rd × Rd)

D3un → D3u almost everywhere and in L1
loc([0,T ] × Rd × Rd).

Furthermore, again by taking subsequences if needed, by Proposition 9 we have that for each

τ ∈ [0,T ),

Hϵn(D3un)→ H(D3u) in L1([0, τ] × Rd × Rd)

and for each k ∈ N,

D3(un ∧ k)→ D3(u ∧ k) in L2([0, τ] × Rd × Rd).

By inequality (2.4.19) and the fact that Hϵn
p (D3un) → Hϵn

p (D3u) almost everywhere, Proposition 7

implies that

mn → m in C([0,T ];P(Rd × Rd)),
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and by Theorem 9, m is a renormalized solution of

∂tm − ∆3m − 3 · Dxm − div3(mHp(D3u)) = 0 in (0,T ] ×Rd ×Rd,m(0) = m0 in Rd ×Rd. (2.4.20)

It remains to show the convergence of the terminal data in the HJB equation. This follows exactly

as in [325]. Thus, we have that mn(T )→ m(T ) in L1(Rd × Rd) which from Remark 2 implies that

G(·,mn(T, ·))→ G(·,m(T, ·)) in L1(Rd × Rd). Thus, the limit u is also a renormalized solution.

Second Case: Next, given F,G that satisfy 2.2 and 2.2 respectively, consider Fn := F ∧ n,Gn :=

G ∧ n for n ∈ N. The functions Fn,Gn clearly also satisfy 2.2 and 2.2 respectively. Let (un,mn)

be the solutions provided for the data (H, Fn,Gn) by the first case. The rest of the proof follows

exactly the first case only now we use Theorem 16 to obtain the convergence of D3Tk(un).

Finally, we address the issue of uniqueness whose proof follows the same exact arguments as [325]

once we establish that m(t, x, 3) > 0 almost everywhere. But this will follow from assumption (2.2)

and in particular log(m0) ∈ L1
loc(Rd ×Rd). Indeed, let R > 0 and define ϕR : Rd ×Rd → [0, 1] such

that

ϕR(x, 3) :=


1 if |(x, 3)| ≤ R,

0 if |(x, 3)| ≥ R + 1.

Then since ∫
Rd×Rd

log(m(t))ϕ2
Rdxd3 ≤

∫
Rd×Rd

m(t)ϕ2
Rdxd3 ≤ 1,

it is enough to bound
∫
Rd×Rd log(m(t))ϕRdxd3 from bellow, since that would imply m(t, x, 3) >

0 almost everywhere. To show the lower bound we test the equation satisfied by m with ϕ2
R

1
m

(technically we would need to fix a δ > 0 and test against ϕ2
R

1
m+δ and let δ → 0 but we skip the

approximation for simplicity). This yields

∫
Rd×Rd

log(m(t))ϕ2
Rdxd3 +

∫ t

0

∫
Rd×Rd

−
|D3m|2

m2 ϕ2
R + 2

D3m
m

ϕRD3ϕR −
D3m
m2 mHpϕ

2
R
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+2ϕRD3ϕRHpdxd3dt =
∫
Rd×Rd

log(m0)ϕ2
Rdxd3.

Next we use the following inequalities

2
∣∣∣∣D3mm

ϕRD3ϕR

∣∣∣∣ ≤ 1
4
|D3m|2

m2 ϕ2
R + 4|D3ϕR|

2

∣∣∣∣D3m
m2 mHpϕ

2
R

∣∣∣∣ ≤ 1
4
|
D3m

m
|2ϕ2

R + |Hp|
2ϕ2

R∣∣∣∣2ϕRD3ϕRHp

∣∣∣∣ ≤ |Hp|
2 + 2|ϕR|

2|D3ϕR|
2

and thus combining everything we obtain that for some constant C = C(R, d) > 0

∫
Rd×Rd

log(m(t))ϕ2
R ≥

∫
Rd×Rd

C(R, d) + ∥ log(m0)ϕ2
R∥1 − ∥Hp(D3u)∥2

which proves the claim. □

2.4.4 Further regularity for quadratic Hamiltonian

Theorem 15. Let (H, F,G,m0) be as in Theorem 14 with F = F(m), G = G(m) and m0 also

satisfying ∥D2m0∥∞ ∈ L∞(Rd × Rd). Then, there exists a constant C(F,G,H,T,m0), such that

∫
Rd×Rd

G′(m(T, x, 3))|Dm(T, x, 3)|2dxd3 +
∫ T

0

∫
Rd×Rd

F′(m(t, x, 3))|Dm(t, x, 3)|2

+m
2d∑

k=1
mD3ukHpp(D3u)D3ukdxd3 ≤ C.

Proof. The proof is almost identical to the one in the case of Lipschitz Hamiltonian. The only

difference is now instead of using the HJB equation we estimate

∫
Rd×Rd

δhm0δ
hu(0)dxd3 =

∫
Rd×Rd

m0(x + h, 3) − 2m0(x, 3) + m0(x − h, 3)
h2 u(0, x, 3)dx3
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≤ ∥D2m0∥L∞(Rd×Rd)∥u(0, ·, ·)∥1,

and conclude due to the estimate in Proposition 2.3.3. □

2.5 Appendix of Chapter 2

2.5.1 Technical results

In this sub-section we show some important properties about the convergence of un where un solves


Lun + H(D3un) = f n in (0,T ] × Rd × Rd,

un(0) = gn in Rd × Rd,

(2.5.1)

for L := ∂t−∆3+ 3 ·Dx and f n, gn strongly convergent sequences in their respective L1-spaces. We

show an analogue of the convergence results in [323] from which all our techniques are motivated

and parallel to. In particular we show that if un solves (2.5.1) and are strongly convergent in L1

to some function u, then D3Tk(un) → D3Tk(u) strongly in L2([0,T ] × Rd × Rd), where Tk is the

truncation at k, namely, for k ∈ N Tk(x) = s for |s| ≤ k and TK(s) = sign(s)k otherwise. A crucial

technical step in [323] is the following transformation which allows the authors to deal with the

degenerate ∂t direction. Given a function u, for ν > 0 define

∂t(u)ν = ν(Tk(u) − (u)ν).

This transformation enjoys many nice properties such as (u)ν → u and D((u)ν)→ Du as ν→ ∞ in

appropriate spaces. In our setup the above transformation does not seem to work due to the extra

degenerate operator 3·Dx. In order to deal with this, we consider a slightly different transformation.

Fix α > 0 and consider the solution of

LΦα = α(Tk(u) − Φα).
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We will show that under the condition u ∈ L1 the transformation Φα converges to Tk(u) in L1,

however, we cannot show in general, even if D3u ∈ L2, that D3Φα → D3Tk(u) strongly in L2, with

no assumptions on Dxu. However the fact that Lun + H(D3un) = f n and un → u strongly in L1, is

enough to show the strong convergence of D3Φα. With this, we can follow the rest of the argument

found in [323].

Lemma 2. Let u ∈ L1 ∩ L∞([0,T ] × Rd × Rd) ∩ C([0,T ]; L1(Rd × Rd)) and α > 0. Then, there

exists a unique function Φα ∈ L2([0,T ]×Rd ×Rd) with D3Φα ∈ L2([0,T ]×Rd ×Rd) which solves


∂tΦα − ∆3Φα + 3 · DxΦα = α(u − Φα) in (0,T ) × Rd × Rd,

Φα(0, x, 3) = u(0, x, 3) in Rd × Rd.

(2.5.2)

Furthermore, the functions Φα have the following properties

1. u ≥ 0 =⇒ Φα ≥ 0 almost everywhere,

2. ∥Φα∥∞ ≤ ∥u∥∞,

3. lim
α→∞

∥Φα − u∥2 = 0

4. ∥Φα∥1 ≤ ∥u∥1 +
1
α∥u0∥1

Proof. First we assume that u ∈ C∞([0,T ]; C∞c (Rd × Rd)). Let Γ denote the fundamental solution

of L = ∂t − ∆3 + 3 · Dx. Then, it is easy to check that the solution of equation (2.5.2) is given by

Φα(t, x, 3) =
∫ t

0

∫
Rd×Rd

αe−α(t−s)Γ(t − s, x, 3, y,w)u(s, y,w)dydwds

+

∫
Rd×Rd

αe−αtΓ(t, x, 3, y,w)u(0, y,w)dydw,
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see for example [302]. Furthermore, the solution Φα is also C∞ since L is hypoelliptic. Let

f := L(u) ∈ C∞([0,T ] ×Cc(Rd × Rd)). In the equation

L(u − Φα) = −α(u − Φα) + f , (u − Φα)(0) = 0,

we test against (u − Φα), which yields

d
dt

1
2

∫
Rd×Rd

|u − Φα|2dxd3 +
∫
Rd×Rd

|D3(u − Φα)|2dxd3

= −α

∫
Rd×Rd

|u − Φα|2dxd3 +
∫
Rd×Rd

f (u − Φα)dxd3 ≤
1

4α

∫
Rd×Rd

| f |2dxd3.

Hence, we obtain that

sup
t∈[0,T ]

∥u(t) − Φα(t)∥2 + ∥D3(u − Φα)∥2 ≤
C
α

where C = C(T, f ) > 0. Furthermore, by testing against p|u − Φα|p−2(u − Φα) for p > 1 yields

d
dt

∫
|u − Φα|pdxd3 +

∫
Rd×Rd

|D3(u − Φα)|2|u − Φα|p−2 p(p − 1)dxd3

≤ −αp
∫
Rd×Rd

|u − Φα|p + p
∫
Rd×Rd

| f ||u − Φα|p−1dxd3 ≤
p

4a

∫
Rd×Rd

| f |pdxd3,

where 1/p + 1/q = 1. Letting p→ 1 yields

sup
t∈[0,1]

∥u − Φα∥1 ≤
C
α
∥ f ∥1,

where C = C(T, f ) > 0. The first two claims now follow easily by the Maximum Principle. For

the general case we work as follows. Testing against p|Φα|p−2Φα in (2.5.2) for p > 1 and letting

p→ 1 just as above we obtain

−

∫
Rd×Rd

|u0|dxd3 ≤
α

2

∫ T

0

∫
Rd×Rd

|u|dxd3dt −
α

2

∫ T

0

∫
Rd×Rd

|Φα|dxd3dt.
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Hence,

∥Φα∥1 ≤ ∥u∥1 +
2
α
∥u0∥1,

and so by linearity of the map (u, u0)→ Φα and the fact that |u| ≤ k =⇒ |Φα| ≤ k the result holds

in the general case. □

Theorem 16. Let H : Rd → R be a Hamiltonian satisfying 2.2. Assume that { f n}n∈N ⊂ L1 ∩

L∞([0,T ]×Rd ×Rd), {gn}n∈N ⊂ L1∩ L∞([0,T ]×Rd ×Rd) such that f n → f and gn → g strongly

in the respective L1 spaces (the limits need not be in L∞). Let un ∈ L1 ∩ L2([0,T ]×Rd ×Rd) with

D3un ∈ L2([0,T ] × Rd × Rd) solve


∂tun − ∆3un + 3 · Dxun + H(D3un) = f n, in (0,T ) × Rd × Rd,

un(0, x, 3) = gn(x, 3) in Rd × Rd.

(2.5.3)

Finally, assume that un → u strongly in L1 and that D3un → D3u almost everywhere. Then, the

limit u is a renormalized solution of


∂tu − ∆3u + 3 · Dxu + H(D3u) = f (t, x, 3) in (0,T ) × Rd × Rd,

u(0, x, 3) = g(x, 3) in Rd × Rd,

according to Definition 3.

Proof. Following [323], we see that the result will hold once we show that for some increasing

sequence 0 ≤ mk ∈ R, k ∈ N with mk ↑ ∞ as k → ∞, D3(Tmk(un)) → D3(Tmk(u)) strongly in

L2([0,T ] × Rd × Rd), where

Tk(s) :=



s, if |s| ≤ k,

k, if s > k,

−k, if s < −k.

(2.5.4)

Note that for almost all β ∈ R, we have that |{u = β}| = 0 (|A| denotes the Lebesgue measure),
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therefore in order to keep the notation lighter we may assume that |{u = k}| = 0 and thus choose

the sequence mk = k. The reason for this choice will become apparent later; in particular to prove

that χun>mk → χu>mk almost everywhere, it is convenient to know that |{u = mk}| = 0. In the rest

of the proof we will use the notation ω(n) and ω(n, α), for quantities that satisfy lim
n→∞

ω(n) = 0 and

lim
α→∞

lim
n→∞

ω(n, α) = 0 respectively, furthermore these quantities are subject to change from line to

line. Just as in [323] and the references therein, for λ > 0 we define ϕλ(s) := s exp(λs2). For α > 0

and k ∈ N, consider the solution Φα,k of


∂tΦα,k − ∆3Φα,k + 3 · DxΦα,k = α(Tk(u) − Φα,k),

Φα,k(0) = Tk(g).
(2.5.5)

Denote by L := ∂t − ∆3 + 3 · Dx and test equation (2.5.3) against ϕλ(un − Φα,k)− which yields

∫ T

0

∫
Rd×Rd

⟨L(un − Φα,k), ϕλ(un − Φα,k)−⟩dxd3dt
1

+

∫ T

0

∫
Rd×Rd

⟨LΦα,k, ϕλ(un − Φα,k)−⟩dxd3dt
2

+

∫ T

0

∫
Rd×Rd

H(D3un)ϕλ(un − Φα,k)−dxd3dt
3
=

∫ T

0

∫
Rd×Rd

f nϕλ(un − Φα,k)−dxd3dt
4
.

Let Φλ(s) :=
∫ s
0 ϕl(θ)−dθ, then the first boxed term gives us

∫
Rd×Rd

Φλ(un−Φα,k)(T )Φλ(gn−Tk(g))dxd3−
∫ T

0

∫
Rd×Rd

ϕ′λ(un−Φα,k)−|D3(un−Φα,k)|2dxd3dt

≤ ω(n) −
∫ T

0

∫
Rd×Rd

ϕ′λ(un − Φα,k)−|D3(un − Φα,k)|2dxd3dt,

where in the last inequality we used that Φλ(s) :=
∫ s
0 ϕλ(u)−du ≤ 0 and that gn → g strongly in
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L1. For the second boxed term we obtain

α

∫ T

0

∫
Rd×Rd

(Tk(u) − Φα,k)ϕλ(un − Φα,k)−dxd3dt ≤ αω(n),

since un → u strongly in L1, ϕλ(un −Φα,k)− = ϕλ(Tk(un) −Φα,k)− and sϕλ(s)− ≤ 0. For the third

boxed term we have that for some constant C > 0, depending only on H

∫ T

0

∫
Rd×Rd

H(D3un)ϕλ(un − Φα,k)−dxd3dt ≤ C
∫ T

0

∫
Rd×Rd

|D3(un)|2ϕλ(un − Φα,k)−dxd3dt,

and using that for all p, q ∈ Rd, we have |p|2 ≤ 2|p− q|2 + 2|q|2 the third boxed term is bounded by

2C
∫ T

0

∫
Rd×Rd

|D3(un − Φα,k)|2ϕλ(un − Φα,k)− + 2C|D3(Φα,k)|2ϕλ(un − Φα,k)−dxd3dt.

Finally, the last boxed term vanishes as n → ∞ and then α → ∞ due to Lemma 2. Putting

everything together we obtain

2C
∫ T

0

∫
Rd×Rd

[
ϕ′λ(un − Φα,k)− − ϕλ(un − Φα,k)−

]
|D3(un − Φα,k)|2dxd3dt

≤ ω(n, α) + 2C
∫ T

0

∫
Rd×Rd

|D3(Φα,k)|2ϕλ(un − Φα,k)−dxd3dt.

By choosing λ large enough depending only on ∥Hpp∥∞, we have that ϕ′λ(un − Φα,k)− − ϕλ(un −

Φα,k)− ≥ 0 thus by Fatous Lemma on the LHS and the strong convergence of un → u in L1, as

n→ ∞ we obtain

∫ T

0

∫
Rd×Rd

[
ϕ′λ(u − Φα,k)− − 2Cϕλ(u − Φα,k)−

]
|D3(u − Φα,k)|2dxd3dt

≤ ω(α) + 2C
∫ T

0

∫
Rd×Rd

|D3(Φα,k)|2ϕλ(u − Φα,k)−dxd3dt.
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Furthermore,

2C
∫ T

0

∫
Rd×Rd

|D3(Φα,k)|2ϕλ(u − Φα,k)−dxd3dt

≤ 4C
∫ T

0

∫
Rd×Rd

|D3(Φα,k−u)|2ϕλ(u−Φα,k)−dxd3dt+4C
∫ T

0

∫
Rd×Rd

|D3u|2ϕλ(u−Φα,k)−dxd3dt.

Hence, ∫ T

0

∫
Rd×Rd

[
ϕ′λ(u − Φα,k)− − 6Cϕλ(u − Φα,k)−

]
|D3(u − Φα,k)|2dxd3dt

≤ ω(α) + 4C
∫ T

0

∫
Rd×Rd

|D3u|2ϕλ(u − Φα,k)−dxd3dt,

now we may fix λ > 0 such that ϕ′λ(s)− − 6Cϕλ(s)− ≥ 1
2 and so letting α→ ∞ yields

lim
α→∞

∥D3(Tk(u) − Φα,k)−∥2 = 0.

We now show the convergence on the set Tk(u) ≥ Φα,k. Since H ≥ 0 the functions un are subsolu-

tions of 
Lun ≤ f n(t, x, 3) in (0,T ) × Rd × Rd

un(0, x, 3) = gn(x, 3).
(2.5.6)

Define wn = (Tk(un) − Φα,k)+ which may also be written as

wn = (un − Φα,k)+ − (un − Tk(un)).

Indeed if un ≤ k then

(un − Φα,k)+ − (un − Tk(un)) = (un − Φα,k)+ = (Tk(un) − Φα,k)+,

while if un > k since 0 ≤ Φα,k ≤ k

(un −Φα,k)+ − (un − Tk(un)) = un −Φα,k − un + k = k −Φα,k = Tk(un)−Φα,k = (Tk(un)−Φα,k)+.
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Thus testing against wn in equation (2.5.6) yields

∫ T

0

∫
Rd×Rd

⟨L(un),wn⟩dxd3dt ≤
∫ T

0

∫
Rd×Rd

f nwndxd3dt =⇒

∫ T

0

∫
Rd×Rd

⟨L(un − Φα,k), (Tk(un) − Φα,k)+⟩
1
+ ⟨L(Φα,k), (Tk(un) − Φα,k)+⟩dxd3dt

2

−

∫ T

0

∫
Rd×Rd

⟨L(un), un − Tk(un)⟩dxd3dt ≤
∫ T

0

∫
Rd×Rd

f nwndxd3dt
4
.

The first boxed term equals

∫ T

0

∫
Rd×Rd

⟨L(un−Φα,k), (un−Φα,k)+⟩dxd3dt =
∫
Rd×Rd

(un−Φα,k)2
+/2(T )−((gn−Tk(g))2

+/2dxd3

+

∫ T

0

∫
Rd×Rd

D3(un − Φα,k)D3(un − Φα,k)+dxd3dt

and since gn ∈ L1 ∩ L∞ the quantities that appear make sense. The second boxed term is bounded

by

∫ T

0

∫
Rd×Rd

⟨L(Φα,k), (un − Φα,k)+⟩dxd3dt = α
∫ T

0
(Tk(u) − Φα,k)(un − Φα,k) ≥ ω(n).

The third boxed term equals

−

∫ T

0

∫
Rd×Rd

⟨L(un), un − Tk(un)⟩dxd3dt

= −

∫ T

0

∫
Rd×Rd

(un(T ) − Tk(un)(T ))2/2 − (gn − Tk(gn))2/2D3unD3(un − Tk(un))dxd3dt.

Putting everything together yields

∫ T

0

∫
Rd×Rd

⟨L(un),wn⟩dxd3dt ≥ ω(n) +
∫
Rd×Rd

(un − Φα,k)2
+/2(T ) − ((gn − Tk(g))2

+/2dxd3
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−

∫ T

0

∫
Rd×Rd

(un(T ) − Tk(un)(T ))2/2 − (gn − Tk(gn))2/2dxd3

+

∫ T

0

∫
Rd×Rd

D3(un − Φα,k)D3(un − Φα,k)+dxd3dt −
∫ T

0

∫
Rd×Rd

D3unD3(un − Tk(un))dxd3dt.

The first line equals

∫
Rd×Rd

(un − Φα,k)2
+/2(T ) − ((gn − Tk(g))2

+/2 − (un(T ) − Tk(un)(T ))2/2 − (gn − Tk(gn))2/2dxd3

=
1
2

∫
Rd×Rd

(
(un − Φα,k)+(T ) − (un(T ) − Tk(un)(T ))((un − Φα,k)+ + (un − Tk(un))(T ))

)
dxd3

−
1
2

∫
Rd×Rd

((gn − Tk(g))+ − (gn − Tk(gn)))((gn − Tk(g))+ + (gn − Tk(gn)))

≥ −2
1
2

∫
Rd×Rd

(Tk(gn) − Tk(g))+(gn − Tk(g))+dxd3 = ω(n).

For the last line

∫ T

0

∫
Rd×Rd

D3(un − Φα,k)D3(un − Φα,k)+dxd3dt −
∫ T

0

∫
Rd×Rd

D3unD3(un − Tk(un))dxd3dt =

∫ T

0

∫
Rd×Rd

D3(un−Φα,k)D3
(
(un−Φα,k)+− (un−Tk(un))

)
+D3(un−Φα,k)D3(un−Tk(un))+dxd3dt

−

∫ T

0

∫
Rd×Rd

D3unD3(un − Tk(un))dxd3dt

=

∫ T

0

∫
Rd×Rd

D3(un−Φα,k)D3(Tk(un)−Φα,k)+dxd3dt−
∫ T

0

∫
Rd×Rd

D3Φα,kD3(un−Tk(un))dxd3dt

=

∫ T

0

∫
Rd×Rd

|D3(un − Φα,k)+|2 + D3(un − Tk(un))D3
(
(Tk(un) − Φα,k)+ − Φα,k

)
dxd3dt

=

∫ T

0

∫
Rd×Rd

|D3(Tk(un) − Φα,k)+|2dxd3dt − 2
∫ T

0

∫
un>k

D3(un)D3
(
Φα,k

)
dxd3dt,

where in the last equality we used that D3(un − Tk(un)) = D3unχun>k and 0 ≤ Φα,k ≤ k. Finally,
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we clearly have that ∫ T

0

∫
Rd×Rd

f nwndxd3dt ≤ ω(n, α).

Hence, putting everything together

∫ T

0

∫
Rd×Rd

|D3(Tk(un) − Φα,k)+|2dxd3dt ≤ 2
∫ T

0

∫
un>k

D3(un)D3
(
Φα,k

)
dxd3dt + ω(n, α).

Since D3un → D3u weakly in L2 while χun>kΦα,k → χu>kΦα,k strongly in L2 (here is where the

discussion in the beginning of the proof is relevant) we may use Fatous Lemma which yields

∫ T

0

∫
Rd×Rd

|D3(Tk(u) − Φα,k)+|2dxd3dt ≤ 2
∫ T

0

∫
u>k

D3(u)D3
(
Φα,k

)
dxd3dt + ω(α).

Furthermore,

∥D3Φα,k∥2 ≤ ∥D3(Tk(u) − Φα,k)+∥2 + ∥D3(Tk(u) − Φα,k)−∥2 + ∥D3Tk(u)∥2 ≤ C,

for some C > 0 independent of α (due to ω(α) → 0 as α → ∞). Therefore, we may assume

WLOG that D3Φα → D3Tk(u) weakly in L2. Thus, taking the limit as α→ ∞ we find that

lim sup
α→∞

∫ T

0

∫
Rd×Rd

|D3(Tk(u) − Φα,k)+|2dxd3dt ≤

lim
α→∞

(
2
∫ T

0

∫
u>k

D3(u)D3
(
Φα,k

)
dxd3dt + ω(α)

)
= 2

∫ T

0

∫
u>k

D3(u)D3
(
D3Tk(u)

)
dxd3dt = 0.

Now that we have D3Φα,k → D3Tk(u) strongly in L2, we may conclude since by the previous

estimates ∫ T

0

∫
Rd×Rd

|D3(Tk(u) − Φα,k)+|2dxd3dt ≤ ω(n, α).

□

We conclude this subsection with a sketch of the proof for the upper bound in Theorem 4. We
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recall the Fractional Gagliardo-Niremberg inequality.

Proposition 10. (Fractional Gagliardo-Niremberg inequality). Let z ∈ Hs(Rd ×Rd), where s > 0.

If θ ∈ (0, 1) p ∈ (1,∞) are such that

θ
(1
2
−

s
d

)
+

1 − θ
2
=

1
p
⇐⇒

1
p
=

1
2
−
θs
d
,

then

∥z∥p ≤ C∥Dsz∥θ2∥z∥
1−θ
2 ,

where Dsza = (Ds
3za,Ds

xza).

Corollary 1. Let z ∈ L2((0,T ); Hs(Rd × Rd)). Then, for p = 2(1 + 2s
d ) and θp = 2, we have

( ∫ T

0
∥z(t)∥ppdt

)1/p
≤ sup

t∈[0,T ]
∥z(t)∥1−θ2 ∥Dsz∥2/p

2 = sup
t∈[0,T ]

∥z(t)∥1−θ2 ∥Dsz∥θ
L2([0,T ]×Rd×Rd)

.

Proposition 11. Let b ∈ L∞([0,T ] × Rd × Rd) and m0 a density which satisfies 2.2. Furthermore,

let m ∈ C([0,T ]; L2(Rd × Rd)) be the distributional solution to


∂tm − ∆3m + 3 · Dxm − div3(mb) = 0 in (0,T ) × Rd × Rd,

m(0, x, 3) = m0(x, 3) in Rd × Rd.

(2.5.7)

Then, there exists a C0 = C0(∥b∥∞,T, ∥m0∥2, ∥m0∥∞) > 0, such that

∥m∥∞ ≤ C0.

Proof. The proof follows the work of F. Golse, C. Imbert, C. Mouhot and A. Vasseur in [211]. To

simplify the notation we define the operator

L∗m := ∂tm − ∆3m + 3 · Dxm − div3(mb).
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Furthermore, to reduce the technical steps we make the following reduction. By linearity it is

enough to show the result in the case of ∥m0∥∞ ≤ 1. Moreover, we assume that b is smooth

with compact support, since the general case may be handled by approximation. We note that

once b is smooth and compactly supported, the density m is bounded above, however this bound

depends on ∥div3(b)∥∞. Nonetheless, at the level of smooth b the functions m,m2 are integrable.

For α > 1 ≥ ∥m0∥∞ we set mα := (m − α)+. Then, we have that mα is a subsolution of

L∗mα − (1 + α)1m>αdiv3(b) ≤ 0,mα(0) = 0. (2.5.8)

Moreover, for technical reasons we will also require the function m2
α, which is a subsolution of

∂tm2
α − ∆3m

2
α − 3 · Dxm2

α − div3(m2
αb) − m2

αdiv3(b) − 2αmαdiv3(b) ≤ 0, m2
α(0) = 0, (2.5.9)

or equivalently

∂tm2
α −∆3m

2
α − 3 ·Dxm2

α − 2div3(m2
αb)+D3(m2

α) · b− 2αdiv3(mαb)+ 2αDv(mα) · b ≤ 0,m2
α(0) = 0.

(2.5.10)

The typical energy estimates required in the De Giorgi argument for improvement of integrability,

are not suitable for this setting. Namely testing against m2
a in 2.5.9, only yields bounds on D3m2

a.

To obtain an increase in integrability we first look at the solution wα of

∂twα − ∆3wα − 3 · Dxwα − div3(m2
αb) − m2

αdiv3(b) − 2αmαdiv3(b) = 0, wα(0) = 0, (2.5.11)

and we note that wa ≥ m2
a ≥ 0. Testing against wa in (2.5.11) yields by Grönwall

sup
t∈[0,T ]

∥wα(t)∥22 + ∥D3wα∥
2
L2([0,T ]×Rd×Rd)

≤ C(∥mα∥
2
L2([0,T ]×Rd×Rd)+∥m

2
α∥

2
L2([0,T ]×Rd×Rd) + ∥D3mα∥

2
L2([0,T ]×Rd×Rd) + ∥D3(m

2
α)∥2

L2([0,T ]×Rd×Rd)).
(2.5.12)
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For the estimates on m2
α we test (2.5.8) against m2

α and integrate in space to obtain by Grönwall

sup
t∈[0,T ]

∫
|mα(t)|4 +

∫ T

0

∫
|D3m2

α|
2 ≤ C(

∫ T

0

∫
|mα|

2 +

∫ T

0

∫
|D3mα|

2). (2.5.13)

We need an estimate for
∫ T
0

∫
|D3mα|

2, so we test against mα in (2.5.8) and integrate in space to

obtain by Grönwall

sup
t∈[0,T ]

∥mα(t)∥22 +
∫ T

0

∫
|D3mα|

2 ≤ C
∫ T

0
|{mα(t) > 0}|. (2.5.14)

Using estimates (2.5.14),(2.5.13) on (2.5.12) yields

sup
t∈[0,T ]

∥wα(t)∥22 +
∫ T+2

0

∫
|D3wα|2 ≤ C

∫ T

0
|{mα(t) > 0}|dt. (2.5.15)

From the above and Theorem 19, we obtain

∥Dswα∥2L2([0,T ]×Rd×Rd) ≤ C
∫ T

0
|{mα(t) > 0}|dt. (2.5.16)

From (2.5.16) and Corollary 1, we obtain

∥wα∥Lp([0,T ]×Rd×Rd) ≤ C∥Dswα∥θL2([0,T ]×Rd×Rd)
sup

t∈[0,T ]
∥wα(t)∥1−θ

L2([0,T ]×Rd×Rd)
≤ C∥Dswα∥θ2 sup

t∈[0,T ]
∥wα(t)∥1−θ2

from (2.5.15) and (2.5.16) we have

∥wα∥Lp([0,T ]×Rd×Rd) ≤ C
∫ T

0
|{mα(t) > 0}|. (2.5.17)

We may now setup the De-Giorgi iteration. For k ∈ N, let αk = (2 + 1
2k−1 ) and mk := mαk . Since

|{mk(t) > 0}| = |{mk−1(t) >
1
2k
}| ≤ 16k

∫
|mk−1(t)|4, (2.5.18)

70



if we define Uk :=
∫ T
0

∫
Rd×Rd |mk|

4dxd3dt, and use estimate (2.5.18) in (2.5.17), we obtain

∥wk∥Lp([0,T ]×Rd×Rd) ≤ C16kUk−1. (2.5.19)

Recall that m2
α ≤ wα, thus from (2.5.19) we have

∥m2
α∥p ≤ ∥wα∥p ≤ C16kUk−1.

Therefore,

Uk =

∫ T

0

∫
|mk|

4dxd3dt = ∥m2
k∥

2
2 ≤ C∥wk∥

2
p|{mk > 0}|ϵ ≤ C16kU1+ϵ

k−1 ,

for some ϵ = ϵ(p) > 0 and the result follows. □

2.5.2 Prerequisites

We rely on the following minor modifications of three results from [59]. We modify these Theo-

rems slightly, to be used for a finite time interval [0,T ].

Theorem 17. (Theorem 1.5,[59]) Let f , g ∈ L2([0,T ] × Rd × Rd), D3 f ∈ L2(R × Rd × Rd) and

f0 ∈ L2(Rd × Rd), such that


∂t f − 3 · Dx f − ∆3 f = g in [0,T ] × Rd × Rd,

f (0, x, 3) = f0(x, 3) in Rd × Rd.

Then, there exists a dimensional constant C > 0, such that

∥∂t f − 3 · Dx f ∥2 + ∥∆3 f ∥2 ≤
C
t

(
∥g∥2 + ∥ f0∥2

)
.
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Theorem 18. (Theorem 1.3, [59]) Assume that f , g, g0 ∈ Lp([0,T ] × Rd × Rd), with D3 f ∈

Lp([0,T ]×Rd×Rd), (1+|3|2)g ∈ Lp(R×Rd×Rd), (1+|3|)g0 ∈ Lp(R×Rd×Rd) and f0 ∈ Lp(Rd×Rd)

for some p ∈ (1,∞), such that they solve


∂t f − 3 · Dx f = div3(g) + g0 in (0,T ] × Rd × Rd,

f (0, x, 3) = f0(x, 3) in Rd × Rd,

in the distributional sense. Then, there exists a constant C > 0, such that

∥D1/3
x f ∥p + ∥D

1/3
t f ∥p ≤ C(∥ f ∥p + ∥D3 f ∥p + ∥(1 + |3|2)g∥p + ∥(1 + |3|)g0∥p + ∥ f0∥p).

Theorem 19. (Theorem 2.1, [59]) Assume that f , g, g0 ∈ Lp([0,T ] × Rd × Rd), with D3 f ∈

Lp([0,T ] × Rd × Rd), and f0 ∈ Lp(Rd × Rd) for some p ∈ (1,∞), such that they solve


∂t f − 3 · Dx f = div3(g) + g0 in (0,T ] × Rd × Rd,

f (0, x, 3) = f0(x, 3) in Rd × Rd,

in the distributional sense . Then, there exists a constant C > 0, such that

∥D1/3
x f ∥p ≤ C(∥D3 f ∥p + ∥ f0∥p + ∥g∥p + ∥g0∥p),

where α, α′ ∈ (0, 1) and depend only on the dimension d.
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CHAPTER 3

FIRST-ORDER MEAN FIELD GAMES SYSTEM

3.1 Introduction

The work presented in this chapter refers to the joint work with S. Munoz in [312]. The main

purpose of this chapter is to establish that, under very general conditions, the solutions to the

one-dimensional first-order mean field games system with local coupling are smooth, and to fully

characterize their long time behavior. Specifically, we study the regularity of the solutions to

standard MFG with a prescribed terminal condition,



−ut(x, t) + H(ux(x, t),m(x, t)) = 0 (x, t) ∈ QT = T × (0,T ),

mt(x, t) − (m(x, t)Hp(ux(x, t),m(x, t)))x = 0 (x, t) ∈ QT ,

m(x, 0) = m0(x), u(x,T ) = g(m(x,T )) x ∈ T,

(MFG)

as well as to the so-called planning problem with a prescribed terminal density,



−ut(x, t) + H(ux(x, t),m(x, t)) = 0 (x, t) ∈ QT ,

mt(x, t) − (m(x, t)Hp(ux(x, t),m(x, t)))x = 0 (x, t) ∈ QT ,

m(x, 0) = m0(x), m(x,T ) = mT (x) x ∈ T,

(MFGP)

where T denotes the 1-dimensional torus, −H(p,m) : R × (0,∞) → R and g(m) : (0,∞) → R are

strictly increasing in m, H has super-linear growth in p, and m0,mT : T→ [0,+∞) are probability

densities. We also show convergence of the solutions to each of these problems, as T → ∞, to the
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solution of the infinite time horizon MFG system,



−vt(x, t) + λ + H(vx(x, t), µ(x, t)) = 0 (x, t) ∈ T × (0,∞),

µt(x, t) − (µ(x, t)Hp(vx(x, t), µ(x, t)))x = 0 (x, t) ∈ T × (0,∞),

µ(x, 0) = m0(x) x ∈ T,

(MFGL)

where λ = −H(0, 1).

Classical solutions to (MFG), in arbitrary dimension, were previously obtained by the second

author in [316, 317], when the initial density is bounded away from 0, and under the blow-up

assumption

lim
m→0+

H(p,m) = +∞, (3.1.1)

which, from the optimal control point of view, corresponds to placing a very strong incentive for

players to occupy low-density regions and precludes the appearance of empty regions. A similar

regularity result was recently obtained in [328] by A. Porretta for the case of (MFGP), when the

Hamiltonian has the separated form H(p,m) ≡ H(p) − f (m), and the terminal density mT is also

bounded away from 0.

Our first contribution is the following theorem, which shows that, in the one-dimensional problem,

assumption (3.1.1) can be completely removed. We refer to Section 3.2 for assumptions (M), (H)

(G), (E), (W), and (L), and to the notation subsection for the definition of the function spaces

mentioned below.

Theorem 3.1.1. Let 0 < α < 1, and assume that (M), (H), (G), and (E) hold. Then the following

statements hold:

(i) There exists a classical solution (u,m) ∈ C3,α(QT ) × C2,α(QT ) to (MFGP). The function m

is unique, and u is unique up to a constant.

(ii) There exists a unique classical solution (u,m) ∈ C3,α(QT ) ×C2,α(QT ) to (MFG).
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Our second result establishes interior smoothness of the solutions when, besides removing the

assumption (3.1.1), one also weakens the lower bound assumptions for given densities m0 and mT ,

replacing the latter with the integrability conditions

1
mκ

0
∈ L1(T),

1
mκ

T
∈ L1(T) for some κ > 0. (3.1.2)

We observe that, in particular, (3.1.2) allows the initial density to vanish in a set of measure zero.

In spite of this fact, our result also shows that m becomes strictly positive instantly after the ini-

tial time. Moreover, in the case of (MFG), the density remains bounded below, and the solution

remains smooth up to and including t = T . We refer to Section 3.6 for the definition of a weak

solution.

Theorem 3.1.2. Let 0 < α < 1, and assume that (W), (H) (G), and (E) hold. Then the following

statements hold:

(i) There exists a weak solution

(u,m) ∈ (BV(QT ) ∩ L∞(QT )) × (C([0,T ],H−1(T)) ∩ L∞+ (QT ))

to (MFGP). Moreover, (u,m) ∈ C3,α
loc (QT )×C2,α

loc (QT ) and m > 0 in (0,T ). The function m is

unique, and u is unique up to a constant.

(ii) Assume, further, that the function H satisfies, for each (p,m) ∈ R × (0,∞),

Hp(p,m)p ≥ 0. (3.1.3)

Then there exists a unique weak solution

(u,m) ∈ (BV(QT ) ∩ L∞(QT )) × (C([0,T ],H−1(T)) ∩ L∞+ (QT ))
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to (MFG). Moreover, (u,m) ∈ C3,α
loc (T × (0,T ]) ×C2,α

loc (T × (0,T ]), and m > 0 in (0,T ].

Concerning the long time behavior of (3.1.1), it was shown by P. Cardaliaguet and P.J. Graber in

[81, Thm 5.1] that the rescaled solution (x, s) 7→ u(x, sT )/T converges, in a certain space Lp(T ×

(δ, 1)), to the map λ(1 − s), while the rescaled density (x, s) 7→ m(x, sT ) converges in Lp(T ×

(0, 1)) to the invariant measure µ ≡ 1. Our third result shows that, when the marginals are strictly

positive, a much stronger statement holds. That is, the solutions satisfy the turnpike property with

an exponential rate of convergence, and the limit as T → ∞ of the pair (u(t) − λ(T − t),m(t)) can

be fully characterized as the solution to (MFGL). We emphasize that this is a convergence result

at the original time scale (cf. [86, Thm 2.6, Thm. 5.1], [122, Thm 4.1, Thm. 5.3]).

Theorem 3.1.3. Assume that (M), (H), (G), (E), and (L), hold, and let T > 1. Assume that (uT ,mT )

is either the solution to (MFG), or the solution to (MFGP) that satisfies
∫
T

vT (·, T
2 ) = 0, where

vT (x, t) := uT (x, t) − λ(T − t).

Then the following holds:

(i) There exist constants C, ω > 0, independent of T , such that

∥mT (t) − 1∥L∞(T) + ∥u
T
x (t)∥L∞(T) ≤ C(e−ωt + e−ω(T−t)), t ∈ [0,T ].

Moreover, if (uT ,mT ) solves (MFG), and (3.1.3) holds, we have

∥mT (t) − 1∥L∞(T) + ∥u
T
x (t)∥L∞(T) ≤ Ce−ωt, t ∈ [0,T ].

(ii) There exist functions (v, µ) such that, for each T0 > 0,

vT → v in C3,α(T × [0,T0]) as T → ∞,
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and

mT → µ in C2,α(T × [0,T0]) as T → ∞.

Moreover, one has

lim
t→∞

v(·, t) = c, lim
t→∞

µ(·, t) = 1 uniformly in T, (3.1.4)

where

c =


g(1) if (uT ,mT ) solves (MFG),

0 if (uT ,mT ) solves (MFGP).

Finally, (v, µ) is the unique classical solution to (MFGL) satisfying (3.1.4) and

v ∈ W1,∞(T × (0,∞)), µ−1 ∈ L∞(T × (0,∞)),

µ − 1 ∈ L1(T × (0,∞)) ∩ L∞(T × (0,∞)). (3.1.5)

In particular, since the Hamiltonian H(p,m) is non-separated, our results yield well-posedness and

regularity of MFG systems with congestion, such as


−ut +

|ux|
2

2(m+c0)α = f (m) in QT ,

mt −
(

m
(m+c0)αux

)
x
= 0 in QT ,

(3.1.6)

where 0 < α < 2, c0 ≥ 0, and f ′ > 0. Some of the key techniques used in [316, 317, 328], as

well as in the present work, were developed by P.-L. Lions in his lectures at Collège de France

[297], where he obtained several a priori estimates for the solutions to (MFGP), in the special case

of a separated, quadratic Hamiltonian. The most important of these is the observation that the

problems (MFG) and (MFGP) can be transformed into a single quasilinear elliptic equation in u
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after eliminating the variable m. Indeed, if one defines H−1 by

m = H−1(p,H(p,m)),

then m = H−1(ux, ut) and the problem becomes


Qu := −Tr(A(Du)D2u) = 0 in QT ,

Nu := B(x, t, u,Du) = 0 on ∂QT ,

(Q)

where Du = (ux, ut) and, for (x, z, p, s) ∈ T × R × R × R,

A(p, s) =
(
Hp +

1
2

mHmp,−1
)
⊗

(
Hp +

1
2

mHmp,−1
)
−


1
4m2H2

mp + mHmHpp 0

0 0

 , (Q1)

B(x, 0, z, p, s) = − s + H(p,m0(x)), (B1)

and

B(x,T, z, p, s) =


s − H(p, g−1(z)) in the case of (MFG)

s − H(p,mT (x)) in the case of (MFGP).
(B2)

The condition for ellipticity, that is, for the matrix A to be positive, is

−4mHmHpp > m2H2
mp, (3.1.7)

which is also the well-known condition for uniqueness to (MFG) that follows from the Lasry-Lions

monotonicity method (see, for instance, Lions, Souganidis [301]). We remark from (3.1.7) that, in

particular, the strict positivity of the density is crucial for the regularizing properties of the system.

The lower bounds on m obtained in Corollary 3.3.2 and Proposition 3.6.3 both heavily rely on the
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one-dimensionality assumption, and this is the main obstacle to generalizing our results to higher

dimensions. Indeed, in dimensions d > 1, it remains an open question whether the existence

of smooth solutions to local first order MFG systems can still be established if one removes or

significantly weakens (3.1.1), or if m0 is not assumed to be bounded away from 0. Even for d = 1,

it is still unknown whether one can allow m0 or mT to vanish in a set of positive measure.

Outline of Chapter 3

Section 3.2 contains all the assumptions that will be in place about the Hamiltonian H, as well

as the initial and terminal data. In Section 3.3, we establish an integral displacement convexity

formula (see Proposition 3.3.1) that will allow us to bound the density m in terms of its initial

and terminal values. Section 3.4 contains the necessary a priori estimates that are needed to prove

the existence of classical solutions. In particular, we obtain, in Section 3.4.1, estimates for an

ϵ–approximation of (MFGP) via standard MFG systems with a terminal condition of the type

u(·,T ) = g(·,m(·,T )), which we require to prove existence for (MFGP). Finally, we provide a

counterexample to existence of solutions to (MFG) when the terminal cost function g is also al-

lowed to depend on the space variable (see Proposition 3.4.5). In Sections 3.5, 3.6, and 3.7, we

prove our main results, Theorems 3.1.1, 3.1.2, and 3.1.3, respectively.

Previous literature and related questions

It is natural to ask whether our results continue to hold when the Hamiltonian H, or the ter-

minal coupling g, are allowed to depend on the space variable x. Indeed, the previous results

[316, 317, 324] on classical solutions under the blow-up assumption (3.1.1) allowed for very gen-

eral assumptions on the x-dependence. However, when one removes this assumption as we did

in this work, classical solutions fail to exist unless one imposes quite severe restrictions on this

dependence. Even in the simple case H(p,m, x) ≡ H(p) − f (m) − V(x), it was shown in [297] that

one can construct examples with smooth data where even the stationary solution is non-smooth and
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vanishes in a set of positive measure (see also [213, 81]). However, a regularity result analogous to

Theorem 3.1.1 may be established when the potential V(x) is small in a suitable sense, as this rep-

resents a perturbation of the present problem (as far as we are aware, the only references exploring

this matter are [213, 18]). A similar situation occurs when the terminal coupling g is still strictly

monotone, but allowed to depend on x. As mentioned earlier, we construct such a counterexample

in Proposition 3.4.5.

In the special case of a separated Hamiltonian, the estimates of Section 3.3 were first obtained

by Gomes and Seneci in [214]. Further estimates on the density using displacement convexity

were also obtained by Bakaryan, Ferreira, and Gomes in [18], and by Porretta in [328] (see also

Lavenant, Santambrogio [289]). Weak solutions, as defined in Section 3.6, have been widely stud-

ied for both (MFG) (see [74, 81, 82, 87, 316]) and (MFGP) (see [222, 328, 319]). For classical

solutions in the time-independent case we refer to Evans [170] and Gomes, Mitake [213]. Con-

cerning the study of the long time behavior of solutions, specifically the second part of Theorem

3.1.3, we follow the program developed by Cirant and Porretta in [122], where a similar analysis

was performed for second-order MFG systems, and, unlike the earlier work [86], does not involve

the use of the master equation (see also [85, 327]). Finally, on the matter of regularity of solutions

to first order MFG systems, it is also worth comparing with the recent results of [311]. Unlike the

present work, that paper deals with the different setting of MFG systems with a non-local coupling

(i.e. when H : Rd×P(Rd)→ R), under the so-called displacement monotonicity assumption on the

data. The authors prove existence of a solution (u,m), with u being a classical (rather than merely

viscosity) solution to the HJ equation, C1,1 in the space variable, and m being a distributional

solution to the continuity equation.

Notation

Let d, k ∈ N. For T > 0, we denote by QT := T × (0,T ), QT := T × [0,T ] and ∂QT := T × {0,T }.

For α ∈ (0, 1] and Ω ⊂ Rd we denote by Ck,a(Ω), the standard space of k times differentiable
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scalar functions with α-Hölder continuous kth order derivatives, with the usual norm. Furthermore,

we denote by Ck,α
loc (Ω) the functions u that belong to Ck,α(K), for all compact sets K ⊂ Ω. For

functions u : T × [0,T ] → R, we denote by osc u := max
(x,t)∈T×[0,T ]

u(x, t) − min
(x,t)∈T×[0,T ]

u(x, t),

Du(x, t) := (ux(x, t), ut(x, t)). We denote by H−1(T) the dual space of the Sobolev space H1(T), and

by C0,α([0,T ]; H−1(Td)) the space of H−1(Td)–valued functions that are α–Hölder continuous.

We write C = C(K1,K2, . . . ,KM) for a positive constant C depending monotonically on the non-

negative quantities K1, . . . ,KM . BV(QT ) denotes the space of functions of bounded variation, and

L∞+ (QT ) consists of the functions m ∈ L∞(QT ) such that m ≥ 0 a.e. in QT .

3.2 Assumptions

In what follows, C0 and γ, α are positive constants, with γ > 1, and 0 < α < 1. Moreover,

C : (0,∞) → [1,∞) is a continuous, strictly positive function. We note that C = C(m) should be

interpreted simply as a positive bound that may blow up both as m ↓ 0 and as m ↑ ∞. Except when

explicitly stated, assumptions (M), (H), (G), and (E) will be in place throughout the chapter.

(M) (Assumptions on m0 and mT for classical solutions) The given functions m0 and mT satisfy

m0,mT ∈ C2,α(T), m0,mT > 0, and
∫
T

m0 =

∫
T

mT = 1. (M1)

(H) (Assumptions on H) The functions H, Hp, and Hpp are in C4(R × (0,∞)), and Hm < 0.

Moreover, for (p,m) ∈ R × (0,∞),

1
C0

(1 + |p|)γ−2 ≤ Hpp ≤ C(m)(1 + |p|)γ−2, (H1)

pHp ≥ (1 +
1

C0
)H −C(m), (H2)

|Hppp| ≤ C(m)(1 + |p|)γ−3, (H3)
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|Hm| ≤ C(m)(1 + |p|)γ, (HM1)

m|Hmm| ≤ −C(m)Hm, m|p∥Hmmp| ≤ −C(m)Hm, (HM2)

|Hmpp| ≤ C(m)(1 + |p|)γ−2 (HM3)

(G) (Assumptions on g) The function g : (0,∞) → R is four times continuously differentiable

and satisfies, for all m > 0,

g′(m) > 0. (G1)

(E) (Ellipticity of the system) The function H satisfies, for m > 0, the condition

−4mHmHpp ≥

(
1 +

1
C0

)
m2H2

mp. (E1)

(W) (Assumptions on m0, mT , H, and g for weak solutions) The functions m0 and mT satisfy, for

some κ > 0,

m0, mT ∈ L∞(T), m0, mT ≥ 0,
∫
T

m0 =

∫
T

mT = 1, and
1

mκ
0
,

1
mκ

T
∈ L1(T), (MW)

H satisfies, for some constant s ∈ (−κ − 1, κ − 1), and for (p,m) ∈ R × (0, 1
C0

),

−Hm(0,m) ≤ C0ms, −Hm(p,m) ≥
1

C0
ms, (HW)

and g satisfies

lim
m→0+

g(m) > −∞. (GW)
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(L) (Assumption on H for the long time behavior) The function H satisfies, for m > 0,

−4mHmHpp ≥
1

C(m)
. (HL)

Remark 5. We will impose assumptions (W) and (L) only in the sections discussing weak solutions

and long time behavior, respectively.

Assumption (W) significantly weakens the positivity assumption on m but, in exchange, requires a

more precise control on the behavior of H and g near small densities.

On the other hand, in the context of our result on the long time behavior of strictly positive classical

solutions, no such control near small (or large) densities is needed. However, a different issue

arises here: the gradient bounds used throughout the rest of the chapter may degenerate as T → ∞.

Indeed, with (E) in place, we could rephrase assumption (L) as the requirement that the eigenvalues

of the elliptic operator (Q1) remain bounded below as |p| → ∞, locally uniformly in m ∈ (0,∞)1.

This will allow us to obtain gradient bounds that are uniform in T (see Lemma 3.7.1, where this

assumption is used). For example, for the case of a separated Hamiltonian H(p,m) ≡ H(p)− f (m),

(L) simply reduces to the assumption that H is uniformly convex, which follows automatically from

(H1) for γ ≥ 2.

3.3 Displacement convexity and estimates on the density

To obtain estimates for the density at interior times, we will prove an integral formula which, in

particular, implies that the quantity ∫
T

h(m(x, ·))dx

is a convex function in [0,T ] whenever h is convex, provided that (3.1.7) holds.

1. The factor 4m in (HL) is, of course, inconsequential, because it is a positive function of m. It is only included to
emphasize the comparison with (E).
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Proposition 3.3.1. Let (u,m) ∈ C2(QT ) ×C1(QT ) be a classical solution to



−ut + H(ux,m) = 0, in QT

mt − (mHp(ux,m))x = 0, in QT

m(·, 0) = m0, in T,

(3.3.1)

and let h ∈ W2,∞(R). Then

d2

dt2

∫
T

h(m(x, t))dx =
∫
T

h′′(m)
(
mt − mx(Hp +

m
2

Hpm)
)2

dx

−

∫
T

h′′(m)(mx)2
(m2

4
H2

pm + mHppHm
)
dx. (3.3.2)

Moreover, there exists C = C(C0) such that, if h′′ > 0,

d2

dt2

∫
T

h(m(x, t))dx ≥
1
C

∫
T

h′′(m)(−mHmHppm2
x + m2H2

ppu2
xx)dx. (3.3.3)

Proof. Let h̃ : R → R, be a smooth function. Since m satisfies the continuity equation, the

following holds for each t ∈ [0,T ]:

∫
T

(
mt(x, t)− (m(x, t)Hp(ux,m(x, t)))x

)(
∂t̃h(m(x, t))− (̃h(m(x, t))Hp(ux,m(x, t)))x

)
dx = 0. (3.3.4)
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Expanding equation (3.3.4), we obtain

0 =
∫
T

(mt−mx(Hp+mHpm)−mHppuxx)(̃h′(m)mt−mx(̃h′(m)Hp+ h̃(m)Hpm)− h̃(m)Hppuxx)dx

=

∫
T

h̃′(m)(mt)2 − mtmx
[
2̃h′(m)Hp +

(̃
h′(m)m + h̃(m)

)
Hpm

]
+ mxHppuxx

[
Hp

(̃
h′(m)m + h̃(m)

)
+ 2̃h(m)mHpm

]
+ m2

x
[(

Hp + mHpm
)(̃

h′(m)Hp + h̃(m)Hpm
)]

−mtHppuxx
[̃
h′(m)m + h̃(m)

]
+ h̃(m)m

(
Hppuxx

)2
dx = A1 − A2 + A3 + A4 − A5 + A6.

We split term A3 as follows

A3 =

∫
T

mxHppHpuxx
(̃
h′(m)m + h̃(m)

)
dx + 2

∫
T

h̃(m)mxmHpmHppuxxdx = A3.1 + A3.2.

From the continuity equation, we have that

mHppuxx = mt − mx(Hp + mHpm).

Hence, terms A3.2 and A6 can be written as

A3.2 = 2
∫
T

mtmxHpmh̃(m)dx − 2
∫
T

(mx)2Hpm
(̃
h(m)Hp + mh̃(m)Hpm

)
dx = A3.2.1 − A3.2.2

A6 =

∫
T

h̃(m)
m

[
mt − mx

(
Hp + mHpm

)]2
dx

=

∫
T

h̃(m)
m

(mt)2 − 2
h̃(m)

m
mtmx

(
Hp +mHpm

)
+

h̃(m)
m

(mx)2
(
Hp +mHpm

)2
dx = A6.1 − A6.2 + A6.3.
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From the Hamilton-Jacobi (HJ for short) equation, we have that

Hpuxx = uxt − Hmmx.

Therefore, A3.1 may be written as

A3.1 =

∫
T

mxHppuxt
(̃
h′(m)m + h̃(m)

)
dx −

∫
T

(mx)2HppHm
(̃
h′(m)m + h̃(m)

)
dx = A3.1.1 − A3.1.2

We now begin by grouping together terms A5, and A3.1.1, which yields, for L(m) = h̃(m)m, L′(m) =

h̃(m) + mh̃′(m),

A3.1.1 − A5 =

∫
T

mx
(̃
h(m) + mh̃′(m)

)
Hppuxt −

(̃
h(m) + mh̃′(m)

)
mtHppuxxdx

=

∫
T
−∂t(L(m))(Hp)x + L′(m)mtHpmmx + (L(m))x∂t(Hp) − L′(m)mxmtHpmdx

=

∫
T
∂t((L(m))x)Hp + (L(m))x∂t(Hp)dx =

d
dt

∫
T

(L(m))xHpdx.

Next, we group together all the terms with mtmx factor, namely A2, A3.2.1, and A6.2, which yields

−A2 + A3.2.1 − A6.2 = −

∫
T

2mtmx

̃h′(m) +
h̃(m)

m

 (Hp +
m
2

Hpm

)
dx.

Collecting the terms involving (mt)2, namely terms A1 and A6.1, we obtain

A1 + A6.1 =

∫
T

(mt)2
̃h′(m) +

h̃(m)
m

 dx.
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Finally, we group together the terms involving m2
x, namely A4, A3.2.2, A6.3, and A3.1.2:

A4 − A3.2.2 + A6.3 − A3.1.2 =∫
T

(mx)2
[(̃

h′(m) +
h̃(m)

m

)(
Hp +

m
2

Hpm
)2]

dx

−

∫
T

(mx)2
[(̃

h′(m) +
h̃(m)

m

)(m2

4
H2

pm + mHppHm
)]

dx.

Thus, putting everything together, we obtain

−
d
dt

∫
T

(L(m))xHpdx =
∫
T

(̃
h′(m) +

h̃(m)
m

) (
mt − mx

(
Hp +

m
2

Hpm
))2

dx

−

∫
T

m2
x

̃h′(m) +
h̃(m)

m

 (m2

4
H2

pm + mHppHm
)
dx. (3.3.5)

Next, notice that for a smooth function h : R→ R, we have

d
dt

∫
T

h(m)dx =
∫
T

(h(m))xHp + mh′(m)(Hp)xdx =
∫
T

(h(m) − h′(m)m)xHpdx.

Thus, if we require that

−L(m) = h(m) − h′(m)m,

we obtain

−
d
dt

∫
T

(L(m))xHpdx =
d2

dt2

∫
T

h(m)dx.

The relation between h, h̃ is

mh̃(m) = h′(m)m − h(m),

therefore

h̃(m) = −
h(m)

m
+ h′(m),
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and, thus,

h̃′(m) +
h̃(m)

m
= −

h′(m)
m
+

h(m)
m2 + h′′(m) −

h(m)
m2 +

h′(m)
m
= h′′(m),

from which (3.3.2) follows.

Now, setting r = 1 − 1
1+C−1

0
, we have

−
m2

4
H2

pm − mHmHpp = −
m2

4
H2

pm − (1 − r)mHmHpp − rmHmHpp,

and so, applying (E), and multiplying by h′′(m)m2
x, (3.3.2) yields

d2

dt2

∫
T

h(m(x, t))dx ≥
∫
T
−rh′′(m)mHmHppm2

x. (3.3.6)

On the other hand, we infer from (E) that

(
mt − mx(Hp +

m
2

Hpm)
)2
− m2

x

(
m2

4
H2

pm + mHmHpp

)
≥

(
mt − mxHp −

mxm
2

Hpm
)2
+

1
C0

(mxm
2

Hpm

)2
= (mt − mxHp)2 − 2(mt − mxHp)

mxm
2

Hpm

+ (1 − r)−1
(mxm

2
Hpm

)2
= r(mt − mxHp)2 +

(
(1 − r)

1
2 (mt − mxHp) − (1 − r)−

1
2

mxm
2

Hpm

)2

≥ r(mt − mxHp)2 = rm2H2
ppu2

xx. (3.3.7)

where the last equality follows from the equation of m.As before, multiplying by h′′(m) then yields

d2

dt2

∫
T

h(m(x, t))dx ≥
∫
T

rh′′(m)m2H2
ppu2

xx. (3.3.8)

Combining (3.3.6) and (3.3.8), we conclude that (3.3.3) holds. □

It now follows readily that the density of the solution is bounded above and below in terms of the

initial and terminal densities.
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Corollary 3.3.2. Let (u,m) ∈ C2(QT ) × C1(QT ) be a classical solution to (MFG) or (MFGP).

Then, if c1 := min(min m0,min m(·,T )), C1 = max(max m0,max m(·,T )), one has

c1 ≤ m(x, t) ≤ C1, for all (x, t) ∈ QT . (3.3.9)

Proof. The proof follows directly from Proposition 3.3.1 above. Indeed, note that, in view of (E),

for any convex function h, the map

C(t) :=
∫
T

h(m(x, t))dx

is convex, and thus

C(t) ≤ max(C(0),C(T )), for all t ∈ [0,T ].

Hence, setting hp(m) = mp and letting p → −∞ yields the result for the lower bound, whereas

letting p→ +∞ yields the upper bound. □

Remark 6. For dimensions d > 1, formula (3.3.2) is no longer true. If one repeats the same

argument, the issue will arise at the term A6.2. However, in the case of a separated Hamiltonian,

i.e. H(p,m) ≡ H(p) − f (m), one still obtains the weaker formula

d2

dt2

∫
T

h(m(x, t))dx =
∫
T

((h′′(m)m2 − h′(m)m + h(m))(Tr(D2
ppHD2

xxu))2

+ (h′(m)m − h(m))Tr((D2
ppHD2

xxu)2) + h′′(m)m f ′(m)|Dm|2)dx. (3.3.10)

In this higher-dimensional setting, it is no longer true that the left hand side is convex whenever

h is convex. In particular, the statement is false for negative powers of m, but true for positive

powers. Thus, from the proof of Corollary 3.3.2 we see that the upper bound on m still holds (see

[214]).

89



3.4 Estimates on the solution and the terminal density

In this section we obtain the necessary a priori L∞−bounds on u, Du, and m(·,T ) for solutions to

both (MFG) and (MFGP). Combined with the results of the previous section, this will yield global

upper and lower bounds on the density. In order to treat the setting of Theorem 3.1.2, where the

density may vanish at {0,T }, we also obtain L∞-bounds on u that do not depend on the quantities

(min m0)−1, (min mT )−1.

Proposition 3.4.1. Let (u,m) ∈ C2(QT ) × C1(QT ) be a classical solution to (MFG), and let c1 =

min m0,C1 = max m0. Then, for each (x, t) ∈ QT ,

c1 ≤ m(x,T ) ≤ C1, (3.4.1)

H(0, c1)(t − T ) + g(c1) ≤ u(x, t) ≤ H(0,C1)(t − T ) + g(C1), (3.4.2)

and

−

∫ T

t
H(0,min

T
(m(·, s))ds + g(c1) ≤ u(x, t) ≤ −

∫ T

t
H(0,max

T
(m(·, s))ds + g(C1). (3.4.3)

Proof. We will only show the lower bounds, since the argument for the upper bounds is completely

symmetrical. Since Hm < 0, we may fix δ > 0 and ϵ > 0, such that

H(0, c1) − H(0, c1 − δ) < −ϵT. (3.4.4)

We define

wϵ,δ(t) := H(0, c1 − δ)(t − T ) +
ϵ

2
(t − T )2 + g(c1 − δ),

and note that

wxx = 0,wx,t = 0,wtt = ϵ.
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The function vϵ,δ(x, t) := u(x, t) − wϵ,δ(t) has a minimum at some (x0, t0) ∈ QT . If we first assume

that t0 ∈ (0,T ), then it follows that

D2u − D2wϵ,δ ≥ 0,

which, in view of (Q), implies

0 = −Tr(AD2u) ≤ −Tr(AD2wϵ,δ) = −ϵ < 0,

a contradiction. On the other hand, assume that t0 = 0. Then,

ut(x0, 0) ≥ wϵ,δt (x0, 0), ux(x0, 0) = wϵ,δx (0) = 0,

and thus, using the monotonicity of H and (3.4.4),

0 = −ut(x0, t0) + H(0,m0(x0)) ≤ −wϵ,δt (0) + H(0,m0(x0)) = −H(0, c0 − δ) + H(0,m0(x0)) + ϵT

≤ −H(0, c1 − δ) + H(0, c1) + ϵT < 0,

which is again a contradiction. Hence, the minimum must be achieved at t0 = T . At that point, we

have

ut(x0,T ) ≤ wϵ,δt (T ), ux(x0,T ) = wϵ,δx (T ) = 0.

Consequently, from (G1) and the monotonicity of H, we have

u(x0,T ) = g(H−1(0, ut(x0,T ))) ≥ g(H−1(0,wϵ,δt (T ))) = g(H−1(0,H(0, c1 − δ)))

= g(c1 − δ) = wϵ,δ(T ).
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We have thus shown that

u(x, t) ≥ wϵ,δ(t), for all (x, t) ∈ QT .

Letting ϵ → 0, and then δ→ 0, yields the lower bound in (3.4.2). In particular, for t = T , we have

g(m(x,T )) ≥ g(c1) for all x in T,

which proves the lower bound in (3.4.1), in view of (G1). Now, we define

w(t) = −
∫ T

t
H(0, c(s))ds + g(c1),

where c(s) := min
T
{m(·, s)} is the running minimum of the density. We observe that the function

v(x, t) = u(x, t) − w(t) satisfies vt = ut − H(0, c(t)), vx = ux. Thus, for any ϵ > 0, at any extremum

point of v− ϵt, the monotonicity of H implies that vt = H(0,m)−H(0, c(t))− ϵ < 0. Letting ϵ → 0

thus implies that v achieves its minimum at t = T . Therefore, using (3.4.1), we obtain

u(x, t) − w(t) ≥ min
T

g(m(·,T )) − g(c1) ≥ 0,

and this is precisely the lower bound in (3.4.3). □

Now, for solutions to (MFGP), we do not need to estimate the terminal density, as it is part of the

given data. Concerning u, since the solution is only unique up to a constant, we may only bound

the oscillation of u, and this is done in the following proposition.

Proposition 3.4.2. Let (u,m) ∈ C2(QT ) × C1(QT ) solve (3.3.1). There exists a constant C > 0,

with

C = C

C0,

∫ T

0
|H(0,min

T
m(·, s))|ds,C(max

QT

m)

 ,
such that

oscQT
u ≤ C

(
T + T−

1
γ−1 +

∫ T

0
|H(0,min

T
m(·, s)|ds

)
.

92



Proof. We define the functions c and w, for t ∈ [0,T ], by

c(t) = min
T

m(·, t), w(t) = −
∫ T

t
H(0, c(s))ds.

Arguing as in the proof of (3.4.3), we obtain

max
QT

(u − w) = max
T

(u(·, 0) − w(0)) , min
QT

(u − w) = min
T

(u(·,T ) − w(T )) . (3.4.5)

Now, in view of (H1) and Proposition 3.4.1, 0 = −ut + H(ux,m) ≥ −ut +
1
C |ux|

γ − C. Next, we

define γ′ by 1
γ +

1
γ′ = 1. By the Hopf-Lax formula, the function

v(x, t) = min
y∈R

( (C
γ

)γ′
γ

(T − t)
|x − y|γ

′

γ′(T − t)γ′
+C(T − t) + u(y,T )

)
then solves, in QT ,

−vt(x, t) +
1
C
|vx|

γ −C = 0, v(·,T ) = u(·,T ),

and, thus, by the comparison principle,

u ≤ v.

On the other hand, up to increasing the constant C,

v(x, 0) ≤
C

Tγ′−1 +CT +min
T

u(·,T ),

and so

max
T

u(·, 0) ≤ max
T

v(·, 0) ≤
C

Tγ′−1 +CT +min
T

u(·,T ).

In view of (3.4.5), we obtain

oscQT
(u − w) ≤

C
Tγ′−1 +CT + w(T ) − w(0),
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and, thus,

oscQT
u ≤

C
Tγ′−1 +CT + 2 · oscQT

w ≤
C

Tγ′−1 +CT + 2
∫ T

0
|H(0, c(s))|ds.

□

We finally obtain a priori estimates on the gradient of u, while simultaneously treating the case of

(MFG) and (MFGP). The proof closely follows [316, Lem. 3.8] and [317, Lem 3.3], but allows for

weaker assumptions due to the d = 1 setting (see (3.4.9)). In fact, in the special case of a separated

Hamiltonian, this proof can be seen to yield a gradient bound that is independent of min(m).

Proposition 3.4.3. Let (u,m) ∈ C3(QT ) × C2(QT ) be a classical solution to (MFG) or (MFGP).

There exists a constant C > 0, with

C = C
(
C0,T,T

−1, osc u, γ, ∥m∥L∞(QT ), ∥m
−1∥L∞(QT ),

∥(m0)x∥L∞(T), ∥(mT )x∥L∞(T), ∥C∥L∞[min m,max m]
)

such that

∥Du∥L∞(QT ) ≤ C.

Proof. Since ut = H(ux,m), and m is bounded above and below, we infer from (H1) and (H2) that

it is enough to show that

∥ux∥L∞(QT ) ≤ CT 2.

We let

ũ = u −min u + 1 −
(osc u + 2)

T
(T − t),

and note that the function ũ has been constructed to satisfy

|̃u| ≤ 1 + osc u, ũ(·, 0) ≤ −1, ũ(·,T ) ≥ 1.
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Define

v(x, t) =
1
2

u2
x +

k
2

ũ2,

where k = ∥ux∥
3
2
QT

. Let (x0, t0) ∈ QT be a point where v achieves its maximum value. With no loss

of generality, we may assume that p = ux(x0, t0) satisfies

|p| ≥ 1, |p|2 ≥
1
2
∥ux∥

2. (3.4.6)

We remark here that throughout the proof, the constant C is subject to increase from line to line.

Case 1: t0 = T . For this case we consider the linearization of the HJ equation,

Tuv = −vt + Hp(ux,m)vx.

Since vx = 0 and vt ≥ 0,

0 ≥ Tuv = Tu

(
1
2
|ux|

2
)
+ kũ(−ũt + Hpux)

= −Hmuxmx + kũ(−ut + Hp p −C) ≥ −Hmuxmx + kũ(
1

C0
H) −Ckũ

≥ −Hmuxmx + kũ
1

C0

(
1

C(m)
|p|γ −C(m)

)
−C|p|

3
2 ≥ −Hmuxmx +

1
C
|p|γ+

3
2 −C|p|

3
2 . (3.4.7)

If (u,m) solves (MFG), then

−Hmuxmx = −
Hm
g′
|p|2 > 0.

On the other hand, if (u,m) solves (MFGP), then

| − Hmuxmx| ≤ C∥(mT )x∥∞|p|γ+1. (3.4.8)
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In either case, (3.4.7) then implies

|p| ≤ C.

Case 2: t0 = 0. Regardless of whether (u,m) solves (MFG) or (MFGP), this case is dealt with in

the same way as was done for t0 = T when (u,m) solved (MFGP), because, in view of (HM2), we

then have the bound

| − Hmuxmx| ≤ C∥(m0)x∥∞|p|γ+1.

Case 3: 0 < t0 < T . We first observe that, since vx = 0, we have

uxuxx = −kũux,

and, thus,

|uxx| ≤ Ck. (3.4.9)

We consider the linearization of (Q), namely

Lu(w) = −Tr(A(Du)D2w) − DqTr(A(Du)D2u) · Dw.

Through direct computation, using (Q1), one obtains

Lu

(
1
2

u2
x

)
= −

∣∣∣∣∣∣−uxt +

(
Hp +

1
2

mHmp

)
uxx

∣∣∣∣∣∣2 + 1
4

m2H2
mpu2

xx − mHmHppu2
xx

≤ −

∣∣∣∣∣∣−uxt +

(
Hp +

1
2

mHmp

)
uxx

∣∣∣∣∣∣2 , (3.4.10)

where (E1) was used in the last inequality. Similarly,

Lu

(
k

1
2

ũ2
)
= −k

∣∣∣∣∣−ũt + (Hp +
1
2

mHmp)ux

∣∣∣∣∣2 + k
1
4

m2H2
mpu2

x − kmHmHppu2
x + E1 + E2 + E3 + E4,

(3.4.11)
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where

E1 = 2
(
−uxt +

(
Hp +

1
2

mHmp

)
uxx

) (
Hpp +

1
2

mHmpp

)
kũux,

E2 =

(
1
2

HmpHmpp + mHmpHpp + mHmHppp

)
uxxkũux,

E3 =

(
−uxt +

(
Hp +

1
2

mHmp

)
uxx

)
2

Hm

(
Hpm +

1
2

(
mHmmp + Hmp

))
kũ(−ũt + Hpux)

E4 =
1

Hm

(
1
2

(mH2
mp + m2HmpHmmp)

+ mHmmHpp + mHmHmpp + HmHpp

)
uxxkũ(−ũt + Hpux).

Now we estimate each of the Ei. By Young’s inequality, we obtain

|E1| ≤
1
4

∣∣∣∣∣∣−uxt +

(
Hp +

1
2

mHmp

)
uxx

∣∣∣∣∣∣2 +C
∣∣∣∣∣Hpp +

1
2

mHmpp

∣∣∣∣∣2 k2u2
xũ2.

As a result of (H1) and (HM3), we thus obtain

|E1| ≤
1
4

∣∣∣∣∣∣−uxt +

(
Hp +

1
2

mHmp

)∣∣∣∣∣∣2 +C|p|2γ+1. (3.4.12)

Next, to estimate |E2|, we use (3.4.9), (H1) (H3), (HM1), (HM3) and (E1) to obtain

|E2| ≤ C|p|2γ+1. (3.4.13)

For E3, we have

|E3| ≤
1
4

∣∣∣∣∣∣−uxt +

(
Hp +

1
2

mHmp

)
uxx

∣∣∣∣∣∣2 + Ck2

H2
m

(
H2

pm + m2H2
mmp + H2

mp
)
| − ũt + Hpux|

2. (3.4.14)
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Now, recalling that ut = H(p,m), we infer from (H1), (H2), and (3.4.6) that

1
C
|p|γ ≤ | − ũt + Hpux| ≤ C|p|γ. (3.4.15)

Therefore, in view of (H1), (HM1), (HM2), and (E1), as well as the HJ equation, we obtain

|E3| ≤
1
4

∣∣∣∣∣−uxt + (Hp +
1
2

mHmp)uxx

∣∣∣∣∣2 +C|p|2γ+1. (3.4.16)

Finally, for E4, we observe that (3.4.9), (H1), (HM2), (HM3), (E1), and (3.4.15) yield

|E4| ≤ C|p|2γ+1. (3.4.17)

Now, (E) implies that

∣∣∣∣∣−ũt + (Hp +
1
2

mHmp)ux

∣∣∣∣∣2 − 1
4

m2H2
mp p2 + mHmHpp p2

≥

∣∣∣∣∣−ũt + (Hp +
1
2

mHmp)ux

∣∣∣∣∣2 + 1
4C0

m2H2
mp p2 =

∣∣∣∣∣∣−ũt +

(
Hpux +

1
2

mHmp

)
p

∣∣∣∣∣∣2
+

1
C0

(
1
2

mHmp p
)2
≥

1
2

∣∣∣∣∣∣−ũt +

(
Hp +

1
2

mHmp

)
ux

∣∣∣∣∣∣2 + 1
C
| − ũt + Hpux|

2. (3.4.18)

So, as a result of (3.4.11) and (3.4.15) we get

Lu

(
k

1
2

ũ2
)
≤ −

1
2

k

∣∣∣∣∣∣−ũt +

(
Hp +

1
2

mHmp

)
ux

∣∣∣∣∣∣2 − 1
C
|p|2γ+

3
2 + E1 + E2 + E3 + E4. (3.4.19)

Now, since (x0, t0) is an interior maximum point of v, we have Lu(v) ≥ 0. Thus, combining

(3.4.12), (3.4.13), (3.4.16), (3.4.17), (3.4.10) and (3.4.19), we conclude

0 ≤ −
1
C
|p|2γ+

3
2 +C|p|2γ+1,
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which implies

|p| ≤ C.

□

3.4.1 Estimates for MFG with ϵ–penalized terminal condition

In order to obtain classical solutions to (MFGP), it will be necessary to use a natural approximation

method, which was previously used in [324] to obtain weak solutions to the second-order planning

problem. The solution will be obtained as the limit of solutions to standard MFG systems with a

penalized terminal condition. Specifically, we will need to prove estimates for solutions (uϵ ,mϵ)

to 

−uϵt + H(uϵx,m
ϵ) = 0 in QT ,

mϵ
t − (mϵHp(uϵx,m

ϵ))x = 0 in QT ,

mϵ(x, 0) = m0(x), ϵuϵ(x,T ) = mϵ(x,T ) − mT (x) on ∂QT .

(MFGϵ)

As long as uϵ is bounded in L∞(QT ), the limit is expected to solve (MFGP). This estimate is

obtained in the following lemma. While treating this system, we will temporarily assume that

H(0, 0) is finite. This assumption will be removed in the proof of Theorem 3.1.1.

Lemma 3.4.4. For ϵ > 0, let (uϵ ,mϵ) ∈ C2(QT )×C1(QT ) be a classical solution to system (MFGϵ),

and set c1 = min{minTm0,minTmT }, C1 = max{maxTm0,maxTmT }. Assume that H(0, 0) < ∞.

Then there exists a constant C > 0, independent of ϵ, such that

∥uϵ∥L∞(QT ) ≤ C. (3.4.20)

Furthermore, for all ϵ < 1
C , we have

c1
2
≤ mϵ(x, t) ≤ 2C1 for all (x, t) ∈ QT , (3.4.21)
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and

∥mϵ(T, ·) − mT (·)∥∞ ≤ ϵC. (3.4.22)

Proof. As a result of Proposition 3.4.2, since H(0,min
QT

mϵ) ≤ H(0, 0), there exists

C = C(C0,T, |H(0, 0)|, |H(0,max
QT

mϵ)|,C(max
QT

mϵ))

such that

oscQT
(uϵ) ≤ C.

To make this bound on the oscillation independent of ϵ, we must obtain upper bounds on the

density mϵ . Note that, from Corollary 3.3.2, it is enough to bound mϵ(T, ·) from above. To this

end, let M0 := max
T

m0 and, for δ > 0, define

vδ(x, t) = uϵ(x, t) + H(0,M0 + δ)(T − t).

Since D2vδ = D2uϵ , we have that vδ also solves the elliptic equation (Q) in QT . Therefore, the

maximum of vδ, must occur at t = 0 or t = T . If the maximum occurred at t = 0, then at that point

uϵt − H(0,M0+δ) = vδt ≤ 0, vδx = uϵx = 0,

and, hence,

0 ≥ uϵt − H(0,M0 + δ) = H(0,m0) − H(0,M0 + δ),

which is a contradiction because Hm < 0. Therefore, for every δ > 0, the maximum occurs

at t = T , and, letting δ → 0, we see that the same is true for δ = 0. The maximum value

of v(x, t) := uϵ(x, t) + H(0,M0)(T − t) equals the maximum of uϵ(x,T ), since v(x,T ) = uϵ(x,T ).
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Letting x0 ∈ T be a point at which this maximum occurs, it follows that vt(x0,T ) ≥ 0, and therefore

H(0,mϵ(x0,T )) ≥ H(0,M0),

which implies that

mϵ(x0,T ) ≤ M0.

But, since

ϵuϵ(x,T ) = mϵ(x,T ) − mT (x),

we obtain, for each x ∈ T,

ϵuϵ(x,T ) ≤ ϵuϵ(x0,T ) = (mϵ(x0,T ) − mT (x0)) ≤ (M0 − mT (x0)),

and, consequently,

mϵ(x,T ) = ϵuϵ(x,T ) + mT (x) ≤ M0 + mT (x) − mT (x0) ≤ M0 + oscT(mT ).

We have thus shown that the bound on the oscillation of uϵ does not depend on ϵ. Furthermore,

since

ϵuϵ(x,T ) = mϵ(x,T ) − mT (x),

and mϵ(T, ·),mT (·) are both probability densities, we have
∫
T

uϵ(·,T ) = 0, so there must exist some

xϵ ∈ T such that

uϵ(xϵ ,T ) = 0.

This implies that, for any (x, t) ∈ QT ,

−oscQT
(uϵ) ≤ uϵ(x, t) − uϵ(xϵ ,T ) ≤ oscQT

(uϵ),
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which shows (3.4.20). To prove (3.4.21), we require C to be large enough to satisfy 1
C ∥u

ϵ∥∞ < 1
2c1.

Then for all ϵ < 1
C , we have

mϵ(x,T ) = mT (x) + ϵuϵ(x,T ) ≥ mT (x) −
1
2

c1 ≥
1
2

c1.

The upper bound for mϵ(x,T ) is obtained similarly. We now conclude by Corollary 3.3.2, since the

maxima and minima of mϵ both occur at t = 0, t = T . Finally, (3.4.22) follows immediately from

the terminal condition in (MFGϵ) and (3.4.20). □

While the usefulness of (MFGϵ) will mainly be as a tool to obtain existence for (MFGP), it can

also be used to provide an interesting counterexample. Indeed, one should note that (MFGϵ) is

not itself a planning problem, but rather a special case of a standard MFG system, which would

fit in the framework of (MFG) if the terminal cost function g were allowed to depend on x. Such

terminal conditions are treated in [316, 317] under the blow-up assumption (3.1.1), as well as the

requirement that

g(x, 0) is constant, or lim
m→0+

g(x,m) = −∞,

which is a slightly weaker version of (3.1.1). The following proposition illustrates the fact that,

when such assumptions do not hold, the solution may fail to exist.

Proposition 3.4.5. Assume that H(0, 0) < ∞, and that the condition mT > 0 in (M1) does not

hold, and mT (x0) < 0 for some x0 ∈ T. Then there exists C > 0 such that, for all 0 < ϵ < 1
C , there

exists no classical solution to (MFGϵ).

Proof. We assume, by contradiction, that there exists a decreasing sequence ϵn > 0, with lim
n→∞

ϵn =

0, such that, for each positive integer n, there exists a solution (un,mn) to system (MFGϵn). Since

H(0, 0) < ∞, the proof of Lemma 3.4.4 shows that, for some constant C > 0 independent of n ∈ N,

we have ∥un∥∞ ≤ C. However, this implies that

∥mn(T, ·) − mT (·)∥∞ ≤ Cϵn,
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while mn(x0,T ) ≥ 0 > mT (x0), which is a contradiction. □

We finish our estimates for the ϵ–penalized problem with an analogue of Proposition 3.4.3.

Lemma 3.4.6. For ϵ > 0, let (uϵ ,mϵ) ∈ C3,α(QT ) × C2,α(QT ) be a classical solution to system

(MFGϵ), and assume that H(0, 0) < ∞. Let c1 and C1 be as in Corollary 3.3.2. There exists a

constant C > 0, independent of ϵ, such that, for ϵ < 1
C ,

∥Duϵ∥∞ ≤ C.

Proof. We first observe that, by Corollary 3.3.2 and Lemma 3.4.4, ∥mϵ∥QT
and ∥(mϵ)−1∥QT

are

bounded a priori in terms of C1 and c−1
1 . The proof of Proposition 3.4.3 may thus be repeated here,

with Lemma 3.4.4 replacing the use of Proposition 3.4.2, with one exception. Namely, the term

−Hmuϵxmϵ
x in (3.4.7) should be estimated as

−Hmuϵxmϵ
x = −ϵHm(uϵx)2 − Hmuϵ(mT )x ≥ −Hmuϵ(mT )x,

which, in view of (3.4.8), yields the gradient bound in the case t0 = T . The rest of the argument

follows unchanged. □

3.5 Existence of classical solutions

In the previous sections, a priori L∞−bounds were obtained for u, Du, m, and m−1. This is already

sufficient to obtain classical solutions to (MFG), following the arguments of [316, 317]. The

existence of solutions to (MFGP), on the other hand, is a more delicate issue, because the Neumann

type boundary condition that appears in the linearization makes the latter non–invertible. Namely,
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the linearization of (Q) is



Lu(w) = f in QT ,

(−1,Hp(ux,m)) · Dw = g1(x) at t = 0,

(1,−Hp(ux,m)) · Dw = g2(x) at t = T,

which is an oblique boundary value problem that is only solvable for certain functions f , g1, g2

satisfying a compatibility condition that itself depends on u. This failure of invertibility precludes

the direct use of the implicit function theorem and thus of the method of continuity, which means

a different approach is needed. Indeed, we will obtain the solution as the limit as ϵ → 0 of the

solution to the ϵ–penalized problem (MFGϵ). We begin by noting, in the following lemma, that

for ϵ small enough, the solutions to (MFGϵ) are a priori uniformly bounded in C1,β(QT ), for some

0 < β < 1, and that the system thus has a classical solution.

Lemma 3.5.1. Let C be as in Lemma 3.4.4. For all 0 < ϵ < 1
C , (MFGϵ) has a unique smooth

solution (uϵ ,mϵ) ∈ C3,α(QT ) × C2,α(QT ). Moreover, there exist constants K > 0, 0 < β < 1,

independent of ϵ, such that

∥uϵ∥C1,β ≤ K. (3.5.1)

Proof. The a priori C1−bounds on uϵ , as well as L∞−bounds on mϵ and (mϵ)−1 (and thus on the

ellipticity constants of the system), were all established in Lemmas 3.4.4 and 3.4.6. The Hölder

estimate for the gradient then follows in the same way as in [316, Lem. 4.1], by directly applying

the classical C1,α–estimates for quasilinear elliptic equations with oblique boundary conditions

(see [292, Lem. 2.3]). Indeed, it suffices to verify that, for (x, t, z, p, s) ∈ T × {0,T } × R × R × R,

the boundary condition

Bϵ(x, 0, z, p, s) = −s + H(p,m0(x)), Bϵ(x,T, z, p, s) = s − H(p, ϵz + mT (x)),
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is oblique. For this purpose, we let ν(x, t) denote the outward unit normal vector at (x, t) ∈ ∂QT .

Then we have

D(p,s)B
ϵ(x, 0, z, p, s) · ν(x, 0) = −Bϵs(x, 0, z, p, s) = 1 > 0,

D(p,s)B
ϵ(x,T, z, p, s) · ν(x,T ) = −Bϵs(x,T, z, p, s) = 1 > 0

and thus the a priori estimate (3.5.1) follows. The proof of existence is then the same as in [316,

Thm. 1.1] through the method of continuity. □

We now have enough information on the ϵ–penalized problem to prove our first theorem.

Proof of Theorem 3.1.1. We initially assume that m0,mT ∈ C∞(T). The proof of part (ii), corre-

sponding to (MFG), is identical to the one carried out in [316, Thm. 1.1]. We simply note that the

condition lim
m→0+

H(p,m) = +∞ in that proof was only used to guarantee the existence of a positive

lower bound for the density, which in turn makes the equation (Q) uniformly elliptic. In our case,

the lower bound is a consequence of Corollary 3.3.2 and Proposition 3.4.1.

Now, for the case of (MFGP), we remark first that uniqueness of u, up to a constant, follows

by the standard Lasry-Lions monotonicity method. To establish existence, we consider first the

approximate system (MFGϵ), under the assumption H(0, 0) < ∞. We assume that ϵ > 0 is small

enough for Lemma 3.5.1 to guarantee the existence of solutions (uϵ ,mϵ). Letting 0 < β < 1 be as in

Lemma 3.5.1, we also have (3.5.1), for some constant K > 0 independent of ϵ. We infer that there

exist a subsequence {un}n ⊂ {uϵ}ϵ , and u ∈ C1,α(QT ), such that un → u uniformly. Furthermore,

in view of Lemma 3.4.4, there exists C > 0, independent of ϵ, such that

1
C
≤ mϵ(x, t) ≤ C for all (x, t) ∈ QT .

We let (A, B) and (An, Bn), be the quasilinear operators and boundary conditions corresponding,
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respectively, to u and un. Then one has

(An, Bn)→ (A, B) locally uniformly,

DqBn · ν = 1.

Hence, by Fiorenza’s convergence theorem for elliptic equations with oblique boundary conditions

(see [316, Thm. 2.5], [210, Chapter 17, Lemma 17.29]), we obtain un → u in C2,α(QT ), and u

solves (Q), with the boundary condition corresponding to (MFGP). The C3,α regularity (and, in

fact, uniform convergence in C3,α) then follows readily from the standard Schauder estimates for

linear oblique problems, as in [316, Thm. 1.1].

The last step will be to remove the assumption that m0 ∈ C∞(T) and, for (MFGP), the assump-

tions that mT ∈ C∞(T) and H(0, 0) < ∞. We will explain the argument for (MFGP), with the

treatment of (MFG) being completely analogous. Consider, for δ > 0, the modified Hamiltonians

Hδ(p,m) := H(p,m + δ), which satisfy (H) and (E), uniformly in δ, as well as Hδ(0, 0) < ∞,

and a sequence of C∞ densities (mδ
0,m

δ
T ), uniformly bounded in C2,α and bounded away from 0,

converging uniformly to (m0,mT ). Let (uδ,mδ) be the corresponding solutions to



−uδt + Hδ(uδx,m
δ) = 0 in QT ,∫ T

0

∫
T

uδ = 0,

mδ
t − (mδHδ

p(uδx,m
δ))x = 0 in QT ,

mδ(·, 0) = mδ
0, mδ(·,T ) = mδ

T on T.

(3.5.2)

Propositions 3.4.3 and 3.4.2, and Corollary 3.3.2, yield uniform C1−bounds on uδ, and thus, as in

the proof of Lemma 3.5.1, uniform C1,β bounds for some 0 < β < 1. We may thus conclude by

letting δ→ 0 and applying Fiorenza’s convergence result as above. □
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3.6 Regularity of weak solutions

We now study the existence and regularity of solutions to (MFG) and (MFGP) under the weaker

assumption that, for some κ > 0

∫
T

1
mκ

0(x)
dx < ∞,

∫
T

1
mκ

T (x)
dx < ∞.

We note that, in particular, the above conditions allow for the densities to vanish at a set of measure

zero. This, in general, creates significant issues, because (Q) is no longer uniformly elliptic. The

key estimate that will allow us to prove smoothness in this setting is an interior lower bound on

the density which depends only on t−1, ∥m−κ0 ∥1 (and (T − t)−1, ∥m−κT ∥1, in the case of (MFGP)).

Indeed, this yields uniform ellipticity of (Q) away from t = 0 and t = T .

We begin by giving the standard definition of a weak solution (see, for instance, [81, 316, 328]).

Definition 3.6.1 (Definition of weak solution). A pair (u,m) ∈ BV(QT )× L∞+ (QT ) is called a weak

solution to (MFG) (respectively (MFGP)) if the following conditions hold:

(i) ux ∈ L2(QT ), u ∈ L∞(QT ), m ∈ C0([0,T ]; H−1(T)).

(ii) u satisfies the HJ inequality

−ut + H(ux,m) ≤ 0 in QT ,

in the distributional sense.

(iii) m satisfies the continuity equation

mt − (mHp(ux,m))x = 0 in QT , (3.6.1)

in the distributional sense.
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(iv) We have m(·,T ) ∈ L∞(T). Moreover, m(·, 0) = m0 in H−1(T) and u(·,T ) = g(m(·,T )) in the

sense of traces (respectively, m(·,T ) = mT in H−1(T)).

(v) The following identity holds:

∫ ∫
QT

m(x, t)(H(ux,m) − Hp(ux,m)ux)dxdt =
∫
T

(m(x,T )u(x,T ) − m0(x)u(x, 0))dx.

The following lemma will be needed to show that, for solutions to (MFG), our interior regularity

results may be extended up to time t = T .

Lemma 3.6.2. Let (u,m) be a smooth solution to (MFG) under the assumptions of Theorem 3.1.1

and assume that (3.1.3) holds. Then, for every convex function h ∈ C2(0,∞), the map

t →
∫
T

h(m(x, t))dx

is decreasing. Moreover, there exists a constant C = C(C0, ∥g′∥
−(γ−1)
L∞([min m0,max m0])) such that

d
dt

∫
T

h(m(x,T ))dx +
1
C

∫
T

h′′(m(x,T ))|mx(x,T )|γ ≤ 0.

Proof. In view of Proposition 3.3.1, we have that

d2

dt2

∫
T

h(m(x, t))dx ≥ 0,

and, thus, the function

d(t) :=
d
dt

∫
T

h(m(x, t))dx

is increasing. We then infer that the monotonicity will follow if we show that

d(T ) ≤ 0.
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Since u(·,T ) = g(m(·,T )), and m satisfies the continuity equation, we have

d(T ) =
∫
T

h′(m(x,T ))mt(x,T )dx =
∫
T

h′(m)(mHp(ux,m))xdx = −
∫
T

h′′(m)mxHp(mxg′(m),m).

Now, as a result of (3.1.3) and (H1),

Hp(mxg′(m),m)(mxg′(m)) ≥
1
C
|mxg′(m)|γ,

and, therefore,

d(T ) ≤ −
1
C

∫
T

h′′(m)|mx|
γ.

□

We are now ready to obtain the interior lower bounds on m. Our method of proof relies on the

displacement convexity formula (3.3.2), and uses similar techniques to [328, Prop. 5.2].

Proposition 3.6.3. Let (u,m) be a smooth solution to (MFG) or (MFGP), under the same assump-

tions as in Theorem 3.1.1. Assume, furthermore, that (HW) holds and, in the case of (MFG),

assume that (3.1.3) holds. Let

β =
2

κ − s − 1
,

and let δ > 0. Then, there exist a constant C = C(C0∥m−κ0 ∥L1 , ∥m−κT ∥L1 , δ−1) such that

m(x, t) ≥
1
C

(
1

tβ+δ
+

1
(T − t)β+δ

)−1
. (3.6.2)

Furthermore, in the case of (MFG), one has

m(x, t) ≥
1
C

tβ+δ. (3.6.3)

Proof. Using the displacement convexity formula (3.3.2) for h(m) = 1
mκ , we have, for each t ∈
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[0,T ], ∫
T

1
mκ(x, t)

dx ≤ max
∫
T

1
mκ

0(x)
dx,

∫
T

1
mκ(x,T )

dx
 . (3.6.4)

Combined with Lemma 3.6.2 (for the case of (MFG) where m(·,T ) is not prescribed), this yields

sup
t∈[0,T ]

∥m−κ(t)∥1 ≤ C. (3.6.5)

Next, for any p > 1, we define the function

ϕ(t) :=
∫
T

m−pκ(t)dx.

Using Proposition 3.3.1 with h(m) = m−pκ, as a result of (E), we obtain

d2

dt2

∫
T

m−pκ(t)
pκ(pκ + 1)

dx ≥ −
1
C

∫
T

m−pκ−1HppHm(mx)2dx ≥
∫
T

1
C

m−pκ−1+s(mx)2dx

≥
1

C−pκ+s+1
2 )2

∫
T

((
m
−pκ+s+1

2

)
x

)2
dx.

As a result, letting

Cp :=
C(pκ − s − 1)2

4pκ(pκ + 1)
,

λ :=
−pκ + s + 1

2
, (3.6.6)

we have shown that

Cpϕ
′′(t) ≥

∫
T

(mλ)2
xdx. (3.6.7)

From (W), and the fact that p > 1, we see that λ < 0. For each t ∈ [0,T ], since m(·, t) is a

probability measure, there exists a point xt
0 such that m(xt

0, t) = 1. By the fundamental theorem of

calculus, ∥∥∥∥mλ(t) − 1
∥∥∥∥2

∞
=

∥∥∥∥mλ(t) − m(xt
0, t)

λ
∥∥∥∥2

∞
≤ C

∫
T

(mλ)2
xdx, (3.6.8)
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and therefore ∥∥∥∥ 1
m

∥∥∥∥2|λ|

∞
≤ C

( ∫
T

(mλ)2
xdx + 1

)
. (3.6.9)

Now, using (3.6.5), we obtain

ϕ =

∫
T

1
mκp ≤

∫
T

1
mκ

∥∥∥∥∥ 1
m

∥∥∥∥∥κ(p−1)

∞
≤ C

∥∥∥∥∥ 1
m

∥∥∥∥∥κ(p−1)

∞
,

and, consequently,

C−rϕr ≤

∥∥∥∥∥ 1
m

∥∥∥∥∥2|λ|

∞
, (3.6.10)

where r := 2|λ|
κ(p−1) . From condition (W), we see that r > 1. Combining (3.6.7), (3.6.9), and

(3.6.10), we obtain

Cp
(
ϕ′′(t) + 1

)
−C−rϕ(t)r ≥ 0,

that is, for some constant C = C(p),

−ϕ′′(t) +
1
C
ϕr ≤ C. (3.6.11)

A straightforward computation then shows that the functions

ψ1(t) = Apt−pκβ + Kp,

ψ2(t) = Ap(T − t)−pκβ + Kp,

ψ(t) = ψ1(t) + ψ2(t),

are supersolutions of (3.6.11) for large enough Ap,Kp. Therefore, we have

∫
T

m−pκ(t) ≤ Ap(t−pκβ + (T − t)−pκβ) + 2Kp. (3.6.12)
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Now, going back to (3.6.7) and (3.6.9), we may write

∥∥∥∥∥ 1
m

∥∥∥∥∥2|λ|

∞
(t) ≤ C

(
d2

dt2

∫
T

m−pκ + 1
)
. (3.6.13)

In view of (3.3.2), for q > 0, the map

t 7→
∫
T

m−q(t) (3.6.14)

is convex in [0,T ]. Thus, fixing t0 ∈ (0, T
2 ], we infer that, for each t ∈ [t0,T − t0],

(∫
T

m−2|λ|q(t)
)1

q
≤

2
t0

max

∫ t0

t0
2

(∫
T

m−2|λ|q
) 1

q
,

∫ T−
t0
2

T−t0

(∫
T

m−2|λ|q
)1

q


≤
2
t0

∫ T−
t0
2

t0
2

(∫
T

m−2|λ|q
)1

q
.

Letting q→ ∞, we obtain

∥∥∥∥m−1
∥∥∥∥2|λ|

L∞(T×[t0,T−t0])
≤

2
t0

∫ T−
t0
2

t0
2

∥∥∥∥m−1(t)
∥∥∥∥2|λ|

∞
dt. (3.6.15)

Now, letting ζ ∈ C∞(QT ) be a test function, supported in [ t0
4 ,T −

t0
4 ], such that 0 ≤ ζ ≤ 1, ζ ≡ 1 in

[ t0
2 ,T −

t0
2 ], and

∫ T
0 |ζ

′′(t)|dt ≤ C
t0 , we see that (3.6.15) implies

∥∥∥∥m−1
∥∥∥∥2|λ|

L∞(T×[t0,T−t0])
≤

2
t0

∫ T

0

∥∥∥∥m−1
∥∥∥∥2|λ|

∞
(t)ζ(t)dt. (3.6.16)

Hence, recalling (3.6.13) and integrating by parts twice, we infer from (3.6.12) that

∥∥∥∥m−1
∥∥∥∥2|λ|

L∞(T×[t0,T−t0])
≤

C
t0

(∫ T

0

∫
T

(m−pκζ′′) +CT
)
≤ C

 1

t2+pκβ
0

+
1
t0

 ,
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which yields ∥∥∥∥m−1
∥∥∥∥L∞(T×[t0,T−t0])

≤ C

 1

t
2+pκβ

2|λ|
0

+
1

t
1

2|λ|
0

 .
Now, recalling (3.6.6), we see that

lim
p→∞

1
2|λ|
= 0 and lim

p→∞

2 + pκβ
2|λ|

= β. (3.6.17)

Thus, we may fix p chosen large enough that 2+κβ
2|λ| < β + δ, and, as a result of (3.6.17),

∥∥∥∥m−1
∥∥∥∥L∞(T×[t0,T−t0])

≤ C
1

tβ+δ0

.

This implies (3.6.2). Now, for the case of (MFG), we simply observe that, from Lemma 3.6.2, the

map (3.6.14) is non-increasing on [0,T ], and, thus, (3.6.15) may be strengthened to

∥∥∥∥m−1
∥∥∥∥2|λ|

L∞(T×[t0,T ])
≤

2
t0

∫ T

t0
2

∥∥∥∥m−1
∥∥∥∥2|λ|

∞
(t)dt.

□

The following lemma is a basic computation exploiting (E1), and will be used in the proof of

Theorem 3.1.2 to estimate the terms arising from the Lasry-Lions monotonicity method.

Lemma 3.6.4. There exists a constant C = C(C0) > 0 such that, given −∞ < p0 < p1 < ∞ and

0 < m0 < m1 < ∞, we have

(
m1Hp(p1,m1) − m0Hp(p0,m0)

)
(p1 − p0) −

(
H(p1,m1) − H(p0,m0)

)
(m1 − m0)

≥
m1 + m0

C
(p1 − p0)2 +

k
C

(m1 − m0)2, (3.6.18)
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where k = min[p0,p1]×[m0,m1](−Hm(p,m)). Moreover, if H satisfies (HW), then

(
m1Hp(p1,m1) − m0Hp(p0,m0)

)
(p1 − p0) −

(
H(p1,m1) − H(p0,m0)

)
(m1 − m0)

≥
m1 + m0

C
(p1 − p0)2 +

1
C(s + 1)

(ms+1
1 − ms+1

0 )(m1 − m0). (3.6.19)

Proof. Following the technique carried out in [301], for z ∈ [0, 1], we define

∆p = p1 − p0 ∆m = m1 − m0, pz = p0 + z∆p, ms = m0 + z∆m.

We then let

ϕ(z) = (mzHp(pz,mz) − m0Hp(p0,m0))∆p − (H(pz,mz) − H(p0,m0))∆m,

and differentiation yields

ϕ′(z) = mzHpp(∆p)2 + mzHmp∆m∆p − Hm(∆m)2.

Now, in view of (E1), we have, for some constant C > 0,

−Hm ≥
1

4Hpp
mzH2

mp(1 +
1
C

) −
1
C

Hm.

Therefore,

ϕ′(z) ≥ mz

 1√
1 + 1

C

√
Hpp∆p +

√
1 + 1

C

2
√

Hpp
Hmp∆m


2

+ mzHpp(∆p)2(1 −
1

1 + 1
C

) −
1
C

Hm(∆m)2. (3.6.20)
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If (W) holds, then, up to increasing the constant C > 0, as well as using (H1) and (HW), we obtain

ϕ′(z) ≥
1
C

(mz(∆p)2 + ms
z(∆m)2),

and integrating over [0, 1] then yields (3.6.19). The proof of (3.6.18) follows from (3.6.20) in the

same way. □

Before proving Theorem 3.1.2, we remind the reader that assumption (M) will not be in place, and

will be instead replaced by (W).

Proof of Theorem 3.1.2. For ϵ ∈ (0, 1), let mϵ
0, mϵ

T be smooth, positive densities such that, for

θ ∈ {0,T },

mϵ
θ → mθ a.e. inT, ∥mϵ

θ∥∞ ≤ C and ∥(mϵ
θ)
−κ∥1 ≤ C,

where C > 0 is a constant independent of ϵ. Let (uϵ,1,mϵ,1) be a smooth solution to (MFGP)

obtained from taking mϵ
0 and mϵ

T , respectively, as the initial and terminal densities. Similarly, let

(uϵ,2,mϵ,2) be the smooth solution to (MFG) corresponding to the initial density mϵ
0. The existence

and regularity of such solutions is guaranteed by Theorem 3.1.1. We may further choose the uϵ,1

to be normalized so that
∫
T

uϵ,1(T ) = 0.

As in the proof of Proposition 3.6.3, we obtain, for some C > 0 independent of ϵ and for i ∈ {1, 2},

∥(mϵ,i)−κ∥1 ≤ C. (3.6.21)

On the other hand, Corollary 3.3.2 and Proposition 3.4.1 yield

∥mϵ,i∥∞ ≤ C, (3.6.22)
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and (3.6.22), (HW) and Proposition 3.6.3 imply that

∫ T

0
|H(0,min

T
mϵ,i(s)|ds ≤ C. (3.6.23)

Thus, as a result of (GW), Proposition 3.4.1, and Proposition 3.4.2,

∥uϵ,i∥∞ ≤ C. (3.6.24)

We will first observe that, up to a subsequence, there is convergence to a weak solution. Indeed,

given 0 < ϵ, ϵ′ < 1, applying the Lasry-Lions monotonicity method to the corresponding systems

yields, for i ∈ {1, 2},

∫
T

(uϵ,i(T ) − uϵ
′,i(T ))(mϵ,i(T ) − mϵ′,i(T )) −

∫
T

(uϵ,i(0) − uϵ
′,i(0))(mϵ,i(0) − mϵ′,i(0))

+

∫ ∫
QT

(
mϵ,iHp(uϵ,ix ,m

ϵ,i) − mϵ′,iHp(uϵ
′,i

x ,mϵ′,i)
)

(uϵ,ix − uϵ
′,i

x )

−

(
H(uϵ,ix ,m

ϵ,i) − H(uϵ
′,i

x ,mϵ′,i)
)

(mϵ,i − mϵ′,i) = 0. (3.6.25)

Lemma 3.6.4 therefore yields

∫
T

(uϵ,i(T ) − uϵ
′,i(T ))(mϵ,i(T ) − mϵ′,i(T )) −

∫
T

(uϵ,i(0) − uϵ
′,i(0))(mϵ,i(0) − mϵ′,i(0))

+

∫ ∫
QT

mϵ,i + mϵ′,i

C
(uϵ,ix − uϵ

′,i
x )2 +

1
C(s + 1)

((mϵ,i)s+1 − (mϵ′,i)s+1)(mϵ,i − mϵ′,i)
 ≤ 0.

(3.6.26)

Proceeding as in [316, Thm. 1.2], it readily follows that, for i ∈ {1, 2}, as ϵ → 0, (uϵ,i,mϵ,i)

converges to a weak solution (ui,mi).
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It remains to show the interior regularity. For δ > 0, we define

I1,δ = [δ,T − δ], I2,δ = [δ,T ].

By Proposition 3.6.3, there exists C = C(δ−1) such that, for ti ∈ Ii,δ/4,

mϵ,i(·, ti) ≥
1
C
. (3.6.27)

We must first obtain a priori gradient bounds for uϵ,i on Ii,δ/2. Setting

ϕ1(t) = (t − δ/4)−2/(γ−1) + (T − δ/4 − t)−2/(γ−1) ϕ2(t) = (t − δ/4)−2/(γ−1),

we go through the steps of Proposition 3.4.3, replacing the function v by

vi(x, t) =
1
2

(uϵ,ix )2 +
1
2

(̃uϵ,i)2 − Kϕi(t),

where K > 0, ũϵ,i is defined as in Proposition 3.4.3. We consider the maximum point (x0, t0) of vi

in T× Ii,δ/4. In the case of (MFGP), namely i = 1, this maximum must be attained in the interior of

Ii, since ϕi is unbounded near the endpoints. When i = 2, the maximum may be attained at t = T ,

and the proof that |p| ≤ C in this case follows through unchanged from Case 1 of Proposition 3.4.3.

If the maximum is achieved at an interior time, the steps of Proposition 3.4.3 yield that if vi(x0, t0)

is large enough, then

0 ≤ −|p|2γ + |p|2γ−2 − K(−ϕ′′i +
1
C

Kγϕ
γ
i −Cϕi).

Similarly to Proposition 3.6.3, we see that, if K is chosen large enough, ϕi must be a supersolution

to

−ϕ′′i +
1
C

Kγϕ
γ
i −Cϕi = 0,
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which then implies p ≤ C, and thus |uϵ,ix | is bounded on Ii,δ/2. In view of (3.6.27) and (3.6.22),

|uϵ,it | = |H(uϵ,ix ,m
ϵ,i)| is also bounded on Ii,δ/2. That is, we have

∥uϵ,i∥C1(T×Ii,δ/2) ≤ C. (3.6.28)

The interior C1,α-estimates for quasilinear elliptic equations (see [210, Chapter 13, Thm. 13.6]),

followed by the interior Schauder estimates (see [280, Chapter, 2, (1.12)]) then yield, for some

C = C(δ−1), and for i ∈ {1, 2},

∥uϵ,i∥C3+α(T×I1,δ) ≤ C. (3.6.29)

For i = 1, by virtue of the Arzelà–Ascoli theorem, we may finish the proof by simply letting ϵ → 0.

On the other hand, for i = 2 (that is, the case of (MFG)), we require estimates up to the terminal

time T . We first observe that (3.6.27), (3.6.22), and (3.6.29) imply that uϵ,2 solves, in I2,δ × T,

a system of the form (MFG), where the initial density mϵ,2(·, δ) is bounded below by a positive

constant, and bounded above in C2,α(T). Moreover, as in Lemma 3.5.1, (3.6.28) implies that uϵ,2

is bounded in C1,β for some 0 < β < 1. We may now conclude through the same convergence

argument as in the proof of Theorem 3.1.1. □

Finally, by requiring some further regularity on the marginals, we establish additional Sobolev

regularity for the weak solutions.

Proposition 3.6.5. Let m0,mT satisfy (m0)xx, (mT )xx ∈ L1(T). Let (u,m) be a weak solution to

(MFG) or (MFGP) under the assumptions of Theorem 3.1.2. Then, for some constant C > 0 we

have:

• In the case of (MFG),

∫
T

g′(m(x,T ))|mx(x,T )|2 +
∫ T

0

∫
T

mHpp(uxx)2 + ms(mx)2dxdt ≤ C, (3.6.30)
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where C = C(∥u∥∞, ∥(m0)xx∥1,C0).

• In the case of (MFGP),

∫ T

0

∫
T

mHpp(uxx)2 + ms(mx)2dxdt ≤ C, (3.6.31)

where C = C(∥u∥∞, ∥(m0)xx∥1, ∥(mT )xx∥1,C0).

Proof. We will show the result in the case where (u,m) is smooth, since the general case follows

by considering the approximations employed in the proof of Theorem 3.1.2. Differentiating with

respect to x the (MFG) or (MFGP), we obtain


−uxt + Hp(ux,m)uxx + Hm(ux,m)mx = 0 in QT ,

mxt − (mxHp(ux,m) + mHpp(ux,m)uxx + mHpm(ux,m)mx)x = 0 in QT .

(3.6.32)

Testing against ux in the equation for mx above we obtain

∫
T

mx(T )ux(T ) −
∫
T

mx(0)ux(0) +
∫ T

0

∫
T

(mx(−uxt + uxxHp(ux,m))

+ mu2
xxHpp(ux,m) + muxxHpm(ux,m)mx) = 0, (3.6.33)

and, therefore,

∫
T

mx(T )ux(T ) +
∫ T

0

∫
T

mu2
xxHpp − Hm(mx)2

= −

∫
T

u(0)(m0)xxdx −
∫ T

0

∫
T

muxxHpmmx. (3.6.34)

Now, observe that

∣∣∣∣ ∫
T

u(0)(m0)xxdx
∣∣∣∣ ≤ ∥u∥∞∥(m0)xx∥1,

∣∣∣∣ ∫
T

u(T )(mT )xxdx
∣∣∣∣ ≤ ∥u∥∞∥(mT )xx∥1. (3.6.35)
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Additionally, as a result of (E1), we infer that, for δ ∈ (0, 1),

∣∣∣∣muxxHpmmx

∣∣∣∣ ≤ (1 − δ)mu2
xxHpp +

1
4(1 − δ)Hpp

m|Hpm|
2(mx)2

≤ (1 − δ)mu2
xxHpp −

1

(1 − δ)(1 + 1
C0

)
Hm(mx)2. (3.6.36)

We choose δ > 0 small enough so that

1

(1 − δ)(1 + 1
C0

)
< 1.

Using (3.6.35) and (3.6.36) in (3.6.34), we obtain the following. In the case of (MFG), we have

∫
T

g′(m(T ))(mx(T ))2dx +
∫ T

0

∫
T

mHpp(uxx)2dx − Hm(mx)2dx ≤ C

while in the case of (MFGP), we have

∫ T

0

∫
T

mHpp(uxx)2dx − Hm(mx)2dx ≤ C.

We conclude by using the fact that H satisfies (HW). □

3.7 Long time behavior and the infinite horizon problem

In this section, we will characterize the behavior, as T → ∞, of solutions to (MFG) and (MFGP).

First, we establish the turnpike property with an exponential rate of convergence. This property

shows that, for large values of T , the players spend most of their time close to the equilibrium

m ≡ 1.

Lemma 3.7.1. Let (u,m) be a solution to (MFG) or (MFGP), let T > 1, and set

c1 = min(min m0,min mT ), C1 = max(max m0,max(mT )).
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Then there exist constants C, ω > 0, with

C = C(C0,C1, c
−1
1 , ∥C∥L∞([c1,C1]), ∥(m0)x∥∞, ∥(mT )x∥∞, ∥(g′)−(γ−1)∥L∞([min m0,max m0]))

and

ω−1 = ω−1(C0, c
−1
1 ,C1, ∥C∥L∞([c1,C1])),

such that

∥m(t) − 1∥L∞(T) + ∥ux(t)∥L∞(T) ≤ C(e−ωt + e−ω(T−t)), t ∈ [0,T ]. (3.7.1)

If (u,m) solves (MFG), and (3.1.3) holds, we have

∥m(t) − 1∥L∞(T) + ∥ux(t)∥L∞(T) ≤ Ce−ωt, t ∈ [0,T ]. (3.7.2)

Proof. As in previous arguments, we recall that the constant C may increase at each step. For each

k ∈ N, Proposition 3.3.1 yields
d2

dt2

∫
T

(m − 1)2kdx ≥ 0, (3.7.3)

and, as a result of (L) and Corollary 3.3.2,

d2

dt2

∫
T

(m − 1)2dx ≥
∫
T
−2mHmHppm2

xdx ≥
1
C

∫
T
|(m − 1)x|

2 dx.

Since
∫
T

m(·, t) ≡ 1, arguing in the same way as in (3.6.8), we obtain

d2

dt2

∫
T

(m − 1)2dx ≥
1
C

∥∥∥∥m − 1
∥∥∥∥2

∞
.

Therefore, setting

ϕ(t) :=
∫
T

(m(t) − 1)2dx,

121



we have

−ϕ′′ +
1
C
ϕ ≤ 0. (3.7.4)

Moreover, if (u,m) solves (MFG) and (3.1.3) holds, up to increasing the value of C, Lemma 3.6.2

implies that

ϕ′(T ) ≤ −
1
√

C
ϕ(T ). (3.7.5)

We now fix the choiceω = 1
2
√

C
(the value of C may still increase in subsequent steps, but the value

of ω will not). The comparison principle applied to (3.7.4) then implies that, for each t ∈ [0,T ],

ϕ(t) ≤ ϕ(0)e−2ωt + ϕ(T )e−2ω(T−t) ≤ C(e−2ωt + e−2ω(T−t)). (3.7.6)

Similarly, if (u,m) solves (MFG) and (3.1.3), then (3.7.4), coupled with the Robin boundary con-

dition (3.7.5), readily implies that

ϕ(t) ≤ ϕ(0)e−2ωt ≤ Ce−2ωt. (3.7.7)

By using the same convexity arguments as in (3.6.16), in view of (3.7.3), we have

∥m(t) − 1∥2∞ ≤ C
∫ t+ 1

2

t− 1
2

∥m(s) − 1∥∞(s)2ds ≤ C
∫ t+1

t−1

∫
T

(m − 1)2 = C
∫ t+1

t−1
ϕ(s)ds. (3.7.8)

We now turn our attention to estimating ux. Fixing t ∈ [1,T − 1], as a result of (H1), Proposition

3.3.1, and Corollary 3.3.2, we obtain, for s ∈ [t − 1, t + 1],

1
C

∫
T

u2
xx(s) ≤

d2

ds2

∫
T

(m(s) − 1)2.

Thus, testing against a bump function ζ ≥ 0, which is supported on [t − 1, t + 1], and identically
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equals 1 on [t − 1
2 , t +

1
2 ], we get

∫ t+1
2

t−1
2

∫
T

u2
xx ≤ C

∫ t+1

t−1

∫
T

(m − 1)2ζ′′ ≤ C
∫ t+1

t−1
ϕ(s)ds. (3.7.9)

Differentiating (Q) with respect to x, one sees that v = ux solves a linear elliptic equation of the

form

−Tr(A(x, t)D2v) + b(x, t) · Dv = 0.

Thus, v satisfies the maximum and minimum principles on compact subsets of QT . Applying

this observation to T × [t − s, t + s], for s ∈ (0, 1
2 ), as well as the fact that, for every t ∈ [0,T ],

{x ∈ T : ux(x, t) = 0} , ∅, we have

oscTv(t) ≤ oscTv(t + s) + oscTv(t − s) ≤
∫
T
|uxx(t + s)| +

∫
T
|uxx(t − s)|.

Integrating in s then yields

oscTux(t) ≤
∫ t+1

2

t−1
2

∫
T
|uxx|,

and, thus, as a result of (3.7.9) and the Cauchy-Schwarz inequality,

∥ux(t)∥2∞ ≤ C
∫ t+1

t−1
ϕ(s)ds. (3.7.10)

Now, adding (3.7.8) and (3.7.10), followed by (3.7.6), we obtain (3.7.1) for t ∈ [1,T−1]. Similarly,

when (u,m) solves (MFG) and (3.1.3) holds, (3.7.7) yields (3.7.2) for t ∈ [1,T − 1]. We observe

that, for t ∈ [0,T ]\[1,T − 1], the bounds on ∥m(t) − 1∥∞ given by (3.7.1) and (3.7.2) hold trivially,

up to increasing the value of C. Let us see that the same is true for the bounds on ∥ux(t)∥∞ on the

interval [0, 1]. Indeed, we may simply follow the proof of Proposition 3.4.3, applied to the MFG

system on the domain T × [0, 1], with the only change being on Case 1 of that proof, that is, when

the maximum value is attained at t = 1. For this case, we may simply use the fact that, as a result
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of (3.7.1) holding for t = 1, |ux(·, 1)| is bounded. Thus, if we take T = 1 in Proposition 3.4.2, this

yields a bound on ∥ux∥T×[0,1] that depends only on C0, ∥m∥L∞(QT ), ∥m
−1∥L∞(QT ), ∥(m0)x∥∞, and

∥C∥L∞([min m,max m]). A similar argument may be followed on T × [T − 1,T ], which completes the

proof. □

Having established the turnpike property, we now follow the program developed in [122] to study

the long time behavior. In order to characterize the limit, as T → ∞, of the functions (u(t) − λ(T −

t),m(t)), we first show a uniqueness result for (MFGL).

Lemma 3.7.2. Assume that (L) holds. Then, up to adding a constant to v, there exists at most one

classical solution (v, µ) to (MFGL) satisfying (3.1.5).

Proof. Assume that (v1, µ1), (v2, µ2) are solutions to (MFGL) satisfying (3.1.5). Since µ1−1, µ2−

1 ∈ L1(T × (0,∞)), there exists a sequence Tk → ∞ such that

lim
k→∞

∫
T

(
|µ1(·,Tk) − 1| + |µ2(·,Tk) − 1|

)
= 0.

Performing the standard Lasry-Lions computation for v1, v2 on QTk , using Lemma 3.6.4, and not-

ing that

µi, (µi)−1, vi
x, ∈ L∞(T × (0,∞)), i ∈ {1, 2},

we obtain

1
C

(∫ Tk

0

∫
T
|v1

x − v2
x|

2 + |µ1 − µ2|2
)
≤

∫
T
−(v1(Tk) − v2(Tk))(µ1(Tk) − µ2(Tk))

=

∫
T
−(v1(Tk) − v2(Tk))((µ1(Tk) − 1) − (µ2(Tk) − 1)). (3.7.11)

Now, since v1, v2 ∈ L∞(T × (0,∞)), the right hand side converges to 0 as k → ∞. Therefore,

∫ ∞
0

∫
T
|v1

x − v2
x|

2 + |µ1 − µ2|2 = 0.
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This implies that µ1 = µ2 and v1
x = v2

x. From the HJ equations, v1
t = v2

t , which concludes the

proof. □

In the following lemma, we obtain uniform estimates for the solution that are independent of T .

Lemma 3.7.3. Let (uT ,mT ) be a solution to (MFG) or (MFGP) for T > 0, and let ω > 0 be the

constant from Lemma 3.7.1. Set vT = uT −λ(T−t). Then there exists a constant C > 0, independent

of T , such that:

• If (3.1.3) holds and (uT ,mT ) solves (MFG), then

|vT (t) − g(1)| ≤ Ce−ωt for all t ∈ [0,T ]. (3.7.12)

• If (uT ,mT ) solves (MFGP), and

∫
T

vT
(
1
2

T
)

dx = 0, (3.7.13)

then we have

∥vT ∥L∞(QT ) ≤ C (3.7.14)

and

∥vT (t)∥∞ ≤ Ce−ωt for all t ∈
[
0,

T
2

]
. (3.7.15)

Proof. First we note that in both (MFG) and (MFGP), as a result of Lemma 3.7.1, the function

vT
x = uT

x is bounded uniformly, independently of T , and, by Corollary 3.3.2, so are mT , (mT )−1.

Therefore, since H is smooth, and thus locally Lipschitz, we have, for some constant C > 0

independent of T > 0,

|vT
t | ≤ C(|vT

x | + |m
T − 1|). (3.7.16)

Assume first that (uT ,mT ) solves (MFG) and (3.1.3) holds. Integrating the HJ equation in [t,T ]
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and using (3.7.16) along with (3.7.2) in Lemma 3.7.1 we obtain

|vT (t) − vT (T )| ≤ C
∫ T

t
e−ωsds.

Furthermore, using the fact that

vT (T ) = uT (T ) = g(mT (T )),

and

|mT (T ) − 1| ≤ Ce−ωT ,

by increasing the constant C if necessary, we obtain

|vT (t) − g(1)| ≤ C(e−ωT + e−ωt) ≤ 2Ce−ωt,

which proves (3.7.12). Next, we assume that (uT ,mT ) solves (MFGP) and (3.7.13) holds. Letting

t < T
2 , and integrating the HJ equation in [t, T

2 ], we obtain from (3.7.16) and (3.7.1) that

∣∣∣∣ ∫
T

vT (·, t)
∣∣∣∣ ≤ C

∫ T
2

t
e−ωs + e−ω(T−s)ds ≤

2C
ω

(
e−ωt + e−ω

T
2
)
≤

4C
ω

e−ωt. (3.7.17)

Similarly, for t ≥ T
2 integrating the HJ equation in [T

2 , t] yields

∣∣∣∣ ∫
T

vT (·, t)dx
∣∣∣∣ ≤ C. (3.7.18)

Now, for every t ∈ [0,T ], there exists a point xt ∈ T such that vT (xt, t) =
∫
T

vT (·, t). Therefore,

|vT (x, t)| ≤ oscTvT (t) +
∣∣∣∣ ∫
T

vT (·, t)
∣∣∣∣.

As a result, in view of (3.7.1), the estimates (3.7.18) and (3.7.17) yield, respectively, (3.7.14) and
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(3.7.15). □

We are now ready to prove our last result.

Proof of Theorem 3.1.3. We set

vT = uT − λ(T − t),

and show that vT is convergent as T → ∞.

In view of Lemmas 3.7.1 and 3.7.3, as well as (3.7.16), we see that ∥vT ∥W1,∞(QT ) and ∥mT ∥∞ are

bounded, independently of T . We may therefore apply the Arzelà–Ascoli theorem to conclude

that, up to extracting a subsequence, there exist v ∈ W1,∞(T× [0,∞)) and µ ∈ L∞(T× [0,∞)) such

that

vT → v locally uniformly in T × [0,∞),

and

mT ⇀ µ weakly–* in L∞(T × (0,∞)).

We now fix T0 ∈ (1,∞), and assume that T > T0 + 1. Then (vT ,mT ) solves the system



−vT
t + λ + H(vT

x ,m
T ) = 0 in QT0 ,

mT
t − (mT Hp(vT

x ,m
T ))x = 0 in QT0 ,

mT (·, 0) = m0.

(3.7.19)

Moreover, as a result of the interior C1,α estimates for quasilinear elliptic equations, and the interior

Schauder estimates for linear equations, mT (·,T0) is uniformly bounded in C2,α+ϵ , where ϵ > 0

is chosen such that α + ϵ < 1. Therefore, as in the proof of Theorem 3.1.1, we conclude that, as

T → ∞,

(vT ,mT )→ (v, µ) in C3,α(T × [0,T0]) ×C2,α(T × [0,T0]). (3.7.20)

In particular, this implies that (v, µ) ∈ C3,α
loc (T × [0,∞)) × C2,α

loc (T × [0,∞)), and that (v, µ) solves
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(MFGL). Letting T → ∞ in (3.7.1) yields

∥µ(t) − 1∥∞ + ∥vx(t)∥∞ ≤ Ce−ωt, (3.7.21)

which shows that µ − 1 ∈ L1(T × (0,∞)). Moreover, since ∥(mT )−1∥∞ is bounded, we conclude

that (3.1.5) holds.

Now, since a subsequence was extracted, we must verify that the limit is uniquely determined. In

view of Lemma 3.7.2, µ is uniquely determined, and v is uniquely determined up to a constant. In

the case of (MFG) we see from (3.7.12) that

lim
t→∞
∥v(t) − g(1)∥∞ = 0.

On the other hand, in the case of (MFGP), letting T → ∞ followed by t → ∞ in (3.7.15), we

obtain

lim
t→∞
∥v(t)∥∞ = 0.

□
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CHAPTER 4

SHARP RATES OF CONVERGENCE IN MEAN FIELD CONTROL

4.1 Introduction

The work presented in this chapter is the collaboration with P. Cardaliaguet, J. Jackson and P.

Souganidis in [84].

This chapter is concerned with the convergence of certain high-dimensional stochastic control

problems towards their mean field limits. To define these control problems, we fix throughout

the chapter a dimension d ∈ N, a time horizon T > 0, and a filtered probability space (Ω,F =

(Ft)0≤t≤T ,P) satisfying the usual conditions and hosting independent d-dimensional Brownian

motions W and (W i)i∈N.

The data consists of nice functions

L : Rd × Rd → R, F , G : P2(Rd)→ R,

where P2(Rd) is the Wasserstein space of Borel probability measures on Rd with finite second

moment. Precise assumptions on L, F , and G will be introduced in Subsection 4.2.2 below.

The N-particle value functionVN : [0,T ] × (Rd)N → R is defined by the formula

VN(t0, x0) = inf
α∈AN

E
[ ∫ T

t0

( 1
N

N∑
i=1

L(Xi
t , α

i
t) + F (mN

Xt
)
)
dt + G(mN

XT
)
]
, (4.1.1)

where AN is the set of square-integrable, F-adapted, (Rd)N-valued processes α = (α1, ..., αN)

defined on [t0,T ], and X = (X1, ..., XN) is the (Rd)N-valued state process which is determined

from the control α by the dynamics

dXi
t = α

i
tdt +

√
2dW i

t , t0 ≤ t ≤ T, Xi
t0 = xi

0.
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We recall that under mild conditions on the data (in particular Assumption 1 below), VN is the

unique classical solution of the Hamilton-Jacobi-Bellman equation


−∂tV

N −
N∑

i=1
∆xiV

N +
1
N

N∑
i=1

H(xi,NDxiV
N) = F (mN

x ) in [0,T ] × (Rd)N ,

VN(T, x) = G(mN
x ) for x ∈ (Rd)N ,

(HJBN)

with the Hamiltonian H : Rd × Rd → R given by H(x, p) = supa∈Rd
{
− a · p − L(x, a)

}
.

Next, we define the value function U : [0,T ] × P2(Rd) → R for the corresponding mean field

problem by

U(t0,m0) = inf
(m,α)

{ ∫ T

t0

( ∫
Rd

L(x, α(t, x))mt(dx) + F (mt)
)
dt + G(mT )

}
, (4.1.2)

where the infimum is taken over all pairs (m, α) consisting of a curve [t0,T ] ∋ t 7→ mt ∈ P2(Rd)

and a measurable map α : [t0,T ] × Rd → R such that



∫ T
t0

∫
Rd |α(t, x)|2mt(dx)dt < ∞, and the Fokker-Planck equation

∂tm = ∆m − div(mα) in [t0,T ] × Rd, mt0 = m0

is satisfied in the sense of distributions.

(4.1.3)

We recall that U is expected to be the unique solution, in an appropriate viscosity sense, to the

Hamilton-Jacobi equation


−∂tU −

∫
Rd

tr(DxDmU)dm +
∫
Rd

H(x,DmU)dm = F (m) in [0,T ] × P2(Rd),

U(T,m) = G(m) in P2(Rd);

(HJB∞)
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see e.g. [124, 340, 134, 32, 133] and the references therein for various approaches to the compari-

son principle for viscosity solutions of (HJB∞).

4.1.1 Previous convergence results

It is by now well understood thatVN converges toU in the sense that

VN(t, x) ≈ U(t,mN
x ), for N large. (4.1.4)

This convergence was first established in [277], and later extended in [153] to allow the presence

of a common noise. In another direction, [201] and [308] used PDE techniques to obtain similar

results in a setting with purely common noise. We refer also to the works [197] and [106] for

a study of the deterministic case via Γ-convergence techniques, to [129] for an extension of the

methods in [277] to problems with state constraints, and to [348] for a similar convergence result

in the setting of mean field optimal stopping. All the works mentioned in the preceding paragraph

use techniques based on compactness, and so obtain only qualitative versions of the statement

(4.1.4).

More recently, there have been a number of attempts to quantify the convergence ofVN toU. On

the one hand, when F and G are convex and sufficiently smooth, the value functionU is smooth,

and a standard argument (see the introduction of [78] for a more detailed explanation) shows that

|VN(t, x) − U(t,mN
x )| ≤ C/N. On the other hand, when F and G are not convex, then the value

functionU may fail to be C1 even if all the data is smooth (see [63] for an example). In this setting

the optimizers for the mean field control problem may not be unique, and obtaining quantitative

convergence results is much more subtle.

The first general, that is, not requiring convexity or other special structure on F and G, quantitative
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version of (4.1.4) was obtained in [78], where the authors proved the estimate

|VN(t, x) −U(t,mN
x )| ≤ C

(
1 +

1
N

N∑
i=1
|xi|2

)
N−βd , (4.1.5)

for C depending on all of the data and the exponent βd depending only on d. We refer also to

[107] for a thorough treatment of the finite state space setting and to [25], which obtains a sharp

rate but under a special structural condition on the data. The more recent work [131] attempts to

identify the optimal rate of convergence, and shows in particular that the optimal rate depends on

the smoothness of the data or, more precisely, the metric with respect to which the data is regular.

Theorem 2.7 of [131] shows that, if the data is periodic, that is, the state space Rd is replaced by

the d-dimensional flat-torus Td, and sufficiently smooth (with the amount of smoothness required

depending on the dimension d), (4.1.5) can be improved to

|VN(t, x) −U(t,mN
x )| ≤ CN−1/2, (4.1.6)

Example 2 in [131], meanwhile, shows that this rate cannot be improved even if all of the data is

C∞. In summary, we now know that when the data is smooth and convexU is smooth and the rate

is 1/N, but when the data is not convex, U may fail to be smooth, and in this case the global rate

is at best 1/
√

N even if all the data is very regular.

There have also been some efforts to understand the convergence of the optimal trajectories and

the optimal controls. For example, when U is smooth one can follow the strategy initiated in

[79] to show that optimal trajectories of the N-particle control problem converge (with a rate) to

optimal trajectories of the mean field problem (see [208] for details on this approach). In the non-

convex regime, such questions are much more subtle since, as mentioned already, there may not

be a unique optimal trajectory for the limiting problem. The recent work [92] overcomes this issue

by identifying an open and dense subset O of [0,T ] × P2(Rd) where the value function U is C1

and such that optimal trajectories started from initial conditions in O are unique. In particular, it is
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shown in [92] that a quantitative propagation of chaos can be established when starting from initial

conditions in O.

4.1.2 Our results

The open and dense set O identified in [92] plays a central role in our results. In what follows,

we will call the set O the region of strong regularity by analogy with the terminology in [193],

where the same language is used to describe a region where a certain first-order Hamilton-Jacobi

equation has a classical solution which can be computed via the method of characteristics; more

on this analogy shortly.

Our first result states that, locally inside O, the convergence rate 1/N can be achieved even if the

data is not convex. More precisely, we show in Theorem 4.2.1 that, for each set K ⊂ O which

is compact in Pp(Rd) for some p > 2, with Pp(Rd) denoting the p-Wasserstein space, there is a

constant C = C(K) such that, for each N ∈ N and each (t, x) ∈ [0,T ]× (Rd)N such that (t,mN
x ) ∈ K,

|VN(t, x) −U(t,mN
x )| ≤ C/N. (4.1.7)

We refer to Remark 8 for a discussion of the role of compactness in Pp with p > 2. Combined

with Example 2 in [131], this shows that the optimal global convergence rate is different than the

optimal rate of convergence within O.

Example 2 in [131] also explains why we claim that the set O plays a similar role as the regions

of strong regularity in [193]. Indeed, it is explained there that when F and G depend on m only

through its mean m, that is, F (m) = f (m) and G(m) = g(m), and L = 1
2 |a|

2 for simplicity, we have

U(t,m) = u(t,m) and VN(t, x) = vN(t,
1
N

N∑
i=1

xi),
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where u and vN are the solutions of the finite-dimensional PDEs

−∂tu +
1
2
|Du|2 = f in [0,T ) × Rd and u(T, x) = g,

and

−∂vN −
1
N
∆vN +

1
2
|DvN |2 = f in [0,T ) × Rd and vN(T, x) = g.

Thus, the convergence problem reduces to vanishing viscosity. Moreover, while the best global

estimate for |vN − u| is O(1/
√

N), the expansion achieved in [193] clearly shows that, locally

uniformly on “regions of strong regularity", |vN − u| = O(1/N) . Thus our Theorem 4.2.1 can be

viewed as an infinite-dimensional (partial) analogue of the results in [193], with O playing the role

of the regions of strong regularity in [193].

Our second result shows that, when the data is smooth enough, a similar sharp rate of convergence

can be obtained for the gradients. More precisely, Theorem 4.2.2 shows that, for each set K ⊂ O

which is compact in Pp(Rd) for some p > 2, there is a constant C = C(K) such that, for each

N ∈ N and each (t, x) ∈ [0,T ] × (Rd)N such that (t,mN
x ) ∈ K,

|NDxiV
N(t, x) − DmU(t,mN

x , x
i)| ≤ C/N. (4.1.8)

The main interest of (4.1.8) is that it demonstrates that optimal feedbacks for the N-particle prob-

lem converge toward the optimal feedback for the mean field problem; see Remark 10 for more

details.

Using the strong convergence of optimal feedbacks in (4.1.8), we obtain in Proposition 4.2.3 a

concentration inequality for the optimal trajectories of the N-particle problems when started from

appropriate i.i.d. initial conditions. This result complements the quantitative propagation of chaos

results in [92], and can also be compared to similar concentration results for mean field games

134



obtained in [143] under the assumption that the master equation has a smooth solution.

Finally, we mention that in order to obtain our main convergence results, we have to sharpen in

various ways the regularity results in [92]. In particular we show in Theorem 4.2.4 that, under ap-

propriate regularity conditions, the second Wasserstein derivative DmmU exists and is continuous

in the region of strong regularity.

4.1.3 Strategy of the proof

We explain here the strategy of proof for the estimate (4.1.4). To avoid unnecessary technicalities

related to higher moments of the relevant probability measures, we only discuss here the periodic

case, that is, Rd is replaced by the d-dimensional flat torus Td.

First, we note that, in view of the semi-concavity but not semi-convexity estimates for U, the

estimate

VN(t, x) ≤ U(t,mN
x ) +C/N

in fact holds globally.

To complete the proof, we need to show that the symmetric inequality holds locally uniformly

in O. For each fixed (t0,m0) ∈ O we work with small tubes Tr(t0,m0) of radius r around the

optimal trajectory for the mean field control problem started from (t0,m0); see Subsection 4.3.1

for the precise definition of Tr(t0,m0). The key result is proved in Lemma 4.3.6. It says that,

when 0 < r1 ≪ r2 ≪ 1, the probability that the empirical measure associated to the optimally

controlled state process started from (t,mN
x ) ∈ Tr1(t0,m0) exits the larger tube Tr2(t0,m0) decays

algebraically in N. In the non-compact setting treated below, this algebraic decay is uniform only

over the intersection of Tr1(t0,m0) with a large ball in Pp, but we ignore this subtlety in the

introduction.

135



More precisely, we show that, for each (t, x) such that (t,mN
x ) ∈ Tr1(t0,m0),

P
[
s 7→ (s,mN

X(t,x)
s

) leaves Tr2(t0,m0)
]
≤ CN−γ, (4.1.9)

where X(t,x) denotes the optimal trajectory for the N-particle problem started from (t0, x0). Lemma

4.3.6 relies crucially on the global convergence rate ofVN toU already established in [78] and on

an “asymmetric" version of the propagation of chaos arguments in [92].

The next step of the argument is to use the fact that, in view of the regularity ofU in O,UN(t, x) =

U(t,mN
x ) nearly solves (HJBN) on Tr(t0,m0) for r sufficiently small. In Lemma 4.3.8, we use this

fact together with a verification argument to show that, for r small and (t, x) such that (t,mN
x ) ∈

Tr(t0,m0),

U(t,mN
x ) −VN(t, x) ≤ C/N

+ P
[
s 7→ (s,mX(t,x)

s
) leaves Tr(t0,m0)

]
× sup

(s,mN
y )∈Tr(t0,m0)

(
U(s, yN) −VN(s,mN

y )
)
.

(4.1.10)

Combining (4.1.10) with (4.1.9), we show that the rate of convergence improves when the radius

of the tube shrinks. More precisely, we establish, for 0 < r1 ≪ r2 ≪ 1, an estimate of the form

sup
(s,mN

y )∈Tr1 (t0,m0)

(
U(s,mN

y ) −VN(s, y)
)
≤ C/N

+CN−γ × sup
(s,mN

y )∈Tr2 (t0,m0)

(
U(s,mN

y ) −VN(s, y)
)
,

(4.1.11)

where, crucially, γ is independent of r1 and r2. In particular, because γ is uniform we can apply

(4.1.11) to a finite sequence of radii r(1)
2 ≫ r(1)

1 = r(2)
2 ≫ r(2)

1 = r(3)
2 ≫ ... ≫ r(k)

1 = r(k)
2 to get that

sup
(s,mN

y )∈T
r(k)
1

(t0,m0)

(
U(s,mN

y ) −VN(s, y)
)
≤ CN−(1∧kγ),
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and so choosing k large enough we conclude the existence of a small radius r > 0 such that the

desired rate of convergence holds on the small tube Tr(t0,m0). This is enough to establish the

estimate uniformly over compact subsets of O as desired.

The strategy of proof for the convergence of the gradients in (4.1.8) is similar, but more complicated

because without the comparison principle it is harder to conclude an estimate analogous to (4.1.10).

In addition, while the argument outlined above requires only minor refinements of the regularity

results in [92] to execute, the convergence of the gradients requires a new Lipschitz bound on

DmmU (locally within O), which is obtained in Theorem 4.2.4.

4.1.4 Organization of Chapter 4

In Section 4.2, we discuss notations and some preliminaries, and then state precisely our main

results. Section 4.3 contains the proof of our first main convergence result, Theorem 4.2.1. Section

4.4 contains the proof of the convergence of the gradients (Theorem 4.2.2), and Section 4.5 contains

the proof of the concentration inequality (Proposition 4.2.3). Finally, in Section 4.6 we state and

prove a number of regularity results which are used in the earlier sections.

4.2 Preliminaries and main results

4.2.1 Basic notation

We fix throughout the chapter numbers d ∈ N, T > 0. We work on a fixed filtered probability

space (Ω,F = (Ft)0≤t≤T ,P), which hosts independent d-dimensional Brownian motions (W i)i∈N.

We use bold to write elements of (Rd)N or processes taking values in (Rd)N , that is, we write

x = (x1, ..., xN) ∈ (Rd)N for a general element of (Rd)N . We denote by P = P(Rd) the space of

probability measures on Rd, and, for q ∈ (1,∞), we denote by Pq = Pq(Rd) the q-Wasserstein
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space, that is, the set of m ∈ P(Rd) such that Mq(m) < ∞, where

Mq(m) B
∫
Rd
|x|qm(dx)

is the qth−moment of the measure m. We endow Pq(Rd) with the usual q-Wasserstein distance,

which we denote by dq.

We will make use of the calculus on the Wasserstein space as explained in [79] and [96]. In

particular, for a sufficiently smooth ϕ : P2(Rd) → R, we write δϕ
δm (m, x) : P2(Rd) × Rd → R for

the linear derivative of ϕ, which is defined by the formula

ϕ(m) − ϕ(m) =
∫ 1

0

∫
Rd

δϕ

δm
(sm + (1 − s)m, x)(m − m)(dx)ds,

together with the normalization convention

∫
Rd

δϕ

δm
(m, x)m(dx) = 0.

When δϕ
δm exists and is differentiable in its second argument, we denote by Dmϕ = Dx

δϕ
δm the

Wasserstein or so called Lions derivative

Dmϕ(m, x) = Dx
δϕ

δm
(m, x) : P2(Rd) × Rd → Rd.

Higher derivatives are denoted similarly.

For k ∈ N, we denote by Ck(P2(Rd)), the space of functions ϕ : P2(Rd) → R, such that for all

i ∈ {1, · · · , k} and multi-index l ∈ {0, 1, ..., i}d with |l| + i ≤ k, the derivative D(l)Di
mϕ exists, and is

continuous and uniformly bounded. Finally, for k, n ∈ N, we denote by Ck(Rd;Rn), the functions

ψ : Rd → Rn that are k−times continuously differentiable. When n = 1 we will write Ck. Similar

notation will be used for standard Hölder spaces, that is, for α ∈ (0, 1), Ck+α will be the space of
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functions in Ck with bounded and α-Hölder continuous derivatives up to order k.

4.2.2 Assumptions

The data for our problem consists of the three functions

L = L(x, a) : Rd × Rd → R, F = F (m) : P2(Rd)→ R and G = G(m) : P2(Rd)→ R.

The Lagrangian L determines the Hamiltonian H = H(x, p) : Rd × Rd → R by the formula

H(x, p) = sup
a∈Rd

{
− a · p − L(x, a)

}
.

For part of the chapter, we will work with essentially the same assumptions as in [92], which we

record here.

Assumption 1. The Hamiltonian H is in C2(Rd × Rd), and, for some c,C > 0 and all (x, p) ∈

Rd × Rd,

−C + c|p|2 ≤ H(x, p) ≤ C +
1
c
|p|2, (4.2.1)

and

|DxH(x, p)| ≤ C(1 + |p|) (4.2.2)

Moreover, H is locally strictly convex with respect to the last variable, that is, for each R > 0, there

exists cR > 0 such that, for all (x, p) ∈ Rd × BR,

D2
ppH(x, p) ≥ cRId. (4.2.3)

Meanwhile, F ∈ C2(P2(Rd)), and F , DmF , D2
ymF and D2

mmF are uniformly bounded. Finally,
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G ∈ C4(P2(Rd)) with all derivatives up to order 4 uniformly bounded.

In order to obtain more regularity and to study the convergence of the gradients ofVN , we require

some additional smoothness, recorded here.

Assumption 2. The data F ,G and H satisfy Assumption 1. In addition F ∈ C3(P2(Rd);R) and,

for i = 1, 2, 3 and some δ ∈ (0, 1),

sup
m∈P2(Rd)

∥
δ(i)F

δm(i) (m, ·)∥C2+δ((Rd)i;R) + sup
m∈P2(Rd)

∥
δ(i)G

δm(i) (m, ·)∥C2+δ((Rd)i;R) < ∞.

4.2.3 Preliminaries

In this section we recall some of the main results from the recent papers [78] and [92].

First, the main result of [78] (Theorem 2.5 therein) shows that, under Assumption 1, there exist

constants C > 0 depending on the data, βd ∈ (0, 1) depending only on d, such that, for all N ∈ N

and (t, x) ∈ [0,T ] × (Rd)N ,

|VN(t, x) −U(t,mN
x )| ≤ CN−βd

(
1 +

1
N

N∑
i=1
|xi|2

)
. (4.2.4)

In [92], meanwhile, the authors show that under Assumption 1, there exists an open and dense set

O ⊂ [0,T ] × P2(Rd) such thatU is C1 and satisfies (HJB∞) in a classical sense on O.

To define O precisely, we first need some additional notation and terminology. If (m, α) is an

optimizer for the problem defining U(t0,m0), then we call the curve [t0,T ] ∋ t 7→ mt ∈ P2(Rd)

an optimal trajectory starting from (t0,m0). Assumption 1 is enough to guarantee the validity of

a standard result from the theory of mean field control, namely, that, if m is an optimal trajectory

started from (t0,m0), then there exists a unique function u : [t0,T ] × Rd → R, which is called the
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multiplier associated to the optimal trajectory m, such that the pair (u,m) solves the MFG system



−∂tu − ∆u + H(x,Du) =
δF

δm
(mt, x) in (t0,T ) × Rd,

∂tm − ∆m − div(mDpH(x,Du)) = 0 in (t0,T ) × Rd,

mt0 = m0 and u(T, x) =
δG

δm
(mT , x) in Rd.

The set O is defined as the set of (t0,m0) ∈ [0,T ) × P2(Rd) such that there is a unique optimal

trajectory m started from (t0,m0), which is stable (see [92, Definition 2.5]) in the sense that, if u is

the corresponding multiplier, then (z,w) = (0, 0) is the only solution in the space

C(1+δ)/2,1+δ ×C
(
[t0,T ];

(
C2+δ)′

)
to the linear system



−∂tz − ∆z + DpH(x,Du) · Dz =
δF

δm
(x,m(t))(µ(t)) in (t0,T ) × Rd,

∂tµ − ∆µ − div(DpH(x,Du)µ) − div(DppH(x,Du)Dzm) = 0 in (t0,T ) × Rd,

µ(t0) = 0 and z(T, x) =
δG

δm
(x,m(T ))(µ(T )) in Rd.

The set O will play a crucial role in the results of the present chapter, as well.

4.2.4 Main results

Our first main result shows that on compact with respect to Pp, for some p > 2, subsets of O, the

rate (4.2.4) can be substantially sharpened.

Theorem 4.2.1. Let Assumption 1 hold, and assume that p > 2. Then, for each subset K ofOwhich

is compact in Pp(Rd), there is a constant C = C(K) such that, for each (t, x) ∈ [0,T ]× (Rd)N such

141



that (t,mN
x ) ∈ K,

|U(t,mN
x ) −VN(t, x)| ≤ C/N. (4.2.5)

Remark 7. As explained above, Example 2 in [131] clearly shows that, even if all the data is C∞,

we cannot expect a global convergence rate (of VN to U) better than 1/
√

N. Thus Theorem 4.2.1

shows that the convergence rate is generally different inside O than it is outside of O.

Remark 8. Theorem 4.2.1 is not a consequence only of the regularity ofU inside O, that is, if we

know only thatU is smooth on some arbitrary open set O′, it does not follow that the rate is 1/N

inside O′ in the sense of (4.2.5). Indeed, the invariance of O under optimal trajectories, that is the

fact that optimal trajectories for the MFC problem which start in O remain there, plays a crucial

role throughout the proof of Theorem 4.2.1.

Remark 9. The fact that the rate is uniform only over subsets of O which are compact in Pp for

some p > 2 is related to the fact that extra integrability is needed in order to obtain the convergence

of empirical measures in the expected Wasserstein distance. More precisely, in order to obtain a

key lemma (Lemma 4.3.6 below), we rely on the results of [199] to bound the probability that an

auxiliary particle system exits a small “tube" around an optimal trajectory of the limiting problem,

with the radius of the tube measured with respect to d2. For this it is necessary to control the

pth−moment for the initial condition of the particle system.

Our next result shows that a sharp rate of convergence can also be obtained for the gradients.

Theorem 4.2.2. Let Assumption 1 hold, and assume that p > 2. Then, for each subset K of

O which is compact in Pp, there is a constant C = C(K) such that, for each i = 1, ...,N and

(t, x) ∈ [0,T ] × (Rd)N such that (t,mN
x ) ∈ K,

|DmU(t,mN
x , x

i) − NDxiV
N(t, x)| ≤ C/N. (4.2.6)
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Remark 10. The main interest of Theorem 4.2.2 is that it implies a convergence rate for the optimal

feedbacks for the N-particle problem which are given by

αN,i(t, x) = −DpH
(
xi,NDxiV

N(t, x)
)
.

That is, for any initial condition (t0, x0) ∈ [0,T ] × (Rd)N , the optimizer α for the minimiza-

tion problem in (4.1.1) satisfies αi
t = α

N,i(t, Xt), X denoting the optimal trajectory starting from

(t0, x0). Meanwhile, the optimal feedback for the mean field problem, at least for initial conditions

(t0,m0) ∈ O, takes the form

αMF(t,m, x) = −DpH
(
xi,DmU(t,m, x)

)
.

That is, for any (t0,m0) ∈ O, the unique optimizer α for the minimization problem in (4.1.2) satisfies

α(t, x) = αMF(t,mt, x), mt denoting the unique optimal trajectory started from (t0,m0). Thus we

can clearly infer from Theorem 4.2.2 that, for each subset K of O which is compact in Pp, there

exists C = C(K) such that

sup
{(t,x):(t,mN

x )∈K}
|αN,i(t, x) − αMF(t,mN

x , x
i)| ≤ C/N.

In [92], it is shown in Theorem 1.2 that the regularity of U in O implies a convergence for the

optimal trajectories of VN , in the spirit of propagation of chaos, at least for appropriate initial

conditions. Using the convergence of the gradients obtained in Theorem 4.2.2, we are able to

supplement this result with the following concentration inequality.

Proposition 4.2.3. Let Assumption 2 hold, and fix (t0,m0) ∈ O such that m0 ∈ Pp for some p > 2

and, in addition, satisfies a quadratic transport-entropy inequality, that is, there exists κ > 0 such
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that

d2(m0, ν) ≤ κR(ν|m0) if ν ≪ m0, (4.2.7)

where R denotes the relative entropy,

R(ν|µ) =


∫ dν

dµ log dν
dµdµ if ν ≪ µ,

∞ otherwise.

For each N, denote by XN = (XN,1, ..., XN,N) the solution of

dXN,i
t = −DpH(XN,i

t ,NDxiVN(t, XN
t ))dt +

√
2dW i

t , Xi
t0 = ξ

i, (4.2.8)

where (ξi)i∈N are i.i.d. with common law m0. Then, there exists a constant r0 > 0 (which can

depend on (t0,m0)) such that the following holds: for each η > 0, K > 0, we can find a constant

C > 0 (which may depend on (t0,m0), in addition to η and K) such that for any 0 < r < r0 and

N > C/min(ϵ, ϵd+8), we have

P
[

sup
t0≤t≤T

d2
(
mN

XN
t
,mt

)
> r

]
≤ C exp

(
−

r2

C
N
)
+ exp(−KN1−η), (4.2.9)

where (m, α) denotes the unique optimizer for the problem definingU(t0,m0).

Remark 11. Concentration results similar to Proposition 4.2.3 were obtained for mean field games

in [143] under the assumption that the corresponding master equation has a smooth solution. The

analogous condition in our setting would be that the value function U is globally smooth, which

we do not have because we do not assume any convexity on F and G.

Remark 12. The presence of the η in (4.2.9) comes from the fact that in Theorem 4.2.2 we have

convergence of the optimal feedback strategies only on compact subsets of Pp, with p > 2. In
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particular, in the proof of Proposition 4.2.3 we must begin the argument by bounding from above

the probability that the empirical measure of the optimal trajectory for the N-particle problem exits

a large ball in Pp. This can be estimated from above by a multiple of a probability of the form

P
[ 1
N

N∑
i=1
|ξi|p > R

]
(4.2.10)

for some large R, where (ξi)i∈N are i.i.d. sub-Gaussian random variables. When p > 2, the

random variables |ξi|p are only “sub-Weybull" rather than sub-exponential, that is, they have tails

like P[|ξi|p > x] ≈ exp(−cx2/p). Applying a concentration inequality to bound this tail probability

leads to the second term in (4.2.9).

A key step in proving Theorem 4.2.2 is showing that, under Assumption 2, the C1 regularity

obtained in [92] can be improved to C2 regularity. This result is interesting in its own right, and so

we state it here, alongside our main convergence results.

Theorem 4.2.4. Under Assumption 2, the derivative DmmU exists and is continuous in O. More-

over, for each (t0,m0) ∈ O, there exist constants δ,C > 0 such that, for each t, m1,m2 with

|t − t0| < δ, d2(m0,mi) < δ and i = 1, 2, we have

sup
x,y∈Rd

|DmmU(t,m1, x, y) − DmmU(t,m2, x, y)| ≤ Cd1(m1,m2).

4.3 The proof of Theorem 4.2.1

In this section we present the proof of Theorem 4.2.1. For simplicity, we fix throughout the section

a p > 2.

It will be useful to note that one of the inequalities in Theorem 4.2.1 is relatively easy. Indeed,

under the smoothness assumptions on F , G, it is not difficult to show the following.
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Proposition 4.3.1. There is a constant C such that, for all N ∈ N and for each (t, x) ∈ [0,T ] ×

(Rd)N ,

VN(t, x) ≤ U(t,mN
x ) +C/N .

Proof. We omit the proof, since it is almost identical the one of the first inequality in Theorem 2.7

of [131]. □

4.3.1 Tubes around optimal trajectories

We now introduce some notation which will be useful in the proof of Theorem 4.2.1.

Given (t0,m0) ∈ O, we denote by t 7→ m(t0,m0)
t the unique optimal trajectory for the limiting

McKean-Vlasov control problem started from (t0,m0). For simplicity, we extend m(t0,m0) by a

constant to [0, t0], that is, we define m(t0,m0)
t = m0 for 0 ≤ t < t0.

For r > 0, Tr(t0,m0) is an open tube around the optimal trajectory started from (t0,m0), that is,

Tr(t0,m0) =
{
(t,m) : t ∈ (t0 − r,T ] ∩ [0,T ], d2(m,m(t0,m0)

t ) < r
}
.

When (t0,m0) is understood from context, we write simply Tr.

Because we are working in the whole space, we will often have to intersect the “tubes" Tr with

bounded subsets of the Wasserstein space Pp. To facilitate this, we set, for R > 0,

QR = [0,T ] × Bp
R,

where Bp
R is the ball of radius R in Pp, centered at δ0, and use the notation

Tr,R(t0,m0) = Tr(t0,m0) ∩ QR.
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We also need to project these sets down to finite-dimensional spaces. In particular, we will write

ON = {(t, x) ∈ [0,T ] × (Rd)N : (t,mN
x ) ∈ O}, and likewise we set

T N
r,R(t0,m0) =

{
(t, x) ∈ [0,T ] × (Rd)N : (t,mN

x ) ∈ Tr,R(t0,m0)
}
.

Finally, XN,t,x = (XN,t,x,i)i=1,...,N is the optimal trajectory for the N-particle control problem

started from (t, x) ∈ [0,T ] × (Rd)N , that is, the solution of


dXN,t,x,i

s = −DpH
(
XN,t,x,i

s ,NDxiV
N(s, XN,t,x

s )
)
ds +

√
2dW i

s in [s,T ],

XN,t,x,i
t = xi.

(4.3.1)

To prove Theorem 4.2.1, it will suffice to establish the following Proposition.

Proposition 4.3.2. Let (t0,m0) ∈ O and R > 0. Then there exist r,C > 0 such that, for each N ∈ N

and each (t, x) ∈ T N
r,R(t0,m0),

|VN(t, x) −U(t,mN
x )| ≤ C/N.

Indeed, once Proposition 4.3.2 is proved we can complete the proof of Theorem 4.2.1 as follows:

Proof of Theorem 4.2.1. Fix (t0,m0) ∈ O∩
(
[0,T ]×Pp

)
, and choose R large enough that (t0,m0) ∈

QR. Thanks to Proposition 4.3.2, there exist r,C > 0 such that, for all (t, x) such that (t,mN
x ) ∈

Tr,R(t0,m0),

|V(t, x) −U(t,mN
x )| ≤ C/N. (4.3.2)

In particular, for each (t0,m0) ∈ O ∩
(
[0,T ] × Pp

)
, there exists a subset of O, which is open in Pp

and contains (t0,m0), on which the convergence rate is 1/N, in the sense of (4.3.2). This completes

the proof. □
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4.3.2 The proof of Proposition 4.3.2

We give here the proof of Proposition 4.3.2. We start by recording a few preliminary facts about

the tubes Tr(t0,m0) defined above.

Lemma 4.3.3. Given (t0,m0) ∈ O, there exists r0 > 0 such that Tr0(t0,m0) ⊂ O. Moreover, for

any r2 > 0, there exists 0 < r1 < r2 such that optimal optimal trajectories from within Tr1(t0,m0)

remain in Tr2(t0,m0), that is, for each (t,m) ∈ Tr1(t0,m0) and each t ≤ s ≤ T,

d2
(
m(t,m)

s ,m(t0,m0)
s

)
< r2.

Proof. The first claim is a consequence of the fact that O is open, as proved in [92, Theorem

2.8]. The second one can be inferred from [92, Lemma 2.9] together with the uniform 1/2-Hölder

continuity of the optimal trajectories s 7→ m(t,m)
s ∈ P2, which is in turn a consequence of the

uniform boundedness of optimal controls (see Lemma 3.3 of [78]). □

The next task is to use the regularity ofU in O to argue that the function

UN(t, x) = U(t,mN
x ) : [0,T ] × (Rd)N → R (4.3.3)

satisfies a PDE similar to (HJBN). First, notice that, if we assume that U is C1,2, then UN is a

classical solution in ON to

−∂tU
N −

N∑
j=1
∆x jU

N +
1
N

N∑
j=1

H(x j,NDx jU
N) = F (mN

x ) + EN(t, x) (4.3.4)

where

EN(t, x) = −
1

N2

N∑
j=1

tr
(
DmmU(t,mN

x , x
j, x j)

)
. (4.3.5)

Under Assumption 1, the main results of [92] show that U is C1, but not necessarily C2, so we
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cannot immediately conclude that UN satisfies (4.3.4). Nevertheless, Proposition 4.6.4 shows

that, uniformly in x and locally uniformly in (t,m) with respect to d2, m 7→ DmU(t,m, x) is d1-

Lipschitz. In particular, for each (t0,m0) ∈ O, it is clear that we can choose r small enough so that

m 7→ DmU(t,m, x) is Lipschitz with respect to d1 uniformly over Tr(t0,m0). It follows thatUN is

C1 on Tr(t0,m0) with each partial derivative

DxiU
N(t, x) =

1
N

DmU(t,mN
x , x

i)

being uniformly Lipschitz in x. Moreover, arguing as in the proof of [131, Proposition 5.1], one

can show that the equation (4.3.4) holds almost everywhere on T N
r (t0,m0), with an error term EN

satisfying

∥EN∥L∞(Tr) ≤ C/N. (4.3.6)

We record this sequence of observations in the following lemma.

Lemma 4.3.4. For any (t0,m0) ∈ O, there exists r > 0 such that, for each N ∈ N, the projection

UN defined by (4.3.3) lies in C1(T N
r (t0,m0)

)
, with spatial derivatives DxiU

N being Lipschitz

continuous in x, and such that (4.3.4) holds almost everywhere, with the error function

EN B −∂tU
N −

N∑
j=1
∆x jU

N +
1
N

N∑
j=1

H(x j,NDx jU
N) − F (mN

x ) (4.3.7)

satisfying the estimate (4.3.6).

We now establish a sequence of technical lemmas. The first one explains how to estimate the

probability that the empirical measure associated with an optimal trajectory forVN grows quickly

in Pp.

Lemma 4.3.5. There is a constant Cp depending on p and the data with the following property:
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for each N ∈ N and (t0, x0) ∈ [0,T ] × (Rd)N ,

P
[

sup
t0≤t≤T

dp(m
XN,t0,x0

t
,mN

x0) ≥ Cp
]
≤ Cp/N. (4.3.8)

Proof. For simplicity, we set X = (X1, ..., XN) = XN,t0,x0 , and let α = (α1, ..., αN) denote the

optimal control started from (t0, x0). Then, for each fixed t ∈ [t0,T ], we have

dp
p(mN

Xt
,mN

x0) ≤
1
N

N∑
i=1
|Xi

t − xi
0|

p ≤
1
N

N∑
i=1

∣∣∣ ∫ t

t0
αi

sds +W i
t −W i

t0

∣∣∣p.
Using the fact that αi is bounded independently of N (see [92, Lemma 1.7]), we find easily that

sup
t0≤t≤T

dp
p(mN

Xt
,mN

x0) ≤ C
(
1 +

1
N

N∑
i=1

sup
t0≤t≤T

|W i
t −W i

t0 |
p
)
.

The result now follows easily from Chebyshev’s inequality.

□

The next lemma shows that the probability of the empirical measure exiting a tube decays alge-

braically, with a constant that is uniform over a smaller tube or, more precisely, uniform over the

intersection of the smaller tube with a ball in Pp.

Lemma 4.3.6. There exists a constant γp,d ∈ (0, 1), which depends only on p and d, with the

following property. Suppose that (t0,m0) ∈ O ∩
(
[0,T ] × Pp

)
, 0 < r1 < r < r2 and R1,R2 > 0 are

such that

1. R2 − R1 ≥ Cp, Cp being the constant appearing in (4.3.8).

2. r2 is small enough so that Tr2(t0,m0) ⊂ O, and the conclusion of Lemma 4.3.4 applies on

Tr2(t0,m0).
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3. optimal trajectories started from inside Tr1(t0,m0) remain in Tr(t0,m0), that is,

sup
t≤s≤T

d2
(
m(t,m)

s ,m(t0,m0)
s

)
< r for all (t,m) ∈ Tr1(t0,m0).

Then there exists a constant C, which is independent of N, such that, for all N ∈ N and (t, x) ∈

T N
r1,R1

,

P[τN,t,x < T ] ≤ CN−γp,d ,

where τN,t,x = inf
{
s > t : (s, XN,t,x

s ) ∈
(
T N

r2,R2

)c}
∧ T.

Proof. We fix (t0,m0), r1 < r < r2 and R1 < R2 as in the statement and N ∈ N and (t, x) ∈ T N
r1,R1

.

For notational simplicity, we write X = XN,t,x and τ = τN,t,x. At this point we have dropped the

superscript for simplicity, and we note that in the rest of the argument generic constants C may

change from line to line, but they must not depend on (t, x,N).

We are going to break the problem up by writing τ as

τ = τ1 ∧ τ2,

where

τ1 = inf
{
s > t : (s, XN,t,x

s ) ∈
(
T N

r2

)c}
∧ T and τ2 = inf

{
s > t : dp(mN

Xs
, δ0) > R2

}
∧ T. (4.3.9)

In particular, we have

P[τ < T ] ≤ P[τ1 < T ] + P[τ2 < T ]. (4.3.10)
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Moreover, since Lemma 4.3.5 shows that

P[τ2 < T ] = P
[

sup
t≤s≤T

dp(mN
Xs
, δ0) > R2

]
≤ P

[
sup

t≤s≤T
dp(mN

Xs
,mN

x ) > R2 − R1
]
≤ Cp/N,

it suffices to prove a corresponding estimate on P[τ1 < T ].

We are now going to employ an argument similar to the proof of Lemma 3.2 in [92], but with non-

symmetric initial conditions. In particular, combining Lemma 4.3.4 and the Itô-Krylov formula

(see [263] Section 2.10), on [t, τ1] we have the dynamics

dUN(s, Xs) =
(
∂tU

N(s, Xs) +
N∑

j=1
∆x jU

N(s, Xs)

−

N∑
j=1

DpH(Xi
s,NDx jV

N) · Dx jU
N(x, Xs)

)
ds +

√
2

N∑
j=1

Dx jU
N(s, Xs) · dW j

s

=
( 1
N

N∑
j=1

H(Xi
s,NDx jU

N(s, Xs)) −
N∑

j=1
DpH(Xi

s,NDx jV
N) · Dx jU

N(x, Xs)

− Es − F (mN
Xs

)
)
ds +

√
2

N∑
j=1

Dx jU
N(s, Xs)dW j

s

≥

( 1
N

N∑
j=1

(
− L

(
X j

s ,−DpH(X j
s ,NDx jV

N(s, Xs))
)

+C−1
∣∣∣∣DpH(X j

s ,NDx jU
N(s, Xs)) − DpH(X j

s ,NDx jV
N(s, Xs))

∣∣∣∣2
−CN−1 − F (mN

Xs
)
)
ds +

√
2

N∑
j=1

Dx jU
N(s, Xs)dW j

s .

In the last bound, we used the fact that the strict convexity of L in a yields some C > 0 such that,

for any x ∈ Rd and p, q ∈ Rd,

H(x, p) − DpH(x, q) · p ≥ −L(x,−DpH(x, q)) +
1
C
|DpH(x, p) − DpH(x, q)|2. (4.3.11)

Taking expectations in the inequality above for the dynamics ofUN(s, Xs) and integrating from t
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to τ, we get

E
[ ∫ τ

t

1
CN

N∑
j=1

∣∣∣∣DpH(X j
s ,NDx jU

N(s, Xs)) − DpH(X j
s ,NDx jV

N(s, Xs))
∣∣∣∣2]

≤ E[UN(τ, Xτ)] −UN(t, x) + E
[ ∫ τ

t

1
N

N∑
j=1

L
(
X j

s ,−DpH(X j
s ,NDx jV

N(s, Xs))
)

+ F (mN
Xs

)
]
+C/N

≤ C
(
1 + M2(mN

x )
)
N−βd + E[VN(τ, Xτ)] −VN(t, x)

+ E
[ ∫ τ

t

1
N

N∑
j=1

L
(
X j

s ,−DpH(X j
s ,NDx jV

N(s, Xs))
)
+ F (mN

Xs
)
]
= CN−βd ,

(4.3.12)

with the last equality following from the fact that X is the optimal trajectory for the N-particle

problem, and where βd is the exponent appearing in (4.2.4). We note that the dependence factor

(1 + M2(mN
x )) was absorbed into the constant, keeping in mind that the constant is allowed to

depend on the radius r2 of the largest tube.

Next, we are going to use (4.3.12) to compare the process X to the process Y = (Y i)i=1,...,N defined

on a stochastic interval [t, σ] by


dY i

s = −DpH
(
Y i

s,DmU(s,mN
Ys
,Y i

s)
)
ds +

√
2dW i

s t ≤ s ≤ σ : inf
{
s > t : (s,Y) ∈

(
T N

r3

)c}
∧ T,

Y i
t = xi.

In particular, noting that we can rewrite the dynamics of X as

dXi
s =

(
− DpH

(
Xi

s,DmU(s,mN
Xs
, Xi

s)
)
+ Ei

s
)
ds + dW i

s,

with

Ei
s = DpH

(
Xi

s,NDxiU
N(s, Xs)

)
− DpH

(
Xi

s,NDxiV
N(s, Xs)

)
,
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we easily get by computing the dynamics of 1
N

∑N
j=1 |X

i
s −Y i

s|
2 and applying Gronwall’s inequality

that

E
[

sup
t≤s≤σ∧τ

1
N

N∑
i=1
|Xi

s − Y i
s|

2ds
]
≤ CE

[ ∫ σ∧τ

t

1
N

N∑
j=1
|E j

s|
2ds

]
≤ CN−βd ,

the last inequality coming from (4.3.12). It follows that

E
[

sup
t≤s≤σ∧τ

d2
2(mN

Xs
,mN

Ys
)
]
≤ CN−βd . (4.3.13)

In particular, if we pick r′ ∈ (r, r2), and set

σ′ = inf
{
s > t; (s,Ys) ∈

(
T N

r′ )
c} ∧ T,

then, using Markov’s inequality and (4.3.13) , we find

P[τ1 < T ] ≤ P[σ′ < T ] + P[σ′ = T, and τ1 < T ]

≤ P[σ′ < T ] + P
[

sup
t≤s≤σ∧τ

d2
(
mN

Xs
,mN

Ys

)
> r2 − r′

]
≤ P[σ′ < T ] +CN−βd/2.

To complete the proof, we need only show that, for some γ′d,p > 0 depending only on d and p,

P[σ′ < T ] ≤ CN−γ
′
d,p .

We would like to infer this from Lemma 4.3.7 below, which is a non-symmetric version of a

standard “propagation of chaos" result for interacting particle systems. We cannot, however, apply
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Lemma 4.3.7 directly, since the map

(t, x,m) 7→ −DpH(x,DmU(t,m, x))

is not globally defined, let alone globally Lipschitz. To overcome this, we simply extend it, choos-

ing a map b = b(t, x,m) : [0,T ] × Rd × P2(Rd)→ Rd such that


b(t, x,m) = −DpH(x,DmU(t,m, x)) for (t, x,m) ∈ Tr2(t0,m0),

b is globally bounded and is Lipschitz in (x,m) (with respect to the d2-distance) uniformly in t.

This is possible thanks to the regularity ofU in Tr2 . Then, we define the process Z = (Zi)i=1,...,N

on the whole interval [t,T ] via


dZi

s = b(s,Zi
s,m

N
Zs

)ds +
√

2dW i
s t ≤ s ≤ T,

Zi
t = xi.

It is easy to see that Z = Y on [t, σ), and that the solution Z of the corresponding McKean-Vlasov

SDE 
dZs = b(s,Zs,L(Zs))ds +

√
2dWs t ≤ s ≤ T,

Zt ∼ mN
x

is exactly the optimal trajectory for the mean field control problem, that is, L(Zs) = m(t,mN
x )

s . In

particular, we can use Lemma 4.3.7 and Markov’s inequality to conclude

P[σ′ < T ] = P
[

sup
t≤s≤T

d2(mN
Zs
,m(t0,m0)

s ) > r′
]
≤ P

[
sup

t≤s≤T
d2(mN

Zs
,L(Zs)) > r′ − r

]
≤ CN−γ

′
d,p ,

where in the first inequality we used the fact that d2(L(Zs),m(t0,m0)
s ) = d2(m(t,mN

x )
s ,m(t0,m0)

s ) < r,
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by hypothesis. This completes the proof.

□

The following lemma is a sort of “non-symmetric" version of a classical propagation of chaos

estimate for interacting particle systems, which was used in the proof of Lemma 4.3.6.

Lemma 4.3.7. Fix b = b(t, x,m) : [0,T ] × Rd × P2(Rd)→ Rd, and suppose that b is measurable,

bounded, and Lipschitz in (x,m) with respect to the d2-distance, uniformly in t. Then there is a

constant C > 0 depending only on the L∞ and Lipschitz bounds on b, and a constant γ′d,p > 0

depending only on d and p, such that, for any N ∈ N and (t0, x0) ∈ [0,T ] × (Rd)N ,

E
[

sup
t0≤t≤T

d2
(
m

(t0,mN
x0

)
t ,mN

X(t0,x0)
t

)]
≤ CM1/p

p (mN
x0)N−γ

′
d,p ,

where X(t0,x0)
t = (X(t0,x0),i

t )i=1,...,N denotes the solution to the SDE

dXi
t = b(t, Xi

t ,mXt)dt +
√

2dW i
t and Xi

t0 = xi
0, (4.3.14)

and m
(t0,mN

x0
)

t = L(Yt), where Y solves

dYt = b(t,Yt,L(Yt))dt +
√

2dWt and Yt0 ∼ mN
x .

Proof. We fix (t0, x0) ∈ [0,T ]×(Rd)N . Thanks to the Lipschitz continuity of b, it is straightforward

to check that the map Φ = Φ(x) : (Rd)N → R given by

Φ(x) = E
[

sup
t0≤t≤T

d2
(
m

(t0,mN
x0

)
t ,mN

X(t0,x)
t

)]

is Lipschitz continuous with respect to d2 with a constant C depending only on L, that is,

|Φ(x) − Φ(y)| ≤ Cd2(mN
x ,m

N
y ).
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As a consequence, we can find a function Φ̃ : P2(Rd) → R with the same d2-Lipschitz constant

and such that Φ̃(mN
x ) = Φ(x) for x ∈ (Rd)N .

Now define the “lift" Φ̂ : P2(Rd)→ R by

Φ̂(m) =
∫

(Rd)N
Φ(y)dm⊗N(dy).

It follows from Theorem 1 of [199] that, for some γ′p,d > 0 depending explicitly on p and d.

|Φ(xN) − Φ̂(mN
x )| = |Φ̃(mN

x ) −
∫

(Rd)N
Φ̃(mN

y )d(mN
x )⊗N(dy)|

≤ C
∫

(Rd)N
d2

(
mN

y ,m
N
x
)
mN

x (dy) ≤ CM1/p
p (mN

x )N−γ
′
p,d . (4.3.15)

We can also write

Φ̂(mx0) = E
[

sup
t0≤t≤T

d2
(
m

(t0,mN
x0

)
t ,mN

Yt

)]
,

where Y = (Y1, ..,YN) is defined using the same dynamics as in (4.3.14) but with initial conditions

Y i
t0 = ξ

i, the (ξi)i=1,...,N being i.i.d. with common law mN
x0 .

It follows, from a standard “asynchronous coupling argument" (see, for example the Proof of

Theorem 1.10 in [93]), that

Φ̂(mx0) ≤ C(1 + Mq(mN
x0))N−γ

′
p,d ,

which completes the proof. □

The next lemma shows how the estimate from Lemma 4.3.6 can be used to improve the rate of

convergence on small tubes.

Lemma 4.3.8. Fix (t0,m0) ∈ O and assume that r > 0 be small enough so that the conclusion of
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Lemma 4.3.4 holds. Then, for R > 0, there exists a constant C > 0 independent of N such that, for

all (t, x) ∈ T N
r,R,

UN(t, x) −VN(t, x) ≤
C
N
+ sup

(s,y)∈T N
r,R

(
UN(s, y) −VN(s, y)

)
P[τN,t,x < T ],

where

τN,t,x B inf{s > t : XN,t,x
s ∈ (T N

r,R)c} ∧ T.

Proof. Recall that UN satisfies (4.3.4) on T N
r = T

N
r (t0,m0). Therefore, using a standard verifica-

tion argument, we find, for any (t, x) ∈ T N
r , the formula

UN(t, x) = inf
α=(α1,...,αN)

E
[ ∫ τ

t

( 1
N

N∑
i=1

L(Xi
s, α

i
s) + F (mN

Xs
)

+EN(s, Xs)
)
ds +UN(τ, Xτ)

]
,

(4.3.16)

subject to the dynamics

dXi
s = α

i
sds +

√
2dW i

s t ≤ s ≤ τ = inf
{
s > t : Xi

s ∈ (T N
r )c} and Xi

t = xi.

We note that both X and τ are impacted by the choice of α.

Similarly, we have

VN(t, x) = inf
α
E
[ ∫ τ

t

1
N

N∑
i=1

L(Xi
s, α

i
s) + F (mN

Xs
)ds +VN(τ, Xτ)

]
, (4.3.17)

subject to the same dynamics.

By dynamic programming, the optimal control for the optimization problem in (4.3.17) is the

feedback αi
s = −DpH(Xi

s,NDxiV
N(s, Xs)), and when this control is played X = XN,t,x and
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τ = τN,t,x.

Thus testing this control in the optimization problem (4.3.16), we find

UN(t, x) −VN(t, x) ≤ E
[ ∫ τN,t,x

t
EN(s, Xs)ds

]
+ E

[
UN(τN,t,x, XτN,t,x) −VN(τN,t,x, XτN,t,x)

]
≤

C
N
+ E

[(
UN(τN,t,x, Xτ) −VN(τN,t,x, XτN,t,x)

)
1τN,t,x<T

+
(
UN(τN,t,x, XτN,t,x) −VN(τN,t,x, XτN,t,x)

)
1τN,t,x=T

]
≤

C
N
+ sup

(t,x)∈T N
r

(
UN −VN

)
P
[
τN,t,x < T

]
,

where we used in the first inequality the fact that |EN | ≤ C/N and in the last inequality the fact that

UN(T, x) = G(mN
x ) = VN(T, x).

□

We now proceed with the proof of Proposition 4.3.2.

Proof of Proposition 4.3.2. Let γd,p be the exponent appearing in Lemma 4.3.6, and choose M ∈ N

with M − 1 ≥ 1/γd,p, RM > 0 large enough so that m0 ∈ Bp
RM

, and, for m = 2, ...,M, define Rm−1

inductively by Rm−1 = Rm + Cp, Cp being the constant appearing in (4.3.8) or, in other words,

Cm = CM + (M − m)Cp for m = 1, ...,M. The important point is that we have

m0 ∈ Bp
RM
⊂ Bp

RM−1
⊂ ... ⊂ Bp

R1
and Rm − Rm−1 = CP.

Next, choose r(1)
2 > 0 small enough so that the conclusion of Lemma 4.3.4 holds, and then con-

struct, for i = 1, 2 and m = 1, ...,M,, r(m)
i , in such a way that


r(m+1)
2 = r(m)

1 < r(m)
2 for m = 1, ...,M − 1, and

there exists r(m) such that r(m)
1 < r(m) < r(m)

2 satisfy the hypotheses of Lemma 4.3.6.
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Lemma 4.3.3 makes it clear that we can choose r(m)
i satisfying these conditions. To be clear, the

important point is that we have

0 < r(M)
1 < r(M)

2 = r(M−1)
1 < ... < r(2)

2 = r(1)
1 < r(1)

2 , (4.3.18)

and that, for m = 1, ...,M, there is a r(m) such that the triple r(m)
1 < r(m) < r(m)

2 satisfies the

hypotheses of Lemma 4.3.6.

Combining Lemma 4.3.8 and Lemma 4.3.6, we find that, for each m = 2, ...,M,

sup
(t,x)∈T N

r(m)
1 ,Rm

(
UN(t, x) −VN(t, x)

)
≤

C
N
+ sup

(t,x)∈T N

r(m)
2 ,Rm−1

(
UN −VN

)
N−γd,p

=
C
N
+ sup

(t,x)∈T N

r(m−1)
1 ,Rm−1

(
UN −VN

)
N−γd,p

(4.3.19)

Then (4.3.19) and the global estimate (4.2.4) easily yield, through an inductive argument starting

with m = 1, that, for each m = 1, ...,M,

sup
(t,x)∈T N

r(m)
1 ,Rm

(
UN(t, x) −VN(t, x)

)
≤ C/N1∧

(
βd+(m−1)γd,p

)

Since M − 1 > 1/γd,p ≥ 1 by design, we see in particular that

sup
(t,x)∈T N

r(M)
1 ,RM

(
UN(t, x) −VN(t, x)

)
≤ C/N,

which together with Proposition 4.3.1 completes the proof.

□
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4.4 The proof of Theorem 4.2.2

In this section we prove the convergence result for the gradients. Once again, we fix a p > 2

throughout the section. As in the proof of Theorem 4.2.1, a useful first step is to observe that it

suffices to prove the following proposition.

Proposition 4.4.1. Let (t0,m0) ∈ O and R > 0. Then there exists r,C > 0 such that, for each

N ∈ N, i = 1, ...,N and (t, x) ∈ T N
r,R(t0,m0),

|NDxiV
N(t, x) − DmU(t,mN

x )| ≤
C
N
.

It is easy to see that Proposition 4.4.1 implies Theorem 4.2.2.

Proof of Theorem 4.2.2. Theorem 4.2.2 follows from Proposition 4.4.1 exactly as Theorem 4.2.1

followed from Proposition 4.3.2.

□

The rest of this section is devoted to proving Proposition 4.4.1. Before we proceed, we fix some of

the notations that will be used throughout the section.

First we define

VN,i = DxiV
N and UN,i = DxiU

N for i ∈ {1, · · · ,N}.

Using the the PDEs forVN andUN , it is easy to check thatVN,i satisfies, in [0,T ) × (Rd)N ,

− ∂tV
N,i −

∑
j
∆x jV

N,i +
∑

j
DpH(x j,NVN, j)Dx jV

N, j

+
1
N

Dxi H(xi,NVN,i) = F N,i B
1
N

DmF (t,mN
x , x

i).

(4.4.1)
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Meanwhile, ifU were smooth enough on some tube Tr = Tr(t0,m0), then we would have

− ∂tU
N,i −

∑
j
∆x jU

N,i +
∑

j
DpH(x j,NUN, j)Dx jU

N,i

+
1
N

Dxi H(xi,NUN,i) = F N,i + EN,i in T N ,

(4.4.2)

with

EN,i(t, x) = −
2

N2 Dx tr
[
DmmU(t,mN

x , x
i, xi)

]
−

1
N3

N∑
j=1

Dm
[
tr(DmmU(t,mN

x , x
j, x j)

]
(x j).

Of course, Theorem 4.2.4 does not give enough regularity to immediately justify the computation

above, since it only shows that DmmU Lipschitz in an appropriate local sense. Nevertheless, when

combining the regularity results Theorem 4.2.4 and Proposition 4.6.8 with the reasoning in the

proof of [131, Proposition 5.1], one easily obtains the following analogue of Lemma 4.3.4.

Lemma 4.4.2. For any (t0,m0) ∈ O, there is r > 0 such that Tr(t0,m0) ⊂ O, and, for each N ∈ N,

the projection UN,i defined by (4.3.3) is Lipschitz in time and C1 in space on the set T N
r (t0,m0),

with spatial derivatives Dx jU
N,i being Lipschitz continuous in x and such that the L∞−function

EN,i B −∂tU
N,i −

∑
j
∆x jU

N,i +
∑

j
DpH(x j,NUN, j)Dx jU

N,i +
1
N

Dxi H(xi,NUN,i) − F N,i

satisfies, for each N ∈ N, the bound

∥EN,i(t, x)∥L∞(T N
r (t0,m0)) ≤ C/N.

The next Lemma gives an analogue of Lemma 4.3.8, but at the level of the gradients of UN and

VN .

Lemma 4.4.3. Let (t0,m0) ∈ O and r > 0 be small enough so that the conclusion of Lemma 4.4.2
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holds. Moreover, let

τN,t,x
r = inf{s > t : (s, XN,t,x

x ) ∈ (T N
r (t0,m0))c} ∧ T.

Then, there exists an independent of N constant C > 0 such that, for all (t, x) ∈ T N
r ,

N∑
i=1
|UN,i(t, x) −VN,i(t, x)|2 ≤

C
N3 + sup

(s,y)∈T N
r

( N∑
i=1
|UN,i(s, y) −VN,i(s, y)|2

)
P[τN,t,x

r < T ].

Proof. For the sake of notational simplicity, we give the proof for d = 1. The general case follows

the same steps.

Fix (t, x) ∈ T N
r and consider the optimal trajectory X = X(t,x) for the N-particle control problem

started from (t, x). Let τ = τN,t,x
r , drop the superscript N and write Ei

s for EN,i
s and set

Y i
s = V

N,i(s, Xs), Zi
s =
√

2DVN,i(s, Xs),

Y
i
s = U

N,i(s, Xs), Z
i
s =
√

2DUN,i(s, Xs).

On the stochastic interval [t, τ), we have the dynamics

dY i
s =

( 1
N

Dxi H(Xi
s,NY i

s) − F N,i(s, Xs)
)
ds + Zi

sdWs,

and

dY
i
s =

( 1
N

Dxi H(Xi
s,NY

i
s) − F N,i(s, Xs) − EN,i(s, Xs)

+
∑

j

(
DpH(X j

s ,NY
j
) − DpH(X j

s ,NY j)
)
Dx jU

N,i(s, Xs)
)
ds + Z

i
sdWs,

where we have written W = (W1, ...,WN) for simplicity.
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We set

∆Y i
s = Y i

s − Y
i
s and ∆Zi

s = Zi
s − Z

i
s,

and, for each i, j ∈ {1, · · · ,N}, define the process Ai, j by

Ai, j
s =

1
|∆Y j|2

Dx jU
N,i(s, Xs)

(
DpH(X j

s ,NY j) − DpH(X j
s ,NY

j
)
)(
∆Y j)T 1∆Y j,0

+
1

N|∆Y i|2

(
Dxi H(Xi

s,NY i
s) − Dxi H(Xi

s,NY
i
s)
)(
∆Y i

s
)T 1∆Y i,01i= j.

We may now write

d∆Y i
s =

( N∑
j=1

Ai, j
s ∆Y j

s + Ei
s

)
ds + ∆Zi

sdWs.

The key point about the coefficients Ai, j is that, for some C independent of N,

|Ai, j| ≤ C/N +C1i= j.

Next, we compute

d
( N∑

i=1
|∆Y i

s|
2) = 2

( N∑
i, j=1

Ai, j
s ∆Y i

s∆Y j
s +

N∑
i=1
∆Y i

sEi
s +

1
2

N∑
i=1
|∆Zi

s|
2)ds + 2

N∑
i=1
∆Y i

s∆Zi
sdWs.
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Integrating and taking expectations, we find, for some, independent of N, C,

E
[ N∑

i=1
|∆Y i

s∧τ|
2
]
= E

[ N∑
i=1
|∆Y i

τ|
2
]
− 2E

[ ∫ τ

s∧τ

( N∑
i, j=1

Ai, j
r ∆Y i

r∆Y j
r +

N∑
i=1
∆Y i

rEi
r +

1
2

N∑
i=1
|∆Zi

r |
2)dr

]

≤ E
[ N∑

i=1
|∆Y i

τ|
2
]
+CE

[ ∫ τ

s∧τ

( N∑
i=1
|∆Y i

r |
2 +

N∑
i=1
|Ei

r |
2
)
dr

]

≤ E
[ N∑

i=1
|∆Y i

τ|
2
]
+CE

[ ∫ T

s

( N∑
i=1
|∆Y i

r∧τ|
2 +

N∑
i=1
|Ei

r∧τ|
2
)
dr

]

= E
[ N∑

i=1
|∆Y i

τ|
2
]
+C

∫ T

s
E
[ N∑

i=1
|∆Y i

r∧τ|
2 +

N∑
i=1
|Ei

r∧τ|
2
]
dr,

with the first bound coming from Young’s inequality and the bounds on Ai, j.

Applying Grönwall’s inequality to the function ψ(s) = E
[∑

i |∆Y i
s|

2] and using the bounds on Ei,

we get

N∑
i=1
|UN,i(t, x) −VN,i(t, x)|2 = E[

N∑
i=1
|∆Y i

t |
2] ≤

C
N3 +CE

[ N∑
i=1
|∆Y i

τ|
2
]

=
C
N3 +CE

[ N∑
i=1
|VN,i(τ, Xτ) −UN,i(τ, Xτ)|2

]
≤

C
N3 + sup

(s,y)∈T N
r

( N∑
i=1
|UN,i(s, y) −VN,i(s, y)|2

)
P[τ < T ],

which completes the proof.

□

The following Lemma can be proved using Lemma 4.4.3, exactly as Proposition 4.3.2 is proved

using Lemma 4.3.8.

Lemma 4.4.4. Let (t0,m0) ∈ O and R > 0. Then there exist r,C > 0 such that, for each N ∈ N and
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each (t, x) ∈ T N
r,R(t0,m0),

N∑
i=1
|NDxiVN(t, x) − DmU(t,mN

x )|2 ≤
C
N
.

We may now proceed with the proof of Proposition 4.4.1.

Proof of Proposition 4.4.1. Fix (t0,m0) ∈ O and R > 0 and let r > 0 be given by Lemma 4.4.4.

With the notation of Lemma 4.4.3, we now have, for each i ∈ {1, · · · ,N}, the dynamics

d∆Y i
s =

( N∑
j

Ai, j
s ∆Y j

s + Ei
s
)
ds + ∆Zi

sdWs, (4.4.3)

Therefore,

d
(
|∆Y i

s|
2) = ( N∑

j=1
Ai, j

s ∆Y i
s∆Y j

s + ∆Y i
sEi

s +
1
2
|∆Zi

s|
2)ds + ∆Y i

s∆Zi
sdWs,

which yields

E
[
|∆Y i

s∧τ|
2
]
= E

[
|∆Y i

τ|
2
]
− E

[ ∫ τ

s∧τ

( N∑
j=1

Ai, j
r ∆Y i

r∆Y j
r + ∆Y i

rEi
r +

1
2
|∆Zi

r |
2)dr

]

≤ E
[
|∆Y i

τ|
2
]
− E

[ ∫ τ

s∧τ

( N∑
j,i

Ai, j
r ∆Y i

r∆Y j
r + Ai,i∆Y i

r∆Y i
r + ∆Y i

rEi
r
)
dr

]
≤ E

[
|∆Y i

τ|
2
]
+CE

[ ∫ τ

s∧τ

(
|∆Y i

r |
2 + N

∑
j,i
|Ai, j|2|∆Y j

r |
2 + |Ei

r |
2
)
dr

]
≤ E

[
|∆Y i

τ|
2
]
+CE

[ ∫ T

s

(
|∆Y i

r∧τ|
2 +

1
N

∑
j,i
|∆Y j

r∧τ|
2 +

1
N4

)
dr

]
≤ E

[
|∆Y i

τ|
2
]
+C

∫ T

s
E
[
|∆Y i

r∧τ|
2 +

1
N4

]
dr,
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where in the second inequality we used Young’s inequality in the form

Ai, j
r ∆Y i

r∆Y j
r ≤

1
N
|∆Y i

r |
2 +CN|Ai, j

r |
2|∆Y j

r |
2,

in the third inequality we used the bounds on |Ei
r | as well as the bounds on Ai, j for i , j, and,

finally, in the last inequality we used Lemma 4.4.4.

Thus by Gronwall and the fact that

|∆Y i
τ|

2 ≤


0 if τ = T,

sup(s,y)∈T N
r

(
|UN,i(s, y) −VN,i(s, y)|2

)
if τ < T,

we have that

|UN,i(t, x) −VN,i(t, x)|2 ≤
C
N4 + sup

(s,y)∈T N
r

(
|UN,i(s, y) −VN,i(s, y)|2

)
P[τN,t,x

r < T ].

To conclude, we follow the same procedure as in the proof of Proposition 4.3.2 to show that there

exists a r0 < r such that

sup
(s,y)∈T N

r0

(
|UN,i(s, y) −VN,i(s, y)|2

)
≤

C
N4 ,

which proves the result.

□

4.5 The proof of Proposition 4.2.3

The proof of Proposition 4.2.3 follows from the following two Lemmas.

Lemma 4.5.1. Let Assumption 2 hold. Fix (t0,m0) ∈ O, assume that m0 satisfies the condi-

tion (4.2.7) from the statement of Proposition 4.2.3, and, for each N ∈ N, denote by X̃N =
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(X̃N,1, ..., X̃N,N) the solution to

dX̃N,i
t = −DpH(X̃N,i,DmU(t,mN

X̃N
t
, X̃N,i

t ))dt

+
√

2dW i
t for t0 ≤ t ≤ τ = inf

{
t > t0 : (t,mN

X̃t
) ∈ Oc

}
∧ T,

X̃N,i
t0 = ξ

i,

(4.5.1)

where (ξi)i∈N are i.i.d. with common law m0. Then, there exists an r0 > 0 and a constant C > 0

such that for each 0 < r < r0 and N ≥ C/min(r, rd+8), we have

P
[

sup
t0≤t≤τ

d2
(
mN

X̃
N
t

,m(t0,m0)
t

)
> r

]
≤ Ce−

r2
C N .

Proof. By Proposition 4.6.4 below, we can choose r0 small enough so that Tr0(t0,m0) ⊂ O and

(x,m) 7→ −DpH
(
x,DmU(t,m, x)

)
is uniformly Lipschitz on Tr(t0,m0) with m endowed with the

d2−metric. We then extend, as in the proof of Lemma 4.3.6, to find a measurable map

b(t, x,m) : [0,T ] × Rd × P2(Rd)→ Rd

which is globally Lipschitz in (x,m) and such that

b(t, x,m) = −DpH(x,DmU(t,m, x)) for (t,m) ∈ Tr0 .

Let YN = (YN,1, ...,YN,N) be the unique solution on [t0,T ] of the SDE

dYN,i
t = b(t,YN,i

t ,mN
YN

t
)dt +

√
2dW i

t in (t0,T ] and Yt0 = ξ
i, (4.5.2)

and notice that Y = X̃ on [0, σ), where σ = inf{t ≥ t0 : (t,mN
Yt

) < Tr}.
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Now for r < r0, we can use [143, Corollary 3.5] to conclude

P
[

sup
t0≤t≤τ

d2
(
mN

X̃
N
t

,m(t0,m0)
t

)
> r

]
= P

[
sup

t0≤t≤τ
d2

(
mN

YN
t
,m(t0,m0)

t
)
> r

]
≤ Ce−

r2
C N .

□

Lemma 4.5.2. Let X̃N,i and XN,i be defined by (4.2.8) and (4.5.1) respectively, fix R > 0, choose r

small enough so that the conclusion of Proposition 4.4.1 holds on Tr(t0,m0), and let

σ = inf
{
t > t0 : (t,mN

YN
t

) < T N
r,R(t0,m0)) or (t,mN

XN
t

) < T N
r,R(t0,m0))

}
∧ T. (4.5.3)

Then there exists a constant C > 0 such that, a.s.,

sup
t0≤t≤σ

{ 1
N

N∑
i=1
|XN,i

t − YN,i
t |

}
≤ C/N.

Proof. For simplicity of notation, we write

bN,i(t, x) = −DpH(xi,NDxiV
N(t, x)) and b̃N,i(t, x) = −DpH(xi,DmU(t,mN

x , x
i)).

On [t0, σ) we can rewrite the dynamics of XN as

dXN,i
t = bN,i(t, XN,i

t )dt +
√

2dW i
t =

(̃
bN,i(t, XN,i

t ) + Ei
t
)
dt +

√
2dW i

t ,

where, in view or Theorem 4.2.2,

|Ei
t | = |b

N,i(t, XN,i
t ) − b̃N,i(t, XN,i

t )| ≤ C/N.
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Thus setting ∆XN,i
t = XN,i

t − X̃N,i
t , we have, for t0 ≤ t ≤ σ,

∆XN,i
t =

∫ t

t0

(̃
bN,i(t, Xt) − b̃N,i(t, X̃t) + EN,i

t

)
.

Using the bounds on EN,i and the fact that the regularity of U implies Dx j b̃N,i ≤ C/N +C1i= j, we

easily get

1
N

N∑
i=1
|∆XN,i

t |
2 ≤ C/N2 +C

∫ t

t0

1
N

N∑
i=1
|∆XN,i

s |
2ds,

and we conclude with Gronwall’s inequality.

□

The proof of Proposition 4.2.3. We fix R > 0 to be chosen later, choose r0 small enough that the

conclusions of the preceding two Lemmas are valid, and let X̃N
and σ be defined as (4.5.1) and

(4.5.3) respectively.

We note that to prove Proposition 4.2.3, it suffices to show an estimate of the form

P[σ < T ] ≤ C exp(−
r2

C
N1−η).

To this end, we remark that

σ ≥ σR ∧ σT ∧ σ̃R ∧ σ̃T ∧ T,

where

σR = inf{t ≥ t0 : (t0,m
N
XN

t
) < Bp

R} and σ̃R = inf{t ≥ t0 : (t0,m
N
X̃N

t
) < Bp

R},
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and

σT = inf{t ≥ t0 : (t0,m
N
XN

t
) < Tr} and σ̃T = inf{t ≥ t0 : (t0,m

N
X̃

N
t

) < Tr/2}.

Then we have

P
[

sup
t0≤t≤T

d2
(
mN

XN
t
,m(t0,m0)

t
)
> r

]
≤ P[σR < T ] + P[σ̃R < T ] + P[σ̃T < T ]

+ P
[

sup
t0≤t≤T

d2
(
mN

XN
t
,m(t0,m0)

t
)
> r and σR = σ̃R = σ̃T = T

]
≤ P[σR < T ] + P[σ̃R < T ] + P[σ̃T < T ] + P

[
sup

t0≤t≤σ
d2

(
mN

XN
t
,mN

X̃
N
t

)
>

r
2

]
.

By Lemma 4.5.2, the last term in the final line above vanishes when N ≥ C
r .

To bound P[σR < T ], we argue as in the proof of Lemma 4.5.1 to conclude that

sup
t0≤t≤T

dp(mN
Xt
,mN

x0) ≤ C
(
1 +

1
N

N∑
i=1

sup
t0≤t≤T

|W i
t −W i

t0 |
p
)
.

We conclude that

P[σR < T ] ≤ P
[
C
(
1 +

1
N

N∑
i=1

sup
t0≤t≤T

|W i
t −W i

t0 |
p
)
> Rp −C

]
,

and so, applying Corollary 3.1 of [356], we see that for any K we can choose R large enough so

that

P[σR < T ] ≤ exp(−KN2/p)

An identical argument shows the same estimate for P[σ̃R < T ].
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Finally, by Lemma 4.5.1, we have

P[σ̃T < T ] ≤ C exp(−
r2

C
N).

Since p > 2 is arbitrary, this completes the proof. □

4.6 Regularity

In this section we show the necessary regularity results for the value function U.

4.6.1 Terminology and notation

Throughout this part, we set

F(x,m) =
δF

δm
(m, x) and G(x,m) =

δG

δm
(m, x).

We also make use of the notation

δF
δm

(x,m)(ρ) = ⟨
δF
δm

(x,m, y), ρ(dy)⟩,
δ2F
δm2 (x,m)(ρ1)(ρ2) = ⟨⟨

δ2F
δm2 (x,m, y, z), ρ1(dy)⟩, ρ2(dz)⟩,

whenever ρ, ρ1, ρ2 are distributions such that the above pairings make sense, and similar notations

with G replacing F.

As in [92], we need to study a number of linear equations, which are obtained by linearizing the

MFG system describing the optimal trajectories. For the reader’s convenience, we list here all of

the relevant equations.
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We say that (u,m) is a solution to (MFG) with initial condition m(t0) = m0, if



−∂tu − ∆u + H(x,Du) = F(x,m(t)) in (t0,T ) × Rd,

∂tm − ∆m − div(mDpH(x,Du)) = 0 in in (t0,T ) × Rd,

m(t0, ·) = m0 and u(T, ·) = G(·,m(T )) in Rd.

(MFG)

We say that (z, ρ) is a solution to (MFGL) driven by (u,m) and with initial condition ρ(t0) = ξ, if



−∂tz − ∆z + DpH(x,Du) · Dz =
δF
δm

(x,m(t))(ρ(t)) in (t0,T ) × Rd,

∂tρ − ∆ρ − div(ρDpH(x,Du)) = div(mDppH(x,Du)Dz) in (t0,T ) × Rd,

ρ(t0, ·) = ξ and z(T, ·) =
δG
δm

(·,m(T ))(ρ(T )) in Rd.

(MFGL)

We say that (z, ρ) is a solution to (MFGLE) driven by (u,m) with initial condition ρ(t0) = ξ and

forcing terms R1,R2,R3 if



−∂tz − ∆z + DpH(x,Du) · Dz =
δF
δm

(x,m(t))(ρ) + R1 in (t0,T ) × Rd,

∂tρ − ∆ρ − div(ρDpH(x,Du)) = div(mDppH(x,Du)Dz)

+div(R2) in (t0,T ) × Rd,

ρ(t0, ·) = ξ and z(T, ·) =
δG
δm

(·,m(T ))(ρ(T )) + R3 in Rd.

(MFGLE)

Given a sufficiently smooth vector field V : [0,T ]×Rd → Rd and a bounded map Γ : [0,T ]×Rd →

Rd×d, we say that that (z, ρ) is a solution to (MFGLG) driven by (u,m) with initial condition

173



ρ(t0) = ξ and forcing terms R1,R2,R3 if



−∂tz − ∆z + V(t, x) · Dz =
δF
δm

(x,m(t))(ρ) + R1 in (t0,T ) × Rd,

∂tρ − ∆ρ − div(ρV) = σdiv(mΓDz) + div(R2) in (t0,T ) × Rd,

ρ(t0, ·) = ξ and z(T, ·) =
δG
δm

(·,m(T ))(ρ(T )) + R3 in Rd,

(MFGLG)

where m solves 
∂tm − ∆m − div(mV) = 0 in (t0,T ) × Rd,

m(t0, ·) = m0 in Rd.

(4.6.1)

We provided separate definitions for the above systems due to their frequent use. We note, however,

that MFGL is a special case of MFGLE, which in turn is a special case of MFGLG.

Finally, we recall the notion of strong stability used in [92] for the system



−∂tz − ∆z + V(t, x) · Dz =
δF
δm

(x,m(t))(ρ) in (t0,T ) × Rd,

∂tρ − ∆ρ − div(ρV) = σdiv(mΓDz) in (t0,T ) × Rd,

ρ(t0, ·) = ξ and z(T, ·) =
δG
δm

(·,m(T ))(ρ(T )) in Rd.

(4.6.2)

We say that

the system (4.6.2) is strongly stable if, for any σ ∈ [0, 1],

its unique solution is (z, ρ) = (0, 0).
(4.6.3)

4.6.2 Refinement of the results in [92]

The purpose of this subsection is to present sharpened versions of the results in [92] under the

increased regularity of the data. The majority of them require only small adjustments. The only

critical extensions are Lemma 4.6.1 for estimates on the linearized system MFGLE and Lemma
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4.6.3 for the stability of controls. For this reason we include detailed proofs of these two results.

The following is a generalization of [92, Lemma 2.1]. The only improvement is in the norm of

dependence on ξ.

Lemma 4.6.1. Assume (2) and (4.6.3). There exists a neighborhoodV of (V,Γ) in the topology of

locally uniform convergence, and η,C > 0 such that, for any (V′, t′0,Γ
′,R1,′ ,R2,′ ,R3,′ , ξ′, σ′) with


(V′,Γ′) ∈ V, |t′0 − t0| + d2(m′0,m0) ≤ η, ∥V′∥C1,3 + ∥Γ

′∥∞ ≤ 2C0, σ
′ ∈ [0, 1],

R1,′ ∈ Cδ/2,δ, R2,′ ∈ L∞([t0,T ], (W1,∞)′(Rd,Rd)),R3,′ ∈ C2+δ, ξ ∈ (C1+δ)′,

(4.6.4)

any solution (z′, ρ′) to (MFGLG) associated with these data on [t′0,T ] and m′ the solution to (4.6.1)

with drift V′ and initial condition m′0 at time t′0 satisfies

∥z′∥C(2+δ)/2,2+δ + sup
t∈[t′0,T ]

∥ρ′(t, ·)∥(C2+δ)′ + sup
t′,t

∥ρ′(t′, ·) − ρ′(t, ·)∥(C2+δ)′

|t′ − t|δ/2
≤ CM′, (4.6.5)

where

M′ = ∥ξ′∥(C1+δ)′ + ∥R
1,′∥Cδ/2,δ + sup

t∈[t′0,T ]
∥R2,′(t)∥(W1,∞)′ + ∥R

3,′∥C2+δ . (4.6.6)

The proof is identical to the one in [92], where a careful inspection of the proofs of [92, Lemma

2.3] and [92, Lemma 2.1] shows that we may in fact use ∥ξ∥(C1+δ)′ instead of ∥ξ∥(W1,∞)′ .

The following is a restatement of [92, Lemma 1.3] for measures in P1(Rd).

Lemma 4.6.2. Assume (2) and let (u,m) be a solution of MFG. Then there exists C > 0, which is

independent of (t0,m0), such that

∥u∥C(3+δ)/2,3+δ + sup
t,t′

d1(m(t),m(t′))

|t′ − t|
1
2

≤ C (4.6.7)
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and

sup
t∈[t0,T ]

∫
Td
|x|m(t, dx) ≤ C

∫
Td
|x|m0(dx). (4.6.8)

We now present the critical improvement of [92, Lemma 2.9].

Lemma 4.6.3. Assume (2) and fix (t0,m0) ∈ O. There exist θ,C > 0 such that, for any t′0,m
1
0,m

2
0

satisfying |t′0 − t0| < θ and d2(m0,mi
0) < θ, if (mi, αi) is the unique minimizer starting from (t′0,m

i
0)

with associated multiplier ui for i = 1 and i = 2, then

∥u2 − u1∥C(2+δ)/2,2+δ + sup
t∈[t′0,T ]

d1(m2(t),m1(t))

+ sup
t′,t

∥(m2 − m1)(t′) − (m2 − m1)(t)∥(C2+δ)′

|t′ − t|δ/2
≤ Cd1(m2

0,m
1
0).

Remark 13. We note that in the statement of Lemma 4.6.3 m0,mi
0 are close with respect to d2

while the result uses d1(m2
0,m

1
0). This is done to be consistent with the results already proven in

[92], where the set O was shown to be open in the d2-topology. However, as we show below the

function U is in fact regular in d1 inside the set O. The use of the metrics d1 and d2 will appear

throughout this section.

Proof. Let (m, α) be the unique stable minimizer starting from (t0,m0) with multiplier u. Then

[92, Lemma 2.6], yields that system MFGL is strongly stable.

Let V = −DpH(x,Du),Γ = −DppH(x,Du) andV be the corresponding neighborhood as described

in Lemma 4.6.1. With the same argument as in [92, Lemma 2.9], by choosing θ > 0 small enough,

we have that

(V i,Γi) ∈ V

where V i = −DpH(x,Dui),Γi = −DppH(x,Dui).
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Given η > 0, by choosing θ > 0 even smaller if necessary, we have that under our assumptions

∥u2 − u1∥C(2+δ)/2,2+δ + sup
t∈[t′0,T ]

d2(m2(t),m1(t)) < η. (4.6.9)

Moreover, it is easy to check that, for a constant C = C(T,H, ∥D2u1∥∞, ∥D2u2∥∞) > 0 which is

bounded by Lemma 4.6.2, we have

sup
t′0≤t≤T

d1(m2(t),m1(t)) ≤ C(d1(m2
0,m

1
0) + ∥Du2 − Du1)∥∞). (4.6.10)

Consider the pair

(v, ρ) = (u2 − u1,m2 − m1),

which solves (MFGLE) with

R1(t, x) = H(x,Du2) − H(x,Du1) − DpH(x,Du1) · (Du2 − Du1)

+ F(x,m2) − F(x,m1) −
δF
δm

(x,m1(t))(m2(t) − m1(t)),

R2(t, x) = DpH(x,Du2)m2 − DpH(x,Du1)m1 − DpH(x,Du1)(m2 − m1)

− DppH(x,Du1)(Du2 − Du1)m1

=
(
DpH(x,Du2) − DpH(x,Du1)

)
(m2 − m1)

+
(
DpH(x,Du2) − DpH(x,Du1) − DppH(x,Du1) · (Du2 − Du1)

)
m1

=
(
DpH(x,Du2) − DpH(x,Du1)

)
(m2 − m1)

+ m1
∫ 1

0
D(u2 − u1) ·

(
DppH(λDu2 + (1 − λ)Du1) − DppH(x,Du2)

)
dλ,

R3(x,T ) = G(x,m2(T )) −G(x,m1(T )) −
δG
δm

(x,m1(T ))(m2(T ) − m1(T )),

ξ = m2
0 − m1

0.
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Note that we have the estimates

∥ξ∥(C1+δ)′ ≤ sup
∥D f ∥∞≤1

∫
Rd

f (x)(m2
0 − m1

0) = d1(m2
0,m

1
0),

sup
t∈[t0,T ]

∥R2(t)∥(W1,∞)′ ≤ C
(
∥Du2 − Du1∥C0,2 sup

t∈[t0,T ]
d1(m2(t),m1(t)) + ∥Du2 − Du1∥2

C0,2

)
≤ C

(
∥u2 − u1∥2

C(2+δ)/2,2+δ + sup
t∈[t0,T ]

d2
1(m2(t),m1(t))

)
.

∥R3∥C2+δ ≤ C sup
t∈[t0,T ]

d2
1(m2(t),m1(t)).

It remains to estimate the quantity ∥R1∥Cδ/2,+δ . For this, we rewrite R1 as

R1(t, x) = A(t, x) + B(t, x),

where

A(t, x) = −
∫ 1

0

(
DpH(x, λDu2 + (1 − λ)Du1) − DpH(Du1)

)
· (Du2 − Du1)dλ,

and

B(t, x) =
∫ 1

0

(δF
δm

(x, λm2(t) + (1 − λ)m1(t)) −
δF
δm

(x,m1(t))
)
(m2(t) − m1(t))dλ

)
.

Bounding A is relatively straightforward, since

∥A∥Cδ/2,δ ≤ C∥D(u2 − u1)∥2
Cδ/2,δ ≤ C∥u2 − u1∥2

Cδ/2,2+δ .

The bound B is a bit more involved. Given λ, θ ∈ [0, 1], let

[m]λ(t) = λm2(t) + (1 − λ)m1(t)), [m]λ,θ(t) = θ[m]λ(t) + (1 − θ)m2(t), ρ(t) = m2(t) − m1(t).
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We rewrite B as

B(t, x) =
∫ 1

0

∫ 1

0
λ
δ2F
δm2

(
x, [m]λ,θ(t)

)
(ρ(t))(ρ(t))dλdθ,

and look at the functions

Cλ,θ(t, x) =
δ2F
δm2

(
x, [m]λ,θ(t)

)
(ρ(t))(ρ(t)).

For every λ, θ ∈ [0, 1], we have the estimates

∥Cλ,θ(·, ·)∥δ/2,δ ≤ C
(

sup
t,s

∥[m]λ,θ(t) − [m]λ,θ(s)∥(C1)′

|t − s|δ/2
sup

t∈[t0,T ]
∥ρ(t)∥2(C2+δ)′

+ sup
t,s

∥ρ(t) − ρ(s)∥(C2+δ)′

|t − s|δ/2
sup

t∈[t0,T ]
∥ρ(t)∥(C1)′

)
≤ C

((
sup
t,s

d1(m2(t),m2(s))
|t − s|δ/2

+ sup
t,s

d1(m1(t),m1(s))
|t − s|δ/2

)
sup

t∈[t0,T ]
d2

1(m2(t),m1(t))

+ sup
t∈[t0,T ]

d1(m2(t),m1(t))
∥(m2(t) − m1(t)) − (m2(s) − m1(s))∥(C2+δ)′

|t − s|δ/2

)

and thus

∥B(·, ·)∥δ/2,δ ≤C
(

sup
t∈[t0,T ]

d1(m2(t),m1(t))
∥(m2(t) − m1(t)) − (m2(s) − m1(s))∥(C2+δ)′

|t − s|δ/2

+ sup
t∈[t0,T ]

d2
1(m2(t),m1(t))

)
.

Combining the upper bounds on A and B, we finally conclude that

∥R1∥Cδ/2,δ ≤ C
(

sup
t∈[t0,T ]

d1(m2(t),m1(t))
∥(m2(t) − m1(t)) − (m2(s) − m1(s))∥(C2+δ)′

|t − s|δ/2

+ sup
t∈[t0,T ]

d2
1(m2(t),m1(t)) + ∥u2 − u1∥2

Cδ/2,2+δ

)
,
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and, hence, using Lemma 4.6.1 we get

∥u2 − u1∥C(2+δ)/2,2+δ + sup
t∈[t0,T ]

∥m2(t) − m1(t)∥(C2+δ)′ + sup
t,s

∥(m2(t) − m1(t)) − (m2(s) − m1(s)∥(C2+δ)′

|t − s|δ/2

≤ C
(
∥u2 − u1∥2

Cδ/2,2+δ + sup
t∈[t0,T ]

d2
1(m2(t),m1(t))

+ sup
t∈[t0,T ]

d1(m2(t),m1(t))
∥(m2(t) − m1(t)) − (m2(s) − m1(s))∥(C2+δ)′

|t − s|δ/2

)
.

Thus choosing η > 0 small enough in (4.6.9), we find

∥u2−u1∥C(2+δ)/2,2+δ +
∥(m2(t) − m1(t)) − (m2(s) − m1(s))∥(C2+δ)′

|t − s|δ/2

≤ C
(
d1(m2

0,m
1
0) + sup

t∈[t0,T ]
d2

1(m2(t),m1(t))
)

≤ C
(
d1(m2

0,m
1
0) + ∥u2 − u1∥2

C(2+δ)/2,2+δ + d2
1(m2

0,m
1
0)

)
,

where in the last inequality we used (4.6.10).

Therefore, choosing η > 0 even smaller if necessary, we obtain

∥u2 − u1∥C(2+δ)/2,k+δ +
∥(m2(t) − m1(t)) − (m2(s) − m1(s))∥(C2+δ)′

|t − s|δ/2
≤ Cd1(m2

0,m
1
0).

Using the last inequality in (4.6.10) yields

sup
t∈[t0,T ]

d1(m2(t),m1(t)) ≤ Cd1(m2
0,m

1
0).

□

Next, we give a sharpened version of the main regularity result in [92].
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Proposition 4.6.4. Let Assumption 1 hold. Then, for each (t0,m0) ∈ O, there exist constants

δ,C > 0 such that, for t, m1,m2 with |t − t0| < δ, d2(m0,mi) < δ and i = 1, 2, we have

sup
x∈Rd
|DmU(t,m1, x) − DmU(t,m2, x)| ≤ Cd1(m1,m2).

Proof. For i = 1, 2, let (ui,mi) be solutions to MFG with initial conditions mi(t) = mi. We have

that

DmU(t,mi, x) = Dui(t, x)

and the result follows from Lemma 4.6.3.

□

4.6.3 The C2−regularity ofU

In this subsection we show that the functionU is twice differentiable in m and, moreover, the map

m → DmmU(t,m, x, y) is Lipschitz in d1 locally within O. This is the assertion of Theorem 4.2.4.

The proof follows closely the one developed [79].

We introduce next some notation, and also give a roadmap showing how the arguments of [79] will

be adapted to the present setting.

For (t0,m0) ∈ O, let m(t0,m0) denote the unique optimal trajectory started from (t0,m0) and by

u(t0,m0) its corresponding multiplier, and consider the map Φ : O × Rd → R given by

Φ(t0,m0, x) = u(t0,m0)(t0, x).

It was shown in the proof of Lemma 2.9 in [92] that, for (t,m) ∈ O, we have

δU

δm
(t,m, x) = Φ(t,m, x) −

∫
Rd
Φ(t,m, z)m(dz). (4.6.11)
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Given a multi-index l ∈ {0, 1}d with |l| =
d∑

i=1
li ≤ 1, that is, either l = (0, · · · , 0) or l = ei for some

i ∈ {1, · · · , d}, where ei is the standard basis in Rd, and y ∈ Rd, let (w(l),y, ρ(l),y) be the solution to

(MFGL) driven by (u,m), with initial condition ρ(l),y(t0, ·) = (−1)|l|D(l)δy.

We also define the function K(l) : O × Rd × Rd → R given by

K(l)(t0,m0, x, y) = w(l),y(t0, x),

and, for simplicity of notation, we write K = K(0).

Following the arguments in [79], we show below that

δΦ

δm
(t,m, x, y) =

δ

δm
[
Φ(t, ·, x)

]
(y) = K(t0,m0, x, y). (4.6.12)

We note that the normalization convention

∫
Td

K(t0,m0, x, y)m0(dy) = 0

is satisfied, since (z, ρ) = (0,m(t0,m0)) is the unique solution to (MFGL).

Combining (4.6.12) and (4.6.11) and keeping in mind the normalization convention for linear

derivatives, it follows that δ
2U
δm2 = K , where K is the “normalized" version of K given by

K(t0,m0, x, y) = K(t0,m0, x, y) −
∫
Td

K(t0,m0, z, y)m0(dz) − u(t0,m0)(t0, y)

+

∫
Td

u(t0,m0)(t0, z)m0(dz).
(4.6.13)

The existence and regularity of DmmU thus follows from the regularity properties of the map K,

which we investigate next.

Proposition 4.6.5. Let Assumption 2 hold and fix (t0,m0) ∈ O. Then, the function K(0)(t0,m0, x, y)
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is differentiable in y. Moreover, for any l ∈ {0, 1}d with |l| ≤ 1, the derivative x→ D(l)
y K(0)(t0,m0, x, y)

belongs to C2+δ(Rd) and is given by

D(l)
y K(0)(t0,m0, x, y) = K(l)(t0,m0, x, y). (4.6.14)

Furthermore, there exists a constant C > 0, which depends on the data, such that

sup
y∈Rd
∥D(l)

y K(0)(t0,m0, ·, y)∥C2+δ ≤ C, (4.6.15)

and

∥D(l)
y K(0)(t0,m0, ·, y

′) − D(l)
y K(0)(t0,m0, ·, y)∥2+δ ≤ C|y′ − y|δ. (4.6.16)

Finally, given a finite signed measure ξ on Rd, the unique solution (z, ρ) to (MFGL) driven by

(u,m) and with initial condition ρ(t0) = ξ satisfies

z(t0, x) = ⟨K(0)(t0,m0, x, ·), ξ⟩. (4.6.17)

Proof. Fix y ∈ Rd. Since |l| ≤ 1, Lemma 4.6.1 yields

∥w(l),y∥C(2+δ)/2,2+δ + sup
t∈[t0,T ]

∥ρ(l),y(t)∥(C2+δ)′ + sup
t′,t

∥ρ(l),y(t) − ρ(l),y(s)∥(C2+δ)′

|t − s|δ/2

≤ C∥D(l)δy∥(C1+δ)′ ≤ C.

Note that in the estimate above we used that

∥D(l)δy∥(C1+δ)′ = sup
∥ f ∥C1+δ≤1

D(l)
y f (y) ≤ sup

∥ f ∥C1+δ≤1
∥ f ∥C1+δ ≤ 1.
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Let e1, . . . , ed be the standard basis vectors in Rd. Then, for ϵ > 0 and i ∈ {1, · · · , d}, the pair

(zϵi , λ
ϵ
i ) =

(
1
ϵ

(
w(0),y+ϵei − w(0),y

)
− w(ei),y,

1
ϵ

(
ρ(0),y+ϵei − ρ(0),y

)
− ρ(ei),y

)

is the unique solution to (MFGL) driven by (u,m) with initial condition

λϵi =
1
ϵ

(
δy+ϵei − δy

)
− (−1)D(ei)δy.

Since

∥
1
ϵ

(
δy+ϵei − δy

)
− (−1)D(ei)δy∥(C1+δ)′

= sup
∥ f ∥C1+δ≤1

f (y + ϵei) − f (y) − ϵD(ei) f (y)
ϵ

= sup
∥ f ∥C1+δ≤1

∫ 1

0
D(ei)

(
f (s(y + ϵei) + (1 − s)y) − f (y)

)
ds

≤ C sup
∥ f ∥C1+δ≤1

∥Dei f ∥Cδ

∫ 1

0
sδϵδds ≤ C sup

∥ f ∥C1+δ≤1
∥ f ∥C1+δϵ

δ ≤ Cϵδ,

Lemma 4.6.1 yields

∥
1
ϵ

(
w(0),y+ϵei − w(0),y

)
− w(ei),y∥C(2+δ)/2,2+δ

≤ C∥
1
ϵ

(
δy+ϵei − δy

)
− (−1)D(ei)δy∥(C1+δ)′ ≤ Cϵδ,

and, hence, (4.6.15) and (4.6.14) follow.

Furthermore, given y′, y, (4.6.16) is an application of Lemma 4.6.1 to the pair (w(l),y′−w(l),y, ρ(l),y′−

ρ(l),y).
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Finally, (4.6.17) follows from the fact that the pair

(zξ, µξ) = (
∫
Td

w(0),y(t, x)dξ(y),
∫
Td
ρ(0),ydξ(y))

is the unique solution to (MFGL) driven by (u,m) with initial condition ρξ(t0) = ξ.

□

We now show the Lipschitz continuity of K(l) with respect to m.

Proposition 4.6.6. Let Assumption 2 hold. Given (t0,m1
0) ∈ O, there exist η > 0 and C > 0 such

that, if m2
0 ∈ P2(Rd) and d2(m2

0,m
1
0) ≤ η, then

∥K(l)(t0,m
2
0, ·, y) − K(l)(t0,m

1
0, ·, y)∥2+δ ≤ Cd1(m2

0,m
1
0).

Proof. Let (u1,m1) and (u2,m2) be the unique stable solutions to (MFG) with initial conditions

m1(t0) = m1
0 and m2(t0) = m2

0 respectively. In addition, let (z1, ρ1), (z2, ρ2) be solutions to (MFGL)

driven by (u1,m1), (u2,m2) respectively and with initial conditions ρ1(t0) = ρ2(t0) = (−1)|l|D(l)δy.

The pair

(w, λ) = (z2 − z1, ρ2 − ρ1)

solves (MFGLE) driven by (u1,m1) with

R1 =
(
DpH(x,Du1) − DpH(x,Du2)

)
· Du2 +

(δF
δm

(x,m2(t))(ρ2(t)) −
δF
δm

(x,m1(t))(ρ2(t))
)
,

R2 = ρ2(t)
(
DpH(x,Du2) − DpH(x,Du1)

)
+

(
m2DppH(x,Du2) − m1DppH(x,Du1)

)
· Du2,

R3 =
δG
δm

(x,m2(T ))(m2(T )) −
δG
δm

(x,m1(T ))(m2(T )),

ξ = 0.

From Lemma 4.6.3 we have
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∥R3∥C2+δ ≤ C sup
t∈[t0,T ]

d1(m2(t),m1(t)) ≤ Cd1(m2
0,m

1
0),

and

sup
t∈[t0,T ]

∥R2(t)∥(W1,∞)′ ≤ C
(

sup
t∈[t0,T ]

∥Du2(t) − Du1(t)∥C1 + sup
t∈[t0,T ]

d1(m2(t),m1(t))
)

≤ Cd1(m2
0,m

1
0).

It remains to estimate ∥R1∥Cδ/2,δ . To this end, we rewrite it as

R1 = A + B,

with

A =
(
DpH(x,Du1) − DpH(x,Du2)

)
· Du2,

and

B =
δF
δm

(x,m2(t))(ρ2(t)) −
δF
δm

(x,m1(t))(ρ2(t)).

It follows from Lemma 4.6.3 that

∥A∥Cδ/2,δ ≤ C∥D(u2 − u1)∥Cδ/2,δ ≤ C∥u2 − u1∥C(2+δ),2+δ ≤ Cd1(m2
0,m

1
0).

Finally, we write

B(t, x) =
∫ 1

0

δ2F
δm2 (x, λm2(t) + (1 − λ)m1(t))(ρ2(t))(m2(t) − m1(t))dλ.
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An argument similar to the one in the proof of Lemma 4.6.3 yields

∥B(·, ·)∥Cδ/2,δ ≤ C
(

sup
t,s

∥(m2(t) − m1(t) − (m2(s) − m1(s)))∥(C2+δ)′

|t − s|δ/2
+ sup

t∈[t0,T ]
d1(m2(t),m1(t))

)
,

and, hence, by Lemma 4.6.3, we have

∥R1∥Cδ/2,δ ≤ Cd1(m2
0,m

1
0).

Finally, Lemma 4.6.1 and the definition of K(l) imply that

∥K(l)(t0,m
2
0, ·, y) − K(l)(t0,m0, ·, y)∥2+δ ≤ ∥z

2 − z∥C(2+δ)/2,2+δ ≤ Cd1(m2
0,m

1
0).

□

Theorem 4.6.7. Let Assumption 2 hold. The mapU is C2 in the set O and satisfies

δ2U

δ2m
(t0,m0, x, y) = K(t0,m0, x, y).

Moreover, given (t0,m1
0) ∈ O, there exist an η > 0 and C > 0 such that, if m2

0 ∈ P2(Rd) with

d2(m2
0,m

1
0) ≤ η, then

∥∥∥∥δU
δm

(t0,m
2
0, ·) −

δU

δm
(t0,m

1
0, ·) −

∫
Td
K(t0,m0, ·, y)d(m2

0 − m1
0)(y)

∥∥∥∥2+δ
≤ Cd2

1(m2
0,m

1
0).

Proof. Let (u1,m1) and (u2,m2) be the unique stable solutions to (MFG) with initial conditions

m1(t0) = m1
0,m

2(t0) = m2
0 respectively, and (z, µ) be the solution to (MFGL) driven by (u,m) with

initial condition ρ(t0) = m2
0 − m1

0.

The pair

(z, ρ) = (u2 − u1 − z,m2 − m1 − µ)
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solves the linearized system (MFGLE) driven by (u1,m1), with ξ = 0 and

R1 = −(H(x,Du2) − H(x,Du1) − DpH(x,Du1) · D(u2 − u1))

+ F(x,m2) − F(x,m1) −
δF
δm

(x,m1(t))(m2(t) − m1(t)),

R2 = (DpH(x,Du2) − DpH(x,Du1) − DppH(x,Du1) · (Du2 − Du1))m1

+ (DpH(x,Du2) − DpH(x,Du1))(m2 − m1),

R3 = G(x,m2(T )) −G(x,m1(T )) −
δG
δm

(x,m1(T ))(m2(T ) − m1(T )).

Arguments similar to those used to bound R1 in the proof of 4.6.3 yield

∥R1∥Cδ/2,δ + sup
t∈[t0,T ]

∥R2∥(W1,∞)′ + ∥R
3∥(C2+δ)′

≤ C
(
∥Du2 − Du1∥2

Cδ/2,δ + sup
t∈[t0,T ]

d2
1(m2(t),m1(t)) +

(
sup
t,s

∥(m2(t) − m1(t)) − (m2(s) − m1(s))∥
|t − s|δ/2

)2)
,

and thus Lemma 4.6.1 and Lemma 4.6.3 imply that

∥u2 − u1 − z∥C(2+δ)/2,2+δ ≤ Cd2
1(m2

0,m
1
0).

The above shows that
δΦ

δm
(t0,m

1
0, x, y) = K(t0,m0, x, y).

The result now follows from the representations (4.6.13), (4.6.11) and (4.6.17).

□

We may now show Theorem 4.2.4.

The proof of Theorem 4.2.4. The claim follows from Proposition 4.6.6 and Theorem 4.6.7.

□
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We conclude this section by showing that the function DmU is Lipschitz continuous with respect

to time.

Proposition 4.6.8. Let Assumption 2 hold. Given (t0,m0) ∈ O, there exist C > 0 and δ > 0

depending on the data such that, for all |h| < δ,

∥∥∥∥DmU((t0 + h) ∧ T,m0, ·) − DmU(t0,m0, ·)
∥∥∥∥L∞
≤ C|h|.

Proof. Fix (t0,m0) ∈ O and x ∈ Rd.

We write

|DmU(t0 + h,m0x) − DmU(t0,m0, x)| ≤ I + II,

with

I = |DmU(t0 + h,mt0 , x) − DmU(t0 + h,mt0+h, x)|,

and

II = |DmU(t0 + h,mt0+h, x) − DmU(t0 + h,mt0 , x)|,

where t 7→ mt is the unique optimal trajectory started from (t0,m0), and proceed obtaining bounds

for I and II.

To estimate II, we note that the regularity of u(t0,m0) yields

II = |Dxu(t0,m0)(t0 + h, x) − Dxu(t0,m0)(t0, x)| ≤ Ch.

For the term I, we first note that, in view of Theorem 4.6.7 and the regularity of K proved in
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Proposition 4.6.5, we can find δ small enough that, if (t,m) is such that |t− t0| < δ and d2(m,m0) <

δ, then, for some C > 0,

∥DmmU(t,m, ·, y)∥C1+δ ≤ C.

Since DmmU(t,m, x, y) = DmmU(t,m, y, x)T by Corollary 5.89 in [96], it follows that

∥DmmU(t,m, x, ·)∥C1+δ ≤ C.

From here it is straightforward to check that there is a constant C such that, if |t − t0| < δ and

d2(m,m0) < δ, we have

∥
δ

δm
[
DmU(t,m, x)

]
(·)∥C2 ≤ C.

It follows that DmU is locally Lipschitz in (C2)′, and, in particular, for |t − t0| < δ, d2(m,m0) < δ,

we find

|DmU(t,m, x) − DmU(t,m0, x)| ≤ C∥m − m0∥(C2)′ .

Note also that standard estimates yield that t 7→ mt is Lipschitz with respect to the (C2)′-metric.

Thus, choosing, if necessary, δ even smaller so that d2(mt0+h,mt0) is small enough, we find that

I ≤ C∥mt0+h − mt0∥(C2)′ ≤ Ch,

which completes the proof. □

190



REFERENCES

[1] Y. Achdou and I. Capuzzo-Dolcetta. Mean field games: Numerical methods. SIAM J.
Numer. Anal., 48(3):1136–1162, 2010.

[2] Y. Achdou, P. Mannucci, C. Marchi, and N. Tchou. Deterministic mean field games with
control on the acceleration. Nonlinear Differential Equations and Applications NoDEA,
27(3):1–32, 2020.

[3] S. Ahuja. Wellposedness of mean field games with common noise under a weak monotonic-
ity condition. SIAM J. Control Optim., 54(1):30–48, 2016.

[4] M. Ajtai, J. Komlós, and G. Tusnády. On optimal matchings. Combinatorica, 4(4):259–264,
1984.

[5] A. A. Albanese and E. M. Mangino. Analyticity of a class of degenerate evolution equations
on the canonical simplex of Rd arising from Fleming-Viot processes. J. Math. Anal. Appl.,
379(1):401–424, 2011.

[6] C. Alekos, D. P. Paolo, F. Markus, and P. Guglielmo. On the convergence problem in mean
field games: a two state model without uniqueness. SIAM J. Control Optim., 57(4):2443–
2466, 2019.

[7] S. A. Alimov, R. R. Ashurov, and A. K. Pulatov. Multiple Fourier series and Fourier in-
tegrals [ MR1027847 (91b:42022)]. In Commutative harmonic analysis, IV, volume 42 of
Encyclopaedia Math. Sci., pages 1–95. Springer, Berlin, 1992.

[8] C. D. Aliprantis and K. C. Border. Infinite dimensional analysis: A hitchhiker’s guide.
Springer, Berlin, third edition, 2006.

[9] D. M. Ambrose and A. R. Mészáros. Well-posedness of mean field games master equations
involving non-separable local hamiltonians. arXiv, https://arxiv.org/abs/2105.03926, 2021.

[10] L. Ambrosio and W. Gangbo. Hamiltonian ODEs in the Wasserstein space of probability
measures. Comm. Pure Appl. Math., 61(1):18–53, 2008.

[11] L. Ambrosio, N. Gigli, and G. Savaré. Gradient flows in metric spaces and in the space
of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel,
second edition, 2008.

[12] N. Antunes, C. Fricker, P. Robert, and D. Tibi. Stochastic networks with multiple stable
points. The Annals of Probability, 36(1):255–278, 2008.

[13] B. Ata, J. M. Harrison, and L. A. Shepp. Drift rate control of a Brownian processing system.
Ann. Appl. Probab., 15(2):1145–1160, 2005.

[14] R. Atar. A diffusion regime with nondegenerate slowdown. Oper. Res., 60(2):490–500,
2012.

191



[15] R. J. Aumann. Markets with a continuum of traders. Econometrica, 32:39–50, 1964.

[16] F. Baccelli, F. Karpelevich, M. Y. Kelbert, A. Puhalskii, A. Rybko, and Y. M. Suhov. A
mean-field limit for a class of queueing networks. Journal of Statistical Physics, 66(3-
4):803–825, 1992.

[17] K. Bahlali, M. Mezerdi, and B. Mezerdi. Existence and optimality necessary conditions for
general stochastic mean# field control problems! 2014.

[18] T. Bakaryan, R. Ferreira, and D. Gomes. Some estimates for the planning problem with
potential. NoDEA Nonlinear Differential Equations Appl., 28(2):1–23, 2021.

[19] E. Bandini, A. Cosso, M. Fuhrman, and H. Pham. Randomized filtering and Bellman equa-
tion in Wasserstein space for partial observation control problem. Stochastic Process. Appl.,
129(2):674–711, 2019.

[20] M. Bardi and I. Capuzzo-Dolcetta. Optimal control and viscosity solutions of Hamilton-
Jacobi-Bellman equations. Systems & Control: Foundations & Applications. Birkhäuser
Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo
Soravia.

[21] M. Bardi and P. Cardaliaguet. Convergence of some mean field games systems to aggrega-
tion and flocking models. Nonlinear Analysis, 204:112199, 2021.

[22] G. Barles. Solutions de viscosité des équations de Hamilton-Jacobi. Springer Berlin, Hei-
delberg, 1994.

[23] E. Bayraktar, A. Budhiraja, and A. Cohen. A numerical scheme for a mean field game
in some queueing systems based on Markov chain approximation method. ArXiv e-prints,
2017.

[24] E. Bayraktar, A. Budhiraja, and A. Cohen. Rate control under heavy traffic with strategic
servers. Ann. Appl. Probab., 2017. to appear.

[25] E. Bayraktar, A. Cecchin, and P. Chakraborty. Mean field control and finite agent approxi-
mation for regime-switching jump diffusions. Appl. Math. Optim., 88(2), May 2023.

[26] E. Bayraktar, A. Cecchin, A. Cohen, and F. Delarue. Finite state MFGs with Wright–Fisher
common noise. arXiv e-prints, 2019.

[27] E. Bayraktar, A. Cecchin, A. Cohen, and F. Delarue. Finite state mean field games with
Wright Fisher common noise as limits of N-player weighted games. arXiv e-prints, page
arXiv:2012.04845, Dec. 2020.

[28] E. Bayraktar, A. Cecchin, A. Cohen, and F. Delarue. Finite state mean field games
with Wright-Fisher common noise as limits of N-player weighted games. arXiv e-prints,
arXiv:2012.04845, Dec 2020.

192



[29] E. Bayraktar, A. Cecchin, A. Cohen, and F. Delarue. Finite state mean field games with
Wright-Fisher common noise. J. Math. Pures Appl., 147:98–162, 2021.

[30] E. Bayraktar and A. Cohen. Analysis of a finite state many player game using its master
equation. SIAM Journal on Control and Optimization, 56(5):3538–3568, 2018.

[31] E. Bayraktar, A. Cosso, and H. Pham. Randomized dynamic programming principle and
feynman-kac representation for optimal control of mckean-vlasov dynamics. Transactions
of the American Mathematical Society, 370(3):2115–2160, 2018.

[32] E. Bayraktar, I. Ekren, and X. Zhang. Comparison of viscosity solutions for a class of
second order PDEs on the wasserstein space. Preprint,arXiv:2309.05040 [math.AP].

[33] E. Bayraktar, I. Ekren, and X. Zhang. A smooth variational principle on Wasserstein space.
Proceedings of the American Mathematical Society, 151:4089–4098, 2023.

[34] E. Bayraktar, U. Horst, and R. Sircar. A limit theorem for financial markets with inert
investors. Math. Oper. Res., 31(4):789–810, 2006.

[35] E. Bayraktar, U. Horst, and R. Sircar. Queuing theoretic approaches to financial price fluc-
tuations. Handbooks in Operations Research and Management Science, 15:637–677, 2007.

[36] E. Bayraktar and M. Ludkovski. Optimal trade execution in illiquid markets. Math. Finance,
21(4):681–701, 2011.

[37] E. Bayraktar and M. Ludkovski. Liquidation in limit order books with controlled intensity.
Math. Finance, 24(4):627–650, 2014.

[38] E. Bayraktar and X. Zhang. On non-uniqueness in mean field games. arXiv e-prints,
arXiv:1908.06207, Aug 2019.

[39] E. Bayraktar and X. Zhang. On non-uniqueness in mean field games. Proc. Amer. Math.
Soc., 148(9):4091–4106, 2020.

[40] E. Bayraktar and X. Zhang. Corrigendum to “On non-uniqueness in mean field games”.
Proc. Amer. Math. Soc., 149(3):1359–1360, 2021.

[41] E. Bayraktar and Y. Zhang. A rank-based mean field game in the strong formulation. Elec-
tron. Commun. Probab., 21:Paper No. 72, 12, 2016.

[42] S. L. Bell and R. J. Williams. Dynamic scheduling of a system with two parallel servers in
heavy traffic with resource pooling: asymptotic optimality of a threshold policy. Ann. Appl.
Probab., 11(3):608–649, 2001.

[43] M. Benaim and J.-Y. Le Boudec. A class of mean field interaction models for computer and
communication systems. Performance Evaluation, 65(11):823–838, 2008.

[44] A. Bensoussan, J. Frehse, and P. Yam. Mean field games and mean field type control theory.
SpringerBriefs in Mathematics. Springer, New York, 2013.

193



[45] A. Bensoussan, J. Frehse, and S. C. P. Yam. The master equation in mean field theory. J.
Math. Pures Appl., 103(6):1441–1474, 2015.

[46] A. Bensoussan, J. Frehse, and S. C. P. Yam. The master equation in mean field theory. J.
Math. Pures Appl. (9), 103(6):1441–1474, 2015.

[47] J. Bergin and D. Bernhardt. Anonymous sequential games with aggregate uncertainty. J.
Math. Econom., 21(6):543–562, 1992.

[48] J. Bergin and D. Bernhardt. Anonymous sequential games: existence and characterization
of equilibria. Econom. Theory, 5(3):461–489, 1995.

[49] C. Bertucci. Monotone solutions for mean field games master equations : continuous state
space and common noise. arXiv, https://arxiv.org/abs/2107.09531, 2021.

[50] C. Bertucci. Monotone solutions for mean field games master equations: finite state space
and optimal stopping. J. Éc. polytech. Math., 8:1099–1132, 2021.

[51] C. Bertucci, J.-M. Lasry, and P.-L. Lions. Some remarks on mean field games. Communi-
cations in Partial Differential Equations, 44(3):205–227, 2019.

[52] P. Billingsley. Convergence of probability measures. Wiley Series in Probability and Statis-
tics: Probability and Statistics. John Wiley & Sons, Inc., New York, second edition, 1999.
A Wiley-Interscience Publication.

[53] J. Blair, P. Johnson, and P. Duck. Analysis of optimal liquidation in limit order books.
http://eprints.ma.man.ac.uk/2299/01/covered/MIMS_ep2014_23.pdf, 2015. Preprint.

[54] A. Bobbio, M. Gribaudo, and M. Telek. Analysis of large scale interacting systems by mean
field method. In Quantitative Evaluation of Systems, 2008. QEST’08. Fifth International
Conference on, pages 215–224. IEEE, 2008.

[55] L. Boccardo, A. Dall’Aglio, T. Gallouët, and L. Orsina. Nonlinear parabolic equations with
measure data. journal of functional analysis, 147(1):237–258, 1997.

[56] V. I. Bogachev. Differentiable measures and the Malliavin calculus, volume 164 of Mathe-
matical Surveys and Monographs. American Mathematical Society, Providence, RI, 2010.

[57] V. S. Borkar. Optimal control of diffusion processes. volume 203 of Pitman Research Notes
in Mathematics Series, pages vi+196. Longman Scientific & Technical, Harlow; copub-
lished in the United States with John Wiley & Sons, Inc., New York, 1989.

[58] K. A. Borovkov. Propagation of chaos for queueing networks. Theory Probab. Appl.,
42(3):385–394, 1998.

[59] F. Bouchut. Hypoelliptic regularity in kinetic equations. Journal de mathématiques pures
et appliquées, 81(11):1135–1159, 2002.

194



[60] M. Bowe, S. Hyde, and I. Johnson. Determining the intensity of buy and sell limit order
submissions: A look at the market pre-opening period. Preprint.

[61] H. Brezis and H. Brézis. Functional analysis, Sobolev spaces and partial differential equa-
tions, volume 2. Springer, 2011.

[62] H. Brezis and P. Mironescu. Gagliardo–nirenberg inequalities and non-inequalities: the full
story. In Annales de l’Institut Henri Poincaré C, Analyse non linéaire, volume 35, pages
1355–1376. Elsevier, 2018.

[63] A. Briani and P. Cardaliaguet. Stable solutions in potential mean field game systems.
NoDEA Nonlinear Differential Equations Appl., 25(1):Paper No. 1, 26, 2018.

[64] G. Brunick and S. Shreve. Mimicking an Itô process by a solution of a stochastic differential
equation. Annals of Applied Probability, 23(4):1584–1628, 2013.

[65] R. Buckdahn, J. Li, S. Peng, and C. Rainer. Mean-field stochastic differential equations and
associated PDEs. The Annals of Probability, 45(2):824 – 878, 2017.

[66] A. Budhiraja and E. Friedlander. Diffusion approximations for controlled weakly interacting
large finite state systems with simultaneous jumps. preprint, arXiv:1603.09001, 2016.

[67] A. Budhiraja, A. P. Ghosh, and C. Lee. Ergodic rate control problem for single class queue-
ing networks. SIAM J. Control Optim., 49(4):1570–1606, 2011.

[68] M. Burger, A. Lorz, and M.-T. Wolfram. Balanced growth path solutions of a boltzmann
mean field game model for knowledge growth. arXiv preprint arXiv:1602.01423, 2016.

[69] M. Burzoni, V. Ignazio, A. M. Reppen, and H. M. Soner. Viscosity solutions for controlled
McKean-Vlasov jump-diffusions. SIAM J. Control Optim., 58(3):1676–1699, 2020.

[70] J. Calder. Lecture notes on viscosity solutions. University of Minnesota., 2018.

[71] F. Camilli. A quadratic mean field games model for the langevin equation. Axioms, 10(2):68,
2021.

[72] P. Cannarsa and C. Sinestrari. Semiconcave functions, Hamilton-Jacobi equations, and
optimal control, volume 58 of Progress in Nonlinear Differential Equations and their Ap-
plications. Birkhäuser Boston, Inc., Boston, MA, 2004.

[73] P. Cardaliaguet. Notes on mean field games. Technical report, Technical report, 2010.

[74] P. Cardaliaguet. Weak solutions for first order mean field games with local coupling. In
Analysis and geometry in control theory and its applications, pages 111–158. Springer,
2015.

[75] P. Cardaliaguet. Weak solutions for first order mean field games with local coupling. Analy-
sis and Geometry in Control Theory and its Applications. Springer INdAM Series, 11:111–
158, 2015.

195



[76] P. Cardaliaguet, M. Cirant, and A. Porretta. Splitting methods and short time existence for
the master equations in mean field games. arXiv, https://arxiv.org/abs/2001.10406, 2020.

[77] P. Cardaliaguet, S. Daudin, J. Jackson, and P. Souganidis. An algebraic convergence rate for
the optimal control of mckean-vlasov dynamics. arXiv preprint arXiv:2203.14554, 2022.

[78] P. Cardaliaguet, S. Daudin, J. Jackson, and P. E. Souganidis. An algebraic convergence
rate for the optimal control of mckean–vlasov dynamics. SIAM Journal on Control and
Optimization, 61(6):3341–3369, 2023.

[79] P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions. The master equation and the
convergence problem in mean field games, volume 201 of Annals of Mathematics Studies.
Princeton University Press, Princeton, NJ, 2019.

[80] P. Cardaliaguet, F. Delarue, J.-M. Lasry, and P.-L. Lions. The master equation and the
convergence problem in mean field games:(ams-201). Princeton University Press, 2019.

[81] P. Cardaliaguet and J. Graber. Mean field games systems of first order. ESAIM: Control,
Optimisation and Calculus of Variations, 21:690–722, 2015.

[82] P. Cardaliaguet, J. Graber, A. Porretta, and D. Tonon. Second order mean field games with
degenerate diffusion and local coupling. NoDEA, 22:1287–1317, 2015.

[83] P. Cardaliaguet, P. J. Graber, A. Porretta, and D. Tonon. Second order mean field games with
degenerate diffusion and local coupling. Nonlinear Differential Equations and Applications
NoDEA, 22(5):1287–1317, 2015.

[84] P. Cardaliaguet, J. Jackson, N. Mimikos-Stamatopoulos, and P. E. Souganidis. Sharp con-
vergence rates for mean field control in the region of strong regularity. arXiv preprint
arXiv:2312.11373, 2023.

[85] P. Cardaliaguet, J.-M. Lasry, P.-L. Lions, and A. Porretta. Long time average of mean field
games. Networks & Heterogeneous Media, 7(2):279, 2012.

[86] P. Cardaliaguet and A. Porretta. Long time behavior of the master equation in mean field
game theory. Analysis & PDE, 12(6):1397–1453, 2019.

[87] P. Cardaliaguet and A. Porretta. An introduction to mean field game theory. In Mean Field
Games, pages 1–158. Springer, 2020.

[88] P. Cardaliaguet and A. Porretta. An introduction to mean field game theory. In Mean Field
Games, chapter 1, Cetraro, Italy 2019, Cardaliaguet, Pierre, Porretta, Alessio (Eds.), LNM
2281, pages 203–248. Springer, 2021.

[89] P. Cardaliaguet and M. Quincampoix. Deterministic differential games under probability
knowledge of initial condition. International Game Theory Review, 10(1):1–16, 2008.

196



[90] P. Cardaliaguet and P. Souganidis. On first order mean field game systems with a common
noise. To appear on Annals of applied probability, 2020.

[91] P. Cardaliaguet and P. Souganidis. Weak solutions of the master equation for mean field
games with no idiosyncratic noise. arXiv, https://arxiv.org/abs/2109.14911, 2021.

[92] P. Cardaliaguet and P. Souganidis. Regularity of the value function and quantitative propa-
gation of chaos for mean field control problems. arXiv, 2204.01314, 2022.

[93] R. Carmona. Lectures on BSDEs, Stochastic Control, and Stochastic Differential Games
with Financial Applications. Society for Industrial and Applied Mathematics, Philadelphia,
PA, 2016.

[94] R. Carmona and F. Delarue. Probabilistic analysis of mean-field games. SIAM J. Control
Optim., 51(4):2705–2734, 2013.

[95] R. Carmona and F. Delarue. The master equation for large population equilibriums. In
Stochastic analysis and applications 2014, volume 100 of Springer Proc. Math. Stat., pages
77–128. Springer, Cham, 2014.

[96] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games with Applications I
: Mean Field FBSDEs, Control, and Games. Springer, 2018.

[97] R. Carmona and F. Delarue. Probabilistic theory of mean field games with applications. i,
volume 83 of probability theory and stochastic modelling, 2018.

[98] R. Carmona and F. Delarue. Probabilistic theory of mean field games with applications. II,
volume 84 of Probability Theory and Stochastic Modelling. Springer, Cham, 2018. Mean
field games with common noise and master equations.

[99] R. Carmona, F. Delarue, and A. Lachapelle. Control of McKean-Vlasov dynamics versus
mean field games. Math. Financ. Econ., 7(2):131–166, 2013.

[100] R. Carmona, F. Delarue, and D. Lacker. Mean field games with common noise. Annals of
Probability, 44:3740–3803, 2016.

[101] R. Carmona and D. Lacker. A probabilistic weak formulation of mean field games and
applications. Ann. Appl. Probab., 25(3):1189–1231, 2015.

[102] R. Carmona and P. Wang. Finite state mean field games with major and minor players.
ArXiv e-prints, Oct. 2016.

[103] R. Carmona and P. Wang. A Probabilistic Approach to Extended Finite State Mean Field
Games. arXiv e-prints, arXiv:1808.07635, Aug 2018.

[104] R. Carmona and P. Wang. Finite-State Contract Theory with a Principal and a Field of
Agents. arXiv e-prints, page arXiv:1808.07942, Aug 2018.

197



[105] G. Cavagnari, S. Lisini, C. Orrieri, and G. Savaré. Lagrangian, Eulerian and Kan-
torovich formulations of multi-agent optimal control problems: equivalence and gamma-
convergence. J. Differential Equations, 322:268–364, 2022.

[106] G. Cavagnari, S. Lisini, C. Orrieri, and G. Savaré. Lagrangian, Eulerian and Kan-
torovich formulations of multi-agent optimal control problems: Equivalence and gamma-
convergence. Journal of Differential Equations, 322:268–364, 2022.

[107] A. Cecchin. Finite state N-agent and mean field control problems. ESAIM Control Optim.
Calc. Var., 27:Paper No. 31, 33, 2021.

[108] A. Cecchin and F. Delarue. Selection by vanishing common noise for potential finite state
mean field games. Comm. Partial Differential Equations, 47(1):89–168, 2022.

[109] A. Cecchin and F. Delarue. Weak solutions to the master equation of potential mean field
games. arXiv, 2204.04315, 2022.

[110] A. Cecchin and F. Delarue. Weak solutions to the master equation of potential mean field
games, 2022.

[111] A. Cecchin and F. Delarue. Selection by vanishing common noise for potential finite state
mean field games. In preparation.

[112] A. Cecchin and M. Fischer. Probabilistic approach to finite state mean field games. Appl.
Math. Optim., 81(2):253–300, 2020.

[113] A. Cecchin and G. Pelino. Convergence, fluctuations and large deviations for finite state
mean field games via the master equation. Stochastic Processes and their Applications,
129(11):4510 – 4555, 2019.

[114] A. Cecchin and G. Pelino. Convergence, fluctuations and large deviations for finite state
mean field games via the master equation. Stochastic Processes and their Applications,
129(11):4510–4555, 2019.

[115] J.-F. Chassagneux, D. Crisan, and F. Delarue. Numerical method for FBSDEs of McKean-
Vlasov type. Ann. Appl. Probab., 29(3):1640–1684, 2019.

[116] J.-F. Chassagneux, D. Crisan, and F. Delarue. A probabilistic approach to classical solutions
of the master equation for large population equilibria. Memoirs of the AMS, To appear.

[117] P.-E. Chaudru de Raynal and N. Frikha. From the backward kolmogorov PDE on the wasser-
stein space to propagation of chaos for mckean-vlasov sdes. Journal de Mathématiques
Pures et Appliquées, 156:1–124, 2021.

[118] P.-E. Chaudru de Raynal and N. Frikha. Well-posedness for some non-linear SDEs and
related PDE on the Wasserstein space. Journal de Mathématiques Pures et Appliquées,
159:1–167, 2022.

198



[119] H. Chen and D. D. Yao. Fundamentals of queueing networks, volume 46 of Applications
of Mathematics (New York). Springer-Verlag, New York, 2001. Performance, asymptotics,
and optimization, Stochastic Modelling and Applied Probability.

[120] L. Chen and D. W. Stroock. The fundamental solution to the Wright-Fisher equation. SIAM
J. Math. Anal., 42(2):539–567, 2010.

[121] M. F. Chen and S. F. Li. Coupling methods for multidimensional diffusion processes. Ann.
Probab., 17(1):151–177, 1989.

[122] M. Cirant and A. Porretta. Long time behaviour and turnpike solutions in mildly non-
monotone mean field games. ESAIM: Control Optim. Calc. Var., 27, 2021.

[123] G. Conforti, R. Kraaij, and D. Tonon. Hamilton–jacobi equations for controlled gradient
flows: the comparison principle. arXiv, https://arxiv.org/abs/2111.13258, 2021.

[124] A. Cosso, F. Gozzi, I. Kharroubi, H. Pham, and M. Rosestolato. Master Bell-
man equation in the Wasserstein space: Uniqueness of viscosity solutions. arXiv,
https://arxiv.org/abs/2107.10535, 2021.

[125] A. Cosso and H. Pham. Zero-sum stochastic differential games of generalized McKean-
Vlasov type. J. Math. Pures Appl. (9), 129:180–212, 2019.

[126] M. G. Crandall and P.-L. Lions. Two approximations of solutions of Hamilton-Jacobi equa-
tions. Math. Comp., 43(167):1–19, 1984.

[127] M. Cranston. A probabilistic approach to gradient estimates. Canad. Math. Bull., 35(1):46–
55, 1992.

[128] J. G. Dai and R. J. Williams. Existence and uniqueness of semimartingale reflecting brow-
nian motions in convex polyhedrons. Theory Probab. Appl., 40(1):1–40, 1996.

[129] S. Daudin. Mean-field limit for stochastic control problems under state constraint. arXiv
preprint arXiv:2306.00949, 2023.

[130] S. Daudin. Mean-field limit for stochastic control problems under state constraint. arXiv
preprint arXiv:2306.00949, 2023.

[131] S. Daudin, F. Delarue, and J. Jackson. On the optimal rate for the convergence problem in
mean field control. arXiv preprint arXiv:2305.08423, 2023.

[132] S. Daudin, F. Delarue, and J. Jackson. On the optimal rate for the convergence problem in
mean field control. arXiv preprint arXiv:2305.08423, 2023.

[133] S. Daudin, J. Jackson, and B. Seeger. Well-posedness of Hamilton-Jacobi equations in
the Wasserstein space: non-convex Hamiltonians and common noise. arXiv preprint
arXiv:2312.02324, 2023.

199



[134] S. Daudin and B. Seeger. A comparison principle for semilinear Hamilton-Jacobi-Bellman
equations in the Wasserstein space. Preprint,arXiv:2308.15174 [math.AP], 2023.

[135] D. A. Dawsont and J. Gärtner. Large deviations from the mckean-vlasov limit for weakly
interacting diffusions. Stochastics: An International Journal of Probability and Stochastic
Processes, 20(4):247–308, 1987.

[136] P. Degond. Global existence of smooth solutions for the vlasov-fokker-planck equation in 1
and 2 space dimensions. In Annales scientifiques de l’École Normale Supérieure, volume 19,
pages 519–542, 1986.

[137] F. Delarue. On the existence and uniqueness of solutions to FBSDEs in a non-degenerate
case. Stochastic Processes and their Applications, 99(2):209 – 286, 2002.

[138] F. Delarue. Restoring uniqueness to mean-field games by randomizing the equilibria.
Stochastics and Partial Differential Equations: Analysis and Computations, 7:598–678,
2019.

[139] F. Delarue. Master equation for finite state mean field games with additive common noise.
In Mean Field Games, Cetraro, Italy 2019, Cardaliaguet, Pierre, Porretta, Alessio (Eds.),
LNM 2281, pages 203–248. Springer, 2021.

[140] F. Delarue and F. Flandoli. The transition point in the zero noise limit for a 1D Peano
example. Discrete Contin. Dyn. Syst., 34(10):4071–4083, 2014.

[141] F. Delarue and R. Foguen Tchuendom. Selection of equilibria in a linear quadratic mean
field game. Stochastic Processes and their Applications, 130(2):1000–1040, 2020.

[142] F. Delarue, D. Lacker, and K. Ramanan. The master equation and asymptotics for mean
field games.
http://www.math.lsa.umich.edu/seminars_events/fileupload/4354_Lacker.pdf/, 2017.

[143] F. Delarue, D. Lacker, and K. Ramanan. From the master equation to mean field game limit
theory: Large deviations and concentration of measure. The Annals of Probability, 2018.

[144] F. Delarue, D. Lacker, and K. Ramanan. From the master equation to mean field game limit
theory: a central limit theorem. Electron. J. Probab., 24:Paper No. 51, 54, 2019.

[145] F. Delarue, D. Lacker, and K. Ramanan. From the master equation to mean field game limit
theory: Large deviations and concentration of measure. 2020.

[146] F. Delarue and A. Tse. Uniform in time weak propagation of chaos on the torus. arXiv,
https://arxiv.org/abs/2104.14973, 2021.

[147] L. Dello Schiavo. A Rademacher-type theorem on L2-Wasserstein spaces over closed Rie-
mannian manifolds. J. Funct. Anal., 278(6):108397, 57, 2020.

200



[148] F. Demengel, G. Demengel, F. Demengel, and G. Demengel. Fractional sobolev spaces.
Functional spaces for the theory of elliptic partial differential equations, pages 179–228,
2012.

[149] S. Dereich, M. Scheutzow, and R. Schottstedt. Constructive quantization: approximation by
empirical measures. Ann. Inst. Henri Poincaré Probab. Stat., 49(4):1183–1203, 2013.

[150] E. Di Nezza, G. Palatucci, and E. Valdinoci. Hitchhiker’s guide to the fractional sobolev
spaces. Bulletin des Sciences Mathématiques, 136(5):521–573, 2012.

[151] R. J. DiPerna and P.-L. Lions. On the fokker-planck-boltzmann equation. Communications
in mathematical physics, 120(1):1–23, 1988.

[152] M. F. Djete. Extended mean field control problem: a propagation of chaos result, 2022.

[153] M. F. Djete, D. Possamai, and X. Tan. Mckean-Vlasov optimal control: Limit theory and
equivalence between different formulations. Mathematics of Operations Research, 2022.

[154] M. F. Djete, D. Possamaï, and X. Tan. Mckean-vlasov optimal control: the dynamic pro-
gramming principle. arXiv preprint arXiv:1907.08860, 2019.

[155] J. Doncel, N. Gast, and B. Gaujal. Discrete Mean Field Games: Existence of Equilibria and
Convergence. Journal of Dynamics and Games, 6(3):1–19, 2019.

[156] A. Douglis. The continuous dependence of generalized solutions of non-linear partial dif-
ferential equations upon initial data. Comm. Pure Appl. Math., 14:267–284, 1961.

[157] F. Dragoni and E. Feleqi. Ergodic mean field games with hörmander diffusions. Calculus
of Variations and Partial Differential Equations, 57(5):1–22, 2018.

[158] R. M. Dudley. Real analysis and probability, volume 74 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989
original.

[159] P. Dupuis, K. Ramanan, and W. Wu. Large deviation principle for finite-state mean field
interacting particle systems. ArXiv e-prints, Jan. 2016.

[160] R. Durrett. Stochastic calculus. Probability and Stochastics Series. CRC Press, Boca Raton,
FL, 1996. A practical introduction.

[161] A. Eberle. Reflection couplings and contraction rates for diffusions. Probab. Theory Related
Fields, 166(3-4):851–886, 2016.

[162] N. El Karoui, D. Hu̇u̇ Nguyen, and M. Jeanblanc-Picqué. Compactification methods in the
control of degenerate diffusions: Existence of an optimal control. Stochastics, 20(3):169–
219, 1987.

[163] C. L. Epstein and R. Mazzeo. Wright-Fisher diffusion in one dimension. SIAM J. Math.
Anal., 42(2):568–608, 2010.

201



[164] C. L. Epstein and R. Mazzeo. Analysis of degenerate diffusion operators arising in pop-
ulation biology. In From Fourier analysis and number theory to Radon transforms and
geometry, volume 28 of Dev. Math., pages 203–216. Springer, New York, 2013.

[165] C. L. Epstein and R. Mazzeo. Degenerate diffusion operators arising in population biology,
volume 185 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ,
2013.

[166] C. L. Epstein and R. Mazzeo. Harnack inequalities and heat kernel estimates for degenerate
diffusion operators arising in population biology. Appl. Math. Res. Express. AMRX, (2):217–
280, 2016.

[167] C. L. Epstein and C. A. Pop. The Feynman-Kac formula and Harnack inequality for degen-
erate diffusions. Ann. Probab., 45(5):3336–3384, 2017.

[168] S. N. Ethier. A class of degenerate diffusion processes occurring in population genetics.
Comm. Pure Appl. Math., 29(5):483–493, 1976.

[169] S. N. Ethier and T. G. Kurtz. Markov processes. Wiley Series in Probability and Mathemat-
ical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York,
1986. Characterization and convergence.

[170] L. C. Evans. Some new PDE methods for weak KAM theory. Calc. Var. Partial Differential
Equations, 17(2):159–177, 2003.

[171] L. C. Evans. Adjoint and compensated compactness methods for Hamilton-Jacobi PDE.
Arch. Ration. Mech. Anal., 197(3):1053–1088, 2010.

[172] L. C. Evans and H. Ishii. A pde approach to some asymptotic problems concerning random
differential equations with small noise intensities. In Annales de l’Institut Henri Poincaré
C, Analyse non linéaire, volume 2, pages 1–20. Elsevier, 1985.

[173] L. C. Evans and P. E. Souganidis. A pde approach to certain large deviation problems for
systems of parabolic equations. In Annales de l’Institut Henri Poincaré C, Analyse non
linéaire, volume 6, pages 229–258. Elsevier, 1989.

[174] P. M. N. Feehan and C. A. Pop. On the martingale problem for degenerate-parabolic partial
differential operators with unbounded coefficients and a mimicking theorem for Itô pro-
cesses. Trans. Amer. Math. Soc., 367(11):7565–7593, 2015.

[175] E. Feleqi, D. A. Gomes, and T. Tada. Hypoelliptic mean-field games—a case study. 2020.

[176] W. Feller. Diffusion processes in genetics. In Proceedings of the Second Berkeley Sym-
posium on Mathematical Statistics and Probability, 1950, pages 227–246. University of
California Press, Berkeley and Los Angeles, 1951.

[177] W. Feller. An introduction to probability theory and its applications. Vol. I. John Wiley &
Sons, Inc., New York-London-Sydney, third edition, 1968.

202



[178] K. W. Fendick and M. A. Rodrigues. Asymptotic analysis of adaptive rate control for diverse
sources with delayed feedback. Information Theory, IEEE Transactions on, 40(6):2008–
2025, 1994.

[179] J. Feng. Large deviation for diffusions and hamilton–jacobi equation in hilbert spaces. The
Annals of Probability, 34(1):321–385, 2006.

[180] J. Feng and M. Katsoulakis. A comparison principle for hamilton–jacobi equations related
to controlled gradient flows in infinite dimensions. Archive for rational mechanics and
analysis, 192(2):275–310, 2009.

[181] J. Feng and T. G. Kurtz. Large deviations for stochastic processes. Number 131. American
Mathematical Soc., 2006.

[182] B. n. Fernandez and S. Méléard. A Hilbertian approach for fluctuations on the McKean-
Vlasov model. Stochastic Process. Appl., 71(1):33–53, 1997.

[183] A. F. Filippov. Differential equations with discontinuous righthand sides, volume 18 of
Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group,
Dordrecht, 1988. Translated from the Russian.

[184] R. Fiorenza. Sui problemi di derivata obliqua per le equazioni ellittiche. Ricerche Mat,
8:83–110, 1959.

[185] R. Fiorenza. Sui problemi di derivata obliqua per le equazioni ellittiche quasi lineari.
Ricerche Mat, 15:74–108, 1966.

[186] M. Fischer. On the connection between symmetric N-player games and mean field games.
Ann. Appl. Probab., 127(2):757–810, 2017.

[187] F. Flandoli, F. Russo, and J. Wolf. Some SDEs with distributional drift. I. General calculus.
Osaka J. Math., 40(2):493–542, 2003.

[188] F. Flandoli, F. Russo, and J. Wolf. Some SDEs with distributional drift. II: Lyons-Zheng
structure, Itô’s formula and semimartingale characterization. Random Oper. Stoch. Equ.,
12(2):145–184, 2004.

[189] W. H. Fleming. Stochastic control for small noise intensities. SIAM J. Control, 9:473–517,
1971.

[190] W. H. Fleming. Generalized solutions in optimal stochastic control. Technical report, DTIC
Document, 1976.

[191] W. H. Fleming. A stochastic control approach to some large deviations problems. In Recent
Mathematical Methods in Dynamic Programming, pages 52–66. Springer, 1985.

[192] W. H. Fleming and H. M. Soner. Controlled Markov processes and viscosity solutions,
volume 25 of Stochastic Modelling and Applied Probability. Springer, New York, second
edition, 2006.

203



[193] W. H. Fleming and P. E. Souganidis. Asymptotic series and the method of vanishing viscos-
ity. Indiana Univ. Math. J., 35(2):425–447, 1986.

[194] W. H. Fleming and P. E. Souganidis. Pde-viscosity solution approach to some problems
of large deviations. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze,
13(2):171–192, 1986.

[195] G. B. Folland. Subelliptic estimates and function spaces on nilpotent lie groups. Arkiv för
matematik, 13(1):161–207, 1975.

[196] H. Föllmer and U. Horst. Convergence of locally and globally interacting Markov chains.
Stochastic Process. Appl., 96(1):99–121, 2001.

[197] M. Fornasier, S. Lisini, C. Orrieri, and G. Savaré. Mean-field optimal control as gamma-
limit of finite agent controls. European Journal of Applied Mathematics, 30(6):1153–1186,
2019.

[198] M. Fornasier, S. Lisini, C. Orrieri, and G. Savaré. Mean-field optimal control as gamma-
limit of finite agent controls. European J. Appl. Math., 30(6):1153–1186, 2019.

[199] N. Fournier and A. Guillin. On the rate of convergence in Wasserstein distance of the
empirical measure. Probab. Theory Related Fields, 162(3-4):707–738, 2015.

[200] C. Fricker and N. Gast. Incentives and redistribution in homogeneous bike-sharing systems
with stations of finite capacity. EURO Journal on Transportation and Logistics, pages 1–31,
2014.

[201] W. Gangbo, S. Mayorga, and A. Swiech. Finite dimensional approximations of Hamilton-
Jacobi-Bellman equations in spaces of probability measures. SIAM J. Math. Anal.,
53(2):1320–1356, 2021.

[202] W. Gangbo and A. R. Mészáros. Global well-posedness of Master equations for determin-
istic displacement convex potential mean field games. arXiv e-prints, 2020.

[203] W. Gangbo and A. R. Mészáros. Global well-posedness of master equa-
tions for deterministic displacement convex potential mean field games. arXiv,
https://arxiv.org/abs/2004.01660, 2020.

[204] W. Gangbo, A. R. Mészáros, C. Mou, and J. Zhang. Mean field games mas-
ter equations with non-separable hamiltonians and displacement monotonicity. arXiv,
https://arxiv.org/abs/2101.12362, 2021.
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