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“To consult the statistician after an experiment is finished is often merely to ask him to

conduct a post mortem examination. He can perhaps say what the experiment died of.”

— Ronald A. Fisher
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ABSTRACT

This dissertation studies statistical inference in randomized experiments, extending impor-

tant covariate-adaptive randomization tools to three commonly used experimental designs.

Each chapter addresses a distinct experimental design, contributing to the broader field of

design and analysis of experiments.

Chapter 1 investigates inference in randomized controlled trials with multiple treatments,

specifically under a “matched tuples” design. Here, units are grouped into homogeneous

blocks, and each treatment is randomly assigned within these blocks. The study establishes

conditions for the asymptotic normality of a sample analogue estimator and constructs a

consistent estimator of its asymptotic variance. It also compares the asymptotic properties

of the fully-blocked 2K factorial design with stratified factorial designs, demonstrating the

efficiency of the former. Simulation studies and empirical applications highlight the practical

implications of these results.

Chapter 2 explores inference in cluster randomized trials using a “matched pairs” design,

where clusters are paired based on baseline covariates and one cluster in each pair is ran-

domly assigned to treatment. This chapter presents the large-sample behavior of a weighted

difference-in-means estimator and proposes a unified variance estimator consistent under dif-

ferent matching regimes. It also evaluates common t-tests and a randomization test within

this framework, establishing their validity. Additionally, a covariate-adjusted estimator is

proposed, showing precision improvements under certain conditions. Theoretical findings

are supported by a simulation study.

Chapter 3 addresses inference in two-stage randomized experiments under covariate-

adaptive randomization. In this design, clusters are first stratified and assigned to treat-

ment or control, followed by a second stage where units within treated clusters are further

randomized. The chapter develops difference-in-“average of averages” estimators for primary

and spillover effects, proving their consistency and asymptotic normality. It also demon-

x



strates the efficiency of using covariate information in the design stage and the pitfalls of

ignoring it. Finally, it studies optimal use of covariate information under covariate-adaptive

randomization in large samples. The theoretical results are validated through simulations

and an empirical application.

Together, these chapters advance the understanding of statistical inference in complex

experimental designs, offering robust methods for empirical researchers dealing with stratified

experiments.
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CHAPTER 1

INFERENCE FOR MATCHED TUPLES AND FULLY

BLOCKED FACTORIAL DESIGNS

1.1 Introduction

This paper studies inference in randomized controlled trials with multiple treatments, where

treatment status is determined according to a “matched tuples” design. If there are |D|

possible treatments, then by a matched tuples design, we mean an experimental design where

units are sampled i.i.d. from the population of interest, grouped into “homogeneous” blocks of

size |D|, and finally, within each block, exactly one individual is randomly assigned to each of

the |D| treatments. As such, matched tuples designs generalize the concept of matched pairs

designs to settings with more than two treatments. Matched tuples designs are commonly

used in the social sciences: see Bold et al. (2018), Brown and Andrabi (2020), de Mel et al.

(2013), and Fafchamps et al. (2014) for examples in economics, and are often motivated using

the simulation evidence presented in Bruhn and McKenzie (2009a). However, we are not

aware of any formal results which establish valid asymptotically exact methods of inference

for matched tuples designs. Accordingly, in this paper we establish general results about

estimation and inference for matched tuples designs, and then apply these results to study

the asymptotic properties of what we call “fully-blocked” 2K factorial designs.

We first study estimation and inference for matched tuples designs in the general setting

where the parameter of interest is a vector of linear contrasts over the collection of average

outcomes for each treatment. Parameters of this form include standard average treatment

effects (ATEs) used to compare one treatment relative to another, but as we explain below

also include more complicated parameters which may be of interest, for instance, in the

analysis of factorial designs. We first establish conditions under which a sample analogue

estimator is asymptotically normal and construct a consistent estimator of its corresponding

1



asymptotic variance. Combining these results establishes the asymptotic validity of tests

based on these estimators. We then consider the asymptotic properties of two commonly

recommended inference procedures. The first is based on a linear regression with block fixed

effects. Importantly, we find the t-test based on such a regression is in general not valid

for testing the null hypothesis that a pairwise ATE is equal to a prespecified value. The

second is based on a linear regression with cluster-robust standard errors, where clusters are

defined at the block level. Here we find that the corresponding t-test is generally valid but

conservative, and that this conservativeness increases in the number of treatments.

Next, we apply our results to study the asymptotic properties of “fully-blocked” 2K

factorial designs. Factorial designs are classical experimental designs (see Wu and Hamada,

2011, for a textbook treatment) which are increasingly being used in the social sciences (see

for instance Alatas et al., 2012; Besedeš et al., 2012; DellaVigna et al., 2016; Kaur et al., 2015;

Karlan et al., 2014). In a 2K factorial design, each treatment is a combination of multiple

“factors,” where each factor can take two distinct values, or “levels.” As a consequence,

a full 2K factorial design can be thought of as a randomized experiment with 2K distinct

treatments (importantly however, the analysis of factorial designs typically considers factorial

effects as the parameters of interest: see Section 1.3.3 for a definition). A fully-blocked

factorial design is then simply a matched tuples design with blocks of size 2K . Leveraging

our previous results, we establish that our estimator achieves a lower asymptotic variance

under the fully-blocked design than under any stratified factorial design which stratifies the

experimental sample into a finite number of “large” strata (such designs include complete

randomization as a special case). We also consider settings where only one factor may be

of primary interest, and establish that even in such cases it is more efficient to perform a

fully-blocked design than to perform a matched pairs design which exclusively focuses on the

primary factor of interest.

In a simulation study, we find that although our inference results are asymptotically

2



exact, our proposed tests may be conservative in finite samples when the experiment features

many treatments or many blocking variables. Accordingly, we also study the behavior of a

matched tuples design with “replicates,” where we form blocks of size two times the number

of treatments, and each treatment is assigned exactly twice at random within each block.

Although we find that such a design results in an estimator with slightly larger mean-squared

error, the rejection probabilities of our proposed tests become much closer to the nominal

level, which may result in improved power. Further discussion is provided in Section 1.3.2

below.

Although the analysis of matched tuples designs has to our knowledge not received much

attention, there are large literatures on both the analysis of matched pairs designs and the

analysis of factorial designs. Recent papers which have analyzed the properties of matched

pairs designs include Athey and Imbens (2017a), Bai et al. (2021a), Bai (2022a), de Chaise-

martin and Ramirez-Cuellar (2022a), Cytrynbaum (2021), Imai et al. (2009), Jiang et al.

(2020), Fogarty (2018), and van der Laan et al. (2012). Our analysis builds directly on the

framework developed in Bai et al. (2021a), and our Theorems 1.3.1 and 1.3.2 nest some

of their results when specialized to the setting of a binary treatment. Cytrynbaum (2021)

considers a generalization of matched pairs designs, a special case of which he refers to

as a matched tuples design. However, his design groups units into homogeneous blocks in

order to assign a binary treatment with unequal treatment fractions. In contrast, we con-

sider a setting where units are grouped into homogeneous blocks in order to assign multiple

treatments.

Recent papers which have analyzed factorial designs include Branson et al. (2016), Das-

gupta et al. (2015), Li et al. (2020), Muralidharan et al. (2019), Pashley and Bind (2019),

and Liu et al. (2022). Our setup and notation for 2K factorial designs mirrors the frame-

work introduced in Dasgupta et al. (2015), although our setup differs in that we consider

a “super-population” framework where potential outcomes are modeled as random, whereas

3



they maintain a finite population framework where potential outcomes are modeled as fixed.1

Borrowing the framework from Dasgupta et al. (2015), Branson et al. (2016) and Li et al.

(2020) propose re-randomization designs for factorial experiments which are shown to have fa-

vorable efficiency properties relative to a completely randomized design. Although we do not

provide formal results comparing our fully-blocked design to these re-randomization designs,

our simulation evidence suggests that, at least in the inferential framework considered in

our paper, the fully-blocked design can improve efficiency relative to these re-randomization

designs. Also closely related to our paper is Liu et al. (2022), who extend the results in

Dasgupta et al. (2015) to general stratified randomized designs. Their results on variance

estimation specifically exclude the setting where each treatment is assigned exactly once per

block, which is the primary setting that we consider in this paper.

The rest of the paper is organized as follows. In Section 1.2 we describe our setup

and notation. Section 1.3 presents the main results. In Section 1.4, we examine the finite

sample behavior of various experimental designs via simulation in the context of 2K factorial

experiments. Finally, in Section 1.5 we illustrate our proposed inference methods in an

empirical application based on the experiment conducted in Fafchamps et al. (2014). We

conclude with recommendations for empirical practice in Section 1.6.

1.2 Setup and Notation

Let Yi ∈ R denote the observed outcome of interest for the ith unit. Let Di ∈ D denote

treatment status for the ith unit, where D denotes a finite set of values of the treatment.

We assume D = {1, . . . , |D|}. Generally, we use Di = 1 to indicate the ith unit is untreated,

1. The finite population “design-based" perspective may be particularly attractive in settings where the
experimental sample is not explicitly drawn from a larger population. In Appendix A.4.2 we provide some
preliminary simulation evidence that our proposed estimators may be relevant in such a setting as well,
however, given the simulation evidence in de Chaisemartin and Ramirez-Cuellar (2022a) and our currently
incomplete understanding of the design-based properties of our estimators, we do not make any general
claims in this paper.
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but such a restriction is not necessary for our results. Let Xi denote the observed baseline

covariates for the ith unit, and denote its dimension by dim(Xi). For d ∈ D, let Yi(d) denote

the potential outcome for the ith unit if its treatment status were d. The observed outcome

and potential outcomes are related to treatment status by the expression

Yi =
∑
d∈D

Yi(d)I{Di = d} . (1.1)

We suppose our sample consists of Jn := (|D|)n i.i.d. units. For any random variable

indexed by i, for example Di, we denote by D(n) the random vector (D1, D2, . . . , DJn). Let

Pn denote the distribution of the observed data Z(n) where Zi = (Yi, Di, Xi), and Qn denote

the distribution of W (n), where Wi = (Yi(1), Yi(2), . . . , Yi(|D|), Xi). We assume that W (n)

consists of Jn i.i.d observations, so that Qn = QJn , where Q is the marginal distribution of

Wi. Given Qn, Pn is then determined by (1.1) and the mechanism for determining treatment

assignment. We thus state our assumptions in terms of assumptions on Q and the treatment

assignment mechanism.

Our object of interest will generically be defined as a vector of linear contrasts over the

collection of expected potential outcomes across treatments. Formally, let

Γ(Q) := (Γ1(Q), . . . ,Γ|D|(Q))
′ ,

where Γd(Q) := EQ[Yi(d)] for d ∈ D. Let ν be a real-valued m× |D| matrix. We define

∆ν(Q) := νΓ(Q) ∈ Rm ,

as our generic parameter of interest. For example, in the special case where D = {1, 2} and

ν = (−1, 1), ∆ν(Q) = EQ[Yi(2)−Yi(1)] corresponds to the familiar average treatment effect

for a binary treatment. Further examples of ∆ν(Q) are provided in Examples 1.3.1 and 1.3.2
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below.

We now describe our assumptions on Q. Our first assumption imposes restrictions on

the (conditional) moments of the potential outcomes:

Assumption 1.2.1. The distribution Q is such that

(a) 0 < E[Var[Yi(d)|Xi]] for d ∈ D.

(b) E[Y 2
i (d)] <∞ for d ∈ D.

(c) E[Yi(d)|Xi = x], E[Y 2
i (d)|Xi = x], and Var[Yi(d)|Xi] are Lipschitz for d ∈ D.

Assumption 1.2.1(a) is a mild restriction imposed to rule out degenerate situations and

Assumption 1.2.1(b) is another mild restriction that permits the application of suitable laws

of large numbers and central limit theorems. Assumption 1.2.1(c), on the other hand, is a

smoothness requirement that ensures that units that are “close” in terms of their baseline

covariates are also “close” in terms of their potential outcomes. Assumption 1.2.1(c) is a key

assumption for establishing the asymptotic exactness of our proposed tests, since it allows

us to argue that certain intermediate quantities in the derivations of our variance estimators

vanish asymptotically (see for instance the proof of Lemma A.3.2). Similar smoothness

requirements are also imposed in Bai et al. (2021a).

Next, we specify our assumptions on the mechanism determining treatment status. In

words, we consider treatment assignments which first stratify the experimental sample into

n blocks of size |D| using the observed baseline covariates X(n), and then assign one unit

to each treatment uniformly at random within each block. We call such a design a matched

tuples design. Formally, let

λj = λj(X
(n)) ⊆ {1, . . . , Jn}, 1 ≤ j ≤ n

denote n sets each consisting of |D| elements that form a partition of {1, . . . , Jn}.
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We assume treatment is assigned as follows:

Assumption 1.2.2. Treatments are assigned so that {Y (n)(d) : d ∈ D} ⊥⊥ D(n)|X(n) and,

conditional on X(n),

{(Di : i ∈ λj) : 1 ≤ j ≤ n}

are i.i.d. and each uniformly distributed over all permutations of (1, 2, . . . , |D|).

We further require that the units in each block be “close” in terms of their baseline

covariates in the following sense:

Assumption 1.2.3. The blocks satisfy

1

n

∑
1≤j≤n

max
i,k∈λj

||Xi −Xk||2
P→ 0 .

We will also sometimes require that the distances between units in adjacent blocks be

“close" in terms of their baseline covariates:

Assumption 1.2.4. The blocks satisfy

1

n

∑
1≤j≤⌊n/2⌋

max
i∈λ2j−1,k∈λ2j

||Xi −Xk||2
P→ 0 .

We provide three examples of blocking algorithms which satisfy Assumptions 1.2.3–1.2.4:

1. Univariate covariate: When dim(Xi) = 1, we can order units from smallest to largest

according to Xi and then block adjacent units into blocks of size |D|. It then follows

from Theorem 4.1 of Bai et al. (2021a) that Assumptions 1.2.3–1.2.4 are satisfied as

long as E[X2
i ] <∞.

2. Pre-stratification: Suppose we have a covariate vector X̃i = (X̃1i, X̃2i), where dim(X̃2i) =

1. Let S be a function that maps from the support of X̃1i to a discrete set S =
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{1, . . . , |S|}. Define S1i = S(X̃1i). For all units with the same value of Si, order

the units from smallest to largest according to X̃2i and then block adjacent units into

blocks of size |D|.2 It follows from Theorem 4.1 of Bai et al. (2021a) that the resulting

blocks satisfy Assumptions 1.2.3–1.2.4 with Xi = (S1i, X̃2i) as long as E[X̃2
2i] <∞. As

an example, suppose X̃1 = (gender, education level) and X̃2 = income. In this case,

the blocks could be formed by first stratifying according to gender and education level

and then blocking on income. A similar blocking procedure is used in the experiment

conducted by Fafchamps et al. (2014) which we revisit in our empirical application in

Section 1.5.

3. Recursive pairing: When dim(Xi) > 1 and |D| = 2K for some K, we could form blocks

by repeatedly implementing the “pairs of pairs” algorithm in Section 4 of Bai et al.

(2021a) to successively larger groups of size 2k for k = 0, 1, . . . , K. To do this, units

would first be matched into pairs (using for instance the non-bipartite matching algo-

rithm from the R package nbpMatching). Next, these matched pairs would themselves

be matched into “pairs of pairs" using the average value of the covariates in each pair, in

order to generate groups of size four. Continuing in this fashion, we would match pairs

of groups until obtaining groups of size 2K . This is the algorithm we employ in our

simulation designs. Such an algorithm could again be shown to satisfy Assumptions

1.2.3–1.2.4.

2. If the number of units in a stratum is not divisible by |D|, we could simply assign the remaining units
at random or drop them from the experiment.
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1.3 Main Results

1.3.1 Inference for Matched Tuples Designs

In this section, we study estimation and inference for a general m-dimensional parameter

∆ν(Q) under a matched tuples design. For a pre-specified ℓ×1 column vector ∆0 and ℓ×m

matrix Ψ of rank ℓ, the testing problem of interest is

H0 : Ψ∆ν(Q) = ∆0 versus H1 : Ψ∆ν(Q) ̸= ∆0 (1.2)

at level α ∈ (0, 1). First we describe our estimator of ∆ν(Q). For d ∈ D, define

Γ̂n(d) :=
1

n

∑
1≤i≤Jn

I{Di = d}Yi ,

and let Γ̂n = (Γ̂n(1), . . . , Γ̂n(|D|))′. In words, Γ̂n(d) is simply the sample mean of the

observations with treatment status Di = d, and Γ̂n is the vector of sample means across all

treatments d ∈ D. With Γ̂n in hand, our estimator of ∆ν(Q) is then given by

∆̂ν,n := νΓ̂n .

In what follows, it will be useful to define Γd(Xi) := E[Yi(d)|Xi]. Our first result derives

the limiting distribution of ∆̂ν,n under our maintained assumptions.

Theorem 1.3.1. Suppose Q satisfies Assumption 1.2.1 and the treatment assignment mech-

anism satisfies Assumptions 1.2.2–3.4.3. Then,

√
n(∆̂ν,n −∆ν(Q))

d→ N(0,Vν) ,
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where Vν := νVν′, with

V := V1 + V2 , (1.3)

V1 := diag(E[Var[Yi(d)|Xi]] : d ∈ D) ,

V2 :=

[
1

|D|
Cov[Γd(Xi),Γd′(Xi)]

]
d,d′∈D

.

To construct our test, we next define a consistent estimator for the asymptotic variance

matrix Vν . To begin, note by the law of total variance that

E[Var[Yi(d)|Xi]] = Var[Yi(d)]− E[E[Yi(d)|Xi]2] + E[Yi(d)]
2 .

Therefore, in order to estimate V1 consistently, it suffices to provide consistent estimators

for E[E[Yi(d)|Xi]2], E[Yi(d)], and Var[Yi(d)]. A similar remark applies to V2. In light of

this, define

ρ̂n(d, d) :=
2

n

∑
1≤j≤⌊n/2⌋

( ∑
i∈λ2j−1

YiI{Di = d}
)( ∑

i∈λ2j

YiI{Di = d}
)

ρ̂n(d, d
′) :=

1

n

∑
1≤j≤n

(∑
i∈λj

YiI{Di = d}
)(∑

i∈λj

YiI{Di = d′}
)

if d ̸= d′

σ̂2n(d) :=
1

n

∑
1≤i≤Jn

(Yi − Γ̂n(d))
2I{Di = d} .

To understand the construction, note that in order to estimate E[E[Yi(d)|Xi]2] consistently,

we would ideally average over the products of the outcomes of two units with similar values of

Xi and both with treatment status d. By construction, however, only one unit in each block

has treatment status d. To overcome this problem, note that Assumption 1.2.4 ensures that

in the limit units in adjacent blocks also have similar values of Xi. Therefore, to construct

our estimator of E[E[Yi(d)|Xi]2], denoted by ρ̂n(d, d), we average over the product of the

outcomes of the units with treatment status d in two adjacent blocks. ρ̂n(d, d) is analogous
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to the “pairs of pairs" variance estimator in Bai et al. (2021a). A similar construction has

also been used in Abadie and Imbens (2008) in a related setting. On the other hand, for

d ̸= d′, we have distinct units with treatment status d and d′ within each block, and therefore

our estimator of E[E[Yi(d)|Xi]E[Yi(d′)|Xi]], denoted ρ̂n(d, d′), can be estimated using units

within the same block.

Our estimator for Vν is then given by V̂ν,n := νV̂nν′, where

V̂n := V̂1,n + V̂2,n

V̂1,n := diag
(
V̂1,n(d) : d ∈ D

)
V̂2,n :=

[
V̂2,n(d, d

′)
]
d,d′∈D

,

with

V̂1,n(d) := σ̂2n(d)− (ρ̂n(d, d)− Γ̂2n(d))

V̂2,n(d, d
′) :=

1

|D|
(ρ̂n(d, d

′)− Γ̂n(d)Γ̂n(d
′)) .

Given this estimator, our test is given by

ϕνn(Z
(n)) = I{T νn (Z(n)) > c1−α} ,

where

T νn (Z
(n)) = n(Ψ∆̂ν,n −Ψ∆0)

′(ΨV̂ν,nΨ′)−1(Ψ∆̂ν,n −Ψ∆0) ,

and c1−α is the 1 − α quantile of the χ2ℓ distribution. Our next result establishes the

consistency of V̂n for V and the asymptotic validity of the above test.

Theorem 1.3.2. Suppose Q satisfies Assumption 1.2.1 and the treatment assignment mech-
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anism satisfies Assumptions 1.2.2–1.2.4. Then,

V̂n
P→ V .

Therefore, for the problem of testing (1.2) at level α ∈ (0, 1), ϕνn(Z(n)) satisfies

lim
n→∞

E[ϕνn(Z
(n))] = α ,

under the null hypothesis.

Example 1.3.1. (Inference for Matched Triples) Consider the setting where D = {1, 2, 3},

where we consider d = 1 as a control arm and d = 2, 3 as treatment sub-arms. See, for

example, Bold et al. (2018) and Brown and Andrabi (2020). Suppose our parameter of

interest is the vector of average treatment effects for the treatments d = 2, 3 versus control

d = 1. In this case, the parameter of interest is given by ∆ν(Q), where

ν =

−1 1 0

−1 0 1

 .

It follows from Theorem 1.3.1 that

√
n(∆̂ν,n −∆ν(Q))

d→ N(0,Vν) ,

where

Vν =

σ2ν,1,1 σ2ν,1,2

σ2ν,1,2 σ2ν,2,2

 ,

12



and

σ2ν,1,1 = E[Var[Yi(1)|Xi]] + E[Var[Yi(2)|Xi]] +
1

3
E
[
((Γ1(Xi)− Γ1)− (Γ2(Xi)− Γ2))

2
]

σ2ν,2,2 = E[Var[Yi(1)|Xi]] + E[Var[Yi(3)|Xi]] +
1

3
E
[
((Γ1(Xi)− Γ1)− (Γ3(Xi)− Γ3))

2
]

σ2ν,1,2 = E[Var[Yi(1)|Xi]]

+
1

3
E [((Γ1(Xi)− Γ1)− (Γ2(Xi)− Γ2)) ((Γ1(Xi)− Γ1)− (Γ3(Xi)− Γ3))] ,

where we recall Γd(Xi) = E[Yi(d)|Xi]. These variance formulas imply the following two

observations: first, by decomposing σ2ν,1,1 using the law of total variance, we can show that

the commonly-used two-sample t-test is conservative when testing the null hypothesis on

the contrast of any two treatment levels in a matched tuples design. A similar observation

was made in the special case of a matched-pair design in Bai et al. (2021a). Second, the

adjusted t-test developed in Bai et al. (2021a) is also conservative for testing such hypotheses.

Specifically, Bai et al. (2021a) study inference for E[Y (2)− Y (1)] in a matched-pair design

when |D| = 2 and the sample size is 2n. In a matched triples experiment with |D| = 3 and

sample size 3n, researchers may be tempted to apply the variance estimator from Theorem

3.3 in Bai et al. (2021a) to the subsample with Di ∈ {1, 2}. However, it can be shown in

our framework that the limit of the variance estimator from Bai et al. (2021a) is given by

replacing 1
3 in the last term of σ2ν,1,1 with 1

2 . Therefore, the test which studentizes using

the variance estimator from Bai et al. (2021a) would be asymptotically conservative in our

setting.

Next, we study the properties of two commonly recommended inference procedures in

the analysis of matched tuple designs. The first procedure is a t-test obtained from a linear

regression of outcomes on treatment indicators and block fixed effects. Specifically, we
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consider a t-test obtained from the following regression:

Yi =
∑

d∈D\{1}
β(d)I{Di = d}+

∑
1≤j≤n

δjI{i ∈ λj}+ ϵi , (1.4)

which we interpret as the projection of Y on the indicators for treatment status and block

fixed effects. Let β̂n(d), d ∈ D\{1} and δ̂j,n, 1 ≤ j ≤ n denote the OLS estimators

of β(d), d ∈ D\{1} and δj , 1 ≤ j ≤ n. It is common in practice to use β̂n(d) as an

estimator for the pairwise average treatment effect between treatment d and treatment 1.

See, for instance, de Mel et al. (2013) and Fafchamps et al. (2014). Furthermore, researchers

often conduct inference on the pairwise ATEs using the heteroskedasticity-robust variance

estimator obtained from (1.4). Formally, for d ∈ D\{1} and ∆0 ∈ R, consider the problem

of testing

EQ[Yi(d)]− EQ[Yi(1)] = ∆0 versus H1 : EQ[Yi(d)]− EQ[Yi(1)] ̸= ∆0 (1.5)

at level α ∈ (0, 1). Let κj · V̂sfe
n (d, 1) denote the “HCj" heteroskedasticity-robust variance

estimator of β̂n(d) from the linear regression in (1.4), where κj for j ∈ {0, 1} corresponds to

one of two common degrees of freedom corrections (see MacKinnon and White, 1985):

κj =


1 if j = 0

|D|n
|D|n−(|D|−1+n)

if j = 1 .

The test is then defined as

ϕsfen (Z(n)) = I{|T sfe
n (Z(n))| > z1−α

2
} , (1.6)
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where z1−α
2

is the (1− α
2 )-th quantile of the standard normal distribution and

T sfe
n (Z(n)) =

β̂n(d)−∆0√
κj · V̂sfe

n (d, 1)
. (1.7)

The following theorem shows that the OLS estimator β̂n(d) is numerically equivalent to the

standard difference-in-means estimator. However, it shows that the t-test defined in (1.6) is

not generally valid for testing the null hypothesis defined in (1.5).

Theorem 1.3.3. Suppose Q satisfies Assumption 1.2.1 and the treatment assignment mech-

anism satisfies Assumptions 1.2.2–1.2.4. Then,

β̂n(d) = Γ̂n(d)− Γ̂n(1) for d ∈ D\{1} .

Moreover,

• Using estimator HC0, the limiting rejection probability of the test defined in (1.6) could

be strictly larger than α.

• Using estimator HC1, the limiting rejection probability of the test defined in (1.6) could

be strictly larger than α for |D| > 2.

Bai et al. (2021a) remark that the test defined in (1.6) is conservative in the context

of a matched-pair design when using HC1. Theorem 1.3.3 shows that, when considering a

matched tuples design with more than two treatments, this is no longer necessarily the case.

Remark 1.3.1. An inspection of the proof of Theorem 1.3.3 reveals that the probability
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limit of n · κ1V̂sfe
n (d, 1) is given by

|D|
|D| − 1

(
Var

Γ1(Xi)− 1

|D|
∑
d′∈D

Γd′(Xi)


+

(
1− 1

|D|

)2

E[Var[Yi(1)|Xi]] +
1

|D|2
∑

d′∈D\{1}
E[Var[Yi(d

′)|Xi]]

+ Var

Γd(Xi)− 1

|D|
∑
d′∈D

Γd′(Xi)

+

(
1− 1

|D|

)2

E[Var[Yi(d)|Xi]]

+
1

|D|2
∑

d′∈D\{d}
E[Var[Yi(d

′)|Xi]]
)
,

whereas the true asymptotic variance of β̂n(d) is given by

E [Var[Yi(d)|Xi]] + E[Var[Yi(1)|Xi]] +
1

|D|
E
[
((Γd(Xi)− Γd)− (Γ1(Xi)− Γ1))

2
]
.

From these expressions, we can conclude that when |D| is large it is likely that κ1V̂sfe
n (d, 1)

is conservative. However, as shown in the proof of Theorem 1.3.3, this cannot be guaranteed

for finite |D| > 2 in general.

The second procedure is a block-cluster robust t-test which modifies a recent proposal

in de Chaisemartin and Ramirez-Cuellar (2022a) to the setting with multiple treatments.

Specifically, we consider a cluster-robust t-test constructed from a regression of outcomes on

a constant and treatment indicators:

Yi = γ(1) +
∑

d∈D\{1}
γ(d)I{Di = d}+ ϵi ,

where clusters are defined at the level of blocks of units {λj}1≤j≤D. Let γ̂n(d), d ∈ D\{1}

denote the OLS estimator of γ(d), it then follows immediately that γ̂n(d) = Γ̂n(d)− Γ̂n(1).
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We then consider the problem of testing (1.5) at level α ∈ (0, 1) using a test defined by

ϕbcven (Z(n)) = I{|Tbcve
n (Z(n))| > z1−α

2
} ,

where z1−α
2

is the (1− α
2 )-th quantile of the standard normal distribution and

Tbcve
n (Z(n)) =

γ̂n(d)−∆0√
V̂bcve
n (d)

, (1.8)

with V̂bcve
n (d) denoting the d-th diagonal element of the block-cluster variance estimator

defined as:

V̂bcve
n

=

 ∑
1≤j≤n

∑
i∈λj

CiC
′
i

−1 ∑
1≤j≤n

∑
i∈λj

ϵ̂iCi

∑
i∈λj

ϵ̂iCi

′ ∑
1≤j≤n

∑
i∈λj

CiC
′
i

−1

,

(1.9)

where Ci = (1, I{Di = 2}, . . . , I{Di = |D|})′ and ϵ̂i =
∑
d∈D\{1}(Yi − γ̂n(d))I{Di =

d}+ YiI{Di = 1} − γ̂n(1).

The following theorem shows that the t-test defined in (1.8) is generally conservative for

testing the null hypothesis defined in (1.5).

Theorem 1.3.4. Consider the block-cluster variance estimator V̂bcve
n as defined in (1.9) in

the Appendix. Then the d-th diagonal element of this estimator is equal to

n · V̂bcve
n (d) =

1

n

∑
1≤j≤n

∑
i∈λj

YiI{Di = d} −
∑
i∈λj

YiI{Di = 1}

2

− (Γ̂n(d)− Γ̂n(1))
2 .
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Moreover, under Assumptions 1.2.1–1.2.3,

n·V̂bcve
n (d)

p−→ E[Var[Yi(d)|Xi]]+E[Var[Yi(1)|Xi]]+E
[
((Γd(Xi)− Γd)− (Γ1(Xi)− Γ1))

2
]
.

It thus follows that the test defined in (1.8) is conservative for testing the null hypothesis

defined in (1.5) unless

E
[
((Γd(Xi)− Γd)− (Γ1(Xi)− Γ1))

2
]
= 0 . (1.10)

Remark 1.3.2. An inspection of the proof of Theorem 1.3.4 reveals that, unless (1.10) holds,

the difference between the probability limit of n · V̂bcve
n (d) and the asymptotic variance of

Γ̂n(d)− Γ̂n(1) is equal to

(
1− 1

|D|

)
E
[
((Γd(Xi)− Γd)− (Γ1(Xi)− Γ1))

2
]
.

It thus follows that the test defined in (1.8) in fact becomes more conservative for testing

(1.5) as the number of treatments |D| increases.

1.3.2 Inference for “Replicate” Designs

Our analysis so far has focused on the setting where Jn = |D|n units are blocked into n

blocks of size |D|, and each treatment d ∈ D is assigned exactly once in each block. In this

section, we consider a modification of this design where units are grouped into blocks of size

2|D| and each treatment status d ∈ D is assigned exactly twice in each block. Formally, for

the remainder of this section suppose n is even, and let

λ̃j = λ̃j(X
(n)) ⊆ {1, . . . , Jn}, 1 ≤ j ≤ n/2

denote n/2 sets each consisting of 2|D| elements that form a partition of {1, . . . , Jn}.
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We assume treatment is assigned as follows:

Assumption 1.3.1. Treatments are assigned so that {Y (n)(d) : d ∈ D} ⊥⊥ D(n)|X(n) and,

conditional on X(n),

{(Di : i ∈ λ̃j) : 1 ≤ j ≤ n/2}

are i.i.d. and each uniformly distributed over all permutations of (1, 1, 2, 2, . . . , |D|, |D|).

We further require that the units in each block be “close” in terms of their baseline

covariates in the following sense:

Assumption 1.3.2. The blocks satisfy

1

n

∑
1≤j≤n/2

max
i,k∈λ̃j

||Xi −Xk||2
P→ 0 .

We first establish that the limiting distribution of ∆̂ν,n for such a “replicate” design is

the same as that for the matched tuples design considered in Theorem 1.3.1.

Theorem 1.3.5. Suppose Q satisfies Assumption 1.2.1 and the treatment assignment mech-

anism satisfies Assumptions 1.3.1–1.3.2. Then,

√
n(∆̂ν,n −∆ν(Q))

d→ N(0,Vν) ,

with Vν as defined in Theorem 1.3.1.

Although the limiting distribution of ∆̂ν,n for the standard matched tuples and replicate

designs are identical, variance estimation in the replicate design is often understood to be

conceptually simpler, because each treatment status is assigned twice in each block (see for

instance the discussion of variance estimation in Athey and Imbens, 2017a, in the context

of matched pair designs). Indeed, in this case an alternative variance estimator can be
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constructed which is identical to the estimator proposed in Section 1.3.1 except that we

replace ρ̂n(d, d) by

ρ̃n(d, d) =
2

n

∑
1≤j≤⌊n/2⌋

( ∏
i∈λj

YiI{Di = d}
)
,

which no longer requires averaging over the product of outcomes of units in adjacent blocks.

The following theorem establishes the consistency of ρ̃n(d, d), where importantly we note that

Assumption 1.2.4, which maintains that adjacent blocks be “close", is no longer required. It

is then straightforward to show the consistency of the corresponding variance estimator for

∆̂ν,n constructed by replacing ρ̂n(d, d) in V̂n with ρ̃n(d, d).

Theorem 1.3.6. Suppose Q satisfies Assumption 1.2.1 and the treatment assignment mech-

anism satisfies Assumptions 1.3.1–1.3.2. Then,

ρ̃n(d, d)
P→ E[E[Yi(d)|Xi]2] . (1.11)

We remark that Theorems 1.3.1–1.3.2 and Theorems 1.3.5–1.3.6, yielding identical con-

clusions, do not allow us to effectively compare the properties of the standard matched tuples

design and matched tuples with replicates. In order to compare these designs, we evaluate

their finite sample properties via simulation in Section 1.4. There, we find that the mean

squared error of ∆̂ν,n under the replicate design is typically larger than under the standard

non-replicate design. However, we also find that the rejection probabilities of our proposed

tests under the replicate design are much closer to the nominal level relative to the non-

replicate design, which can sometimes exhibit rejection probabilities strictly smaller than

the nominal level when matching on multiple covariates. As a result, the replicate design

is sometimes able to achieve better power relative to the non-replicate design. We empha-

size, however, that our current asymptotic framework is not precise enough to capture these

differences. One possible conjecture is that since replicate designs could be thought of as

convex combinations of matched tuples designs (see Lemma 2 in Bai, 2022a), it is as if we
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are averaging over multiple matched tuples designs when we estimate the limiting variance.

However, we leave a detailed theoretical comparison of these two designs to future work.

1.3.3 Asymptotic Properties of Fully-Blocked 2K Factorial Designs

In this section we apply the results derived in Sections 1.3.1–1.3.2 to study the asymptotic

properties of what we call “fully-blocked" 2K factorial designs.

First, we describe the setup of a 2K factorial experiment, the resulting parameters of

interest, and their corresponding estimators (see Wu and Hamada, 2011, for a textbook

treatment). A 2K factorial design assigns treatments which are combinations of multiple

“factors," where each factor can take two distinct values, or “levels.” For instance, Karlan

et al. (2014) study the effect of capital constraints and uninsured risk on the investment

decisions of farmers in Ghana. In their setting, each treatment consists of two factors:

whether or not a household receives a cash grant, and whether or not a household receives

an insurance grant. Our setup and notation mirror the framework introduced in Dasgupta

et al. (2015) and Li et al. (2020). Given K factors each with two treatment levels {−1,+1},

our set of treatments D now consists of all possible 2K factor combinations. For a factor

combination d ∈ D, define ιk(d) ∈ {−1,+1} to be the level of factor k under treatment

d. The vector ι(d) := (ι1(d), ι2(d), . . . , ιK(d)) then describes the levels of all K factors

associated with factor combination d. This notation allows us to define factorial effects as

parameters of the form ∆ν(Q) for appropriately constructed contrast vectors ν. For instance,

consider the contrast vector defined as

νk := (ιk(1), ιk(2), . . . , ιk(|D|)) .
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Then, the parameter ∆νk(Q) obtained from this contrast can be written as

∆νk(Q) =
∑
d∈D

I{ιk(d) = +1}Γd(Q)−
∑
d∈D

I{ιk(d) = −1}Γd(Q) .

We define the main effect of factor k as 2−(K−1)∆νk(Q). In words, the main effect of factor

k measures the average difference between the outcomes of factor combinations under which

the kth factorial effect is 1 versus the outcomes of factor combinations under which the kth

factorial effect is −1. The re-scaling 2−(K−1) is introduced because there are 2K−1 possible

values for all the factor combinations when fixing the kth factor. We call νk the generating

vector for the main effect of factor k.

We can subsequently build on the generating vectors of the main effects in order to define

the interaction effects between various factors. The interaction effect between a given set of

factors is defined using the contrast obtained from taking the element-wise product of the

generating vectors for the relevant factors. For instance, the two-factor interaction between

factors k and k′ is defined as 2−(K−1)∆νk,k′ (Q), where νk,k′ := νk ⊙ νk′ and ⊙ denotes

element-wise multiplication. Similarly, the three-factor interaction 2−(K−1)∆νk,k′,k′′ (Q) is

defined using the contrast vector νk,k′,k′′ := νk ⊙ νk′ ⊙ νk′′ . We illustrate these definitions

in the special case of a 22 factorial design in Example 1.3.2 below. For simplicity, in what

follows, we omit the re-scaling by 2−(K−1) in our discussions and results.

Example 1.3.2. Here we illustrate the concept of main and interaction effects in the case

of a 22 factorial design. Table 1.1 depicts the 4 factor combinations and their corresponding

factor levels.

From the column labeled Factor 1 we observe that the generating vector for the main

effect of factor one, ν1, is given by

ν1 = (−1,−1,+1,+1) ,
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Factor Combination Factor 1 Factor 2 Factor 1/2 Interaction

1 -1 -1 +1
2 -1 +1 -1
3 +1 -1 -1
4 +1 +1 +1

Table 1.1: Example of a 22 factorial design

so that the main effect of factor one is given by (up to re-scaling)

∆ν1(Q) = EQ[Yi(+1,+1) + Yi(+1,−1)]− EQ[Yi(−1,+1) + Yi(−1,−1)] ,

where here we have indexed potential outcomes explicitly by their factor levels. Similarly,

the column labeled Factor 2 corresponds to the generating vector for the main effect of

factor two, ν2. To define the interaction effect between factors one and two, we construct

the relevant contrast by taking the element-wise product of ν1 and ν2:

ν1,2 = ν1 ⊙ ν2 = (+1,−1,−1,+1) ,

this produces the column labeled Factor 1/2 Interaction. Accordingly, the interaction effect

between factors one and two is given by (up to re-scaling)

∆ν1,2(Q) = EQ[Yi(+1,+1)− Yi(−1,+1)]− EQ[Yi(+1,−1)− Yi(−1,−1)] .

In words, ∆ν1,2(Q) measures the difference in the the average difference in potential outcomes

over factor one when factor two is set to 1 versus the average difference in potential outcomes

over factor one when factor two is set to −1.

Given the above setup, we estimate the factorial effect given by ∆ν(Q) using the estimator

∆̂ν,n defined in Section 1.3.1. Wu and Hamada (2011) and Dasgupta et al. (2015) explain

that ∆̂ν,n is a standard estimator in this context. For instance, the estimator of the main
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effect of factor k, 2−(K−1)∆̂νk,n, is in fact the difference-in-means estimator over the k-th

factor:

2−(K−1)∆̂νk,n =
1

2K−1

∑
d∈D

I{ιk(d) = +1}Γ̂n(d)−
1

2K−1

∑
d∈D

I{ιk(d) = −1}Γ̂n(d)

=
1

n2K−1

∑
1≤i≤Jn

∑
d∈D

I{ιk(d) = +1}I{Di = d}Yi

− 1

n2K−1

∑
1≤i≤Jn

∑
d∈D

I{ιk(d) = −1}I{Di = d}Yi

=
1

n2K−1

∑
1≤i≤Jn

I{ιk(Di) = +1}Yi −
1

n2K−1

∑
1≤i≤Jn

I{ιk(Di) = −1}Yi .

Then, we compare the asymptotic variance of the estimator ∆̂ν,n under what we call a

“fully-blocked" factorial design relative to some alternative designs. A fully-blocked factorial

design first blocks the experimental sample into n blocks of size 2K based on the observable

characteristics X(n), and then assigns each of the 2K factor combinations exactly once in

each block. Formally, a fully-blocked factorial design is simply a matched tuples design as

defined in Section 1.2, where D consists of the set of all possible factor combinations.

Our first result compares the fully-blocked factorial design to completely randomized and

stratified factorial designs. Given a 2K factorial experiment and a sample of size Jn = n2K , a

completely randomized factorial design simply assigns n individuals to each of the 2K factor

combinations at random. A stratified factorial design first partitions the covariate space into

a finite number of groups, or “strata", and then performs a completely randomized factorial

design within each stratum. Formally, let h : supp(X) → {1, . . . , S} be a function which

maps covariate values into a set of discrete strata labels. Then, a stratified factorial design

performs a completely randomized factorial design within each stratum produced by h(·).

Note that a completely randomized design is a special case of the stratified factorial design

where the co-domain of h(·) is a singleton. See Branson et al. (2016) and Li et al. (2020)

for further discussion of these designs. Theorem 1.3.7 shows that the asymptotic variance of
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∆̂ν,n is weakly smaller under a fully-blocked factorial design than that under any stratified

factorial design as defined above, as long as the potential outcomes satisfy the smoothness

assumptions described in Assumption 1.2.1(c).

Theorem 1.3.7. Suppose Assumptions 1.2.1(a)-(b) hold and let h : supp(X) → {1, . . . , S}

be any measurable function which maps covariate values into a set of discrete strata labels.

Let ∆ν(Q) be a factorial effect for some 1 × 2K contrast vector ν. Then under a stratified

factorial design with strata defined by h(·),

√
n(∆̂ν,n −∆ν(Q))

d→ N(0, σ2h,ν) ,

where σ2h,ν = νVhν′, with

Vh := Vh,1 + Vh,2

Vh,1 := diag(E[Var[Yi(d)|h(Xi)]] : d ∈ D)

Vh,2 :=

[
1

|D|
Cov[E[Yi(d)|h(Xi)], E[Yi(d′)|h(Xi)]]

]
d,d′∈D

.

Moreover,

σ2ν ≤ σ2h,ν ,

where σ2ν = Vν (as defined in Theorem 1.3.1) is the asymptotic variance of ∆̂ν,n (under

Assumptions 1.2.1–1.2.3) for a fully-blocked factorial design.

Remark 1.3.3. Branson et al. (2016) and Li et al. (2020) propose re-randomization de-

signs in the context of factorial experiments which are also shown to have favorable prop-

erties relative to complete and stratified factorial designs. In Section 1.4.1, we compare the

mean-squared error of the fully-blocked design to a re-randomized design via Monte Carlo

simulation.

Our next result considers settings where only a subset of the factors are of primary
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interest to the researcher. For instance, Besedeš et al. (2012) use a factorial design to study

how the number of options in an agent’s choice set affects their ability to make optimal

decisions. Here the primary factor of interest is the number of options (four or thirteen),

but the design also features other secondary factors. In such a case we might imagine that a

matched pairs design which focuses on the factor of primary interest and assigns the other

factors by i.i.d. coin flips may be more efficient for estimating the primary factorial effect than

the fully-blocked design which treats all the factors symmetrically. In particular, we consider

a setting where we are interested in the average main effect on the kth factor, ∆νk(Q), and

compare the performance of the fully-blocked design to a design which performs matched

pairs over the kth factor while assigning the other factors to individuals at random using

i.i.d. Bernoulli(1/2) assignment. We call such a design the “factor k specific" matched pairs

design. Formally, let

ζj = ζj(X
(n)) ⊂ {1, . . . , 2Kn}, 1 ≤ j ≤ 2K−1n

denote a partition of the set of indices such that each ζj contains two units. The “factor k

specific" matched pairs design satisfies the following assumption:

Assumption 1.3.3. Treatment status is assigned so that {Y (n)(d) : d ∈ D} ⊥⊥ D(n)|X(n)

and, conditional on X(n),

{(ιk(Di) : i ∈ ζj) : 1 ≤ j ≤ 2K−1n}

are i.i.d. and each uniformly distributed over {(−1,+1), (+1,−1)}. Furthermore, indepen-

dently of X(n) and independently across 1 ≤ j ≤ K, j ̸= k, ιj(Di) is i.i.d. across 1 ≤ i ≤ 2Kn

and P{ιj(Di) = −1} = P{ιj(Di) = +1} = 1
2 .

Theorem 1.3.8 shows that the asymptotic variance of ∆̂ν1,n is weakly smaller under a

fully-blocked design than that under the factor specific matched pairs design.
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Theorem 1.3.8. Suppose Assumptions 1.2.1–1.2.3 hold and the treatment assignment mech-

anism satisfies Assumption 1.3.3. Then,

√
n(∆̂νk,n −∆νk(Q))

d→ N(0,Vνk + ξ1 + ξ0) ,

where Vνk is defined in Theorem 1.3.1, and

ξ1 =
∑

d∈D:ιk(d)=+1

E


Γd(Xi)−

1

2K−1

∑
d′∈D:ιk(d′)=+1

Γd′(Xi)

2


ξ0 =
∑

d∈D:ιk(d)=−1

E


Γd(Xi)−

1

2K−1

∑
d′∈D:ιk(d′)=−1

Γd′(Xi)

2
 .

Remark 1.3.4. In this section we have presented results for “full" factorial designs, which

assign individuals to every possible combination of factors. This is in contrast to “fractional"

factorial designs, which assign only a subset of the possible factor combinations (see for

example Wu and Hamada, 2011; Pashley and Bind, 2019). We leave possible extensions of

our procedure to the fractional case for future work.

1.4 Simulations

In this section we examine the finite sample performance of the estimator ∆̂ν,n and the test

ϕνn(Z
(n)) in the context of a 2K factorial experiment, under various alternative experimental

designs. In Sections 1.4.1 and 1.4.2 the data generating processes are as specified below

(in Section 1.4.3 we study an alternative design with multiple covariates and factors). For

d = (d(1), d(2)) ∈ {−1, 1}2 and 1 ≤ i ≤ 4n, the potential outcomes are generated according

to the equation:

Yi(d) = µd + µd(Xi) + σd(Xi)ϵi .
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In each of the specifications, ((Xi, ϵi) : 1 ≤ i ≤ 4n) are i.i.d; for 1 ≤ i ≤ 4n, Xi and ϵi are

independent.

Model 1: µ1,a(Xi) = µ−1,a(Xi) = γXi for a ∈ {−1, 1}, where γ = 1. µ1,1 = 2µ1,−1 =

4µ−1,1 = 2τ for a parameter τ ∈ {0, 0.2}, µ−1,−1 = 0, ϵi ∼ N(0, 1) and Xi ∼

N(0, 1) for all d ∈ {−1, 1}2 and σd(Xi) = 1.

Model 2: As in Model 1, but µd(Xi) = Xi + (X2
i − 1)/3.

Model 3: As in Model 1, but µd(Xi) = γdXi+(X2
i −1)/3. γ1,1 = 2, γ−1,1 = 1, γ1,−1 = 1/2

and γ−1,−1 = −1.

Model 4: As in Model 3, but µd(Xi) = sin(γdXi).

Model 5: As in Model 3, µd(Xi) = sin(γdXi) + γdXi/10 + (X2
i − 1)/3.

Model 6: As in Model 3, but σd(Xi) = (1 + d(1) + d(2))X2
i .

We consider five parameters of interest as listed in Table 3.1. ∆ν1(Q) and ∆ν2(Q) correspond

to the main factorial effects for the two factors. ∆ν1,2(Q) corresponds to the interaction effect

between the two factors, as discussed in Example 1.3.2. ∆ν11
(Q) and ∆ν1−1

(Q) denote the

average effect of one factor, keeping the value of the other factor fixed at 1 or −1. All

simulations are performed with a sample of size 4n = 1000.

Parameter of interest Formula

1
2∆ν1(Q)

1
2E[Yi(1, 1)− Yi(−1, 1)] + 1

2E[Yi(1,−1)− Yi(−1,−1)]

1
2∆ν2(Q)

1
2E[Yi(1, 1)− Yi(1,−1)] + 1

2E[Yi(−1, 1)− Yi(−1,−1)]

1
2∆ν1,2(Q)

1
2E[Yi(1, 1)− Yi(−1, 1)]− 1

2E[Yi(1,−1)− Yi(−1,−1)]

∆ν11
(Q) E[Yi(1, 1)− Yi(−1, 1)]

∆ν1−1
(Q) E[Yi(1,−1)− Yi(−1,−1)]

Table 1.2: Parameters of interest

28



1.4.1 MSE Properties of the Matched Tuples Design

In this section, we study the mean-squared-error performance of ∆̂ν,n across several experi-

mental designs. We analyze and compare the MSE for all five parameters of interest for the

following seven experimental designs:

1. (B-B) (D
(1)
i , D

(2)
i ) are i.i.d. across 1 ≤ i ≤ 4n and the two entries are independently

distributed as 2A− 1, where A follows Bernoulli(1/2).

2. (C) (D(1)
i , D

(2)
i ) are jointly drawn from a completely randomized design. We uniformly

at random divide the experimental sample of size 4n into four groups of size n and

assign a different d ∈ {−1, 1}2 for each group.

3. (MP-B) A matched-pair design for D(1), where units are ordered and paired according

to Xi. For each pair, uniformly at random assign D
(1)
i = 1 to one of the units.

Independently, (D(2)
i : 1 ≤ i ≤ 4n) are i.i.d. with the distribution of 2A − 1, where

A ∼ Bernoulli(1/2).

4. (MT) Matched tuples design where units are ordered according to Xi.

5. (Large-2) A stratified design, where the experimental sample is divided into two strata

using the median of Xi as the cutoff. In each stratum, treatment is assigned as in C.

6. (Large-4) As in (Large-2), but with four strata.

7. (RE) A re-randomization design using a Mahalanobis balance function. As out-

lined in Branson et al. (2016), we select the main-effect threshold criterion to be

the 100(0.011/K) percentile of a χ2p distribution with p = dim(Xi), and select the

interaction-effect threshold criterion to be 100(0.011/L), where L is the number of

interaction effects.

Table 3.2 displays the ratio of the MSE of each design relative to the MSE of MT,

computed across 4,000 Monte Carlo replications. In each of the designs, we set treatment
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effects to zero by setting τ = 0. As expected from Theorems 1.3.7 and 1.3.8, MT outperforms

B-B, C, MP-B, Large-2, and Large-4 in every model specification. We also find that MT

compares favorably to RE, with RE slightly outperforming MT in some cases, but with MT

outperforming in general. Although we do not have formal results comparing the matched

tuples design to re-randomization, we note that re-randomization redraws treatments until

the distances between certain features of the covariate distribution across treatment statuses

are below certain pre-specified thresholds. In contrast, the matched tuples design attempts

to minimize these distances by blocking units finely based on the covariates. See also Remark

3 of Bai (2022a) for a related observation in the binary treatment setting.

1.4.2 Inference

In this section, we study the finite sample properties of several different tests of the null

hypothesis H0 : ∆ν = 0 for various choices of ν, against the alternative hypotheses implied

by setting τ = 0.2. In this section we restrict our attention to five assignment mechanisms:

B-B, C, MT, Large-2 and Large-4. We exclude MP-B because it is a non-standard

experimental design for which we have not developed an inference procedure. We also ex-

clude the re-randomization design (RE) because, although it is a widely studied design, the

inferential results in Li et al. (2020) are derived in a finite population framework which is

distinct from our super-population framework, and their resulting limiting distribution is

non-normal.

In each case we perform our hypothesis tests at a significance level of 0.05. For design

B-B, tests are performed using a standard t-test. For designs C, Large-2 and Large-4 the

tests are constructed using the asymptotic normality result from Theorem 1.3.7 combined

with variance estimators constructed using the same plug-in method as in Bugni et al.

(2018a) and Bugni et al. (2019a). For design MT the test is constructed as described in

Theorem 1.3.2. Table 1.4 displays the rejection probabilities under the null and alternative
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Model Parameter B-B C MP-B MT Large-2 Large-4 RE

1

∆ν1 2.099 1.948 1.045 1.000 1.335 1.138 1.031
∆ν2 2.036 2.015 2.113 1.000 1.407 1.179 0.988
∆ν1,2 2.008 2.044 2.016 1.000 1.423 1.091 1.014
∆ν11

2.051 2.014 1.563 1.000 1.402 1.134 1.029
∆ν1−1

2.057 1.978 1.498 1.000 1.357 1.095 1.017

2

∆ν1 2.327 2.168 1.044 1.000 1.546 1.249 1.232
∆ν2 2.254 2.259 2.355 1.000 1.619 1.312 1.209
∆ν1,2 2.249 2.287 2.173 1.000 1.646 1.225 1.250
∆ν11

2.285 2.265 1.634 1.000 1.599 1.260 1.227
∆ν1−1

2.291 2.190 1.585 1.000 1.593 1.215 1.255

3

∆ν1 2.042 1.996 1.792 1.000 1.422 1.206 1.124
∆ν2 1.576 1.527 1.480 1.000 1.221 1.140 1.109
∆ν1,2 3.113 2.982 1.943 1.000 1.900 1.337 1.187
∆ν11

3.401 3.351 2.237 1.000 1.979 1.410 1.225
∆ν1−1

1.899 1.802 1.619 1.000 1.388 1.166 1.103

4

∆ν1 1.311 1.305 1.252 1.000 1.100 1.070 1.194
∆ν2 1.218 1.210 1.167 1.000 1.063 1.064 1.057
∆ν1,2 1.296 1.289 1.152 1.000 1.184 1.084 1.191
∆ν11

1.416 1.401 1.259 1.000 1.158 1.080 1.249
∆ν1−1

1.201 1.202 1.150 1.000 1.128 1.075 1.140

5

∆ν1 1.603 1.606 1.315 1.000 1.280 1.169 1.375
∆ν2 1.444 1.458 1.378 1.000 1.225 1.173 1.235
∆ν1,2 1.607 1.598 1.351 1.000 1.370 1.184 1.390
∆ν11

1.802 1.797 1.415 1.000 1.353 1.192 1.441
∆ν1−1

1.434 1.434 1.262 1.000 1.301 1.164 1.332

6

∆ν1 1.119 1.122 1.116 1.000 1.055 1.021 1.065
∆ν2 1.051 1.042 1.056 1.000 1.026 0.991 0.989
∆ν1,2 1.107 1.104 1.077 1.000 1.074 0.994 1.018
∆ν11

1.096 1.100 1.088 1.000 1.058 1.005 1.051
∆ν1−1

1.197 1.177 1.137 1.000 1.092 1.017 0.996

Table 1.3: Ratio of MSEs relative to MT

hypotheses, computed from 2,000 Monte Carlo replications. The results show that the

rejection probabilities are universally around 0.05 under the null hypothesis, which verifies

the validity of our tests across all the designs. Under the alternative hypotheses implied by
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τ = 0.2, the rejection probabilities vary substantially across the different designs, outcome

models and parameters. However, our matched tuples design displays the highest power for

almost all parameters and model specifications.

Under H0 Under H1

Model Parameter B-B C MT Large-2 Large-4 B-B C MT Large-2 Large-4

1

∆ν1 0.057 0.049 0.051 0.050 0.046 0.790 0.803 0.977 0.915 0.963
∆ν2 0.052 0.059 0.046 0.060 0.058 0.371 0.403 0.675 0.534 0.593
∆ν1,2 0.049 0.059 0.049 0.059 0.043 0.081 0.093 0.126 0.100 0.106
∆ν11

0.052 0.043 0.048 0.064 0.040 0.646 0.656 0.921 0.816 0.884
∆ν1−1

0.056 0.051 0.044 0.057 0.048 0.361 0.333 0.594 0.499 0.545

2

∆ν1 0.053 0.043 0.049 0.048 0.045 0.738 0.737 0.976 0.875 0.951
∆ν2 0.056 0.061 0.046 0.059 0.056 0.341 0.377 0.670 0.483 0.551
∆ν1,2 0.052 0.065 0.050 0.060 0.044 0.082 0.091 0.126 0.101 0.095
∆ν11

0.049 0.051 0.046 0.057 0.036 0.597 0.610 0.919 0.758 0.840
∆ν1−1

0.056 0.051 0.046 0.054 0.048 0.340 0.310 0.598 0.436 0.500

3

∆ν1 0.054 0.056 0.050 0.053 0.052 0.571 0.570 0.837 0.705 0.787
∆ν2 0.056 0.057 0.056 0.057 0.059 0.235 0.259 0.361 0.286 0.323
∆ν1,2 0.051 0.051 0.052 0.062 0.047 0.060 0.064 0.116 0.091 0.082
∆ν11

0.048 0.051 0.046 0.061 0.035 0.402 0.421 0.885 0.624 0.762
∆ν1−1

0.061 0.047 0.060 0.056 0.057 0.255 0.234 0.374 0.310 0.340

4

∆ν1 0.049 0.051 0.045 0.045 0.050 0.908 0.905 0.968 0.956 0.957
∆ν2 0.051 0.052 0.051 0.051 0.058 0.488 0.520 0.604 0.569 0.559
∆ν1,2 0.056 0.052 0.049 0.065 0.045 0.092 0.102 0.126 0.117 0.111
∆ν11

0.050 0.048 0.051 0.054 0.045 0.762 0.785 0.908 0.865 0.886
∆ν1−1

0.044 0.055 0.048 0.052 0.046 0.498 0.472 0.544 0.528 0.523

5

∆ν1 0.054 0.054 0.045 0.045 0.043 0.844 0.847 0.964 0.912 0.937
∆ν2 0.053 0.056 0.051 0.048 0.053 0.416 0.445 0.589 0.491 0.505
∆ν1,2 0.052 0.054 0.049 0.059 0.049 0.092 0.099 0.124 0.110 0.099
∆ν11

0.051 0.052 0.049 0.058 0.043 0.674 0.688 0.911 0.810 0.847
∆ν1−1

0.050 0.062 0.049 0.056 0.049 0.416 0.403 0.523 0.461 0.474

6

∆ν1 0.050 0.050 0.043 0.058 0.043 0.129 0.128 0.122 0.115 0.130
∆ν2 0.053 0.059 0.057 0.057 0.051 0.074 0.086 0.088 0.079 0.080
∆ν1,2 0.047 0.046 0.052 0.053 0.044 0.052 0.046 0.052 0.057 0.050
∆ν11

0.049 0.046 0.049 0.051 0.043 0.082 0.083 0.077 0.082 0.081
∆ν1−1

0.059 0.056 0.058 0.059 0.056 0.140 0.113 0.125 0.131 0.135

Table 1.4: Rejection probabilities under the null and alternative hypothesis
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1.4.3 Experiments with More Factors and Covariates

In this section we repeat the previous simulation exercises while varying the number of

factors K and the number of observed covariates dim(Xi). The data generating process is

constructed as follows:

Yi(d) =


τd(1) + X̃ ′

iβ + ϵi, if K = 1

τ ·
(
d(1) +

∑K
k=2 d

(k)

K−1

)
+ γdX̃

′
iβ + ϵi, if K ≥ 2

where τ ∈ {0, 0.1}, d = (d(1), . . . , d(K)) and d(k) ∈ {−1, 1} represents the treatment status

of the k-th factor. We set γd = 1 if d(2) = 1, γd = −1 otherwise, in order to ensure the

conditional means are heterogeneous in the second factor. X̃i contains 9 covariates, out of

which the first dim(Xi) covariates are observed and used for the experimental designs. The

distributions of X̃i, ϵi and the values of β are calibrated using data obtained from Branson

et al. (2016), who study the covariate balancing properties of 2K factorial re-randomization

designs using data from the New York Department of Education (NYDE). Details on the

empirical context and construction of the data generating process are provided in Appendix

A.4.3.

To construct our matched tuples of size 2K when dim(Xi) > 1, we employ the recursive

pairing algorithm described in Section 1.2 using the Mahalanobis distance. We emphasize,

however, that this approach is not guaranteed to be optimal, and we leave the study of

potentially more effective matching algorithms to future work.

In addition to the standard matched tuples design (MT), we also include a matched

tuples design with a replicate for each treatment as described in Section 1.3.2, denoted by

MT2. For example, in the MT2 design with two factors, units are matched into groups

of eight, and two units receive each factor combination. We also continue to consider the

alternative designs (C, Large-4, MP-B and RE) from Section 1.4.1. When constructing
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the strata for Large-4, we stratify on one covariate drawn at random from the set of available

covariates.

In Table 1.5 we report the ratio of the MSE of each design relative to the MSE of MT

when dim(Xi) = 1 and K = 1 (computed from 4,000 Monte Carlo replications). For all

experiments in this section, the number of observations is fixed to be 1,280 so that we have

20 matched tuples of size 64 when K = 6. Our simulation results are consistent with those in

Section 1.4.1: MT displays the lowest MSE across almost all model specifications. Although

MT2 generally produces larger MSEs than MT, it still performs favorably relative to the

other designs. For methods that use an increasing number of covariates when dim(Xi)

increases (MT, MT2, MP-B and RE), we observe that the MSE in fact increases with the

number of available covariates. We expect this is because (as shown in Appendix A.4.3) the

first covariate is a much stronger predictor of the control outcome than the other available

covariates, which are relatively uninformative.

dim(Xi) Method K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 Method K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

1

MT

1.000 1.003 1.006 1.113 1.297 1.945

C

9.151 8.554 8.642 8.939 9.015 9.181
2 1.027 1.052 1.107 1.180 1.463 2.293 9.120 8.528 8.568 8.867 9.053 9.114
4 1.043 1.130 1.420 1.687 2.170 3.338 8.968 8.364 8.569 8.868 8.949 8.765
6 1.192 1.495 1.763 2.241 3.097 4.304 8.945 8.327 8.588 8.994 9.081 8.853
9 1.284 1.702 2.047 2.781 3.337 4.081 8.934 8.309 8.600 8.788 8.915 8.526

1

MT2

1.017 1.049 1.074 1.297 1.916 2.903

Large-4

4.393 4.605 4.674 4.634 4.393 4.381
2 1.044 1.086 1.212 1.547 2.200 3.585 6.523 6.926 6.745 6.704 6.521 6.367
4 1.224 1.332 1.620 2.231 3.379 4.799 7.321 8.100 7.407 7.559 7.542 7.399
6 1.451 1.901 2.339 3.061 4.020 5.721 8.143 8.137 7.644 7.801 8.288 7.906
9 1.609 2.140 2.693 3.231 4.387 6.903 8.093 8.075 8.170 7.799 8.129 8.402

1

MP-B

0.991 8.693 8.807 8.964 8.991 8.829

RE

1.073 1.091 1.296 2.032 3.040 3.640
2 0.978 8.854 8.897 8.863 8.811 9.072 1.090 1.069 1.955 3.284 4.282 5.094
4 0.967 8.970 8.711 9.020 8.855 8.749 1.320 1.410 3.278 4.640 5.504 6.270
6 1.175 9.148 8.753 8.941 8.774 8.596 1.961 1.886 3.976 5.648 6.223 6.759
9 1.227 8.793 8.989 9.444 9.227 8.273 2.515 2.566 4.957 6.265 6.676 7.455

Table 1.5: Ratio of MSEs relative to MT using a single factor and covariate

In Table 1.6, we compute the rejection probabilities when testing the null hypothesis

H0 : ∆ν1 = 0 against the alternative implied by setting τ = 0.1, for various choices of K and

dim(Xi) (computed from 1,000 Monte Carlo replications). Under the null hypothesis, we
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observe that our tests under design MT become conservative as dim(Xi) and K increase. In

particular, we notice a large difference between K = 4 and K = 5. However, despite being

conservative, MT still displays favorable power properties relative to C and Large-4 for all

but the largest choices of K.

Our next observation is that our tests under design MT2 remain exact even as dim(Xi)

and K both increase. As we explain in Section 1.3.2, we suspect that our challenges for

inference using MT come from poor estimation of the variance, which seems to be alleviated

in MT2, where the number of observations receiving each treatment within a tuple are

doubled. As a result of this exactness, MT2 achieves higher power than MT when dim(Xi)

and K are large. To further explore these power improvements, Figure 1.1 presents power

plots for three specific choices of K and dim(Xi) with τ ranging from 0 to 0.1 (Figure A.1

in the appendix presents power plots for alternatives implied by larger values than τ = 0.1).

First, when dim(Xi) and K are small, for instance dim(Xi) = K = 1, we observe no

significant difference between the power plots generated by MT and MT2. However, when

the dimension of the covariates and factors are both large, for instance dim(Xi) = 6, K = 4,

MT2 dominates MT for all alternative hypotheses. Therefore, our recommendation to

practitioners is to consider a matched tuples design when working with few treatments

and covariates, but to consider the replicated design when dealing with a large number of

treatments and/or covariates.

1.5 Empirical Application

In this section, we illustrate the inference procedures introduced in Section 1.3 using the

data collected in Fafchamps et al. (2014)3. Fafchamps et al. (2014) conduct a randomized

3. The original paper features six rounds of surveys which were pooled in the final analysis. We perform
our analysis exclusively on the data obtained in the sixth round in order to avoid complications related to
time-series dependence across rounds. For simplicity, we additionally drop quadruplets with missing values,
and 4 “leftover” groups whose sizes range from 5 to 8 firms. This results in a final sample of 120 quadruplets,
or 4n = 480. Further results on the long-run effects (collected in a seventh survey wave) are contained in
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Under H0 Under H1

Method dim(Xi) K = 1 K = 2 K = 3 K = 4 K = 5 K = 6 K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

MT

1 0.049 0.045 0.033 0.023 0.009 0.008 0.998 1.000 1.000 0.997 0.980 0.837
2 0.047 0.043 0.041 0.018 0.008 0.002 0.999 0.998 0.997 0.997 0.935 0.732
4 0.040 0.029 0.031 0.011 0.009 0.008 1.000 1.000 0.979 0.946 0.794 0.583
6 0.037 0.018 0.010 0.022 0.010 0.007 0.999 0.989 0.936 0.870 0.668 0.479
9 0.041 0.026 0.016 0.019 0.014 0.003 0.988 0.961 0.895 0.810 0.674 0.319

MT2

1 0.054 0.054 0.044 0.059 0.047 0.052 1.000 0.999 1.000 0.996 0.973 0.858
2 0.048 0.053 0.041 0.058 0.039 0.055 1.000 0.999 1.000 0.985 0.943 0.784
4 0.075 0.048 0.054 0.056 0.060 0.046 0.996 0.993 0.981 0.951 0.843 0.673
6 0.053 0.067 0.046 0.054 0.045 0.046 0.988 0.967 0.926 0.857 0.744 0.579
9 0.065 0.050 0.053 0.059 0.060 0.047 0.983 0.944 0.872 0.840 0.704 0.494

C

1 0.062 0.054 0.041 0.056 0.059 0.069 0.437 0.449 0.410 0.445 0.463 0.459
2 0.063 0.049 0.038 0.051 0.065 0.068 0.434 0.450 0.410 0.442 0.459 0.459
4 0.064 0.050 0.038 0.048 0.055 0.057 0.425 0.448 0.400 0.443 0.457 0.468
6 0.066 0.052 0.045 0.048 0.054 0.055 0.430 0.437 0.409 0.436 0.437 0.463
9 0.063 0.042 0.050 0.033 0.054 0.048 0.417 0.439 0.420 0.433 0.433 0.448

Large-4

1 0.050 0.044 0.059 0.061 0.053 0.057 0.685 0.699 0.701 0.683 0.730 0.770
2 0.046 0.050 0.043 0.052 0.044 0.065 0.560 0.564 0.575 0.585 0.582 0.634
4 0.053 0.064 0.039 0.059 0.056 0.062 0.497 0.490 0.486 0.527 0.521 0.577
6 0.055 0.053 0.049 0.057 0.059 0.071 0.462 0.444 0.495 0.519 0.520 0.553
9 0.044 0.041 0.056 0.051 0.049 0.076 0.457 0.451 0.493 0.490 0.511 0.571

Table 1.6: Rejection probabilities when testing H0 : ∆ν1 = 0 under the null and alternative
hypothesis
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Figure 1.1: Rejection probability under various choices of τ

Table A.4 in Section A.4 of the appendix.
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experiment in order to investigate the effects of several capital aid programs on the profits of

small businesses in Ghana. In their experiment, there are three treatment arms, where (in

our notation) Di = 1 indicates that the ith firm is untreated, Di = 2 indicates being offered

cash, and Di = 3 indicates being offered in-kind grants. The null hypotheses of interest are

Hd
0 : E[Yi(1)] = E[Yi(d)] versus H1 : E[Yi(1)] ̸= E[Yi(d)] (1.12)

for d ∈ {2, 3}, as well as

H
2,3
0 : E[Yi(2)] = E[Yi(3)] versus H1 : E[Yi(2)] ̸= E[Yi(3)] . (1.13)

In their experimental design, blocks are defined by quadruplets, where each quadruplet

contains two untreated units with Di = 1, one treated unit with Di = 2, and one treated

unit with Di = 3. Despite the slight departure from the framework presented in Sections

1.2–1.3, in that there are two untreated units in each quadruplet, we show in Appendix

A.1.1 that a slight modification of the variance estimator in Theorem 1.3.2 produces a valid

test for (1.12)–(1.13). Specifically, we pretend that there are four treatment levels in each

quadruplet, while the first two are in fact controls. Then, by setting generating vectors

ν2 = (−1/2,−1/2, 1, 0), ν3 = (−1/2,−1/2, 0, 1), and ν2,3 = (0, 0,−1, 1) and proceeding

with the testing procedure in Theorem 1.3.2, we obtain valid tests for Hd
0 and H

2,3
0 . For

each of the hypotheses in (1.12)–(1.13), we implement the following tests:

— A t-test based on the OLS estimator in a linear regression of Y on 1, I{Di = 2}, and

I{Di = 3}, together with the usual heteroskedasticity-robust variance estimator.

— The test introduced in Proposition A.1.1, which implements the test from Theorem

1.3.2 as described above to accommodate for the fact that there are two untreated

units in each block.
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We note that Fafchamps et al. (2014) test (1.12) and (1.13) using a t-test obtained from a

linear regression of outcomes on treatment indicators and block fixed effects. However, as

was shown in Theorem 1.3.3, such a procedure is not guaranteed to be valid. On the other

hand, we expect that the t-test obtained from a linear regression without block fixed effects

should be conservative for testing (1.12)–(1.13) in light of the observations made in Example

1.3.1 and the fact that this test coincides with a standard two-sample t-test.

Our results are presented in Table 1.7. The point estimates of the two methods are

identical because the OLS estimator coincides with the difference-in-means estimator. How-

ever, the standard errors obtained from our variance estimator are always smaller than the

heteroskedasticy-robust standard errors. For example, when testing (1.12) for d = 3 among

the female subsample, the standard error produced from our variance estimator is 15.21

whereas the heteroskedasticy robust standard error is 18.13. We note that overall the im-

provements are modest; this suggests that the conditional expectation of the outcomes does

not vary substantially with the observable characteristics in this survey wave. This is further

corroborated by the calibrated simulations presented in Table A.2 in Appendix A.4.

1.6 Recommendations for Empirical Practice

We conclude with some recommendations for empirical practice based on our theoretical

results as well as the simulation study above. For inference about the linear contrast of

expected outcomes given by ∆ν in a matched tuples design, we recommend the test ϕνn

defined in Section 1.3.1: our simulations results show that this test does a good job of con-

trolling size in large samples (approximately 80 blocks). We have shown that tests based

on the heteroskedasticity-robust variance estimator from a linear regression of outcomes on

treatment and block fixed effects may be invalid, in the sense of having rejection probabil-

ity strictly greater than the nominal level under the null hypothesis. Tests based on the

heteroskedasticity-robust variance or block-cluster variance estimators from a linear regres-
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Table 1.7: Point estimates and standard errors for testing the treatment effects of cash and
in-kind grants using different methods (wave 6)

High Initial Low Initial

All Firms Males Females Profit Women Profit Women

(1) (2) (3) (4) (5)

Cash treatment 19.64 24.84 16.30 33.09 7.01
OLS (15.42) (27.29) (18.13) (42.56) (11.58)

(standard t-test) In-kind treatment 20.26 4.48 30.42 65.36 11.10
(15.67) (18.42) (22.83) (53.28) (15.31)

Cash=in-kind (p-val) 0.975 0.493 0.600 0.610 0.817

Cash treatment 19.64 24.84 16.30 33.09 7.01
Difference-in-means (14.24) (26.05) (15.21) (39.27) (11.15)

(adjusted t-test) In-kind treatment 20.26 4.48 30.42 65.36 11.10
(15.24) (17.79) (21.97) (48.27) (14.99)

Cash=in-kind (p-val) 0.974 0.468 0.567 0.576 0.815

Note: The results in this table are based on the data from the sixth wave of data collec-
tion. For each treatment and each subsample, the number in the first row is the point
estimate and that in the second row is the standard error. For testing the equality of the
average potential outcomes under the two values of treatment, we report the p-values as
in Fafchamps et al. (2014).

sion of outcomes on treatment are valid but potentially conservative, which would result in

a loss of power relative to our proposed test.

We also find that matched tuples designs have favorable efficiency properties relative to

other popular designs (with a specific illustration in the setting of 2K factorial designs).

However, this comes with the caveat that when dealing with a large number of treatments

(in our simulations, this translated to having fewer than 80 blocks) and/or large number of

covariates, practitioners may want to consider the replicated matched tuples design intro-

duced in Section 1.3.2, as our simulations suggest that this design may have more robust

size control, which translates to better power in such cases.
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CHAPTER 2

INFERENCE IN CLUSTER RANDOMIZED TRIALS WITH

MATCHED PAIRS

2.1 Introduction

This paper studies the problem of inference in cluster randomized experiments where treat-

ment status is determined according to a “matched pairs” design. Here, by a cluster random-

ized experiment, we mean one in which treatment is assigned at the level of the cluster; by a

“matched pairs” design we mean that the sample of clusters is paired according to baseline,

cluster-level covariates and, within each pair, one cluster is selected at random for treatment.

Cluster matched pair designs feature prominently in all parts of the sciences: examples in

economics include Banerjee et al. (2015) and Crépon et al. (2015).

Following recent work in Bugni et al. (2022a), we develop our results in a sampling

framework where clusters are realized as a random sample from a population of clusters.

Importantly, in this framework cluster sizes are modeled as random and “non-ignorable,"

meaning that “large" clusters and “small" clusters may be heterogeneous, and, in particular,

the effects of the treatment may vary across clusters of differing sizes. The framework

additionally allows for the possibility of two-stage sampling, in which a subset of units is

sampled from the set of units within each sampled cluster.

We first study the large-sample behavior of a weighted difference-in-means estimator un-

der two distinct sets of assumptions on the matching procedure. Specifically, we distinguish

between settings where the matching procedure does or does not match on a function of

cluster size. For both cases, we establish conditions under which our estimator is asymptot-

ically normal and derive simple, closed-form expressions for the asymptotic variance. Using

these results, we establish formally that employing cluster size as a matching variable in

addition to baseline covariates delivers a weak (and often strict) improvement in asymptotic

40



efficiency relative to matching on baseline covariates alone. We then propose a variance

estimator which is consistent for either asymptotic variance depending on the nature of the

matching procedure. Combining these results establishes the asymptotic exactness of tests

based on our estimators.

We then consider the asymptotic properties of two commonly recommended inference

procedures based on linear regressions of the individual-level outcomes on a constant and

cluster-level treatment. The first inference procedure clusters at the level of treatment assign-

ment. The second inference procedure clusters at the level of assignment pairs, as recently

recommended in de Chaisemartin and Ramirez-Cuellar (2019). We establish that both pro-

cedures are generally conservative in our framework.

Next, we study the behavior of a randomization test which permutes the treatment status

for clusters within pairs. We establish the finite-sample validity of such a test for testing

a certain null hypothesis related to the equality of potential outcome distributions under

treatment and control, and then establish asymptotic validity for testing null hypotheses

about the size-weighted average treatment effect. We emphasize, however, that the latter

result relies heavily on our choice of test statistic, which is studentized using our novel

variance estimator. In simulations, we find that this randomization test controls size more

reliably than any of the other inference procedures we consider in the paper, while delivering

comparable power.

Finally, we derive large-sample results for a covariate-adjusted version of our estimator,

which is designed to improve precision by exploiting additional baseline covariates which

were not used for treatment assignment. As discussed in Bai et al. (2023a) and Cytrynbaum

(2023a), standard covariate adjustments based on a regression using treatment-covariate

interactions (see, for instance, Negi and Wooldridge, 2021, for a succinct treatment) are not

guaranteed to improve efficiency when treatment assignment is not completely randomized.

For this reason, we consider a modified version of the estimator developed in Bai et al. (2023a)
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for individual-level matched pair experiments. Our results show that our covariate-adjusted

estimator is guaranteed to improve asymptotic efficiency relative to the unadjusted estimator,

whenever the matching procedure matches on cluster size. Interestingly, we also find that

this improvement in efficiency is not guaranteed when cluster size is excluded as a matching

variable, and document in a simulation study that in fact such covariate adjustments may

increase variance.

The analysis of data from cluster randomized experiments and data from experiments

with matched pairs has received considerable attention (see Donner and Klar, 2000; Athey

and Imbens, 2017a; Hayes and Moulton, 2017, for general overviews), but most recent work

has focused on only one of these two features at a time. Recent work on the analysis

of cluster randomized experiments includes Middleton and Aronow (2015), Su and Ding

(2021), Schochet et al. (2021), and Wang et al. (2022) (see Bugni et al., 2022a, for a general

discussion of this literature as well as further references). Recent work on the analysis

of matched pairs experiments includes Jiang et al. (2020), Cytrynbaum (2021), Bai et al.

(2023c), and Bai (2022a) (see Bai et al., 2022c, for a general discussion of this literature as

well as further references). Two papers which focus specifically on the analysis of cluster

randomized experiments with matched pairs are Imai et al. (2009) and de Chaisemartin and

Ramirez-Cuellar (2019). Both papers maintain a finite-population perspective, where the

primary source of uncertainty is “design-based," stemming from the randomness in treatment

assignment. In such a framework, both papers study the finite and large-sample behavior of

difference-in-means type estimators and propose corresponding variance estimators which are

shown to be conservative. In contrast, our paper maintains a “super-population" sampling

framework and proposes a novel variance estimator which is shown to be asymptotically

exact in our setting.

The remainder of the paper is organized as follows. In Section 2.2 we describe our setup

and notation. Section 2.3-2.6 present our main results. Section 2.7 studies the finite-sample
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behavior of our proposed tests via a simulation study. We conclude with recommendations

for empirical practice in Section 2.8.

2.2 Setup and Notation

In this section we introduce the notation and assumptions which are common to both match-

ing procedures considered in Section 2.3. We broadly follow the setup and notation developed

in Bugni et al. (2022a). Let Yi,g ∈ R denote the (observed) outcome of interest for the ith

unit in the gth cluster, Dg ∈ {0, 1} denote the treatment received by the gth cluster, Xg ∈ Rk

the observed, baseline covariates for the gth cluster, and Ng ∈ Z+ the size of the gth cluster.

In what follows we sometimes refer to the vector (Xg, Ng) as Wg. Further denote by Yi,g(d)

the potential outcome of the ith unit in cluster g, when all units in the gth cluster receive

treatment d ∈ {0, 1}. As usual, the observed outcome and potential outcomes are related to

treatment assignment by the relationship

Yi,g = Yi,g(1)Dg + Yi,g(0)(1−Dg) . (2.1)

In addition, define Mg to be the (possibly random) subset of {1, 2, . . . , Ng} corresponding

to the observations within the gth cluster that are sampled by the researcher. We emphasize

that a realization of Mg is a set whose cardinality we denote by |Mg|, whereas a realization

of Ng is a positive integer. For example, in the event that all observations in a cluster

are sampled, Mg = {1, . . . , Ng} and |Mg| = Ng. We assume throughout that our sample

consists of 2G clusters and denote by PG the distribution of the observed data

Z(G) := (((Yi,g : i ∈ Mg), Dg, Xg, Ng) : 1 ≤ g ≤ 2G) ,
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and by QG the distribution of

(((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng),Mg, Xg, Ng) : 1 ≤ g ≤ 2G) .

Note that PG is determined jointly by (2.1) together with the distribution of D(G) := (Dg :

1 ≤ g ≤ 2G) and QG, so we will state our assumptions below in terms of these two quantities.

We now describe some preliminary assumptions on QG that we maintain throughout the

paper. In order to do so, it is useful to introduce some further notation. To this end, for

d ∈ {0, 1}, define

Ȳg(d) :=
1

|Mg|
∑
i∈Mg

Yi,g(d) .

Further define RG(M
(G)
g , X(G), N (G)) to be the distribution of

((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng) : 1 ≤ g ≤ 2G)
∣∣ M(G)

g , X(G), N (G) ,

where M(G)
g := (Mg : 1 ≤ g ≤ 2G), X(G) := (Xg : 1 ≤ g ≤ 2G) and N (G) := (Ng :

1 ≤ g ≤ 2G). Note that QG is completely determined by RG(M
(G)
g , X(G), N (G)) and the

distribution of (M(G)
g , X(G), N (G)). The following assumption states our main requirements

on QG using this notation.

Assumption 2.2.1. The distribution QG is such that

(a) {(Mg, Xg, Ng), 1 ≤ g ≤ 2G} is an i.i.d. sequence of random variables.

(b) For some family of distributions {R(m,x, n) : (m,x, n) ∈ supp(Mg, Xg, Ng)},

RG(M
(G)
g , X(G), N (G)) =

∏
1≤g≤2G

R(Mg, Xg, Ng) .

(c) P{|Mg| ≥ 1} = 1 and E[N2
g ] <∞.
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(d) For some c < ∞, P{E[Y 2
i,g(d)|Xg, Ng] ≤ c for all 1 ≤ i ≤ Ng} = 1 for all d ∈ {0, 1}

and 1 ≤ g ≤ 2G.

(e) Mg ⊥⊥ (Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng)
∣∣ Xg, Ng for all 1 ≤ g ≤ 2G.

(f) For d ∈ {0, 1} and 1 ≤ g ≤ 2G,

E[Ȳg(d)|Ng] = E

 1

Ng

∑
1≤i≤Ng

Yi,g(d)
∣∣∣Ng

 w.p.1 .

For completeness, we reproduce some of the observations from Bugni et al. (2022a) re-

garding these assumptions. As shown in Bugni et al. (2022a), an important implication of

Assumptions 2.2.1(a)–(b) for our purposes is that

{
(Ȳg(1), Ȳg(0), |Mg|, Xg, Ng

)
, 1 ≤ g ≤ 2G} , (2.2)

is an i.i.d. sequence of random variables. Assumptions 2.2.1.(c)–(d) impose some mild reg-

ularity on the (conditional) moments of the distribution of cluster sizes and potential out-

comes, in order to permit the application of relevant laws of large numbers and central limit

theorems. Note that Assumption 2.2.1.(c) does not rule out the possibility of observing ar-

bitrarily large clusters, but does place restrictions on the heterogeneity of cluster sizes. For

instance, two consequences of Assumptions 2.2.1.(a) and (c) are that

∑
1≤g≤GN

2
g∑

1≤g≤GNg
= OP (1) ,

and
max1≤g≤GN

2
g∑

1≤g≤GNg
P−→ 0 ,

which mirror heterogeneity restrictions imposed in the analysis of clustered data when cluster

sizes are modeled as non-random (see for example Assumption 2 in Hansen and Lee, 2019).
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Assumptions 2.2.1(e)–(f) impose high-level restrictions on the two-stage sampling procedure.

Assumption 2.2.1(e) allows the subset of observations sampled by the experimenter to depend

on Xg and Ng, but rules out dependence on the potential outcomes within the cluster itself.

Assumption 2.2.1(f) is a high-level assumption which guarantees that we can extrapolate

from the observations that are sampled to the observations that are not sampled. It can

be shown that Assumptions 2.2.1(e)–(f) are satisfied if Mg is drawn as a random sample

without replacement from {1, 2, . . . , Ng} in an appropriate sense (see Lemma 2.1 in Bugni

et al., 2022a).

Our object of interest is the size-weighted cluster-level average treatment effect, which

may be expressed in our notation as

∆(QG) = E

 Ng
E[Ng]

 1

Ng

Ng∑
i=1

(Yi,g(1)− Yi,g(0))

 = E

 1

E[Ng]

Ng∑
i=1

(Yi,g(1)− Yi,g(0))

 .

This parameter, which weights the cluster-level average treatment effects proportional to

cluster size, can be thought of as the average treatment effect where individuals are the unit

of interest. Note that Assumptions 2.2.1(a)–(b) imply that we may express ∆(QG) as a

function of R and the common distribution of (Mg, Xg, Ng). In particular, this implies that

∆(QG) does not depend on G. Accordingly, in what follows we simply denote ∆ = ∆(QG).

In Sections 2.3–2.5, we study the asymptotic behavior of the following size-weighted

difference-in-means estimator:

∆̂G := µ̂G(1)− µ̂G(0) , (2.3)

where

µ̂G(d) :=
1

N(d)

2G∑
g=1

I{Dg = d}
Ng
|Mg|

∑
i∈Mg

Yi,g ,
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with

N(d) :=
2G∑
g=1

NgI{Dg = d} .

Note that this estimator may be obtained as the estimator of the coefficient of Dg in

a weighted least squares regression of Yi,g on a constant and Dg with weights equal to√
Ng/|Mg|. In the special case that all observations in each cluster are sampled, so that

Mg = {1, 2, . . . , Ng} for all 1 ≤ g ≤ G with probability one, this estimator collapses to

the standard difference-in-means estimator. In Section 2.6 we consider a covariate-adjusted

modification of ∆̂G which is designed to incorporate additional baseline covariates which

were not used for treatment assignment.

Remark 2.2.1. Following the recommendations in Bruhn and McKenzie (2009a) and Glen-

nerster and Takavarasha (2013), it is common practice to conduct inference in matched pair

experiments using the standard errors obtained from a regression of individual level outcomes

on treatment and a collection of pair-level fixed effects. We do not analyze the asymptotic

properties of such an approach for two reasons. First, in the context of individual-level

randomized experiments, Bai et al. (2022c) and Bai et al. (2023c) argue that such a regres-

sion estimator is in fact numerically equivalent to the simple difference-in-means estimator,

but that the resulting standard errors are generally conservative (and in some cases pos-

sibly invalid). This result generalizes immediately to the clustered setting in the special

case where all clusters are the same size and Mg = {1, 2, . . . , Ng}. Second, when cluster

sizes vary, this numerical equivalence no longer holds, and in such cases de Chaisemartin

and Ramirez-Cuellar (2019) argue (in an alternative inferential framework) that the corre-

sponding regression estimator may no longer be consistent for the average treatment effect

of interest.

Remark 2.2.2. Bugni et al. (2022a) also define an alternative treatment effect parameter
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given by

∆eq(QG) = E

 1

Ng

Ng∑
i=1

(Yi,g(1)− Yi,g(0))

 .

This parameter, which weights the cluster-level average treatment effects equally regard-

less of cluster size, can be thought of as the average treatment effect where the clusters

themselves are the units of interest. For this parameter, the analysis of matched-pair de-

signs for individual-level treatments developed in Bai et al. (2022c) applies directly to the

data obtained from the cluster-level averages {(Ȳg, Dg, Xg, Ng) : 1 ≤ g ≤ 2G}, where

Ȳg =
1

|Mg|
∑
i∈Mg

Yi,g. As a result, we do not pursue a detailed description of inference for

this parameter in the paper.

Remark 2.2.3. In Appendix B.3, we consider a generalization of our main results to settings

with multiple treatments (i.e. “matched-tuples" designs) as considered in Bai et al. (2023c).

2.3 Asymptotic Behavior of ∆̂G for Cluster-Matched Pair Designs

In this section, we consider the asymptotic behavior of ∆̂G for two distinct types of cluster-

matched pair designs. Section 2.3.1 studies a setting where cluster size is not used as a

matching variable when forming pairs. Section 2.3.2 considers the setting where we do allow

for pairs to be matched based on cluster size in an appropriate sense made formal below.

2.3.1 Not Matching on Cluster Size

In this section, we consider a setting where cluster size is not used as a matching vari-

able. First, we describe our formal assumptions on the mechanism determining treatment

assignment. The G pairs of clusters may be represented by the sets

{π(2g − 1), π(2g)} for g = 1, ..., G ,
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where π = πG(X
(G)) is a permutation of 2G elements. Given such a π, we assume that

treatment status is assigned as follows:

Assumption 2.3.1. Treatment status is assigned so that

{(
(Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng), Ng,Mg

)}2G
g=1 ⊥⊥ D(G)|X(G) .

Conditional on X(G), (Dπ(2g−1), Dπ(2g)), g = 1, ..., G are i.i.d. and each uniformly dis-

tributed over {(0, 1), (1, 0)}.

We further require that the clusters in each pair be “close" in terms of their baseline

covariates in the following sense:

Assumption 2.3.2. The pairs used in determining treatment assignment satisfy

1

G

G∑
g=1

∣∣∣Xπ(2g) −Xπ(2g−1)

∣∣∣r P−→ 0 ,

for r ∈ {1, 2}.

Bai et al. (2022c) provide results which facilitate the construction of pairs which satisfy

Assumption 2.3.2. For instance, if dim(Xg) = 1 and we order clusters from smallest to

largest according to Xg and then pair adjacent units, it follows from Theorem 4.1 in Bai

et al. (2022c) that Assumption 2.3.2 is satisfied if E[X2
g ] <∞. Next, we state the additional

assumptions on QG we require beyond those stated in Assumption 2.2.1:

Assumption 2.3.3. The distribution QG is such that

(a) E[Ȳ rg (d)N ℓ
g |Xg = x], are Lipschitz for d ∈ {0, 1}, r, ℓ ∈ {0, 1, 2} ,

(b) For some C <∞, P{E[Ng|Xg] ≤ C} = 1 .

Assumption 2.3.3(a) is a smoothness requirement analogous to Assumption 2.1(c) in Bai

et al. (2022c) that ensures that units within clusters which are “close" in terms of their
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baseline covariates are suitably comparable. Assumption 2.3.3(b) imposes an additional

restriction on the distribution of cluster sizes beyond what is stated in Assumption 2.2.1(c).

Under these assumptions, we obtain the following result:

Theorem 2.3.1. Under Assumptions 2.2.1 and 2.3.1–2.3.3,

√
G(∆̂G −∆)

d−→ N(0, ω2) ,

as G→ ∞, where

ω2 = E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)]−
1

2
E[(E[Ỹg(1) + Ỹg(0)|Xg])2] ,

with

Ỹg(d) =
Ng

E[Ng]

(
Ȳg(d)−

E[Ȳg(d)Ng]

E[Ng]

)
.

Note that the asymptotic variance we obtain in Theorem 2.3.1 corresponds exactly to

the asymptotic variance of the difference-in-means estimator for matched pairs designs with

individual-level assignment (as derived in Bai et al., 2022c), but with transformed cluster-

level potential outcomes given by Ỹg(d). Accordingly, our result collapses exactly to theirs

when P{Ng = 1} = 1. Theorem 2.3.1 also quantifies the gain in precision obtained from using

a matched pairs design versus complete randomization (i.e., assigning half of the clusters to

treatment at random): it can be shown that the limiting distribution of ∆̂G under complete

randomization is given by
√
G(∆̂G −∆)

d−→ N(0, ω20) ,

where ω20 = E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)]. We thus immediately obtain that ω2 ≤ ω20. Moreover,

this inequality is strict unless E[Ỹg(1) + Ỹg(0)|Xg] = 0.
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2.3.2 Matching on Cluster Size

In this section, we repeat the exercise in Section 2.3.1 in a setting where the assignment

mechanism matches on baseline characteristics and (some function of) cluster size in an

appropriate sense to be made formal below. First, we describe how to modify our assumptions

on the mechanism determining treatment assignment. The G pairs of clusters are still

represented by the sets

{π(2g − 1), π(2g)} for g = 1, ..., G ,

however, now we allow the permutation π = πG(X
(G), N (G)) = πG(W

(G)) to be a function

of cluster size. Given such a π, we assume that treatment status is assigned as follows:

Assumption 2.3.4. Treatment status is assigned so that

{((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng),Mg)}2Gg=1 ⊥⊥ D(G)|W (G) .

Conditional on W (G), (Dπ(2g−1), Dπ(2g)), g = 1, ..., G are i.i.d. and each uniformly dis-

tributed over {(0, 1), (1, 0)}.

We also modify the assumption on how pairs are formed:

Assumption 2.3.5. The pairs used in determining treatment assignment satisfy

1

G

G∑
g=1

N ℓ
π(2g)

∣∣∣Wπ(2g) −Wπ(2g−1)

∣∣∣r P−→ 0 ,

for ℓ ∈ {0, 1, 2}, r ∈ {1, 2}.

Unlike for Assumption 2.3.2, the discussion in Bai et al. (2022c) does not provide con-

ditions for matching algorithms which guarantee that Assumption 2.3.5 holds. Accordingly,

in Proposition 2.3.1 we provide lower-level sufficient conditions for Assumption 2.3.5 which

can be verified using the results in Bai et al. (2022c).
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Proposition 2.3.1. Suppose E[N4
g ] <∞ and

1

G

G∑
g=1

|Wπ(2g) −Wπ(2g−1)|
r P−→ 0 ,

for r ∈ {1, 2, 3, 4}, then Assumption 2.3.5 holds.

We also modify the smoothness requirement as follows:

Assumption 2.3.6. The distribution QG is such that E[Ȳ rg (d)|Wg = w] are Lipschitz for

d ∈ {0, 1}, r ∈ {1, 2}.

We then obtain the following analogue to Theorem 2.3.1:

Theorem 2.3.2. Under Assumptions 2.2.1 and 2.3.4–2.3.6,

√
G(∆̂G −∆)

d−→ N(0, ν2) ,

as G→ ∞, where

ν2 = E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)]−
1

2
E[(E[Ỹg(1) + Ỹg(0)|Xg, Ng])2] , (2.4)

with

Ỹg(d) =
Ng

E[Ng]

(
Ȳg(d)−

E[Ȳg(d)Ng]

E[Ng]

)
.

Note that the asymptotic variance ν2 has exactly the same form as ω2 from Section 2.3.1,

with the only difference being that the final term of the expression conditions on both cluster

characteristics Xg and cluster size Ng. From this result it then follows that matching on

cluster size in addition to cluster characteristics leads to a weakly lower asymptotic variance.

To see this, note that by comparing ω2 and ν2 we obtain that

ω2 − ν2 = −1

2

(
E[E[Ỹg(1) + Ỹg(0)|Xg]2]− E[E[Ỹg(1) + Ỹg(0)|Xg, Ng]2]

)
.
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It then follows by the law of iterated expectations and Jensen’s inequality that ω2 ≥ ν2.

2.4 Variance Estimation

In this section, we construct variance estimators for the asymptotic variances ω2 and ν2

obtained in Section 2.3. In fact, we propose a single variance estimator that is consistent

for both ω2 and ν2 depending on the nature of the matching procedure. As noted in the

discussion following Theorem 2.3.1, the expressions for ω2 and ν2 correspond exactly to the

asymptotic variance obtained in Bai et al. (2022c) with the individual-level outcome replaced

by a cluster-level transformed outcome. We thus follow the variance construction from Bai

et al. (2022c), but replace the individual outcomes with feasible versions of these transformed

outcomes. To that end, consider the observed adjusted outcome defined as:

Ŷg =
Ng

1
2G

∑
1≤j≤2GNj

(
Ȳg −

1
G

∑
1≤j≤2G ȲjI{Dj = Dg}Nj

1
G

∑
1≤j≤2G I{Dj = Dg}Nj

)
,

where

Ȳg =
1

|Mg|
∑
i∈Mg

Yi,g .

We then propose the following variance estimator:

v̂2G = τ̂2G − 1

2
λ̂2G , (2.5)
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where

τ̂2G =
1

G

∑
1≤j≤G

(
Ŷπ(2j) − Ŷπ(2j−1)

)2
λ̂2G =

2

G

∑
1≤j≤⌊G/2⌋

(
Ŷπ(4j−3) − Ŷπ(4j−2)

)(
Ŷπ(4j−1) − Ŷπ(4j)

)
× (Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j)) .

Note that the construction of v̂2G can be motivated using the same intuition as the variance

estimators studied in Bai et al. (2022c) and Bai et al. (2023c): to consistently estimate

quantities like (for instance) E[E[Ỹg(1)|Xg]E[Ỹg(0)|Xg]] which appear in ω2, we average

across “pairs of pairs" of clusters. As a consequence, we will additionally require that the

matching algorithm satisfy the condition that “pairs of pairs" of clusters are sufficiently

close in terms of their baseline covariates/cluster size, as formalized in the following two

assumptions:

Assumption 2.4.1. The pairs used in determining treatment status satisfy

1

G

∑
1≤j≤

⌊
G
2

⌋
∣∣∣Xπ(4j−k) −Xπ(4j−ℓ)

∣∣∣2 P→ 0

for any k ∈ {2, 3} and ℓ ∈ {0, 1}.

Assumption 2.4.2. The pairs used in determining treatment status satisfy

1

G

∑
1≤j≤

⌊
G
2

⌋N2
π(4j−k)

∣∣∣Wπ(4j−k) −Wπ(4j−ℓ)

∣∣∣2 P→ 0

for any k ∈ {2, 3} and ℓ ∈ {0, 1}.

As noted in Bai et al. (2022c), given pairs which satisfy Assumptions 2.3.2 or 2.3.5, it is
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frequently possible to reorder the pairs so that Assumptions 2.4.1 or 2.4.2 are satisfied. We

then obtain the following two consistency results for the estimator v̂2G:

Theorem 2.4.1. Suppose Assumption 2.2.1 holds. If additionally Assumptions 2.3.1–2.3.3

and 2.4.1 hold, then

v̂2G
P−→ ω2 .

Alternatively, if Assumptions 2.3.4–2.3.6 and 2.4.2 hold, then

v̂2G
P−→ ν2 .

Next, we derive the limits in probability of two commonly recommended variance esti-

mators obtained from a (weighted) linear regression of the individual-level outcomes Yi,g on

a constant and cluster-level treatment Dg. The first variance estimator we consider, which

we denote by ω̂2CR,G, is simply the cluster-robust variance estimator of the coefficient of Dg

as defined in equation (B.8) in the appendix. Theorem 2.4.2 derives the limit in probability

of ω̂2CR,G under a matched pair design which matches on baseline covariates as defined in

Section 2.3.1, and shows that it is generally too large relative to ω2.

Theorem 2.4.2. Under Assumptions 2.2.1 and 2.3.1–2.3.3,

ω̂2CR,G
P−→ E[Ỹg(1)

2] + E[Ỹg(0)
2] ≥ ω2 ,

with equality if and only if

E[Ỹg(1) + Ỹg(0)|Xg] = 0 . (2.6)

The next variance estimator we consider, which we denote by ω̂2PCVE,G, is the variance

estimator of the coefficient of Dg obtained from clustering on the assignment pairs of clusters

as defined in equation (B.9) in the appendix. de Chaisemartin and Ramirez-Cuellar (2019)
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call this the pair-cluster variance estimator (PCVE)1. Theorem 2.4.3 derives the limit in

probability of ω̂2PCVE,G in the special case where Ng = k for g = 1, . . . , 2G for some fixed k

and |Mg| = Ng, and shows that it is generally too large relative to ω2.

Theorem 2.4.3. Suppose Assumptions 2.2.1 and 2.3.1–2.3.3 hold. If in addition we impose

that Ng = k for g = 1, . . . , 2G for some fixed positive integer k and that |Mg| = Ng, then

ω̂2PCVE,G
P−→ ω2 +

1

2
E
[
(E[Ỹg(1)− Ỹg(0)|Xg])2

]
≥ ω2 ,

with equality if and only if

E[Ỹg(1)− Ỹg(0)|Xg] = 0 . (2.7)

Although we do not derive the limit in probability of ω̂2PCVE,G in the general case, our

simulation evidence in Section 2.7 suggests that the limit of ω̂2PCVE,G remains conservative,

and that the conditions under which it is consistent for ω2 are the same as those in equation

(2.7). From Theorems 2.4.2 and 2.4.3 we obtain that neither cluster-robust standard error is

consistent for ω2 unless the baseline covariates are irrelevant for the potential outcomes in an

appropriate sense. In particular, equation (2.7) holds when the average treatment difference

for the sampled units in a cluster are homogeneous, in the sense that Ȳg(1)−Ȳg(0) is constant.

We further note that the conditions under which ω̂2CR,G and ω̂2PCVE,G are consistent for ω2

are exactly analogous to the conditions under which Bai et al. (2022c) derive (in the setting

of an individual-level matched pairs experiment) that the two-sample t-test and matched

pairs t-test are asymptotically exact, respectively.

1. We emphasize, however, that de Chaisemartin and Ramirez-Cuellar (2019) propose their variance esti-
mator in a finite population “design-based" inferential framework, which is distinct from the superopopulation
framework we consider here.
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2.5 Randomization Tests

In this section, we study the properties of a randomization test based on the idea of permuting

the treatment assignments for clusters within pairs. In Section 2.5.1 we present some finite-

samples properties of our proposed test, and in Section 2.5.2 we establish its large sample

validity for testing the null hypothesis H0 : ∆(QG) = 0.

First, we construct the test. Denote by HG the group of all permutations on 2G elements

and by HG(π) the subgroup that only permutes elements within pairs defined by π:

HG(π) = {h ∈ HG : {π(2g − 1), π(2g)} = {h(π(2j − 1)), h(π(2j))} for 1 ≤ g ≤ G} .

Define the action of h ∈ HG(π) on Z(G) as follows:

hZ(G) = {((Yi,g : i ∈ Mg), Dh(g), Xg, Ng) : 1 ≤ g ≤ 2G} .

The randomization test we consider is then given by

ϕrandG (Z(G)) = I{TG(Z(G)) > R̂−1
G (1− α)} ,

where

R̂G(t) =
1

|HG(π)|
∑

h∈HG(π)

I{TG(hZ(G)) ≤ t} ,

with

TG(Z
(G)) =

∣∣∣∣∣
√
G∆̂G

v̂G

∣∣∣∣∣ .
Remark 2.5.1. As is often the case for randomization tests, R̂G(t) may be difficult to com-

pute in situations where |HG(π)| = 2G is large. In such cases, we may replace HG(π) with

a stochastic approximation ĤG = {h1, h2, . . . , hB}, where h1 is the identity transformation

and h2, . . . , hB are i.i.d. uniform draws from HG(π). The results in Section 2.5.1 continue
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to hold with such an approximation; the results in Section 2.5.2 continue to hold provided

B → ∞ as G→ ∞.

2.5.1 Finite-Sample Results

In this section we present some finite-sample properties of the proposed test. Consider

testing the null hypothesis that the distribution of potential outcomes within a cluster are

equal across treatment and control conditional on observable characteristics and cluster size:

H
X,N
0 : (Yi,g(1) : 1 ≤ i ≤ Ng)|(Xg, Ng)

d
= (Yi,g(0) : 1 ≤ i ≤ Ng)|(Xg, Ng) . (2.8)

We then establish the following result on the finite sample validity of our randomization test

for testing (2.8):

Theorem 2.5.1. Suppose Assumption 2.2.1 holds and that the treatment assignment mech-

anism satisfies Assumption 2.3.1 or 2.3.4. Then, for the problem of testing (2.8) at level

α ∈ (0, 1), ϕrandG (Z(G)) satisfies

E[ϕrandG (Z(G))] ≤ α ,

under the null hypothesis.

Remark 2.5.2. The proof of Theorem 2.5.1 follows classical arguments that underlie the

finite sample validity of randomization tests more generally. Accordingly, as in those ar-

guments, the result continues to hold if the test statistic TG is replaced by any other test

statistic which is a function of Z(G).

58



2.5.2 Large-Sample Results

In this section, we establish the large-sample validity of the randomization test ϕrandG for

testing the null hypothesis

H0 : ∆(QG) = 0 . (2.9)

In Remark 2.5.3 we describe how to modify the test for testing non-zero null hypotheses.

Theorem 2.5.2. Suppose QG satisfies Assumption 2.2.1, and either

• Assumption 2.3.3 with treatment assignment mechanism satisfying Assumption 2.3.1

and 2.4.1 ,

• Assumption 2.3.6 with treatment assignment mechanism satisfying Assumptions 2.3.4

and 2.4.2 .

Further, suppose that the probability limit of v̂2G is positive, then

sup
t∈R

|R̂G(t)− (Φ(t)− Φ(−t))| P−→ 0 ,

where Φ(·) is the standard normal CDF. Thus, for the problem of testing (2.9) at level

α ∈ (0, 1), ϕrandG (Z(G)) satisfies

lim
G→∞

E[ϕrandG (Z(G))] = α ,

under the null hypothesis.

Theorems 2.5.1 and 2.5.2 highlight that the randomization test ϕrandG (Z(G)) is asymptot-

ically valid for testing (2.9) while additionally retaining the finite-sample validity described

in Section 2.5.1 under the null hypothesis (2.8). In Section 2.7.1 we illustrate the benefit

of this additional robustness on the small-sample behavior of ϕrandG (Z(G)) relative to tests
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constructed using Gaussian critical values. We note that, unlike for the null hypothesis con-

sidered in Section 2.5.1, the choice of test statistic TG is crucial for establishing Theorem

2.5.2. Similar observations have been made in related contexts in Janssen (1997), Chung

and Romano (2013), Bugni et al. (2018b) and Bai et al. (2022c).

Remark 2.5.3. We briefly describe how to modify the test ϕrandG for testing general null

hypotheses of the form

H0 : ∆(QG) = ∆0 .

To this end, let

Z̃(G) := (((Yi,g −Dg∆0 : i ∈ Mg), Dg, Xg, Ng) : 1 ≤ g ≤ 2G) ,

then it can be shown that under the assumptions given in Theorem 2.5.2, the test ϕrandG (Z̃(G))

obtained by replacing Z(G) with Z̃(G) satisfies

lim
G→∞

E[ϕrandG (Z̃(G))] = α ,

under the null hypothesis.

2.6 Covariate Adjustment

In this section, we consider a linearly covariate-adjusted modification of ∆̂G that is designed

to improve precision by exploiting additional observed baseline covariates that were not

used for treatment assignment. To that end, we consider a setting in which we observe two

sets of baseline covariates, Xg and Cg, where Xg ∈ Rk denotes the original set of baseline

covariates used for treatment assignment, and Cg ∈ Rℓ denotes the covariates in addition to

Xg that were not used for treatment assignment. Note that Cg could also include cluster-

level aggregates of individual-level outcomes, including intracluster means and quantiles.
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Before proceeding, we note that for the remainder of Section 2.6, the assumptions in Section

2.2 should be modified such that Xg is replaced by (Xg, Cg) throughout. In particular,

references to Assumption 2.2.1 below should be understood to hold with (Xg, Cg) in place

of Xg.

Our primary focus will be on settings in which the cluster size Ng is used in determining

the pairs. We comment on the case when Ng is not used in determining pairs in Remark

2.6.1, and, importantly, note that in such settings the adjustments we consider here are not

guaranteed to improve precision). As in Section 2.3.2, let π = πG(X
(G), N (G)) denote the

permutation that determines the pairs. We then assume that treatment status is assigned

as follows:

Assumption 2.6.1. Treatment status is assigned so that

{((Yi,g(1), Yi,g(0) : 1 ≤ i ≤ Ng),Mg, Cg)}2Gg=1 ⊥⊥ D(G)|(X(G), N (G)) .

Conditional on (X(G), N (G)), (Dπ(2g−1), Dπ(2g)), g = 1, ..., G are i.i.d. and each uniformly

distributed over {(0, 1), (1, 0)}.

We consider a linearly covariate-adjusted estimator of ∆(Q) based on a set of regressors

generated by Xg, Ng, Cg. To this end, define ψg = ψ(Xg, Ng, Cg), where ψ : Rk×R×Rℓ →

Rp. We impose the following assumptions on ψ:

Assumption 2.6.2. The function ψ is such that

(a) No component of ψ is a constant and E[Var[ψg|Xg, Ng]] is nonsingular.

(b) Var[ψg] <∞.

(c) E[ψg|Wg = w], E[ψgψ′g|Wg = w], and E[ψgȲ rg (d)|Wg = w] for d ∈ {0, 1} and r ∈ {1, 2}

are Lipschitz.
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(d) For some c <∞, P{E[∥ψg∥2Ȳ 2
g (d)|Xg, Ng] ≤ c} = 1 for d ∈ {0, 1}.

As discussed in Bai et al. (2023a) and Cytrynbaum (2023a), standard covariate adjust-

ments based on a regression using treatment-covariate interactions (see, for instance, Negi

and Wooldridge, 2021, for a succinct treatment) are not guaranteed to improve efficiency

when treatment assignment is not completely randomized. For this reason, we consider a

modified version of the adjusted estimator developed in Bai et al. (2023a) for individual-level

matched pair experiments. Let β̂G denote the OLS estimator of the slope coefficient in the

linear regression of of (Ȳπ(2g−1)Nπ(2g−1) − Ȳπ(2g)Nπ(2g))(Dπ(2g−1) −Dπ(2g)) on a constant

and (ψπ(2g−1)−ψπ(2g))(Dπ(2g−1)−Dπ(2g)). We then define our covariate-adjusted estimator

as

∆̂
adj
G =

1
G

∑
1≤g≤2G(ȲgNg − (ψg − ψ̄G)

′β̂G)Dg
1
G

∑
1≤g≤2GNgDg

−
1
G

∑
1≤g≤2G(ȲgNg − (ψg − ψ̄G)

′β̂G)(1−Dg)

1
G

∑
1≤g≤2GNg(1−Dg)

,

(2.10)

where

ψ̄G =
1

2G

∑
1≤g≤2G

ψg .

Theorem 2.6.1 derives the limiting distribution of ∆̂adj
G , and, importantly, it shows that the

limiting variance of ∆̂adj
G is no larger than that of ∆̂G in (2.3) and can be strictly smaller.

Theorem 2.6.1. Under Assumptions 2.2.1, 2.3.5, 2.3.6, 2.6.1, and 2.6.2,

√
G(∆̂

adj
G −∆)

d→ N(0, ς2)

as G→ ∞, where

ς2 = E[Var[Y ∗
g (1)|Xg, Ng]] +E[Var[Y ∗

g (0)|Xg, Ng]] +
1

2
E[(E[Y ∗

g (1)−Y ∗
g (0)|Xg, Ng]−∆)2] ,
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with

Y ∗
g (d) =

Ȳg(d)Ng − (ψg − E[ψg])
′β∗

E[Ng]
−

Ng
E[Ng]

E[Ȳg(d)Ng − (ψg − E[ψg])
′β∗]

E[Ng]

= Ỹg(d)−
(ψg − E[ψg])

′β∗

E[Ng]
,

and

β∗ = (2E[Var[ψg|Xg, Ng]])−1E[Cov[ψg, Ȳg(1)Ng + Ȳg(0)Ng|Xg, Ng]] . (2.11)

Moreover,

ς2 = ν2 − κ2 , (2.12)

where ν2 is as in (2.4) and

κ2 =
E[((ψg − E[ψg|Xg, Ng])′β∗)2]

E[Ng]2
.

As a consequence, ς2 ≤ ν2, with equality if and only if κ2 = 0.

Note that the asymptotic variance ς2 has the same form as the variance ν2, but with

new transformed outcomes Y ∗
g (d) which can be expressed as covariate-adjusted versions of

the original transformed outcomes Ỹg(d). Exploiting this observation is what allows us to

establish that ς2 = ν2− κ2. As a consequence, we find that the asymptotic variance of ∆̂adj
G

is lower than that of ∆̂G whenever the adjustment is appropriately “relevant," in the sense

that κ2 ̸= 0.

Remark 2.6.1. In order to guarantee that ς2 ≤ ν2 in Theorem 2.6.1, it was crucial to assume

that Ng is contained in the set of matching variables. If instead clusters are only matched

according to Xg as in Section 2.3.1, then under suitable modifications of Assumptions 2.6.1
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and 2.6.2 it can be shown that the limiting variance of ∆̂adj
G is given by

E[Var[Y ∗
g (1)|Xg]] + E[Var[Y ∗

g (0)|Xg]] +
1

2
E[(E[Y ∗

g (1)− Y ∗
g (0)|Xg]−∆)2] ,

where in this case Y ∗
g (d) = Ỹg(d)−

(ψg−E[ψg])
′β∗

E[Ng]
, with

β∗ = (2E[Var[ψg|Xg]])−1E[Cov[ψg, Ȳg(1)Ng + Ȳg(0)Ng|Xg]] .

Note that this expression mirrors the expression for ς2 but removes the conditioning on

Ng throughout. It can then be shown that the decomposition obtained in (2.12) no longer

applies, and in general the covariate-adjusted estimator is no longer guaranteed to have a

smaller limiting variance than the unadjusted estimator ∆̂G. We illustrate this point via

simulation in Section 2.7.2.

Remark 2.6.2. Although the estimator in (2.10) is closely related to the class of covariate-

adjusted estimators in Bai et al. (2023a), a direct application of the results therein is pro-

hibited because the two denominators in (2.10) are the average cluster sizes of treated and

untreated clusters and are therefore random. As a result, unlike in Bai et al. (2023a), the

demeaning of ψ in (2.10) is crucial for the results in Theorem 2.6.1 to hold. In particular,

some remainder terms in the proof of Theorem 2.6.1 are no longer oP (1) without the de-

meaning. Moreover, unlike for individual-level experiments, ∆̂adj
G cannot be interpreted as

the intercept of a linear regression as in Bai et al. (2023a).

For variance estimation, define

Y̊g =
1

1
2G

∑
1≤j≤2GNj

(
NgȲg −Ng

1
G

∑
1≤j≤2G ȲjI{Dj = Dg}Nj

1
G

∑
1≤j≤2G I{Dj = Dg}Nj

− ψ′gβ̂G

)
.
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We then propose the following variance estimator:

ς̊2G = τ̊2G − 1

2
λ̊2G , (2.13)

where

τ̊2G =
1

G

∑
1≤j≤G

(
Y̊π(2j) − Y̊π(2j−1)

)2
λ̊2G =

2

G

∑
1≤j≤⌊G/2⌋

(
Y̊π(4j−3) − Y̊π(4j−2)

)(
Y̊π(4j−1) − Y̊π(4j)

)
× (Dπ(4j−3) −Dπ(4j−2))(Dπ(4j−1) −Dπ(4j)) .

The following theorem establishes the consistency of the variance estimator:

Theorem 2.6.2. Under Assumptions 2.3.5, 2.3.6, 2.4.2, 2.6.1, and 2.6.2,

ς̊2G
P→ ς2 .

2.7 Simulations

2.7.1 Unadjusted Estimation

In this section, we examine the finite-sample behavior of the estimation and inference pro-

cedures considered in Sections 2.3-2.5. We further compare these procedures to tests and

confidence intervals constructed using the standard cluster-robust variance estimator (CR)

and the pair cluster variance estimator (PCVE) proposed in de Chaisemartin and Ramirez-

Cuellar (2019). For d ∈ {0, 1}, 1 ≤ g ≤ 2G, the potential outcomes are generated according

to the equation

Yi,g(d) = µd(Xg, X
(N)
g ) + 2ϵd,i,g .
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Where, in each specification, (Xg, X
(N)
g ), g = 1, . . . , 2G are i.i.d. withXg, X

(N)
g ∼ Beta(2, 4),

and (ϵ0,i,g, ϵ1,i,g), g = 1, . . . , 2G, i = 1, . . . , Ng are i.i.d. with ϵ0,i,g, ϵ1,i,g ∼ N(0, 1) indepen-

dently. We consider the following two specifications for µd:

Model 1: µ1(Xg, X
(N)
g ) = µ0(Xg, X

(N)
g ) = 10(Xg − 1/3) + 6(X

(N)
g − 1/3) + 2 .

Model 2: µ1(Xg, X
(N)
g ) = 10(X2

g − 1/7) + 6(X
(N)
g − 1/3) + 2 and µ0(Xg, X

(N)
g ) = 0 .

Note that Model 1 satisfies the homogeneity condition in (2.7) whereas Model 2 does

not. In both cases, Ng, g = 1, . . . , 2G are i.i.d. with Ng ∼ Binomial(R,X
(N)
g ) + (500−R),

where R determines the difference in maximum and minimum cluster sizes. In particular

R satisfies the property that Ng ∈ [Nmin, Nmax] with Nmax − Nmin = R and we consider

R ∈ {49, 149, 249, 349, 449} with Nmax = 500 fixed. For each model and distribution of

cluster sizes, we consider two alternative pair-matching procedures. First, we consider a

design which matches clusters using Xg only. To construct these pairs, we sort the clusters

according to Xg and pair adjacent clusters. Next, we consider a design which matches

clusters using both Xg and Ng. To construct these pairs, we match the clusters according to

their Mahalanobis distance using the non-bipartite matching algorithm from the R package

nbpMatching.

Tables 2.1–2.4 report the coverage and average length of 95% confidence intervals con-

structed using our variance estimator as well as the CR and PCVE estimators. For Model

1 in Table 2.1, we find that, in accordance with Theorems 3.4.2–2.4.3, the CR variance esti-

mator is extremely conservative, whereas our proposed variance estimator (denoted v̂2G) and

the PCVE variance estimator have exact coverage asymptotically. This feature translates

to significantly smaller confidence intervals: on average the confidence intervals constructed

using v̂2G or PCVE are almost half the length of those constructed using CR when G ≥ 50.

However, the confidence intervals constructed using v̂2G or PCVE undercover when G < 50.

We find similar results when matching on both Xg and Ng in Table 2.2. Comparing across
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Tables 2.1 and 2.2 we find that, in line with the discussions following Theorems 2.3.1 and

2.3.2, matching on Ng in addition to Xg results in a large reduction in the average length of

confidence intervals constructed using v̂2G (or PCVE), but no change in the average length

of confidence intervals constructed using CR.

Moving to Model 2 in Tables 2.3 and 2.4, here we find that confidence intervals con-

structed using CR continue to be conservative, but now the confidence intervals constructed

using PCVE are also conservative, and numerically very similar to those constructed using

CR. In contrast, the confidence intervals constructed using v̂2G remain exact asymptotically.

Once again this translates to smaller confidence intervals for v̂2G: on average the confidence

intervals constructed using v̂2G are approximately 25% smaller than those constructed using

CR or PCVE when G ≥ 50. However, once again we find that the confidence intervals

constructed using v̂2G can undercover when G < 50, with the size of the distortion growing

as a function of the cluster size heterogeneity.

Next, to further address the small-sample coverage distortions observed in Tables 2.1-2.4,

we study the size and power of 0.05-level hypothesis tests conducted using our proposed ran-

domization test, as well as standard t-tests constructed using the CR and PCVE estimators,

in Tables 2.5–2.6 below.2 In Table 2.5 we find that tests based on the CR variance estimator

are extremely conservative, and this translates to having essentially no power against our

chosen alternative. Tests based on the PCVE estimator produce non-trivial power, but also

size-distortions in small samples. In contrast, since Model 1 satisfies the null hypothesis

considered in (2.8), our randomization test is valid in finite samples by construction, and

displays comparable power to the PCVE-based test even when the latter does not control

size. When moving to Model 2 in Table 2.6 we are only guaranteed that the randomization

test is asymptotically valid, but we find that the test is still able to control size in small

2. Here we move to studying the properties of hypothesis tests instead of confidence intervals to avoid
having to perform test-inversion for our randomization test, but we expect that similar results would continue
to hold for confidence intervals as well.
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samples as long as cluster-size heterogeneity is not too large. Importantly, in such cases,

both the CR and PCVE-based tests also fail to control size. Finally, the randomization test

displays favorable power relative to both the CR and PCVE-based tests throughout Table

2.6 except for some cases when G = 12.

2.7.2 Covariate-Adjusted Estimation

In this section, we examine the finite-sample behavior of the covariate-adjusted estimator

considered in Section 2.6. In particular, we contrast the efficiency properties of ∆̂adj
G when

matching versus not matching on cluster size. We consider the following modification of

Model 2:

Model Adj.: µ1(Xg, X
(N)
g ) = 10(X2

g − 1/7) + 6(X
(N)
g − 1/3) + 25 and µ0(Xg, X

(N)
g ) = 0 .

In addition, we introduce a new matching variable Hg, g = 1, . . . , 2G, i.i.d. with Hg ∼ U [0, 1]

generated independently of all other variables, and modify the distribution of Ng so that

Ng ∼ Binomial(R, 1−X
(N)
g ) + (500−R).

Table 2.7 reports the coverage and average length of 95% confidence intervals constructed

using our variance estimators when matching using both Hg and Ng, for ∆̂G versus ∆̂
adj
G

with ψg = (Xg, X
(N)
g ). In accordance with Theorem 2.6.1, we find that for moderate to

large samples (G ≥ 50), covariate adjustment leads to smaller average CI lengths even as

we increase the amount of cluster size heterogeneity. In contrast, Table 2.8 reports the cov-

erage and average lengths of 95% confidence intervals (CIs) constructed using our variance

estimators when matching using only Hg, for ∆̂G versus ∆̂
adj
G with ψg = (Xg, X

(N)
g ). In

general, we find that when cluster-size heterogeneity is low, covariate adjustment leads to

smaller average CI lengths. However, as the amount of heterogeneity increases, the aver-

age CI length for the adjusted estimator rapidly overtakes the length for the unadjusted

estimator. We emphasize that this does not seem to be a small-sample issue: even with
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G = 250, the average CI length for the adjusted estimator is over two times larger than for

the unadjusted estimator in the most extreme case.

2.8 Recommendations for Empirical Practice

Based on our theoretical results as well as the simulation study above, we conclude with

some recommendations for practitioners when conducting inference about the size-weighted

ATE in our super-population framework. Our recommendations below depend on whether

the number of clusters is moderately large (e.g., at least 50 pairs) or small (e.g., less than

50 pairs).

If the number of clusters is moderately large, then our recommendation is that prac-

titioners should employ either the covariate-adjusted tests based on the covariate-adjusted

estimator ∆̂
adj
G defined in Section 2.6 paired with its corresponding variance estimator ς̊2G

and a normal critical value or the unadjusted tests based on the unadjusted estimator ∆̂G

introduced in Section 2.2 paired with its corresponding variance estimator v̂2G and a nor-

mal critical value. Whenever cluster size is used in determining the pairs, our results show

that covariate-adjusted tests are more powerful in large samples than unadjusted tests; in

practice, this feature continues to hold even when cluster size was not used in determining

the pairs, provided that cluster-size heterogeneity is not too great (i.e., in our simulations,

a ratio of largest to smallest cluster size of less than 2). Outside of these circumstances, we

recommend that practitioners employ the unadjusted tests.

If, on the other hand, the number of clusters is small, then we recommend instead that

practitioners use the randomization test based on the un-adjusted estimator ∆̂G paired with

its corresponding variance estimator v̂2G outlined in Section 2.5. In our simulations, this test

controlled size more reliably than any of the other inference procedures we considered in the

paper, while delivering comparable power. Note that by modifying the test as in Remark

2.5.3, the test could also be inverted to construct confidence intervals if desired.
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Table 2.1: Model 1 - Matching on Xg*

Nmax/Nmin G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11
v̂2G 0.9185 0.9290 0.9420 0.9465 0.9375 0.9460 0.9515
CR 0.9985 0.9990 0.9995 1 1 1 1

PCVE 0.9230 0.9310 0.9385 0.9405 0.9395 0.9480 0.9520

1.42
v̂2G 0.9005 0.9345 0.9345 0.9480 0.9490 0.9545 0.9615
CR 0.9980 0.9995 0.9985 0.9995 0.9995 1 1

PCVE 0.9035 0.9380 0.9375 0.9490 0.9495 0.9550 0.9595

1.99
v̂2G 0.9130 0.9330 0.9380 0.9385 0.9490 0.9455 0.9365
CR 0.9985 0.9985 1 1 1 1 0.9995

PCVE 0.9095 0.9230 0.9420 0.9420 0.9495 0.9460 0.9350

3.31
v̂2G 0.9065 0.9180 0.9340 0.9415 0.9470 0.9450 0.9520
CR 0.9950 0.9980 0.9980 0.9985 1 0.9985 0.9995

PCVE 0.8980 0.9155 0.9330 0.9380 0.9465 0.9470 0.9500

9.80
v̂2G 0.9035 0.9230 0.9420 0.9340 0.9440 0.9415 0.9495
CR 0.9925 0.9940 0.9970 0.9985 0.9975 0.9995 0.9990

PCVE 0.8925 0.9100 0.9365 0.9330 0.9425 0.9385 0.9475

Average Length

1.11
v̂2G 1.72150 1.16078 0.84582 0.59830 0.48784 0.42466 0.37936
CR 3.20593 2.21689 1.61886 1.15015 0.94053 0.81591 0.73010

PCVE 1.69494 1.15171 0.84119 0.59746 0.48744 0.42415 0.37895

1.42
v̂2G 1.75019 1.18859 0.86476 0.61378 0.50112 0.43567 0.38917
CR 3.21821 2.22957 1.62982 1.15829 0.94732 0.82180 0.73543

PCVE 1.72075 1.17840 0.86140 0.61286 0.50024 0.43527 0.38897

1.99
v̂2G 1.80502 1.23175 0.89937 0.63958 0.52250 0.45322 0.40566
CR 3.24165 2.25077 1.64811 1.17207 0.95862 0.83166 0.74408

PCVE 1.77287 1.21936 0.89602 0.63843 0.52133 0.45352 0.40524

3.31
v̂2G 1.90111 1.30589 0.96060 0.68446 0.55910 0.48664 0.43505
CR 3.27892 2.28895 1.68064 1.19654 0.97928 0.84959 0.76030

PCVE 1.85679 1.29128 0.95566 0.68299 0.55824 0.48568 0.43437

9.80
v̂2G 2.09510 1.45719 1.08057 0.77340 0.63320 0.55071 0.49226
CR 3.35580 2.36729 1.75068 1.24963 1.02275 0.88759 0.79443

PCVE 2.03228 1.43576 1.07565 0.77259 0.63171 0.54976 0.49203

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for
each G is 2000. Nmax = 500.
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Table 2.2: Model 1 - Matching on Xg and Ng*

Nmax/Nmin G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11
v̂2G 0.9105 0.9285 0.9345 0.9430 0.9470 0.9495 0.9565
CR 1 1 1 1 1 1 1

PCVE 0.9100 0.9260 0.9360 0.9460 0.9460 0.9480 0.9555

1.42
v̂2G 0.9210 0.9410 0.9400 0.9510 0.9490 0.9300 0.9445
CR 1 1 1 1 1 1 1

PCVE 0.9215 0.9405 0.9425 0.9555 0.9465 0.9325 0.9425

1.99
v̂2G 0.9170 0.9460 0.9420 0.9505 0.9485 0.9495 0.9570
CR 1 1 1 1 1 1 1

PCVE 0.9110 0.9440 0.9395 0.9520 0.9490 0.9510 0.9555

3.31
v̂2G 0.9220 0.9280 0.9295 0.9430 0.9440 0.9480 0.9390
CR 1 1 1 1 1 1 1

PCVE 0.9150 0.9290 0.9325 0.9470 0.9435 0.9510 0.9405

9.80
v̂2G 0.9015 0.9260 0.9320 0.9505 0.9485 0.9405 0.9435
CR 1 1 1 1 1 1 1

PCVE 0.8860 0.9225 0.9380 0.9495 0.9485 0.9420 0.9475

Average Length

1.11
v̂2G 1.20496 0.64428 0.39514 0.24765 0.19157 0.16045 0.14069
CR 3.21594 2.22170 1.62079 1.15081 0.94092 0.81621 0.73031

PCVE 1.18192 0.63873 0.39376 0.24689 0.19111 0.16028 0.14062

1.42
v̂2G 1.16805 0.58866 0.34117 0.19821 0.14670 0.12020 0.10335
CR 3.23229 2.23499 1.63182 1.15901 0.94776 0.82214 0.73561

PCVE 1.14574 0.58388 0.34065 0.19783 0.14622 0.12000 0.10327

1.99
v̂2G 1.18988 0.60685 0.34699 0.19474 0.14244 0.11466 0.09729
CR 3.25786 2.25761 1.65083 1.17312 0.95917 0.83201 0.74440

PCVE 1.16373 0.59889 0.34582 0.19426 0.14229 0.11456 0.09728

3.31
v̂2G 1.27089 0.64963 0.37337 0.20857 0.15167 0.12110 0.10157
CR 3.29929 2.29885 1.68464 1.19841 0.98016 0.85013 0.76067

PCVE 1.23316 0.64188 0.37129 0.20767 0.15108 0.12084 0.10134

9.80
v̂2G 1.41981 0.75053 0.43329 0.24285 0.17464 0.13851 0.11558
CR 3.38816 2.38329 1.75642 1.25248 1.02442 0.88868 0.79508

PCVE 1.36449 0.73612 0.42992 0.24197 0.17401 0.13826 0.11549

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for
each G is 2000. Nmax = 500.
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Table 2.3: Model 2 - Matching on Xg*

Nmax/Nmin G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11
v̂2G 0.9260 0.9375 0.9420 0.9420 0.9460 0.9465 0.9510
CR 0.9570 0.9635 0.9755 0.9790 0.9825 0.9835 0.9800

PCVE 0.9560 0.9645 0.9750 0.9785 0.9825 0.9835 0.9805

1.42
v̂2G 0.9280 0.9395 0.9455 0.9405 0.9490 0.9495 0.9490
CR 0.9525 0.9705 0.9705 0.9715 0.9795 0.9860 0.9820

PCVE 0.9535 0.9710 0.9705 0.9735 0.9795 0.9860 0.9820

1.99
v̂2G 0.9180 0.9325 0.9385 0.9455 0.9480 0.9420 0.9465
CR 0.9415 0.9595 0.9680 0.9765 0.9770 0.9805 0.9800

PCVE 0.9415 0.9605 0.9675 0.9770 0.9780 0.9800 0.9805

3.31
v̂2G 0.8965 0.9290 0.9390 0.9480 0.9440 0.9400 0.9495
CR 0.9325 0.9615 0.9700 0.9750 0.9775 0.9750 0.9765

PCVE 0.9315 0.9615 0.9685 0.9755 0.9780 0.9745 0.9770

9.80
v̂2G 0.8850 0.9085 0.9295 0.9380 0.9360 0.9375 0.9445
CR 0.9155 0.9460 0.9640 0.9660 0.9660 0.9685 0.9755

PCVE 0.9175 0.9450 0.9635 0.9660 0.9665 0.9680 0.9755

Average Length

1.11
v̂2G 1.64579 1.11414 0.80852 0.57317 0.46677 0.40525 0.36269
CR 1.88285 1.31397 0.96438 0.68747 0.56044 0.48713 0.43634

PCVE 1.88367 1.31373 0.96432 0.68752 0.56044 0.48718 0.43636

1.42
v̂2G 1.67055 1.13171 0.81934 0.58015 0.47436 0.41154 0.36739
CR 1.90602 1.32885 0.97303 0.69262 0.56755 0.49258 0.44032

PCVE 1.90579 1.32897 0.97283 0.69257 0.56751 0.49262 0.44026

1.99
v̂2G 1.67377 1.14094 0.83413 0.59068 0.48377 0.41909 0.37493
CR 1.90337 1.33455 0.98635 0.70162 0.57506 0.49879 0.44584

PCVE 1.90395 1.33471 0.98606 0.70146 0.57506 0.49874 0.44586

3.31
v̂2G 1.69386 1.16940 0.85636 0.61062 0.49954 0.43424 0.38770
CR 1.91395 1.35515 1.00133 0.71846 0.58755 0.51145 0.45702

PCVE 1.91241 1.35461 1.00137 0.71861 0.58755 0.51149 0.45699

9.80
v̂2G 1.74999 1.23124 0.90607 0.64424 0.52971 0.45990 0.41091
CR 1.95803 1.40591 1.04446 0.74668 0.61421 0.53318 0.47665

PCVE 1.95767 1.40633 1.04420 0.74671 0.61422 0.53315 0.47665

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for
each G is 2000. Nmax = 500.
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Table 2.4: Model 2 - Matching on Xg and Ng*

Nmax/Nmin G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage

1.11
v̂2G 0.9420 0.9480 0.9545 0.9495 0.9455 0.9530 0.9530
CR 0.9670 0.9845 0.9875 0.9900 0.9915 0.9950 0.9935

PCVE 0.9680 0.9850 0.9865 0.9900 0.9910 0.9950 0.9935

1.42
v̂2G 0.9315 0.9475 0.9515 0.9530 0.9515 0.9580 0.9510
CR 0.9665 0.9850 0.9850 0.9895 0.9915 0.9955 0.9955

PCVE 0.9660 0.9850 0.9845 0.9900 0.9915 0.9960 0.9955

1.99
v̂2G 0.9270 0.9430 0.9510 0.9520 0.9480 0.9575 0.9520
CR 0.9650 0.9825 0.9885 0.9905 0.9930 0.9970 0.9945

PCVE 0.9670 0.9815 0.9880 0.9900 0.9930 0.9970 0.9945

3.31
v̂2G 0.9160 0.9365 0.9525 0.9480 0.9510 0.9525 0.9485
CR 0.9580 0.9795 0.9890 0.9885 0.9930 0.9955 0.9940

PCVE 0.9580 0.9800 0.9890 0.9890 0.9930 0.9955 0.9940

9.80
v̂2G 0.9065 0.9330 0.9430 0.9510 0.9515 0.9495 0.9510
CR 0.9410 0.9765 0.9845 0.9890 0.9880 0.9955 0.9915

PCVE 0.9430 0.9755 0.9830 0.9890 0.9875 0.9955 0.9915

Average Length

1.11
v̂2G 1.57502 1.02869 0.73036 0.51031 0.41388 0.35765 0.31902
CR 1.89796 1.31976 0.96665 0.68810 0.56233 0.48793 0.43636

PCVE 1.89800 1.31982 0.96657 0.68813 0.56236 0.48790 0.43634

1.42
v̂2G 1.58361 1.03237 0.73193 0.50975 0.41335 0.35758 0.31856
CR 1.91602 1.33100 0.97594 0.69418 0.56753 0.49302 0.44052

PCVE 1.91549 1.33128 0.97597 0.69423 0.56756 0.49301 0.44049

1.99
v̂2G 1.61080 1.04567 0.74313 0.51722 0.41903 0.36217 0.32297
CR 1.93406 1.34395 0.98875 0.70392 0.57534 0.49967 0.44684

PCVE 1.93403 1.34409 0.98881 0.70388 0.57529 0.49964 0.44680

3.31
v̂2G 1.63660 1.07550 0.76774 0.53170 0.43114 0.37227 0.33175
CR 1.94629 1.37114 1.01341 0.72038 0.58976 0.51183 0.45771

PCVE 1.94802 1.37098 1.01337 0.72047 0.58984 0.51198 0.45771

9.80
v̂2G 1.70687 1.13039 0.80947 0.55966 0.45337 0.39151 0.34801
CR 1.98400 1.41410 1.05392 0.75111 0.61528 0.53484 0.47768

PCVE 1.98403 1.41488 1.05356 0.75103 0.61532 0.53482 0.47769

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for
each G is 2000. Nmax = 500.
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Table 2.5: Model 1 - Randomization Test (RT) vs. CR/PCVE *

Size under H0 Power under H1 : ∆0 + 1/4
Nmax/Nmin G = 12 G = 26 G = 50 G = 12 G = 26 G = 50

Matching on Xg

1.11
RT 0.0395 0.0560 0.0505 0.0755 0.1220 0.2030
CR 0.0015 0.0010 0.0005 0.0095 0.0105 0.0160

PCVE 0.0770 0.0690 0.0615 0.1195 0.1410 0.1995

1.42
RT 0.0610 0.0445 0.0540 0.0935 0.1055 0.1970
CR 0.0020 0.0005 0.0015 0.0105 0.0105 0.0210

PCVE 0.0965 0.0620 0.0625 0.1365 0.1220 0.1955

1.99
RT 0.0505 0.0505 0.0505 0.0770 0.1130 0.1820
CR 0.0015 0.0015 0 0.0130 0.0100 0.0195

PCVE 0.0905 0.0770 0.0580 0.1195 0.1260 0.1825

3.31
RT 0.0570 0.0595 0.0555 0.0745 0.1130 0.1670
CR 0.0050 0.0020 0.0020 0.0145 0.0190 0.0270

PCVE 0.1020 0.0845 0.0670 0.1220 0.1340 0.1760

9.80
RT 0.0455 0.0500 0.0475 0.0715 0.1105 0.1410
CR 0.0075 0.0060 0.0030 0.0280 0.0230 0.0305

PCVE 0.1075 0.0900 0.0635 0.1335 0.1380 0.1605

Matching on Xg and Ng

1.11
RT 0.0490 0.0535 0.0585 0.1165 0.3050 0.6760
CR 0 0 0 0 0 0

PCVE 0.0900 0.0740 0.0640 0.1540 0.2395 0.5015

1.42
RT 0.0440 0.0475 0.0480 0.1290 0.3595 0.7820
CR 0 0 0 0 0 0

PCVE 0.0785 0.0595 0.0575 0.1635 0.2810 0.5705

1.99
RT 0.0510 0.0400 0.0480 0.1255 0.3380 0.7795
CR 0 0 0 0 0 0

PCVE 0.0890 0.0560 0.0605 0.1580 0.2630 0.5785

3.31
RT 0.0440 0.0500 0.0555 0.1185 0.3370 0.7075
CR 0 0 0 0 0 0

PCVE 0.0850 0.0710 0.0675 0.1590 0.2825 0.5220

9.80
RT 0.0525 0.0550 0.0500 0.1180 0.2780 0.5965
CR 0 0 0 0.0005 0 0

PCVE 0.1140 0.0775 0.0620 0.1750 0.2540 0.4625

* Number of clusters= 2G with G = 12, 26, 50. Number of replications for each
G is 2000. Nmax = 500.
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Table 2.6: Model 2 - Randomization Test (RT) vs. CR/PCVE*

Size under H0 Power under H1 : ∆0 + 1/4
Nmax/Nmin G = 12 G = 26 G = 50 G = 12 G = 26 G = 50

Matching on Xg

1.11
RT 0.0345 0.0425 0.0480 0.0305 0.0790 0.1650
CR 0.0430 0.0365 0.0245 0.0540 0.0645 0.1120

PCVE 0.0440 0.0355 0.0250 0.0550 0.0655 0.1115

1.42
RT 0.0370 0.0365 0.0445 0.0370 0.0675 0.1685
CR 0.0475 0.0295 0.0295 0.0575 0.0560 0.1125

PCVE 0.0465 0.0290 0.0295 0.0560 0.0540 0.1145

1.99
RT 0.0465 0.0445 0.0490 0.0385 0.0785 0.1485
CR 0.0585 0.0405 0.0320 0.0620 0.0675 0.1005

PCVE 0.0585 0.0395 0.0325 0.0615 0.0675 0.1005

3.31
RT 0.0565 0.0495 0.0520 0.0390 0.0660 0.1360
CR 0.0675 0.0385 0.0300 0.0610 0.0620 0.1010

PCVE 0.0685 0.0385 0.0315 0.0595 0.0625 0.1025

9.80
RT 0.0700 0.0660 0.0600 0.0405 0.0550 0.1140
CR 0.0845 0.0540 0.0360 0.0585 0.0600 0.0895

PCVE 0.0825 0.0550 0.0365 0.0595 0.0580 0.0895

Matching on Xg and Ng

1.11
RT 0.0250 0.0310 0.0370 0.0195 0.0735 0.1800
CR 0.0330 0.0155 0.0125 0.0240 0.0365 0.0765

PCVE 0.0320 0.0150 0.0135 0.0235 0.0360 0.0790

1.42
RT 0.0295 0.0290 0.0345 0.0205 0.0730 0.1740
CR 0.0335 0.0150 0.0150 0.0245 0.0385 0.0640

PCVE 0.0340 0.0150 0.0155 0.0250 0.0365 0.0675

1.99
RT 0.0345 0.0325 0.0415 0.0200 0.0665 0.1655
CR 0.0350 0.0175 0.0115 0.0225 0.0310 0.0600

PCVE 0.0330 0.0185 0.0120 0.0230 0.0320 0.0610

3.31
RT 0.0390 0.0390 0.0340 0.0150 0.0590 0.1415
CR 0.0420 0.0205 0.0110 0.0220 0.0295 0.0610

PCVE 0.0420 0.0200 0.0110 0.0210 0.0310 0.0595

9.80
RT 0.0555 0.0445 0.0415 0.0260 0.0405 0.1180
CR 0.0590 0.0235 0.0155 0.0295 0.0270 0.0505

PCVE 0.0570 0.0245 0.0170 0.0295 0.0265 0.0510

* Number of clusters= 2G with G = 12, 26, 50. Number of replications for each
G is 2000. Nmax = 500.
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Table 2.7: Covariate Adjustment - Matching on Hg and Ng*

Nmax/Nmin ψg G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage
1.11 - 0.9120 0.9275 0.9475 0.9395 0.9425 0.9510 0.9425

(Xg, X
(N)
g ) 0.8625 0.8970 0.9360 0.9405 0.9440 0.9495 0.9495

1.42 - 0.9135 0.9245 0.9415 0.9445 0.9495 0.9425 0.9425

(Xg, X
(N)
g ) 0.8990 0.9195 0.9375 0.9515 0.9470 0.9515 0.9455

1.99 - 0.9085 0.9250 0.9420 0.9470 0.9455 0.9545 0.9520

(Xg, X
(N)
g ) 0.9175 0.9355 0.9500 0.9520 0.9505 0.9505 0.9470

3.31 - 0.9090 0.9265 0.9340 0.9515 0.9465 0.9465 0.9535

(Xg, X
(N)
g ) 0.9335 0.9365 0.9480 0.9515 0.9510 0.9525 0.9550

9.80 - 0.9070 0.9245 0.9330 0.9375 0.9510 0.9455 0.9440

(Xg, X
(N)
g ) 0.9325 0.9340 0.9475 0.9470 0.9575 0.9500 0.9555

Average Length
1.11 - 1.77556 1.21499 0.88201 0.62584 0.51123 0.44346 0.39699

(Xg, X
(N)
g ) 1.30671 0.93116 0.68816 0.49242 0.40372 0.35104 0.31400

1.42 - 1.74117 1.20501 0.87067 0.62002 0.50712 0.43888 0.39274

(Xg, X
(N)
g ) 1.46021 0.96656 0.69879 0.49479 0.40412 0.35025 0.31292

1.99 - 1.72916 1.19588 0.86887 0.61669 0.50509 0.43677 0.39112

(Xg, X
(N)
g ) 1.81983 1.09008 0.74580 0.50919 0.41110 0.35398 0.31603

3.31 - 1.71004 1.19463 0.86708 0.61577 0.50301 0.43573 0.39127

(Xg, X
(N)
g ) 2.36813 1.30774 0.83203 0.54137 0.42815 0.36460 0.32354

9.80 - 1.72505 1.19952 0.86484 0.61768 0.50429 0.43672 0.39197

(Xg, X
(N)
g ) 3.06889 1.60986 0.97620 0.59917 0.46025 0.38545 0.33953

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Nmax = 500.
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Table 2.8: Covariate Adjustment - Matching on Hg*

Nmax/Nmin ψg G = 12 G = 26 G = 50 G = 100 G = 150 G = 200 G = 250

Coverage
1.11 - 0.9015 0.9235 0.9435 0.9395 0.9365 0.9445 0.9485

(Xg, X
(N)
g ) 0.8485 0.9060 0.9275 0.9425 0.9420 0.9510 0.9430

1.42 - 0.9070 0.9315 0.9365 0.9405 0.9455 0.9490 0.9525

(Xg, X
(N)
g ) 0.9005 0.9230 0.9465 0.9510 0.9430 0.9475 0.9520

1.99 - 0.9050 0.9310 0.9450 0.9450 0.9480 0.9530 0.9465

(Xg, X
(N)
g ) 0.9190 0.9395 0.9485 0.9470 0.9520 0.9495 0.9515

3.31 - 0.9100 0.9340 0.9410 0.9535 0.9520 0.9490 0.9485

(Xg, X
(N)
g ) 0.9155 0.9325 0.9475 0.9485 0.9435 0.9535 0.9510

9.80 - 0.8975 0.9305 0.9410 0.9435 0.9420 0.9430 0.9545

(Xg, X
(N)
g ) 0.9190 0.9440 0.9345 0.9455 0.9405 0.9490 0.9410

Average Length
1.11 - 1.86744 1.31289 0.95830 0.68388 0.55761 0.48368 0.43289

(Xg, X
(N)
g ) 1.30222 0.94977 0.70427 0.50804 0.41405 0.36055 0.32280

1.42 - 1.86822 1.30105 0.95121 0.67677 0.55462 0.48111 0.43046

(Xg, X
(N)
g ) 1.76667 1.22571 0.89458 0.63665 0.52213 0.45247 0.40482

1.99 - 1.85639 1.29289 0.94626 0.67421 0.55160 0.47822 0.42849

(Xg, X
(N)
g ) 2.54781 1.72304 1.25092 0.87988 0.72210 0.62598 0.55911

3.31 - 1.83716 1.29155 0.94173 0.67099 0.54871 0.47588 0.42645

(Xg, X
(N)
g ) 3.56010 2.39697 1.73381 1.22024 0.99619 0.86635 0.77370

9.80 - 1.83555 1.28894 0.93697 0.66756 0.54602 0.47402 0.42411

(Xg, X
(N)
g ) 4.86067 3.24720 2.34399 1.64604 1.34678 1.16835 1.04106

* Number of clusters= 2G with G = 12, 26, 50, 100, 150, 200, 250. Number of replications for each
G is 2000. Nmax = 500.
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CHAPTER 3

INFERENCE FOR TWO-STAGE EXPERIMENTS UNDER

COVARIATE-ADAPTIVE RANDOMIZATION

3.1 Introduction

This paper considers the problem of inference in two-stage randomized experiments un-

der covariate-adaptive randomization. Here, a two-stage randomized experiment refers to

a design where clusters (e.g., households, schools, or graph partitions) are initially ran-

domly assigned to either a control or treatment group. Subsequently, random assignment

of units within each treated cluster to either treatment or control is carried out based on a

pre-determined treated fraction. Covariate-adaptive randomization refers to randomization

schemes that first stratify according to baseline covariates and then assign treatment sta-

tus so as to achieve “balance” within each stratum. Two-stage randomized experiments are

widely used in social science (see for example Duflo and Saez (2003); Haushofer and Shapiro

(2016); McKenzie and Puerto (2021)), and discussed by statisticians (see for example Hud-

gens and Halloran (2008)), as a general approach to causal inference with interference; that

is, when one individual’s treatment status affects outcomes of other individuals. Moreover,

practitioners often use covariate information to design more efficient two-stage experiments

(see for example Duflo and Saez, 2003; Beuermann et al., 2015; Ichino and Schündeln, 2012;

Aramburu et al., 2019; Hidrobo et al., 2016; Kinnan et al., 2020; Malani et al., 2021; Muralid-

haran and Sundararaman, 2015; Banerjee et al., 2021; Rogers and Feller, 2018). However, to

the best of my knowledge, there has not yet been any formal analysis on covariate-adaptive

randomization in two-stage randomized experiments. Accordingly, this paper establishes gen-

eral results about estimation and inference for two-stage designs under covariate-adaptive

randomization. Subsequently, I propose and examine the optimality of two-stage designs

with “matched tuples”, i.e. a generalized matched-pair design (see Bai (2022b) and Bai et al.
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(2022b)).

This paper first classifies experiments under covariate-adaptive randomization into two

categories: “large strata” and “small strata”, and then comes up with two different asymp-

totic regimes to study the large sample properties of such designs. In the “large strata” case,

clusters are divided into a fixed number of large strata according to baseline cluster-level

covariates. In each stratum, the number of clusters grows to infinity as the total number

of clusters grows to infinity. Conversely, in the case of “small strata”, clusters are divided

into small strata of fixed size, and thus the number of strata grows to infinity as the total

number of clusters grows to infinity. Such asymptotic regimes are also manifested in previous

works on covariate-adaptive experiments with individual-level assignments (see Bugni et al.

(2018a) for “large strata”, Bai et al. (2021b) for “small strata”, and Cytrynbaum (2023b) for

both). Adopting this classification enables the development of asymptotically-exact statisti-

cal inference methods for a wide range of covariate-adaptive designs found in the empirical

literature. Moreover, separating the two asymptotic regimes facilitates the design of variance

estimators suitable for each scenario.1

This paper then considers the asymptotic properties of a commonly recommended infer-

ence procedure based on a linear regression with cluster-robust standard errors. My findings

suggest that the corresponding t-test is generally valid but conservative. I also demon-

strate that in the first stage of cluster-level assignment, covariate information about clusters

is important for both designing efficient experiments and consistently estimating variances

under covariate-adaptive randomization. However, in the second stage of unit-level assign-

ment, while individual-level covariate information is useful for improving efficiency, it is not

required for the proposed inference method. Specifically, I show that consistent variance

estimators can be constructed using only the cluster-level covariates from the first stage

1. I acknowledge that the terms “cluste” and “stratum” are both used in the literature to describe groupings
of units, which can lead to confusion. Here, I define a cluster as a pre-determined group of units (e.g.,
households, schools, or graph partitions) and a stratum as a group of clusters that share similar baseline
cluster-level covariates.
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design, regardless of the use of individual-level covariates in the second stage.

Next, I apply the results to study optimal use of covariate information in two-stage de-

signs. Here, by “optimal”, I mean designs that achieve the minimum asymptotic variances

within the class of designs considered in the paper. For all estimands of interest, the designs

in the first and second stage affect the efficiency independently. Thus, I am able to iden-

tify optimal designs in the first and second stage separately and use them together as the

optimal two-stage design. My result shows that, at each stage, the asymptotically optimal

design is a “matched tuples” design where clusters or units are matched based on an index

function (similar to Bai (2022b)) that is specific to the given estimator. In a simulation

study, the results demonstrate that properly designed two-stage experiments utilizing the

optimality results outperform other designs. However, the efficiency gain achieved through

proper second-stage randomization is significantly lower compared to the first stage under

my simulation specifications.

Finally, this paper evaluates the proposed inference method against various regression-

based methods commonly used in empirical literature in a simulation study and empirical

application. The simulation study confirms the asymptotic exactness of the inference results

and highlights that statistical inference based on various ordinary least squares regressions

could either be too conservative or invalid. Specifically, my result verifies that the com-

monly used regression with cluster-robust standard errors is conservative, while the other

regression-based methods examined in the paper, such as regressions with strata fixed effects

or heteroskedasticity-robust standard errors, are generally invalid. In the empirical applica-

tion, I demonstrate the proposed inference method based on the experiment conducted in

Ichino and Schündeln (2012) and compare it with regression-based methods. The empirical

findings are consistent with the results of the simulation study.

The analysis of data from two-stage randomized experiments and experiments under

covariate-adaptive randomization has received considerable attention, but most work has

80



focused on only one of these two features at a time. Previous work on the analysis of two-

stage randomized experiments includes Liu and Hudgens (2014), Rigdon and Hudgens (2015),

Basse and Feller (2018), Basse et al. (2019), Vazquez-Bare (2022), Cruces et al. (2022), Imai

et al. (2021) and Jiang et al. (2022b). Recent work on the analysis of covariate-adaptive

experiments includes Bugni et al. (2018a), Cytrynbaum (2023b), Jiang et al. (2021), Jiang

et al. (2022a), Bai et al. (2021b), Bai (2022b), Bai et al. (2022b), Bai et al. (2022a) and Bai

et al. (2023b). In fact, both Basse and Feller (2018) and Imai et al. (2021) applied their

inference methods, which do not account for covariate information, to two-stage experiments

under covariate-adaptive randomization.2 My framework of analysis follows closely Bugni

et al. (2022b), in which they formalize cluster randomized experiments in a super population

framework.

This paper contributes to the methodology for a growing number of empirical papers

using two-stage experiments with covariate-adaptive randomization. For instance, Hidrobo

et al. (2016), Banerjee et al. (2021), Rogers and Feller (2018) and Foos and de Rooij (2017)

conducted two-stage randomized experiments that stratify clusters or units into a small

number of large strata according to their baseline covariates, typically known as stratification

design. Duflo and Saez (2003), Beuermann et al. (2015), Ichino and Schündeln (2012) and

Kinnan et al. (2020) conducted two-stage randomized experiments in which clusters or units

are matched into small strata according to their baseline covariates, commonly known as

matched pairs, matched triplets or matched tuples designs.

The rest of the paper is organized as follows. Section 3.2 describes the setup and notation.

Section 3.3 and 3.4 present the main results under the two asymptotic regimes. Section 3.5

discusses the optimality of matched tuples designs. Section 3.6 examines the finite sample

behavior of various experimental designs through simulations. Section 3.7 illustrates the

2. Basse and Feller (2018) analyzes the empirical application from Rogers and Feller (2018), whose design
involves stratification on school, grade, and prior-year absences. Imai et al. (2021) analyzes the empirical
application from Kinnan et al. (2020), whose design involves matching villages (clusters) and households into
small blocks.
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proposed inference methods in an empirical application based on the experiment conducted

in Ichino and Schündeln (2012). Finally, I conclude with recommendations for empirical

practice in Section 3.8.

3.2 Setup and Notation

Let Yi,g and Xi,g denote the observed outcome and individual baseline covariates of the

ith unit in the gth cluster, respectively. Denote by Zi,g the indicator for whether the ith

unit in the gth cluster is treated or not. Let Cg denote the observed baseline covariates

for the gth cluster, Ng denote the size of the gth cluster, Hg denote the target fraction

of units treated in the gth cluster, and G the number of observed clusters. In addition,

define Mg as the (possibly random) subset of {1, ..., Ng} corresponding to the observations

within the gth cluster that are sampled by the researcher. Let Mg = |Mg| denote the

number of units in set Mg. In other words, the researcher randomly assigns treatments to

all Ng units in the gth cluster but only observes or conducts analysis on a subset of units

sampled from the gth cluster (see for example Beuermann et al., 2015; Aramburu et al.,

2019; Haushofer and Shapiro, 2016; Haushofer et al., 2019; Hidrobo et al., 2016; Malani

et al., 2021; Muralidharan and Sundararaman, 2015; Banerjee et al., 2021). Denote by PG

the distribution of the observed data

V (G) :=
((
Yi,g, Xi,g, Zi,g : i ∈ Mg

)
, Hg, Cg, Ng : 1 ≤ g ≤ G

)
.

This paper considers a setup where units are partitioned into a large number of clusters. In

this context, the paper studies a two-stage randomized experiment with binary treatment in

both stages. In the first stage, a fraction of π1 clusters are randomly assigned to the treatment

group, while the remaining clusters are assigned to the control group with no treated units.

Then, conditional on the assignment in the first stage, a fraction of π2 individuals from

82



treated clusters are assigned to the treatment group, while the remaining units are assigned

to the control group. Such a binary design is widely used in empirical literature (see, e.g.,

Foos and de Rooij, 2017; Duflo and Saez, 2003; Ichino and Schündeln, 2012; Haushofer and

Shapiro, 2016; Haushofer et al., 2019). Moreover, while some experiments have multiple

treated fractions, researchers often analyze them as binary designs (see, e.g., Basse and

Feller, 2018; Imai et al., 2021; Beuermann et al., 2015).

3.2.1 Potential Outcomes and Interference

In this section, I provide assumptions on the interference structure that assume no in-

terference across clusters and exchangeable/homogeneous interference within clusters. Let

Yi,g(z, n) denote the potential outcome of the ith unit in the gth cluster, where n denotes

the cluster size and z denotes a realized vector of assignment for all units in all clusters, i.e.,

z = ((zi,g : 1 ≤ i ≤ n) : 1 ≤ g ≤ G), where zi,g ∈ {0, 1} denotes a realized assignment

for the ith unit in the gth cluster. Following previous work (see, for example, Hudgens and

Halloran, 2008; Basse and Feller, 2018; Basse et al., 2019; Forastiere et al., 2021; Imai et al.,

2021), I assume the following about potential outcomes.

Assumption 3.2.1 (Homogeneous partial interference).

Yi,g(z, n) = Yi,g(z
′, n) w.p.1 if zi,g = z′i,g and

∑
1≤j≤n

zj,g =
∑

1≤j≤n
z′j,g

for any 1 ≤ i ≤ n, 1 ≤ g ≤ G ,

where z and z′ are any realized vectors of assignment, and zi,g, z
′
i,g are the corresponding

individual treatment indicators for i-th unit in g-th cluster.

Under Assumption 3.2.1, potential outcomes can be simplified as Yi,g(z, n, n1) where n1
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denotes the number of treated units in the cluster. Following this notation, we define

Yi,g(z, h) :=
∑
n≥1

Yi,g(z, n, ⌊nh⌋)I{Ng = n}

to be the potential outcome under the individual treatment status z ∈ {0, 1} and the clus-

ter target treated fractions h ∈ H ⊆ [0, 1], where H is a pre-determined set of treated

fractions.3 As mentioned before, this paper considers binary treatments, i.e. H = {0, π2},

throughout the paper.4 Furthermore, the (observed) outcome and potential outcomes are

related to treatment assignment by the relationship Yi,g = Yi,g(Zi,g, Hg). Denote by QG the

distribution of

W (G) :=
(((

Yi,g(z, h) : z ∈ {0, 1}, h ∈ H
)
, Xi,g : 1 ≤ i ≤ Ng

)
,Mg, Cg, Ng : 1 ≤ g ≤ G

)
.

3.2.2 Distribution and Sampling Procedure

The distribution PG of observed data and its sampling procedure can be described in three

steps. First, {(Mg, Cg, Ng) : 1 ≤ g ≤ G} are i.i.d samples from a population distribution.

Second, potential outcomes and baseline individual covariates are sampled from a conditional

distribution RG(M(G), C(G), N (G)), which is defined as follows:

(((
Yi,g(z, h) : z ∈ {0, 1}, h ∈ H

)
, Xi,g : 1 ≤ i ≤ Ng

)
: 1 ≤ g ≤ G

)
| M(G), C(G), N (G) .

Finally, PG is jointly determined by the relationship Yi,g = Yi,g(Zi,g, Hg) together with the

assignment mechanism, which will be described in Section 3.3 and 3.4, and QG, which is

3. For example, when the cluster size is 3 and the target treated fraction is 0.5, there will be one treated
unit in the cluster. Other rounding approaches, like the ceiling function, to handle fractional numbers of
treated units can also be easily accommodated.

4. Extending the designs to accommodate multiple treatment fractions is technically straightforward.
Related work can be found in Bugni et al. (2019b).
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described in the first two steps. Note that I use A(G) to denote the vector (A1, . . . , AG) for

any random variable A. The following assumption states my requirements on QG using this

notation.

Assumption 3.2.2. The distribution QG is such that

(a) {(Mg, Cg, Ng) : 1 ≤ g ≤ G} is an i.i.d. sequence of random variables.

(b) For some family of distributions {R(m, c, n) : (m, c, n) ∈ supp(Mg, Cg, Ng)},

RG(M(G), C(G), N (G)) =
∏

1≤g≤G
R(Mg, Cg, Ng) ,

where R(Mg, Cg, Ng) denotes the distribution of

((
Yi,g(z, h) : z ∈ {0, 1}, h ∈ H

)
, Xi,g : 1 ≤ i ≤ Ng

)
conditional on {Mg, Cg, Ng}.

(c) P
{
|Mg| ≥ 2

}
= 1 and E[N2

g ] <∞.

(d) For some constant C < ∞, P
{
E[Y 2

i,g(z, h) | Ng, Cg] ≤ C for all 1 ≤ i ≤ Ng

}
= 1 for

all z ∈ {0, 1} and h ∈ H and 1 ≤ g ≤ G.

(e) Mg ⊥
((
Yi,g(z, h) : z ∈ {0, 1}, h ∈ H

)
: 1 ≤ i ≤ Ng

)
| Cg, Ng for all 1 ≤ g ≤ G.

(f) For all z ∈ {0, 1}, h ∈ H and 1 ≤ g ≤ G,

E

 1

Mg

∑
i∈Mg

Yi,g(z, h) | Ng

 = E

 1

Ng

∑
1≤i≤Ng

Yi,g(z, h) | Ng

w.p.1 .

The sampling procedure of a cluster randomized experiment used in this paper closely

follows that formalized by Bugni et al. (2022b) and Bai et al. (2022a). Assumption 3.2.2 is
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exactly the same as Assumption 2.2 in Bugni et al. (2022b), which formalizes the sampling

procedure of i.i.d. clusters (Assumptions 3.2.2 (a)-(b)) and imposes mild regularity condi-

tions (Assumptions 3.2.2 (c)-(d)). In addition, Assumption 3.2.2 (e) allows the second-stage

sampling process in a given cluster to depend on cluster-level covariates and cluster sizes

but rules out dependence on the potential outcomes within the cluster. Finally, Assumption

3.2.2 (f) is a high-level assumption that ensures the extrapolation from the observations that

are sampled to those that are not sampled.

3.2.3 Parameters of Interest and Estimators

In the context of the sampling framework described above, this paper considers four pa-

rameters of interest, including primary and spillover effects that are equally or (cluster)

size-weighted. For different choices of (possibly random) weights ωg, 1 ≤ g ≤ G satisfying

E[ωg] = 1, we define the average primary effects and spillover effects under general weights

as follows.

Definition 3.2.1. Define the weighted average primary effect under weight wg as follows:

θPω (QG) := E

ωg
 1

Ng

∑
1≤i≤Ng

Yi,g(1, π2)− Yi,g(0, 0)

 , (3.1)

and the average spillover effect as:

θSω(QG) := E

ωg
 1

Ng

∑
1≤i≤Ng

Yi,g(0, π2)− Yi,g(0, 0)

 . (3.2)

Denote by θP1 (QG) and θS1 (QG) the equally-weighted cluster-level average primary and

spillover effects with ωg = 1, and θP2 (QG) and θS2 (QG) the size-weighted cluster-level average

primary and spillover effects with ωg = Ng/E[Ng]. The choice of inferential target depends

on whether cluster size is meaningful for the parameter of interest. For example, household
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size may not be important when estimating the effect of an educational program on the

average income of households in a city, but if the experiment is clustered by neighborhood,

then the cluster size (i.e., the number of households in each neighborhood) may be mean-

ingful and should be taken into account in the analysis. The primary effects θP1 (QG) and

θP2 (QG) are the differences in the averaged potential outcomes of treated units from treated

clusters and control units from control clusters. In contrast, the spillover effects θS1 (QG) and

θS2 (QG) are the differences in the averaged potential outcomes of control units from treated

clusters and control units from control clusters. In many empirical settings, the estimation

and comparison of primary and spillover effects play a crucial role in addressing important

research questions (see for example Duflo and Saez, 2003).

In summary, the formulas for the four parameters of interest are listed in Table 3.1.

These estimands have been proposed and studied in previous literature (see, e.g., Hudgens

and Halloran, 2008; Basse and Feller, 2018; Toulis and Kao, 2013; Imai et al., 2021), but

mostly in a finite population framework. This paper adopts the terminology “primary” and

“spillover” effects from Basse and Feller (2018), which are respectively referred to as “total”

and “indirect” effects in Hudgens and Halloran (2008). Previous works on interference have

also studied other estimands, such as direct effects and overall effects (see, e.g., Hudgens

and Halloran, 2008; Imai et al., 2021; Hu et al., 2021), but I do not explore these estimands

further in this paper.

Parameter of interest Formula

Equally-weighted primary effect θP1 (QG) := E
[

1
Ng

∑
1≤i≤Ng

Yi,g(1, π2)− Yi,g(0, 0)
]

Equally-weighted spillover effect θS1 (QG) := E
[

1
Ng

∑
1≤i≤Ng

Yi,g(0, π2)− Yi,g(0, 0)
]

Size-weighted primary effect θP2 (QG) := E
[

1
E[Ng]

∑
1≤i≤Ng

Yi,g(1, π2)− Yi,g(0, 0)
]

Size-weighted spillover effect θS2 (QG) := E
[

1
E[Ng]

∑
1≤i≤Ng

Yi,g(0, π2)− Yi,g(0, 0)
]

Table 3.1: Parameters of interest
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For estimating the four parameters of interest, I propose the following estimators analo-

gous to the difference-in-“average of averages” estimator in Bugni et al. (2022b):

θ̂P1 =
1

G1

∑
1≤g≤G

I{Hg = π2}Ȳ 1
g − 1

G0

∑
1≤g≤G

I{Hg = 0}Ȳ 1
g

θ̂S1 =
1

G1

∑
1≤g≤G

I{Hg = π2}Ȳ 0
g − 1

G0

∑
1≤g≤G

I{Hg = 0}Ȳ 0
g

θ̂P2 =
1

N1

∑
1≤g≤G

I{Hg = π2}NgȲ 1
g − 1

N0

∑
1≤g≤G

I{Hg = 0}NgȲ 1
g

θ̂S2 =
1

N1

∑
1≤g≤G

I{Hg = π2}NgȲ 0
g − 1

N0

∑
1≤g≤G

I{Hg = 0}NgȲ 0
g ,

where G1 =
∑

1≤g≤G I{Hg = π2}, G0 =
∑

1≤g≤G I{Hg = 0}, and N1 =
∑

1≤g≤G I{Hg =

π2}Ng, N0 =
∑

1≤g≤G I{Hg = 0}Ng and

Ȳ zg =
1

Mz
g

∑
i∈Mg

Yi,gI{Hg = π2, Zi,g = z}+ 1

Mg

∑
i∈Mg

Yi,gI{Hg = 0} ,

where Mz
g =

∑
i∈Mg

I{Zi,g = z} with z ∈ {0, 1}.

By definition, the “first/individual average” Ȳ 1
g from the primary effect estimator is taken

over all treated units within the g-th cluster if the cluster is treated, and all control units

within the g-th cluster if the cluster is assigned to control. When it comes to estimating

spillover effects, the “first/individual average” Ȳ 0
g is taken over all control units within the

g-th cluster if the cluster is treated, and all control units within the g-th cluster if the cluster

is assigned to control. Then, the “second/cluster average” is a cluster-level average of Ȳ 1
g or

Ȳ 0
g taken within groups of treated and untreated clusters as featured in a usual difference-

in-means estimator. Let Li,g = I{Hg = π2}(1 − Zi,g) denote the indicator for untreated

units within treated clusters. Note that θ̂P1 and θ̂S1 (or θ̂P2 and θ̂S2 ) may be obtained as the

estimators of the coefficient of Zi,g and Li,g in a weighted least squares regression of Yi,g on

a constant and Zi,g and Li,g with weights equal to
√
1/Mg (or

√
Ng/Mg) (see Appendix
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C.4 for formal derivations).

My estimators are closely related to those studied in previous methodological literature.

For example, equally-weighted estimators θ̂P1 and θ̂S1 are identical to the household-weighted

estimators from Basse and Feller (2018), which are closely related to the estimators in Hud-

gens and Halloran (2008). θ̂P1 and θ̂S1 may also be obtained through the “household-level

regression” proposed in Basse and Feller (2018), which is equivalent to running two separate

ordinary least squares regressions of Ȳ 1
g on a constant and I{Hg = π2}, and Ȳ 0

g on a constant

and I{Hg = π2}. Size-weighted estimators θ̂P2 and θ̂S2 are closely related to the individual-

weighted estimator proposed by Basse and Feller (2018). In previous studies such as Cruces

et al. (2022), Vazquez-Bare (2022), and Basse and Feller (2018), researchers have investi-

gated estimators obtained through a widely used saturated regression in multi-treatment

experiments, similar to the form of equation (3.3). These estimators are identical to θ̂P2 and

θ̂S2 when outcomes of all units from each cluster are observed or the number of observed

units is proportional to the cluster size. More formally, when Mg/Ng = c for 0 < c ≤ 1, θ̂P2

and θ̂S2 can be obtained simultaneously as the estimators of the coefficient on Zi,g and Li,g

through a regression like the following:

Yi,g = α + β1Zi,g + β2Li,g + ϵi,g . (3.3)

In empirical literature, various regression estimators are used for estimating primary and

spillover effects. One widely used estimator is described in equation (3.3) (see, e.g., Haushofer

and Shapiro, 2016; Haushofer et al., 2019). Another estimator that produces the same set of

estimators is through the alternative regression Yi,g = a+ b1Zi,g+ b2I{Hg = π2}+ui,g (see,

e.g., Duflo and Saez, 2003; Ichino and Schündeln, 2012), where the estimators are related to

those from (3.3) as follows: β̂1 = b̂1 + b̂2 and β̂2 = b̂2. Some empirical works use either or

both of the two separate regressions: Yi,g = α + β1Zi,g + ϵi,g and Yi,g = α + β2Li,g + ϵi,g

(see, e.g., Beuermann et al., 2015; Aramburu et al., 2019; Hidrobo et al., 2016). In many
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cases, estimators obtained from regressions with fixed effects are reported along with those

without fixed effects (see, e.g., Ichino and Schündeln, 2012). Section 3.6.2 will examine the

validity of statistical tests based on regressions with and without fixed effects.

3.3 Inference for Experiments with Large Strata

In this section, I investigate the asymptotic properties of the estimators presented in Section

3.2.3 in the context of two-stage stratified experiments with a fixed number of large strata

in the first stage of the experimental design. Specifically, in the first stage, clusters are

partitioned into a fixed number of strata such that the number of clusters within each stratum

grows as the total number of clusters increases. Formally, denote by S(G) = (S1, . . . , SG)

the vector of strata on clusters, constructed from the observed, baseline covariates Cg and

cluster sizeNg for gth cluster using a function S : supp((Cg, Ng)) → S, where S is a finite set.

Furthermore, I consider a second-stage stratification on units from a given cluster. Denote

by Bg = (Bi,g : 1 ≤ i ≤ Ng) the vector of strata on units in the gth cluster, constructed

from observed, baseline covariates Xi,g for ith unit using a function B : supp(Xi,g) → Bg.5

Example 3.3.1. Section 3.7 presents an illustrative empirical example of such a large-

strata experiment conducted by Foos and de Rooij (2017). In the first stage of their experi-

ment, 5,190 two-voter households (i.e., clusters of size 2) were categorized into three strata:

“Labour” supporter, “rival party” supporter, and those “unattached” to any party. Within

each stratum, households were then randomly allocated to either treatment or control groups.

In the subsequent stage, one member from the households in the treatment group was given

the treatment.

First of all, I provide notations for the quantity of imbalance for each stratum. For s ∈ S,

5. Asymptotics are not considered in the second-stage design; thus, the second stage could employ designs
with small strata like matched-pair, or those with large strata such as stratified block randomization.
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let

DG(s) =
∑

1≤g≤G
(I{Hg = π2} − π1)I{Sg = s}, (3.4)

where π1 ∈ (0, 1) is the “target” proportion of clusters to assign to treatment in each stratum.

My requirements on the treatment assignment mechanism for the first stage are summarized

in the following assumption:

Assumption 3.3.1. The treatment assignment mechanism for the first-stage is such that

(a) W (G) ⊥ H(G) | S(G),

(b)
{{

DG(s)√
G

}
s∈S

| S(G)
}

d−→ N(0,ΣD) a.s., where

ΣD = diag{p(s)τ(s) : s ∈ S}

with 0 ≤ τ(s) ≤ π(1− π) for all s ∈ S, and p(s) = P
{
Sg = s

}
.

Assumption 3.3.1 (a) simply requires that the treatment assignment mechanism is a func-

tion only of the vector of strata and an exogenous randomization device. Assumption 3.3.1

(b) follows Assumption 2.2 (b) of Bugni et al. (2018a). This assumption is commonly satis-

fied by various experiment designs, such as Bernoulli trials, stratified block randomization,

and Efron’s biased-coin design, which are widely used in clinical trials and development

economics.

The next step is to formalize the assumption of independence between the first and

second stage designs. To begin with, I utilize the notation {Zi,g(h) : h ∈ H}, representing

the “potential treatment” for various treated fractions h ∈ H, and relate the (observed)

individual treatment indicator and potential individual-level treatment indicator as follows:

Zi,g =
∑
h∈H

Zi,g(h)I{Hg = h} for 1 ≤ i ≤ Ng . (3.5)
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The underlying motivation for this “potential outcome style” notation becomes evident when

considering that in two-stage experiments, the realized treatment assignment in the first stage

is almost always correlated with that in the second stage (e.g., Hg = 1
Ng

∑
1≤i≤Ng

Zi,g). Yet,

the “potential” individual-level treatment assignment, for any specified target treated frac-

tion, can be independent of the cluster-level assignment of that target treated fraction. This

is similar to the classic potential outcome model, where treatment assignment is independent

of potential outcomes but likely correlates with observed outcomes.

Then, my requirements on the treatment assignment mechanism for the second stage are

summarized in the following assumption:

Assumption 3.3.2. The treatment assignment mechanism for the second-stage is such that

(a) (((Zi,g(h) : h ∈ H) : 1 ≤ i ≤ Ng) : 1 ≤ g ≤ G) ⊥ H(G),

(b) W (G) ⊥ (((Zi,g(h) : h ∈ H) : 1 ≤ i ≤ Ng) : 1 ≤ g ≤ G) | (Bg : 1 ≤ g ≤ G),

(c) For all 1 ≤ g ≤ G, E[Zi,g(h) | Bg] = 1
Mg

∑
i∈Mg

Zi,g(h).

Assumption 3.3.2 (a) rules out any confounders between the first-stage and second-stage

treatment assignments, which is typically satisfied in most two-stage experiments. Assump-

tion 3.3.2 (b) is analogous to Assumption 3.3.1 (a). Assumption 3.3.2 (c) requires that the

marginal assignment probability is equal to the realized treated fraction on the observed sub-

set of units. An example of this could be (individual-level) stratified block randomization,

where the treated fraction remains constant across all strata, with observed units drawn

from a random subset of these strata.

The following theorem derives the asymptotic behavior of estimators for equally-weighted

effects.6

6. Throughout the paper, V1(1), V2(1), V3(1) and V4(1) denote the variances of primary effects, while
V1(0), V2(0), V3(0) and V4(0) represent the variances of spillover effects. In other words, the notation z ∈
{0, 1} (as in V1(z)) represents the individual’s own treatment status.
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Theorem 3.3.1. Under Assumption 3.2.1-3.2.2 and 3.3.1-3.3.2,

√
G
(
θ̂P1 − θP1 (QG)

)
→ N (0, V1(1)) , (3.6)

and
√
G
(
θ̂S1 − θS1 (QG)

)
→ N (0, V1(0)) , (3.7)

where

V1(z) =
1

π1
Var

[
Ȳg(z, π2)

]
+

1

1− π1
Var

[
Ȳg(0, 0)

]
− π1(1− π1)E

[(
1

π1
mz,π2

(
Sg
)
+

1

1− π1
m0,0

(
Sg
))2

]

+ E

[
τ
(
Sg
)( 1

π1
mz,π2

(
Sg
)
+

1

1− π1
m0,0

(
Sg
))2

]
,

(3.8)

with

Ȳg(1, π2) =
1

M1
g

∑
i∈Mg

Yi,g(1, π2)Zi,g(π2) (3.9)

Ȳg(0, π2) =
1

M0
g

∑
i∈Mg

Yi,g(0, π2)(1− Zi,g(π2)) (3.10)

Ȳg(0, 0) =
1

Mg

∑
i∈Mg

Yi,g(0, 0) (3.11)

mz,h

(
Sg
)
= E[Ȳg(z, h) | Sg]− E[Ȳg(z, h)] . (3.12)

Remark 3.3.1. An alternative variance expression, analogous to equation (15) in Bugni
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et al. (2018a), is:

V1(z) =
1

π1
Var

[
Y̌g(z, π2)

]
+

1

1− π1
Var

[
Y̌g(0, 0)

]
+ E

[(
mz,π2

(
Sg
)
−m0,0

(
Sg
))2]

+ E

[
τ
(
Sg
)( 1

π1
mz,π2

(
Sg
)
+

1

1− π1
m0,0

(
Sg
))2

]
,

(3.13)

where Y̌g(z, h) = Ȳg(z, h) − E[Ȳg(z, h) | Sg]. By comparing (3.13) with the variance ex-

pression in Bugni et al. (2018a), we conclude that the asymptotic variance in Theorem

3.3.1 corresponds exactly to the asymptotic variance of the difference-in-means estimator

for covariate-adaptive experiments with individual-level “one-stage” assignment, as in Bugni

et al. (2018a). In fact, when P (Ng = 1) = 1 and π2 = 1, V1(1) collapses to their variance

expression.

In a special case where covariate information is not used to construct strata and the first

stage is a “strong balanced” design with S = s and τ(s) = 0, the asymptotic variance of the

estimated treatment effect can be expressed as follows:

V1(z) =
1

π1
Var

[
Ȳg(z, π2)

]
+

1

1− π1
Var

[
Ȳg(0, 0)

]
, (3.14)

which is equivalent to the identifiable parts of the variance derived in Basse and Feller (2018)

under the finite population framework. The asymptotic variance of partial population designs

from Cruces et al. (2022) is also closely related to (3.14) under binary settings. Specifically,

Cruces et al. (2022) provides an alternative expression of Var
[
Ȳg(z, π2)

]
with intra-cluster

variances and correlations. Therefore, inference methods based on (3.14), including Basse

and Feller (2018) and Cruces et al. (2022), are generally conservative under “strong balanced”

covariate-adaptive randomization.

Remark 3.3.2. It’s worth noting that the setup of the first-stage design has a clear impact

94



on the asymptotic variance V1(z), as evidenced by the third and fourth term in equation (3.8).

Furthermore, the second-stage design also influences the asymptotic variance V1(z), albeit

more implicitly, via the distribution of Zi,g(π2) that the practitioners design. Specifically, the

first term in equation (3.8) depends on Var
[
Y̌g(z, π2)

]
, which is directly tied to the second-

stage design. Thus, the efficacy of designing the first stage versus the second stage can be

disentangled into distinct components. This separation could be beneficial for practitioners

seeking to assess the relative importance of first-stage design versus second-stage design in

optimizing efficiency gains. For instance, a calibrated simulation study using pilot data can

be used to estimate the relative efficiency gain obtained at each stage.

The following theorem derives the asymptotic behavior of estimators for size-weighted

effects.

Theorem 3.3.2. Under Assumption 3.2.1-3.2.2 and 3.3.1-3.3.2,

√
G
(
θ̂P2 − θP2 (QG)

)
→ N (0, V2(1)) , (3.15)

and
√
G
(
θ̂S2 − θS2 (QG)

)
→ N (0, V2(0)) , (3.16)

where

V2(z) =
1

π1
Var[Ỹg(z, π2)] +

1

1− π1
Var[Ỹg(0, 0)]

− π1(1− π1)E

[(
1

π1
E[Ỹg(z, π2) | Sg] +

1

1− π1
E[Ỹg(0, 0) | Sg]

)2
]

+ E

[
τ(Sg)

(
1

π1
E[Ỹg(z, π2) | Sg] +

1

1− π1
E[Ỹg(0, 0) | Sg]

)2
]
,

(3.17)
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with

Ỹg(z, h) =
Ng

E[Ng]

(
Ȳg(z, h)−

E[Ȳg(z, h)Ng]

E[Ng]

)
(3.18)

for (z, h) ∈ {(1, π2), (0, π2), (0, 0)}.

Remark 3.3.3. Note that the asymptotic variance in Theorem 3.3.2 has the same form

as Theorem 3.3.1, with Ỹg(z, h) replacing Ȳg(z, h). Intuitively, Ỹg(z, h) is a demeaned and

cluster size weighted version of Ȳg(z, h). Therefore, similar arguments as those made in

Remark 3.3.1 and 3.3.2 can be applied here as well.

Theorem 3.3.1 and 3.3.2 imply that covariate information is important to establish asymp-

totically exact inference for the four estimands of interest under covariate-adaptive random-

ization. In contrast, previous works that do not account for covariate information, such

as Basse and Feller (2018) and Cruces et al. (2022), may result in conservative inference.

Many empirical studies rely on statistical inference based on the regression in equation (3.3)

with HC2 cluster-robust standard errors. While this procedure is also proposed in Basse

and Feller (2018) and Cruces et al. (2022), the regression coefficients it produces generally

do not provide consistent estimates for the estimands in Table 3.1. Instead, they converge

to the primary and spillover effects weighted by the sample sizes of the clusters (see Bugni

et al. (2022b)). However, if all units in each cluster are sampled (Ng = Mg) or the number

of sampled units is proportional to cluster size (Mg/Ng = c for 0 < c < 1), this procedure

yields consistent point estimates for size-weighted effects but may still be conservative (see

Appendix C.4). Therefore, I aim to develop asymptotically exact methods based on my

theoretical results.

To begin with, I introduce consistent variance estimators for the asymptotic variances

from Theorem 3.3.1 and 3.3.2. A natural estimator of V1(z) may be constructed by replacing
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population quantities with their sample counterparts. For z ∈ {0, 1}, Let

Ȳ1,z =
1

G1

∑
1≤g≤G

Ȳ zg I
{
Hg = π2

}
Ȳ0,z =

1

G0

∑
1≤g≤G

Ȳ zg I
{
Hg = 0

}
,

µ̂1,z(s) =
1

G1(s)

∑
1≤g≤G

Ȳ zg I
{
Hg = π2, Sg = s

}
µ̂0,z(s) =

1

G0(s)

∑
1≤g≤G

Ȳ zg I
{
Hg = 0, Sg = s

}
,

where G1(s) = |{1 ≤ g ≤ G : Hg = π2, Sg = s}| and G0(s) = |{1 ≤ g ≤ G : Hg = 0, Sg =

s}|. With this notation, the following estimators can be defined:

V̂1(z) =
1

π1

 1

G1

∑
1≤g≤G

(
Ȳ zg
)2
I{Hg = π2} −

∑
s∈S

G(s)

G
µ̂1,z(s)

2


+

1

1− π1

 1

G0

∑
1≤g≤G

(
Ȳ zg
)2
I{Hg = 0} −

∑
s∈S

G(s)

G
µ̂0,0(s)

2


+
∑
s∈S

G(s)

G

((
µ̂1,z(s)− Ȳ1,z

)
−
(
µ̂0,0(s)− Ȳ0,0

))2
+
∑
s∈S

τ(s)
G(s)

G

(
1

π

(
µ̂1,z(s)− Ȳ1,z

)
+

1

1− π

(
µ̂0,0(s)− Ȳ0,0

))2

.

(3.19)

The estimator for V2(z) follows the same approach as V̂1(z), while additionally requires

estimation for terms associated with Ỹg(z, h). Let Ỹ zg denote the observed adjusted outcome.

Ỹ zg =
Ng

1
G

∑
1≤g≤GNg

Ȳ zg −
1
Gg

∑
1≤j≤G Ȳ

z
j I{Hg = Hj}Nj

1
G

∑
1≤j≤GNj

 ,
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where Gg =
∑

1≤j≤G I{Hg = Hj}. For z ∈ {0, 1}, Let

µ̃1,z(s) =
1

G1(s)

∑
1≤g≤G

Ỹ zg I
{
Hg = π2, Sg = s

}
,

µ̃0,z(s) =
1

G0(s)

∑
1≤g≤G

Ỹ zg I
{
Hg = 0, Sg = s

}
.

To estimate V2(z), I propose the exact same estimator as V̂1(z) by simply replacing Ȳ zg with

Ỹ zg . Thus, the following estimators can be defined:

V̂2(z) =
1

π1

 1

G1

∑
1≤g≤G

(
Ỹ zg

)2
I{Hg = π2} −

∑
s∈S

G(s)

G
µ̃1,z(s)

2


+

1

1− π1

 1

G0

∑
1≤g≤G

(
Ỹ zg

)2
I{Hg = 0} −

∑
s∈S

G(s)

G
µ̃0,0(s)

2


+
∑
s∈S

G(s)

G

(
µ̃1,z(s)− µ̃0,0(s)

)2
+
∑
s∈S

τ(s)
G(s)

G

(
1

π
µ̃1,z(s) +

1

1− π
µ̃0,0(s)

)2

.

(3.20)

Then, the following consistency result for variance estimators V̂1(z) and V̂2(z) can be ob-

tained:

Theorem 3.3.3. Under Assumption 3.2.1-3.2.2 and 3.3.1-3.3.2, as n→ ∞, V̂1(z)
P−→ V1(z)

and V̂2(z)
P−→ V2(z) for z ∈ {0, 1}.

Based on Theorem 3.3.3, I propose the “adjusted” t-test with the aforementioned variance

estimators as my method of inference throughout the rest of the paper. As an example, the

“adjusted” t-test for equally-weighted primary effect, i.e. H0 : θP1 (QG) = θ0, is given by

ϕ
adj
G (V (G)) = I

{∣∣∣√n(θ̂P1 − θ0

)
/V̂1(1)

∣∣∣ > z1−α
2

}
, (3.21)

where z1−α
2

represents 1− α
2 quantile of a standard normal random variable.
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Note that the variance estimator V̂1(z) (or V̂2(z)) depends on the assignment mechanism

in the first stage through the strata indicator Sg, but not on the assignment mechanism

in the second stage. This means that valid statistical inference based on ϕ
adj
G (V (G)) does

not require knowledge of the assignment mechanism in the second stage. We can see this by

observing that the first term in equations (3.8), which is the only term affected by the second-

stage design, can be consistently estimated by the first term in equation (3.19).My approach

leverages the cluster-level averaged outcomes and benefits from large samples of clusters,

without explicitly modeling intra-cluster correlations as done in the previous literature (see,

for example, Cruces et al., 2022).

3.4 Inference for Experiments with Small Strata

In this section, I study the asymptotic behavior of the estimators from Section 3.2.3 in two-

stage stratified experiments with a large number of small strata. In particular, I consider

size of strata to be fixed and assignment mechanism is a completely randomized design (also

known as a permuted block design), independently for each stratum. This design is referred

to as “matched tuples designs” by Bai et al. (2022b) (also studied as “local randomization”

in Cytrynbaum (2023b)), and is commonly-used in the empirical literature (see for example

Bold et al., 2018; Brown and Andrabi, 2020; de Mel et al., 2013; Fafchamps et al., 2014).

I leverage the result from Bai (2022b) that any stratification is a convex combination of

matched tuples designs, so fortunately this section does not lose too much generality by

focusing the analysis of “small strata” on matched tuples designs.

To formalize such a design under the settings of two-stage experiments, consider n strata

of size k (each stratum consisting of k clusters), formed by matching clusters according to

Sg = S(Cg, Ng), whose co-domain could potentially be continuous and multi-dimensional.

Within each stratum, l clusters are randomly selected and assigned to the treatment group.

Specifically, G = nk and π1 = l/k, where 0 < l < k, and l and k are mutually prime. As an
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example, a matched-pairs design has k = 2, l = 1, π1 = 1/2 and G = 2n.

Example 3.4.1. Duflo and Saez (2003) conducted such a small-strata experiment involving

330 university departments, each averaging 30 staff employees. In the first stage, these

departments (clusters with an average size of 30) were grouped into triplets (small strata

of size 3) based on their cluster-level covariates. Within each triplet, two departments were

randomly chosen to be part of the treated group. In the second stage, individuals from these

treated departments were randomly selected to receive treatments.

To start with, I impose the following assumption on QG in addition to Assumption 3.2.2:

Assumption 3.4.1. The distribution QG is such that

(a) E[Ȳ rg (z, h)N ℓ
g |Sg = s] is Lipschitz in s for (z, h) ∈ {(0, 0), (0, π2), (1, π2)} and r, ℓ ∈

{0, 1, 2}.

(b) For some C <∞, P{E[N2
g |Sg] ≤ C} = 1

Assumption 3.4.1(a) is a smoothness requirement analogous to Assumption 3(ii) in Bai

(2022b) ensuring that units within clusters which are “close” in terms of their baseline co-

variates are suitably comparable. Assumption 3.4.1(b) imposes an additional restriction on

the distribution of cluster sizes beyond what is stated in Assumption 3.2.2(c).

Next, I describe my assumptions on the treatment assignment mechanism. In words, I

consider a treatment assignment mechanism that first stratifies the experimental sample into

n blocks of size k using S(G), and then assigns l clusters uniformly at random as treated

clusters within each block. Formally, let

λj = λj(S
(G)) ⊆ {1, . . . , G}, 1 ≤ j ≤ n

denote n sets each consisting of k elements that form a partition of {1, . . . , G}.

I assume treatment status is assigned as follows:
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Assumption 3.4.2. Treatments are assigned so that W (G) ⊥⊥ H(G)|S(G) and, conditional

on S(G),

{(I{Hi = π2}) : i ∈ λj) : 1 ≤ j ≤ n}

are i.i.d. and each uniformly distributed over all permutations of
{
z ∈ {0, 1}k :

∑k
z=i zi = l

}
.

Assumption 3.4.2 formally describes the assignment mechanism of a two-stage experiment

with matched tuples in the first stage. Additionally, the second-stage design adheres to the

specifications outlined in Assumption 3.3.2 from the previous section. Further, units in each

pair are required to be “close” in terms of their stratification variable Sg in the following

sense:

Assumption 3.4.3. The strata used in determining treatment status satisfy

1

n

∑
1≤j≤n

max
i,k∈λj

|Si − Sk|2
P→ 0 .

The validity of the variance estimators relies on the following condition that the distances

between units in adjacent blocks are considered “close” in relation to their baseline covariates:

Assumption 3.4.4. The strata used in determining treatment status satisfy

1

n

∑
1≤j≤⌊n/2⌋

max
i∈λ2j−1,k∈λ2j

|Si − Sk|2
P→ 0 .

Blocking algorithms which satisfy Assumption 3.4.2-3.4.4 have been thoroughly discussed

in recent literature of matched pairs/tuples designs (see for example Bai et al., 2021b; Bai,

2022b; Bai et al., 2022b; Cytrynbaum, 2023b). For instance, when dim(Sg) = 1 and clus-

ters/units are matched into blocks by ordering them according to the values of Sg and group-

ing the adjacent clusters/units, Theorem 4.1 of Bai et al. (2021b) shows that 3.4.2-3.4.4 are

satisfied as long as E[S2g ] <∞.
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When k = 2 and l = 1, Assumptions 3.4.2-3.4.4 reduce to Assumptions 2.2-2.4 in Bai

et al. (2021b) and thus it becomes a matched pairs design. In fact, my framework extends

the generalized matched pair designs discussed in Section C.1 of Bai (2022b) to the setting of

two-stage experiments. My assumptions on the assignment mechanism follow the matched

tuples designs provided in Bai et al. (2022b) for experiments with multiple treatment arms,

where the strata size equals the number of treatments. In contrast, this paper focuses on

experiments with binary treatments but allow for a general treated fraction. Under these

assumptions I obtain the following result:

Theorem 3.4.1. Suppose Assumption 3.2.1 holds, QG satisfies Assumptions 3.2.2 and 3.4.1

and the treatment assignment mechanism satisfies Assumptions 3.3.2, 3.4.2-3.4.3. Then, as

n→ ∞,

√
G
(
θ̂P1 − θP1 (QG)

)
→ N (0, V3(1)) , (3.22)

√
G
(
θ̂S1 − θS1 (QG)

)
→ N (0, V3(0)) , (3.23)

√
G
(
θ̂P2 − θP2 (QG)

)
→ N (0, V4(1)) , (3.24)

√
G
(
θ̂S2 − θS2 (QG)

)
→ N (0, V4(0)) , (3.25)

where

V3(z) =
1

π1
Var

[
Ȳg(z, π2)

]
+

1

1− π1
Var

[
Ȳg(0, 0)

]
− π1(1− π1)E

[(
1

π1
mz,π2

(
Sg
)
+

1

1− π1
m0,0

(
Sg
))2

] (3.26)
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and

V4(z) =
1

π1
Var[Ỹg(z, π2)] +

1

1− π1
Var[Ỹg(0, 0)]

− π1(1− π1)E

[(
1

π1
E[Ỹg(z, π2) | Sg] +

1

1− π1
E[Ỹg(0, 0) | Sg]

)2
] (3.27)

with mz,h

(
Cg
)

being defined in (3.9), and Ỹg(z, h) being defined in (3.18).

Remark 3.4.1. Analogous to Remark 3.3.1, the asymptotic variance in Theorem 3.4.1 corre-

sponds exactly to the asymptotic variance of the difference-in-means estimator for matched-

pair experiments with individual-level “one-stage” assignment, as in Bai et al. (2021b) and

Bai (2022b). Additionally, V4(z) has a similar form to the asymptotic variance in a cluster

randomized trial with matched pairs, as derived in Bai et al. (2022a). In fact, when π1 = 1/2

and π2 = 1, my result collapses exactly to theirs.

Remark 3.4.2. Note that V3(z) and V4(z) have the same formula as the first three terms in

V1(z) and V2(z). Thus, the way the first and second stage designs show up in the variance

expression is similar to Remark 3.3.2. Importantly, the interpretations of Sg in Theorem

3.3.1 and 3.3.2 differ slightly from that in Theorem 3.4.1. In Theorem 3.3.1 and 3.3.2, Sg

corresponds to strata indicators on a discrete set, while in Theorem 3.4.1, Sg is a random

function with potentially continuous values on which clusters are matched. However, an

interesting observation is that a matched tuples design based on a finite-valued Sg leads

to the same asymptotic variance as a strong balanced “large strata” design based on the

same Sg. Such a matched tuples design can be constructed by first stratifying Sg and then

forming tuples within each stratum arbitrarily. In this case, Assumption 3.4.1-3.4.4 are

trivially satisfied.

The widely used regression method with cluster-robust variance estimator is potentially

conservative for matched tuples designs (see Appendix C.4). Therefore, I aim to develop
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asymptotically exact methods based on my theoretical results. First, I present variance es-

timators for V3(z) and V4(z). Unlike stratified block randomization, there are not enough

observations for cluster-level averaged outcomes within each strata to construct variance es-

timators in a matched tuples design. Thus, I follow the construction of “pairs of pairs” in Bai

et al. (2021b) and Bai et al. (2022b), and replace the individual outcomes with the averaged

outcomes Ȳ zg and adjusted averaged outcomes Ỹg respectively. Here, I present the construc-

tion of variance estimator V̂3(z) for V3(z). Similarly, V̂4(z) can be constructed by simply re-

placing Ȳ zg with Ỹ zg , and thus detalis are omitted. Let Γ̂zn(h) =
1

nk(h)

∑
1≤g≤G Ȳ

z
g I{Hg = h}

where k(h) =
∑
i∈λj I{Hi = h} denotes the number of units under assignment Hi = h in

the j-th strata. In the setup of binary treatment, it becomes that k(π2) = l and k(0) = k− l.

Finally, my estimator for V3(z) is then given by

V̂3(z) =
1

π1
V̂z1,n(π2) +

1

1− π1
V̂z1,n(0) + V̂z2,n(π2, π2) + V̂z2,n(0, 0)− 2V̂z2,n(π2, 0) (3.28)

with

V̂z1,n(h) = Ê
[
Var

[
Ȳg(z, h) | Sg

]]
:= (σ̂zn(h))

2 − (ρ̂zn(h, h)− (Γ̂zn(h))
2)

V̂z2,n(h, h
′) = ˆCov

[
E
[
Ȳg(z, h) | Sg

]
, E
[
Ȳg(z, h

′) | Sg
]]

:= ρ̂zn(h, h
′)− Γ̂zn(h)Γ̂

z
n(h

′) ,

where

ρ̂zn(h, h) :=
2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

( ∑
i∈λ2j−1

Ȳ zi I{Hi = h}
)( ∑

i∈λ2j

Ȳ zi I{Hi = h}
)

ρ̂zn(π2, 0) :=
1

n

∑
1≤j≤n

1

l(k − l)

(∑
i∈λj

Ȳ zi I{Hi = π2}
)(∑

i∈λj

Ȳ zi I{Hi = 0}
)

(σ̂zn(h))
2 :=

1

nk(h)

∑
1≤g≤G

(Ȳ zg − Γ̂zn(h))
2I{Hg = h} .

The subsequent analysis yields consistency results for the estimators V̂3(z) and V̂4(z):
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Theorem 3.4.2. Suppose Assumption 3.2.1 holds, QG satisfies Assumptions 3.2.2, 3.4.1,

and the treatment assignment mechanism satisfies Assumption 3.3.2, 3.4.2-3.4.4. Then, as

n→ ∞, V̂3(z)
P−→ V3(z) and V̂4(z)

P−→ V4(z) for z ∈ {0, 1}.

Similarly to the designs of large strata in Section 3.3, the calculation of variance estima-

tors and the validity of statistical inference based on Theorem 3.4.1 and 3.4.2 do not depend

on the assignment mechanism in the second-stage. In other words, practitioners can conduct

valid statistical inference using only the information from the first-stage design.

In Remark 3.4.2, it is noted that a matched tuples design based on a finite-valued Sg has

the same asymptotic variance as a strongly balanced “large strata” design based on Sg. In

such cases, V̂1(z) and V̂3(z) (or V̂2(z) and V̂4(z)) are both consistent estimators for the same

estimand. However, I recommend using V̂1(z) in practice for “large strata” experiments, as

it is expected to be more efficient than V̂3(z). As pointed out by Athey and Imbens (2017b)

and Bai et al. (2022b), introducing replicates for each treatment arm in a matched tuples

design can improve the finite sample performance for the adjusted t-tests based on V̂3(z).7

This motivates the use of variance estimators based on “large tuples”. To that extent, V̂1(z),

which takes advantage of all observations within a stratum at the same time, is preferable

for experiments with large strata. In practice, the choice of variance estimators depends

on the sizes of the strata. Specifically, V̂1(z), whose consistency relies on large numbers of

observations within each stratum, is suitable for experiments with large strata, while V̂3(z)

is suitable for experiments with small strata.8 From this perspective, it is necessary to

7. When there are duplicates, I no longer need to form “pairs of pairs” for variance estimation. Instead,
I could replace ρ̂zn(h, h) by

ρ̃zn(h, h) =
2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

(∑
i∈λj

Ȳ z
i I{Hi = h}

)
.

8. In practice, it is often straightforward to distinguish between the two scenarios. Most experimental
designs either involve stratification on a small number of categorical variables or matching units into groups
with fewer than five units. In cases where it is difficult to decide, it is recommended to choose V̂3(z) as a
safe choice.
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divide covariate-adaptive experiments into “large strata” and “small strata” and consider two

separate asymptotic regimes. Furthermore, the “large strata” regime provides an analytical

framework to study a broader range of experimental designs, including Efron’s biased coin

design.

3.5 Optimal Stratification for Two-stage Designs

In this section, I introduce two optimality results related to two-stage randomized exper-

iments, as discussed in Sections 3.3 and 3.4. The first result provides insights into the

optimal design for the initial stage, while the second addresses the optimal design for the

second stage, taking into account additional assumptions about the assignment mechanism

and covariance among unit outcomes within clusters. These findings indicate that particular

matched tuples designs maximize statistical precision when estimating parameters outlined

in Table 3.1.

First, I present a result that identifies the optimal functions for matching in the first-stage

matched tuples designs, targeting various parameters of interest.

Theorem 3.5.1. V3(z) is minimized when Sg = E
[
Ȳg(z,π2)

π1
+
Ȳg(0,0)
1−π1 | Cg, Ng

]
. Meanwhile,

V4(z) is minimized when Sg = E

[
Ỹg(z,π2)

π1
+
Ỹg(0,0)
1−π1 | Cg, Ng

]
.

A direct implication of Theorem 3.5.1 is that it characterizes the optimal functions to

match on within the class of matched-tuples designs. Such functions are referred as “index

function” in Bai (2022b). With further reasoning, it can also be concluded that the optimal

matched tuples design is also asymptotically optimal among all stratified designs described

in Section 3.3. To see that, in Section 3.3, strata are constructed from a discrete random

variable Sg = S(Cg, Ng), where function S maps to a discrete set S. As noted in Remark

3.4.2, given such a function S, it is possible to construct a matched tuples design that matches

on S(Cg, Ng), and thus has a weakly smaller asymptotic variance across all parameters
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of interest, i.e. V1(z) ≥ V3(z) and V2(z) ≥ V4(z) for z ∈ {0, 1}, where equality holds

when designs achieve “strong balance” (τ(s) = 0 for all s ∈ S). Therefore, any assignment

mechanism described in Section 3.3 leads to asymptotic variances that are weakly larger

than those of matched tuples designs implied by Theorem 3.5.1.

The subsequent section examines the optimality of matched tuples designs in the second

stage of the experiment. The analysis specifically focuses on stratified block randomization,

as formalized in the following assumptions.

Assumption 3.5.1. For 1 ≤ g ≤ G, units within a given stratum, denoted by λb = {i ∈

Mg : Bi = b} for b ∈ B, are assigned with treatment (Zi,g(π2) : i ∈ λb) that is uniformly

distributed over {z ∈ {0, 1}|λb| :
∑
j∈λb zj = ⌊π2|λb|⌋} and i.i.d across b ∈ B.

Additionally, I assume that the covariance of outcomes between any pairs of units within

a cluster is homogeneous. In other words, the covariance does not depend on the individual-

level covariates of units in the same cluster. Formally, the assumption is stated as follows:

Assumption 3.5.2. For z ∈ {0, 1}, 1 ≤ i ̸= j ≤ Ng,

Cov
[
Yi,g(z, π2), Yj,g(z, π2) | (Xi,g : 1 ≤ i ≤ Ng)

]
= Cov

[
Yi,g(z, π2), Yj,g(z, π2)

]
. (3.29)

Assumption 3.5.2 is a weaker assumption than assuming that outcomes of units are

independent and identically distributed (i.i.d) within a cluster, as it only requires conditional

independence between individual covariates and the covariance of outcomes. It is analogous

to the standard homoscedasticity assumption, which assumes constant variance of errors in

a regression model, except that it is a statement about covariance instead of variance. Under

these two additional assumptions I obtain the following optimality result:

Theorem 3.5.2. Under Assumption 3.3.2, 3.5.1 and 3.5.2, Va(z) is minimized when the

second-stage design is a matched tuples design that matches on E
[
Yi,g(z, π2) | (Xi,g : 1 ≤ i ≤ Ng)

]
for z ∈ {0, 1} and a ∈ {1, 2, 3, 4}.
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Though practitioners may not have knowledge of the index functions in Theorem 3.5.1

and 3.5.2, optimal stratification can be determined in some special cases. For instance, in

experiments where the first-stage design uses only a univariate covariate Cg (see, e.g., Ichino

and Schündeln, 2012), and practitioners expect a monotonic relationship between Sg and

Cg, the optimal stratification is to order the units by Cg and group adjacent units. Similar

results apply to the second-stage design. In more general cases where monotonicity does not

hold or the baseline cluster-level covariate is multivariate, Bai (2022b) suggests matching

on estimated index functions using pilot data, when available. If optimal stratification

is infeasible, and pilot data is unavailable, a suitable matching algorithm (see, e.g., Bai

et al., 2021b; Cytrynbaum, 2023b) that directly matches on vectors of covariates can be

asymptotically as efficient if the sample size is sufficiently large. In cases where the sample

size is not sufficiently large, Bai (2022b) and Bruhn and McKenzie (2009b) suggest matching

on the baseline outcome, when available. If none of the aforementioned options is available,

matching in a sub-optimal way can still be effective, as both Bai (2022b) and simulation

results from Section 3.6 demonstrate that matching units sub-optimally can be more effective

than completely randomized designs or some sub-optimal stratification design with large

strata.

3.6 Simulations

In this section, I illustrate the results presented in Section 3.3-3.4 with a simulation study.

To begin with, potential outcomes are generated according to the equation:

Yi,g(z, h) = µz,h+αz,hX1,i,g/(X2,i,g+0.1)+βz,h

(
Cg −

1

2

)
+γ

(
Ng − 100

)
+σ(Cg, Ng)ϵi,g ,

for (z, h) ∈ {(0, 0), (0, π2), (1, π2)}, where

• Cg, Ng are i.i.d with Cg ∼ Unif[0, 1], and Ng ∼ Unif{50, . . . , 150}, which are mutually
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independent.

• X1,i,g = Ngui,g/100, where ui,g are i.i.d N(0, 0.1) across i, j. X2,i,g are i.i.d Unif[0, 1]

across i, g.

• µ1,π2 = µ0,π2 + τ = µ0,0 + τ + ω, i.e. primary and spillover effects are additive and

homogeneous.

• σ(Cg, Ng) = Cg(Ng − 100)/100 and ϵi,g ∼ N(0, 10), which satisfies Assumption 3.5.2.

All simulations are performed with a sample of 200 clusters, in which all units are sampled,

i.e. Ng =Mg.

3.6.1 MSE Properties

This section examines the performance of optimal matched tuples designs and several other

designs via comparison of their MSEs (Mean Squared Errors). For simplicity, the parameters

are given as follows: αz,h = βz,h = 1, γ = 1/100 for all (z, h) ∈ {(0, 0), (0, π2), (1, π2)}. This

model configuration is referred to as “homogeneous model” since treatment effects are fully

captured by µz,h and thus are homogeneously additive in this setting. A more complicated

“heterogeneous model” will be introduced later. According to Theorem 3.5.1, the optimal

matched tuple designs for equally-weighted and size-weighted effects in the first stage are

E

[
Ȳg(1, π2)

π1
+
Ȳg(0, 0)

1− π1
| Cg, Ng

]
∝ Cg +Ng/100 , (3.30)

E

[
Ỹg(1, π2)

π1
+
Ỹg(0, 0)

1− π1
| Cg, Ng

]
∝ Ng(Cg +Ng/100)−

25

3
Ng . (3.31)

In the second stage, the optimal matched tuples design matches on X1,i,g/(X2,i,g + 0.1)

according to Theorem 3.5.2. This section considers the following experimental designs for

both stages:
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First-stage Parameter C S-2 S-4 S-4O MT-A MT-B MT-C

C

θP1 1.0000 0.9601 0.9270 0.9235 0.9720 0.9323 0.9106
θP2 1.0000 0.9803 0.9404 0.9263 0.9939 0.9573 0.9560
θS1 1.0000 0.9625 0.9187 0.9197 0.9649 0.9410 0.9093
θS2 1.0000 0.9921 0.9432 0.9209 0.9875 0.9709 0.9596

S-2

θP1 0.8437 0.7866 0.7859 0.7629 0.8473 0.7981 0.7957
θP2 0.8227 0.7601 0.7877 0.7440 0.8361 0.7880 0.7672
θS1 0.8396 0.7913 0.7754 0.7534 0.8473 0.8052 0.7943
θS2 0.8244 0.7790 0.7806 0.7438 0.8456 0.7904 0.7693

S-4

θP1 0.7772 0.8084 0.7730 0.7835 0.7603 0.7216 0.7262
θP2 0.7759 0.7757 0.7330 0.7473 0.7114 0.6909 0.7024
θS1 0.7711 0.8053 0.7656 0.7749 0.7556 0.7357 0.7283
θS2 0.7773 0.7848 0.7330 0.7482 0.7204 0.7100 0.7091

S-4O

θP1 0.2104 0.2102 0.2026 0.2010 0.2172 0.2115 0.2035
θP2 0.2418 0.2428 0.2371 0.2285 0.2339 0.2494 0.2241
θS1 0.2081 0.2136 0.2028 0.2002 0.2158 0.2221 0.2004
θS2 0.2367 0.2489 0.2418 0.2254 0.2396 0.2606 0.2226

MT-A

θP1 0.7683 0.8172 0.7573 0.7401 0.7347 0.7744 0.7097
θP2 0.7555 0.7693 0.7202 0.6726 0.7159 0.7665 0.6769
θS1 0.7592 0.8157 0.7573 0.7277 0.7310 0.7882 0.7035
θS2 0.7537 0.7763 0.7221 0.6644 0.7123 0.7847 0.6771

MT-B

θP1 0.2935 0.2806 0.2719 0.2970 0.2912 0.2847 0.2797
θP2 0.4175 0.4013 0.3802 0.4120 0.4134 0.3953 0.3880
θS1 0.2866 0.2935 0.2661 0.2941 0.2811 0.2810 0.2746
θS2 0.4143 0.4181 0.3786 0.4106 0.4020 0.3934 0.3841

MT-C

θP1 0.1160 0.1140 0.1047 0.1125 0.1095 0.1149 0.1069
θP2 0.0921 0.0873 0.0818 0.0893 0.0842 0.0874 0.0755
θS1 0.1221 0.1183 0.1143 0.1126 0.1076 0.1193 0.1045
θS2 0.0997 0.0930 0.0908 0.0891 0.0829 0.0914 0.0757

Table 3.2: Ratio of MSE under all designs against those under complete randomization in
both stages

1. (C) (Hg : 1 ≤ g ≤ G) is drawn from a completely randomized design (also known as

permuted block design), i.e. uniformly from the assignment space that π1G (or π2Ng

in the second stage) number of clusters/units get treated.

2. (S-2) A stratified design, where the experimental sample is divided into two strata

using the midpoint of covariate Cg (or X1,i,g in the second stage) as the cutoff. In each

stratum, treatment is assigned as in C.
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3. (S-4) As in (S-2), but with four strata.

4. (S-4O) The “optimal” stratification with four strata. Clusters/units are divided into

strata using quartiles of (3.30) and (3.31) for equally- and size-weighted estimands

respectively (or X1,i,g/(X2,i,g + 0.1) in the second stage).

5. (MT-A) Matched tuples design where units are ordered according to Cg (or X1,i,g in

the second stage).

6. (MT1-B) Matched tuples design where units are ordered according to cluster size Ng

(or X2,i,g in the second stage).

7. (MT-C) The optimal matched tuples design where units are ordered according to

(3.30) and (3.31) for equally- and size-weighted estimands respectively (orX1,i,g/(X2,i,g+

0.1) in the second stage).

Table 3.2 shows the ratio of the MSE of each design relative to the MSE of the design with

completely randomized assignments (C) in both stages, computed across 1000 Monte Carlo

iterations. The rows indicate first-stage designs, and columns indicate second-stage designs.

The lowest values in each row are marked in bold. In all designs, treatment effects are set

to zero by assigning µz,h = 0 for all (z, h) ∈ (0, 0), (0, π2), (1, π2), and the treated fraction

is set to 1/2 in both stages. As expected from Theorem 3.5.1 and 3.5.2, the matched-tuples

design with complete matching (MT-C) outperforms the other designs in the first stage

for all parameters of interest while remaining optimal in the second stage for many cases.

However, it is noticeable that the assignment mechanism in the first stage has a greater effect

on statistical precision than the second stage.
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H0 : τ = ω = 0 H1 : τ = ω = 0.05

First-stage Parameter S-2 S-4 S-4O MT-A MT-B MT-C S-2 S-4 S-4O MT-A MT-B MT-C

S-2

θP1 0.044 0.066 0.063 0.044 0.050 0.050 0.222 0.244 0.244 0.248 0.262 0.258
θP2 0.045 0.062 0.059 0.049 0.062 0.058 0.224 0.226 0.229 0.239 0.256 0.262
θS1 0.046 0.061 0.065 0.043 0.052 0.050 0.084 0.100 0.102 0.101 0.095 0.098
θS2 0.046 0.066 0.066 0.046 0.056 0.061 0.087 0.101 0.091 0.094 0.101 0.094

S-4

θP1 0.050 0.048 0.060 0.058 0.036 0.051 0.241 0.267 0.243 0.275 0.245 0.276
θP2 0.056 0.055 0.062 0.051 0.037 0.056 0.230 0.261 0.241 0.284 0.250 0.270
θS1 0.054 0.053 0.062 0.056 0.037 0.048 0.096 0.119 0.105 0.130 0.109 0.112
θS2 0.058 0.055 0.061 0.054 0.033 0.056 0.087 0.121 0.096 0.127 0.107 0.110

S-4O

θP1 0.048 0.051 0.052 0.058 0.054 0.066 0.692 0.729 0.691 0.708 0.685 0.716
θP2 0.048 0.059 0.062 0.058 0.055 0.060 0.608 0.629 0.588 0.630 0.582 0.639
θS1 0.048 0.055 0.047 0.057 0.054 0.057 0.220 0.268 0.247 0.282 0.222 0.241
θS2 0.052 0.060 0.054 0.055 0.052 0.058 0.220 0.228 0.214 0.246 0.192 0.208

MT-A

θP1 0.060 0.049 0.044 0.050 0.044 0.060 0.270 0.271 0.260 0.252 0.240 0.256
θP2 0.058 0.049 0.041 0.048 0.050 0.056 0.254 0.260 0.268 0.237 0.236 0.259
θS1 0.055 0.042 0.040 0.050 0.052 0.058 0.109 0.101 0.100 0.101 0.105 0.106
θS2 0.055 0.052 0.049 0.046 0.051 0.052 0.115 0.100 0.097 0.096 0.100 0.105

MT-B

θP1 0.044 0.053 0.057 0.031 0.043 0.051 0.565 0.582 0.586 0.553 0.530 0.586
θP2 0.053 0.047 0.058 0.041 0.045 0.057 0.402 0.419 0.444 0.403 0.378 0.431
θS1 0.049 0.045 0.052 0.035 0.051 0.052 0.197 0.203 0.216 0.174 0.184 0.198
θS2 0.053 0.046 0.057 0.038 0.050 0.059 0.148 0.158 0.180 0.131 0.135 0.148

MT-C

θP1 0.058 0.056 0.061 0.044 0.053 0.043 0.920 0.939 0.917 0.917 0.919 0.933
θP2 0.057 0.045 0.058 0.041 0.052 0.051 0.955 0.975 0.955 0.950 0.941 0.968
θS1 0.074 0.058 0.059 0.044 0.042 0.044 0.399 0.429 0.427 0.416 0.400 0.411
θS2 0.058 0.052 0.062 0.034 0.050 0.050 0.430 0.465 0.471 0.472 0.444 0.504

Table 3.3: Rejection probabilities under the null and alternative hypothesis

3.6.2 Inference

In this section, the focus shifts from optimality to studying the finite sample properties of

different tests for the following null hypotheses of interest:

H
P,1
0 : θP1 (QG) = 0, H

P,2
0 : θP2 (QG) = 0, H

S,1
0 : θS1 (QG) = 0, H

S,2
0 : θS2 (QG) = 0 ,

(3.32)
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against the alternative hypotheses:

H
P,1
1 : θP1 (QG) = τ+ω, H

P,2
1 : θP2 (QG) = τ+ω, H

S,1
1 : θS1 (QG) = ω, H

S,2
1 : θS2 (QG) = ω .

(3.33)

In Table 3.3, the six assignment mechanisms with covariate-adaptive randomization (De-

sign 2-7 in Section 3.6.1) for the first and second stages are considered, resulting in a total

of 36 different designs. Hypothesis tests are performed at a significance level of 0.05, and

rejection probabilities under the null and alternative hypotheses are computed from 1000

Monte Carlo iterations in each case. Tests are constructed as “adjusted t-tests” using the

asymptotic results from Theorem 3.3.1-3.4.2. For stratified designs in the first stage (S-2,

S-4 and S-4O), tests for equally- and size-weighted effects are performed using my variance

estimators V̂1(z) and V̂2(z). For matched tuples designs in the first stage (MT-A, MT-B

and MT-C), tests for equally- and size-weighted effects are performed using the variance

estimators V̂3(z) and V̂4(z). The results show that the rejection probabilities are univer-

sally around 0.05 under the null hypothesis, which verifies the validity of tests based on my

asymptotic results across all the designs. Under the alternative hypotheses, the rejection

probabilities vary substantially across the first-stage designs while remaining relatively sta-

ble across the second-stage designs. MT-C stands out as the most powerful design for the

first-stage. These findings are consistent with previous section.

Next, the validity of commonly used regression-based inference methods in the empirical

literature is tested. These methods are tested under both the “homogeneous model” from the

previous simulation study in Section 3.6.1 and a “heterogeneous model” in which two param-

eters are modified as follows: α1,π2 = β1,π2 = 2, α0,π2 = β0,π2 = 0.5, and α0,0 = β0,0 = 1.

The key difference between the two models is whether the conditional expectations of po-

tential outcomes are identical or different across different exposures (z, h). Four commonly

used regression methods are considered in this study:
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Model Inference Method Effect S-4O S-4O S-4O MT-C MT-C MT-C
C S-4O MT-C C S-4O MT-C

Homogeneous

OLS robust Primary 0.184 0.194 0.156 0.062 0.086 0.049
(standard t-test) Spillover 0.184 0.167 0.159 0.077 0.048 0.048

OLS cluster Primary 0.000 0.000 0.000 0.000 0.000 0.000
(clustered t-test) Spillover 0.000 0.000 0.000 0.000 0.000 0.000

OLS with group Primary 0.209 0.196 0.179 0.100 0.106 0.077
fixed effects (robust) Spillover 0.201 0.184 0.177 0.113 0.100 0.075

OLS with group Primary 0.028 0.027 0.029 0.068 0.085 0.071
fixed effects (clustered) Spillover 0.036 0.027 0.026 0.064 0.062 0.069

Heterogeneous

OLS robust Primary 0.118 0.118 0.175 0.061 0.048 0.080
(standard t-test) Spillover 0.225 0.213 0.162 0.135 0.144 0.069

OLS cluster Primary 0.000 0.001 0.000 0.000 0.000 0.000
(clustered t-test) Spillover 0.002 0.000 0.000 0.000 0.000 0.000

OLS with group Primary 0.118 0.115 0.172 0.079 0.057 0.125
fixed effects (robust) Spillover 0.250 0.253 0.166 0.273 0.265 0.150

OLS with group Primary 0.024 0.015 0.023 0.056 0.051 0.047
fixed effects (clustered) Spillover 0.027 0.018 0.025 0.045 0.071 0.061

Table 3.4: Rejection probabilities of various inference methods under the null hypothesis

1. OLS robust: regress Yi,g on a constant, individual-level treatment indicator Zi,g and the

indicator for untreated units in treated clusters Li,g. Tests for primary and spillover ef-

fects are performed using standard t-tests under robust standard errors to heteroskedas-

ticity.

2. OLS cluster: run the same regression as “OLS robust” but perform t-tests with clustered

standard errors.

3. OLS with group fixed effects (robust): regress Yi,g on a constant, Zi,g, Li,g and fixed

effects for strata or tuples Sg. Tests are performed using standard t-tests under robust

standard errors to heteroskedasticity.
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4. OLS with group fixed effects (clustered): run the same regression as “OLS with group

fixed effects (robust)” but perform t-tests with clustered standard errors.

Note that due to full sampling, i.e. Ng =Mg, regressions without fixed effects (“OLS robust”

and “OLS cluster”) output the same estimators as the size-weighted estimators θ̂P2 and θ̂S2 .

Most of the previous empirical analysis on covariate-adaptive two-stage experiments report

cluster-robust standard errors in their main results, which could either be “OLS cluster”

(see for example Duflo and Saez, 2003) or “OLS with group fixed effects (clustered)” (see

for example Ichino and Schündeln, 2012). For brevity, Table 3.4 includes only six designs:

those with either S-4O or MT-C in the first stage, and C, S-4O, or MT-C in the second

stage. The table reveals that test results can be either conservative or invalid across different

regression methods and designs. For stratified designs in the first stage, methods based on

“robust” standard errors tend to over-reject, while methods based on “clustered” standard

errors tend to under-reject. For matched tuples designs, “OLS cluster” is conservative, and

the remaining methods could be invalid as they may over-reject the null hypothesis under

some model specifications and parameters of interest. Similar results can also be found in

the previous literature on covariate-adaptive randomization. For example, Bai et al. (2022b)

demonstrated that inferences based on OLS regressions with strata fixed effects could be

invalid. On the other hand, de Chaisemartin and Ramirez-Cuellar (2022b) documented that

in cluster randomized experiments, t-test based on clustered standard errors tend to over-

reject the null hypothesis when strata fixed effects are included, and under-reject otherwise.

Therefore, it can be concluded that, with the exception of “OLS cluster” being conservative,

the other three inference methods based on regression are generally invalid.

3.7 Empirical Application

In this section, the inference methods introduced in Section 3.3 are illustrated using data

collected in Foos and de Rooij (2017). The experiment conducted by Foos and de Rooij (2017)
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is a randomly assigned spillover experiment in the United Kingdom designed to identify

social influence within heterogeneous and homogeneous partisan households. The study first

stratified 5190 two-voter households into three blocks based on the latest recorded party

preference of the experimental subject9: “Labour” supporter,“rival party” supporter and

those who were “unattached” to a party. Then experimental subjects or equivalently their

households were randomly assigned to three groups: high partisan intensity treatment, low

partisan intensity and control. Experimental subjests allocated to treatment groups were

called by telephone and encouraged to vote in the PCC election on November 15, 2012. The

“high partisan intensity” was formulated in a strongly partisan tone, explicitly mentioning

the Labour Party and policies multiple time, while the “low partisan intensity” treatment

message avoided all statements about party competition.

In the original analysis of Foos and de Rooij (2017), their main focus was on analyzing

treatment effects conditional on a wide range of pre-treatment covariates. That said, in

the final column of Table 1 in Foos and de Rooij (2017), they report estimators for (un-

conditional) primary and spillover effects, which are based on calculations of averages over

separate experimental subjects and unassigned subjects. In contrast, my estimators do not

distinguish experimental subjects from unassigned subjects and take averages solely based

on treatment or spillover status. Another difference in my analysis is that estimators are

calculated by pooling the two treatment arms, i.e. high and low partisan intensity, to main-

tain consistency with the setup of the paper. In contrast, Foos and de Rooij (2017) provide

separate estimates for each treatment arm.

Table 3.5 compares point estimates of treatment effect on turnout percentage and confi-

dence intervals obtained from the four regression methods listed in Section 3.6.2 with those

based on my theoretical results, namely “adjusted t-test”. Since cluster (household) size is

fixed, equally-weighted and size-weighted estimators and estimands collapse into one. More-

9. Before assigning treatments, the researchers randomly selected one individual per household to poten-
tially receive treatments, whom they mark as “experimental subjects”.
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Table 3.5: Point estimates and confidence intervals for testing the primary and spillover
effects

adjusted t-test OLS robust OLS cluster OLS fe robust OLS fe cluster

Primary 3.0488 3.0488 3.0488 2.9971 2.9971
[0.8339, 5.2638] [0.9962, 5.1014] [0.8103, 5.2874] [0.9633, 5.0308] [0.7812, 5.2129]

Spillover 4.5930 4.5930 4.5930 4.5413 4.5413
[2.3430, 6.8431] [2.5046, 6.6815] [2.3216, 6.8645] [2.4694, 6.6132] [2.2904, 6.7922]

Note: The original paper did not mention the target treated fraction π1. I decide to use the empirical treated
fraction, 1/G

∑
1≤g≤G I{Hg = π2}, to calculate the variance estimators.

over, full sampling (Ng =Mg = 2) makes the point estimates of “adjusted t-test” and “OLS

robust/cluster” equivalent. In the simulation study, it is found that ‘OLS robust” and “OLS

fe robust” tend to over-reject the null hypothesis, which is consistent with the empirical re-

sults in Table 3.5 that they both have narrower confidence interval than the “adjusted t-test”.

Furthermore, “OLS cluster” and “OLS fe cluster” are shown to be conservative in the simu-

lation study, and accordingly, they both have wider confidence intervals than the “adjusted

t-test” in Table 3.5. Therefore, the empirical findings are consistent with the simulation

study in Table 3.4.

3.8 Recommendations for Empirical Practice

Based on the theoretical results and the supporting simulation study, I conclude with the

following recommendations for empirical practice, particularly in conducting inference about

the parameters of interest, as listed in Table 3.1. In scenarios where the size of strata is

considerably large, such as more than 50 clusters as exemplified in simulation S-4, we advise

practitioners to utilize V̂1(1) and V̂1(0), as defined in (3.19), for estimating the equally-

weighted primary effect θP1 and the spillover effect θS1 . Similarly, V̂2(1) and V̂2(0), as detailed

in (3.20), should be employed for the size-weighted primary effect θP2 and the spillover

effect θS2 . However, when it is unclear whether the strata size is sufficiently large, or more

commonly, when the experimental design involves a matched-tuples design with only one
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or two observations per treatment arm, we recommend the application of V̂3(1), V3(0) and

V̂4(1), V̂4(0) as indicated in (3.28) for the corresponding equally-weighted and size-weighted

effects.

The results of this study have shown that tests based on the regression specified in

equation (3.3) with HC2 cluster-robust standard errors are valid but potentially conservative,

which would result in a loss of power relative to our proposed test. Further, it’s critical to

note that regressions using strata fixed effects or heteroskedasticity-robust standard errors

have generally been found invalid in the simulation study.

Based on the optimality results and following earlier studies (Bai (2022b), Cytrynbaum

(2023b), Bruhn and McKenzie (2009b)), I recommend matching clusters and units on esti-

mated index functions as outlined in Theorem 3.5.1 and 3.5.2 when data from large pilots are

available. In cases with limited or no pilot data, alternatives include matching on baseline

outcomes and adopting suitable matching algorithms (see, e.g., Bai et al., 2021b; Cytryn-

baum, 2023b) when dealing with multiple covariates.
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APPENDIX A

APPENDIX FOR CHAPTER 1

A.1 Additional Details

A.1.1 Details for Section 1.5

Proposition A.1.1. Consider the setting with three treatment statuses {1, 2, 3}, where 1 corresponds to

being untreated and 2 and 3 correspond to two treatments. In a matched quadruplets design where each

quadruplet has two untreated units and one unit for each treatment, the test introduced in Section 1.3.1 with

D′ = {1, 2, 3, 4} and

ν =


−1/2 −1/2 1 0

−1/2 −1/2 0 1

0 0 −1 1


is valid for testing (1.12)–(1.13) at level α ∈ (0, 1).

Proof of Proposition A.1.1. Consider a design of matched-quadruplets with two treatments d = 2, 3

and two controls d = 1, i.e a quadruplet consisting of (1, 1, 2, 3). The difference-in-mean estimator for the

effect of the first treatment d = 2 is

∆̂2 =
1

n

4n∑
i=1

I{Di = 2}Yi −
1

2n

4n∑
i=1

I{Di = 1}Yi

Note that
√
n
(
∆̂2 −∆2(Q)

)
= An,2 + Cn,2 − (An,1 + Cn,1) ,

where

An,2 =
1√
n

∑
1≤i≤4n

I{Di = 2}(Yi(2)− E[Yi(2)|X(n), D(n)])

Cn,2 =
1√
n

∑
1≤i≤4n

I{Di = 2}(E[Yi(2)|X(n), Dn]− E[Yi(2)]) .
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and

An,1 =
1

2
√
n

∑
1≤i≤4n

I{Di = 1}(Yi(1)− E[Yi(1)|X(n), D(n)])

Cn,1 =
1

2
√
n

∑
1≤i≤4n

I{Di = 1}(E[Yi(1)|X(n), Dn]− E[Yi(1)]) .

Let Ij denote the set of indices for the two untreated units in the j-th tuple. Note

Var[An,1|X(n), D(n)]

=
1

2 · 2n
∑

1≤i≤4n

I{Di = 1}Var[Yi(1)|Xi]

=
1

2 · 4n
∑

1≤i≤4n

Var[Yi(1)|Xi]−
1

8n

∑
1≤j≤n

1

2

∑
ij∈Ij

∑
k∈λj :k ̸∈Ij

(Var[Yk(1)|Xk]−Var[Yij |Xij ])

It follows from similar arguments as in the proof of Theorem 1.3.1 that the second term goes to zero.

Therefore,

Var[An,1|X(n), D(n)]
P→ 1

2
E[Var[Yi(1)|Xi]] .

It therefore follows from Lemma S.1.2 of Bai et al. (2021a) that

γ

((An,2, An,1)
′ |X(n), D(n)

)
, N

0,

E[Var[Yi(2)|Xi]] 0

0 1
2E[Var[Yi(1)|Xi]]

 P→ 0 ,

where γ is any metric that metrizes weak convergence.

Next, note

E[Cn,2|X(n)] =
1√
n

∑
1≤i≤4n

1

4
(E[Yi(2)|X(n)]− E[Yi(2)]) =

1

4
√
n

∑
1≤i≤4n

(Γ2(Xi)− Γ2)

E[Cn,1|X(n)] =
1

2
√
n

∑
1≤i≤4n

1

2
(E[Yi(1)|X(n)]− E[Yi(1)]) =

1

4
√
n

∑
1≤i≤4n

(Γ1(Xi)− Γ1) .

Therefore,

(Cn,2, Cn,1)
′ d→ N

0,
1

4

 Var(Γ2(Xi)) Cov(Γ2(Xi),Γ1(Xi))

Cov(Γ2(Xi),Γ1(Xi)) Var(Γ1(Xi))]

 .

It then follows from Lemma S.1.2 of Bai et al. (2021a) that

√
n
(
∆̂2 −∆2(Q)

)
d→ N (0,V2) ,
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where

V2 = E[Var[Yi(2)|Xi]] +
1

2
E[Var[Yi(1)|Xi]] +

1

4
(Var(Γ2(Xi)) + Var(Γ1(Xi))− 2Cov(Γ2(Xi),Γ1(Xi))) .

Now, suppose we pretend the two untreated units are assigned to two distinct treatment levels and

denote the two untreated levels and two treated levels by d ∈ {1, 2, 3, 4}, where d = 1, 2 actually corresponds

to the untreated units. Our estimand can then be defined as

∆̃2(Q) = Γ3(Q)− 1

2
(Γ1(Q) + Γ2(Q))

Applying the existing results in Theorem 1.3.1 with ν = (−1/2,−1/2, 1, 0). It follows that

√
n
(
∆̂2 − ∆̃2(Q)

)
d→ N

(
0, Ṽ2

)
,

where

Ṽ2 = E[Var[Yi(3)|Xi]] +
1

4
(E[Var[Yi(1)|Xi]] + E[Var[Yi(2)|Xi]])

+
1

4

(
Var(Γ3(Xi)) +

1

4
Var(Γ1(Xi)) +

1

4
Var(Γ2(Xi)) +

1

2
Cov(Γ2(Xi),Γ1(Xi))

− Cov(Γ3(Xi),Γ1(Xi))− Cov(Γ3(Xi),Γ2(Xi))

)
= V2 ,

where the last equality follows by setting d = 1, 2, 3 to d = 1, 1, 2. The same argument holds for v =

(−1/2,−1/2, 0, 1). As for ν = (0, 0,−1, 1), the estimation and inference of the third and fourth arms is

not affected by treatment status in the first two arms. Therefore, pretending two controls are two different

treatment levels yields the true asymptotic variance, meaning that the inference is still valid.
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A.2 Proofs of Main Results

A.2.1 Proof of Theorem 1.3.1

We derive the limiting distribution of
√
n(Γ̂n(d)−Γd(Q) : d ∈ D), from which the conclusion of the theorem

follows by an application of the continuous mapping theorem. Note that

√
n(Γ̂n(d)− Γd(Q) : d ∈ D)′ = An + Cn ,

where An = (An,d : d ∈ D)′, Cn = (Cn,d : d ∈ D)′, and

An,d =
1√
n

∑
1≤i≤|D|n

I{Di = d}(Yi(d)− E[Yi(d)|X(n), D(n)])

Cn,d =
1√
n

∑
1≤i≤|D|n

I{Di = d}(E[Yi(d)|X(n), Dn]− E[Yi(d)]) .

Note that conditional on X(n), D(n), Cn,d’s are constants, and An,d’s are independent. By Assumption 1.2.2,

for d ∈ D, E[Yi(d)|X(n), D(n)] = E[Yi(d)|Xi]. Fix d ∈ D. Let ij ∈ λj be such that Dij = d. Note

Var[An,d|X(n), D(n)]

=
1

n

∑
1≤i≤|D|n

I{Di = d}Var[Yi(d)|Xi]

=
1

|D|n
∑

1≤i≤|D|n

Var[Yi(d)|Xi]−
1

|D|n
∑

1≤j≤n

∑
k∈λj :k ̸=ij

(Var[Yk(d)|Xk]−Var[Yij (d)|Xij ])

where the first equality follows from Assumption 1.2.2. By Assumption 1.2.1(b) and the weak law of large

numbers,
1

|D|n
∑

1≤i≤|D|n

Var[Yi(d)|Xi]
P→ E[Var[Yi(d)|Xi]] .
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By Assumptions 1.2.1(c) and 3.4.3, we have

∣∣∣ 1

|D|n
∑

1≤j≤n

∑
k∈λj :k ̸=ij

(Var[Yk(d)|Xk]−Var[Yij (d)|Xij ])
∣∣∣

≤ 1

|D|n
∑

1≤j≤n

∑
k∈λj :k ̸=ij

|Var[Yk(d)|Xk]−Var[Yij (d)|Xij ]|

≲
1

n

∑
1≤j≤n

∑
k∈λj :k ̸=ij

∥Xk −Xij∥

≤ |D| − 1

n

∑
1≤j≤n

max
i,k∈λj

∥Xi −Xk∥
P→ 0 .

Therefore, Var[An,d|X(n), D(n)]
P→ E[Var[Yi(d)|Xi]]. We can then verify Lindeberg’s condition as in the

proof of Lemma S.1.4 of Bai et al. (2021a). It follows that

γ(((An,d : d ∈ D)′|X(n), D(n))), N(0,V1))
P→ 0 ,

where V1 = diag(E[Var[Yi(d)|Xi]] : d ∈ D) and γ is any metric that metrizes weak convergence.

Next,

E[Cn,d|X(n)] =
1

|D|
√
n

∑
1≤i≤|D|n

(Γd(Xi)− Γd)

and

Var[Cn,d|X(n)] =
1

n

∑
1≤j≤n

∑
i∈λj

1

|D|

(
Γd(Xi)−

1

|D|
∑
k∈λj

Γd(Xk)
)2

≲
1

n

∑
1≤j≤n

max
i,k∈λj

∥Xi −Xk∥2
P→ 0

by Assumption 1.2.1(c) and 3.4.3. Therefore, by repeating the argument which establishes (S.24) in the

proof of Lemma S.1.4 of Bai et al. (2021a), it follows that

Cn,d =
1

|D|
√
n

∑
1≤i≤|D|n

(Γd(Xi)− Γd) + oP (1) .

Therefore,

(Cn,d : d ∈ D)
d→ N(0,V2) ,
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where (V2)d,d′ = 1
|D| Cov(Γd(Xi),Γd′(Xi)). It then follows from Lemma S.1.2 of Bai et al. (2021a) that

√
n(Γ̂n(d)− Γd : d ∈ D)′

d→ N(0,V1 + V2) .

The conclusion now follows.

A.2.2 Proof of Theorem 1.3.2

The conclusion follows from Lemmas A.3.1–A.3.3 together with the continuous mapping theorem.

A.2.3 Proof of Theorem 1.3.3

Define

Ci = (I{Di = 2}, . . . , I{Di = |D|})′ .

To begin, note it follows from the Frisch-Waugh-Lovell theorem and Assumption 1.2.2 that


β̂n(2)

...

β̂n(|D|)

 =

 ∑
1≤i≤|D|n

C̃iC̃
′
i

−1 ∑
1≤i≤|D|n

C̃iYi ,

where

C̃i =

(
I{Di = 2} − 1

|D|
, . . . , I{Di = |D|} − 1

|D|

)′

.

Next, note for ∑
1≤i≤|D|n

C̃iC̃
′
i ,

the diagonal entries are |D|−1
|D| n and the off-diagonal entries are − 1

|D|n. It follows from element calculation

that the diagonal entries of
(∑

1≤i≤|D|n C̃iC̃
′
i

)−1

are 2
n and the off-diagonal entries are 1

n . Furthermore,

∑
1≤i≤|D|n

C̃iYi =


nΓ̂n(2)− 1

|D|
∑

1≤i≤|D|n Yi
...

nΓ̂n(|D|)− 1
|D|
∑

1≤i≤|D|n Yi

 .
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Therefore, for d ∈ D\{1},

β̂n(d) =
2

n

(
nΓ̂n(d)−

1

|D|
∑

1≤i≤|D|n

Yi

)
+

1

|D|
∑

d′∈D\{1,d}

Γ̂n(d
′)− |D| − 2

|D|n
∑

1≤i≤|D|n

Yi

= Γ̂n(d)− Γ̂n(1) .

The first conclusion of the theorem then follows.

Next, note by the properties of the OLS estimator that

δ̂j,n =

 ∑
1≤i≤|D|n

I{i ∈ λj}

−1 ∑
1≤i≤|D|n

I{i ∈ λj}

Yi − ∑
d∈D\{1}

β̂n(d)I{Di = d}


=

1

|D|
∑
i∈λj

Yi −
1

|D|
∑

d∈D\{1}

β̂n(d) .

Therefore,

ϵ̂i =


Yi −

∑
1≤j≤n I{i ∈ λj} 1

|D|
∑

k∈λj
Yk + 1

|D|
∑

d′∈D\{1} β̂n(d
′) , if Di = 1

Yi − β̂n(d)−
∑

1≤j≤n I{i ∈ λj} 1
|D|
∑

k∈λj
Yk + 1

|D|
∑

d′∈D\{1} β̂n(d
′) , if Di = d ̸= 1 .

It follows from Lemma A.3.4 that the heteroskedasticity-robust variance estimator of (β̂n(2), . . . , β̂n(|D|))′

equals  ∑
1≤i≤|D|n

C̃iC̃
′
i

−1 ∑
1≤i≤|D|n

ϵ̂2i C̃iC̃
′
i

 ∑
1≤i≤|D|n

C̃iC̃
′
i

−1

.

For d ∈ D\{1}, the corresponding (d− 1)-th diagonal term of A =
∑

1≤i≤|D|n ϵ̂
2
i C̃iC̃

′
i equals

Ad =
∑

1≤i≤|D|n

I{Di = 1} 1

|D|2
ϵ̂2i +

∑
1≤i≤|D|n

I{Di = d} (|D| − 1)2

|D|2
ϵ̂2i +

∑
d̃∈D\{1,d}

∑
1≤i≤|D|n

I{Di = d̃} 1

|D|2
ϵ̂2i .

For d̃ ̸= ď ∈ D\{1}, the correponding (d̃− 1, ď− 1)-th term of
∑

1≤i≤|D|n ϵ̂
2
i C̃iC̃

′
i equals

Ad̃,ď =
∑

1≤i≤|D|n

I{Di = 1} 1

|D|2
ϵ̂2i +

∑
1≤i≤|D|n

I{Di = d̃}−(|D| − 1)

|D|2
ϵ̂2i

+
∑

1≤i≤|D|n

I{Di = ď}−(|D| − 1)

|D|2
ϵ̂2i +

∑
d′∈D\{1,d̃,ď}

∑
1≤i≤|D|n

I{Di = d′} 1

|D|2
ϵ̂2i .
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Therefore,

V̂sfe
n (d, 1)

=
4

n2
Ad +

1

n2

∑
d̃∈D\{1,d}

Ad̃ +
4

n2

∑
d̃∈D\{1,d}

Ad,d̃ +
2

n2

∑
d̃<ď∈D\{1,d}

Ad̃,ď

=
4 + |D| − 2 + 4(|D| − 2) + 2(|D| − 2)(|D| − 3)/2

n2

∑
1≤i≤|D|n

I{Di = 1} 1

|D|2
ϵ̂2i

+
1

n2

∑
1≤i≤|D|n

I{Di = d}4(|D| − 1)2 + |D| − 2− 4(|D| − 1)(|D| − 2) + 2(|D| − 2)(|D| − 3)/2

|D|2
ϵ̂2i

+
1

n2

∑
d̃∈D\{1,d}

∑
1≤i≤|D|n

I{Di = d̃}

× 4 + (|D| − 1)2 + |D| − 3− 4(|D| − 1) + 4(|D| − 3)− 2(|D| − 1)(|D| − 3) + 2(|D| − 3)(|D| − 4)/2

|D|2
ϵ̂2i

=
1

n2

∑
1≤i≤|D|n

I{Di = 1}ϵ̂2i +
1

n2

∑
1≤i≤|D|n

I{Di = d}ϵ̂2i

=
1

n2

∑
1≤i≤|D|n

I{Di = 1}

Yi − ∑
1≤j≤n

I{i ∈ λj}
1

|D|
∑
k∈λj

Yk +
1

|D|
∑

d′∈D\{1}

β̂n(d
′)

2

+
1

n2

∑
1≤i≤|D|n

I{Di = d}

Yi − β̂n(d)−
∑

1≤j≤n

I{i ∈ λj}
1

|D|
∑
k∈λj

Yk +
1

|D|
∑

d′∈D\{1}

β̂n(d
′)

2

=
1

n2

∑
1≤i≤|D|n

I{Di = 1}

Yi − Γ̂n(1)−
∑

1≤j≤n

I{i ∈ λj}
1

|D|
∑
k∈λj

Yk +
1

|D|
∑
d′∈D

Γ̂n(d
′)

2

+
1

n2

∑
1≤i≤|D|n

I{Di = d}

Yi − Γ̂n(d)−
∑

1≤j≤n

I{i ∈ λj}
1

|D|
∑
k∈λj

Yk +
1

|D|
∑
d′∈D

Γ̂n(d
′)

2

=
1

n2

∑
1≤i≤|D|n

I{Di = 1}

Yi − Γ̂n(1)−
∑

1≤j≤n

I{i ∈ λj}
1

|D|
∑
k∈λj

Yk +
1

|D|
∑
d′∈D

Γ̂n(d
′)

2

+
1

n2

∑
1≤i≤|D|n

I{Di = d}

Yi − Γ̂n(d)−
∑

1≤j≤n

I{i ∈ λj}
1

|D|
∑
k∈λj

Yk +
1

|D|
∑
d′∈D

Γ̂n(d
′)

2

=
1

n2

∑
1≤j≤n

∑
i∈λj

(
I{Di = 1} − 1

|D|

)
Yi

2

− 1

n

(
Γ̂n(1)−

1

|D|
∑
d′∈D

Γ̂n(d
′)

)2

+
1

n2

∑
1≤j≤n

∑
i∈λj

(
I{Di = d} − 1

|D|

)
Yi

2

− 1

n

(
Γ̂n(d)−

1

|D|
∑
d′∈D

Γ̂n(d
′)

)2

,
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where in the last equality we used the fact that for d ∈ D,

∑
1≤i≤|D|n

I{Di = d}

Yi − ∑
1≤j≤n

I{i ∈ λj}
1

|D|
∑
k∈λj

Yk

(Γ̂n(d)−
1

|D|
∑
d′∈D

Γ̂n(d
′)

)

= n

(
Γ̂n(d)−

1

|D|
∑
d′∈D

Γ̂n(d
′)

)2

.

It follows from Assumptions 1.2.1 and 3.4.3 as well as Lemmas A.3.1–A.3.3 that as n→ ∞,

Γ̂n(d)
P→ E[Yi(d)] for all d ∈ D

1

n

∑
1≤j≤n

∑
i∈λj

I{Di = d}Y 2
i

P→ E[Y 2
i (d)]

1

n

∑
1≤j≤n

∑
i∈λj

I{Di = d}Yi

∑
i∈λj

I{Di = d′}Yi

 P→ E[Γd(Xi)Γd′(Xi)] for all d ̸= d′ ∈ D .

Therefore,

nV̂sfe
n (d, 1)

P→ Var

[
Γ1(Xi)−

1

|D|
∑
d′∈D

Γd′(Xi)

]
+

(
1− 1

|D|

)2

E[Var[Yi(1)|Xi]]

+
1

|D|2
∑

d′∈D\{1}

E[Var[Yi(d
′)|Xi]] + Var

[
Γd(Xi)−

1

|D|
∑
d′∈D

Γd′(Xi)

]

+

(
1− 1

|D|

)2

E[Var[Yi(d)|Xi]] +
1

|D|2
∑

d′∈D\{d}

E[Var[Yi(d
′)|Xi]] .

Finally, note by Theorem 1.3.1 that the actual limiting variance for Γ̂n(d)− Γ̂n(1) is

E [Var[Yi(d)|Xi]] + E[Var[Yi(1)|Xi]] +
1

|D|
E
[
((Γd(Xi)− Γd)− (Γ1(Xi)− Γ1))

2
]
.

Consider the special case where E[Var[Yi(d
′)|Xi]] are identical across d′ ∈ D and

Γ1(Xi) = Γd(Xi) =
1

|D|
∑
d′∈D

Γd′(Xi) with probability one .

Then, the probability limit of nV̂sfe
n (d, 1) is clearly strictly smaller than the actual limiting variance for

Γ̂n(d)− Γ̂n(1).

For variance estimator HC 1, consider the special case where Γd(Xi) are identical across d ∈ D,
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E[Var[Yi(d)|Xi]] > 0, E[Var[Yi(1)|Xi]] > 0, and E[Var[Yi(d
′)|Xi]] is zero for all d′ ∈ D\{1, d}. Then,

nV̂sfe
n (d, 1)× |D|n

|D|n− (|D| − 1 + n)

P→ |D|
|D| − 1

((
1− 1

|D|

)2

+
1

|D|2

)
(E[Var[Yi(d)|Xi]] + E[Var[Yi(1)|Xi]])

=
|D|2 − 2|D|+ 2

|D|2 − |D|
(E[Var[Yi(d)|Xi]] + E[Var[Yi(1)|Xi]]) .

Note that
|D|2 − 2|D|+ 2

|D|2 − |D|
< 1

if and only if |D| > 2. By a continuity argument, the result then follows for the case where E[Var[Yi(d
′)|Xi]]

is sufficiently close to zero for all d′ ∈ D\{1, d}.

A.2.4 Proof of Theorem 1.3.4

First, note that

 1

n

∑
1≤j≤n

∑
i∈λj

CiC
′
i

−1

=



|D| 1 1 . . . 1

1 1 0 . . . 0

1 0 1 . . . 0

...
...

...
. . .

...

1 0 0 . . . 1



−1

=



1 −1 −1 . . . −1

−1 2 1 . . . 1

−1 1 2 . . . 1

...
...

...
. . .

...

−1 1 1 . . . 2


,

and note that

∑
i∈λj

ϵ̂iCi =



∑
i∈λj

∑
d∈D\{1}(Yi − γ̂n(d))I{Di = d}+ YiI{Di = 1} − γ̂n(1)∑

i∈λj
(Yi − γ̂n(2)− γ̂n(1))I{Di = 2}∑

i∈λj
(Yi − γ̂n(3)− γ̂n(1))I{Di = 3}

...∑
i∈λj

(Yi − γ̂n(|D|)− γ̂n(1))I{Di = |D|}


.
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Combining these expressions, it follows that the d-th diagonal element of n · V̂bcve
n is equal to

n · V̂bcve
n (d) =

1

n

∑
1≤j≤n

∑
i∈λj

(Yi − γ̂n(d)− γ̂n(1))I{Di = d} −
∑
i∈λj

(Yi − γ̂n(1))I{Di = 1}

2

=
1

n

∑
1≤j≤n

∑
i∈λj

YiI{Di = d} −
∑
i∈λj

YiI{Di = 1}

2

− (Γ̂n(d)− Γ̂n(1))
2 .

Where the second equality exploits the fact that γ̂n(d) = Γ̂n(d) − Γ̂n(1) for d ∈ D\{1} and γ̂n(1) = Γ̂n(1).

It thus follows from Lemmas A.3.1–A.3.2 and the continuous mapping theorem that

n · V̂bcve
n (d)

p−→ E[Var[Yi(d)|Xi]] + E[Var[Yi(1)|Xi]] + E
[
((Γd(Xi)− Γd)− (Γ1(Xi)− Γ1))

2
]
.

Next, note that by Theorem 1.3.1, the actual limiting variance of Γ̂n(d)− Γ̂n(1) is given by

E [Var[Yi(d)|Xi]] + E[Var[Yi(1)|Xi]] +
1

|D|
E
[
((Γd(Xi)− Γd)− (Γ1(Xi)− Γ1))

2
]
.

Therefore, the test defined in (1.8) is conservative unless

E
[
((Γd(Xi)− Γd)− (Γ1(Xi)− Γ1))

2
]
= 0 ,

as desired.

A.2.5 Proof of Theorem 1.3.5

The proof is similar to the proof of Theorem 1.3.1, with the difference being that two units are assigned to

each treatment status in each block. The necessary modification follows from arguing similarly as in Lemma

B.3 of Bai (2022a) and is omitted.

129



A.2.6 Proof of Theorem 1.3.6

First note

E[ρ̃n(d, d)|X(n)]

=
2

n

∑
1≤j≤⌊n/2⌋

1(
2|D|
2

) ∑
i<l,i,l∈λj

E[Yi(d)Yl(d)|X(n)]

=
2

n

∑
1≤j≤⌊n/2⌋

1(
2|D|
2

) ∑
i<l,i,l∈λj

E[Yi(d)|Xi]E[Yl(d)|Xl] ,

where the first equality follows from the conditional independence assumption in Assumption 1.2.2 and the

fact that in each block, there are
(
2|D|
2

)
ways to choose 2 units out of 2|D| units and assign them to treatment

arm d, and the second equality follows from the fact that conditional on X(n), Y (n)(d) are i.i.d. across units.

(1.11) then follows by arguing similarly as in the proof of Lemma A.3.3 below (see also Section 4.7 of Bai

(2022a)).

A.2.7 Proof of Theorem 1.3.7

First we show that
√
n(∆̂ν,n −∆ν(Q))

d−→ N(0, σ2
h,ν) ,

under the stratified factorial design defined by h(·). To show this, we derive the limiting distribution of
√
n(Γ̂n(d)− Γd(Q) : d ∈ D). To that end, note that

√
n(Γ̂n(d)− Γd(Q) : d ∈ D)′ = An +Bn + Cn + oP (1) ,

where An = (An,d : d ∈ D)′, Bn = (Bn,d : d ∈ D)′, Cn = (Cn,d : d ∈ D)′, with

An,d =
√
|D| 1√

Jn

∑
1≤i≤Jn

(Yi(d)− E[Yi(d)|h(Xi)])I{Di = d}

Bn,d =
√
|D| 1√

Jn

∑
1≤i≤Jn

(I{Di = d} − π)(E[Yi(d)|h(Xi)]− E[Yi(d)])

Cn,d =
√
|D| 1√

Jn

∑
1≤i≤Jn

π(E[Yi(d)|h(Xi)]− E[Yi(d)]) ,

130



where π := 1
|D| . Re-writing each of these terms using the fact that

E[Yi(d)|h(Xi)] =
∑

1≤s≤S

E[Yi(d)|h(Xi)]I{h(Xi) = s} =
∑

1≤s≤S

E[Yi(d)|h(Xi) = s]I{h(Xi) = s} ,

we obtain

An,d =
√
|D|

∑
1≤s≤S

1√
Jn

∑
1≤i≤Jn

(E[Yi(d)|h(Xi)]− E[Yi(d)])I{Di = d, h(Xi) = s}

Bn,d =
√
|D|

∑
1≤s≤S

(E[Yi(d)|h(Xi) = s]− E[Yi(d)])
Jn(s)

Jn

√
Jn

(
Jn,d(s)

Jn(s)
− π

)

Cn,d =
√
|D|

∑
1≤s≤S

π(E[Yi(d)|h(Xi) = s]− E[Yi(d)])
√
Jn

(
Jn(s)

Jn
− p(s)

)
,

where Jn(s) =
∑

1≤i≤Jn
I{h(Xi) = s}, Jn,d(s) =

∑
1≤i≤Jn

I{h(Xi) = s,Di = d}, p(s) = P (h(Xi) = s), and

importantly for Cn,d we have used the fact that

∑
1≤s≤S

(E[Yi(d)|h(Xi) = s]− E[Yi(d)])p(s) = 0 ,

which follows by the law of iterated expectations. By the law of large numbers, Jn(s)/Jn
p−→ p(s), and by

the properties of stratified block randomization (see Example 3.4 in Bugni et al. (2018a)),

√
Jn

(
Jn,d(s)

Jn(s)
− π

)
p−→ 0 ,

and hence we can conclude that Bn,d
p−→ 0 for every d ∈ D. Using Lemma C.1. in Bugni et al. (2019a), it

can then be shown that  An

Cn

 d−→ N

0,

Vh,1 0

0 Vh,2

 ,

and hence the first result follows. Next, let ν be a 1× |D| vector of constants, then it can be shown that

νVν′ =
∑
d∈D

ν2dVar[Yi(d)]−
∑

d ̸=d′∈D

1

|D|
Var[νdE[Yi(d)|Xi]− νd′E[Yi(d

′)|Xi]] ,

and

νVhν
′ =

∑
d∈D

ν2dVar[Yi(d)]−
∑

d̸=d′∈D

1

|D|
Var[νdE[Yi(d)|h(Xi)]− νd′E[Yi(d

′)|h(Xi)]] .
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It then follows from similar arguments to those used in the proof of Theorem C.2 of Bai (2022a) that

νVν′ ≤ νVhν
′. In particular, note that

Var[νdE[Yi(d)|Xi]− νd′E[Yi(d
′)|Xi]]

= E[(νdE[Yi(d)|Xi]− νd′E[Yi(d
′)|Xi]− (νdE[Yi(d)]− νd′E[Yi(d

′)]))2]

= E[(νdE[Yi(d)|Xi]− νd′E[Yi(d
′)|Xi]− (νdE[Yi(d)|h(Xi)]− νd′E[Yi(d

′)|h(Xi)])

+ (νdE[Yi(d)|h(Xi)]− νd′E[Yi(d
′)|h(Xi)])− (νdE[Yi(d)]− νd′E[Yi(d

′)]))2]

= E[(νdE[Yi(d)|Xi]− νd′E[Yi(d
′)|Xi]− (νdE[Yi(d)|h(Xi)]− νd′E[Yi(d

′)|h(Xi)]))
2]

+ E[(νdE[Yi(d)|h(Xi)]− νd′E[Yi(d
′)|h(Xi)])− (νdE[Yi(d)]− νd′E[Yi(d

′)]))2] ,

where the last equality follows because

E[(νdE[Yi(d)|Xi]− νd′E[Yi(d
′)|Xi]− (νdE[Yi(d)|h(Xi)]− νd′E[Yi(d

′)|h(Xi)]))

((νdE[Yi(d)|h(Xi)]− νd′E[Yi(d
′)|h(Xi)])− (νdE[Yi(d)]− νd′E[Yi(d

′)]))]

= E[E[(νdE[Yi(d)|Xi]− νd′E[Yi(d
′)|Xi]− (νdE[Yi(d)|h(Xi)]− νd′E[Yi(d

′)|h(Xi)]))

((νdE[Yi(d)|h(Xi)]− νd′E[Yi(d
′)|h(Xi)])− (νdE[Yi(d)]− νd′E[Yi(d

′)]))|h(Xi)]]

= E[E[(νdE[Yi(d)|Xi]− νd′E[Yi(d
′)|Xi]− (νdE[Yi(d)|h(Xi)]− νd′E[Yi(d

′)|h(Xi)]))|h(Xi)]

((νdE[Yi(d)|h(Xi)]− νd′E[Yi(d
′)|h(Xi)])− (νdE[Yi(d)]− νd′E[Yi(d

′)]))]

= 0 ,

where the last equality follows from the law of iterated expectations. We can thus conclude that the matched

tuples design is asymptotically more efficient than the large stratum design, in the sense that the difference

in variances between the large stratum and matched tuples designs, Vh − V, is positive semidefinite.

A.2.8 Proof of Theorem 1.3.8

To begin, note that

∆̂νk,n =
1

n

∑
1≤i≤Jn

∑
d∈D

I{ιk(d) = +1}I{Di = d}Yi(d)−
1

n

∑
1≤i≤Jn

∑
d∈D

I{ιk(d) = −1}I{Di = d}Yi(d) .
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Let Ai, 1 ≤ i ≤ Jn denote a sequence of i.i.d. random vectors, each of which is a K − 1 vector of i.i.d.

Rademacher random variables. Further assume they are independent of Y (n)(d), d ∈ D, D(n), and X(n).

Define ι−k(d) as the vector of all entries of ι(d) except the kth entry. Then, we consider the following

“averaged" potential outcomes over these K − 1 factors defined as follows:

Ỹi(+1) :=
∑
d∈D

I{ιk(d) = +1}I{ι−k(d) = Ai}Yi(d)

Ỹi(−1) :=
∑
d∈D

I{ιk(d) = −1}I{ι−k(d) = Ai}Yi(d) .

With this notation, define

∆̃νk,n =
1

n

∑
1≤i≤Jn

I{ιk(Di) = +1}Ỹi(+1)− 1

n

∑
1≤i≤Jn

I{ιk(Di) = −1}Ỹi(−1) .

It then follows from the definition of the factor k-specific design that ∆̃νk,n has the same distribution as

∆̂νk,n. To see it, note

1

n

∑
1≤i≤Jn

∑
d∈D

I{ιk(d) = +1}I{Di = d}Yi(d)

=
1

n

∑
1≤i≤Jn

∑
d∈D

I{ιk(Di) = +1}I{ιk(d) = +1}I{ι−k(Di) = ι−k(d)}Yi(d)

and

1

n

∑
1≤i≤Jn

I{ιk(Di) = +1}Ỹi(+1) =
1

n

∑
1≤i≤Jn

∑
d∈D

I{ιk(Di) = +1}I{ιk(d) = +1}I{ι−k(d) = Ai}Yi(d)

and ι−k(Di) and Ai follow the same distribution independently of everything else.

Note ∆̃νk,n/2
K−1 can be thought of as the difference-in-means estimator where the treatment has two

levels +1 and −1 and the potential outcomes are Ỹi(+1) and Ỹi(−1). The conditions in Lemma S.1.4 in Bai

et al. (2021a) can be verified straightforwardly and therefore we have

√
2K−1n

(
∆̂νk,n

2K−1
− ∆νk

(Q)

2K−1

)
d→ N(0,Vνk,mp) ,
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where

Vνk,mp := E[Var[Ỹi(+1)|Xi]] + E[Var[Ỹi(−1)|Xi]]

+
1

2
E[(E[Ỹi(+1)|Xi]− E[Ỹi(+1)]− (E[Ỹi(−1)|Xi]− E[Ỹi(−1)]))2] .

Note that by Assumption 1.2.2,

E[Ỹi(+1)|Xi] = E

[∑
d∈D

I{ιk(d) = +1}I{ι−k(d) = Ai}Yi(d)

∣∣∣∣∣Xi

]

=
1

2K−1

∑
d∈D

I{ιk(d) = +1}Γd(Xi) .

Therefore,

1

2
E[(E[Ỹi(+1)|Xi]− E[Ỹi(+1)]− (E[Ỹi(−1)|Xi]− E[Ỹi(0)]))

2]

=
1

2
· 1

22(K−1)
E

(∑
d∈D

I{ιk(d) = +1}(Γd(Xi)− Γd)−
∑
d∈D

I{ιk(d) = −1}(Γd(Xi)− Γd)

)2


=
1

2
· 1

22(K−1)
E
[
(ν′k(Γd(Xi)− Γd : d ∈ D)))

2
]

=
2K−1

22(K−1)
ν′kE

[
1

2K
Cov[Γd(Xi),Γd′(Xi)]

]
d,d′∈D

νk

=
1

2(K−1)
ν′kV2νk .
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Moreover,

Var[Ỹi(+1)|Xi]

= Var

[∑
d∈D

I{ιk(d) = +1}I{ι−k(d) = Ai}Yi(d)

∣∣∣∣∣Xi

]

= E

[
Var

[∑
d∈D

I{ιk(d) = +1}I{ι−k(d) = Ai}Yi(d)

∣∣∣∣∣Xi, Ai

] ∣∣∣∣∣Xi

]

+Var

[
E

[∑
d∈D

I{ιk(d) = +1}I{ι−k(d) = Ai}Yi(d)

∣∣∣∣∣Xi, Ai

] ∣∣∣∣∣Xi

]

= E

[∑
d∈D

I{ιk(d) = +1}I{ι−k(d) = Ai}Var[Yi(d)|Xi]

∣∣∣∣∣Xi

]

+Var

[∑
d∈D

I{ιk(d) = +1}I{ι−k(d) = Ai}Γd(Xi)

∣∣∣∣∣Xi

]

=
1

2K−1

∑
d∈D:ιk(d)=+1

Var[Yi(d)|Xi] +
1

2K−1

∑
d∈D:ιk(d)=+1

Γd(Xi)−
1

2K−1

∑
d′∈D:ιk(d′)=+1

Γd′(Xi)

2

=
1

2K−1

∑
d∈D:ιk(d)=+1

Var[Yi(d)|Xi] +

Γd(Xi)−
1

2K−1

∑
d′∈D:ιk(d′)=+1

Γd′(Xi)

2
 .

A similar calculation applies to Var[Ỹi(−1)|Xi]. Finally,

Vνk,mp =
1

2K−1

∑
d∈D

E[Var[Yi(d)|Xi]] +
1

2K−1
ν′kV2νk

+
1

2K−1
E

 ∑
d∈D:ιk(d)=+1

Γd(Xi)−
1

2K−1

∑
d∈D:ιk(d)=+1

Γd(Xi)

2


+
1

2K−1
E

 ∑
d∈D:ιk(d′)=−1

Γd′(Xi)−
1

2K−1

∑
d∈D::ιk(d)=−1

Γd(Xi)

2
 .

The conclusion therefore follows.

A.3 Auxiliary Lemmas

Lemma A.3.1. Suppose Assumptions 1.2.1–3.4.3 hold. Then, for r = 1, 2,

1

n

∑
1≤i≤|D|n

Y r
i (d)I{Di = d} P→ E[Y r

i (d)] .
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Proof of Lemma A.3.1. We prove the conclusion for r = 1 only and the proof for r = 2 follows similarly.

To this end, write

1

n

∑
1≤i≤|D|n

Yi(d)I{Di = d} =
1

n

∑
1≤i≤|D|n

(Yi(d)I{Di = d} − E[Yi(d)I{Di = d}|X(n), D(n)])

+
1

n

∑
1≤i≤|D|n

E[Yi(d)I{Di = d}|X(n), D(n)] .

Note

1

n

∑
1≤i≤|D|n

E[Yi(d)I{Di = d}|X(n), D(n)] =
1

n

∑
1≤i≤|D|n

I{Di = d}E[Yi(d)|Xi]
P→ E[E[Yi(d)|Xi]] = E[Yi(d)] ,

where the equality follows from Assumption 1.2.2 and the convergence in probability follows from Assumption

3.4.3 and similar arguments to those used in the proof of Theorem 1.3.1. To complete the proof, we argue

1

|D|n
∑

1≤i≤|D|n

(Yi(d)I{Di = d} − E[Yi(d)I{Di = d}|X(n), D(n)])
P→ 0 .

For this purpose, we proceed by verifying the uniform integrability condition in Lemma S.1.3 of Bai et al.

(2021a) conditional on X(n) and D(n). Note for any m > 0 that

1

|D|n
∑

1≤i≤|D|n

E[|Yi(d)I{Di = d} − E[Yi(d)I{Di = d}|X(n), D(n)])

× I{|Yi(d)I{Di = d} − E[Yi(d)I{Di = d}|X(n), D(n)]| > m}|X(n), D(n)]

=
1

|D|n
∑

1≤i≤|D|n

E[|Yi(d)I{Di = d} − E[Yi(d)|Xi]I{Di = d}|

× I{|Yi(d)I{Di = d} − E[Yi(d)|Xi]I{Di = d}| > m}|X(n), D(n)]

≤ 1

|D|n
∑

1≤i≤|D|n

E[|Yi(d)− E[Yi(d)|Xi]|I{|Yi(d)− E[Yi(d)|Xi]| > m}|X(n), D(n)]

=
1

|D|n
∑

1≤i≤|D|n

E[|Yi(d)− E[Yi(d)|Xi]|I{|Yi(d)− E[Yi(d)|Xi]| > m}|Xi]

P→ E[|Yi(d)− E[Yi(d)|Xi]|I{|Yi(d)− E[Yi(d)|Xi]| > m}] ,

where the first equality holds because of Assumption 1.2.2, the inequality holds because 0 ≤ I{Di = d} ≤ 1,

the second equality holds because of Assumption 1.2.2 again, and the convergence in probability follows from
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the weak law of large numbers because

E[|Yi(d)− E[Yi(d)|Xi]|I{|Yi(d)− E[Yi(d)|Xi]| > m}] ≤ E[|Yi(d)− E[Yi(d)|Xi]|]

≤ E[|Yi(d)|] + E[|E[Yi(d)|Xi]|] ≤ E[|Yi(d)|] + E[E[|Yi(d)||Xi]] = 2E[|Yi(d)|] .

The proof could then be completed using the subsequencing argument as in (S.29) of the proof of Lemma

S.1.5 of Bai et al. (2021a).

Lemma A.3.2. Suppose Assumptions 1.2.1–3.4.3 hold. Then, ρ̂n(d, d′)
P→ E[Γd(Xi)Γd′(Xi)] as n→ ∞.

Proof of Lemma A.3.2. To begin with, note

E[ρ̂n(d, d
′)|X(n)]

=
1

n

∑
1≤j≤n

1

|D|(|D| − 1)

∑
{i,k}⊂λj

(Γd(Xi)Γd′(Xk) + Γd(Xk)Γd′(Xi))

=
1

n

∑
1≤j≤n

1

|D|(|D| − 1)

∑
{i,k}⊂λj

(Γd(Xi)Γd′(Xi) + Γd(Xk)Γd′(Xk)

− 1

n

∑
1≤j≤n

1

|D|(|D| − 1)

∑
{i,k}⊂λj

(Γd(Xi)− Γd(Xk))(Γd′(Xi)− Γd′(Xk)))

=
1

|D|n
∑

1≤i≤|D|n

Γd(Xi)Γd′(Xi)−
1

n

∑
1≤j≤n

1

|D|(|D| − 1)

∑
{i,k}⊂λj

(Γd(Xi)− Γd(Xk))(Γd′(Xi)− Γd′(Xk))

P→ E[Γd(Xi)Γd′(Xi)] ,

where the convergence in probability follows from Assumptions 1.2.1(c) and 3.4.3. To conclude the proof,

we show

ρ̂n(d, d
′)− E[ρ̂n(d, d

′)|X(n)]
P→ 0 . (A.1)

In order for this, we proceed to verify the uniform integrability condition in Lemma S.1.3 of Bai et al. (2021a)

conditional on X(n). Define

ρ̂n,j(d, d
′) =

(∑
i∈λj

YiI{Di = d}
)(∑

i∈λj

YiI{Di = d′}
)
.
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In what follows, we repeatedly use the following inequalities:

I
{∣∣∣ ∑

1≤j≤k

aj

∣∣∣ > λ
}
≤
∑

1≤j≤k

I
{
|aj | >

λ

k

}
∣∣∣ ∑
1≤j≤k

aj

∣∣∣I{∣∣∣ ∑
1≤j≤k

aj

∣∣∣ > λ
}
≤
∑

1≤j≤k

k|aj |I
{
|aj | >

λ

k

}
|ab|I{|ab| > λ} ≤ a2I{|a| >

√
λ}+ b2I{|b| >

√
λ} .

We will also repeatedly use the facts that 0 ≤ I{Di = d} ≤ 1 and I{Di = d}I{Dk = d} = 0 for i ̸= k in the

same stratum. Note

E[|ρ̂n,j(d, d′)− E[ρ̂n,j(d, d
′)|X(n)]|I{|ρ̂n,j(d, d′)− E[ρ̂n,j(d, d

′)|X(n)]| > λ}|X(n)]

≤ E
[
|ρ̂n,j(d, d′)|I

{
|ρ̂n,j(d, d′)| >

λ

2

}∣∣∣X(n)
]
+ E

[
|E[ρ̂n,j(d, d

′)|X(n)]|I
{
|E[ρ̂n,j(d, d

′)|X(n)]| > λ

2

}∣∣∣X(n)
]

= E
[
|ρ̂n,j(d, d′)|I

{
|ρ̂n,j(d, d′)| >

λ

2

}∣∣∣X(n)
]
+ |E[ρ̂n,j(d, d

′)|X(n)]|I
{
|E[ρ̂n,j(d, d

′)|X(n)]| > λ

2

}
≤ E

[∣∣∣ ∑
i∈λj

Yi(d)I{Di = d}
∑
i∈λj

Yi(d
′)I{Di = d′}

∣∣∣I{∣∣∣ ∑
i∈λj

Yi(d)I{Di = d}
∑
i∈λj

Yi(d
′)I{Di = d′}

∣∣∣ > λ

2

}∣∣∣X(n)
]

+
∣∣∣ 1

|D|(|D| − 1)

∑
{i,k}⊂λj

(Γd(Xi)Γd′(Xk) + Γd(Xk)Γd′(Xi))

×
∣∣∣I{∣∣∣ 1

|D|(|D| − 1)

∑
{i,k}⊂λj

(Γd(Xi)Γd′(Xk) + Γd(Xk)Γd′(Xi))
∣∣∣ > λ

2

}

≲ E
[∑
i∈λj

Y 2
i (d)I{Di = d}I

{∣∣∣ ∑
i∈λj

Yi(d)I{Di = d}
∣∣∣ >√λ

2

}∣∣∣X(n)
]

+ E
[∑
i∈λj

Y 2
i (d

′)I{Di = d′}I
{∣∣∣ ∑

i∈λj

Yi(d
′)I{Di = d′}

∣∣∣ >√λ

2

}∣∣∣X(n)
]

+
∑

{i,k}⊂λj

(
|Γd(Xi)Γd′(Xk)|I

{
|Γd(Xi)Γd′(Xk)| >

λ

2

}
+ |Γd(Xk)Γd′(Xi)|I

{
|Γd(Xk)Γd′(Xi)| >

λ

2

})

≤
∑
i∈λj

E
[
Y 2
i (d)I

{
|Yi(d)| >

√
λ

4

}∣∣∣Xi

]
+
∑
i∈λj

E
[
Y 2
i (d

′)I
{
|Yi(d′)| >

√
λ

4

}∣∣∣Xi

]

+
∑
i∈λj

Γ2
d(Xi)I

{
|Γd(Xi)| >

√
λ

4

}
+
∑
i∈λj

Γ2
d′(Xi)I

{
|Γd′(Xi)| >

√
λ

4

}
.
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Therefore,

1

|D|n
∑

1≤j≤n

E[|ρ̂n,j(d, d′)− E[ρ̂n,j(d, d
′)|X(n)]|I{|ρ̂n,j(d, d′)− E[ρ̂n,j(d, d

′)|X(n)]| > λ}|X(n)]

≲
1

|D|n
∑

1≤i≤|D|n

E
[
Y 2
i (d)I

{
|Yi(d)| >

√
λ

4

}∣∣∣Xi

]
+

1

|D|n
∑

1≤i≤|D|n

E
[
Y 2
i (d

′)I
{
|Yi(d′)| >

√
λ

4

}∣∣∣Xi

]

+
1
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[
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√
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[
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√
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d′(Xi)I

{
|Γd(Xi)| >

√
λ

4
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,

where the convergence in probability follows from the weak law or large numbers. Because E[Y 2
i (d)] < ∞,

E[Y 2
i (d

′)] <∞, E[Γ2
d(Xi)] ≤ E[Y 2

i (d)] <∞, and E[Γ2
d′(Xi)] ≤ E[Y 2

i (d
′)] <∞, we have

lim
λ→∞

E
[
Y 2
i (d)I

{
|Yi(d)| >

√
λ

4

}]
= 0

lim
λ→∞

E
[
Y 2
i (d

′)I
{
|Yi(d′)| >

√
λ

4

}]
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4

}]
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|Γd′(Xi)| >

√
λ

4

}]
= 0 .

It follows from a subsequencing argument as in (S.29) of the proof of Lemma S.1.5 of Bai et al. (2021a) that

(A.1) holds. The conclusion therefore follows.

Lemma A.3.3. Suppose Assumptions 1.2.1–1.2.4 hold. Then, ρ̂n(d, d)
P→ E[Γ2

d(Xi)] as n→ ∞.

Proof of Lemma A.3.3. For 1 ≤ j ≤ n
2 , define

ρ̂n,j(d, d) =
∑

i∈λ2j−1

YiI{Di = d}
∑
i∈λ2j

YiI{Di = d} .

By defintition, ρ̂n(d, d) = 2
n

∑
1≤j≤n

2
ρ̂n,j . Note by Assumption 1.2.2,

E[ρ̂n,j(d, d)|X(n)] =
1

|D|2
∑

i∈λ2j−1,k∈λ2j

Γd(Xi)Γd(Xk) .
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Further note

Γd(Xi)Γd(Xk) =
1

2
Γ2
d(Xi) +

1

2
Γ2
d(Xk)−

1

2
(Γd(Xi)− Γd(Xk))

2 .

Therefore,

E[ρ̂n(d, d)|X(n)] =
2

n

∑
1≤j≤n

2

E[ρ̂n,j(d, d)|X(n)]

=
2

n

∑
1≤j≤n

2

1

|D|2
∑

i∈λ2j−1,k∈λ2j

(1
2
Γ2
d(Xi) +

1

2
Γ2
d(Xk)−

1

2
(Γd(Xi)− Γd(Xk))

2
)

=
1

|D|n
∑

1≤i≤|D|n

Γ2
d(Xi)−

1

n|D|2
∑

1≤j≤n
2

∑
i∈λ2j−1,k∈λ2j

(Γd(Xi)− Γd(Xk))
2

P→ E[Γ2
d(Xi)] ,

where the convergence in probability follows from Assumptions 1.2.1(c) and 1.2.4 as well as the weak law of

large numbers. To conclude the proof, we show

ρ̂n(d, d)− E[ρ̂n(d, d)|X(n)]
P→ 0 . (A.2)

In order for this, we proceed to verify the uniform integrability condition in Lemma S.1.3 of Bai et al. (2021a)

conditional on X(n). In what follows, we repeatedly use the following inequalities:

I
{∣∣∣ ∑

1≤j≤k

aj

∣∣∣ > λ
}
≤
∑

1≤j≤k

I
{
|aj | >

λ

k

}
∣∣∣ ∑
1≤j≤k

aj

∣∣∣I{∣∣∣ ∑
1≤j≤k

aj

∣∣∣ > λ
}
≤
∑

1≤j≤k

k|aj |I
{
|aj | >

λ

k

}
|ab|I{|ab| > λ} ≤ a2I{|a| >

√
λ}+ b2I{|b| >

√
λ} .

We will also repeatedly use the facts that 0 ≤ I{Di = d} ≤ 1 and I{Di = d}I{Dk = d} = 0 for i ̸= k in the

140



same stratum. Note
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Therefore

1

|D|n
∑

1≤j≤n
2
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where the convergence in probability follows from the weak law or large numbers. Because E[Y 2
i (d)] < ∞
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and E[Γ2
d(Xi)] ≤ E[Y 2

i (d)] <∞, we have

lim
λ→∞

E
[
Y 2
i (d)I

{
|Yi(d)| >

√
λ

4

}]
= 0

lim
λ→∞

E
[
Γ2
d(Xi)I
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|Γd(Xi)| >

√
λ

4

}]
= 0 .

It follows from a subsequencing argument as in the proof of Lemma S.1.5 of Bai et al. (2021a) that (A.2)

holds. The conclusion therefore follows.

Lemma A.3.4. Suppose (Yi, X
′
1,i, X

′
2,i)

′, 1 ≤ i ≤ n is an i.i.d. sequence of random vectors, where Yi takes

values in R, X1,i takes values in Rk1 , and X2,i takes values in Rk2 . Consider the linear regression

Yi = X ′
1,iβ1 +X ′

2,iβ2 + ϵi .

Define X = (X1, . . . , Xn)
′, X1 = (X1,1, . . . , X1,n)

′, and X2 = (X2,1, . . . , X2,n)
′. Define P2 = X2(X′

2X2)
−1X′

2

and M2 = I − P2. Let β̂1,n and β̂2,n denote the OLS estimator of β1 and β2. Define ϵ̂i = Yi − X ′
1,iβ̂1,n −

X ′
2,iβ̂2,n. Define

X̃1 = M2X1 .

Let

Ω̂n = (X′X)−1(X′diag(ϵ̂2i : 1 ≤ i ≤ n)X)(X′X)−1

denote the heteroskedasticity-robust variance estimator of (β̂1,n, β̂2,n). Then, the upper-left k1 × k1 block of

Ω̂n equals

(X̃′
1X̃1)

−1(X̃′
1diag(ϵ̂

2
i : 1 ≤ i ≤ n)X̃1)(X̃′

1X̃1)
−1 .

Proof of Lemma A.3.4. By the formula for the inverse of a partitioned matrix, the first k1 rows of (X′X)−1

equal (
(X′

1M2X1)
−1 −(X′

1M2X1)
−1X′

1X2(X′
2X2)

−1

)
.

Furthermore,

X′diag(ϵ̂2i : 1 ≤ i ≤ n)X =

X′
1diag(ϵ̂

2
i : 1 ≤ i ≤ n)X1 X′

1diag(ϵ̂
2
i : 1 ≤ i ≤ n)X2

X′
2diag(ϵ̂

2
i : 1 ≤ i ≤ n)X1 X′

2diag(ϵ̂
2
i : 1 ≤ i ≤ n)X2

 .

The conclusion then follows from elementary calculations.
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A.4 Additional Tables and Figures

A.4.1 Power Plots

In Section 1.4.3, we presented truncated power plots for the first and third configurations in order to make

the horizontal axes the same as that of the second power plot. Here we present plots showing the entire “S”

shape of the power curves for MT and MT2 under all three configurations.
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Figure A.1: Reject probability under various τs for the alternative hypothesis

A.4.2 Comparing Super Population and Finite Population Inference

In this section, we compare the coverage properties of confidence intervals constructed using our proposed

variance estimator versus two other well-known estimators, under both the super and finite population

approaches to inference. First, we revisit the setting introduced in Section 1.4.2, but now we consider only

the matched-tuples design (MT), and construct confidence intervals for the parameter ∆ν1
−1

using one of

three variance estimators:

1. the variance estimator V̂ν,n introduced in Section 1.3.1,

2. a standard heteroskedasticity-robust variance estimator obtained from the regression in (1.4), and

3. the block-cluster variance estimator considered in Theorem 1.3.4.

For the super population simulations, we generate the data as in Section 1.4.2. For the finite population

simulations, we simply use each DGP to generate the covariates and outcomes once, and then fix these in
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repeated samples.

Table A.1 presents coverage probabilities and average confidence interval lengths (in parentheses) with

varying sample sizes, based on 2, 000 Monte Carlo replications. As expected given our theoretical results,

V̂ν,n delivers exact coverage in large samples under the super-population framework in all cases, whereas the

robust variance estimator and BCVE are both generally conservative. In the finite population framework, we

find that both V̂ν,n and BCVE deliver exact coverage for some model specifications in large populations, but

all three methods are generally conservative. V̂ν,n displays some under-coverage in small populations relative

to BCVE, but as the population size increases, V̂ν,n generally produces narrower confidence intervals.

Next, we repeat the above exercise using a calibrated simulation design analogous to that used in Section

1.4.3, but utilizing the wave 6 data from Fafchamps et al. (2014). To construct our data generating process,

we run an OLS regression of Yi on a constant and the seven covariates Xi employed for matching, obtaining

β̂ and residuals ϵ̂. Subsequently, for d ∈ {0, 1, 2} we compute Yi(d) based on the following model:

Yi(d) = X ′
iβ̂ + (Xi − X̄i)

′β̂ · γ · d+ ϵi ,

with Xi drawn from the empirical distribution of the data and ϵi ∼ N(0, var(ϵ̂)). Note that when γ = 0

we obtain a model with a constant treatment effect of zero, but that as γ increases so does the amount of

treatment effect heterogeneity. For the super-population simulations, the data is re-generated for each of the

Monte Carlo replications. For the finite population simulations, the data is generated only once and then

fixed in repeated samples. In each experimental assignment we match the units into triplets and assign one

unit to each of d ∈ {0, 1, 2}.

Table A.2 presents coverage probabilities and average confidence interval lengths (in parentheses) for

the parameter ∆ν = E[Yi(1)− Yi(0)], based on 2,000 Monte Carlo replications. Our first observation is that

given the results for γ = 0, it is clear that the covariates Xi explain little of the variation in experimental

outcomes in our simulation design since all three variance estimators obtain exact coverage. However, as

we artificially increase the amount of treatment effect heterogeneity by increasing the parameter γ, we find

that, in line with our theoretical results, both the robust variance estimator and BCVE become slightly

conservative. Moreover, in the finite population framework, V̂ν,n starts to become conservative as well.

A.4.3 Calibrated Simulation Design Details

In this section we provide details for the calibrated simulation study considered in Section 1.4.3. Following

Branson et al. (2016), we consider data obtained from the New York Department of Education, who were
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Super Population Finite Population

Model Method 4n=40 4n=80 4n=160 4n=480 4n=1000 4n=40 4n=80 4n=160 4n=480 4n=1000

1

V̂ν,n 0.9340 0.9445 0.9435 0.9460 0.9470 0.9620 0.9550 0.9335 0.9445 0.9535
(1.810) (1.253) (0.881) (0.508) (0.351) (2.002) (1.547) (0.923) (0.480) (0.354)

Robust 0.9855 0.9910 0.9930 0.9890 0.9920 0.9905 0.9895 0.9860 0.9950 0.9970
(2.375) (1.727) (1.226) (0.714) (0.495) (2.373) (1.891) (1.208) (0.702) (0.506)

BCVE 0.9350 0.9470 0.9400 0.9455 0.9455 0.9185 0.9390 0.9405 0.9470 0.9525
(1.821) (1.262) (0.885) (0.509) (0.351) (1.822) (1.475) (0.938) (0.483) (0.354)

2

V̂ν,n 0.9295 0.9395 0.9400 0.9525 0.9505 0.9495 0.9375 0.9405 0.9370 0.9520
(1.897) (1.299) (0.896) (0.509) (0.352) (1.829) (1.309) (0.848) (0.505) (0.354)

Robust 0.9850 0.9905 0.9955 0.9965 0.9955 0.9870 0.9820 0.9970 0.9945 0.9980
(2.489) (1.809) (1.290) (0.751) (0.522) (2.337) (1.560) (1.354) (0.749) (0.540)

BCVE 0.9185 0.9395 0.9415 0.9545 0.9515 0.9340 0.9395 0.9425 0.9415 0.9530
(1.858) (1.282) (0.893) (0.508) (0.352) (1.789) (1.311) (0.852) (0.518) (0.356)

3

V̂ν,n 0.9445 0.9545 0.9600 0.9435 0.9450 0.9970 0.9790 0.9975 0.9890 0.9945
(2.499) (1.702) (1.193) (0.679) (0.469) (2.439) (1.710) (1.144) (0.686) (0.468)

Robust 0.9800 0.9915 0.9920 0.9905 0.9910 1.0000 0.9985 1.0000 0.9995 1.0000
(3.080) (2.222) (1.593) (0.922) (0.640) (3.112) (2.228) (1.485) (0.916) (0.654)

BCVE 0.9915 0.9940 0.9980 0.9960 0.9965 0.9995 0.9995 1.0000 1.0000 1.0000
(3.748) (2.578) (1.811) (1.032) (0.714) (3.766) (2.628) (1.729) (1.015) (0.709)

4

V̂ν,n 0.9355 0.9480 0.9375 0.9445 0.9470 0.9310 0.9345 0.9540 0.9535 0.9640
(1.889) (1.319) (0.927) (0.534) (0.371) (1.674) (1.292) (1.015) (0.562) (0.373)

Robust 0.9470 0.9680 0.9580 0.9635 0.9655 0.9435 0.9560 0.9695 0.9685 0.9770
(1.931) (1.406) (1.005) (0.584) (0.406) (1.751) (1.410) (1.085) (0.599) (0.407)

BCVE 0.9550 0.9740 0.9700 0.9710 0.9750 0.9730 0.9760 0.9750 0.9760 0.9815
(2.208) (1.543) (1.077) (0.617) (0.428) (2.190) (1.572) (1.149) (0.655) (0.432)

5

V̂ν,n 0.9315 0.9435 0.9495 0.9465 0.9530 0.9620 0.9615 0.9735 0.9625 0.9680
(2.012) (1.386) (0.962) (0.550) (0.381) (2.244) (1.153) (0.975) (0.554) (0.377)

Robust 0.9530 0.9660 0.9790 0.9770 0.9850 0.9805 0.9870 0.9950 0.9870 0.9875
(2.152) (1.570) (1.117) (0.650) (0.452) (2.472) (1.415) (1.162) (0.655) (0.448)

BCVE 0.9615 0.9730 0.9790 0.9785 0.9845 0.9610 0.9915 0.9930 0.9880 0.9870
(2.419) (1.667) (1.155) (0.662) (0.458) (2.506) (1.530) (1.151) (0.656) (0.453)

6

V̂ν,n 0.9065 0.9290 0.9305 0.9425 0.9505 0.9105 0.9675 0.9655 0.9715 0.9665
(4.730) (3.361) (2.388) (1.388) (0.961) (4.846) (3.244) (2.233) (1.425) (1.025)

Robust 0.9425 0.9600 0.9615 0.9660 0.9670 0.9625 0.9835 0.9855 0.9835 0.9765
(5.001) (3.624) (2.606) (1.521) (1.055) (5.392) (3.449) (2.437) (1.549) (1.090)

BCVE 0.9560 0.9675 0.9660 0.9725 0.9735 0.9670 0.9875 0.9865 0.9865 0.9860
(5.623) (3.930) (2.767) (1.595) (1.101) (5.886) (3.812) (2.537) (1.611) (1.166)

Table A.1: Coverage rate and average CI length (parentheses) under the super and finite
population approaches to inference

considering implementing a 25 factorial experiment to study five new intervention programs: a quality review,

a periodic assessment, inquiry teams, a school-wide performance bonus program and an online resource

program; details about each of these programs can be found in Dasgupta et al. (2015). The data-set contains

covariate information for 1, 376 schools. As in Branson et al. (2016), we consider experimental designs
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Super Population Finite Population

Model Method 3n=60 3n=120 3n=360 3n=750 3n=1200 3n=60 3n=120 3n=360 3n=750 3n=1200

γ = 0

V̂ν,n 0.949 0.943 0.946 0.946 0.952 0.950 0.940 0.955 0.946 0.953
(225.457) (160.525) (92.715) (64.226) (50.706) (225.896) (159.946) (92.607) (64.235) (50.771)

Robust 0.950 0.943 0.950 0.947 0.952 0.947 0.943 0.955 0.951 0.955
(223.224) (160.560) (93.791) (65.160) (51.503) (224.081) (160.511) (93.731) (65.128) (51.553)

BCVE 0.948 0.938 0.943 0.940 0.946 0.953 0.944 0.954 0.943 0.950
(229.461) (162.261) (92.762) (64.198) (50.674) (230.041) (161.019) (92.765) (64.089) (50.685)

γ = 1

V̂ν,n 0.940 0.946 0.953 0.960 0.959 0.946 0.941 0.947 0.948 0.953
(229.287) (164.518) (94.925) (65.239) (51.591) (233.870) (165.423) (94.580) (65.390) (51.554)

Robust 0.936 0.955 0.961 0.970 0.963 0.945 0.950 0.954 0.958 0.960
(230.262) (166.659) (97.449) (67.499) (53.449) (232.131) (167.113) (97.281) (67.482) (53.420)

BCVE 0.936 0.945 0.957 0.961 0.959 0.949 0.946 0.950 0.950 0.956
(232.063) (165.622) (95.388) (65.468) (51.662) (237.561) (166.805) (94.836) (65.553) (51.658)

γ = 3

V̂ν,n 0.947 0.949 0.963 0.966 0.957 0.948 0.952 0.953 0.947 0.952
(251.942) (180.451) (101.057) (70.280) (55.300) (253.653) (177.162) (102.184) (70.042) (55.324)

Robust 0.961 0.962 0.978 0.977 0.975 0.951 0.961 0.962 0.968 0.968
(255.377) (188.130) (108.362) (76.242) (60.466) (257.964) (185.413) (109.376) (75.993) (60.422)

BCVE 0.947 0.955 0.969 0.971 0.963 0.958 0.957 0.954 0.959 0.961
(256.837) (185.391) (103.913) (72.470) (57.259) (260.735) (181.843) (105.186) (72.325) (57.091)

γ = 5

V̂ν,n 0.945 0.947 0.966 0.964 0.957 0.940 0.959 0.978 0.968 0.966
(285.897) (199.748) (111.957) (78.191) (60.960) (284.327) (200.163) (113.900) (77.267) (60.890)

Robust 0.959 0.965 0.986 0.981 0.977 0.955 0.970 0.986 0.983 0.982
(295.771) (215.171) (125.135) (88.824) (70.149) (293.489) (215.318) (127.164) (88.177) (70.040)

BCVE 0.949 0.958 0.975 0.976 0.970 0.949 0.962 0.981 0.975 0.975
(296.164) (209.731) (119.286) (83.916) (65.873) (293.557) (209.593) (121.447) (83.287) (65.842)

Table A.2: Coverage rate and average CI length (parentheses) under the super and finite
population approaches to inference

constructed using nine covariates which were deemed likely to be correlated with schools’ performance scores:

total number of students, proportion of male students, enrollment rate, poverty rate, and five additional

variables recording the proportion of students of various races.

Since the NYDE has yet to run such an experiment, and given the limitations of the available dataset, we

select one covariate (“number of teachers") from the original dataset to use as the potential outcome under

control, and then construct the potential outcomes under the various treatment combinations using the

model described in Section 1.4.3. Specifically, we first demean and standardize all 9 covariates (denoted X̃i),

and then estimate a parameter vector β by ordinary least squares in the following linear model specification

for Yi(−1,−1, . . . ,−1):

Yi(−1,−1, . . . ,−1) = γ(−1,−1,...,−1)X̃
′
iβ + ϵi , (A.3)

where γ(−1,−1,...,−1) = −1 as defined in Section 1.4.3. Table A.3 presents the regression results. For each
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coef std err z P> |z| [0.025 0.975]

constant 2.824e-06 0.007 0.000 1.000 -0.014 0.014
Total -0.9808 0.016 -60.609 0.000 -1.012 -0.949
nativeAmerican 0.0374 0.054 0.699 0.485 -0.068 0.143
black 2.9378 3.175 0.925 0.355 -3.285 9.160
latino 2.6158 2.836 0.922 0.356 -2.942 8.174
asian 1.6866 1.822 0.926 0.355 -1.884 5.258
white 1.9064 2.150 0.887 0.375 -2.308 6.121
male -0.0379 0.007 -5.355 0.000 -0.052 -0.024
stability 0.0045 0.007 0.636 0.525 -0.009 0.018
povertyRate -0.1818 0.011 -16.350 0.000 -0.204 -0.160

Table A.3: Model (A.3) OLS Regression Results

treatment combination d, we then compute Yi(d) using the model from Section 1.4.3 given by

Yi(d) = τ ·

(
d(1) +

∑K
k=2 d

(k)

K − 1

)
+ γdX̃

′
iβ + ϵi ,

where X̃i is drawn from the empirical distribution of the data and ϵi ∼ N(0, 0.1), where we note that 0.1 is

approximately equal to the sample variance of the residuals of the regression in (A.3).

A.4.4 More Results for the Empirical Application

In this section we repeat our analysis for the data on long-term effects obtained through the final round (wave

7) of surveys from the original paper. For the analysis of long-term effects, we follow the same procedure as

in the original paper, except we additionally drop the four groups with sizes ranging from 5 to 8. Note that

the estimated effects are different for the fixed-effect regression. This is because, as in the analysis in the

original paper, we do not drop entire quadruplets from our dataset whenever one member of the quadruplet

was missing due to non-response in the final survey round.
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All High initial Low initial

firms Males Females Profit women Profit women

(1) (2) (3) (4) (5)

Cash treatment 18.02 56.17 -8.43 -15.32 -3.84
OLS (29.66) (67.95) (18.25) (38.99) (17.14)

without group In-kind treatment 31.59 62.02 4.63 42.10 -13.40
fixed effects (21.63) (40.60) (20.97) (48.82) (16.08)

Cash=in-kind (p-val) 0.680 0.938 0.484 0.171 0.554

Matched-Tuples

Cash treatment 18.02 56.17 -8.43 -15.32 -3.84
(26.07) (60.09) (17.25) (42.10) (16.60)

In-kind treatment 31.59 62.02 4.63 42.10 -13.40
(19.47) (39.02) (18.57) (45.30) (14.32)

Cash=in-kind (p-val) 0.641 0.931 0.456 0.147 0.556

Table A.4: Point estimates and standard errors for testing the treatment effects of cash and
in-kind grants using different methods (wave 7)
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APPENDIX B

APPENDIX FOR CHAPTER 2

B.1 Proofs of Main Results

B.1.1 Proof of Proposition 2.3.1

Proof. By the Cauchy-Schwarz inequality

1

G

G∑
g=1

N ℓ
π(2g)|Wπ(2g) −Wπ(2g−1)|r ≤

[(
1

G

G∑
g=1

N2ℓ
π(2g)

)(
1

G

G∑
g=1

|Wπ(2g) −Wπ(2g−1)|2r
)]1/2

,

1
G

∑G
g=1N

2ℓ
π(2g) ≤

1
G

∑2G
g=1N

2ℓ
g = OP (1) by the law of large numbers, 1

G

∑
g |Wπ(2g) −Wπ(2g−1)|2r

p−→ 0 by

assumption, hence the result follows.

B.1.2 Proof of Theorem 2.3.1

Proof. We have that

∆̂G =
1
G

∑
1≤g≤2G Ȳg(1)NgDg

1
G

∑
1≤g≤2GNgDg

−
1
G

∑
1≤g≤2G Ȳg(0)Ng(1−Dg)

1
G

∑
1≤g≤2GNg(1−Dg)

.

In particular, for h(x, y, z, w) = x
y − z

w , observe that

∆̂G = h

 1

G

∑
1≤g≤2G

Ȳg(1)NgDg,
1

G

∑
1≤g≤2G

NgDg,
1

G

∑
1≤g≤2G

Ȳg(0)Ng(1−Dg),
1

G

∑
1≤g≤2G

Ng(1−Dg)


and the Jacobian is

Dh(x, y, z, w) =
(1
y
,− x

y2
,− 1

w
,
z

w2

)
.

By Assumption 2.3.1,

√
G
( 1

G

∑
1≤g≤2G

ȲgNgDg − E[Ȳg(1)Ng]
)
=

1√
G

∑
1≤g≤2G

(Ȳg(1)NgDg − E[Ȳg(1)Ng]Dg)

and similarly for the other three terms. The desired conclusion then follows from Lemma B.1.1 together

with an application of the delta method. To see this, note by the laws of total variance and total covariance
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that V in Lemma B.1.1 is symmetric with entries

V11 = Var[Ȳg(1)Ng]−
1

2
Var[E[Ȳg(1)Ng|Xg]]

V12 = Cov[Ȳg(1)Ng, Ng]−
1

2
Cov[E[Ȳg(1)Ng|Xg], E[Ng|Xg]]

V13 =
1

2
Cov[E[Ȳg(1)Ng|Xg], E[Ȳg(0)Ng|Xg]]

V14 =
1

2
Cov[E[Ȳg(1)Ng|Xg], E[Ng|Xg]]

V22 = Var[Ng]−
1

2
Var[E[Ng|Xg]]

V23 =
1

2
Cov[E[Ng|Xg], E[Ȳg(0)Ng|Xg]]

V24 =
1

2
Cov[E[Ng|Xg], E[Ng|Xg]]

V33 = Var[Ȳg(0)Ng]−
1

2
Var[E[Ȳg(0)Ng|Xg]]

V34 = Cov[Ȳg(0)Ng, Ng]−
1

2
Cov[E[Ȳg(0)Ng|Xg], E[Ng|Xg]]

V44 = Var[Ng]−
1

2
Var[E[Ng|Xg]] .

We separately calculate the variance terms involving conditional expectations and those that don’t. The

terms not involving conditional expectations are

Var[Ȳg(1)Ng]

E[Ng]2
+

Var[Ng]E[Ȳg(1)Ng]
2

E[Ng]4
+

Var[Ȳg(0)Ng]

E[Ng]2
+

Var[Ng]E[Ȳg(0)Ng]
2

E[Ng]4

− 2Cov[Ȳg(1)Ng, Ng]E[Ȳg(1)Ng]

E[Ng]3
− 2Cov[Ȳg(0)Ng, Ng]E[Ȳg(0)Ng]

E[Ng]3

=
E[Ȳ 2

g (1)N
2
g ]− E[Ȳg(1)Ng]

2

E[Ng]2
+
E[N2

g ]E[Ȳg(1)Ng]
2 − E[Ng]

2E[Ȳg(1)Ng]
2

E[Ng]4

+
E[Ȳ 2

g (0)N
2
g ]− E[Ȳg(0)Ng]

2

E[Ng]2
+
E[N2

g ]E[Ȳg(0)Ng]
2 − E[Ng]

2E[Ȳg(0)Ng]
2

E[Ng]4

−
2E[Ȳg(1)N

2
g ]E[Ȳg(1)Ng]

E[Ng]3
+

2E[Ȳg(1)Ng]E[Ng]E[Ȳg(1)Ng]

E[Ng]3

−
2E[Ȳg(0)N

2
g ]E[Ȳg(0)Ng]

E[Ng]3
+

2E[Ȳg(0)Ng]E[Ng]E[Ȳg(0)Ng]

E[Ng]3

=
E[Ȳ 2

g (1)N
2
g ]

E[Ng]2
+
E[Ȳ 2

g (0)N
2
g ]

E[Ng]2
+
E[N2

g ]E[Ȳg(1)Ng]
2

E[Ng]4
+
E[N2

g ]E[Ȳg(0)Ng]
2

E[Ng]4

−
2E[Ȳg(1)N

2
g ]E[Ȳg(1)Ng]

E[Ng]3
−

2E[Ȳg(0)N
2
g ]E[Ȳg(0)Ng]

E[Ng]3

= E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)] ,
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where

Ỹg(d) =
Ng

E[Ng]

(
Ȳg(d)−

E[Ȳg(d)Ng]

E[Ng]

)
for d ∈ {0, 1}.
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Next, the terms involving conditional expectations are

− Var[E[Ȳg(1)Ng|Xg]]

2E[Ng]2
− Var[E[Ng|Xg]]E[Ȳg(1)Ng]

2

2E[Ng]4

− Var[E[Ȳg(0)Ng|Xg]]

2E[Ng]2
− Var[E[Ng|Xg]]E[Ȳg(0)Ng]

2

2E[Ng]4

+
Cov[E[Ȳg(1)Ng|Xg], E[Ng|Xg]]E[Ȳg(1)Ng]

E[Ng]3
+

Cov[E[Ȳg(0)Ng|Xg], E[Ng|Xg]]E[Ȳg(0)Ng]

E[Ng]3

− Cov[E[Ȳg(1)Ng|Xg], E[Ȳg(0)Ng|Xg]]

E[Ng]2
+

Cov[E[Ȳg(1)Ng|Xg], E[Ng|Xg]]E[Ȳg(0)Ng]

E[Ng]E[Ng]2

+
Cov[E[Ng|Xg], E[Ȳg(0)Ng|Xg]]E[Ȳg(1)Ng]

E[Ng]2E[Ng]

− Cov[E[Ng|Xg], E[Ng|Xg]]E[Ȳg(1)Ng]E[Ȳg(0)Ng]

E[Ng]2E[Ng]2

= −E[E[Ȳg(1)Ng|Xg]
2]− E[Ȳg(1)Ng]

2

2E[Ng]2
− (E[E[Ng|Xg]

2]− E[Ng]
2)E[Ȳg(1)Ng]

2

2E[Ng]4

− E[E[Ȳg(0)Ng|Xg]
2]− E[Ȳg(0)Ng]

2

2E[Ng]2
− (E[E[Ng|Xg]

2]− E[Ng]
2)E[Ȳg(0)Ng]

2

2E[Ng]4

+
(E[E[Ȳg(1)Ng|Xg]E[Ng|Xg]]− E[Ȳg(1)Ng]E[Ng])E[Ȳg(1)Ng]

E[Ng]3

+
(E[E[Ȳg(0)Ng|Xg]E[Ng|Xg]]− E[Ȳg(0)Ng]E[Ng])E[Ȳg(0)Ng]

E[Ng]3

− E[E[Ȳg(1)Ng|Xg]E[Ȳg(0)Ng|Xg]]− E[Ȳg(1)Ng]E[Ȳg(0)Ng]

E[Ng]E[Ng]

+
(E[E[Ȳg(1)Ng|Xg]E[Ng|Xg]]− E[Ȳg(1)Ng]E[Ng])E[Ȳg(0)Ng]

E[Ng]E[Ng]2

+
(E[E[Ȳg(0)Ng|Xg]E[Ng|Xg]]− E[Ȳg(0)Ng]E[Ng])E[Ȳg(1)Ng]

E[Ng]2E[Ng]

− (E[E[Ng|Xg]E[Ng|Xg]]− E[Ng]E[Ng])E[Ȳg(1)Ng]E[Ȳg(0)Ng]

E[Ng]2E[Ng]2

= −E[E[Ȳg(1)Ng|Xg]
2]

2E[Ng]2
− E[E[Ng|Xg]

2]E[Ȳg(1)Ng]
2

2E[Ng]4
− E[E[Ȳg(0)Ng|Xg]

2]

2E[Ng]2
− E[E[Ng|Xg]

2]E[Ȳg(0)Ng]
2

2E[Ng]4

+
E[E[Ȳg(1)Ng|Xg]E[Ng|Xg]]E[Ȳg(1)Ng]

E[Ng]3
+
E[E[Ȳg(0)Ng|Xg]E[Ng|Xg]]E[Ȳg(0)Ng]

E[Ng]3

− E[E[Ȳg(1)Ng|Xg]E[Ȳg(0)Ng|Xg]]

E[Ng]2
+
E[E[Ȳg(1)Ng|Xg]E[Ng|Xg]]E[Ȳg(0)Ng]

E[Ng]3

+
E[E[Ȳg(0)Ng|Xg]E[Ng|Xg]]E[Ȳg(1)Ng]

E[Ng]3
− E[E[Ng|Xg]

2]E[Ȳg(1)Ng]E[Ȳg(0)Ng]

E[Ng]4

= −1

2
E[E[Ỹg(1)|Xg]

2]− 1

2
E[E[Ỹg(0)|Xg]

2]− E[E[Ỹg(1)|Xg]E[Ỹg(0)|Xg]]

= −1

2
E[(E[Ỹg(1) + Ỹg(0)|Xg])

2] .
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Lemma B.1.1. Suppose Q satisfies Assumptions 2.2.1 and 2.3.3 and the treatment assignment mechanism

satisfies Assumptions 2.3.1–2.3.2. Define

LYN1
G =

1√
G

∑
1≤g≤2G

(Ȳg(1)NgDg − E[Ȳg(1)Ng]Dg)

LN1
G =

1√
G

∑
1≤g≤2G

(NgDg − E[Ng]Dg)

LYN0
G =

1√
G

∑
1≤g≤2G

(Ȳg(0)Ng(1−Dg)− E[Ȳg(0)Ng](1−Dg))

LN0
G =

1√
G

∑
1≤g≤2G

(Ng(1−Dg)− E[Ng](1−Dg)) .

Then, as G→ ∞,

(LYN1
G ,LN1

G ,LYN0
G ,LN0

G )′
d→ N(0,V) ,

where

V = V1 + V2

for

V1 =

V1
1 0

0 V0
1



V1
1 =

 E[Var[Ȳg(1)Ng|Xg]] E[Cov[Ȳg(1)Ng, Ng|Xg]]

E[Cov[Ȳg(1)Ng, Ng|Xg]] E[Var[Ng|Xg]]


V0

1 =

 E[Var[Ȳg(0)Ng|Xg]] E[Cov[Ȳg(0)Ng, Ng|Xg]]

E[Cov[Ȳg(0)Ng, Ng|Xg]] E[Var[Ng|Xg]]



V2 =
1

2
Var[(E[Ȳg(1)Ng|Xg], E[Ng|Xg], E[Ȳg(0)Ng|Xg], E[Ng|Xg])

′] .

Proof of Lemma B.1.1. Note

(LYN1
G ,LN1

G ,LYN0
G ,LN0

G ) = (LYN1
1,G ,LN1

1,G,LYN0
1,G ,LN0

1,G) + (LYN1
2,G ,LN1

2,G,LYN0
2,G ,LN0

2,G) ,
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where

LYN1
1,G =

1√
G

∑
1≤g≤2G

(Ȳg(1)NgDg − E[Ȳg(1)NgDg|X(G), D(G)])

LYN1
2,G =

1√
G

∑
1≤g≤2G

(E[Ȳg(1)NgDg|X(G), D(G)]− E[Ȳg(1)Ng]Dg)

and similarly for the rest. Next, note (LYN1
1,G ,LN1

1,G,LYN0
1,G ,LN0

1,G), G ≥ 1 is a triangular array of normalized

sums of random vectors. Conditional on X(G), D(G), (LYN1
1,G ,LN1

1,G) ⊥⊥ (LYN0
1,G ,LN0

1,G). Moreover, it follows

from QG = Q2G and Assumption 2.3.1 that

Var

LYN1
1,G

LN1
1,G

∣∣∣∣∣X(G), D(G)

 =

 1
G

∑
1≤g≤2G Var[Ȳg(1)Ng|Xg]Dg

1
G

∑
1≤g≤2G Cov[Ȳg(1)Ng, Ng|Xg]Dg

1
G

∑
1≤g≤2G Cov[Ȳg(1)Ng, Ng|Xg]Dg

1
G

∑
1≤g≤2G Var[Ng|Xg]Dg

 .

For the upper left component, we have

1

G

∑
1≤g≤2G

Var[Ȳg(1)Ng|Xg]Dg =
1

G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Xg]Dg −

1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]
2Dg . (B.1)

Note

1

G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Xg]Dg

=
1

2G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Xg] +

1

2

( 1

G

∑
1≤g≤2G:Dg=1

E[Ȳ 2
g (1)N

2
g |Xg]−

1

G

∑
1≤g≤2G:Dg=0

E[Ȳ 2
g (1)N

2
g |Xg]

)
.

It follows from the weak law of large numbers, the application of which is permitted by Lemma C.2.3, that

1

2G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Xg]

P→ E[Ȳ 2
g (1)N

2
g ] .
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On the other hand, it follows from Assumptions 2.3.2 and 2.3.3(a) that

∣∣∣ 1
G

∑
1≤g≤2G:Dg=1

E[Ȳ 2
g (1)N

2
g |Xg]−

1

G

∑
1≤g≤2G:Dg=0

E[Ȳ 2
g (1)N

2
g |Xg]

∣∣∣
≤ 1

G

∑
1≤j≤G

|E[Ȳ 2
π(2j−1)(1)N

2
π(2j−1)|Xπ(2j−1)]− E[Ȳ 2

π(2j)(1)N
2
π(2j)|Xπ(2j)]|

≲
1

G

∑
1≤j≤G

|Xπ(2j−1) −Xπ(2j)|
P→ 0 .

Therefore,
1

G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Xg]Dg

P→ E[Ȳ 2
g (1)N

2
g ] .

Meanwhile,

1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]
2Dg

=
1

2G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]
2 +

1

2

( 1

G

∑
1≤g≤2G:Dg=1

E[Ȳg(1)Ng|Xg]
2 − 1

G

∑
1≤g≤2G:Dg=0

E[Ȳg(1)Ng|Xg]
2
)
.

It follows from the weak law of large numbers (the application of which is permitted by Lemma C.2.3) that

1

2G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]
2 P→ E[E[Ȳg(1)Ng|Xg]

2] .
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Next,

∣∣∣ 1
G

∑
1≤g≤2G:Dg=1

E[Ȳg(1)Ng|Xg]
2 − 1

G

∑
1≤g≤2G:Dg=0

E[Ȳg(1)Ng|Xg]
2
∣∣∣

≤ 1

G

∑
1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)]− E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)]|

× |E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)] + E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)]|

≲
( 1

G

∑
1≤j≤G

|Xπ(2j−1) −Xπ(2j)|2
)1/2

×

( 1

G

∑
1≤j≤G

(|E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)] + E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)]|)2
)1/2

≲
( 1

G

∑
1≤j≤G

|Xπ(2j−1) −Xπ(2j)|2
)1/2

×

( 1

G

∑
1≤j≤G

(|E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)]|2 + |E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)]|2)
)1/2

≤
( 1

G

∑
1≤j≤G

|Xπ(2j−1) −Xπ(2j)|2
)1/2( 1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]
2
)1/2 P→ 0 ,

where the first inequality follows by inspection, the second follows from Assumption 2.3.3(a) and the Cauchy-

Schwarz inequality, the third follows from (a+ b)2 ≤ 2a2 + 2b2, the last follows by inspection again and the

convergence in probability follows from Assumption 2.3.2 and the law of large numbers. Therefore,

1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]
2Dg

P→ E
[
E[Ȳg(1)Ng|Xg]

2
]
,

and hence it follows from (C.4) that

1

G

∑
1≤g≤2G

Var[Ȳg(1)Ng|Xg]Dg
P→ E[Var[Ȳg(1)Ng|Xg]] .

An identical argument establishes that

1

G

∑
1≤g≤2G

Var[Ng|Xg]Dg
P→ E[Var[Ng|Xg]] .
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To study the off-diagonal components, note that

1

G

∑
1≤g≤2G

Cov[Ȳg(1)Ng, Ng|Xg]Dg =
1

G

∑
1≤g≤2G

E[Ȳg(1)N
2
g |Xg]Dg −

1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]E[Ng|Xg]Dg .

(B.2)

By a similar argument to that used above, it can be shown that

1

G

∑
1≤g≤2G

E[Ȳg(1)N
2
g |Xg]Dg

P→ E[Ȳg(1)N
2
g ] .

Meanwhile,

1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]E[Ng|Xg]Dg

=
1

2G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]E[Ng|Xg]

+
1

2

( 1

G

∑
1≤g≤2G:Dg=1

E[Ȳg(1)Ng|Xg]E[Ng|Xg]−
1

G

∑
1≤g≤2G:Dg=0

E[Ȳg(1)Ng|Xg]E[Ng|Xg]
)
.

Note that

E[E[Ȳg(1)Ng|Xg]E[Ng|Xg]] = E[[NgE[Ȳg(1)|Wg]|Xg]E[Ng|Xg]] ≲ E[N2
g ] <∞ ,

where the equality follows by the law of iterated expectations and the inequality by Lemma C.2.3 and

Jensen’s inequality, and the law of iterated expectations. Thus by the weak law of large numbers,

1

2G

∑
1≤g≤2G

E[Ȳg(1)Ng|Xg]E[Ng|Xg]
P→ E[E[Ȳg(1)Ng|Xg]E[Ng|Xg]] .

Next, by the triangle inequality

∣∣∣ 1
G

∑
1≤g≤2G:Dg=1

E[Ȳg(1)Ng|Xg]E[Ng|Xg]−
1

G

∑
1≤g≤2G:Dg=0

E[Ȳg(1)Ng|Xg]E[Ng|Xg]
∣∣∣

≤ 1

G

∑
1≤j≤G

∣∣∣E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)]E[Nπ(2j−1)|Xπ(2j−1)]

− E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)]E[Nπ(2j)|Xπ(2j)]
∣∣∣ ,
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and for each j,

∣∣E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)]E[Nπ(2j−1)|Xπ(2j−1)]− E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)]E[Nπ(2j)|Xπ(2j)]
∣∣

=
∣∣∣(E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)]− E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)])E[Nπ(2j)|Xπ(2j)]

+ (E[Nπ(2j−1)|Xπ(2j−1)]− E[Nπ(2j)|Xπ(2j)])E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)]
∣∣∣

≲
∣∣E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)]− E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)]

∣∣
+
∣∣E[Nπ(2j−1)|Xπ(2j−1)]− E[Nπ(2j)|Xπ(2j)]

∣∣ ,
where the final inequality follows from the triangle inequality, Assumption 2.3.3(b) and Lemma C.2.3.

Thus we have that

∣∣∣ 1
G

∑
1≤g≤2G:Dg=1

E[Ȳg(1)Ng|Xg]E[Ng|Xg]−
1

G

∑
1≤g≤2G:Dg=0

E[Ȳg(1)Ng|Xg]E[Ng|Xg]
∣∣∣

≲
1

G

∑
1≤j≤G

∣∣E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)]− E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)]
∣∣

+
∣∣E[Nπ(2j−1)|Xπ(2j−1)]− E[Nπ(2j)|Xπ(2j)]

∣∣
≲

1

G

∑
1≤j≤G

|Xπ(2j−1) −Xπ(2j)|
P→ 0 ,

where the final inequality follows from Assumptions 2.3.3 and the convergence in probability follows from

Assumption 2.3.1. Proceeding as in the case of the upper left component, we obtain that

1

G

∑
1≤g≤2G

Cov[Ȳg(1)Ng, Ng|Xg]Dg
P→ E[Cov[Ȳg(1)Ng, Ng|Xg]] .

Thus we have established that

Var

LYN1
1,G

LN1
1,G

∣∣∣∣∣X(G), D(G)

 P→ V1
1 .

Similarly,

Var

LYN0
1,G

LN0
1,G

∣∣∣∣∣X(G), D(G)

 P→ V0
1 .

It thus follows from similar arguments to those used in Lemma B.1.2 that

ρ(L((LYN1
1,G ,LN1

1,G,LYN0
1,G ,LN0

1,G)
′|X(G), D(G)), N(0,V1))

P→ 0 , (B.3)
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where L(·) denotes the law of a random variable and ρ is any metric that metrizes weak convergence.

Next, we study (LYN1
2,G ,LN1

2,G,LYN0
2,G ,LN0

2,G). It follows from QG = Q2G and Assumption 2.3.1 that



LYN1
2,G

LN1
2,G

LYN0
2,G

LN0
2,G


=



1√
G

∑
1≤g≤2GDg(E[Ȳg(1)Ng|Xg]− E[Ȳg(1)Ng])

1√
G

∑
1≤g≤2GDg(E[Ng|Xg]− E[Ng])

1√
G

∑
1≤g≤2G(1−Dg)(E[Ȳg(0)Ng|Xg]− E[Ȳg(0)Ng])

1√
G

∑
1≤g≤2G(1−Dg)(E[Ng|Xg]− E[Ng])


.

For LYN1
2,G , note it follows from Assumption 2.3.1 that

Var[LYN1
2,G |X(G)] =

1

4G

∑
1≤j≤G

(E[Ȳπ(2j−1)(1)Nπ(2j−1)|Xπ(2j−1)]− E[Ȳπ(2j)(1)Nπ(2j)|Xπ(2j)])
2

≲
1

G

∑
1≤j≤G

|Xπ(2j−1) −Xπ(2j)|2
P→ 0 .

Therefore, it follows from Markov’s inequality conditional on X(G) and D(G), and the fact that probabilities

are bounded and hence uniformly integrable, that

LYN1
2,G = E[LYN1

2,G |X(G)] + oP (1) .

Applying a similar argument to each of LN1
2,G, LYN0

2,G , LN0
2,G allows us to conclude that



LYN1
2,G

LN1
2,G

LYN0
2,G

LN0
2,G


=



1
2
√
G

∑
1≤g≤2G(E[Ȳg(1)Ng|Xg]− E[Ȳg(1)Ng])

1
2
√
G

∑
1≤g≤2G(E[Ng|Xg]− E[Ng])

1
2
√
G

∑
1≤g≤2G(E[Ȳg(0)Ng|Xg]− E[Ȳg(0)Ng])

1
2
√
G

∑
1≤g≤2G(E[Ng|Xg]− E[Ng])


+ oP (1) .

It thus follows from the central limit theorem (the application of which is justified by Jensen’s inequality

combined with Assumption 2.2.1(b), and Lemma C.2.3) that

(LYN1
2,G ,LN1

2,G,LYN0
2,G ,LN0

2,G)
′ d→ N(0,V2) .

Because (C.5) holds and (LYN1
2,G ,LN1

2,G,LYN0
2,G ,LN0

2,G) is deterministic conditional on X(G), D(G), the conclusion

of the theorem follows from Lemma S.1.3 in Bai et al. (2022c).
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B.1.3 Proof of Theorem 2.3.2

Proof. We have that

∆̂G =
1
G

∑
1≤g≤2G Ȳg(1)NgDg

1
G

∑
1≤g≤2GNgDg

−
1
G

∑
1≤g≤2G Ȳg(0)Ng(1−Dg)

1
G

∑
1≤g≤2GNg(1−Dg)

.

In particular, for h(x, y, z, w) = x
y − z

w , observe that

∆̂G = h

 1

G

∑
1≤g≤2G

Ȳg(1)NgDg,
1

G

∑
1≤g≤2G

NgDg,
1

G

∑
1≤g≤2G

Ȳg(0)Ng(1−Dg),
1

G

∑
1≤g≤2G

Ng(1−Dg)


and the Jacobian is

Dh(x, y, z, w) =
(1
y
,− x

y2
,− 1

w
,
z

w2

)
.

By Assumption 2.3.4,

√
G
( 1

G

∑
1≤g≤2G

ȲgNgDg − E[Ȳg(1)Ng]
)
=

1√
G

∑
1≤g≤2G

(Ȳg(1)NgDg − E[Ȳg(1)Ng]Dg)

and similarly for the other three terms. The desired conclusion then follows from Lemma B.1.2 together

with an application of the Delta method. To see this, note by the laws of total variance and total covariance

that V in Lemma B.1.2 is symmetric with entries

V11 = Var[Ȳg(1)Ng]−
1

2
Var[E[Ȳg(1)Ng|Wg]]

V12 = Cov[E[Ȳg(1)Ng|Wg], Ng]−
1

2
Cov[E[Ȳg(1)Ng|Wg], Ng]

V13 =
1

2
Cov[E[Ȳg(1)Ng|Wg], E[Ȳg(0)Ng|Wg]]

V14 =
1

2
Cov[E[Ȳg(1)Ng|Wg], Ng]

V22 = Var[Ng]−
1

2
Var[Ng]

V23 =
1

2
Cov[Ng, E[Ȳg(0)Ng|Xg]]

V24 =
1

2
Var[Ng]

V33 = Var[Ȳg(0)Ng]−
1

2
Var[E[Ȳg(0)Ng|Wg]]

V34 = Cov[E[Ȳg(0)Ng|Wg], Ng]−
1

2
Cov[E[Ȳg(0)Ng|Wg], Ng]

V44 = Var[Ng]−
1

2
Var[Ng] .
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We proceed by mirroring the algebra in Theorem 2.3.1. Expanding and simplifying the first half of the

expression:

Var[Ȳg(1)Ng]

E[Ng]2
+

Var[Ng]E[Ȳg(1)Ng]
2

E[Ng]4
+

Var[Ȳg(0)Ng]

E[Ng]2
+

Var[Ng]E[Ȳg(0)Ng]
2

E[Ng]4

− 2Cov[E[Ȳg(1)Ng|Wg], Ng]E[Ȳg(1)Ng]

E[Ng]3
− 2Cov[E[Ȳg(0)Ng|Wg], Ng]E[Ȳg(0)Ng]

E[Ng]3

=
E[Ȳ 2

g (1)N
2
g ]− E[Ȳg(1)Ng]

2

E[Ng]2
+
E[N2

g ]E[Ȳg(1)Ng]
2 − E[Ng]

2E[Ȳg(1)Ng]
2

E[Ng]4

+
E[Ȳ 2

g (0)N
2
g ]− E[Ȳg(0)Ng]

2

E[Ng]2
+
E[N2

g ]E[Ȳg(0)Ng]
2 − E[Ng]

2E[Ȳg(0)Ng]
2

E[Ng]4

−
2E[Ȳg(1)N

2
g ]E[Ȳg(1)Ng]

E[Ng]3
+

2E[Ȳg(1)Ng]E[Ng]E[Ȳg(1)Ng]

E[Ng]3

−
2E[Ȳg(0)N

2
g ]E[Ȳg(0)Ng]

E[Ng]3
+

2E[Ȳg(0)Ng]E[Ng]E[Ȳg(0)Ng]

E[Ng]3

=
E[Ȳ 2

g (1)N
2
g ]

E[Ng]2
+
E[Ȳ 2

g (0)N
2
g ]

E[Ng]2
+
E[N2

g ]E[Ȳg(1)Ng]
2

E[Ng]4
+
E[N2

g ]E[Ȳg(0)Ng]
2

E[Ng]4

−
2E[Ȳg(1)N

2
g ]E[Ȳg(1)Ng]

E[Ng]3
−

2E[Ȳg(0)N
2
g ]E[Ȳg(0)Ng]

E[Ng]3

= E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)] ,

where

Ỹg(d) =
Ng

E[Ng]

(
Ȳg(d)−

E[Ȳg(d)Ng]

E[Ng]

)
for d ∈ {0, 1}.
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Expanding the second half of the expression:

− Var[E[Ȳg(1)Ng|Wg]]

2E[Ng]2
− Var[Ng]E[Ȳg(1)Ng]

2

2E[Ng]4

− Var[E[Ȳg(0)Ng|Wg]]

2E[Ng]2
− Var[Ng]E[Ȳg(0)Ng]

2

2E[Ng]4

+
Cov[E[Ȳg(1)Ng|Wg], Ng]E[Ȳg(1)Ng]

E[Ng]3
+

Cov[E[Ȳg(0)Ng|Wg], Ng]E[Ȳg(0)Ng]

E[Ng]3

− Cov[E[Ȳg(1)Ng|Wg], E[Ȳg(0)Ng|Wg]]

E[Ng]2
+

Cov[E[Ȳg(1)Ng|Wg], Ng]E[Ȳg(0)Ng]

E[Ng]E[Ng]2

+
Cov[Ng, E[Ȳg(0)Ng|Wg]]E[Ȳg(1)Ng]

E[Ng]2E[Ng]

− Cov[Ng, Ng]E[Ȳg(1)Ng]E[Ȳg(0)Ng]

E[Ng]2E[Ng]2

= −E[E[Ȳg(1)Ng|Wg]
2]− E[Ȳg(1)Ng]

2

2E[Ng]2
−

(E[N2
g ]− E[Ng]

2)E[Ȳg(1)Ng]
2

2E[Ng]4

− E[E[Ȳg(0)Ng|Wg]
2]− E[Ȳg(0)Ng]

2

2E[Ng]2
−

(E[N2
g ]− E[Ng]

2)E[Ȳg(0)Ng]
2

2E[Ng]4

+
(E[E[Ȳg(1)Ng|Wg]Ng]− E[Ȳg(1)Ng]E[Ng])E[Ȳg(1)Ng]

E[Ng]3

+
(E[E[Ȳg(0)Ng|Wg]Ng]− E[Ȳg(0)Ng]E[Ng])E[Ȳg(0)Ng]

E[Ng]3

− E[E[Ȳg(1)Ng|Wg]E[Ȳg(0)Ng|Wg]]− E[Ȳg(1)Ng]E[Ȳg(0)Ng]

E[Ng]E[Ng]

+
(E[E[Ȳg(1)Ng|Wg]Ng]− E[Ȳg(1)Ng]E[Ng])E[Ȳg(0)Ng]

E[Ng]E[Ng]2

+
(E[E[Ȳg(0)Ng|Wg]Ng]− E[Ȳg(0)Ng]E[Ng])E[Ȳg(1)Ng]

E[Ng]2E[Ng]

−
(E[N2

g ]− E[Ng]
2)E[Ȳg(1)Ng]E[Ȳg(0)Ng]

E[Ng]2E[Ng]2

= −E[E[Ȳg(1)Ng|Wg]
2]

2E[Ng]2
−
E[N2

g ]E[Ȳg(1)Ng]
2

2E[Ng]4
− E[E[Ȳg(0)Ng|Wg]

2]

2E[Ng]2
−
E[N2

g ]E[Ȳg(0)Ng]
2

2E[Ng]4

+
E[E[Ȳg(1)Ng|Wg]Ng]E[Ȳg(1)Ng]

E[Ng]3
+
E[E[Ȳg(0)Ng|Wg]Ng]E[Ȳg(0)Ng]

E[Ng]3

− E[E[Ȳg(1)Ng|Wg]E[Ȳg(0)Ng|Wg]]

E[Ng]2
+
E[E[Ȳg(1)Ng|Wg]Ng]E[Ȳg(0)Ng]

E[Ng]3

+
E[E[Ȳg(0)Ng|Wg]Ng]E[Ȳg(1)Ng]

E[Ng]3
−
E[N2

g ]E[Ȳg(1)Ng]E[Ȳg(0)Ng]

E[Ng]4

= −1

2
E[E[Ỹg(1)|Wg]

2]− 1

2
E[E[Ỹg(0)|Wg]

2]− E[E[Ỹg(1)|Wg]E[Ỹg(0)|Wg]]

= −1

2
E[(E[Ỹg(1) + Ỹg(0)|Wg])

2] .
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Lemma B.1.2. Suppose Q satisfies Assumptions 2.2.1 and 2.3.6 and the treatment assignment mechanism

satisfies Assumptions 2.3.4–2.3.5. Define

LYN1
G =

1√
G

∑
1≤g≤2G

(Ȳg(1)NgDg − E[Ȳg(1)Ng]Dg)

LN1
G =

1√
G

∑
1≤g≤2G

(NgDg − E[Ng]Dg)

LYN0
G =

1√
G

∑
1≤g≤2G

(Ȳg(0)Ng(1−Dg)− E[Ȳg(0)Ng](1−Dg))

LN0
G =

1√
G

∑
1≤g≤2G

(Ng(1−Dg)− E[Ng](1−Dg)) .

Then, as G→ ∞,

(LYN1
G ,LN1

G ,LYN0
G ,LN0

G )′
d→ N(0,V) ,

where

V = V1 + V2

for

V1 =

V1
1 0

0 V0
1



V1
1 =

E[Var[Ȳg(1)Ng|Wg]] 0

0 0


V0

1 =

E[Var[Ȳg(0)Ng|Wg]] 0

0 0



V2 =
1

2
Var[(E[Ȳg(1)Ng|Wg], Ng, E[Ȳg(0)Ng|Wg], Ng)

′] .

Proof of Lemma B.1.2. Note

(LYN1
G ,LN1

G ,LYN0
G ,LN0

G ) = (LYN1
1,G , 0,LYN0

1,G , 0) + (LYN1
2,G ,LN1

G ,LYN0
2,G ,LN0

G ) ,
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where

LYN1
1,G =

1√
G

∑
1≤g≤2G

(Ȳg(1)NgDg − E[Ȳg(1)NgDg|N (G), X(G), D(G)])

LYN1
2,G =

1√
G

∑
1≤g≤2G

(E[Ȳg(1)NgDg|N (G), X(G), D(G)]− E[Ȳg(1)Ng]Dg)

and similarly for LYN0
G . Next, note (LYN1

1,G , 0,LYN0
1,G , 0), G ≥ 1 is a triangular array of normalized sums of

random vectors. Conditional on N (G), X(G), D(G), LYN1
1,G ⊥⊥ LYN0

1,G . Moreover, it follows from QG = Q2G and

Assumption 2.3.4 that

Var

[
LYN1
1,G

∣∣∣∣∣N (G), X(G), D(G)

]
= Var[Ȳg(1)Ng|Wg]Dg .

We have

1

G

∑
1≤g≤2G

Var[Ȳg(1)Ng|Wg]Dg =
1

G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Wg]Dg −

1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Wg]
2Dg . (B.4)

Note

1

G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Wg]Dg

=
1

2G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Wg] +

1

2

( 1

G

∑
1≤g≤2G:Dg=1

E[Ȳ 2
g (1)N

2
g |Wg]−

1

G

∑
1≤g≤2G:Dg=0

E[Ȳ 2
g (1)N

2
g |Wg]

)
.

It follows from the weak law of large numbers, the application of which is permitted by Lemma C.2.3,

1

2G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Wg]

P→ E[Ȳ 2
g (1)N

2
g ] .
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On the other hand,

∣∣∣ 1
G

∑
1≤g≤2G:Dg=1

E[Ȳ 2
g (1)N

2
g |Wg]−

1

G

∑
1≤g≤2G:Dg=0

E[Ȳ 2
g (1)N

2
g |Wg]

∣∣∣
≤ 1

G

∑
1≤j≤G

|N2
π(2j−1)E[Ȳ 2

π(2j−1)(1)|Wπ(2j−1)]−N2
π(2j)E[Ȳ 2

π(2j)(1)|Wπ(2j)]|

≤ 1

G

∑
1≤j≤G

N2
π(2j)|E[Ȳ 2

π(2j−1)(1)|Wπ(2j−1)]− E[Ȳ 2
π(2j)(1)|Wπ(2j)]|

+
1

G

∑
1≤j≤G

|N2
π(2j) −N2

π(2j−1)||E[Ȳ 2
π(2j−1)(1)|Wπ(2j−1)]|

≲
1

G

∑
1≤j≤G

N2
π(2j)|Wπ(2j−1) −Wπ(2j)|+

1

G

∑
1≤j≤G

|N2
π(2j) −N2

π(2j−1)|
P→ 0 ,

where the first inequality follows from Assumption 2.3.4 and the triangle inequality, the second inequal-

ity by some algebraic manipulations, the final inequality by Assumption 2.3.6 and Lemma C.2.3, and the

convergence in probability follows from Assumption 2.3.5 and Lemma B.2.2. Therefore,

1

G

∑
1≤g≤2G

E[Ȳ 2
g (1)N

2
g |Wg]Dg

P→ E[Ȳ 2
g (1)N

2
g ] .

Meanwhile,

1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Wg]
2Dg

=
1

2G

∑
1≤g≤2G

E[Ȳg(1)Ng|Wg]
2 +

1

2

( 1

G

∑
1≤g≤2G:Dg=1

E[Ȳg(1)Ng|Wg]
2 − 1

G

∑
1≤g≤2G:Dg=0

E[Ȳg(1)Ng|Wg]
2
)
.

It follows from the weak law of large numbers, the application of which is permitted by Lemma C.2.3 and

Assumption 2.2.1(c) that

1

2G

∑
1≤g≤2G

E[Ȳg(1)Ng|Wg]
2 P→ E[E[Ȳg(1)Ng|Wg]

2] .
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Next,

∣∣∣ 1
G

∑
1≤g≤2G:Dg=1

E[Ȳg(1)Ng|Wg]
2 − 1

G

∑
1≤g≤2G:Dg=0

E[Ȳg(1)Ng|Wg]
2
∣∣∣

≤ 1

G

∑
1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1)|Wπ(2j−1)]− E[Ȳπ(2j)(1)Nπ(2j)|Wπ(2j)]|

× |E[Ȳπ(2j−1)(1)Nπ(2j−1)|Wπ(2j−1)] + E[Ȳπ(2j)(1)Nπ(2j)|Wπ(2j)]|

≤
( 1

G

∑
1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1)|Wπ(2j−1)]− E[Ȳπ(2j)(1)Nπ(2j)|Wπ(2j)]|2
)1/2

·
( 1

G

∑
1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1)|Wπ(2j−1)] + E[Ȳπ(2j)(1)Nπ(2j)|Wπ(2j)]|2
)1/2

≲
( 1

G

∑
1≤j≤G

|E[Ȳπ(2j−1)(1)Nπ(2j−1)|Wπ(2j−1)]− E[Ȳπ(2j)(1)Nπ(2j)|Wπ(2j)]|2
)1/2

×

( 1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Wg]
2
)1/2

P→ 0 ,

where the first inequality follows by inspection, the second follows from Cauchy-Schwarz, the third follows

from (a+ b)2 ≤ 2a2 + 2b2, and the convergence in probability follows from Assumptions 2.3.6, 2.3.5 and the

law of large numbers. Therefore,

1

G

∑
1≤g≤2G

E[Ȳg(1)Ng|Wg]
2Dg

P→ E
[
E[Ȳg(1)Ng|Wg]

2
]
,

and hence it follows from (B.4) that

1

G

∑
1≤g≤2G

Var[Ȳg(1)Ng|Wg]Dg
P→ E[Var[Ȳg(1)Ng|Wg]] .

Similarly,
1

G

∑
1≤g≤2G

Var[Ȳg(0)Ng|Wg]Dg
P→ E[Var[Ȳg(0)Ng|Wg]] .

We now establish

ρ(L((LYN1
1,G , 0,LYN0

1,G , 0)|W (G), D(G)), N(0,V1))
P→ 0 , (B.5)

where L(·) is used to denote the law of a random variable and ρ is any metric that metrizes weak convergence.

For that purpose note that we only need to show that for any subsequence {Gk} there exists a further
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subsequence {Gkl
} along which

ρ(L((LYN1
1,Gkl

, 0,LYN0
1,Gkl

, 0)|W (Gkl
), D(Gkl ), N(0,V1)) → 0 with probability one . (B.6)

In order to extract such a subsequence, we verify the conditions in the Lindeberg central limit theorem in

Proposition 2.27 of van der Vaart (1998). First note that by the results proved so far,

Var[(LYN1
1,G , 0,LYN0

1,G , 0)′|W (G), D(G)]
P→ V1 .

Next, We will use the inequality

∣∣∣∣∣∣
∑

1≤j≤k

aj

∣∣∣∣∣∣ I

∣∣∣∣∣∣
∑

1≤j≤k

aj

∣∣∣∣∣∣ > ϵ

 ≤
∑

1≤j≤k

k|aj |I
{
|aj | >

ϵ

k

}
. (B.7)

It follows from (B.7) that

1

G

∑
1≤g≤2G

E[(Dg(Ȳg(1)Ng − E[Ȳg(1)Ng|Wg]))
2 + ((1−Dg)(Ȳg(0)Ng − E[Ȳg(0)Ng|Wg]))

2

× I{(Dg(Ȳg(1)Ng − E[Ȳg(1)Ng|Wg]))
2 + ((1−Dg)(Ȳg(0)Ng − E[Ȳg(0)Ng|Wg]))

2 > ϵ2G}|W (G), D(G)]

≲
1

G

∑
1≤g≤2G

E[Dg(Ȳg(1)Ng − E[Ȳg(1)Ng|Wg])
2I{Dg(Ȳg(1)Ng − E[Ȳg(1)Ng|Wg])

2 > ϵ2G/2}|W (G), D(G)]

+
1

G

∑
1≤g≤2G

E[(1−Dg)(Ȳg(0)Ng − E[Ȳg(0)Ng|Wg])
2

× I{(1−Dg)(Ȳg(0)Ng − E[Ȳg(0)Ng|Wg])
2 > ϵ2G/2}|W (G), D(G)]

≤ 1

G

∑
1≤g≤2G

E[(Ȳg(1)Ng − E[Ȳg(1)Ng|Wg])
2I{|Ȳg(1)Ng − E[Ȳg(1)Ng|Wg]| > ϵ

√
G/

√
2}|Wg]

+
1

G

∑
1≤g≤2G

E[(Ȳg(0)Ng − E[Ȳg(0)Ng|Wg])
2I{|Ȳg(0)Ng − E[Ȳg(0)Ng|Wg]| > ϵ

√
G/

√
2}|Wg] .
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Fix any m > 0. For G large enough, the previous line

≤ 1

G

∑
1≤g≤2G

E[(Ȳg(1)Ng − E[Ȳg(1)Ng|Wg])
2I{|Ȳg(1)Ng − E[Ȳg(1)Ng|Wg]| > m}|Wg]

+
1

G

∑
1≤g≤2G

E[(Ȳg(0)Ng − E[Ȳg(0)Ng|Wg])
2I{|Ȳg(0)Ng − E[Ȳg(0)Ng|Wg]| > m|Wg]

P→ 2E[(Ȳg(1)Ng − E[Ȳg(1)Ng|Wg])
2I{|Ȳg(1)Ng − E[Ȳg(1)Ng|Wg]| > m}]

+ E[(Ȳg(1)Ng − E[Ȳg(1)Ng|Wg])
2I{|Ȳg(1)Ng − E[Ȳg(1)Ng|Wg]| > m}] .

because E[(Ȳg(1)Ng − E[Ȳg(1)Ng|Wg])
2] < ∞ and E[(Ȳg(0)Ng − E[Ȳg(0)Ng|Wg])

2] < ∞. As m → ∞, the

last expression goes to 0. Therefore, it follows from similar arguments to those in the proof of Lemma B.3

of Bai (2022a) that both conditions in Proposition 2.27 of van der Vaart (1998) hold in probability, and

therefore there must be a subsequence along which they hold almost surely, so (B.6) and hence (B.5) holds.

Next, we study (LYN1
2,G ,LN1

G ,LYN0
2,G ,LN0

G ). It follows from QG = Q2G and Assumption 2.3.4 that



LYN1
2,G

LN1
2,G

LYN0
2,G

LN0
2,G


=



1√
G

∑
1≤g≤2GDg(E[Ȳg(1)Ng|Wg]− E[Ȳg(1)Ng])

1√
G

∑
1≤g≤2GDg(Ng − E[Ng])

1√
G

∑
1≤g≤2G(1−Dg)(E[Ȳg(0)Ng|Wg]− E[Ȳg(0)Ng])

1√
G

∑
1≤g≤2G(1−Dg)(Ng − E[Ng])


.

For LYN1
2,G , it follows from similar arguments to those used above that Var[LYN1

2,G |W (G)]
P→ 0. Therefore, it

follows from Markov’s inequality conditional on W (G) and D(G), and the fact that probabilities are bounded

and hence uniformly integrable, that

LYN1
2,G = E[LYN1

2,G |W (G)] + oP (1) .

Applying a similar argument to each of LN1
G , LYN0

2G and LN0
G allows us to conclude that



LYN1
2,G

LN1
G

LYN0
2,G

LN0
G


=



1
2
√
G

∑
1≤g≤2G(E[Ȳg(1)Ng|Wg]− E[Ȳg(1)Ng])

1
2
√
G

∑
1≤g≤2G(Ng − E[Ng])

1
2
√
G

∑
1≤g≤2G(E[Ȳg(0)Ng|Wg]− E[Ȳg(0)Ng])

1
2
√
G

∑
1≤g≤2G(Ng − E[Ng])


+ oP (1) .

It thus follows from the central limit theorem (the application of which is justified by Assumption 2.2.1(c)
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and Lemma C.2.3) that

(LYN1
2,G ,LN1

G ,LYN0
2,G ,LN0

G )′
d→ N(0,V2) .

Because (C.5) holds and (LYN1
2,G ,LN1

G ,LYN0
2,G ,LN0

G ) is deterministic conditional on N (G), X(G), D(G), the con-

clusion of the theorem follows from Lemma S.1.3 in Bai et al. (2022c).

B.1.4 Proof of Theorem 3.4.2

The desired conclusion follows immediately from Lemmas B.2.4-B.2.6.

B.1.5 Proof of Theorem 2.4.2

By the derivation in Theorem 3.6 in Bugni et al. (2022a),

ω̂2
CR,G =

1

2

(
ω̂2
CR,G(1) + ω̂2

CR,G(0)
)
, (B.8)

(where we note that the factor of 1/2 appears since we are normalizing by the number of pairs), and

ω̂2
CR,G(d) :=

1(
1
2G

∑
1≤g≤2GNgI{Dg = d}

)2 1

2G

∑
1≤g≤2G

( Ng

|Mg|

)2

I{Dg = d}

 ∑
i∈Mg

ϵ̂i,g(d)

2
 ,

with

ϵ̂i,g(d) := Yi,g −
1∑

1≤g≤2GNgI{Dg = d}
∑

1≤g≤2G

NgȲgI{Dg = d} .

Fix d ∈ {0, 1}, r ∈ {0, 1, 2}, ℓ ∈ {1, 2} arbitrarily. Then by Lemma S.1.5 in Bai et al. (2022c) applied to the

observations (N ℓ
g Ȳ

r
g (d) : 1 ≤ g ≤ 2G),

1

2G

∑
1≤g≤2G

N ℓ
g Ȳ

r
g (d)I{Dg = d} P−→

E[N lȲ r
g (d)]

2
.

The result then follows by an identical derivation to that of Theorem 3.6 in Bugni et al. (2022a).
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B.1.6 Proof of Theorem 2.4.3

Let 1K denote a column of ones of length K. Then consider the following cluster-robust variance estimator

where clusters are defined at the level of the pair :

(
1

G

∑
1≤j≤G

∑
g∈λj

X ′
gXg

)−1(
1

G

∑
1≤j≤G

∑
g∈λj

X ′
g ϵ̂g

∑
g∈λj

X ′
g ϵ̂g

′)(
1

G

∑
1≤g≤G

∑
g∈λj

X ′
gXg

)−1

, (B.9)

where λj := {π(2j − 1), π(2j)}, and

Xg :=

(
1|Mg| ·

√
Ng

|Mg| , 1|Mg| ·
√

Ng

|Mg|Dg

)
ϵ̂g :=

√
Ng

|Mg|
(Yi,g − (µ̂G(1)− µ̂G(0))Dg − µ̂G(0) : i ∈ Mg)

′
.

Imposing the condition that Ng = k are equal and fixed and |Mg| = Ng, and then following the algebra in,

for instance, the proof of Theorem 3.4 in Bai et al. (2023c), it can be shown that

ω̂2
PCVE,G =

1

G

∑
1≤j≤G

∑
g∈λj

ȲgI{Dg = 1} −
∑
g∈λj

ȲgI{Dg = 0}

2

− (µ̂G(1)− µ̂G(0))
2 .

By Lemmas S.1.5 and S.1.6 of Bai et al. (2022c) applied to the observations (Ȳg(d) : 1 ≤ g ≤ 2G), and the

continuous mapping theorem, we thus obtain that

ω̂2
PCVE,G

P−→ E[Var[Ȳg(1)|Xg]] + E[Var[Ȳg(1)|Xg]]

+ E[
(
(E[Ȳg(1)|Xg]− E[Ȳg(1)])− (E[Ȳg(0)|Xg]− E[Ȳg(0)])

)2
] .

Simplifying using the law of total variance and the fact that Ỹg(d) = Ȳg(d)− E[Ȳg(d)] once we impose that

Ng = k, we then obtain

ω̂2
PCVE,G

P−→ E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)]−
1

2
E[(E[Ỹg(1) + Ỹg(0)|Xg])

2] +
1

2
E
[
(E[Ỹg(1)− Ỹg(0)|Xg])

2
]
.

The conclusion then follows.
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B.1.7 Proof of Theorem 2.5.1

Proof. Note that the null hypothesis (2.8) combined with Assumption 2.2.1(e) implies that

Ȳg(1)|(Xg, Ng)
d
= Ȳg(0)|(Xg, Ng) . (B.10)

If the assignment mechanism satisfies Assumption 2.3.4, the result then follows by applying Theorem 3.4 in

Bai et al. (2022c) to the cluster-level outcomes {(Ȳg, Dg, Xg, Ng) : 1 ≤ g ≤ 2G}. If instead the assignment

mechanism satisfies Assumption 2.3.1, then note that (B.10) is in fact equivalent to the statement

(Ȳg(1), Ng)|Xg
d
= (Ȳg(0), Ng)|Xg . (B.11)

The result then follows by applying Theorem 3.4 in Bai et al. (2022c) using (B.11) as the null hypothesis.

To establish this equivalence, we first begin with (B.10) and verify that for any Borel sets A and B,

P{Ȳg(1) ∈ A,Ng ∈ B|Xg} = P{Ȳg(0) ∈ A,Ng ∈ B|Xg} a.s.

By the definition of a conditional expectation, note we only need to verify for all Borel sets C,

E[P{Ȳg(1) ∈ A,Ng ∈ B|Xg}I{Xg ∈ C}] = P{Ȳg(0) ∈ A,Ng ∈ B,Xg ∈ C} .

We have

E[P{Ȳg(1) ∈ A,Ng ∈ B|Xg}I{Xg ∈ C}]

= P{Ȳg(1) ∈ A,Ng ∈ B,Xg ∈ C}

= E[P{Ȳg(1) ∈ A|Xg, Ng}I{Ng ∈ B}I{Xg ∈ C}]

= E[P{Ȳg(0) ∈ A|Xg, Ng}I{Ng ∈ B}I{Xg ∈ C}]

= P{Ȳg(0) ∈ A,Ng ∈ B,Xg ∈ C} ,

where the first and second equalities follow from the definition of conditional expectations, the the third

follows from (B.10), and the last follows again from the definition of a conditional expectation. The opposite

implication follows from a similar argument and is thus omitted.
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B.1.8 Proof of Theorem 2.5.2

Note that

√
G∆̂G =

√
G

 1

N(1)

∑
1≤g≤2G

DgNgȲg −
1

N(0)

∑
1≤g≤2G

(1−Dg)NgȲg


=

1

N(1)

√
G

∑
1≤g≤2G

(
DgNgȲg − (1−Dg)NgȲg

)
+

(
1

N(1)
− 1

N(0)

)√
G

∑
1≤g≤2G

(1−Dg)NgȲg

=
1

N(1)/G

1√
G

∑
1≤j≤G

(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
(Dπ(2j) −Dπ(2j−1))

+

1√
G
(N(0)−N(1))

N(1)
G

N(0)
G

1

G

∑
1≤g≤2G

(1−Dg)NgȲg

=
1

N(1)/G

1√
G

∑
1≤j≤G

(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
(Dπ(2j) −Dπ(2j−1))

−
1√
G

∑
1≤j≤G(Nπ(2j) −Nπ(2j−1))(Dπ(2j) −Dπ(2j−1))

N(1)
G

N(0)
G

1

G

∑
1≤g≤2G

(1−Dg)NgȲg .

Hence the randomization distribution of
√
G∆̂G is given by

R̃G(t) := P

{
√
G∆̌(ϵ1, . . . , ϵG) ≤ t

∣∣∣∣∣Z(G)

}
, (B.12)

where

√
G∆̌(ϵ1, . . . , ϵG) =

1

Ñ(1)/G

1√
G

∑
1≤j≤G

ϵj
(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
(Dπ(2j) −Dπ(2j−1))

−
1√
G

∑
1≤j≤G ϵj(Nπ(2j) −Nπ(2j−1))(Dπ(2j) −Dπ(2j−1))

Ñ(1)
G

Ñ(0)
G

1

G

∑
1≤g≤2G

(1− D̃g)NgȲg ,

ϵj , j = 1, . . . , G are i.i.d. Rademacher random variables generated independently of Z(G), {D̃g : 1 ≤ g ≤ 2G}

denotes the assignment of cluster g after applying the transformation implied by {ϵj : 1 ≤ j ≤ G}, and

Ñ(d) =
∑

1≤g≤2G

NgI{D̃g = d} .
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By construction, v̂2G evaluated at the transformation of the data implied by {ϵj : 1 ≤ j ≤ G} is given by

v̌2G(ϵ1, . . . , ϵG) = τ̂2G − 1

2
λ̌2G (ϵ1, . . . , ϵG) (B.13)

where τ̂2G is defined in (2.5), and

λ̌2G (ϵ1, . . . , ϵG) =

2

G

∑
1≤j≤⌊G/2⌋

ϵ2j−1ϵ2j

((
Ŷπ(4j−3) − Ŷπ(4j−2)

)(
Ŷπ(4j−1) − Ŷπ(4j)

)
×

(
Dπ(4j−3) −Dπ(4j−2)

) (
Dπ(4j−1) −Dπ(4j)

) )
.

The desired conclusion then follows from Lemmas B.2.7 and B.2.9, along with Theorem 5.2 in Chung and

Romano (2013).

B.1.9 Proof of Theorem 2.6.1

We first show that β̂G
P→ β∗. The proof follows almost verbatim Theorem 4.2 in Bai et al. (2023a) with a

few minor differences because we match on Ng, which could all be resolved as in the proof of Lemma C.3.1.

To establish the limiting distribution, first define

ψ̄d,G =
1

G

∑
1≤g≤2G

ψgI{Dg = d}

for d ∈ {0, 1}. Note that

1

G

∑
1≤g≤2G

(Ȳg(1)Ng − (ψg − ψ̄G)
′β̂G)Dg

=
1

G

∑
1≤g≤2G

(Ȳg(1)Ng − (ψg − ψ̄G)
′β∗)Dg −

1

G

∑
1≤g≤2G

(ψg − ψ̄1,G)
′(β̂G − β∗)Dg − (ψ̄1,G − ψ̄G)

′(β̂G − β∗)

=
1

G

∑
1≤g≤2G

(Ȳg(1)Ng − (ψg − ψ̄G)
′β∗)Dg −OP (G

−1/2)oP (1)

=
1

G

∑
1≤g≤2G

(Ȳg(1)Ng − (ψg − ψ̄G)
′β∗)Dg + oP (G

−1/2)

=
1

G

∑
1≤g≤2G

(Ȳg(1)Ng − (ψg − E[ψg])
′β∗)Dg − (ψ̄G − E[ψg])

′β∗ + oP (G
−1/2) .
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where the second equality follows because β̂G − β∗ = oP (1),

1

G

∑
1≤g≤2G

(ψg − ψ̄1,G)Dg = 0 ,

and
√
G(ψ̄1,G − ψ̄G) = OP (1) .

The last equality follows from the arguments that establish (50) in Bai et al. (2023a). Define

∆̃adj
G =

1
G

∑
1≤g≤2G(Ȳg(1)Ng − (ψg − E[ψg])

′β∗)Dg

1
G

∑
1≤g≤2GNgDg

−
1
G

∑
1≤g≤2G(Ȳg(0)Ng − (ψg − E[ψg])

′β∗)(1−Dg)
1
G

∑
1≤g≤2GNg(1−Dg)

.

It follows from previous arguments that

√
G(∆̂adj

G −∆)−
√
G(∆̃adj

G −∆)

=
√
G(ψ̄G − E[ψg])

′β∗

(
1

1
G

∑
1≤g≤2GNgDg

− 1
1
G

∑
1≤g≤2GNg(1−Dg)

)
+ oP (1)

= oP (1) .

Recall that

ν2 = E[Var[Ỹg(1)|Xg, Ng]] + E[Var[Ỹg(0)|Xg, Ng]] +
1

2
E[(E[Ỹg(1)− Ỹg(0)|Xg, Ng]−∆)2] .

It then follows from the proof of Theorem 2.3.2 that
√
G(∆̂adj

G −∆)
d→ N(0, ς2), where

ς2 = E[Var[Y ∗
g (1)|Xg, Ng]] + E[Var[Y ∗

g (0)|Xg, Ng]] +
1

2
E[(E[Y ∗

g (1)− Y ∗
g (0)|Xg, Ng]−∆)2] ,

where

Y ∗
g (d) =

Ȳg(d)Ng − (ψg − E[ψg])
′β∗

E[Ng]
− Ng

E[Ng]

E[Ȳg(d)Ng − (ψg − E[ψg])
′β∗]

E[Ng]
= Ỹg(d)−

(ψg − E[ψg])
′β∗

E[Ng]

for d ∈ {0, 1}. All relevant assumptions for Theorem 2.3.2 have their counterparts stated in Theorem 2.6.1.

Next we show that ς2 ≤ ν2. First note that by definition it follows immediately that

E[(E[Ỹg(1)− Ỹg(0)|Xg, Ng]−∆)2] = E[(E[Y ∗
g (1)− Y ∗

g (0)|Xg, Ng]−∆)2] .
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It thus remains to show that

E[Var[Y ∗
g (1)|Xg, Ng]] + E[Var[Y ∗

g (0)|Xg, Ng]] ≤ E[Var[Ỹg(1)|Xg, Ng]] + E[Var[Ỹg(0)|Xg, Ng]] .

To that end,

E[Var[Y ∗
g (1)|Xg, Ng]] + E[Var[Y ∗

g (0)|Xg, Ng]]

= E

[
Var

[
Ỹg(1)−

(ψg − E[ψg])
′β∗

E[Ng]

∣∣∣Xg, Ng

]]
+ E

[
Var

[
Ỹg(0)−

(ψg − E[ψg])
′β∗

E[Ng]

∣∣∣Xg, Ng

]]
= E[Var[Ỹg(1)|Xg, Ng]] + E[Var[Ỹg(0)|Xg, Ng]]−

2E[((ψg − E[ψg|Xg, Ng])
′β∗)2]

E[Ng]2

− 2E[Cov[Ng, ψ
′
gβ

∗|Xg, Ng]]
E[Ȳg(1)Ng] + E[Ȳg(0)Ng]

E[Ng]3
,

where the first equality follows by definition, the second equality by noting that β∗ is the projection coefficient

of 1
2 (Ȳg(1)Ng + Ȳg(0)Ng − E[Ȳg(1)Ng + Ȳg(0)Ng|Xg, Ng]) on ψg − E[ψg|Xg, Ng],

E[(Ȳg(1)Ng + Ȳg(0)Ng − E[Ȳg(1)Ng + Ȳg(0)Ng|Xg, Ng])(ψg − E[ψg|Xg, Ng])
′β∗]

= 2E[((ψg − E[ψg|Xg, Ng])
′β∗)2] ,

or equivalently,

E[Cov[Ȳg(1)Ng + Ȳg(0)Ng, ψ
′
gβ

∗|Xg, Ng]] = 2E[Var[ψ′
gβ

∗|Xg, Ng]] . (B.14)

We thus obtain

ς2 = ν2 − κ2

once we notice that Cov[Ng, ψ
′
gβ

∗|Xg, Ng] = 0, as desired. Finally, note that if we do not match on Ng, then

we have that

E[Var[Y ∗
g (1)|Xg]] + E[Var[Y ∗

g (0)|Xg]]

= E[Var[Ỹg(1)|Xg]] + E[Var[Ỹg(0)|Xg]]−
2E[((ψg − E[ψg|Xg])

′β∗)2]

E[Ng]2

− 2E[Cov[Ng, ψ
′
gβ

∗|Xg]]
E[Ȳg(1)Ng] + E[Ȳg(0)Ng]

E[Ng]3
,

but the last term no longer necessarily evaluates to zero.
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B.1.10 Proof of Theorem 2.6.2

The theorem follows from combining the arguments used to establish Theorem 3.4.2 and those used to

establish Theorem 3.2 in Bai et al. (2023a).

B.2 Auxiliary Lemmas

Lemma B.2.1. If Assumption 2.2.1 holds,

∣∣E[Ȳ r
g (d)|Xg, Ng]

∣∣ ≤ C a.s. ,

for r ∈ {1, 2} for some constant C > 0,

E
[
Ȳ r
g (d)N

ℓ
g

]
<∞ ,

for r ∈ {1, 2}, ℓ ∈ {0, 1, 2}, and

E
[
E[Ȳg(d)Ng|Xg]

2
]
<∞ .

Proof. We show the first statement for r = 2, since the case r = 1 follows similarly. By the Cauchy-Schwarz

inequality,

Ȳg(d)
2 =

 1

|Mg|
∑

i∈Mg

Yi,g(d)

2

≤ 1

|Mg|
∑

i∈Mg

Yi,g(d)
2 ,

and hence ∣∣E[Ȳg(d)
2|Xg, Ng]

∣∣ ≤ E

 1

|Mg|
∑

i∈Mg

E[Yi,g(d)
2|Xg, Ng]

∣∣∣∣∣Xg, Ng

 ≤ C ,

where the first inequality follows from the above derivation, Assumption 2.2.1(e) and the law of iterated

expectations, and final inequality follows from Assumption 2.2.1(d). We show the next statement for r =

ℓ = 2, since the other cases follow similarly. By the law of iterated expectations,

E
[
Ȳ 2
g (d)N

2
g

]
= E

[
N2

gE[Ȳ 2
g (d)|Xg, Ng]

]
≲ E

[
N2

g

]
<∞ ,
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where the final line follows by Assumption 2.2.1 (c). Finally,

E
[
E[Ȳg(d)Ng|Xg]

2
]
= E

[
E[NgE[Ȳg(d)|Xg, Ng]|Xg]

2
]

≲ E
[
E[Ng|Xg]

2
]
<∞ ,

where the final line follows from Jensen’s inequality and Assumption 2.2.1(c).

Lemma B.2.2. If Assumptions 2.2.1 and 2.3.5 hold,

1

G

G∑
g=1

∣∣∣N2
π(2g) −N2

π(2g−1)

∣∣∣ p−→ 0 .

Proof.

1

G

G∑
g=1

∣∣∣N2
π(2g) −N2

π(2g−1)

∣∣∣ = 1

G

G∑
g=1

∣∣Nπ(2g) −Nπ(2g−1)

∣∣ ∣∣Nπ(2g) +Nπ(2g−1)

∣∣
≤

[(
1

G

G∑
g=1

∣∣Nπ(2g) −Nπ(2g−1)

∣∣2)( 1

G

G∑
g=1

∣∣Nπ(2g) +Nπ(2g−1)

∣∣2)]1/2 ,

where the inequality follows by Cauchy-Schwarz. It follows from an argument similar to the proof of Proposi-

tion 2.3.1 that 1
G

∑G
g=1

∣∣Nπ(2g) +Nπ(2g−1)

∣∣2 = OP (1). By Assumption 2.3.5, 1
G

∑G
g=1

∣∣Nπ(2g) −Nπ(2g−1)

∣∣2 p−→

0. Hence the result follows.

Lemma B.2.3. If Assumptions 2.2.1 holds, and additionally Assumptions 2.3.2-2.3.3, 2.4.1 (or Assump-

tions 2.3.5-2.3.6, 2.4.2) hold, then

1. E
[
Ỹ 2
g (d)

]
<∞ for d ∈ {0, 1}.

2. ((Ỹg(1), Ỹg(0)) : 1 ≤ g ≤ 2G) ⊥ D(G) | X(G) (or ((Ỹg(1), Ỹg(0)) : 1 ≤ g ≤ 2G) ⊥ D(G) |W (G))

3. 1
G

∑G
j=1

∣∣µd(Xπ(2j))− µd(Xπ(2j−1))
∣∣ P−→ 0, where we use µd(Xg) to denote E[Ỹg(d) | Xg] for d ∈

{0, 1}.

(or 1
G

∑G
j=1

∣∣µd(Wπ(2j))− µd(Wπ(2j−1))
∣∣ P−→ 0)

4. 1
G

∑G
j=1

∣∣(µ1(Xπ(2j))− µ1(Xπ(2j−1))
) (
µ0(Xπ(2j))− µ0(Xπ(2j−1))

)∣∣ P−→ 0.

(or 1
G

∑G
j=1

∣∣(µ1(Wπ(2j))− µ1(Wπ(2j−1))
) (
µ0(Wπ(2j))− µ0(Wπ(2j−1))

)∣∣ P−→ 0)

5. 1
4G

∑
k∈{2,3},ℓ∈{0,1}

∑
1≤j≤G

2

(
µd

(
Xπ(4j−ℓ)

)
− µd

(
Xπ(4j−k)

))2 P−→ 0.

(or 1
4G

∑
k∈{2,3},ℓ∈{0,1}

∑
1≤j≤G

2

(
µd

(
Wπ(4j−ℓ)

)
− µd

(
Wπ(4j−k)

))2 P−→ 0)
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Proof. Note that

E
[
Ỹ 2
g (d)

]
≤ E

N2
g

(
Ȳg(d)−

E
[
Ȳg(d)Ng

]
E [Ng]

)2


≲ E
[
N2

g Ȳ
2
g (d)

]
+

(
E
[
Ȳg(d)Ng

]
E [Ng]

)2

E[N2
g ] <∞

where the inequality follows by Lemma C.2.3. The second result follows directly by inspection and Assump-

tion 2.3.4 (or Assumption 2.3.1 ). In terms of the third result, by Assumption 2.3.3 and 2.3.2,

1

G

G∑
j=1

∣∣µ1(Xπ(2j))− µ1(Xπ(2j−1))
∣∣ ≲ 1

G

G∑
j=1

∣∣Xπ(2j) −Xπ(2j−1)

∣∣ P−→ 0 .

Meanwhile,

1

G

G∑
j=1

∣∣µ1(Wπ(2j))− µ1(Wπ(2j−1))
∣∣

≲
1

G

G∑
j=1

∣∣E[Nπ(2j)Ȳπ(2j)(d) |Wπ(2j)]− E[Nπ(2j−1)Ȳπ(2j−1)(d) |Wπ(2j−1)]
∣∣

+
1

G

G∑
j=1

∣∣E[Nπ(2j) |Wπ(2j)]− E[Nπ(2j−1) |Wπ(2j−1)]
∣∣

≲
1

G

G∑
j=1

∣∣Nπ(2j)

(
E[Ȳπ(2j)(d) |Wπ(2j)]− E[Ȳπ(2j−1)(d) |Wπ(2j−1)]

)∣∣+ 1

G

G∑
j=1

∣∣Nπ(2j) −Nπ(2j−1)

∣∣
+

1

G

G∑
j=1

∣∣(Nπ(2j) −Nπ(2j−1))E[Ȳπ(2j−1)(d) |Wπ(2j−1)]
∣∣

≲
1

G

G∑
j=1

Nπ(2j)

∣∣Wπ(2j) −Wπ(2j−1)

∣∣ ,
which converges to zero in probability by Assumption 2.3.5. To prove the fourth result, by Assumption 2.3.3

and 2.3.2,

1

G

G∑
j=1

∣∣(µ1(Xπ(2j))− µ1(Xπ(2j−1))
) (
µ0(Xπ(2j))− µ0(Xπ(2j−1))

)∣∣ ≲ 1

G

G∑
j=1

∣∣Xπ(2j) −Xπ(2j−1)

∣∣2 P−→ 0 .
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Similarly,

1

G

G∑
j=1

∣∣(µ1(Wπ(2j))− µ1(Wπ(2j−1))
) (
µ0(Wπ(2j))− µ0(Wπ(2j−1))

)∣∣
≤ 1

G

G∑
j=1

∣∣µ1(Wπ(2j))− µ1(Wπ(2j−1))
∣∣ ∣∣µ0(Wπ(2j))− µ0(Wπ(2j−1))

∣∣
≲

1

G

G∑
j=1

N2
π(2j)

∣∣Wπ(2j) −Wπ(2j−1)

∣∣2 P−→ 0 ,

where the last step follows by Assumption 2.3.5. Finally, fifth result follows the same argument by Assump-

tion 2.4.2 ( or Assumption 2.4.1).

Lemma B.2.4. Consider the following adjusted potential outcomes:

Ŷg(d) =
Ng

1
2G

∑
1≤j≤2GNj

(
Ȳg(d)−

1
G

∑
1≤j≤2G Ȳj(d)I{Dj = d}Nj

1
G

∑
1≤j≤2G I{Dj = d}Nj

)
.

Note the usual relationship still holds for adjusted outcomes, i.e. Ŷg = DgŶg(1)+ (1−Dg)Ŷg(0). If Assump-

tions 2.2.1 holds, and additionally Assumptions 2.3.2–2.3.3 (or Assumptions 2.3.5–2.3.6) hold, then

µ̂G(d) =
1

G

∑
1≤g≤2G

Ŷg(d)I {Dg = d} P→ 0

σ̂2
G(d) =

1

G

∑
1<g<2G

(
Ŷg − µ̂G(d)

)2
I {Dg = d} P→ Var

[
Ỹg(d)

]
.

Proof. It suffices to show that

1

G

∑
1≤g≤2G

Ŷ r
g (d)I {Dg = d} P→ E

[
Ỹ r
g (d)

]

for r ∈ {1, 2}. We prove this result only for r = 1 and d = 1; the other cases can be proven similarly. To

this end, write

1

G

∑
1≤g≤2G

Ŷg(1)I {Dg = 1} =
1

G

∑
1≤g≤2G

Ŷg(1)Dg =
1

G

∑
1≤g≤2G

Ỹg(1)Dg +
1

G

∑
1≤g≤2G

(
Ŷg(1)− Ỹg(1)

)
Dg .
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Note that

1

G

∑
1≤g≤2G

(
Ŷg(1)− Ỹg(1)

)
Dg =

(
1

1
2G

∑
1≤g≤2GNg

− 1

E[Ng]

) 1

G

∑
1≤g≤2G

Ȳg(1)NgDg


−

 1
G

∑
1≤g≤2G Ȳg(d)I{Dg = d}Ng(

1
2G

∑
1≤g≤2GNg

)2 − E[Ȳg(d)Ng]

E[Ng]2


 1

G

∑
1≤g≤2G

NgDg


By weak law of large number, Lemma B.1.2 (or Lemma B.1.1) and Slutsky’s theorem, we have

1

G

∑
1≤g≤2G

(
Ŷg(1)− Ỹg(1)

)
Dg

P−→ 0 .

By applying Lemma S.1.5 from Bai et al. (2022c) and Lemma C.3.1, we have

1

G

∑
1≤g≤2G

Ỹg(d)Dg
P→ E

[
Ỹg(d)

]
= 0 .

Thus, the result follows.

Lemma B.2.5. If Assumptions 2.2.1 holds, and Assumptions 2.3.2-2.3.3 hold, then

τ̂2G
P→ E

[
Var

[
Ỹg(1) | Xg

]]
+ E

[
Var

[
Ỹg(0) | Xg

]]
+ E

[(
E
[
Ỹg(1) | Xg

]
− E

[
Ỹg(0) | Xg

])2]

in the case where we match on cluster size. Instead, if Assumptions 2.2.1 and 2.3.5-2.3.6 hold, then

τ̂2G
P→ E

[
Var

[
Ỹg(1) |Wg

]]
+ E

[
Var

[
Ỹg(0) |Wg

]]
+ E

[(
E
[
Ỹg(1) |Wg

]
− E

[
Ỹg(0) |Wg

])2]

in the case where we do not match on cluster size.

Proof. Note that

τ̂2G =
1

G

∑
1≤j≤G

(
Ŷπ(2j) − Ŷπ(2j−1)

)2
=

1

G

∑
1≤g≤2G

Ŷ 2
g − 2

G

∑
1≤j≤G

Ŷπ(2j)Ŷπ(2j−1).

Since
1

G

∑
1≤g≤2G

Ŷ 2
g = σ̂2

G(1)− µ̂2
G(1) + σ̂2

G(0)− µ̂2
G(0)
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It follows from Lemma B.2.4 that

1

G

∑
1≤g≤2G

Ŷ 2
g

P−→ E[Ỹ 2
g (1)] + E[Ỹ 2

g (0)]

Next, we argue that
2

G

∑
1≤j≤G

Ŷπ(2j)Ŷπ(2j−1)
P−→ 2E[µ1(Wg)µ0(Wg)] ,

where we use the notation µd(Wg) to denote E[Ỹg(d) |Wg]. To this end, first note that

2

G

∑
1≤j≤G

Ŷπ(2j)Ŷπ(2j−1) =
2

G

∑
1≤j≤G

Ỹπ(2j)Ỹπ(2j−1) +
2

G

∑
1≤j≤G

Ŷπ(2j)Ŷπ(2j−1) − Ỹπ(2j)Ỹπ(2j−1) .

Note that

2

G

∑
1≤j≤G

(
Ŷπ(2j)(1)Ŷπ(2j−1)(0)− Ỹπ(2j)(1)Ỹπ(2j−1)(0)

)
Dπ(2j)

=
2

G

∑
1≤j≤G

(
Ŷπ(2j)(1)− Ỹπ(2j)(1)

)
Ŷπ(2j−1)(0)Dπ(2j) +

(
Ŷπ(2j−1)(0)− Ỹπ(2j−1)(0)

)
Ỹπ(2j)(1)Dπ(2j)

=
2

G

∑
1≤j≤G

(
Ŷπ(2j)(1)− Ỹπ(2j)(1)

)
Ỹπ(2j−1)(0)Dπ(2j)

+
(
Ŷπ(2j)(1)− Ỹπ(2j)(1)

)(
Ŷπ(2j−1)(0)− Ỹπ(2j−1)(0)

)
Dπ(2j)

+
(
Ŷπ(2j−1)(0)− Ỹπ(2j−1)(0)

)
Ỹπ(2j)(1)Dπ(2j) ,

for which the first term is given as follows:

2

G

∑
1≤j≤G

(
Ŷπ(2j)(1)− Ỹπ(2j)(1)

)
Ỹπ(2j−1)(0)Dπ(2j)

=

(
1

1
2G

∑
1≤g≤2GNg

− 1

E[Ng]

) 2

G

∑
1≤j≤G

Nπ(2j)Ȳπ(2j)(1)Ỹπ(2j−1)(0)Dπ(2j)


−

 1
2G

∑
1≤g≤2G Ȳg(1)I{Dg = 1}Ng(

1
2G

∑
1≤g≤2GNg

)2 − E[Ȳg(1)Ng]

E[Ng]2


 2

G

∑
1≤j≤G

Nπ(2j)Ỹπ(2j−1)(0)Dπ(2j)

 .
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By following the same argument in Lemma S.1.6 from Bai et al. (2022c) and Lemma C.3.1, we have

2

G

∑
1≤j≤G

Nπ(2j)Ȳπ(2j)(1)Ỹπ(2j−1)(0)Dπ(2j)
P−→ E[E[NgȲg(1) | Xg]E[Ȳg(0) | Xg]]

2

G

∑
1≤j≤G

Nπ(2j)Ỹπ(2j−1)(0)Dπ(2j)
P−→ E[E[Ng | Xg]E[Ȳg(0) | Xg]]

for the case of not matching on cluster sizes. As for the case where we match on cluster sizes,

2

G

∑
1≤j≤G

Nπ(2j)Ȳπ(2j)(1)Ỹπ(2j−1)(0)Dπ(2j)
P−→ E[NgE[Ȳg(1) |Wg]E[Ȳg(0) |Wg]]

2

G

∑
1≤j≤G

Nπ(2j)Ỹπ(2j−1)(0)Dπ(2j)
P−→ E[NgE[Ȳg(0) |Wg]]

Then, by weak law of large number, Lemma B.1.2 (or Lemma B.1.1) and Slutsky’s theorem, we have

2

G

∑
1≤j≤G

(
Ŷπ(2j)(1)− Ỹπ(2j)(1)

)
Ỹπ(2j−1)(0)Dπ(2j)

P−→ 0 .

By repeating the same arguments for the other two terms, we conclude that

2

G

∑
1≤j≤G

(
Ŷπ(2j)(1)Ŷπ(2j−1)(0)− Ỹπ(2j)(1)Ỹπ(2j−1)(0)

)
Dπ(2j)

P−→ 0 ,

which immediately implies

2

G

∑
1≤j≤G

Ŷπ(2j)Ŷπ(2j−1) − Ỹπ(2j)Ỹπ(2j−1)
P−→ 0 .

Thus, it is left to show that

2

G

∑
1≤j≤G

Ỹπ(2j)Ỹπ(2j−1)
P−→ 2E[µ1(Wg)µ0(Wg)] ,

for the case of matching on cluster sizes, and for the case of not matching on cluster size,

2

G

∑
1≤j≤G

Ỹπ(2j)Ỹπ(2j−1)
P−→ 2E[µ1(Xg)µ0(Xg)] ,

both of which can be proved by applying Lemma S.1.6 from Bai et al. (2022c) and Lemma C.3.1. Hence, in
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the case where we match on cluster size,

τ̂2n
P→ E

[
Ỹ 2
g (1)

]
+ E

[
Ỹ 2
g (0)

]
− 2E [µ1 (Wg)µ0 (Wg)]

= E
[
Var

[
Ỹg(1) |Wg

]]
+ E

[
Var

[
Ỹg(0) |Wg

]]
+ E

[
(µ1 (Wg)− µ0 (Wg))

2
]

= E
[
Var

[
Ỹg(1) |Wg

]]
+ E

[
Var

[
Ỹg(0) |Wg

]]
+ E

[(
E
[
Ỹg(1) | Xi

]
− E

[
Ỹg(0) |Wg

])2]
.

And corresponding result holds in the case where we do not match on cluster size.

Lemma B.2.6. If Assumptions 2.2.1 holds, and Assumptions 2.2.1 and 2.3.2-2.3.3, 2.4.1 hold, then

λ̂2G
P→ E

[(
E
[
Ỹg(1) | Xg

]
− E

[
Ỹg(0) | Xg

])2]

in the case where we match on cluster size. Instead, if Assumptions 2.3.5-2.3.6, 2.4.2 hold, then

λ̂2G
P→ E

[(
E
[
Ỹg(1) |Wg

]
− E

[
Ỹg(0) |Wg

])2]

in the case where we do not match on cluster size.

Proof. Note that

λ̂2G =
2

G

∑
1≤j≤⌊G/2⌋

((
Ŷπ(4j−3) − Ŷπ(4j−2)

)(
Ŷπ(4j−1) − Ŷπ(4j)

) (
Dπ(4j−3) −Dπ(4j−2)

) (
Dπ(4j−1) −Dπ(4j)

))
=

2

G

∑
1≤j≤⌊G/2⌋

((
Ỹπ(4j−3) − Ỹπ(4j−2)

)(
Ỹπ(4j−1) − Ỹπ(4j)

) (
Dπ(4j−3) −Dπ(4j−2)

) (
Dπ(4j−1) −Dπ(4j)

))
︸ ︷︷ ︸

:=λ̃2
G

+
2

G

∑
1≤j≤⌊G/2⌋

(((
Ŷπ(4j−3) − Ŷπ(4j−2)

)(
Ŷπ(4j−1) − Ŷπ(4j)

)
−
(
Ỹπ(4j−3) − Ỹπ(4j−2)

)(
Ỹπ(4j−1) − Ỹπ(4j)

))
×
(
Dπ(4j−3) −Dπ(4j−2)

) (
Dπ(4j−1) −Dπ(4j)

))

183



Note that

(
Ŷπ(4j−3)(1)− Ŷπ(4j−2)(0)

)(
Ŷπ(4j−1)(1)− Ŷπ(4j)(0)

)
Dπ(4j−3)Dπ(4j−1)

−
(
Ỹπ(4j−3)(1)− Ỹπ(4j−2)(0)

)(
Ỹπ(4j−1)(1)− Ỹπ(4j)(0)

)
Dπ(4j−3)Dπ(4j−1)

=
(
Ŷπ(4j−3)(1)− Ŷπ(4j−2)(0)−

(
Ỹπ(4j−3)(1)− Ỹπ(4j−2)(0)

))(
Ỹπ(4j−1)(1)− Ỹπ(4j)(0)

)
Dπ(4j−3)Dπ(4j−1)

+
(
Ŷπ(4j−3)(1)− Ŷπ(4j−2)(0)−

(
Ỹπ(4j−3)(1)− Ỹπ(4j−2)(0)

))
×
(
Ŷπ(4j−1)(1)− Ŷπ(4j)(0)−

(
Ỹπ(4j−1)(1)− Ỹπ(4j)(0)

))
Dπ(4j−3)Dπ(4j−1)

+
(
Ŷπ(4j−1)(1)− Ŷπ(4j)(0)−

(
Ỹπ(4j−1)(1)− Ỹπ(4j)(0)

))(
Ỹπ(4j−3)(1)− Ỹπ(4j−2)(0)

)
Dπ(4j−3)Dπ(4j−1) .

Then we can show that each term converges to zero in probability by repeating the arguments in Lemma

B.2.5. The results should hold for any treatment combination, which implies λ̂2G − λ̃2G
P−→ 0. Finally, by

Lemma S.1.7 of Bai et al. (2022c) and Lemma C.3.1, we have

λ̂2G = λ̃2G + oP (1)
P→ E

[(
E
[
Ỹg(1) |Wg

]
− E

[
Ỹg(0) |Wg

])2]

in the case where we match on cluster size, and

λ̂2G = λ̃2G + oP (1)
P→ E

[(
E
[
Ỹg(1) | Xg

]
− E

[
Ỹg(0) | Xg

])2]

in the case where we do not match on cluster size.

Lemma B.2.7. Let R̃G(t) denote the randomization distribution of
√
G∆̂G (see equation (B.12)). Then

under the null hypothesis (2.9), we have that

sup
t∈R

|R̃G(t)− Φ(t/τ)| P−→ 0 ,

where, in the case where we match on cluster size,

τ2 = E[Var[Ỹg(1)|Wg]] + E[Var[Ỹg(0)|Wg]] + E
[
(E[Ỹg(1)|Wg]− E[Ỹg(0)|Xg])

2
]
,

and in the case where we do not match on cluster size,

τ2 = E[Var[Ỹg(1)|Xg]] + E[Var[Ỹg(0)|Xg]] + E
[
(E[Ỹg(1)|Xg]− E[Ỹg(0)|Xg])

2
]
,
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with (in both cases)

Ỹg(d) =
Ng

E[Ng]

(
Ȳg(d)−

E[Ȳg(d)Ng]

E[Ng]

)
.

Proof. For a random transformation of the data, it follows as a consequence of Lemmas B.1.1 and B.1.2 that

1

G

∑
1≤g≤2G

I{D̃g = d}Ng
P−→ E[Ng] ,

1

G

∑
1≤g≤2G

(1− D̃g)NgȲg
p−→ E[NgȲg(0)] .

Combining this with Lemma B.2.8 and a straightforward modification of Lemma A.3. in Chung and Romano

(2013) to two dimensional distributions, we obtain that

sup
t∈R

|R̃G(t)− Φ(t/τ)| P−→ 0 ,

where when we match on cluster size

τ2 =
1

E[Ng]2
(
E[Var(NgȲg(1)|Wg)] + E[Var(NgȲg(0)|Wg)] + E

[
(E[NgȲg(1)|Wg]− E[NgȲg(0)|Wg])

2
])

,

and when we do not match on cluster size

τ2 =
1

E[Ng]2

(
E[Var(NgȲg(1)|Xg)] + E[Var(NgȲg(0)|Xg)] + E

[
(E[NgȲg(1)|Xg]− E[NgȲg(0)|Xg])

2
]
+

− 2
E[NgȲg(0)]

E[Ng]

(
E[N2

g Ȳg(1)] + E[N2
g Ȳg(0)]

−
(
E
[
E[NgȲg(1)|Xg]E[Ng|Xg]

]
+ E

[
E[NgȲg(0)|Xg]E[Ng|Xg]

]))
+

(
E[NgȲg(0)]

E[Ng]

)2

2E[Var(Ng|Xg)]
)
.

The result then follows from further algebraic manipulations to simplify τ in each case (see for instance

Lemma B.2.10).

Lemma B.2.8.

ρ
(
L
(
(KY N

G ,KN
G )′|Z(G)

)
, N (0,VR)

)
P−→ 0 ,

where KY N
G

KN
G

 =

 1√
G

∑
1≤j≤G ϵj

(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
(Dπ(2j) −Dπ(2j−1))

1√
G

∑
1≤j≤G ϵj(Nπ(2j) −Nπ(2j−1))(Dπ(2j) −Dπ(2j−1))

 ,
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and where, in the case where we match on cluster size,

VR =

V1
R 0

0 0

 ,

with

V1
R = E[Var(NgȲg(1)|Wg)] + E[Var(NgȲg(0)|Wg)] + E

[
(E[NgȲg(1)|Wg]− E[NgȲg(0)|Wg])

2
]
,

and when we do not match on cluster size,

VR =

V1,1
R V1,2

R

V1,2
R V2,2

R

 ,

with

V1,1
R = E[Var(NgȲg(1)|Xg)] + E[Var(NgȲg(0)|Xg)] + E

[
(E[NgȲg(1)|Xg]− E[NgȲg(0)|Xg])

2
]

V1,2
R = E[N2

g Ȳg(1)] + E[N2
g Ȳg(0)]−

(
E
[
E[NgȲg(1)|Xg]E[Ng|Xg]

]
+ E

[
E[NgȲg(0)|Xg]E[Ng|Xg]

])
V2,2

R = 2E[Var(Ng|Xg)] .

Proof. Using the fact that ϵj , j = 1, . . . , G and ϵj(Dπ(2j)−Dπ(2j−1)), j = 1, . . . , G have the same distribution

conditional on Z(G), it suffices to study the limiting distribution of (K̃Y N
G , K̃N

G )′ conditional on Z(G), where

K̃Y N
G :=

1√
G

∑
1≤j≤G

ϵj
(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)
,

K̃N
G :=

1√
G

∑
1≤j≤G

ϵj
(
Nπ(2j) −Nπ(2j−1)

)
.

We will show

ρ
(
L
(
(K̃Y N

G , K̃N
G )′|Z(G)

)
, N(0,VR)

)
P−→ 0 , (B.15)

where L(·) denote the law and ρ is any metric that metrizes weak convergence. To that end, we will

employ the Lindeberg central limit theorem in Proposition 2.27 of van der Vaart (1998) and a subsequencing

argument. Indeed, to verify (B.15), note we need only show that for any subsequence {Gk} there exists a

186



further subsequence {Gkl
} such that

ρ
(
L
(
(K̃Y N

Gkl
, K̃N

Gkl
)′|Z(Gkl

)
)
, N(0,VR)

)
→ 0 with probability one . (B.16)

To that end, define

VR,n =

V1,1
R,n V1,2

R,n

V1,2
R,n V2,2

R,n

 = Var[(K̃Y N
G , K̃N

G )′|Z(G)] ,

where

V1,1
R,n =

1

G

∑
1≤j≤G

(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))
2

V1,2
R,n =

1

G

∑
1≤j≤G

(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))(Nπ(2j) −Nπ(2j−1))

V2,2
R,n =

1

G

∑
1≤j≤G

(Nπ(2j) −Nπ(2j−1))
2 .

First consider the case where we match on cluster size. By arguing as in Lemma S.1.6 of Bai et al. (2022c),

it can be shown that

V1,1
R,n

P−→ E[Var[NgȲg(1)]|Wg] + E[Var[NgȲg(0)]|Wg] + E
[
(E[NgȲg(1)|Wg]− E[NgȲg(0)|Wg])

2
]
.

Next, we show that in this case V1,2
R,n and V2,2

R,n are oP (1). For V2,2
R,n this follows immediately from Assumption

2.3.5. For V1,2
R,n note that by the Cauchy-Schwarz inequality,

1

G

∑
1≤j≤G

((
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

) (
Nπ(2j) −Nπ(2j−1)

))

≤

 1

G

∑
1≤j≤G

(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)2 1

G

∑
1≤j≤G

(
Nπ(2j) −Nπ(2j−1)

)21/2

.

The second term of the product on the RHS is oP (1) by Assumption 2.3.5. The first term is OP (1) since

1

G

∑
1≤j≤G

(
Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)

)2
≲

1

G

∑
1≤g≤2G

N2
g Ȳg(1)

2 +
1

G

∑
1≤g≤2G

N2
g Ȳg(0)

2 = OP (1) ,

where the first inequality follows from exploiting the fact that |a− b|2 ≤ 2(a2 + b2) and the definition of Ȳg,

and the final equality follows from Lemma C.2.3 and the law of large numbers. We can thus conclude that
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V1,2
R,n = oP (1) when matching on cluster size.

VR,n
P→ VR . (B.17)

In the case where we do not match on cluster size, again by arguing as in Lemma S.1.6 of Bai et al. (2022c),

it can be shown that (B.17) holds. Next, we verify the Lindeberg condition in Proposition 2.27 of van der

Vaart (1998). Note that

1

G

∑
1≤j≤G

E[((ϵj(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)))
2 + (ϵj(Nπ(2j) −Nπ(2j−1)))

2)

× I{((ϵj(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1)))
2 + (ϵj(Nπ(2j) −Nπ(2j−1)))

2) > ϵ2G}|Z(G)]

=
1

G

∑
1≤j≤G

E[((Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))
2 + (Nπ(2j) −Nπ(2j−1))

2)

× I{((Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))
2 + (Nπ(2j) −Nπ(2j−1))

2) > ϵ2G}|Z(G)]

≲
1

G

∑
1≤j≤G

(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))
2I{(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))

2 > ϵ2G/2}

+
1

G

∑
1≤j≤G

(Nπ(2j) −Nπ(2j−1))
2I{(Nπ(2j) −Nπ(2j−1))

2 > ϵ2G/2} .

where the inequality follows from (B.7) and the fact that (Ng, Ȳg), 1 ≤ g ≤ 2G are all constants conditional

on Z(G). The last line converges in probability to zero as long as we can show

1

G
max

1≤j≤G
(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))

2 P→ 0

1

G
max

1≤j≤G
(Nπ(2j) −Nπ(2j−1))

2 P→ 0 .

Note

1

G
max

1≤j≤G
(Nπ(2j)Ȳπ(2j) −Nπ(2j−1)Ȳπ(2j−1))

2 ≲
1

G
max

1≤j≤G

(
N2

π(2j−1)
Ȳ 2
π(2j−1) +N2

π(2j)
Ȳ 2
π(2j)

)
≲

1

G
max

1≤g≤2G

(
N2

g Ȳ
2
g (1) +N2

g Ȳ
2
g (0)

) P→ 0

Where the first inequality follows from the fact that |a− b|2 ≤ 2(a2 + b2), the second by inspection, and the

convergence by Lemma S.1.1 in Bai et al. (2022c) along with Assumption 2.2.1(c) and Lemma C.2.3. The

second statement follows similarly. Therefore, we have verified both conditions in Proposition 2.27 of van der

Vaart (1998) hold in probability, and therefore for each subsequence there must exists a further subsequence
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along which both conditions hold with probability one, so (B.16) holds, and the conclusion of the lemma

follows.

Lemma B.2.9. Let v̌2G(ϵ1, . . . , ϵG) be defined as in equation (B.13). If Assumption 2.2.1 holds, and As-

sumptions 2.3.6-2.3.5 (or Assumptions 2.3.3-2.3.2) hold,

v̌2G(ϵ1, . . . , ϵG)
P−→ τ2 ,

where τ2 is defined in (B.2.7).

Proof. From Lemma B.2.5, we see that τ̂2G
P−→ τ2. It therefore suffices to show that λ̌2G (ϵ1, . . . , ϵG)

P−→ 0. In

order to do so, note that λ̌2G (ϵ1, . . . , ϵG) may be decomposed into sums of the form

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j Ŷπ(4j−k)Ŷπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′) ,

where (k, k′) ∈ {2, 3}2 and (l, l′) ∈ {0, 1}2. Note that

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j Ŷπ(4j−k)Ŷπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′)

=
2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j Ỹπ(4j−k)Ỹπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′)

+
G

n

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j

(
Ŷπ(4j−k)Ŷπ(4j−ℓ) − Ỹπ(4j−k)Ỹπ(4j−ℓ)

)
Dπ(4j−k′)Dπ(4j−ℓ′) .

By following the arguments in Lemma S.1.9 of Bai et al. (2022c) and Lemma C.3.1, we have that

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j Ỹπ(4j−k)Ỹπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′)

P−→ 0 .

As for the second term, we show that it convergences to zero in probability in the case where k = k′ = 3
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and ℓ = ℓ′ = 1. And the other cases should hold by repeating the same arguments.

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j

(
Ŷπ(4j−3)Ŷπ(4j−1) − Ỹπ(4j−3)Ỹπ(4j−1)

)
Dπ(4j−3)Dπ(4j−1′)

=
2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j

(
Ŷπ(4j−3)(1)Ŷπ(4j−1)(1)− Ỹπ(4j−3)(1)Ỹπ(4j−1)(1)

)
Dπ(4j−3)Dπ(4j−1′)

=
2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j

(
Ŷπ(4j−3)(1)− Ỹπ(4j−3)(1)

)
Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

+
2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j

(
Ŷπ(4j−3)(1)− Ỹπ(4j−3)(1)

)(
Ŷπ(4j−1)(1)− Ỹπ(4j−1)(1)

)
Dπ(4j−3)Dπ(4j−1′)

+
2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j

(
Ŷπ(4j−1)(1)− Ỹπ(4j−1)(1)

)
Ỹπ(4j−3)(1)Dπ(4j−3)Dπ(4j−1′) ,

for which the first term is given as follows:

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j

(
Ŷπ(4j−3)(1)− Ỹπ(4j−3)(1)

)
Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

=

(
1

1
2G

∑
1≤g≤2G Ng

−
1

E[Ng ]

) 2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2jNπ(4j−3)Ȳπ(4j−3)(1)Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)


−

 1
2G

∑
1≤g≤2G Ȳg(1)I{Dg = 1}Ng(

1
2G

∑
1≤g≤2G Ng

)2 −
E[Ȳg(1)Ng ]

E[Ng ]2


 2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2jNπ(4j−3)Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

 .

by following the same argument in Lemma S.1.6 from Bai et al. (2022c) and Lemma C.3.1, we have

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2jNπ(4j−3)Ȳπ(4j−3)(1)Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

P−→ 0

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2jNπ(4j−3)Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

P−→ 0 .

Then, by weak law of large number, Lemma B.1.2 (or Lemma B.1.1) and Slutsky’s theorem, we have

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j

(
Ŷπ(4j−3)(1)− Ỹπ(4j−3)(1)

)
Ỹπ(4j−1)(1)Dπ(4j−3)Dπ(4j−1′)

P−→ 0 .

By repeating the same arguments for the other two terms, we conclude that

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j

(
Ŷπ(4j−3)Ŷπ(4j−1) − Ỹπ(4j−3)Ỹπ(4j−1)

)
Dπ(4j−3)Dπ(4j−1′)

P−→ 0 .
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Therefore, for (k, k′) ∈ {2, 3}2 and (l, l′) ∈ {0, 1}2,

2

G

∑
1≤j≤⌊G

2 ⌋
ϵ2j−1ϵ2j Ŷπ(4j−k)Ŷπ(4j−ℓ)Dπ(4j−k′)Dπ(4j−ℓ′)

P−→ 0 ,

which implies λ̌2G (ϵ1, . . . , ϵG)
P−→ 0, and thus ν̌2G(ϵ1, . . . , ϵG)

P−→ τ2.

Lemma B.2.10. If E[NgȲg(1)] = E[NgȲg(0)], then for τ defined in Lemma B.2.7 (when not matching on

cluster size),

τ2 = E[Var[Ỹg(1)|Xg]] + E[Var[Ỹg(0)|Xg]] + E[(E[Ỹg(1)|Xg]− E[Ỹg(0)|Xg])
2] .

Proof. Note if E[NgȲg(1)] = E[NgȲg(0)], then

E[Var[Ỹg(1)|Xg]] + E[Var[Ỹg(0)|Xg]] + E[(E[Ỹg(1)|Xg]− E[Ỹg(0)|Xg])
2]

=
E[Var[NgȲg(1)|Xg]]

E[Ng]2
+
E[Var[NgȲg(0)|Xg]]

E[Ng]2
+

2E[Var[Ng|Xg]]E[NgȲg(d)]
2

E[Ng]4

+
E[(E[NgȲg(1)|Xg]− E[NgȲg(0)|Xg])

2

E[Ng]2

− 2
E[NgȲg(1)](E[N2

g Ȳg(1)]− E[E[NgȲg(1)|Xg]E[Ng|Xg]])

E[Ng]3

− 2
E[NgȲg(0)](E[N2

g Ȳg(0)]− E[E[NgȲg(0)|Xg]E[Ng|Xg]])

E[Ng]3
.

The result then follows immediately.

B.3 Analysis of Matched Tuples designs

In this section we state generalizations of the results presented in Sections 2.3 and 2.4 to settings with more

than two treatments. We focus on the case when not matching on cluster size; similar results should follow

for the case of matching on cluster size analogously.

B.3.1 Setup and Main Results

We follow the general setup of Bai et al. (2023c) generalized to a setting with clustered assignment. Let

Dg ∈ D denote treatment status for the gth cluster, where D = {1, . . . , |D|} denotes a finite set of values of

the treatment. For d ∈ D, let Yi,g(d) denote the potential outcome for the ith unit in the gth cluster if its
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treatment status were d. The observed outcome and potential outcomes are related to treatment status by

the expression

Yi,g =
∑
d∈D

Yi,g(d)I{Dg = d} .

We suppose our sample consists of JG := (|D|)G i.i.d. clusters. Now we have

Z(G) := (((Yi,g : i ∈ Mg), Dg, Xg, Ng) : 1 ≤ g ≤ JG)

and

((((Yi,g(d) : d ∈ D) : 1 ≤ i ≤ Ng),Mg, Xg, Ng) : 1 ≤ g ≤ JG) .

Our object of interest will generically be defined as a vector of linear contrasts over the collection of size-

weighted cluster-level expected potential outcomes across treatments. Formally, let

Γ(QG) := (Γ1(QG), . . . ,Γ|D|(QG))
′,

where

Γd(QG) :=
1

E[Ng]
E

 Ng∑
i=1

Yig(d)


for d ∈ D. Let ν be a real-valued m× |D| matrix. Define

∆ν(QG) := νΓ(QG) ∈ Rm ,

as our generic parameter of interest. We maintain the following generalization of Assumptions 2.2.1 and

2.3.3.

Assumption B.3.1. The distribution QG is such that

(a) {(Mg, Xg, Ng), 1 ≤ g ≤ JG} is an i.i.d. sequence of random variables.

(b) For some family of distributions {R(s, x, n) : (s, x, n) ∈ supp(Mg, Xg, Ng)},

RG(M(G)
g , X(G), N (G)) =

∏
1≤g≤JG

R(Mg, Xg, Ng) .

(c) P{|Mg| ≥ 1} = 1 and E[N2
g ] <∞.

(d) For some C <∞, P{E[Y 2
i,g(d)|Xg, Ng] ≤ C for all 1 ≤ i ≤ Ng} = 1 for all d ∈ D and 1 ≤ g ≤ JG.
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(e) Mg ⊥⊥ ((Yi,g(d) : d ∈ D) : 1 ≤ i ≤ Ng)
∣∣ Xg, Ng for all 1 ≤ g ≤ JG.

(f) For d ∈ D and 1 ≤ g ≤ JG,

E[Ȳg(d)|Ng] = E

 1

Ng

∑
1≤i≤Ng

Yi,g(d)
∣∣∣Ng

 w.p.1 .

(g) For some C <∞, P{E[Ng|Xg] ≤ C} = 1

(h) E[Ȳ r
g (d)N

ℓ
g |Xg = x], are Lipschitz for d ∈ D, r, ℓ ∈ {0, 1, 2}.

Following Bai et al. (2023c), the G blocks in a matched tuples design may then be represented by the

sets

λj = λj(X
(G)) ⊆ {1, 2, . . . , JG} ,

for 1 ≤ j ≤ G. We then maintain the following two assumptions on the treatment assignment mechanism

which generalize Assumptions 2.3.1, 2.3.2, and 2.4.1:

Assumption B.3.2. Treatment is assigned so that
{(

(Yig(d) : d ∈ D)1≤i≤Ng
, Ng

)}G

g=1
⊥⊥ D(G)|X(G), and,

conditional on X(G),

{(Dg : g ∈ λj) : 1 ≤ j ≤ G} ,

are i.i.d. and each uniformly distributed over all permutations of (1, 2, . . . , |D|).

Assumption B.3.3. The blocks satisfy

1

G

∑
1≤j≤G

max
i,k∈λj

|Xi −Xk|2
P→ 0 .

Assumption B.3.4. The blocks satisfy

1

G

∑
1≤j≤⌊G

2 ⌋
max

i∈λ2j−1,k∈λ2j

|Xi −Xk|2
P→ 0 .

The estimator for ∆ν(QG) is given by

∆̂ν,G := νΓ̂G ,
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where for d ∈ D we define

Γ̂G(d) :=
1

N(d)

∑
1≤g≤JG

I{Dg = d} Ng

|Mg|
∑

i∈Mg

Yig ,

with

N(d) =
∑

1≤g≤JG

NgI{Dg = d} .

and let Γ̂G = (Γ̂G(1), . . . , Γ̂G(|D|))′.

Our first result derives the limiting distribution of ∆̂ν,G under our maintained assumptions.

Theorem B.3.1. Suppose Assumptions B.3.1-B.3.3 holds. Then,

√
G(∆̂ν,G −∆ν(Q))

d→ N(0,Vν) ,

where Vν := νVν′, with

V := V1 +V2 , (B.18)

V1 := diag(E[Var[Ỹg(d)|Xi]] : d ∈ D) ,

V2 :=

[
1

|D|
Cov[E[Ỹg(d)|Xi], E[Ỹg(d

′))|Xi]]

]
d,d′∈D

.

Proof. We show that
√
G(Γ̂G(d) − ΓG(Q) : d ∈ D)

d−→ N(0,V), from which the conclusion of the the-

orem follows by an application of the continuous mapping theorem. To show this we repeat the argu-

ments from the proof of Theorem 2.3.1 while using the Delta method for vector-valued functions with

h(x1, y1, . . . , x|D|, y|D|) = (xd/yd : d ∈ D) and using the fact that

(Γ̂G(d) : d ∈ D) =

(
1√
G

∑
1≤g≤JG

Ȳg(d)NgI{Dg = d}
1√
G

∑
1≤g≤JG

NgI{Dg = d}
: d ∈ D

)
.

194



The Jacobian is given by

Dh(x1, y1, . . . , x|D|, y|D|) =



1
y1

0 . . . 0

−x1

y2
1

0 . . . 0

0 1
y2

. . . 0

0 −x2

y2
2

. . . 0

. . . . . . . . . . . .

0 0 . . . 1
y|D|

0 0 . . . −x|D|
y2
|D|

.



.

Repeating the algebra in proof of binary case, we obtain

Dh((E[Ȳg(d)Ng], E[Ng]) : d ∈ D)′VDh((E[Ȳg(d)Ng], E[Ng]) : d ∈ D) = V ,

where V is defined in the statement of Lemma B.3.1.

Following Bai et al. (2023c), our estimator for Vν is then given by V̂ν,G := νV̂Gν
′, where

V̂G := V̂1,G + V̂2,G

V̂1,G := diag
(
V̂1,G(d) : d ∈ D

)
V̂2,G :=

[
V̂2,G(d, d

′)
]
d,d′∈D

,

with

V̂1,G(d) := σ̂2
G(d)− ρ̂G(d, d)

V̂2,G(d, d
′) :=

1

|D|
ρ̂G(d, d

′) ,

where

ρ̂G(d, d) :=
2

G

∑
1≤j≤⌊G/2⌋

( ∑
g∈λ2j−1

ŶgI{Dg = d}
)( ∑

g∈λ2j

ŶgI{Dg = d}
)

ρ̂G(d, d
′) :=

1

G

∑
1≤j≤G

( ∑
g∈λj

ŶgI{Dg = d}
)( ∑

g∈λj

ŶgI{Dg = d′}
)

if d ̸= d′

σ̂2
G(d) :=

1

G

∑
1≤g≤JG

Ŷ 2
g I{Dg = d} .
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Suppose Assumptions B.3.1–B.3.4 hold, then consistency of our variance estimator follows by adapting the

arguments from Bai et al. (2023c) to the proof of Theorem 3.4.2.

Lemma B.3.1. Suppose Assumptions B.3.1–B.3.3 holds. Define

LYN
G (d) =

1√
G

∑
1≤g≤JG

(Ȳg(d)NgI{Dg = d} − E[Ȳg(d)Ng]I{Dg = d})

LN
G(d) =

1√
G

∑
1≤g≤JG

(NgI{Dg = d} − E[Ng]I{Dg = d}) .

Then, as G→ ∞,

((LYN
G (d),LN

G(d)) : d ∈ D)′
d→ N(0,V) ,

where

V = V1 + V2

for

V1 = diag(Vd
1 : d ∈ D)

Vd
1 =

 E[Var[Ȳg(d)Ng|Xg]] E[Cov[Ȳg(d)Ng, Ng|Xg]]

E[Cov[Ȳg(d)Ng, Ng|Xg]] E[Var[Ng|Xg]]



V2 =
1

|D|
Var[((E[Ȳg(d)Ng|Xg], E[Ng|Xg]) : d ∈ D)′] .

Proof. The proof is omitted, but follows similarly to previous results using arguments from the proofs of

Theorem 3.1 in Bai et al. (2023c) and Lemma B.1.2.
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APPENDIX C

APPENDIX FOR CHAPTER 3

C.1 Proofs of Main Results

C.1.1 Proof of Theorem 3.3.1

To begin with, both estimators can be written as follows.

θ̂P1 =
1

G1

∑
1≤g≤G

I{Hg = π2}Ȳg(1, π2)−
1

G0

∑
1≤g≤G

I{Hg = 0}Ȳg(0, 0) ,

θ̂S1 =
1

G1

∑
1≤g≤G

I{Hg = π2}Ȳg(0, π2)−
1

G0

∑
1≤g≤G

I{Hg = 0}Ȳg(0, 0) .

By Lemma 5.1 of Bugni et al. (2022b) and Assumption 3.2.2 (a)-(b), we have ((Ȳg(1, π2), Ȳg(0, π2), Ȳg(0, 0)) :

1 ≤ g ≤ G) being an i.i.d sequence of random variables. Then, by the law of iterated expectation and

Assumption 3.3.2 and 3.2.2 (f),

E
[
Ȳg(1, π2)

]
= E

E
 1

M1
g

∑
i∈Mg

Yi,g(1, π2)Zi,g(π2) | Bg,Mg


= E

 1

M1
g

∑
i∈Mg

E [Yi,g(1, π2)Zi,g(π2) | Bg,Mg]


= E

 1

M1
g

∑
i∈Mg

E [Yi,g(1, π2) | Bg,Mg]E [Zi,g(π2) | Bg]


= E

 1

Mg

∑
i∈Mg

E [Yi,g(1, π2) | Bg,Mg]

 = E

 1

Ng

∑
1≤i≤Ng

Yi,g(1, π2)

 .

Similarly,

E[Ȳg(0, π2)] = E

 1

Ng

∑
1≤i≤Ng

Yi,g(0, π2)

 , E[Ȳg(0, 0)] = E

 1

Ng

∑
1≤i≤Ng

Yi,g(0, 0)

 .

Thus, θP1 = E
[
Ȳg(1, π2)

]
− E[Ȳg(0, 0)] and θS1 = E

[
Ȳg(0, π2)

]
− E[Ȳg(0, 0)]. By Assumption 3.3.1-3.3.2, we

have

H(G) ⊥⊥ ((Ȳg(1, π2), Ȳg(0, π2), Ȳg(0, 0)) : 1 ≤ g ≤ G) | S(G) .
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By Assumption 3.2.2 (c)-(d),

E
[
Ȳ 2
g (1, π2)

]
= E


 1

M1
g

∑
i∈Mg

Yi,g(1, π2)Zi,g(π2)

2
 ≤ E

[(
max

1≤i≤Ng

Yi,g(1, π2)

)2
]
<∞ .

Same conclusions hold for Ȳ 2
g (0, π2) and Ȳ 2

g (0, 0). Then, the result follows directly by Theorem 4.1 of Bugni

et al. (2018a) and Lemma C.2.3 and Assumption 3.3.1-3.2.2.

C.1.2 Proof of Theorem 3.3.2

To preserve space, I only present proof for primary effect as the proof for spillover effect follows the same

argument. Define LG =
(
LYN1
G ,LN1

G ,LYN0
G ,LN0

G

)
as follows.

LYN1
G :=

1

G1

∑
1≤g≤G

(
Ȳg(1, π2)Ng − E

[
Ȳg(1, π2)Ng

])
I{Hg = π2} ,

LN1
G :=

1

G1

∑
1≤g≤G

(Ng − E [Ng]) I{Hg = π2} ,

LYN0
G :=

1

G0

∑
1≤g≤G

(
Ȳg(0, 0)Ng − E

[
Ȳg(0, 0)Ng

])
I{Hg = 0} ,

LN0
G :=

1

G0

∑
1≤g≤G

(Ng − E [Ng]) I{Hg = 0} .

By the law of iterated expectation and Assumption 3.2.2 (f),

E
[
Ȳg(1, π2)Ng

]
= E

[
NgE

[
Ȳg(1, π2) | Ng

]]
= E

NgE

 1

Mg

∑
i∈Mg

Yi,g(1, π2) | Ng


= E

NgE

 1

Ng

∑
1≤i≤Ng

Yi,g(1, π2) | Ng

 = E

 ∑
1≤i≤Ng

Yi,g(1, π2)

 .
Thus,

θP2 =
E
[
Ȳg(1, π2)Ng

]
E[Ng]

−
E
[
Ȳg(0, 0)Ng

]
E[Ng]

and θS2 =
E
[
Ȳg(0, π2)Ng

]
E[Ng]

−
E
[
Ȳg(0, 0)Ng

]
E[Ng]

.

Note that G1

G = DG

G + π1. Thus,

√
GLYN1

G =

(
DG

G
+ π1

)−1(
1− π1 −

DG

G

)−1
1√
G

G∑
g=1

((
1− π − DG

G

)(
Ȳg(1, π2)Ng − µ1

)
I{Hg = π2}

)
,
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where E
[
Ȳg(1, π2)Ng

]
= µ1. By Lemma B.1 and B.3 of Bugni et al. (2018a), Lemma C.2.3 and Assumption

3.3.1-3.2.2, we have

√
GLYN1

G = (π1(1− π1))
−1 1√

G

∑
1≤g≤G

(
(1− π1)

(
Ȳg(1, π2)Ng − E

[
Ȳg(1, π2)Ng

])
I{Hg = π2}

)
︸ ︷︷ ︸

:=LYN1
G

+oP (1) .

Similarly,

√
GLN1

G = (π1(1− π1))
−1 1√

G

∑
1≤g≤G

((1− π1) (Ng − E [Ng]) I{Hg = π2})︸ ︷︷ ︸
:=LN1

G

+oP (1) ,

√
GLYN0

G = (π1(1− π1))
−1 1√

G

∑
1≤g≤G

(
π1
(
Ȳg(0, 0)Ng − E

[
Ȳg(0, 0)Ng

])
I{Hg = 0}

)
︸ ︷︷ ︸

:=LYN0
G

+oP (1) ,

√
GLN0

G = (π1(1− π1))
−1 1√

2n

∑
1≤i≤2n

(π1 (Ng − E [Ng]) I{Hg = 0})︸ ︷︷ ︸
:=LN0

G

+oP (1) .

Define

Ỹ N
g (z, h) = Ȳg(z, h)Ng − E

[
Ȳg(z, h)Ng | Sg

]
,

Ñg = Ng − E [Ng | Sg] ,

mYN
z,h(Sg) = E [Yg(z, h)Ng | Sg]− E [Yg(z, h)Ng] ,

mN(Sg) = E [Ng | Sg]− E [Ng] ,

and consider the following decomposition for LYN1
G :

LYN1
G = Rn,1 +Rn,2 +Rn,3

=
π1(1− π1)√

G

∑
1≤g≤G

1

π1
Ỹ N
g (1, π2)I{Hg = π2}+ π1(1− π1)

∑
s∈S

DG(s)√
G

1

π1
mYN

1,π2
(Sg)

+ π1(1− π1)
∑
s∈S

√
G

(
G(s)

G
− p(s)

)
mYN

1,π2
(Sg) .
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Similarly, we have the same decomposition for LYN0
G , LN1

G , LN0
G . Define

d :=

(
DG(s)√

G
: s ∈ S

)′

n :=

(√
G

(
G(s)

G
− p(s)

)
: s ∈ S

)′

mYN
z,h :=

(
E
[
mYN

z,h(Cg) | Sg = s
]
: s ∈ S

)′
mN :=

(
E
[
mN(Cg) | Sg = s

]
: s ∈ S

)′
.

Then, we can write

(π1(1− π1))
−1


LYN1
G

LN1
G

LYN0
G

LN0
G

 =



1 0 0 0 1
π1

(
mYN

1,π2

)′ (
mYN

1,π2

)′
0 1 0 0 1

π1

(
mN

)′ (
mN

)′
0 0 1 0 − 1

1−π1

(
mYN

0,0

)′ (
mYN

0,0

)′
0 0 0 1 − 1

1−π1

(
mN

)′ (
mN

)′


︸ ︷︷ ︸

:=M ′



1√
G

∑G
g=1

1
π1

Ỹ YN
g (1, π2)I{Hg = π2}

1√
G

∑G
g=1

1
π1

ÑgI{Hg = π2}
1√
G

∑G
g=1

1
1−π1

Ỹ YN
g (0, 0)I{Hg = 0}

1√
G

∑G
g=1

1
1−π1

ÑgI{Hg = 0}

d

n


︸ ︷︷ ︸

:=yn

Following Lemma B.2 from Bugni et al. (2018a), we have

yn
d−→ N (0,Σ) ,

where

Σ =



Σ1 0 0 0

0 Σ0 0 0

0 0 ΣD 0

0 0 0 ΣN


,

for

Σ1 =

 Var[Ỹ YN
g (1,π2)]
π1

E[Ỹ YN
g (1,π2)Ng]

π1

E[Ỹ YN
g (1,π2)Ng]

π1

Var[Ng ]
π1

 , Σ0 =

 Var[Ỹ YN
g (0,0)]

1−π1

E[Ỹ YN
g (0,0)Ng]
1−π1

E[Ỹ YN
g (0,0)Ng]
1−π1

Var[Ng ]
1−π1

 ,

ΣD = diag (p(s)τ(s) : s ∈ S) , ΣN = diag (p(s) : s ∈ S)− (p(s) : s ∈ S) (p(s) : s ∈ S)′ .
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Let m(Sg) =
(
mYN

1,π2
(Sg),m

N
0 (Sg),m

YN
0,0 (Sg),m

N
0 (Sg)

)′. We have

V =M ′ΣM = V1 + V2 + V3,

where

V1 =



1
π1

Var
[
Ỹ YN
g (1, π2)

]
1
π1
E
[
Ỹ YN
g (1, π2)Ng

]
0 0

1
π1
E
[
Ỹ YN
g (1, π2)Ng

]
1
π1

Var [Ng] 0 0

0 0 1
1−π1

Var
[
Ỹ YN
g (0, 0)

]
1

1−π1
E
[
Ỹ YN
g (0, 0)Ng

]
0 0 1

1−π1
E
[
Ỹ YN
g (0, 0)Ng

]
1

1−π1
Var [Ng]


,

V2 = Var [m(Sg)] ,

V3 = E [τ(Sg) (Λm(Sg)m(Sg)
′Λ)] with Λ = diag

(
1

π1
,
1

π1
,− 1

1− π1
,− 1

1− π1

)
.
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Alternatively,

V11 =
1

π1
Var

[
Ȳg(1, π2)Ng

]
− 1− π1

π1
Var

[
E
[
Ȳg(1, π2)Ng | Sg

]]
+ E

[
τ(Sg)

π2
1

(
E[Ȳg(1, π2)Ng | Sg]− E[Ȳg(1, π2)Ng]

)2]
V12 =

1

π1
Cov[Ȳg(1, π2)Ng, Ng]−

1− π1
π1

Cov[E[Ȳg(1, π2)Ng|Sg], E[Ng|Sg]]

+ E

[
τ(Sg)

π2
1

(
E[Ȳg(1, π2)Ng | Sg]− E[Ȳg(1, π2)Ng]

)
(E[Ng | Sg]− E[Ng])

]
V13 = Cov[E[Ȳg(1, π2)Ng|Sg], E[Ȳg(0, 0)Ng|Sg]]

− E

[
τ(Sg)

π1(1− π1)

(
E[Ȳg(1, π2)Ng | Sg]− E[Ȳg(1, π2)Ng]

) (
E[Ȳg(0, 0)Ng | Sg]− E[Ȳg(0, 0)Ng]

)]
V14 = Cov[E[Ȳg(1, π2)Ng|Sg], E[Ng|Sg]]

− E

[
τ(Sg)

π1(1− π1)

(
E[Ȳg(1, π2)Ng | Sg]− E[Ȳg(1, π2)Ng]

)
(E[Ng | Sg]− E[Ng])

]
V22 =

1

π1
Var[Ng]−

1− π1
π1

Var[E[Ng|Sg]]

+ E

[
τ(Sg)

π2
1

(E[Ng | Sg]− E[Ng])
2

]
V23 = Cov[E[Ng|Sg], E[Ȳg(0, 0)Ng|Sg]]

− E

[
τ(Sg)

π1(1− π1)
(E[Ng | Sg]− E[Ng])

(
E[Ȳg(0, 0)Ng | Sg]− E[Ȳg(0, 0)Ng]

)]
V24 = Cov[E[Ng|Sg], E[Ng|Sg]]

− E

[
τ(Sg)

π1(1− π1)
(E[Ng | Sg]− E[Ng])

2

]
V33 =

1

1− π1
Var[Ȳg(0, 0)Ng]−

π1
1− π1

Var[E[Ȳg(0, 0)Ng|Sg]]

+ E

[
τ(Sg)

(1− π1)2
(
E[Ȳg(0, 0)Ng | Sg]− E[Ȳg(0, 0)Ng]

)2]
V34 =

1

1− π1
Cov[Ȳg(0, 0)Ng, Ng]−

π1
1− π1

Cov[E[Ȳg(0, 0)Ng|Sg], E[Ng|Sg]]

+ E

[
τ(Sg)

(1− π1)2
(
E[Ȳg(0, 0)Ng | Sg]− E[Ȳg(0, 0)Ng]

)
(E[Ng | Sg]− E[Ng])

]
V44 =

1

1− π1
Var[Ng]−

π1
1− π1

Var[E[Ng|Sg]]

+ E

[
τ(Sg)

(1− π1)2
(E[Ng | Sg]− E[Ng])

2

]
.

Therefore,

√
G(β̂ − β) :=

√
G
(
LYN1
G ,LN1

G ,LYN0
G ,LN0

G

)′
= (π(1− π))−1 ·

(
LYN1
G , LN1

G , LYN0
G , LN0

G

)′
+ oP (1)

d−→ N (0,V) .
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Let g(x, y, z, w) = x
y − z

w . Note that the Jacobian is

Dg(x, y, z, w) =
(1
y
,− x

y2
,− 1

w
,
z

w2

)
.

By delta method,
√
2n(θ̂P2 − θP2 ) =

√
2n(g(β̂)− g(β))

d−→ N (0, V2(1)) ,

where

V2(1) = D′
g (V1 + V2 + V3)Dg

for

Dg =

(
1

π1E[Ng]
,−E[Ȳg(1, π2)Ng]

π1E[Ng]2
,− 1

(1− π1)E[Ng]
,
E[Ȳg(0, 0)Ng]

(1− π1)E[Ng]2

)′

.

By simple calculation,

D′
g (V1 + V2)Dg =

1

π1
Var[Ỹg(z, π2)] +

1

1− π1
Var[Ỹg(0, 0)]

− E

E [√1− π1
π1

Ỹg(z, π2) +

√
π1

1− π1
Ỹi(0, 0)

∣∣∣∣∣Sg

]2
D′

gV3Dg = E

τ(Sg)

(
mYN

1,π2
(Sg)

π1E[Ng]
− E[Yi(1)Ng]m

N(Sg)

π1E[Ng]2
+

mYN
0,0 (Sg)

(1− π1)E[Ng]
− E[Yi(0)Ng]m

N(Sg)

(1− π1)E[Ng]2

)2


= E

[
τ(Sg)

(
1

π1
E[Ỹg(z, π2) | Sg] +

1

1− π1
E[Ỹg(0, 0) | Sg]

)2
]
.

Thus, the result follows.

C.1.3 Proof of Theorem 3.3.3

The conclusion follows by continuous mapping theorem and by showing the following results:

(a) G(s)
G

P−→ p(s).

(b) 1
Ga

∑
1≤g≤G

(
Ȳ z
g

)r
I{Hg = h} P−→ E[Ȳg(z, h)

r] for r, z ∈ {0, 1} and (a, h) ∈ {(1, π2), (0, 0)}.

(c) 1
Ga(s)

∑
1≤g≤G Ȳ

z
g I {Hg = h, Sg = s} P−→ E[Ȳg(z, h) | Sg] for z ∈ {0, 1} and (a, h) ∈ {(1, π2), (0, 0)}.

(d) 1
Ga

∑
1≤g≤G

(
Ỹ z
g

)r
I{Hg = h} P−→ E[Ỹg(z, h)

r] for r, z ∈ {0, 1} and (a, h) ∈ {(1, π2), (0, 0)}.

(e) 1
Ga(s)

∑
1≤g≤G Ỹ

z
g I {Hg = h, Sg = s} P−→ E[Ỹg(z, h) | Sg] for z ∈ {0, 1} and (a, h) ∈ {(1, π2), (0, 0)}
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By following the arguments in Appendix A.2 of Bugni et al. (2018a), Lemma C.2.3 and Assumption 3.3.1-

3.2.2, we conclude that (a), (b) and (c) hold. Next, I first show the results hold for Ỹg(z, h) and then analyze

the difference between Ỹg(z, h) and adjusted version Ŷ z
g (h) defined as follows:

Ŷ z
g (π2) =

Ng
1
G

∑
1≤g≤GNg

(
Ȳg(z, π2)−

1
G1

∑
1≤j≤G Ȳj(z, π2)I{Hj = π2}Nj

1
G

∑
1≤j≤GNj

)

Ŷ z
g (0) =

Ng
1
G

∑
1≤g≤GNg

(
Ȳg(0, 0)−

1
G0

∑
1≤j≤G Ȳj(0, 0)I{Hj = 0}Nj

1
G

∑
1≤j≤GNj

)
,

(C.1)

for which the usual relationship still holds for adjusted outcomes, i.e. Ỹ z
g =

∑
h∈{0,π2} I{Hg = h}Ŷ z

g (h).

Note that

E[Ỹg(z, h)
2] = E

[
N2

g

E[Ng]2

(
Ȳg(z, h)−

E[Ȳg(z, h)Ng]

E[Ng]

)2
]
≤ 2E

[
N2

g

E[Ng]2

(
Ȳg(z, h)

2 +
E[Ȳg(z, h)Ng]

2

E[Ng]2

)]

≤ 2E
[
N2

g Ȳg(z, h)
2
]
+ 2E[Ȳg(z, h)Ng]

2E[N2
g ] <∞ .

where the first inequality holds by the fact (a−b)2 ≤ 2a2+2b2, the second inequality follows by the fact that

E[Ng] ≥ 1, and the last inequality follows by Lemma C.2.3. Therefore, again by following the arguments in

Appendix A.2 of Bugni et al. (2018a), we conclude that for r, z ∈ {0, 1} and (a, h) ∈ {(1, π2), (0, 0)},

1

Ga

∑
1≤g≤G

Ỹg(z, h)
rI{Hg = h} P−→ E[Ỹg(z, h)

r]

1

Ga(s)

∑
1≤g≤G

Ỹg(z, h)I {Hg = h, Sg = s} P−→ E[Ỹg(z, h) | Sg] ,

Finally, I show the difference between the above equations with Ỹg(z, h) and Ỹ z
g go to zero. Here, I prove

this for the following case,

1

G1

∑
1≤g≤G

(
Ỹg(1, π2)

2 −
(
Ỹ 1
g

)2)
I{Hg = π2}

P−→ 0 ; (C.2)
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an analogous argument establishes the rest. Note that

1

G1

∑
1≤g≤G

(
Ỹg(1, π2)

2 −
(
Ŷ 1
g

)2)
I{Hg = π2}

=
1

G1

∑
1≤g≤G

(
Ỹg(1, π2)− Ŷ 1

g (π2)
)(

Ỹg(1, π2) + Ŷ 1
g (π2)

)
I{Hg = π2}

=
1

G1

∑
1≤g≤G

(
1

E[Ng]
− 1

1
G

∑
1≤g≤GNg

)
Ȳg(1, π2)Ng

(
Ỹg(1, π2) + Ŷ 1

g (π2)
)
I{Hg = π2}

− 1

G1

∑
1≤g≤G

 1
G

∑
1≤g≤G Ȳg(1, π2)I{Hg = π2}Ng(

1
G

∑
1≤g≤GNg

)2 − E[Ȳg(1, π2)Ng]

E[Ng]2


×Ng

(
Ỹg(1, π2) + Ŷ 1

g (π2)
)
I{Hg = π2} .

I then proceed to prove the following statement

1

G1

∑
1≤g≤G

Ȳg(1, π2)Ng

(
Ỹg(1, π2) + Ŷ 1

g (π2)
)
I{Hg = π2}

P−→ 2E[Ỹg(1, π2)Ȳg(1, π2)Ng] , (C.3)

and similar arguments would prove the following statement

1

G1

∑
1≤g≤G

Ng

(
Ỹg(1, π2) + Ŷ 1

g (π2)
)
I{Hg = π2}

P−→ 2E[NgỸg(1, π2)] .

Note that

1

G1

∑
1≤g≤G

Ȳg(1, π2)Ng

(
Ỹg(1, π2) + Ŷ 1

g (π2)
)
I{Hg = π2}

=
1

G1

∑
1≤g≤G

2Ȳg(1, π2)NgỸg(1, π2)I{Hg = π2}+
1

G1

∑
1≤g≤G

Ȳg(1, π2)Ng

(
Ŷ 1
g (π2)− Ỹg(1, π2)

)
I{Hg = π2} .

By weak law of large number, Slutsky’s theorem and arguments in the proof of Theorem 3.3.2, we have

1
1
G

∑
1≤g≤GNg

P−→ 1

E[Ng]

1
G

∑
1≤g≤G Ȳg(1, π2)I{Hg = π2}Ng(

1
G

∑
1≤g≤GNg

)2 P−→ E[Ȳg(1, π2)Ng]

E[Ng]2
.
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Then, by Slutsky’s theorem, Lemma C.2.3 and Lemma B.3 of Bugni et al. (2018a),

1

G1

∑
1≤g≤G

Ȳg(1, π2)Ng

(
Ŷ 1
g (π2)− Ỹg(1, π2)

)
I{Hg = π2}

=

(
1

E[Ng]
− 1

1
G

∑
1≤g≤GNg

)
1

G1

∑
1≤g≤G

Ȳg(1, π2)
2N2

g I{Hg = π2}
P−→ 0 .

Again, by Lemma B.3 of Bugni et al. (2018a), and

E[Ȳg(1, π2)NgỸg(1, π2)] =
E[Ȳg(1, π2)

2N2
g ]

E[Ng]
−
E[Ȳg(1, π2)Ng]E[Ȳg(1, π2)N

2
g ]

E[Ng]2
<∞,

We conclude that (C.3) holds, and then

1

G1

∑
1≤g≤G

(
1

E[Ng]
− 1

1
G

∑
1≤g≤GNg

)
Ȳg(1, π2)Ng

(
Ỹg(1, π2) + Ŷ 1

g (π2)
)
I{Hg = π2}

P−→ 0 .

Therefore, (C.2) holds.

C.1.4 Proof of Theorem 3.4.1

To preserve space, I only present the proof for primary effect as the proof for spillover effect follows the same

argument. First, I analyze the equally-weighted estimator. Note that

√
G(θ̂P1 − θP1 ) = (LY1

G ,LY0
G )Dh ,

where Dh =
(

1√
π1
,− 1√

1−π1

)′
and LY1

G ,LY0
G are defined in Lemma C.2.4. Thus, by Lemma C.2.4,

√
G(θ̂P1 − θP1 ) → N (0, D′

hV
eDh),

where

Ve =

E[Var[Ȳg(1, π2)|Sg]] 0

0 E[Var[Ȳg(0, 0)|Sg]]

+Var

 √
π1E[Ȳg(1, π2)|Sg]

√
1− π1E[Ȳg(0, 0)|Sg]

 ,
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By simple calculation, we conclude that D′
hV

eDh = V3(1). In order to calculate the variance of size-weighted

estimator, I follow the same argument in the end of C.1.1. Note that

√
G(β̂ − β) =

√
G

(
LYN1
G√
G1

,
LN1
G√
G1

,
LYN0
G√
G0

,
LN0
G√
G0

)
=

(
1

√
π1
,

1
√
π1
,

1√
1− π1

,
1√

1− π1

)


LYN1
G

LN1
G

LYN0
G

LN0
G


.

By a similar calculation and argument in C.1.2 and Lemma C.2.4, the final results is obtained.

C.1.5 Proof of Theorem 3.4.2

First, note that we can write the variance expression as follows:

V3(z) =
1

π1
Var

[
Ȳg(z, π2)

]
+

1

1− π1
Var

[
Ȳg(0, 0)

]
− π1(1− π1)E

[(
1

π1
mz,π2 (Sg) +

1

1− π1
m0,0 (Sg)

)2
]

=
1

π1
E
[
Var

[
Ȳg(z, π2) | Sg

]]
+

1

1− π1
E
[
Var

[
Ȳg(0, 0) | Sg

]]
+Var

[
E
[
Ȳg(z, π2) | Sg

]]
+Var

[
E
[
Ȳg(0, 0) | Sg

]]
− 2 · Cov

[
E
[
Ȳg(z, π2) | Sg

]
, E
[
Ȳg(0, 0) | Sg

]]
.

By Slutsky’s theorem and Lemma C.3.2-C.3.4, we conclude that V̂3(z)
P−→ V3(z). Similarly, by Slutsky’s

theorem and Lemma C.3.5-C.3.7, we conclude that V̂4(z)
P−→ V4(z).

C.1.6 Proof of Theorem 3.5.1

To begin with, observe that it is equivalent to show gez(Cg, Ng) = E
[
Ȳg(z,π2)

π1
+

Ȳg(0,0)
1−π1

| Cg, Ng

]
maximizes

E

[(
mz,π2 (Sg)

π1
+
m0,0 (Sg)

1− π1

)2
]

= E

[(
E[Ȳg(z, π2) | Sg]− E[Ȳg(z, h)]

π1
+
E[Ȳg(0, 0) | Sg]− E[Ȳg(z, h)]

1− π1

)2
]
,

and gsz(Cg, Ng) = E
[
Ỹg(z,π2)

π1
+

Ỹg(0,0)
1−π1

| Cg, Ng

]
maximizes

E

[(
1

π1
E[Ỹg(z, π2) | Sg] +

1

1− π1
E[Ỹg(0, 0) | Sg]

)2
]
.

207



By Theorem C.2. of Bai et al. (2021b), the result for equally-weighted estimators follow directly. In terms

of the size-weighted estimators, first observe that

E

[(
gsz(Cg, Ng)− E

[
Ỹg(z, π2)

π1
+
Ỹg(0, 0)

1− π1

∣∣∣∣Sg

])
E

[
Ỹg(z, π2)

π1
+
Ỹg(0, 0)

1− π1

∣∣∣∣Sg

]]

= E

[
E

[(
gsz(Cg, Ng)− E

[
Ỹg(z, π2)

π1
+
Ỹg(0, 0)

1− π1

∣∣∣∣Sg

]) ∣∣∣∣Sg

]
E

[
Ỹg(z, π2)

π1
+
Ỹg(0, 0)

1− π1

∣∣∣∣Sg

]]

= 0 ,

by law of iterated expectation. Therefore,

E
[
gsz(Cg, Ng)

2
]

= E

(gsz(Cg, Ng)− E

[
Ỹg(z, π2)

π1
+
Ỹg(0, 0)

1− π1

∣∣∣∣Sg

]
+ E

[
Ỹg(z, π2)

π1
+
Ỹg(0, 0)

1− π1

∣∣∣∣Sg

])2


= E

(gsz(Cg, Ng)− E

[
Ỹg(z, π2)

π1
+
Ỹg(0, 0)

1− π1

∣∣∣∣Sg

])2
+ E

E [ Ỹg(z, π2)
π1

+
Ỹg(0, 0)

1− π1

∣∣∣∣Sg

]2
≥ E

E [ Ỹg(z, π2)
π1

+
Ỹg(0, 0)

1− π1

∣∣∣∣Sg

]2 .

Thus, it is optimal to match on

gsz(Cg, Ng) =E

[
Ỹg(z, π2)

π1
+
Ỹg(0, 0)

1− π1
| Cg, Ng

]
.

C.1.7 Proof of Theorem 3.5.2

In this section, I show the optimality result holds for V1(z) first. To begin with, observe that the second stage

design enters the variance formula only through Zi,g, or in other words Ȳg(z, π2). Moreover, the conditional

expectations, m1,π2(Cg),m0,π2(Cg),m1,π2(Sg),m0,π2(Sg), do not depend on the stratification strategy. Take
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m1,π2
(Cg) as an example:

m1,π2(Cg) = E

 1

M1
g

∑
i∈Mg

Yi,g(1, π2)Zi,g(π2) | Cg

− E

 1

M1
g

∑
i∈Mg

Yi,g(1, π2)Zi,g(π2)


= E

 1

M1
g

∑
i∈Mg

E [Yi,g(1, π2)Zi,g(π2) | Cg,Mg, Bg] | Cg

− E

 1

Ng

∑
1≤i≤Ng

Yi,g(1, π2)


= E

 1

Mg

∑
i∈Mg

Yi,g(1, π2) | Cg

− E

 1

Ng

∑
1≤i≤Ng

Yi,g(1, π2)

 ,

where the last inequality holds by Assumption 3.3.2. Therefore, only the first term is likely to depend on

stratification strategy. In addition,

Var
[
Ȳg(1, π2)

]
= E

[
Ȳg(1, π2)

2
]
− E

[
Ȳg(1, π2)

]2
,

for which I only need to focus on the first term. Let Xg = (Xi,g : 1 ≤ i ≤ Ng).

E
[
Ȳg(1, π2)

2
]
= E


 1

M1
g

∑
i∈Mg

Yi,g(1, π2)Zi,g(π2)

2


= E

 1(
M1

g

)2E

 ∑

i∈Mg

Yi,g(1, π2)Zi,g(π2)

2

| Xg,Mg


 .
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In fact, it is equivalent to consider

E

 1(
M1

g

)2E

 ∑

i∈Mg

Yi,g(1, π2)Zi,g(π2)

2

−

 ∑
i∈Mg

Yi,g(1, π2)π2

2

| Xg,Mg




= E

 1(
M1

g

)2E
 ∑
i,j∈Mg :Bi,g=Bj,g

Yi,g(1, π2)Yj,g(1, π2)
(
Zi,g(π2)Zj,g(π2)− π2

2

)
| Xg,Mg


= E

 1(
M1

g

)2 ∑
b∈B

∑
Bi,g=Bj,g=b

E [Yi,g(1, π2)Yj,g(1, π2) | Xg]E
[
Zi,g(π2)Zj,g(π2)− π2

2 | Xg

]
= E

 1(
M1

g

)2 ∑
b∈B

∑
i:Bi,g=b

E
[
Y 2
i,g(1, π2) | Xg

]
(π2 − π2

2)


+ E

[
1(

M1
g

)2 ∑
b∈B

∑
i̸=j:Bi,g=Bj,g=b

(
E [Yi,g(1, π2) | Xg]E [Yj,g(1, π2) | Xg]

+ Cov(Yi,g(1, π2), Yj,g(1, π2))

)
× E

[
Zi,g(π2)Zj,g(π2)− π2

2 | Xg

] ]
,

where the last inequality holds by Assumption 3.5.2. Note the last term with Cov(Yi,g(1, π2), Yj,g(1, π2))

does not affect the optimization problem and can be dropped since it is invariant across units. By Lemma

II.2 of Bai (2022b), we only need to consider matched-group design with group size k when π2 = l/k with

l < k being positive integers.1 Note that the first term does not depend on stratification, for which we can

replace E
[
Y 2
i,g(1, π2) | Xg

]
with E [Yi,g(1, π2) | Xg]

2 without affecting the optimzation problem. Then, by

Lemma C.2.2 and Assumption 3.5.1, we can write the objective above as

E

 1(
M1

g

)2 ∑
b∈B

∑
i:Bi,g=b

E [Yi,g(1, π2) | Xg]
2 (
π2 − π2

2

)
+ E

 1(
M1

g

)2 ∑
b∈B

∑
i ̸=j:Bi,g=Bj,g=b

E [Yi,g(1, π2) | Xg]E [Yj,g(1, π2) | Xg]

(
π2
2 − π2
k − 1

)
= E

 1(
M1

g

)2 ∑
b∈B

∑
i:Bi,g=b

(
E [Yi,g(1, π2) | Xg]− µ̄b(Xg)

)2 k (π2 − π2
2

)
k − 1

 ,

where

µ̄b(Xg) =
1

k

∑
i:Bi,g=b

E [Yi,g(1, π2) | Xg] .

1. Without loss of generality, I implicitly assume that Ng/k is an integer.
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Therefore, the optimal matching strategy matches on E [Yi,g(1, π2) | Xg].

Now, let’s turn to V2(z) for z ∈ {0, 1}. Follow the same argument to conclude that E[Ỹg(z, π2) | Sg] is

invariant to stratification strategy. Then, only the first term is likely to be affected by stratification.

Var[Ỹg(z, π2)] = E

[
N2

g

E[Ng]2

(
Ȳg(z, π2)

2 − 2Ȳg(z, π2)
E[Ȳg(z, π2)Ng]

E[Ng]
+
E[Ȳg(z, π2)Ng]

2

E[Ng]2

)]
,

for which we only need to focus on

E
[
N2

g Ȳg(z, π2)
2
]
= E

[
N2

gE
[
Ȳg(z, π2)

2 | Ng

]]
,

which is also minimized by a matched-group design that matches on E [Yi,g(z, π2) | Xg].

C.2 Auxiliary Lemmas

Lemma C.2.1. If cluster size is fixed for all 1 ≤ g ≤ G, i.e. Ng = N , then, V1(z) = V2(z) for z ∈ {0, 1}.

Proof. Note that when Ng = N ,

Ỹg(z, h) = Ȳg(z, h)− E[Ȳg(z, h)] .

Then,

V2(z) =
1

π1
Var[Yg(z, π2)] +

1

1− π1
Var[Yg(0, 0)]

− E

[(√
1− π1
π1

mz,π2
(Sg) +

√
π1

1− π1
m0,0(Sg)

)2
]

+ E

[
τ(Sg)

(
1

π1
mz,π2

(Sg) +
1

1− π1
m0,0(Sg)

)2
]
.
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By law of iterated expectation, we have E [mz,h (Cg) | Sg] = mz,h (Sg). Thus,

V1(z) =
1

π1
Var

[
Ỹg(z, π2)

]
+

1

1− π1
Var

[
Ỹg(0, 0)

]
+ E

[
(mz,π2

(Sg)−m0,0 (Sg))
2
]

+ E

[
τ (Sg)

(
1

π1
mz,π2

(Sg) +
1

1− π1
m0,0 (Sg)

)2
]

=
E
[
Ȳ 2
g (z, π2)

]
− E[Ȳg(z, π2)]

2

π1
+
E
[
Ȳ 2
g (0, 0)

]
− E[Ȳg(0, 0)]

2

1− π1
− 2E [mz,π2

(Sg)m0,0 (Sg)]

− 1− π1
π1

(
E
[
E[Yg(z, π2) | Sg]

2
]
− E[Yg(z, π2)]

2
)
− π1

1− π1

(
E
[
E[Yg(0, 0) | Sg]

2
]
− E[Yg(0, 0)]

2
)

= V2(z) .

Lemma C.2.2. Given a sequence of binary random variables A(n) = (Ai : 1 ≤ i ≤ n) with the joint

distribution

P
(
A(n) = a(n)

)
=

1 n

nπ


for all a(n) = (ai : 1 ≤ i ≤ n) such that

∑
1≤i≤n

ai = nπ ,

where nπ ∈ N is an integer, otherwise P
(
A(n) = a(n)

)
= 0. We have E[AiAj ] = π2 − π(1−π)

n−1 for all

i ̸= j ∈ [1, n].

Proof. Note that

Var

 ∑
1≤i≤n

Ai

 = 0 =
∑

1≤i≤n

Var [Ai] +
∑
i ̸=j

Cov(Ai, Aj) = nπ(1− π) + n(n− 1)Cov(Ai, Aj) ,

for any i ̸= j ∈ [1, n], which implies

E[AiAj ] = Cov(Ai, Aj) + E[Ai]E[Aj ] = π2 − π(1− π)

n− 1
.

Lemma C.2.3. Suppose Assumption 3.2.2 holds, then

E[Ȳ r
g (z, π2)|Cg, Ng] ≤ C a.s. ,
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for r ∈ {1, 2}, z ∈ {0, 1} for some constant C > 0,

E
[
Ȳ r
g (z, π2)N

ℓ
g

]
<∞ ,

for r ∈ {1, 2}, ℓ ∈ {0, 1, 2}, z ∈ {0, 1}, and

E
[
E[Ȳg(z, π2)Ng|Sg]

2
]
<∞ .,

for z ∈ {0, 1}. In addition, suppose Assumption 3.4.1 (b) holds, then

E[Ȳg(z, π2)
rN ℓ

g | Sg] ≤ C a.s. ,

for z ∈ {0, 1}.

Proof. We show the first statement for r = 2 and z = 1, since the case r = 1 follows similarly. By the

Cauchy-Schwarz inequality,

Ȳg(1, π2)
2 =

 1

Mg

∑
i∈Mg

Yi,g(1, π2)Zi,g(π2)

2

≤ 1

Mg

∑
i∈Mg

Yi,g(1, π2)
2 ,

and hence

E[Ȳg(1, π2)
2|Cg, Ng] ≤ E

 1

Mg

∑
i∈Mg

Yi,g(1, π2)
2 | Cg, Ng

 ≤
∑

1≤i≤Ng

E

[
1{i ∈ Mg}

Mg
| Cg, Ng

]
C ≤ C ,

where the first inequality follows from the above derivation, Assumption 3.2.2(e) and the law of iterated

expectations, and final inequality follows from Assumption 3.2.2(d). I show the next statement for r = ℓ = 2,

since the other cases follow similarly. By the law of iterated expectations,

E
[
Ȳ 2
g (1, π2)N

2
g

]
= E

[
N2

gE[Ȳ 2
g (1, π2)|Cg, Ng]

]
≲ E

[
N2

g

]
<∞ ,
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where the final line follows by Assumption 3.2.2 (c). Next,

E
[
E[Ȳg(1, π2)Ng|Sg]

2
]
= E

[
E[NgE[Ȳg(1, π2)|Cg, Ng]|Sg]

2
]

≲ E
[
E[Ng|Cg]

2
]
<∞ ,

where the final line follows from Jensen’s inequality and Assumption 3.2.2(c). Finally,

E[Ȳg(z, π2)
rN ℓ

g | Sg] = E[N ℓ
gE[Ȳg(z, π2)

r | Cg.Ng] | Sg] ≲ E[N ℓ
g | Sg] ≤ C ,

where the last inequality follows by Assumption 3.4.1 (b).

Lemma C.2.4. Suppose QG satisfies Assumptions 3.2.2 and 3.4.1 and the treatment assignment mechanism

satisfies Assumptions 3.3.2 and 3.4.2-3.4.3. Define

LY1
G =

1√
nl

∑
1≤g≤nk

(Ȳg(1, π2)− E[Ȳg(1, π2)])I{Hg = π2}

LYN1
G =

1√
nl

∑
1≤g≤nk

(Ȳg(1, π2)Ng − E[Ȳg(1, π2)Ng])I{Hg = π2}

LN1
G =

1√
nl

∑
1≤g≤2G

(Ng − E[Ng])I{Hg = π2}

LY0
G =

1√
n(k − l)

∑
1≤g≤nk

(Ȳg(0, 0)− E[Ȳg(0, 0)Ng])I{Hg = 0}

LYN0
G =

1√
n(k − l)

∑
1≤g≤2G

(Ȳg(0, 0)Ng − E[Ȳg(0, 0)Ng])I{Hg = 0}

LN0
G =

1√
n(k − l)

∑
1≤g≤2G

(Ng − E[Ng])I{Hg = 0} .

Then, as n→ ∞, (
LY1
G ,LYN1

G ,LN1
G ,LY0

G ,LYN0
G ,LN0

G

) d−→ N (0,V) ,

where

V = V1 +V2

for

V1 =

V1
1 0

0 V0
1


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V1
1 =


E[Var[Ȳg(1, π2)|Sg]] E[Cov[Ȳg(1, π2), Ȳg(1, π2)Ng|Sg]] E[Cov[Ȳg(1, π2), Ng|Sg]]

E[Cov[Ȳg(1, π2), Ȳg(1, π2)Ng|Sg]] E[Var[Ȳg(1, π2)Ng|Sg]] E[Cov[Ȳg(1, π2)Ng, Ng|Sg]]

E[Cov[Ȳg(1, π2), Ng|Sg]] E[Cov[Ȳg(1, π2)Ng, Ng|Sg]] E[Var[Ng|Sg]]



V0
1 =


E[Var[Ȳg(0, 0)|Sg]] E[Cov[Ȳg(0, 0), Ȳg(0, 0)Ng|Sg]] E[Cov[Ȳg(0, 0), Ng|Sg]]

E[Cov[Ȳg(0, 0), Ȳg(0, 0)Ng|Sg]] E[Var[Ȳg(0, 0)Ng|Sg]] E[Cov[Ȳg(0, 0)Ng, Ng|Sg]]

E[Cov[Ȳg(0, 0), Ng|Sg]] E[Cov[Ȳg(0, 0)Ng, Ng|Sg]] E[Var[Ng|Sg]]



V2 = Var





√
π1E[Ȳg(1, π2)|Sg]

√
π1E[Ȳg(1, π2)Ng|Sg]

√
π1E[Ng|Sg]

√
1− π1E[Ȳg(0, 0)|Sg]

√
1− π1E[Ȳg(0, 0)Ng|Sg]
√
1− π1E[Ng|Sg]




.

Proof. Note

(LY1
G ,LYN1

G ,LN1
G ,LY0

G ,LYN0
G ,LN0

G ) = (LY1
1,G,LYN1

1,G ,LN1
1,G,LY0

1,G,LYN0
1,G ,LN0

1,G)

+ (LY1
2,G,LYN1

2,G ,LN1
2,G,LY0

2,G,LYN0
2,G ,LN0

2,G) ,

where

LYN1
1,G =

1√
nl

∑
1≤g≤2G

(Ȳg(1, π2)NgI{Hg = π2} − E[Ȳg(1, π2)NgI{Hg = π2}|S(G), H(G)])

LYN1
2,G =

1√
nl

∑
1≤g≤2G

(E[Ȳg(1, π2)NgI{Hg = π2}|S(G), H(G)]− E[Ȳg(1, π2)Ng]I{Hg = π2})

and similarly for the rest. Next, note (LY1
1,G,LYN1

1,G ,LN1
1,G,LY0

1,G,LYN0
1,G ,LN0

1,G), n ≥ 1 is a triangular array of
normalized sums of random vectors. We will apply the Lindeberg central limit theorem for random vec-
tors, i.e., Proposition 2.27 of van der Vaart (1998), to this triangular array. Conditional on S(G), H(G),
(LY1

1,G,LYN1
1,G ,LN1

1,G) ⊥ (LY0
1,G,LYN0

1,G ,LN0
1,G). Moreover, it follows from QG = QG (by Lemma 5.1 of Bugni et al.

(2022b) and Assumption 3.2.2 (a)-(b)) and Assumption 3.3.2, 3.4.2 that

Var
[(

LY1
1,G, LYN1

1,G , LN1
1,G

)′
|S(G)

, H
(G)

]

=


1
nl

∑G
g=1 Var[Ȳg(1, π2)|Sg ]H̃g

1
nl

∑G
g=1 Cov[Ȳg(1, π2), Ȳg(1, π2)Ng|Sg ]H̃g

1
nl

∑G
g=1 Cov[Ȳg(1, π2), Ng|Sg ]H̃g

1
nl

∑G
g=1 Cov[Ȳg(1, π2), Ȳg(1, π2)Ng|Sg ]H̃g

1
nl

∑G
g=1 Var[Ȳg(1, π2)Ng|Sg ]H̃g

1
nl

∑G
g=1 Cov[Ȳg(1, π2)Ng, Ng|Sg ]H̃g

1
nl

∑G
g=1 Cov[Ȳg(1, π2), Ng|Sg ]H̃g

1
nl

∑G
g=1 Cov[Ȳg(1, π2)Ng, Ng|Sg ]H̃g

1
nl

∑G
g=1 Var[Ng|Sg ]H̃g

 ,
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where H̃g = I{Hg = π2}. For the upper left component, we have

1

G1

∑
1≤g≤G

Var[Ȳg(1, π2)|Sg]H̃g =
1

G1

∑
1≤g≤G

E[Ȳ 2
g (1, π2)|Sg]H̃g −

1

G1

∑
1≤g≤G

E[Ȳg(1, π2)|Sg]
2H̃g , (C.4)

where G1 = nl. Note

1

G1

∑
1≤g≤G

E[Ȳ 2
g (1, π2)|Sg]H̃g =

1

G

∑
1≤g≤G

E[Ȳ 2
g (1, π2)|Sg]

+ (1− π2)

 1

G1

∑
1≤g≤G:H̃g=1

E[Ȳ 2
g (1, π2)|Sg]−

1

G0

∑
1≤g≤G:H̃g=0

E[Ȳ 2
g (1, π2)|Sg]

 .

It follows from the weak law of large numbers, and Lemma C.2.3, that

1

G

∑
1≤g≤G

E[Ȳ 2
g (1, π2)|Sg]

P→ E[Ȳ 2
g (1, π2)] .

On the other hand, it follows from Assumption 3.4.1(b) and 3.4.3 that

∣∣∣∣∣∣ 1G1

∑
1≤g≤G:H̃g=1

E[Ȳ 2
g (1, π2)|Sg]−

1

G0

∑
1≤g≤G:H̃g=0

E[Ȳ 2
g (1, π2)|Sg]

∣∣∣∣∣∣
=

1

G

∣∣∣∣∣∣ 1π2
∑

1≤g≤G:H̃g=1

E[Ȳ 2
g (1, π2)|Sg]−

1

1− π2

∑
1≤g≤G:H̃g=0

E[Ȳ 2
g (1, π2)|Sg]

∣∣∣∣∣∣
≤ 1

G

∑
1≤j≤n

k · max
i,k∈λj

|E[Ȳ 2
i (1, π2)|Si]− E[Ȳ 2

k (1, π2)|Sk]|

≲
1

n

∑
1≤j≤n

max
i,k∈λj

|Si − Sk| .

Therefore,
1

G1

∑
1≤g≤G

E[Ȳ 2
g (1, π2)|Sg]H̃g

P→ E[Ȳ 2
g (1, π2)] .

Meanwhile,

1

G1

∑
1≤g≤G

E[Ȳg(1, π2)|Sg]
2H̃g =

1

G

∑
1≤g≤G

E[Ȳg(1, π2)|Sg]
2

+ (1− π2)

 1

G1

∑
1≤g≤G:H̃g=1

E[Ȳg(1, π2)|Sg]
2 − 1

G0

∑
1≤g≤G:H̃g=0

E[Ȳg(1, π2)|Sg]
2

 .
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Jensen’s inequality implies E[E[Ȳg(1, π2)|Sg]
2] ≤ E[Ȳ 2

g (1, π2)] < E[Ȳ 2
g (1, π2)] < ∞ by Assumption 3.2.2(d),

so it follows from the weak law of large numbers as above that

1

G

∑
1≤g≤G

E[Ȳg(1, π2)|Sg]
2 P→ E[E[Ȳg(1, π2)|Sg]

2] .

Next, by Assumption 3.4.1 and 3.4.3, the Cauchy-Schwarz inequality, and the fact that (a+ b)2 ≤ 2a2 +2b2,

∣∣∣∣∣∣ 1G1

∑
1≤g≤G:H̃g=1

E[Ȳg(1, π2)|Sg]
2 − 1

G0

∑
1≤g≤G:H̃g=0

E[Ȳg(1, π2)|Sg]
2

∣∣∣∣∣∣
=

1

G

∣∣∣∣∣∣ 1π2
∑

1≤g≤G:H̃g=1

E[Ȳg(1, π2)|Sg]
2 − 1

1− π2

∑
1≤g≤G:H̃g=0

E[Ȳg(1, π2)|Sg]
2

∣∣∣∣∣∣
≤ 1

G

∑
1≤j≤n

(
max
i,j∈λj

|E[Ȳi(1, π2)|Si]− E[Ȳk(1, π2)|Sk]|
)∑

k∈λj

E[Ȳk(1, π2)|Sk]



≲

 1

G

∑
1≤j≤n

max
i,j∈λj

|E[Ȳi(1, π2)|Si]− E[Ȳk(1, π2)|Sk]|2
1/2

 1

G

∑
1≤j≤n

∑
k∈λj

E[Ȳk(1, π2)|Sk]

2


1/2

≲

 1

G

∑
1≤j≤n

max
i,j∈λj

|E[Ȳi(1, π2)|Si]− E[Ȳk(1, π2)|Sk]|2
1/2 1

G

∑
1≤j≤n

∑
k∈λj

E[Ȳk(1, π2)|Sk]
2

1/2

.

Therefore, it follows from (C.4) that

1

G1

∑
1≤g≤G

Var[Ȳg(1, π2)|Sg]H̃g
P→ E[Var[Ȳg(1, π2)|Sg]] .

Similar arguments together with Assumption 3.4.1(a)-(b) and Lemma C.2.3 imply that

Var




LY1
1,G

LYN1
1,G

LN1
1,G


∣∣∣∣∣S(G), H(G)

 P→ V1
1 .

Similarly,

Var




LY0
1,G

LYN0
1,G

LN0
1,G


∣∣∣∣∣S(G), H(G)

 P→ V0
1 .

If E[Var[Ȳg(1, π2)Ng|Sg]] = E[Var[Ng|Sg]] = E[Var[Ȳg(0, 0)Ng|Sg]] = 0, then it follows from Markov’s
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inequality conditional on S(G) and H(G), and the fact that probabilities are bounded and hence uniformly

integrable, that (LY1
1,G,LYN1

1,G ,LN1
1,G,LY0

1,G,LYN0
1,G ,LN0

1,G)
P→ 0. Otherwise, it follows from similar arguments to

those in the proof of Lemma S.1.5 of Bai et al. (2021b) that

ρ(L((LY1
1,G,LYN1

1,G ,LN1
1,G,LY0

1,G,LYN0
1,G ,LN0

1,G)
′|S(G), H(G)), N(0,V1))

P→ 0 , (C.5)

where L denotes the distribution and ρ is any metric that metrizes weak convergence.

Next, I study (LY1
2,G,LYN1

2,G ,LN1
2,G,LY0

2,G,LYN0
2,G ,LN0

2,G). It follows from QG = QG (by Lemma 5.1 of Bugni

et al. (2022b) and Assumption 3.2.2 (a)-(b)) and Assumption 3.4.2 that



LY1
2,G

LYN1
2,G

LN1
2,G

LY0
2,G

LYN0
2,G

LN0
2,G


=



1√
G1

∑
1≤g≤G H̃g(E[Ȳg(1, π2)|Sg]− E[Ȳg(1, π2)])

1√
G1

∑
1≤g≤G H̃g(E[Ȳg(1, π2)Ng|Sg]− E[Ȳg(1, π2)Ng])

1√
G1

∑
1≤g≤G H̃g(E[Ng|Sg]− E[Ng])

1√
G0

∑
1≤g≤G(1− H̃g)(E[Ȳg(0, 0)|Sg]− E[Ȳg(0, 0)])

1√
G0

∑
1≤g≤G(1− H̃g)(E[Ȳg(0, 0)Ng|Sg]− E[Ȳg(0, 0)Ng])

1√
G0

∑
1≤g≤G(1− H̃g)(E[Ng|Sg]− E[Ng])


.

For LY1
2,G, note it follows from Assumption 3.4.2 and Lemma C.2.2 that

Var[LY1
2,G|S(G)] =

1

G1

∑
1≤j≤n

Var

[
k∑

i=1

H̃i(E[Ȳg(1, π2)|Sg]− E[Ȳg(1, π2)])

]

=
1

G1

∑
1≤j≤n

π1(1− π1)

(k − 1)
∑
i∈λj

(E[Ȳg(1, π2)|Si]− E[Ȳg(1, π2)])
2

−
∑
a ̸=b

(E[Ȳg(1, π2)|Sa]− E[Ȳg(1, π2)])(E[Ȳg(1, π2)|Sb]− E[Ȳg(1, π2)])


≲

1

n

∑
1≤j≤n

∑
i∈λj

∑
j ̸=i

(E[Ȳg(1, π2)|Si]− E[Ȳg(1, π2)])(E[Ȳg(1, π2)|Si]− E[Ȳg(1, π2)|Sj ])

≲
1

n

∑
1≤j≤n

∑
i∈λj

(E[Ȳg(1, π2)|Si]− E[Ȳg(1, π2)])

(
max
i,k∈λj

∣∣E[Ȳg(1, π2)|Si]− E[Ȳg(1, π2)|Sk]
∣∣)

≲

 1

n

∑
1≤j≤n

max
i,k∈λj

∣∣E[Ȳg(1, π2)|Si]− E[Ȳg(1, π2)|Sk]
∣∣21/2

≲
1

n

∑
1≤j≤G

max
i,k∈λj

|Si − Sk|2
P→ 0 .
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Therefore, it follows from Markov’s inequality conditional on S(G) and H(G), and the fact that probabilities

are bounded and hence uniformly integrable, that

LY1
2,G = E[LY1

2,G|S(G)] + oP (1) .

Similarly,



LY1
2,G

LYN1
2,G

LN1
2,G

LY0
2,G

LYN0
2,G

LN0
2,G


=



1√
G

√
π1
∑

1≤g≤G(E[Ȳg(1, π2)|Sg]− E[Ȳg(1, π2)])

1√
G

√
π1
∑

1≤g≤G(E[Ȳg(1, π2)Ng|Sg]− E[Ȳg(1, π2)Ng])

1√
G

√
π1
∑

1≤g≤G(E[Ng|Sg]− E[Ng])

1√
G

√
1− π1

∑
1≤g≤G(E[Ȳg(0, 0)|Sg]− E[Ȳg(0, 0)])

1√
G

√
1− π1

∑
1≤g≤G(E[Ȳg(0, 0)Ng|Sg]− E[Ȳg(0, 0)Ng])

1√
G

√
1− π1

∑
1≤g≤G(E[Ng|Sg]− E[Ng])


+ oP (1) .

It then follows from Assumption 3.2.2(c)-(d) and 3.4.1(a) and the central limit theorem that

(LY1
2,G,LYN1

2,G ,LN1
2,G,LY0

2,G,LYN0
2,G ,LN0

2,G)
′ d→ N(0,V2) .

Because (C.5) holds and (LY1
2,G,LYN1

2,G ,LN1
2,G,LY0

2,G,LYN0
2,G ,LN0

2,G) is deterministic conditional on S(G), H(G), the

conclusion of the theorem follows from Lemma S.1.3 in Bai et al. (2021b).

C.3 Lemmas for Proof of Theorem 3.4.2

Lemma C.3.1. If Assumption 3.3.2-3.2.2, 3.4.1(a) and 3.4.2 hold, then

1. E[Ȳ r
g (z, h) | Sg = s] and E[Ỹ r

g (z, h) | Sg = s] are Lipschitz in s for (z, h) ∈ {(1, π2), (0, π2), (0, 0)}

and r ∈ {1, 2}.

2. E
[
Ȳ 2
g (z, h)

]
<∞ and E

[
Ỹ 2
g (z, h)

]
<∞ for (z, h) ∈ {(1, π2), (0, π2), (0, 0)}.

3. ((Ȳg(1, π2), Ȳg(0, π2), Ȳg(0, 0)) : 1 ≤ g ≤ G) ⊥ H(G) | S(G) and ((Ỹg(1, π2), Ỹg(0, π2), Ỹg(0, 0)) : 1 ≤

g ≤ G) ⊥ H(G) | S(G).

Proof. First, (a) is an immediate consequence of Assumption 3.4.1(a). Also, (b) is an immediate consequence

of Lemma C.2.3 with Assumption 3.2.2. Finally, (c) follows directly by inspection and Assumption 3.3.2 and

3.4.2.
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Lemma C.3.2. Suppose QG satisfies Assumptions 3.2.2 and 3.4.1 and the treatment assignment mechanism

satisfies Assumptions 3.3.2, 3.4.2-3.4.3 and 3.4.4. Then, for r = 1, 2,

1

nk(h)

∑
1≤g≤G

(
Ȳ z
g

)r
I{Hg = h} P−→ E[Ȳ r

g (z, h)] .

Proof. I only prove the conclusion for r = 1 and the proof for r = 2 follows similarly. Note that

1

nk(h)

∑
1≤g≤G

Ȳ z
g I{Hg = h} =

1

nk(h)

∑
1≤g≤G

(Ȳg(z, h)I{Hg = h} − E[Ȳg(z, h)I{Hg = h}|S(G), H(G)])

+
1

nk(h)

∑
1≤g≤G

E[Ȳg(z, h)I{Hg = h}|S(G), H(G)] .

By Lemma C.3.1 (c), Assumption 3.4.3 and similar arguments to those used in the proof of Lemma C.2.4,

1

nk(h)

∑
1≤g≤G

E[Ȳg(z, h)I{Hg = h}|S(G), H(G)] =
1

nk(h)

∑
1≤g≤G

I{Hg = h}E[Ȳg(z, h)|Sg]

P−→ E[E[Ȳg(z, h)|Sg]] = E[Ȳg(z, h)] .

By following the argument in Lemma S.1.5 of Bai et al. (2021b), we conclude that

1

nk(h)

∑
1≤g≤G

(Ȳg(z, h)I{Hg = h} − E[Ȳg(z, h)I{Hg = h}|S(G), H(G)])
P→ 0 .

Therefore, the results hold.

Lemma C.3.3. Suppose QG satisfies Assumptions 3.2.2 and 3.4.1 and the treatment assignment mechanism

satisfies Assumptions 3.3.2, 3.4.2-3.4.3 and 3.4.4. Then, as n→ ∞,

ρ̂zn(π2, 0)
P−→ E[E[Ȳg(z, π2) | Sg]E[Ȳg(z, 0) | S(G)]] .
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Proof. To begin with, by Assumption 3.4.2,

E[ρ̂zn(π2, 0) | S(G)]

=
1

n

∑
1≤j≤n

1

l(k − l)
E

(∑
i∈λj

Ȳ z
i I{Hi = π2}

)(∑
i∈λj

Ȳ z
i I{Hi = 0}

)
| S(G)


=

1

n

∑
1≤j≤n

1

l(k − l)

∑
i̸=m∈λj

E
[
Ȳi(z, π2) | Si

]
E
[
Ȳm(z, 0) | Sm

]
E
[
I{Hi = π2}I{Hm = 0} | S(G)

]
=

1

n

∑
1≤j≤n

1

l(k − l)

∑
i<m∈λj

(E
[
Ȳi(z, π2) | Si

]
E
[
Ȳi(z, 0) | Si

]
+ E

[
Ȳm(z, π2) | Sm

]
E
[
Ȳm(z, 0) | Sm

]
− (E

[
Ȳi(z, π2) | Si

]
− E

[
Ȳm(z, π2) | Sm

]
)(E

[
Ȳi(z, 0) | Si

]
− E

[
Ȳm(z, 0) | Sm

]
))
l(k − l)

k(k − 1)

=
1

n

∑
1≤j≤n

1

k

∑
i∈λj

E
[
Ȳi(z, π2) | Si

]
E
[
Ȳi(z, 0) | Si

]
− 1

n

∑
1≤j≤n

1

k(k − 1)

∑
i<m∈λj

(E
[
Ȳi(z, π2) | Si

]
− E

[
Ȳm(z, π2) | Sm

]
)(E

[
Ȳi(z, 0) | Si

]
− E

[
Ȳm(z, 0) | Sm

]
) .

Then, by Lipschitz condition from Lemma C.3.1(a), Lemma C.2.3 and Assumption 3.4.3, we conclude that

E[ρ̂zn(π2, 0) | S(G)]
P−→ E[E[Ȳg(z, π2) | Sg]E[Ȳg(z, 0) | Sg]]. To conclude the proof, we need to show

ρ̂zn(π2, 0)− E[ρ̂zn(π2, 0) | Sg]
P−→ 0 .

Define

ρ̂zn,j(π2, 0) =
1

l(k − l)

(∑
i∈λj

Ȳ z
i I{Hi = π2}

)(∑
i∈λj

Ȳ z
i I{Hi = 0}

)
.

Note that

∣∣∣E[ρ̂zn,j(π2, 0) | S(G)]
∣∣∣ I {∣∣∣E[ρ̂zn,j(π2, 0) | S(G)]

∣∣∣ > λ
}

=

∣∣∣∣∣∣ 1

k(k − 1)

∑
i̸=m∈λj

E
[
Ȳi(z, π2) | Si

]
E
[
Ȳm(z, 0) | Sm

]∣∣∣∣∣∣
× I


∣∣∣∣∣∣ 1

k(k − 1)

∑
i̸=m∈λj

E
[
Ȳi(z, π2) | Si

]
E
[
Ȳm(z, 0) | Sm

]∣∣∣∣∣∣ > λ


≤

∑
i ̸=m∈λj

∣∣E [Ȳi(z, π2) | Si

]
E
[
Ȳm(z, 0) | Sm

]∣∣ I {∣∣E [Ȳi(z, π2) | Si

]
E
[
Ȳm(z, 0) | Sm

]∣∣ > λ
}
.

Then, the conclusion follows by repeating the same arguments from Lemma C.2 of Bai et al. (2022b).

Lemma C.3.4. Suppose QG satisfies Assumptions 3.2.2 and 3.4.1 and the treatment assignment mechanism
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satisfies Assumptions 3.3.2, 3.4.2-3.4.3 and 3.4.4. Then, as n→ ∞,

ρ̂zn(h, h)
P−→ E[E[Ȳg(z, h) | Sg]

2] .

Proof. To begin with, by Assumption 3.4.2,

E[ρ̂zn(h, h) | S(G)]

=
2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)
E

( ∑
i∈λ2j−1

Ȳ z
i I{Hi = h}

)( ∑
i∈λ2j

Ȳ z
i I{Hi = h}

)
| S(G)


=

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

k2(h)

k2

∑
i∈λ2j−1,k∈λ2j

E[Ȳ z
i (z, h) | Si]E[Ȳ z

k (z, h) | Sk]

=
1

nk2

∑
1≤j≤⌊n/2⌋

∑
i∈λ2j−1,k∈λ2j

(
E[Ȳ z

i (z, h) | Si]
2 + E[Ȳ z

k (z, h) | Sk]
2 − (E[Ȳ z

i (z, h) | Si]− E[Ȳ z
k (z, h) | Sk])

2
)

=
1

G

∑
1≤g≤G

E[Ȳ z
g (z, h) | Sg]

2 − 1

nk2

∑
1≤j≤⌊n/2⌋

∑
i∈λ2j−1,k∈λ2j

(E[Ȳ z
i (z, h) | Si]− E[Ȳ z

k (z, h) | Sk])
2

P−→ E[E[Ȳg(z, h) | Sg]
2] ,

where the convergence in probability follows from Lemma C.3.1(a), Assumption 3.4.3, Lemma C.2.3 and

weak law of large numbers. To conclude the proof, we need to show

ρ̂zn(h, h)− E[ρ̂zn(h, h) | S(G)]
P−→ 0 .

Define

ρ̂zn,j(h, h) =
1

k2(h)

( ∑
i∈λ2j−1

Ȳ z
i I{Hi = h}

)( ∑
i∈λ2j

Ȳ z
i I{Hi = h}

)
.

Note that

∣∣∣E[ρ̂zn,j(π2, 0) | S(G)]
∣∣∣ I {∣∣∣E[ρ̂zn,j(π2, 0) | S(G)]

∣∣∣ > λ
}

=

∣∣∣∣∣∣ 1k2
∑

i∈λ2j−1,k∈λ2j

E[Ȳ z
i (z, h) | Si]E[Ȳ z

k (z, h) | Sk]

∣∣∣∣∣∣
× I


∣∣∣∣∣∣ 1k2

∑
i∈λ2j−1,k∈λ2j

E[Ȳ z
i (z, h) | Si]E[Ȳ z

k (z, h) | Sk]

∣∣∣∣∣∣ > λ


≤

∑
i∈λ2j−1,k∈λ2j

∣∣E[Ȳ z
i (z, h) | Si]E[Ȳ z

k (z, h) | Sk]
∣∣ I {∣∣E[Ȳ z

i (z, h) | Si]E[Ȳ z
k (z, h) | Sk]

∣∣ > λ
}
.
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Then, the conclusion follows by repeating the same arguments from Lemma C.3 of Bai et al. (2022b).

Lemma C.3.5. Suppose QG satisfies Assumptions 3.2.2 and 3.4.1 and the treatment assignment mechanism

satisfies Assumptions 3.3.2, 3.4.2-3.4.3 and 3.4.4. Then, for r = 1, 2,

1

nk(h)

∑
1≤g≤G

(
Ỹ z
g

)r
I{Hg = h} P−→ E[Ỹ r

g (z, h)] .

Proof. I only prove the conclusion for r = 1 and the proof for r = 2 follows similarly. Note that

1

nk(h)

∑
1≤g≤G

Ỹ z
g I{Hg = h} =

1

nk(h)

∑
1≤g≤G

Ỹg(z, h)I{Hg = h}

+
1

nk(h)

∑
1≤g≤G

(
Ŷ z
g (h)− Ỹg(z, h)

)
I{Hg = h} ,

where Ŷ z
g (h) is defined in (C.1). Note that

1

nk(h)

∑
1≤g≤G

(
Ŷ z
g (h)− Ỹg(z, h)

)
I{Hg = h}

=

(
1

1
G

∑
1≤g≤GNg

− 1

E[Ng]

) 1

nk(h)

∑
1≤g≤G

Ȳg(z, h)NgI{Hg = h}


−

 1
G

∑
1≤g≤G Ȳg(z, h)I{Hg = h}Ng(

1
G

∑
1≤g≤GNg

)2 − E[Ȳg(z, h)Ng]

E[Ng]2


 1

nk(h)

∑
1≤g≤G

NgI{Hg = h}


By weak law of large number, Lemma C.2.4 and Slutsky’s theorem, we have

1

nk(h)

∑
1≤g≤G

(
Ŷ z
g (h)− Ỹg(z, h)

)
I{Hg = h} P−→ 0 .

By Lemma C.3.1 and repeating the arguments in Lemma C.3.2 with Ỹg(z, h) in the place of Ȳg(z, h), we

have
1

nk(h)

∑
1≤g≤G

Ỹg(z, h)I{Hg = h} P−→ E[Ỹ r
g (z, h)] .

Thus, the result follows.

Lemma C.3.6. Suppose QG satisfies Assumptions 3.2.2 and 3.4.1 and the treatment assignment mechanism
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satisfies Assumptions 3.3.2, 3.4.2-3.4.3 and 3.4.4. Then, as n→ ∞,

1

n

∑
1≤j≤n

1

l(k − l)

(∑
i∈λj

Ỹ z
i I{Hi = π2}

)(∑
i∈λj

Ỹ z
i I{Hi = 0}

)
P−→ E[E[Ȳg(z, π2) | Sg]E[Ȳg(z, 0) | S(G)]] .

Proof. Note that

1

n

∑
1≤j≤n

1

l(k − l)

(∑
i∈λj

Ỹ z
i I{Hi = π2}

)(∑
i∈λj

Ỹ z
i I{Hi = 0}

)
=

1

n

∑
1≤j≤n

1

l(k − l)

∑
i ̸=m∈λj

Ŷ z
i (π2)Ŷ

z
m(0)I{Hi = π2, Hm = 0}

=
1

n

∑
1≤j≤n

1

l(k − l)

∑
i ̸=m∈λj

Ỹi(z, π2)Ỹm(z, 0)I{Hi = π2, Hm = 0}

+
1

n

∑
1≤j≤n

1

l(k − l)

∑
i ̸=m∈λj

(
Ŷ z
i (π2)Ŷ

z
m(0)− Ỹi(z, π2)Ỹm(z, 0)

)
I{Hi = π2, Hm = 0} .

The second term can be written as

1

n

∑
1≤j≤n

1

l(k − l)

∑
i̸=m∈λj

(
Ŷ z
i (π2)− Ỹi(z, π2)

)
Ỹm(z, 0)I{Hi = π2, Hm = 0}

+
1

n

∑
1≤j≤n

1

l(k − l)

∑
i̸=m∈λj

(
Ŷ z
m(0)− Ỹm(z, 0)

)
Ỹi(z, π2)I{Hi = π2, Hm = 0}

+
1

n

∑
1≤j≤n

1

l(k − l)

∑
i ̸=m∈λj

(
Ŷ z
i (π2)− Ỹi(z, π2)

)(
Ŷ z
m(0)− Ỹm(z, 0))

)
I{Hi = π2, Hm = 0} . (C.6)

We show that the first term of (C.6) converges to zero in probability and the other two terms should follow

the same arguments:

1

n

∑
1≤j≤n

1

l(k − l)

∑
i ̸=m∈λj

(
Ŷ z
i (π2)− Ỹi(z, π2)

)
Ỹm(z, 0)I{Hi = π2, Hm = 0}

=

(
1

1
G

∑
1≤g≤GNg

− 1

E[Ng]

) 1

n

∑
1≤j≤n

1

l(k − l)

∑
i ̸=m∈λj

Ȳi(z, π2)NiỸm(z, 0)I{Hi = π2, Hm = 0}


−

 1
G

∑
1≤g≤G Ȳg(z, h)I{Hg = h}Ng(

1
G

∑
1≤g≤GNg

)2 − E[Ȳg(z, h)Ng]

E[Ng]2


×

 1

n

∑
1≤j≤n

1

l(k − l)

∑
i̸=m∈λj

NiỸm(z, 0)I{Hi = π2, Hm = 0}


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By following the same argument in Lemma S.1.6 from Bai et al. (2021b), we have

1

n

∑
1≤j≤n

1

l(k − l)

∑
i ̸=m∈λj

Ȳg(z, π2)NgỸm(z, 0)I{Hi = π2, Hm = 0} P−→ E[E[NgȲg(z, π2) | Sg]E[Ỹm(z, 0) | Sg]]

1

G

∑
1≤j≤G

Nπ(2j)Ỹπ(2j−1)(0)I{Hi = π2, Hm = 0} P−→ E[E[Ng | Sg]E[Ỹm(z, 0) | Sg]] .

By weak law of large number, Lemma C.2.4 and Slutsky’s theorem, we have

1

n

∑
1≤j≤n

1

l(k − l)

∑
i̸=m∈λj

(
Ŷ z
i (π2)− Ỹi(z, π2)

)
Ỹm(z, 0)I{Hi = π2, Hm = 0} P−→ 0 .

Similarly, the convergence in probability to zero should hold for all three terms in (C.6). Thus, we have

1

n

∑
1≤j≤n

1

l(k − l)

∑
i̸=m∈λj

(
Ŷ z
i (π2)Ŷ

z
m(0)− Ỹi(z, π2)Ỹm(z, 0)

)
I{Hi = π2, Hm = 0} → 0 .

By Lemma C.3.1 and repeating the arguments in Lemma C.3.3 with Ỹg(z, h) in the place of Ȳg(z, h), we

conclude the result.

Lemma C.3.7. Suppose QG satisfies Assumptions 3.2.2 and 3.4.1 and the treatment assignment mechanism

satisfies Assumptions 3.3.2, 3.4.2-3.4.3 and 3.4.4. Then, as n→ ∞,

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

( ∑
i∈λ2j−1

Ỹ z
i I{Hi = h}

)( ∑
i∈λ2j

Ỹ z
i I{Hi = h}

)
P−→ E[E[Ỹg(z, h) | Sg]

2] .

Proof. Note that

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

( ∑
i∈λ2j−1

Ỹ z
i I{Hi = h}

)( ∑
i∈λ2j

Ỹ z
i I{Hi = h}

)
=

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,m∈λ2j

Ŷ z
i (h)Ŷ

z
m(h)I{Hi = Hm = h}

=
2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,m∈λ2j

Ỹi(z, h)Ỹm(z, h)I{Hi = Hm = h}

+
2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,m∈λ2j

(
Ŷ z
i (h)Ŷ

z
m(h)− Ỹi(z, h)Ỹm(z, h)

)
I{Hi = Hm = h}
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The second term can be written as

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,k∈λ2j

(
Ŷ z
i (h)− Ỹi(z, h)

)
Ỹm(z, h)I{Hi = Hm = h}

+
2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,k∈λ2j

(
Ŷ z
m(h)− Ỹm(z, h)

)
Ỹi(z, h)I{Hi = Hm = h}

+
2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,k∈λ2j

(
Ŷ z
i (h)− Ỹi(z, h)

)(
Ŷ z
m(h)− Ỹm(z, h))

)
I{Hi = Hm = h} . (C.7)

We show that the first term of (C.7) converges to zero in probability and the other two terms should follow

the same arguments:

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,k∈λ2j

(
Ŷ z
i (h)− Ỹi(z, h)

)
Ỹm(z, h)I{Hi = Hm = h}

=

(
1

1
G

∑
1≤g≤GNg

− 1

E[Ng]

) 2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,k∈λ2j

Ȳi(z, h)NiỸm(z, h)I{Hi = Hm = h}


−

 1
G

∑
1≤g≤G Ȳg(z, h)I{Hg = h}Ng(

1
G

∑
1≤g≤GNg

)2 − E[Ȳg(z, h)Ng]

E[Ng]2


×

 2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,k∈λ2j

NiỸm(z, h)I{Hi = Hm = h}


By following the same argument in Lemma S.1.6 from Bai et al. (2021b), we have

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,k∈λ2j

Ȳi(z, h)NiỸm(z, h)I{Hi = Hm = h} P−→ E[E[Yg(z, h)Ng | Sg]E[Yg(z, h) | Sg]]

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,k∈λ2j

NiỸm(z, h)I{Hi = Hm = h} P−→ E[E[Ng | Sg]E[Yg(z, h) | Sg]] .

By weak law of large number, Lemma C.2.4 and Slutsky’s theorem, we have

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,k∈λ2j

(
Ŷ z
i (h)− Ỹi(z, h)

)
Ỹm(z, h)I{Hi = Hm = h} P−→ 0 .

Similarly, the convergence in probability to zero should hold for all three terms in (C.6). Thus, we have

2

n

∑
1≤j≤⌊n/2⌋

1

k2(h)

∑
i∈λ2j−1,m∈λ2j

(
Ŷ z
i (h)Ŷ

z
m(h)− Ỹi(z, h)Ỹm(z, h)

)
I{Hi = Hm = h} → 0 .
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By Lemma C.3.1 and repeating the arguments in Lemma C.3.4 with Ỹg(z, h) in the place of Ȳg(z, h), we

conclude the result.
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C.4 Details for Weighted OLS

In this section, let’s consider estimator of the coefficient of Zi,g and Li,g in a weighted least squares regression

of Yi,g on a constant and Zi,g and Li,g with weights equal to
√
Ng/Mg. The results for weights equal to√

1/Mg are similar and omitted here. First, I provide some notatiosn as follows:

Ti,g :=

(√
Ng

|Mg|

√
Ng

|Mg|
Zi,g

√
Ng

|Mg|
Li,g

)′

Tg := (Ti,g : i ∈ Mg)
′

ϵ̂g :=
(
Yi,g − α̂− β̂1Zi,g − β̂2Li,g : i ∈ Mg

)′
,

where α̂, β̂1 and β̂2 are the corresponding estimated coefficients. By doing some algebra, it follows that

∑
1≤g≤G

∑
i∈Mg

Ti,gT
′
i,g =


∑

1≤g≤G Ng
∑

1≤g≤G Ngπ2I{Hg = π2}
∑

1≤g≤G Ng(1− π2)I{Hg = π2}∑
1≤g≤G Ngπ2I{Hg = π2}

∑
1≤g≤G Ngπ2I{Hg = π2} 0∑

1≤g≤G Ng(1− π2)I{Hg = π2} 0
∑

1≤g≤G Ng(1− π2)I{Hg = π2}



and

∑
1≤g≤G

∑
i∈Mg

Ti,g

√
Ng

|Mg|
Yi,g

=

 ∑
1≤g≤G

Ng

Mg

∑
i∈Mg

Yi,g
∑

1≤g≤G

Ng

Mg

∑
i∈Mg

Yi,gZi,g

∑
1≤g≤G

Ng

Mg

∑
i∈Mg

Yi,gLi,g

′

=

 ∑
1≤g≤G

Ng

Mg

∑
i∈Mg

Yi,g
∑

1≤g≤G

I{Hg = π2}NgȲ
1
g π2

∑
1≤g≤G

I{Hg = π2}NgȲ
0
g (1− π2)

′

Note that  ∑
1≤g≤G

∑
i∈Mg

Ti,gT
′
i,g

−1

=


1
N0

− 1
N0

− 1
N0

− 1
N0

1
N0

+ 1
N1π2

1
N0

− 1
N0

1
N0

1
N0

+ 1
N1(1−π2)


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Then, it follows that


α̂

θ̂P2

θ̂S2

 =

 ∑
1≤g≤G

∑
i∈Mg

Ti,gT
′
i,g

−1 ∑
1≤g≤G

∑
i∈Mg

Ti,g

√
Ng

|Mg|
Yi,g



=

 1

N0

∑
1≤g≤Ng

I{Hg = 0}NgȲ
1
g θ̂P2 θ̂S2

′

.

Therefore, we conclude that this weighted OLS regression results in the same estimators as θ̂P2 , θ̂S2 . Next, I

consider t-tests based on cluster-robust variance estimator. Note taht the cluster-robust variance estimator

can be written as

V̂CR = G

 ∑
1≤g≤G

T ′
gTg

−1 ∑
1≤g≤G

T ′
g ϵ̂i,g ϵ̂

′
i,gTi,g

 ∑
1≤g≤G

T ′
gTg

−1

,

where
∑

1≤g≤G T
′
gTg should be identical to

∑
1≤g≤G

∑
i∈Mg

Ti,gT
′
i,g. By doing some algebra, if follows that

∑
1≤g≤G

T ′
g ϵ̂i,g ϵ̂

′
i,gTi,g =

∑
1≤g≤G

(
Ng

Mg

)2


∑

i∈Mg
ϵ̂i,g∑

i∈Mg
ϵ̂i,gZi,g∑

i∈Mg
ϵ̂i,gLi,g




∑
i∈Mg

ϵ̂i,g∑
i∈Mg

ϵ̂i,gZi,g∑
i∈Mg

ϵ̂i,gLi,g


′

.

And thus cluster-robust variance estimator can be written as
∑

1≤g≤G ϵ̃g ϵ̃
′
g, where

ϵ̃g =


1
N0

1
Mg

∑
i∈Mg

ϵ̂i,gNgI{Hg = 0}
1
N1

1
M1

g

∑
i∈Mg

ϵ̂i,gNgZi,g − 1
N0

1
Mg

∑
i∈Mg

ϵ̂i,gNgI{Hg = 0}
1
N1

1
M0

g

∑
i∈Mg

ϵ̂i,gNgLi,g − 1
N0

1
Mg

∑
i∈Mg

ϵ̂i,gNgI{Hg = 0}

 .

Take the second diagonal element (primary effect) as an example. Its cluster-robust variance estimator is

given by

V̂CR(1) = G
∑

1≤g≤G

 1

N1

1

M1
g

∑
i∈Mg

ϵ̂i,gNgZi,g −
1

N0

1

Mg

∑
i∈Mg

ϵ̂i,gNgI{Hg = 0}

2

=
1

(N1/G)2
1

G

∑
1≤g≤G

N2
g

(
Ȳg(1, π2)− α̂− θ̂P2

)2
I{Hg = π2}+

1

(N0/G)2
1

G

∑
1≤g≤G

N2
g

(
Ȳg(0, 0)− α̂

)2
I{Hg = 0} .
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In both small and strata cases, by repeating arguments made in the Section C.1.3 and C.1.5, we have the

following asymptotic results:

1

G

∑
1≤g≤G

N2
g

(
Ȳg(1, π2)− α̂− θ̂P2

)2
I{Hg = π2}

p−→ π1E

[(
NgȲg(1, π2)−Ng

E[NgȲg(1, π2)]

E[Ng]

)2
]

1

G

∑
1≤g≤G

N2
g

(
Ȳg(0, 0)− α̂

)2 p−→ (1− π1)E

[(
NgȲg(0, 0)−Ng

E[NgȲg(0, 0)]

E[Ng]

)2
]
,

which implies

V̂CR(1)
p−→ 1

π1
Var[Ỹg(z, π2)] +

1

1− π1
Var[Ỹg(0, 0)] .
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