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In brief

Suthaharan et al. demonstrate a causal

role of the primate mediodorsal thalamus

(MD) in beliefs about environmental

volatility. Applying a behavioral paradigm

and a computational model, they

establish that belief volatility increases in

paranoid people and monkeys with

lesions to theMD. This suggests a role for

the MD in paranoia.
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SUMMARY
Beliefs—attitudes toward some state of the environment—guide action selection and should be robust to
variability but sensitive to meaningful change. Beliefs about volatility (expectation of change) are associated
with paranoia in humans, but the brain regions responsible for volatility beliefs remain unknown. The orbito-
frontal cortex (OFC) is central to adaptive behavior, whereas the magnocellular mediodorsal thalamus
(MDmc) is essential for arbitrating between perceptions and action policies. We assessed belief updating
in a three-choice probabilistic reversal learning task following excitotoxic lesions of the MDmc (n = 3) or
OFC (n = 3) and compared performance with that of unoperated monkeys (n = 14). Computational analyses
indicated a double dissociation: MDmc, but not OFC, lesions were associated with erratic switching behavior
and heightened volatility belief (as in paranoia in humans), whereas OFC, but not MDmc, lesions were asso-
ciatedwith increased lose-stay behavior and reward learning rates. Given the consilience across species and
models, these results have implications for understanding paranoia.
INTRODUCTION

The ability to form and update beliefs about our actions and their

consequences, especially in volatile environments, is at the core

of advanced cognition.1 Indeed, disruptions in volatility beliefs

are associated with maladaptive cognitive and behavioral out-

comes, such as paranoia, the belief that others intend to exert
Cell Reports 43, 114355, J
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harm.2 Volatility beliefs and manifestations of their disruption,

like paranoia, can be captured in decision-making paradigms

that incorporate environmental volatility, such as probabilistic

reversal learning (PRL) tasks.3,4 In PRL tasks, contingencies be-

tween choices and outcomes reverse so that previously richly re-

inforced options become lean and vice versa. These tasks incen-

tivize individuals to form a set of beliefs that are robust to
une 25, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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probabilistic noise but flexible enough to track true change in ac-

tion-outcome contingencies to maximize reward (Figure 1A). In

prior work with human participants, key behavioral metrics of

belief connote flexible3 and perseverative behavior.5 ‘‘Win

switching’’ occurs when the subject selects a different option

on the subsequent trial following a reward, or ‘‘win,’’ which,

when frequent, marks excessive flexibility. On the other hand,

‘‘lose staying’’ happens when the same choice is repeated

following an unrewarded trial, or ‘‘lose,’’ signifying persistence,

which becomes perseverative if sustained. Therefore, paranoia

is associated with an increase in win switching, a dearth of

lose staying, and an elevated volatility belief.3,4

We can discern such volatility beliefs quantitatively by fitting

Bayesian inference (BI) models to participants’ behavior and

estimating the parameter values to account for individual pat-

terns of choices.3 This computational modeling approach to

study brain and behavior has been employed to better under-

stand various aspects of human psychopathology, including

paranoia. While traditional reinforcement learning models have

provided insight into choice behavior in PRL tasks, there is evi-

dence to suggest that BI models may be better equipped to cap-

ture rapid behavioral change in response to volatility (e.g., a

reversal event).6,7 Indeed, BI models seem necessary to capture

the elevated win-switching behavior observed with paranoia.3 It

has been proposed that BI models might detect these nuances

of behavior in PRL tasks by tracking latent (i.e., hidden) states,

the unobservable features that dictate an environment’s under-

lying dynamics, which may allow more rapid recognition of state

changes and more efficient behavioral adaptation.8,9 Two com-

ponents are critical in such a model: (1) participants’ assump-

tions about how the task works and (2) how those assumptions

lead to their decisions. One such BI model that is designed to

capture volatility beliefs is the hierarchical Gaussian filter (HGF;

Figure 1B).6,10 There are two model parameters that are particu-

larly central to volatility processing: (1) an equilibrium value that

attracts and stabilizes the agent’s estimate of volatility (m3, vola-

tility belief; higher values indicate greater expectation of change)

and (2) the rate of adjustment of beliefs about the values of each

option (u2, value learning rate; higher values indicate more rapid

learning). In recent work,m3 has been shown to relate to risk for

psychosis.6

It is of course possible that other model structures and types

may yield different insights to paranoia in humans and reversal

behavior in animals. The exercise here is to use a computational

model whose parameters relate to paranoia in humans to model

behavior in nonhuman primates to connect those literatures.

Other connections may become apparent in future work.

Several brain regions and circuits have been implicated in the

formation and updating of such volatility processing11 and/or

paranoia in PRL tasks (reviewed in Soltani and Izquierdo12).

fMRI, particularly in patients with paranoid persecutory delu-

sional beliefs, has suggested that this volatility belief parameter

(m3) correlates with the engagement of the dorsolateral prefron-

tal cortex (DLPFC) during PRL tasks.6 Data in nonhuman pri-

mates suggest that lesions of the magnocellular mediodorsal

thalamus (MDmc) may also recapitulate the associated win-

switching pattern.13 We note that MDmc receives inputs from

the DLPFC, in addition to inputs from the ventral PFC,14,15 which
2 Cell Reports 43, 114355, June 25, 2024
may support the increased win-switching behavior after MDmc

lesions. Animal work has shown that the thalamus, in partnership

with the cortex, is a key nexus of perception and action16,17 and a

mediator of behavioral change in the face of evolving contin-

gencies.18 Yet, the MDmc has not been extensively implicated

in human paranoia and thus warrants further investigation (but

seeCrail-Melendez et al.19). Aspiration lesions of the orbitofrontal

cortex (OFC) in nonhuman primates have been shown to disrupt

PRL performance,20,21 though these effects may be more attrib-

utable to parts of the ventrolateral prefrontal cortex (VLPFC).22

Resting-state functional connectivity studies suggest that the

OFC also plays a role in human paranoia.23 However, the HGF

model has yet to be applied to choice behavior in PRL tasks per-

formed by nonhuman primates, which could elucidate the neural

underpinnings of volatility beliefs relevant to human paranoia.

In the present work, we sought to infer the potential role of the

MDmc and OFC in paranoia by estimating volatility belief in a

PRL task with the HGF model in monkeys with lesions to these

regions. We hypothesized that damage to brain regions involved

in action and perception would lead to a pattern of changes in

PRL behavior and volatility beliefs in monkeys that are associ-

ated with paranoia in human participants. By comparing the ef-

fects of MDmc and OFC lesions on actions that can be attributed

to volatility belief, we can begin to elucidate the functional con-

tributions of different brain regions, and possibly neural circuits,

to belief updating and, transitively, to paranoia in human partic-

ipants. Ultimately, the identification of human participants with

similar patterns of behavior as lesioned monkeys, and examina-

tion of how those patterns relate to self-reported paranoia symp-

toms (Figure 1C), can afford us the ability to draw inferences

about the specificity of differential relationships between task

behavior, computational model parameters, brain lesions, and

psychopathology.

RESULTS

To understand the contributions of theMDmc and OFC to beliefs

about volatility in the primate brain, we analyzed existing data-

sets from multiple labs that administered the same three-choice

PRL task to rhesus macaques with selective, excitotoxic lesions

of the MDmc or the OFC (STAR Methods). We focused particu-

larly on win-switch and lose-stay behavior and beliefs about

volatility using a BI model.

Flexibility and perseveration following brain lesions
We examined win-switch and lose-stay rates in monkeys with

excitotoxic lesions to either the MDmc (n = 3) or OFC (n = 3)

compared with non-lesioned controls (n = 14) (Figure 2A). We

observed a significant two-way interaction between the lesion

group (OFC, MDmc, or control) and reversal phase (before or af-

ter reversal) on win-switch behavior (Figure 2B, left; c2 = 89.67,

p < 0.001; generalized linear mixed model [GLMM]). To resolve

this interaction, we first assessed group effects within each

reversal phase. We identified an effect of lesion group on win

switching before the reversal (c2 = 61.17, p < 0.001) and after

the reversal (c2 = 580.6, p < 0.001). Pairwise comparisons within

the pre-reversal phase revealed that, whereas MDmc-lesioned

monkeys exhibited elevated win-switching behavior compared
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Figure 1. A translational mapping of belief updating in monkeys and human participants

(A) Amonkey and a human participant playing a three-choice PRL task, selecting from a set of three options and learning which is the best option, through trial and

error, in an environment where the underlying reinforcement schedule changes periodically (i.e., reversals).

(B) A model used to investigate how beliefs about changes in the environment influence decision-making. The graphical notation is adopted from a prior study;6

parameters of interest for this study are shaded in blue.

(C) Integrating data between monkeys with targeted brain lesions and human participants with self-reported paranoia through computational models to identify

links between neural circuits and psychopathology. MDmc, magnocellular mediodorsal thalamus; OFC, orbitofrontal cortex; wsr, win-switch rate; lsr, lose-stay

rate; m3, volatility belief; u2, value learning.
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to non-lesioned controls (c2 = 57.6, p < 0.001) and OFC-lesioned

monkeys (c2 = 32.8, p < 0.001), OFC-lesioned monkeys did not

differ from non-lesioned controls (c2 = 0.14, p = 0.712). Pairwise

comparisons within the post-reversal phase revealed differ-

ences between all groups; MDmc-lesioned monkeys again

showed greater win-switching behavior compared to non-

lesioned controls (c2 = 410.22, p < 0.001) and OFC-lesioned

monkeys (c2 = 486.63, p < 0.001), and here we observed lower

win switching in OFC-lesioned monkeys versus non-lesioned

controls (c2 = 96.06, p < 0.001). We observed an effect of

reversal phase on win switching in MDmc-lesioned monkeys

(c2 = 272.47, p < 0.001) but not OFC-lesioned monkeys

(c2 = 1.58, p = 0.209), which was characterized by a more dra-

matic increase in win switching (mean difference = 0.169,

p < 0.001) from pre to post reversal than in non-lesioned controls

(c2 = 324.19, p < 0.001).

We also observed a similar two-way interaction between

lesion groupand reversal phase on lose-stay behavior (Figure 2B,

right; c2 = 41.45, p < 0.001). An effect of lesion group on lose-

stay behavior was observed both before reversal (c2 = 78.13,

p < 0.001) and after reversal (c2 = 96.78, p < 0.001). Compared

to non-lesioned controls, lose-stay rates were altered both pre

and post reversal in MDmc-lesioned (pre reversal: c2 = 56.9,

p < 0.001; post reversal: c2 = 79.92, p < 0.001) andOFC-lesioned

monkeys (pre reversal: c2 = 37.19, p < 0.001; post reversal: c2 =

6.17, p = 0.013). Lose-stay behavior did not differ between the

two lesion groups before the reversal (c2 = 0.85, p = 0.356), while
we did see differences in lose-stay behavior after the reversal

(c2 = 68.08, p < 0.001). The effect of reversal within each group

revealed a marked decrease in lose-stay behavior in both

MDmc-lesioned monkeys (c2 = 49.76, b = �0.58, p < 0.001)

and non-lesioned controls (c2 = 115.75, b = �0.48, p < 0.001),

whereas a trend-level increase in lose-stay behavior was

observed in OFC-lesioned monkeys (c2 = 3.16, b = 0.18, p =

0.076). These data, collectively, indicate that lesions to the

MDmc were associated with erratic switching behaviors regard-

less of reversal phase. Lesions of the OFC, however, were asso-

ciated with inflexible choice behavior that is reversal phase

dependent.

A double dissociation of volatility and value
To investigate the impact of brain lesions on how beliefs are up-

dated under uncertainty, we applied the HGF model to trial-by-

trial choice data from the MDmc lesion, OFC lesion, and non-

lesion control monkeys (Figure S1). Computational modeling of

behavior revealed distinct effects of lesion group on volatility

belief and value learning (Figure 3). First, reversal enhanced vola-

tility beliefs in MDmc-lesioned (m3;c
2 = 7736.09, p < 0.001; Fig-

ure 3A) and non-lesioned control monkeys (c2 = 37.9 p < 0.001;

Figure 3A), whereas lesions to the OFC blocked the increase in

volatility beliefs associated with reversal (c2 = 0.38, p = 0.535;

Figure 3A). Furthermore, we observed a marginally greater in-

crease in volatility beliefs in MDmc-lesioned compared to non-

lesioned control monkeys (mean difference = 1.33, p = 0.081).
Cell Reports 43, 114355, June 25, 2024 3



Figure 2. Behavior of lesioned monkeys

(A) Illustrations of the anatomical brain lesion loca-

tions in monkeys, where the excitotoxic MDmc and

OFC lesion locations are illustrated on standard

coronal sections from a monkey brain atlas (Labo-

ratory of Neuropsychology, National Institute of

Mental Health). Prior studies show the actual

lesion locations of the MDmc and OFC in individual

monkeys.13,22

(B) Differences in win-switch behavior (left) and

lose-stay behavior (right) for the lesion groups be-

tween pre-reversal and post-reversal phases. Top

right: PRL behaviors over time (moving average

across 20 lagged trials) of win-switch (left) and lose-

stay (right) choices across lesion groups, with a

reversal occurring after 150 trials.

Each data point overlaid indicates an individual

monkey’s data. Asterisks indicate significant effects

of lesion group within each reversal phase

(***p < 0.001, *p < 0.05; GLMM). Other symbols

indicate significant effects of reversal phase within

each lesion group (a, p < 0.001; +, p < 0.10).
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With regard to learning about value, monkeys with OFC lesions

and non-lesioned controls exhibited increased value learning

post reversal relative to pre reversal (u2; OFC: c2 = 5.70, p =

0.017; non-lesion: c2 = 21.50, p < 0.001; Figure 3B), whereas le-

sions in MDmc blocked the increase in value learning rate that

accompanied reversal in the other groups (c2 = 1.09, p =

0.296; Figure 3B).

Pairwise comparisons of effects of lesion group on volatility

beliefs (Figure 3A) within the pre-reversal phase revealed that,

whereas MDmc-lesioned monkeys exhibited elevated volatility

belief compared to non-lesioned controls (c2 = 3.99, b = 0.99,

p = 0.046), OFC-lesioned monkeys did not differ from non-

lesioned controls (c2 = 0.40, p = 0.526) or from MDmc-lesioned

monkeys (c2 = 0.47, p = 0.495). Pairwise comparisons within the

post-reversal phase revealed differences between all groups;

MDmc-lesioned monkeys showed enhanced volatility beliefs

compared to non-lesioned controls (c2 = 15.43, b = 2.33,

p < 0.001) and OFC-lesioned monkeys (c2 = 61.42, b = 3.72,

p < 0.001), and here we observed a decrease in volatility beliefs

in OFC-lesioned monkeys compared to non-lesioned controls

(c2 = 5.29, b = �1.40, p = 0.021).

Pairwise comparisons of effects of lesion group on value

learning (Figure 3B) within the pre-reversal phase revealed

that, whereas OFC-lesioned monkeys exhibited an increase in

value learning compared to non-lesioned controls (c2 = 4.68,

b = 1.26, p = 0.030) and MDmc-lesioned monkeys (c2 = 8.98,

b = 1.72, p = 0.003), MDmc-lesioned monkeys did not differ

from non-lesioned controls (c2 = 0.75, p = 0.386). Within the

post-reversal phase, MDmc-lesioned monkeys exhibited

reduced value learning relative to non-lesioned controls (c2 =

18.74, p < 0.001) and OFC-lesioned monkeys (c2 = 19.86,

p < 0.001), whereas OFC-lesioned monkeys did not differ in

value learning from non-lesioned controls (c2 = 1.54, p =

0.214). This dissociation implies distinct neural and computa-

tional mechanisms underlying actions attributable to volatility

and value beliefs; MDmc lesions disinhibited volatility beliefs

but blunted sensitivity to the reversal for updating value learning,

whereas OFC lesions disinhibited value learning but blunted
4 Cell Reports 43, 114355, June 25, 2024
sensitivity to the reversal for updating volatility beliefs. Given

that lesions in these areas lead to opposing effects on these

belief-updating parameters, this established a double dissocia-

tion between the function of MDmc and OFC regions.

In summary, MDmc-lesioned monkeys demonstrated

increased win-switching and reduced lose-stay behavior after

reversal; OFC-lesioned monkeys showed the opposite behavior.

In terms of belief updating, MDmc lesions increased volatility be-

liefs, notably post reversal, while OFC lesions blocked changes

in volatility beliefs; however, OFC lesions elevated value learning,

while MDmc lesions blocked changes in value learning. These

findings confirm a double dissociation. See Figure S2 for more

fine-grained, within-monkey analyses.

Translational insights from monkey behavioral
neuroscience to human psychopathology
In order to gain clinically relevant insights from the changes in

beliefs about volatility and value learning parameters due to

MDmc and OFC lesions, we compared PRL behavior of lesioned

monkeys to that of humans with paranoia (Figure 4), as human

paranoia has been associated with erratic switching behavior

and an elevated sense of uncertainty about the environment.3

We analyzed existing datasets in human participants who

completed either of two types of PRL tasks: a single-reversal

task whose structure matches the monkey version24 and a

multi-reversal task.3 The shift-induced increase in unexpected

volatility, in the multi-reversal task, has been shown to increase

sensitivity in detecting paranoia group differences in task

performance.3

Paranoid participants evinced higher win switching pre and

post reversal, a pattern also observed in the monkeys with

MDmc lesions, in both versions of the task (Figures 4A

and 4B). In the single-reversal task, we found a significant inter-

action between paranoia group and reversal phase for win-

switch behavior (Figure 4A; c2 = 18.11, p < 0.001, GLMM). In

particular, we observed significantly more post-reversal win

switching in paranoid compared to non-paranoid human partic-

ipants (c2 = 10.43, p = 0.001) but no pre-reversal, win-switching



Figure 3. MDmc and OFC lesions differen-

tially impact beliefs about volatility and value

in monkeys

(A) Differences in volatility beliefs (m3 parameter

from the HGF model; higher values indicate greater

volatility beliefs) for the lesion groups between the

pre-reversal and post-reversal phases.

(B) Differences in reward value learning (u2 param-

eter; higher values indicate more rapid learning

about value) for the lesion groups between pre-

reversal and post-reversal phases.

Each data point overlaid indicates an individual

monkey’s data. Asterisks indicate significant lesion

group differences (***p < 0.001, **p < 0.01, *p < 0.05;

GLMM). Other symbols indicate significant reversal

phase differences in each lesion group (a, p < 0.001;

c, p < 0.05; GLMM).
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difference between paranoia groups (c2 = 0.05, p = 0.818). On

the other hand, in themulti-reversal task, we found a greater sep-

aration than for the single-reversal task inwin-switching behavior

between paranoid and non-paranoid human participants (Fig-

ure 4B; pre-shift: c2 = 112.23, p < 0.001; post-shift: c2 = 74.74,

p < 0.001; Figure S3). Presumably, this difference occurs

because participants are experiencing the first contingency

reversal just like the monkeys completing the single-reversal

task. However, in the multi-reversal version, reversals continued

prior to and following the contingency shift, which we believe

would increase expected and unexpected volatility.

Similarly, we estimated volatility beliefs and value learning in

paranoid and non-paranoid human participants completing

both versions of the PRL task. The pattern of elevated volatility

beliefs and reduced value learning, observed in the monkeys,

was reflected in both versions of the PRL task in human partici-

pants but more clearly in the multi-reversal version. In the single-

reversal task, no effects of paranoia were identified for volatility

belief (Figure 4C, top). In contrast, in the multi-reversal task,

high paranoia substantially augmented overall volatility belief

(Figure 4D, top; m3: c
2 = 61.16, p < 0.001), while shift marginally

decreased it (m3: c
2 = 3.02, b =�0.09, p = 0.08). Thus, the multi-

reversal task was more sensitive to differences in volatility belief

between paranoia groups, regardless of shift, whichmirrored the

effects seen in MDmc-lesioned monkeys.

For value learning, an interaction between paranoia group and

reversal phase was found in the single-reversal task (Figure 4C,

bottom; u2 : c2 = 4.41, p = 0.036; GLMM). Lower value learning

was observed in high-paranoia individuals within post but not pre

reversal (u2 : c2 = 7.02, p = 0.008), whereas the reversal

increased value learning within low- but not high-paranoia indi-

viduals (u2 : c2 = 46.05, p < 0.001). In the multi-reversal task,

an interaction between paranoia group and reversal phase was

also observed (Figure 4D, bottom; u2 : c2 = 6.43, p = 0.011;

GLMM). However, unlike the single-reversal version, high-para-

noia individuals had lower value learning than their low-paranoia

counterparts within both pre (u2 : c2 = 27.34, p < 0.001) and post

shift (u2 : c2 = 7.22, p = 0.007). The shift increased value learning
only within the high-paranoia group (u2 : c2 = 4.62, p = 0.032).

Overall, lower value learning was observed in the high-paranoia

groups, much like MDmc-lesioned monkeys.

DISCUSSION

It is controversial whether it is feasible to model psychiatric

symptoms like paranoia in nonhuman animals. Presently, we

met that challenge and conclude that nonhuman primates do

indeed display choice responses akin to participants with high

paranoia during a PRL task, and, thus, they may serve asmodels

for the exploration of psychiatric symptoms hitherto considered

outside the realm of translational neuroscience. We describe a

series of analyses of PRL datasets from monkeys and human

participants. We found that, in a single-reversal PRL task, mon-

keys withMDmc lesions but not OFC lesions exhibited increased

win-switch behavior, increased volatility beliefs, and decreased

value learning rates, especially after the reversal in reward con-

tingencies. By contrast, OFC but not MDmc lesions increased

lose-stay behavior and led to increased value learning rates

while blunting updating of volatility belief. This pattern of behav-

ioral responses and altered neurocomputations observed in

monkeys with MDmc lesions (i.e., elevated volatility belief) was

similar to that observed in human participants with high levels

of paranoia. Indeed, the pattern of win-switching and volatility

belief change was consistent across two independent datasets

that employed different reinforcement contingency schemes.

In cognitive neuropsychology, double dissociations are essential

for the identification of independent functions. We report a dou-

ble dissociation in the behavioral effects and computational con-

sequences of MDmc versus OFC lesions on belief updating.

The challenge with PRL is to harbor a set of beliefs that is

robust to noise but sensitive to real underlying contingency

change. It appears that lesions of the MDmc and OFC have

doubly dissociable effects on these processes. Specifically, in

a single-reversal task, win-switching behavior and volatility be-

liefs increased in response to the contingency reversal in control

animals, whereas lose-stay rates decreased. This represents
Cell Reports 43, 114355, June 25, 2024 5



Figure 4. Impact of the PRL task design on

win-switch and lose-stay behavior and on be-

liefs about volatility and value in humans

(A) Win-switch and lose-stay behaviors in non-

paranoid and paranoid human participants during a

single-reversal (after 30 trials) three-choice PRL

task.

(B) Win-switch and lose-stay behaviors in non-

paranoid and paranoid human participants during a

multi-reversal (with a mid-way contingency shift af-

ter 80 trials) three-choice PRL task. Insets illustrate

the effect of performance-based reversal (i.e.,

experience reversal upon 9 of 10 consecutive se-

lections of the highest reinforcement probability

deck) on trial-by-trial behavior in the multi-reversal

task to show the similarity in the characteristic of

task behavior in the single-reversal task versions.

(C and D) Differences in beliefs about volatility (m3

parameter from the HGF) and reward value learning

(u2 parameter) in non-paranoid and paranoid human

participants during a single-reversal three-choice

PRL task (C) and during a multi-reversal three-

choice PRL task (D).

Asterisks indicate significant paranoia group differ-

ences (***p < 0.001, **p < 0.01; GLMM). Other

symbols indicate significant reversal phase differ-

ences in each lesion group (a, p < 0.001; c, p < 0.05;

GLMM).
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sensitivity to contingency change and the concomitant increase

in volatility of the environment. Monkeys with OFC lesions fail to

show this increase. This manifests as greater post-reversal lose-

stay behavior. Conversely, monkeys with MDmc lesions make

choices that are suggestive of elevated volatility beliefs both

prior to reversal and a greater increase post reversal compared

to control and OFC-lesioned animals, which is paralleled by

the higher rates of win switching in the MDmc-lesioned animals.

Furthermore, value learning rates increased post reversal in con-

trol animals, an effect mirrored in monkeys with OFC-lesions too.

In contrast, monkeyswithMDmc lesions fail to show this effect. It

is possible that a higher-level task structure (level 3, HGF; Fig-

ure 1B), rather than value (level 2, HGF; Figure 1B), ismore salient

in MDmc-lesioned animals. In addition, in the absence of appro-

priate value learning, optimal choice responses may become

noisier in MDmc-lesioned animals.25,26

Taken together, these data highlight the differential roles of

MDmc and OFC nodes in belief processing. MDmc-lesioned an-

imals appear to confuse stochasticity for real change (win

switching more pre reversal, and even more post reversal),

whereas OFC-lesioned animals do not update their beliefs in

response to the volatility occasioned by reversal. Suchmaladap-

tive behavior in MDmc-lesioned monkeys manifests functionally

as a failure to optimally learn complex reward associations and,

thus, exploit the most rewarding option; distorted volatility

beliefs could disrupt that ability to more frequently choose the

highest probability reinforced option. Alternatively, maladaptive

behavior manifests in OFC-lesioned monkeys as perseverative
6 Cell Reports 43, 114355, June 25, 2024
responding. Such perseveration is not

driven by sticking to outdated value

(indeed, changes in value learning rates
due to reversal are consistent with non-lesioned controls) but,

rather, by a lack of adaptive change in volatility belief in the

face of real change. Finally, these data further highlight the over-

lap between MDmc-lesioned monkey behavior and that of peo-

plewho are paranoid, who also confuse stochasticity for volatility

prior to reversal and have higher m3 (i.e., greater expectation of

change) and lower u2 (i.e., slower value learning).

In addition to similarities, there were also some differences

across datasets. While the single-reversal task in humans has

superficial structural similarities to the monkey task, the fact

that the monkeys underwent multiple reversal sessions (Fig-

ure S4) across days (and weeks) suggests that the beliefs that

they build and update are more similar to the beliefs that human

participants formed and updated during the multi-reversal task.

This suggestion is supported by the computational analyses,

which showed greater parallels between the MDmc-lesioned

monkeys and humans with paranoia on the multi-reversal task;

volatility beliefs were increased, and value learning rates were

decreased. Hence, we demonstrate the utility of administering

similar tasks and models across species and argue that compu-

tation may be a lingua franca27 that could connect disparate

fields of research and model organisms. However, close inspec-

tion of the pre- and post-reversal data shows that monkey win

switching increases post reversal. Human win-switching does

not increase. We do not know precisely why the monkey and hu-

man behavioral data differ in this way. We can speculate that

monkeys are more sensitive to rewards than humans are to ab-

stract points. After reversal, this sensitivity could drive monkeys
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to switch more often to seek more rewarding options. Alterna-

tively, monkeys and humans may be building differentially com-

plexmodels of the task. In humans, this added complexity would

accommodate reversals and shifts and contingencies, whereas

monkeysmay be switching erratically in search of an explanatory

model.28,29 This would actually be consistent with something we

observed in humans. Paranoid participants tend to behave more

randomly than non-paranoid participants,3 although not differ-

entially pre and post reversal.

Our data implicate MDmc contributing a role in volatility belief

updating. Previous work has linked volatility belief updating to

paranoia and persecutory delusions.3,4,6 What is the role (if

any) of MD in paranoia and psychosis? There are isolated cases

where circumscribed lesions cause new-onset paranoia in hu-

mans19,30 and frightening distortions of social stimuli,31 but there

are also more diffuse (often mnemonic) problems associated

with MD damage, which can, as a result of impaired interper-

sonal behavior, lead indirectly to paranoia. Alternatively, genetic

changes and the atrophy in frontotemporal dementia (FTD) are

often quite specific to MD,32 and psychotic symptoms (specif-

ically paranoia) are common in FTD.25,33 We suggest that our

data are more aligned with a direct impact of thalamic damage

on belief updating rather than a secondary impairment in rela-

tional cognition, which, although possible in monkeys, would

not explain the specific pattern of findings we report presently

because relational cognition and social interaction were not

part of the present task. Furthermore, our human data suggest

that the differences in high vs. low paranoia are not more readily

attributable to confounding differences in mood or general intel-

lectual function (Figure S5).

In prior work we argued that, because our PRL task was rela-

tively non-social, and rats are a relatively asocial species (but

not completely asocial),34–36 the similarity in behavior between

paranoid humans and rats treated with methamphetamine was

consistentwith anon-social explanationof paranoia.Ournon-so-

cial result did not differ when we made the PRL more social,4,37

although participants did imbue the non-social stimuli with harm-

ful intentions, so social cognition may have been in play.

Nonhuman primates are more social than rodents. Sociality is

often related to theory of mind (ToM)—the cognitive capacity to

attribute mental states to others.38 This mentalizing process

has been demonstrated in macaques39 and apes.40 However,

ToM in humans and nonhuman primatesmay differ substantially;

macaques do not attribute mental states to the Heider and Sim-

mel animations.41 Furthermore, putative ToM-like capacities in

primates seem to fall short of human abilities.42 ToM is associ-

ated with dorsomedial prefrontal cortex (DMPFC) activity in hu-

mans43 and macaques.39 The MDmc projects directly to the

DMPFC.44 Disrupting the MDmc may perturb social valuation

and inference in the DMPFC. However, the DMPFC may also

be less social specific than previously believed.45–47 Indeed, a

recent nonhuman primate study suggested that the DMPFC is

involved in tracking and weighting the reliability of social and

non-social information,48 and in humans, the DMPFC may be

tracking uncertainty rather than ToM.49 Furthermore, human

fMRI studies of the PRL suggest DMPFC responses during

non-social reversal learning.5,50 It is possible, on one hand, that

mediodorsal thalamus (MD) disruption could lead to abnormal
ToM processing in the DMPFC via spurious inputs to the

DMPFC. On the other hand, social belief volatility may reside in

an encapsulated module independent from MD-mediated com-

putations. Non-social environmental volatility is often attributed

to social agents. Domain specificity may manifest at the level of

algorithm (beliefs about environmental volatility vs. beliefs about

agents’ intentions) or at the level of implementation (domain-gen-

eral vs. domain-specificnodesandcircuits).51 The involvement of

the MD in the animism bias bears further investigation, although

the bias seems absent in macaques.41 Even if the underlying

mechanisms of paranoia are not inherently social, the ramifica-

tions of their perturbation often bear social implications.51

When people perceive or expect excess volatility, they typically

find that anxiogenic and seek to explain it away. Typically, vola-

tility is ascribed to other agents52 and their intentions. When the

world feels unpredictable, paranoid beliefs arise.4 Consequently,

our findings on the MDmc open an avenue to further explore the

potential intersections and divergences between belief volatility

and paranoia. Future work ought to leverage these tasks and

models as well as other computational approaches to further

elucidate the domain generality or specificity of paranoia.

Our findings have important implications for understanding the

underlyingmechanisms of paranoia and, relatedly, psychosis and

schizophrenia. While prior work has implicated the OFC23,53 and

the DLPFC6 in paranoia as well as the link between paranoia

and reversal learning, our lesion findings highlight that the

MDmc is a necessary node for controlling volatility belief. Future

work ought to explore the human MDmc in the context of para-

noia and its treatment. Furthermore, the widespread projection

targets of MDmc within the prefrontal cortex may well prove rele-

vant to belief updating; for example, the VLPFC. In the case of tha-

lamo-prefrontal dynamics, it has been posited that damage to the

thalamus often recapitulates the effects of prefrontal damage.54

This was not what we observed with OFC damage. Even though

the OFC projects directly to the MDmc, we found a double disso-

ciation of the effects of OFC and MDmc damage on behavior and

computational model parameters, suggesting that they under-

write independent, dissociable functions. We further explored

the effects of VLPFC lesions on PRL task behavior (Figure S6).

VLPFC lesions had effects redolent of MDmc lesions on behavior,

elevating win switching and volatility beliefs. This is consistent

with the hypothesized relay function between the thalamus and

PFC in the thalamo-prefrontal-cortical circuits. What, then, are

we to conclude about OFC and MDmc function? Rodent work

suggests that the direction of coupling between brain regions is

relevant to the circuit processing of reversal learning—damage

to projections from the OFC has different effects than damage

to projections to the OFC.55 Similar manipulations of the projec-

tions between theMDmcandOFCwill be revelatory in this regard.

Furthermore, it is possible that the effects of circumscribed le-

sions have differential effects on some other brain region(s) with

which both the OFC and MDmc interact. One possibility is the

nucleus accumbens.55

More broadly, the current results suggest that not all PRL tasks

are equally sensitive to paranoia in humans.While the overall pat-

terns of behavioral response and model parameter change are

consistent across tasks and species, the multi-reversal version

seemed to separate paranoid from non-paranoid participants
Cell Reports 43, 114355, June 25, 2024 7
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more clearly and to cleavemore closely to the patterns observed

in monkeys. This task type specificity implies that future studies

intended to predict paranoia or track its prognosis might result

in most predictive data when applying the multi-reversal version

of the task. Based on the evidence provided here from MDmc-

lesioned monkeys, we predict that human neuroimaging studies

would detect an MDmc involvement in the more complex, multi-

reversal version, which may be more difficult to detect using the

single-reversal task. Furthermore, human participants with

MDmc damage are predicted to be particularly challenged by a

multi-reversal version of the PRL task.

Previous work has established an association between belief

updating and paranoia through computational modeling.3,4,56

Here, we map computational markers of belief updating to spe-

cific brain regions in monkeys, where the MDmc and OFC play

dissociable roles. Parallels between MDmc-lesioned monkeys

and paranoid human participants suggest an influence of the

MDmc in paranoia that warrants further investigation. Our study

represents an initial cross-species effort to use computational

modeling and common behavioral tasks to translate the neural

mechanisms of belief updating from monkeys to humans and,

ultimately, into the clinic.

Limitations
Whileweobservedsimilaritiesbetween lesionedmonkeysandhu-

mans with paranoia performing PRL, there were differences in

behavioral patterns and in the tasks to which participants were

exposed. Future work might present participants of both species

with a multi-reversal task featuring a contingency shift. Further-

more, though our aim was to extend existing human computa-

tional psychiatry into the nonhuman primate realm, the possibility

exists that a better-fitting model exists that spans these datasets.

That will be a target for future investigation. Finally, the human im-

aging and neuropsychology literatures implicate the mediodorsal

thalamus in paranoia and schizophreniform psychosis; however,

this association bears investigation using PRL tasks, functional

imaging, and computational modeling in human participants and

patients in particular.
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Monkey behavioral data presented in this paper will be available upon request. Human behavioral data from the single-reversal PRL

task24 and the multi-reversal with contingency shift PRL task data4 are publically available. The analysis scripts for this paper can be

found at https://github.com/psuthaharan/belief-update-monkeys.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All monkey and human experiments in this study were in accordance with local and national acts and committees for the use of

animals in scientific research and behavioral research in humans. Experiments from Study 121 and Study 213 were performed in

compliance with the United Kingdom Animals (Scientific Procedures) Act of 1986. A Home Office (UK) Project License (PPL 30/

2678) obtained after review by the University of Oxford Animal Care and Ethical Review Committee licensed all procedures. The

housing and husbandry were in compliance with the guidelines of the European Directive (2010/63/EU) for the care and use of

laboratory animals.

All procedures from Study 322 were reviewed and approved by the National Institute of Mental Health (NIMH) Animal Care and Use

Committee.

For one dataset,4 all human behavioral experiments were conducted at the Connecticut Mental Health Center in strict accordance

with Yale University’s Human Investigation Committee who provided ethical review and exemption approval (no. 2000026290).

Written informed consent was provided by all research participants. For the other dataset,24 all human behavioral experiments

were internally reviewed and approved by the Research Ethics Committee at King’s College London, UK (ref: RESCM-19/20–

0603). Human participants gave consent by ticking checkboxes online following the information sheet, and prior to the administration

of questionnaires or tasks.

Monkeys and humans
A total of twenty rhesus macaque monkeys (Macaca mulatta, all males) across three laboratories and a total of 1,225 online human

participants from two laboratories were included in the study. Each animal was individually-, pair-, or group-housed, andwas kept on

a 12-h light dark cycle and had access to water 24 h a day. All experiments were conducted during the light phase.
Cell Reports 43, 114355, June 25, 2024 11

mailto:philip.corlett@yale.edu
mailto:steve.chang@yale.edu
https://github.com/psuthaharan/belief-update-monkeys
https://doi.org/10.1016/j.neuron.2010.02.027
https://doi.org/10.7554/eLife.13588
https://doi.org/10.1016/j.neuron.2017.07.042
https://doi.org/10.1038/s41562-021-01176-8
https://doi.org/10.1371/journal.pcbi.1010326
https://translationalneuromodeling.github.io/tapas
https://github.com/psuthaharan/belief-update-monkeys
https://github.com/psuthaharan/belief-update-monkeys


Report
ll

OPEN ACCESS
Monkeys

Fourteen monkeys – three from Study 1, three from Study 2, and eight from Study 3 – served as unoperated controls. Six monkeys –

three from Study 2 and three from Study 3 – received excitotoxic lesions of different parts of the brain.

Humans

We had 692 online human participants (collected via Prolific), of whom 84 had high paranoia, who completed the single-reversal task

of the taskmost similar to themonkey task.24We had 533 online human participants (collected viaCloudResearch), of whom 140 had

high paranoia, who completed a multi-reversal version of the task.4

METHOD DETAILS

Surgical and lesion procedures for monkeys
Surgical procedures for the monkeys have been previously described in detail.13,22 Aseptic neurosurgery was conducted under

general anesthesia (isoflurane, 1-2% to effect), in a dedicated operating theater and with pre- and post-operative analgesia and

antibiotics. In each animal that received a lesion, during the surgery the skin and fascia were opened, the muscles retracted, and

a bilateral bone flap was taken in the cranium over the target region. The dura over the posterior part of the hemisphere was cut

and retracted to the midline. The splenium of the corpus callosum was then sectioned and the choroid plexus cut to provide access

to and enable visualization of the posterior medial thalamus. Injections were thenmade as described below. A semi-circular dural flap

was reflected toward the orbit to allow access to the ventral surface of the frontal lobe in each hemisphere. Injections were thenmade

into the OFC on the basis of sulcal landmarks as described below.

Magnocellular mediodorsal thalamus (MDmc)

In brief, the procedure focused on the dorsal thalamic nuclei, specifically the magnocellular mediodorsal thalamus (MDmc) in the

monkey brain. The coordinates of the intended lesion site (see Figure S7) within themediodorsal thalamuswere taken from a compre-

hensive monkey brain atlas.58 Moreover, evidence from prior studies13,59 on the use of ibotenic acid and NMDA for successful me-

diodorsal thalamic lesions in monkeys supported this surgical procedure. Ten x 1.0ul injections (5 per hemisphere) of ibotenic acid/

NMDA, spaced at least 1 mm apart were made into the thalamus after visualizing the anterior-posterior extent of the MD in monkeys’

MD1, MD2, and MD3. MD lesions were confirmed histologically.13

Orbitofrontal cortex (OFC)

The procedure targeted Walker’s areas 11, 13, and 14 in each hemisphere of the granular orbitofrontal cortex of the monkey brain.

Injections of ibotenic acid were made into each hemisphere in separate surgeries with at least two weeks recovery time between

surgeries. In each surgery, multiple 0.1ul ibotenic acid injections were made into the cortex on the orbital surface, specifically be-

tween the fundus of the lateral orbital sulcus and the rostral sulcus on the medial surface of the hemisphere. The anterior-posterior

boundary of the lesion was the anterior and posterior ends of themedial and lateral orbital sulci. In each hemisphere, between 71 and

119 injections were made to cover the entirety of the OFC. The extent of the bilateral excitotoxic lesions in each monkey (see Fig-

ure S7) were verified by observing white hypersignal associated with edema in T2-weighted MRI scans taken within 5 days of the

surgery and T1-weighted scans taken >1 year after the initial surgery.22

In sum, the monkeys we chose to study had bilateral excitotoxic lesions to their magnocellular mediodorsal thalamus (MDmc) and

orbitofrontal cortex (OFC). Because we focused on win-switch and lose-stay behavior for estimating belief volatility, one animal from

Study 3 was excluded from the present analysis as he was a formal outlier with regards to his win-switch behavior (see Figure S8).

Questionnaire for human participants
Human participants completed a revised Green et al. paranoid thought scale (R-GPTS) as a means to collect self-report paranoia

levels.60 The paranoia group labels were based on subscale B of the R-GPTS; that is, high paranoia labels were based on a clinical

cut-off of R 11 (this threshold discriminates persecutory delusions from non-clinical paranoia, see Figure S9 for link between para-

noia and PRL task behavior). Self-report depression levels were measured using the Beck Depression Inventory II (BDI-II) scale,61

excluding ‘suicidal thoughts’ item as per protocol; a clinical cut-off of R 17 for clinical depression (i.e., high depression).

Three-choice PRL task
Single-reversal

APRL task –with three options to choose from, and a single reversal of the reward probabilities of the options – was used in this study

for the behavior of both monkeys and human participants.

Monkeys

This task has been described extensively elsewhere.13,20–22,62 In brief, while inside a wheeled transport cage, monkeys were posi-

tioned in front of a touch sensitive monitor. On each trial they were presented with three stimuli that were novel at the beginning of

each 300-trial session. Whenmonkeys touched one of the stimuli on the screen, a reward (190mg food pellets, Noyes) was delivered

based on a predetermined probabilistic reward schedule. Initially, one stimulus was associated with the highest probability of reward

delivery. At around trial 150, there was a reversal in reward contingencies such that the stimulus associatedwith highest probability of

reward became the lowest and the stimulus associated with the lowest changed to being associated with the highest probability of

reward. For this report we analyzed one of four reward schedules that was similar to the human task: ‘stable’. This corresponded to
12 Cell Reports 43, 114355, June 25, 2024
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Schedule 1 from a previous study22; pre-reversal reward contingencies followed a 0.61-0.2-0 pattern and changed to a post-reversal

reward contingency of 0.19-0.44-0.76 pattern such that the most rewarding stimuli became the least rewarding stimuli and vice

versa. Each monkey completed the stable version of the task for a total of 300 trials per session for five sessions (monkeys in the

MDmc study completed five sessions so we selected the first five sessions from the OFC study). After each trial there was either

a 2 s (Studies 1 and 2) or a 5 s (Study 3) intertrial interval before the next trial began. For Studies 1 and 2, a lunch box containing

the monkey’s food for the day was opened at the conclusion of the 300-trial session whereas in Study 3, monkeys were given their

daily food amount in their home cage.

Humans

The performance of the monkeys was compared to that of human participants who completed a similar version of the PRL task.24

This non-social PRL task involved presenting participants with a series of symbols across 60 trials. Each symbol yielded either a pos-

itive outcome (+10 points) or a negative outcome (�5 points). At the beginning of the task, participants were informed that among the

three symbols, one had a high likelihood (80%) of providing +10 points, another had an even chance (50%), and the remaining one

had a low probability (20%) of yielding +10 points. Crucially, participants weremade aware that the probabilities associatedwith each

symbol could change unpredictably during the course of the task. At trial 30, participants were explicitly asked to indicate which sym-

bol they believed offered the highest probability of delivering points. Following this judgment phase, the contingencies of the symbols

were altered for the final 30 trials – the symbol previously associated with the lowest probability of gaining points became the onewith

the highest probability, the symbol with the highest probability became the even probability symbol, and the symbol with an even

probability became the one with the lowest probability. Upon task completion, participants were once again prompted to identify

the symbol they thought had provided the most points throughout the task.

Multi-reversal

This version of the task is similar in theory but different in structure.3 Human participants completed this PRL task in two different

scenarios – one with a non-social aspect using a deck of cards another with a social aspect using avatars representing partners.

In the card deck scenario, participants were asked to choose from three decks – a positive (+100) or negative (�50) outcome –

with the goal of earning themost points. It was alsomentioned that the deck with the highest reinforcement probability could change.

In the partner scenario, participants were asked to choose from three avatars and to imagine working on a group project with them.

The avatars could represent helpful (+100) or hurtful (�50) partners and the partner that would give them the best chance to succeed

on a project could also change. Data between these two versions were collapsed for the present analysis based on prior findings of

no task performance differences.4 However, where things differ in this version from the single-reversal PRL, is 2-fold. The first differ-

ence is this idea ofmultiple reversals – every 40 trials participants were provided a break, following which probabilities automatically

reassigned. In addition, there were performance-based reversals – after every 9 out of 10 consecutive selections of the highest

reinforcement probability deck, unbeknownst to the participants, the underlying probabilities of receiving rewards were altered.

The second difference is this idea of a shift (that occurs halfway through the experiment) – the contingencies of rewards initially follow

a 90-50-10 pattern for the first 80 trials but switch to a 80-40-20 for the last 80 trials, making it more difficult to distinguish whether a

loss was due to chance or a change in the best deck (or partner). Thus, at this halfway mark, individuals experience both a reversal

and a shift.

Quantification and statistical analysis
Behavioral choice analysis

We quantified strategies of behavior on the task similar to prior work.3 The likelihood that participants would choose alternative op-

tions after positive feedback (win-switch) and select the same option after negative feedback (lose-stay) was measured. The rate of

win-switch behavior was calculated as the total number of trials in which participants switched after positive feedback divided by the

number of trials in which they received positive feedback. Similarly, the rate of lose-stay behavior was calculated as the total number

of trials in which a participant persisted after negative feedback divided by the total negative feedback trials. The rates of win-switch

and lose-stay behavior on each trial was calculated using a laggedmoving average approach with a 20-trial window. This means that

for each binned trial, we computed the average rate based on the previous 20 trials. This lagged moving average is depicted in Fig-

ure 2B (and 4A, 4B), where reversal (and shift in the multi-reversal version) is marked at the mid-way period of the experiment.

Computational modeling
We used amean-reverting HGFmodel.6 In this model (Figure 1B), the component that incorporates task beliefs is called ‘the percep-

tual model’. The component that governs how beliefs are converted into choices is called ‘the response model’. The perceptual

model has three hierarchical layers of belief about the task. The layers interact and influence one another through learning rate pa-

rameters. At the highest level (i.e., level 3), the model captures beliefs about changes in the task environment (i.e., how are values of

the choices changing over time?). Level 2 characterizes beliefs on reward probabilities (i.e., the tendency of a choice to be rewarding).

Level 1 characterizes task reward feedback (i.e., win or loss). These three levels of belief are then integrated and fed through a sig-

moid response function to produce a decision (i.e., whether to either stay with the same option or switch to a different one). To calcu-

late subject-specific estimates of belief about volatility (m3) and belief about reward value learning (u2), we fit the Hierarchical

Gaussian Filter (HGF) to the three-choice PRL data.57 We estimated these perceptual parameters for the first (monkeys: trials

1–150; single-reversal humans: trials 1–30, multi-reversal humans: trials 1–80) and second (monkeys: trials 151–300; single-reversal
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humans: trials 31–60, multi-reversal humans: trials 81–160) halves of the task. It is important to note that we did not model these two-

halves separately; we used the estimated priors from the first half of the task as priors for the second half, thereby accounting for the

mid-way contingency shift in a unified model approach (see Figure S10). Each of the agent’s choice (i.e., option 1, 2, or 3) and out-

comes (reward or no reward) were entered as separate column vectors with rows corresponding to trials. Reward was encoded

as ‘1’, no reward as ‘0’, and choices as ‘1’, ’20, or ‘3’. We modified the perceptual model configuration file (tapas_hgf_ar1_binary_

mab_config.m) to reflect the ‘winning’ model which uses a mean-reverting HGF perceptual model (refer to Table S1a in6) and a soft-

max-mu03 decision model (tapas_softmax_mu3.m). Parameter recovery. We fit our HGF model to the observed PRL task data to

estimate parameters that describe how an agent’s (monkey or human) beliefs update throughout the experiment. Our approach to

demonstrating parameter recovery involved attempting to recover the parameter estimates that were originally determined from the

true choice data using simulated task data. For the simulation, task performance for each agent was generated using the true model

parameter estimates, the perceptualmodel, and the decisionmodel. The values applied for the perceptual and decision configuration

files were drawn from a prior study (specifically, the M6 – winning model; refer to their Table S1a).6 A dummy ‘zeroth’ trial served as

our starting point to simulate the initial response and outcome. The agent’s responses (choice 1,2,or 3) were simulated based on the

softmax function, considering the true model parameters and the experienced, simulated outcomes. Meanwhile, the outcomes

(whether a reward of 1 or no reward of 0) were generated through a Bernoulli distribution, reflective of the agent’s reward schedules

(for instance, the stable schedule for monkeys). For every agent, we created a set of simulated responses and outcomes. This entire

process was repeated for i = 10 iterations, yielding 10 unique sets of simulated response-outcome data per agent. Subsequently, we

refitted the HGF to the simulated data, which produced a set of belief parameters for each agent during every iteration. These simu-

lated (or recovered) model parameters were correlated with the observed (or estimated) model parameters (see Figure S11) for the

equilibrium value of belief volatility (m3) and beliefs about value learning (u2Þ parameters, to assess performance of parameter recov-

ery across the different variations of the PRL task for both monkeys and humans. Furthermore, plotting the simulated win-switch and

lose-stay rates, at the group level, recapitulated the observed differences between lesion groups (see Figure S12). The HGF toolbox

v5.3.1 is freely available for download in the TAPAS package at https://translationalneuromodeling.github.io/tapas. We installed and

ran the package in MATLAB and Statistics Toolbox Release 2016a (MathWorks*, Natick, MA).

STATISTICAL ANALYSIS

General
Statistical analyses and effect size calculations were performed with an alpha of 0.05 and two-tailed p-values in RStudio: Integrated

Development Environment for R, Version 4.3.0.

GLMMs
To combat non-normality and random effects, we employed generalized linear mixed models (GLMMs) to identify significant group

differences (lesion group or paranoia group) in behavior and beliefs. We used a binomial GLMM for behavior, incorporating the counts

of win-switch and win-stay for win-switch rate and lose-stay and lose-switch for lose-stay rate, and a Gaussian GLMM for the HGF

belief parameters. Significant interaction effects in omnibus models were resolved by generating lower-order models.

Permutation tests
We shuffled the lesion groups to create random permutations of the data. For each permutation, we calculated the test statistic (i.e.,

difference of means) between the win-switching rates of the MDmc-lesioned monkeys and the non-lesioned control monkeys for

post-reversal and pre-reversal trials; mean difference = ðmpost;mdmc � mpre;mdmcÞ� ðmpost;control � mpre;controlÞ. We repeated this process

for n = 100 permutation to build the empirical null distribution. We calculated the p-value as the proportion of permuted test statistics

that are greater than or equal to the observed test statistic (in our case, this was 0.169). The p-value represents the probability of

obtaining a test statistic as extreme as the observed one, assuming the null hypothesis (H0: no difference between groups). If p-value

<0.05, we reject the null hypothesis and conclude that there is a significant difference in win-switching between the lesion groups

after the reversal. Lastly, Interquartile Range (IQR) tests were used to label data as outliers.
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