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2.4 γ boost factor γ = (1− Ṙ2)−1/2 of the shell for fixed bubble tension and variable
initial boost factor γ0. The early and late time behavior are approximated in eq.
(2.42) and (2.45). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.5 Causal diagram of gravitational radiation from a single gluonic string orbit. For
M >> m, displacement is concentrated near anisotropic, spherical null shocks. 59

2.6 Components of the Riemann curvature tensor from eq. (9) plotted as a function
of retarded time u = t − r for γ0 = 10, α = 10, θ = π/4. The curvature spikes
at the retarded times associated with the turnaround of each quark. Due to the
highly relativistic motion, the turnaround is no longer simultaneous as seen by
an observer away from the equator (θ = π/2). . . . . . . . . . . . . . . . . . . . 64

2.7 Plot of f(γ0) in eq. (2.86) on a log-linear scale, demonstrating an asymptotically
logarithmic scaling of the power. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

viii



ACKNOWLEDGMENTS

First and foremost, I would like to acknowledge Dr. Craig Hogan for his unwavering support

and for giving me the space to both fail and succeed and learn along the way.

I would also like to thank all of my committee members: Dr. Robert Wald, Dr. Daniel

Holz, and Dr. Emil Martinec for their insightful feedback and for challenging me to adhere

to a high standard of academic rigor. In particular, I am grateful to Dr. Robert Wald for

his many helpful discussions on my research.

Finally, I am grateful for the many insightful discussions shared with the students of the

Wald group over the years.

ix



ABSTRACT

We review the current state of the art of techniques in general relativity involving null

and/or distributional sources of stress-energy, with an emphasis on the study of gravitational

shockwaves. We then propose a series of unsolved problems in which these techniques can

be applied to uncover novel features of causal structure. In particular, we demonstrate

methods in which the gravitational field due to quantum fluctuations can be modeled under

the assumption that gravity is coherent over causal diamonds.

The first example studied is the decay of a particle with mass M into two counter-

propagating null point particles. The resulting spherical shockwave is shown to produce

displacement and velocity memory on a system of spherically arranged, synchronized clocks.

We then consider quantum superpositions of decay axes and demonstrate that fluctuations

of time shifts measured on the system of clocks should scale like ⟨δτ2⟩/τ2 ∼ tp/τ in the limit

of Planck mass particles.

The second problem studied is the gravitational effect of a “bubble model” representing

the effective stress-energy of a pion. It is shown that such a model produces a mean secular

outward acceleration of nearby test bodies that is consistent with the relative acceleration

of bodies due to the cosmological constant.
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NOTATION AND CONVENTIONS

Throughout this thesis, we will be using the metric signature (−,+,+,+). Tensor indices

are raised and lowered with the metric tensor gab, except in the linearized regime where the

flat spacetime metric ηab is used.

∂a = ,a ≡ ∂
∂xa Coordinate Derivative Operator

δab Identity Matrix/Flat Space-Space Metric

vava ≡ vavbgab ≡
∑3
a,b=0 v

avbgab Contraction, Eistein Summation Convention

γ = (1− v2)−1/2 Lorentz Boost Factor

□ ≡ ∇a∇a Wave Operator

R Set of Real Numbers

Rn Set of n-Tuples of Real Numbers

⊗ Tensor Product of Vector Fields

D
Dτ ≡ ua∇a Directional/Advective Derivative

´
δ(x− x0)f(x)dx ≡ f(x0) Dirac Delta Function
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INTRODUCTION

Some of the very first studies of exact solutions to the Einstein field equations for gravita-

tional plane waves date back to the work of Rosen [1937]. Originally, it was thought that

such plane wave solutions were unphysical, but more recent work such as Bondi [1957] has

demonstrated that plane wave solutions to the vacuum Einstein equations do exist. This

family of solutions later came to be known as PP (parallel propagating plane-fronted) wave

spacetimes [Ehlers and Kundt, 1962]. A more recent review on PP wave spacetimes can be

found in Steele [1989]. It was then demonstrated by Aichelburg and Sexl [1971] that the

speed of light limit of the boosted Schwarzschild solution produces an impulsive plane wave

solution, otherwise known as a gravitational shockwave. This solution was the first attempt

to characterize the gravitational effect of a null point particle. These shockwave solutions

were then studied in further detail in Dray and ’t Hooft [1985], Gemelli [1997]. More re-

cently, shockwaves have been studied in the context of collisions [Barrabès and Hogan, 2011,

Barrabès and Hogan, 2015], the memory effect at null infinity [Tolish and Wald, 2014, Tolish

et al., 2019], and back reaction effects in black hole evaporation [’t Hooft, 2016b,a, 2018].

There have been other works characterizing solutions to the Einstein field equations for

more general distributional stress-energy [Garfinkle, 1999, Geroch and Traschen, 1987]. As

demonstrated in these works, there are many mathematical difficulties treating distributional

sources in non-linear differential equations. In particular, products of distributions are not

always mathematically well defined. Further, ambiguities arise even in the linearized theory

for distributional sources since the notion of “small” is not well defined for distributional

sources. Nevertheless, it was shown that unique solutions can exist for a certain class of

distributional stress-energies.

Another important discovery in the realm of distributional stress-energy in general rel-

ativity was the formulation of what is now known as the Israel junction conditions. It was

shown by Israel [1966], that one can join two spacetimes together in such a way that the
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metric can be made continuous across the joining boundary, but there may be distributional

curvature on the boundary. This result was extended even further to the case when the

joining boundary is a null hypersurface [Barrabès and Israel, 1991, Barrabes, 1989, Poisson,

2002, Clarke and Dray, 1987]. When the curvature cannot be made continuous across these

hypersurfaces, there must be an effective stress-energy that lives on the boundary. One

can think of this stress-energy as sourcing a jump in the normal direction of the extrinsic

curvature, similar to how a surface charge produces a jump in the normal component of

the electric field (the gradient of the potential in the normal direction to the boundary) in

classical electromagnetism.

We now outline the two novel problems in which these techniques will be applied to gain

new insights. First, a linear analytical solution is derived for the gravitational shock wave

produced by a particle of mass M that decays into a pair of point null particles. The resulting

space-time is shown to be unperturbed and isotropic, except for a discontinuous perturbation

on a spherical null shell. Formulae are derived for the perturbation as a function of polar

angle, as measured by an observer at the origin observing clocks on a sphere at distance R.

The effect of the shock is interpreted physically as an instantaneous displacement in time and

velocity when the shock passes the clocks. The time displacement is shown to be anisotropic,

dominated by a quadrupole harmonic aligned with the particle-decay axis, with a magnitude

δτ ∼ GM/c3, independent of R. The velocity displacement is isotropic. The solution is used

to derive the gravitational effect of a quantum state with a superposition of a large number of

randomly oriented, statistically isotropic particle decays. This approach is shown to provide

a well-controlled approximation to estimate the magnitude of gravitational fluctuations in

systems composed of null point particles up to the Planck energy in a causal diamond

of duration τ = 2R/c, as well as quantum-gravitational fluctuations of black holes and

cosmological horizons. Coherent large-angle quantum distortions of macroscopic geometry

from fluctuations up to the Planck scale are shown to grow linearly with the duration, with

3



a variance ⟨δτ2⟩ ∼ τtP much larger than that produced in models without causal quantum

coherence.

Finally, we analyze the classical linear gravitational effect of idealized pion-like dynamical

systems, consisting of light quarks connected by attractive gluonic material with a stress-

energy p = −ρc2 in one or more dimensions. In one orbit of a system of total mass M ,

quarks of mass m << M expand apart initially with v/c ∼ 1, slow due to the gluonic

attraction, reach a maximum size R0 ∼ ℏ/Mc, then recollapse. We solve the linearized

Einstein equations and derive the effect on freely falling bodies for two systems: a gluonic

bubble model where uniform gluonic stress-energy fills a spherical volume bounded by a 2D

surface comprising the quarks’ rest mass, and a gluonic string model where a thin string

connects two pointlike quarks. The bubble model is shown to produce a secular mean

outward residual velocity of test particles that lie within its orbit. It is shown that the

mean gravitational repulsion of bubble-like virtual-pion vacuum fluctuations agrees with the

measured value of the cosmological constant, for a bubble with a radius equal to about twice

the pion de Broglie length. These results support the conjecture that coherent gravity of

standard QCD vacuum fluctuations is the main source of cosmic acceleration.

0.1 Mathematical preliminaries

Before we begin, we review some mathematical preliminaries of the theory of general rel-

ativity that will be used extensively throughout the work. Much of the notation in this

manuscript will be borrowed from Wald [1984], though there will occasionally be some de-

viations, particularly in the notation for the metric perturbation.

We consider spacetime manifolds, M, with associated spacetime metric gab. From Wald

[1984], an n dimensional, C∞, real manifold is a set of points p, along with a collection

of subsets {Oα} such that: 1) the {Oα} cover M, 2) for each α, there is a bijective map

ψα : Oα → Uα, where Uα is an open subset of Rn, and 3) the transfer functions ψα ◦ ψ−1
β :
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Rn → Rn must be C∞ in their domain of definition. These conditions can be relaxed to

suitably define a distributional solution for the spacetime metric.

The points in the manifold are commonly referred to as spacetime events. The maps ψα

are referred to as charts, or coordinate systems. The infinitesimal distance function between

events, known as the spacetime interval, is defined by

ds2 = gabdx
adxb (1)

where the Einstein summation convention is used. The “distance” between points connected

by a curve parameterized by λ is then

s =

ˆ λ2

λ1

√
±gab

dxa

dλ

dxb

dλ
dλ (2)

The plus sign is to be taken for events that are spacelike separated (the distance defines

proper length), while the minus sign should be taken for events that are timelike separated

(the distance defines proper time). Two events are said to be null separated if the spacetime

“distance” is zero.

The relation between matter and the geometrical structure of spacetime is defined via

the Einstein field equations

Gab ≡ Rab −
1

2
Rgab = 8πTab (3)

where Tab is the stress-energy tensor, which is a conserved quantity satisfying

∇aTab = 0 (4)

where ∇a is the covariant derivative operator, which is a map from tensors of rank (k, l)

to tensors of rank (k, l + 1) satisfying three properties: 1) linearity, 2) the Leibniz rule,
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and 3) commutativity with contraction of indices. A tensor of rank (k, l) at a point p is a

multi-linear map between k dual vectors and l vectors to real numbers.

T
a1...ak
b1...bl

: V ⊗ ...⊗ V︸ ︷︷ ︸
l

⊗V ∗ ⊗ ...⊗ V ∗︸ ︷︷ ︸
k

→ R (5)

A tensor can be written as a linear combination of tensor products of vector basis elements

eaµ and dual vector basis elements eνb , where eaµ(e
µ
b ) ≡ δab .

T
a1...ak
b1...bl

=
∑

C
µ1...µk
ν1...νl e

ν1
b1

⊗ ...⊗ e
νk
bl

⊗ ea1µ1 ⊗ ...⊗ e
ak
µk (6)

Typically, the stress-energy tensor is assumed to be smooth (C∞) and of compact support.

However, in this manuscript we will primarily be considering stress-energy tensors whose

components are distributional, i.e. they are not smooth functions and their meaning is to be

taken relative to integration over an appropriate class of test functions (e.g. the Dirac delta

function).

Geodesics of the spacetime with tangent vector ua satisfy the geodesic equation

ub∇bu
a =

d2xa

dτ2
+ Γabc

dxb

dτ

dxc

dτ
= 0 (7)

where the Christoffel symbols Γabc are defined by

Γabc =
1

2
gad(∂bgdc + ∂cgdb − ∂dgbc) (8)

Two initially parallel geodesics with tangent vector ua and displacement vectorDa will evolve

in time according to the geodesic deviation equation

uc∇c(u
b∇bD

a) = −R a
bdc u

bucDd (9)
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where R d
abc is the Riemann curvature tensor associated with the spacetime.

R d
abc = ∂bΓ

d
ac − ∂aΓ

d
bc + ΓdeaΓ

e
bc − ΓdebΓ

e
ac (10)

For most of this thesis, we will be primarily concerned with perturbations off a flat

background spacetime. We can then define a metric perturbation hab such that

gab = ηab + hab (11)

where hab is small in some suitable sense. For notational convenience, we can define the

trace-reversed metric perturbation

h̄ab = hab −
1

2
hηab (12)

To linear order in hab, the Einstein field equations reduce to a wave equation sourced by the

stress-energy tensor. As is well known in the theory, two metrics are physically equivalent if

they can be related via a gauge transformation of the form

gab → gab +∇aξb +∇bξa (13)

While working with the linearized field equations, we can define the Lorenz gauge such that

∇ah̄ab = 0. In this gauge, the linearized Einstein field equations become

□h̄ab = −16πTab (14)

With suitable boundary conditions, we can invert the wave operator and determine an inte-

7



gral solution for the metric perturbation.

h̄ab = 4

ˆ
Tab(x

′, tret(x′))
|x′ − x|

d3x′ (15)

The linearized Christoffel symbols are

Γabc =
1

2
ηad(∂bhdc + ∂chdb − ∂dhbc) (16)

The linearized Riemann tensor is

Rabcd = 2∇[a∇[dhc]b] (17)

Throughout this manuscript, factors of c,G and later ℏ will frequently be omitted during

calculations, but are retained for key physical formulae.
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CHAPTER 1

GRAVITY OF TWO PHOTON DECAY

1.1 Introduction

One of the simplest exact solutions of Einstein’s equations is the planar gravitational shock

wave produced by a point particle on a null trajectory [Aichelburg and Sexl, 1971, Dray

and ’t Hooft, 1985]. This idealized system has been applied to study the “memory effect” at

null infinity [Tolish and Wald, 2014, Satishchandran and Wald, 2019], and extrapolated to

quantum systems, including the back-reaction of particle emission on the horizon of a black

hole [’t Hooft, 2016b,a, 2018].

Here, we analyze the solution for the spherical gravitational shock wave produced by a

pair of oppositely-propagating point null particles originating from a single point mass at

rest in a nearly-flat space-time background. We evaluate the effect of the shock on a sphere

at a finite distance R, and the observable distortion of space-time geometry on that sphere

as function of direction and time, as observed at the origin.

In this system, the memory effect takes the form of an anisotropic distortion of time.The

distortions can be characterized by a local measurement with a simple operational definition.

Before the particle decays, a sphere of clocks is synchronized by an outgoing spherical pulse

from the origin. After the particle decays, the gravity of the shock distorts the measured

time on clocks in all directions, compared synchronously on the world line of an inertial

observer at the origin.

We choose to study this system in particular because it is well suited to study the re-

lationship of space-time with causally-coherent quantum states of gravitating mass-energy.

Unlike the planar shock solution, all of the elements of the system are contained in a com-

pact causal diamond of space-time. In this set-up, an entire quantum system, including

preparation and measurement of a state and a measurement apparatus, can be incorporated
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into a gravitational solution: both the preparation of the state and the measurement of the

gravitational perturbation response are localized on a single world line, in an interval of finite

duration. In other words, the solution describes a locally-measurable timelike response to a

nonlocal spacelike gravitational effect.

This solution is applied below to estimate the effect of causally-coherent quantum nonlo-

cality on gravitational fluctuations. Our estimate of the gravitational fluctuations is based on

the correspondence principle, the hypothesis that the quantum state of a whole system can

be expressed as a superposition of consistent classical histories of matter and space-time.

The main conclusions are thus insensitive to the unknown detailed structure of nonlocal

quantum states in curved space-time [Pikovski et al., 2017, Banks, 2020], as long as they are

causally coherent.

Previous model systems do not have the causal structure required for this exercise. The

initial conditions for the source in the classical planar shock solution [Aichelburg and Sexl,

1971, Dray and ’t Hooft, 1985], a null point particle, cannot be set up causally in a quantum

system: a definite direction for the particle momentum requires that its quantum state be

delocalized everywhere on planes normal to the direction of travel. Similarly, the standard

approach to nonlocality adopted in effective field theory, widely used to study gravitational

fluctuations in cosmic inflation [Weinberg, 2008b, Baumann, 2011], quantizes coherent, in-

finite plane wave modes, not superpositions of directional particle states confined to causal

diamonds.

The angular structure of the spherical null gravitational shock displays a large-angle

coherence that is not captured by such models based on nonlocal planar symmetry. The

spherical null shock relates a causal, nonlocal effect of gravity to localized pointlike events.

The anisotropic, coherent angular gravitational effects in relation to a point are confined

to a null surface, and also extend to macroscopic separation. The solution is consistent

with general relativity and quantum mechanics for particles up to the Planck mass, so it is
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a suitable approximation to estimate large-angle correlations of causally-coherent quantum

gravity and its fluctuations in macroscopic systems.

The classical single-particle decay solution is used here to estimate coherent nonlocalized

quantum-gravitational effects of quantum superpositions of matter states. We apply the

classical solution to two quantum systems, an S-wave decay with an isotropic directional

wave function, and the sequential isotropic decay of many such particles originating on

the same world line. These solutions allow us to derive the large-angle correlations of the

quantum-gravitational response to a many-particle state.

Assuming that relativity and quantum mechanics are valid and obey the correspondence

principle, a superposition of these solutions approximately describes the coherent state of

a quantum geometry, up to the point where the total mass of particles approaches that

of a black hole for the duration defined by the measurement. The extrapolation to many

particles provides a controlled estimate of macroscopic quantum fluctuations of causally-

coherent, weak-field gravity for systems of any size. The estimate here shows a variance of

large-angle, macroscopic distortions on the surface of a causal diamond that grows linearly

with its duration, which agrees with recent estimates based on conformal descriptions of near-

horizon vacuum states [Banks and Zurek, 2021], but is much larger than estimates from field

theory [Weinberg, 2008b, Baumann, 2011] that do not include the same causal coherence.

This difference is in principle measurable, and might have observable consequences.

1.2 Setup and General Properties of the Solution

Consider the system shown in fig. 1.1. A particle of mass M at the origin is surrounded by

a set of clocks distributed on a sphere of radius R. The clocks are synchronized by a pulse

from the origin prior to t0. The clocks are on freely falling timelike geodesics.

At a time t0, the particle decays into a pair of equal-momentum null point particles that

propagate in opposite directions along the z axis. The particles create an outgoing spher-
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δτCδτB R

AB C

t0

t0 + R/c

t0 + 2R/c

Figure 1.1: Gravitational effect of a particle pair on observed time perturbations. At left,
a point mass on world line A decays at t0 into oppositely directed null particles. A time
R/c later, the gravitational shock wave of the particles creates a coherent perturbation on
the spherical boundary of a causal diamond of radius R, as shown at the right. Clocks
on the surface are synchronized by an outwards pulse from A just before t0, and observed
by A by return light from the surface of the causal diamond after t0 + 2R/c. The shock
creates coherent time displacements with an even-parity directional variation of amplitude
δτ ∼ GM/c3 aligned with the particle trajectory, as shown by comparing on-axis clocks at
B and C with those in equatorial directions.

ical gravitational shock wave that creates a direction-dependent discontinuity in timelike

geodesics as it passes. Outside the shock wave, the solution is a Schwarzschild space-time of

mass M ; inside, the solution is a flat space-time.

When the shock passes through R, the sphere of clocks is perturbed. The shock creates an

instantaneous displacement of position and velocity that depends on the angle from the par-

ticle axis. The bulk of the total displacement measured as a difference between clocks occurs

on large angular scales, that is, in low spherical harmonics, dominated by a quadrupole or

tidal term. The physical effect of the shock wave can be visualized as a coherent, anisotropic,

discontinuous displacement of time on the order of δτ ∼ GM/c3, together with an isotropic

redshift discontinuity δτ/τ ∼ GM/Rc2 that represents the disappearance of gravitational

redshift in the post-shock solution.
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1.3 Spacetime Geometry

1.3.1 Metric Perturbation

Consider a particle with massM sitting at rest at position z = t0 of global inertial coordinates

(t, x, y, z). At time t = t0, the particle decays into two massless particles with energy

E =M/2 that propagate in opposite directions along the z axis. We assume that M is small

so that we may use the weak field approximation to determine the spacetime geometry. We

will look for the solution to the linearized Einstein equations in the Lorenz gauge ∇ah̄ab = 0,

i.e. solutions to eq. (14). The spacetime diagram for this event is given by fig. 1.2.

Figure 1.2: Penrose diagram of decay process. A stationary massive particle sits at the origin
(solid world line) and decays at retarded time u0, producing two oppositely propagating null
particles. An observer remains at rest at the origin (dashed word line). The null hypersurface
created by the spherically propagating shock wave separates the two spacetime regions I
(Schwarzschild) and II (Minkowski).

The stress-energy tensor for the system described is

T ab =Mδ(x)δ(y)

[
δ(z)θ(−t)tatb + 1

2
(δ(z + t)lalb + δ(z − t)kakb)θ(t)

]
(1.1)

where ka = ta+za, la = ta−za, and θ(t) is a Heaviside step function (for simplicity we have

set t0 = 0). For t < 0, this is the usual stress-energy for a point particle (at rest) given by
13



T ab = γmvavbδ(3)(x− x(τ)). For t > 0, this is the generalization of the previous formula to

the massless limit, taking γm→ E.

We can solve this wave equation term by term by letting h̄Iab = fI(x
c)tatb , h̄IIab =

fII(x
c)lalb , h̄IIIab = fIII(x

c)kakb. We then have three sourced scalar wave equations with

sources Si which contain the information of the stress-energy tensor.

□fi = −4πSi (1.2)

The retarded Green’s function for the □ operator is

GR(t, x⃗; , t
′, x⃗ ′) =

1

2π
δ(−(t− t′)2 + |x⃗− x⃗ ′|2)θ(t− t′) (1.3)

The solutions to eq. (1.2) are given by

fi(x) = 4π

ˆ
d4x′G(t, x⃗; t′, x⃗ ′)Si(t

′, x⃗ ′) (1.4)

The complete metric perturbation is then given by Tolish and Wald [2014]

hab =
2M

r
(ηab + 2tatb)θ(−U) +

2M

t+ z
lalbθ(U) +

2M

t− z
kakbθ(U) (1.5)

where U = t − r and r = (x2 + y2 + z2)1/2. The step function behavior indicates that the

spacetime will be that of a spherically propagating shock wave. Although at first glance it

appears as though the spacetime inside the shock wave (U > 0) is not flat, one can make

an appropriate coordinate transformation to show that the metric is indeed that of a flat

spacetime. We have in null coordinates u = t− z, v = t+ z

ds2(U > 0) = −dudv + 2M

u
du2 +

2M

v
dv2 + dx2 + dy2 (1.6)

14



We now define new null coordinates as in Dray and ’t Hooft [1985]

dṽ = dv − 2M

u
du dũ = du− 2M

v
dv (1.7)

Since we are in the linearized regime, we drop terms O(M2). The spacetime metric in the

new null coordinates becomes

ds2(U > 0) = −dũdṽ + dx2 + dy2 (1.8)

Aside from the discontinuity at u = 0, v = 0 in the new null coordinates ũ, ṽ, we see that the

spacetime is flat to the causal future of the decay event (henceforth referred to as “inside”

the shock wave). In the next section we will again demonstrate this by showing that the

Riemann tensor vanishes inside the shock wave.

We briefly mention here that eq. (1.5) agrees with the metric perturbation derived in

Rätzel et al. [2017] after carefully taking the limit L → 0, ϵ → M/2, where L corresponds

to the width of the laser pulse considered in their work, and ϵ is the energy of each pulse.

Note that while the metric perturbation can me made continuous in their system, the limit

L→ 0 makes the metric perturbation have a discontinuous jump at U = t− r = 0.

1.3.2 Geodesic Deviation

We now determine the relative motion of test bodies in this spacetime (note that in all

calculations we raise and lower indices with ηab). Consider a congruence of timelike geodesics

that are initially “at rest”, with spatial deviation vector Da. Define the tangent to the world

line of a test clock by ua. Initially, we have ua0 = ta = (1, 0, 0, 0). The deviation evolves

according to the geodesic deviation equation eq. (9).

Since the clocks will be allowed to free-fall after the system is set up, the tangents to

the world lines will pick up O(M/r) corrections between the time of release and the time
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of the shock wave passing by. However, we can ignore this correction to the velocity when

computing displacement/velocity kicks so long as the free-fall time is not too long since we

only care about the leading order effect and the Riemann tensor is at least O(M/r).

There will be three types of terms in the Riemann tensor components. One type will be

proportional to a step function, which gives the usual gravitational tidal force. The second

type will be proportional to a δ function, which results in a relative velocity kick. The

third type will be proportional to the derivative of a δ function, which results in a relative

displacement kick: this is the memory effect. We can write the displacement vector as

Da = Da
(0) +Da

(1) +Da
(2) +Da

(3) (1.9)

where the (n) refers to the 1/rn piece. We consider changes to Da to linear order in M only.

In what follows, we use the following convention for coordinate vectors: ∇az = za,∇at =

−ta ⇒ ∇au = −ka,∇av = −la.

Figure 1.3: Two oppositely-propagating massless particles (blue) creating a spherically sym-
metric gravitational shock wave (red). The clocks sitting at radius R experience an instan-
taneous displacement (not shown) and velocity kick ∆ui as a function of angle θ.

The curvature components proportional to a derivative of a δ function come from both
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derivatives acting on the step function.

∇aH(U) = δ(U)∇aU (1.10)

∇d∇aH(U) = δ′(U)∇dU∇aU + δ(U)∇d∇aU (1.11)

Note that since we will ultimately be antisymmeterizing on pairs of indices, we can treat the

covariant derivatives as coordinate derivatives in computing the Riemann tensor components.

We focus attention on the first term for now. ∇aU = −(ta+ra) = −Ka. Note that at t = r,

we have u = r − z = r(1− cosθ), v = r + z = r(1 + cosθ). Plugging into eq. (10) gives

Rδ
′
abcd = −4M

r
(K[aηb][cKd] + 2K[atb]t[cKd])δ

′(t− r) (1.12)

+
4M

r

(
1

1− cosθ
K[akb]k[cKd] +

1

1 + cosθ
K[alb]l[cKd]

)
δ′(t− r)

If we consider the components of Da in a parallelly propagated orthonormal frame, the left

hand side of eq. (9) reads d2Da/dt2. Integrating the geodesic deviation equation twice gives

(∆D(1))a =
M

r
(θaθb − ϕaϕb)D

b
(0) (1.13)

where θa, ϕa are the unit tangent vectors on the sphere. Thus, there is an instantaneous

relative displacement kick between two nearby stationary test bodies.

As shown in the appendix, we can decompose this tensor into a tensor harmonic mode

sum. Specifically, the displacement kick can be decomposed into a sum over transverse

“electric” tensor harmonics. The coefficients of the mode sum are given by eq. (A.26):

∆D = −M
r
(θ̂θ̂ − ϕ̂ϕ̂)·D(0)

∞∑
l=2,even

2l + 1

l(l − 1)(l + 1)(l + 2)

(
2cotθ

d

dθ
+ l(l + 1)

)
Pl(cosθ)

(1.14)
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where ϕ̂, θ̂ are angular unit vectors on the sphere. The quadrupolar mode (l = 2) gives

∆Dl=2 =
5M

8r
sin2θ(θ̂θ̂ − ϕ̂ϕ̂)·D(0) (1.15)

We note here that one could attempt to “glue” the two spacetime regions (Minkowski and

Schwarzschild) together using the formalism developed by Barrabès and Israel [1991]. The

results of their work indicate that the Riemann tensor is at most δ function singular on the

null boundary when the induced metric on the null hypersurface joining the two spacetimes

can be made continuous. However, as shown in Satishchandran and Wald [2019], there must

be a change in the leading order metric (which is associated with memory) for the type of

stress-energy considered here. Therefore, the metric cannot be made continuous here and

there will be a δ′ type singular behavior on the null hypersurface.

The curvature components proportional to a δ function come from the second term in

eq. (1.11) and the cross term when acting two derivatives on hIab in eq. (1.5). Again, deriva-

tives acting on 1/u, 1/v will not contribute since they are proportional to ka, la respectively.

In addition to the terms mentioned above, there will be a term proportional to δ(t− r) that

comes from integration by parts of the terms proportional to δ′(t− r) when integrating the

geodesic deviation equation:

Rδabcd =
4M

r2
(θ[a(ηb][c + 2tb]t[c)θd] + ϕ[a(ηb][c + 2tb]t[c)ϕd]) (1.16)

− 4M

r2
(K[a(ηb][c + 2tb]t[c)rd] + r[a(ηb][c + 2tb]t[c)Kd])

− 4M

r2(1− cosθ)
(θ[akb]k[cθd] + ϕ[akb]k[cϕd])

− 4M

r2(1 + cosθ)
(θ[alb]l[cθd] + ϕ[alb]l[cϕd])

+
4M

r2(1− cosθ)2
K[akb]k[cKd] +

4M

r2(1 + cosθ)2
K[alb]l[cKd]

Again, keeping only the leading order behavior in 1/r and integrating the geodesic deviation
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equation once then gives

∆v
(2)
a =

M

r2

[
(θaθb − ϕaϕb)

1 + cos2θ

1− cos2θ
+

2sinθcosθ

1− cos2θ
(raθb + rbθa)

]
Db
(0). (1.17)

Thus, there is an instantaneous relative velocity kick between two nearby stationary test

bodies as measured in a parallelly propagated frame.

The curvature components proportional to a step function come from both derivatives

hitting the pre-factors in eq. (1.5). Only the first piece of hab will contribute since ∇au =

−ka, etc., and the antisymmetrization will kill these terms. The Riemann tensor associated

with tidal forces is

Rtid
abcd =

4M

r3
(η[a[d + 2t[at[d)(δb]c] − 3rb]rc])θ(−(t− r)) (1.18)

Finally, eq. (9) gives

d2D
(3)
a

dt2
=
M

r3
(2rarb − θaθb − ϕaϕb)D

b
(0)θ(−(t− r)) (1.19)

This is the usual form of tidal forces in Newtonian gravity. Note that this term “turns off”

after the shock has passed a given test body.

1.4 Time Displacement

Consider a system of synchronized clocks distributed on a sphere of radius r. After the

passage of the gravitational shock wave, the clocks will no longer be synchronized due to the

relative displacement kick. The desynchronization of clocks on the sphere can be determined

via supertranslations at future null infinity, or I+ [Strominger and Zhiboedov, 2014]. These

are asymptotic symmetries (part of the BMS group) of asymptotically flat spacetimes [Bondi
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et al., 1962, Sachs, 1962]. The generator of these symmetries is given by

ψa = T (xA)

(
∂

∂u

)a
− T (xA)

(
∂

∂r

)a
− 1

r
DCT (xA)

(
∂

∂xC

)a
+ ... (1.20)

which creates an infinitesimal shift in the retarded time

u→ u− T (θ, ϕ) (1.21)

Here xA are the position coordinates on the 2-sphere. In 4 spacetime dimensions, it has

been shown that (null) memory is purely of scalar type, and can be written in terms of these

supertranslations [Satishchandran and Wald, 2019]. The relation is given by

∆AB =
1

r

(
DADB − 1

2
qABD2

)
T (θ, ϕ) (1.22)

where DA is the covariant angular derivative operator on the sphere [Hollands et al., 2016].

From eq. (18) we have

∆θθ =
2M

r

∞∑
l=2,even

2l + 1

l(l − 1)(l + 1)(l + 2)

(
d2

dθ2
+

1

2
l(l + 1)

)
Pl(cosθ) (1.23)

From this one can easily read off the l > 1 contributions to T (θ, ϕ):

T (θ, ϕ) = T0,1 + 2M
∞∑

l=2,even

2l + 1

l(l − 1)(l + 1)(l + 2)
Pl(cosθ) (1.24)

The l = 0, 1 contributions are due to standard temporal and radial spatial translations. By

setting up our system of clocks on the sphere to be initially synchronized, these two terms

vanish.

Equation (1.24) is the main result of this paper, the angular pattern of time displacement

recorded on the surface of the causal diamond. Since the weighting falls off as ∼ 1/l3, the
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l = 2 mode will be the dominant contribution. It has an angular dependence

T2(θ) =
5M

24
(3cos2θ − 1). (1.25)

1.5 Velocity Kick

Previously, we considered the relative velocity induced between nearby observers in a par-

allelly propagated frame. However, we would also like to know the (global) radial velocity

(away form the origin) of each clock on the sphere, as this will produce a longitudinal

Doppler shift as measured by the observer at the origin. We can determine the induced

velocity ua = dxa/dt of each clock by solving the geodesic equation.

dua

dt
+ Γabcu

buc = 0 (1.26)

where we have chosen to parameterize the worldlines by the coordinate time t. The tangent

vector to the worldline of the clocks is initially given by that of a stationary observer, i.e.

ua0 = ta. Since the leading order corrections to ua are O(M/r) and the linearized Christoffel

symbols are also O(M/r), we can use ua0 in eq. (1.26). Therefore in our linearized regime we

have
dui

dt
≈ −Γitt (1.27)

where

Γitt =
1

2
(2∂thit − ∂ihtt) (1.28)

We want to determine the instantaneous (globally measured) velocity kick, which comes

from the Christoffel symbols proportional to delta functions. In Cartesian coordinates, we

have

uµ = u
µ
0 +

M

x2 + y2

(
r2 + z2

r2
,−xr

2 + z2

r2
,−yr

2 + z2

r2
, z

3r2 − z2

r2

)
(1.29)
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At this point we must discuss a subtle point about what the observer at the origin is

measuring. As mentioned in section IIIA, the original coordinate chart (t, x, y, z) is not well

suited to describe the flat spacetime that the observer at the origin is making measurements

in. We want to know how fast a given clock is moving away from the origin as measured

in time t̃. We need to make the appropriate coordinate transformation to the coordinates

(t̃, x̃, ỹ, z̃) and re-parameterize the worldline of the clocks.

ũa =
dt

dt̃

∂x̃a

∂xb
ub (1.30)

Using eq. (1.7) we find that

∂x̃a

∂xb
= δab +

(
M

u
+
M

v

)
(zazb − tatb) +

(
M

v
− M

u

)
(tazb − zatb) (1.31)

dt̃

dt
= ua∇at̃ = ua

(
ta

(
−1 +

M

u
+
M

v

)
+ za

(
M

u
− M

v

))
(1.32)

In what follows, we expand everything out to O(M/r). In the new coordinates (t̃, x̃, ỹ, z̃) we

have

ũµ =

(
1,−M

r

1 + cos2θ

1− cos2θ
sinθcosϕ,−M

r

1 + cos2θ

1− cos2θ
sinθsinϕ,

M

r
cosθ

)
(1.33)

We note here that although we should have transformed (r, θ) into (r̃, θ̃), the difference

between these coordinates is O(M/r), so it is sufficient to use the original spherical polar

coordinates to leading order (this is explained in more detail in the next section). As can

be seen by eq. (1.33), there is an inward relative velocity transverse to the ϕ direction, with

an outward velocity in the z direction. This distorts the sphere into an ellipsoidal shape. If

one does a Taylor expansion about a particular point, they will recover the relative velocity

kick between nearby observers derived in eq. (1.17).

22



Projecting the velocity kick into the radial and transverse directions, we get

∆ur = −M
r

(1.34)

∆uθ = −2M

r
cotθ (1.35)

We find that the radial velocity kick is isotropic, while the transverse velocity kick is not

isotropic and is badly divergent near the polar axes, which we discuss how to handle in

the next section. This isotropic radial velocity kick can be decomposed into two parts, as

demonstrated in Rätzel et al. [2017]: an outward impulse purely due to the loss of mass in

the spacetime, and an inward impulse due to the propagating photon, whose gravity always

points inwards and transverse to the z axis (i.e. in the −ρ̂ direction). The net radial impulse

is toward the origin, and since it is independent of polar angle, only the angular velocity

kick “knows” about the location of the counter-propagating null particles - one can show that

the relative kick in this direction given by the 2nd term in eq. (1.17) agrees with the result

of Aichelburg and Sexl [1971] in the appropriate limit. Although the angular component

is divergent at the poles, one can expand for small cosθ (i.e. near the equator) to get an

approximate solution. We comment here that the full solution to the non-linear Einstein

equations (with smoothed source) should be regular at the poles and should match on to

this expansion around the equator in the weak field limit.

The effect of the radial velocity kick is to produce a Doppler shift in the clocks relative

to the central observer. All the clocks appear to run faster after the shock has passed; this

can be interpreted as an inward velocity kick from the shock, which is indistinguishable

from the disappearance of the isotropic gravitational redshift relative to the central observer

that was present in the pre-shock system. The longitudinal Doppler shift is first order in

the (radial) velocity, but the profile is spherically symmetric and thus the observer gains

no information about which way the two particles went. If one considers many such decays
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originating from the same point, there will be no fluctuations in this measurement. The

transverse Doppler shift at leading order is second order in the (angular) velocity kick, so

this will be a sub-leading effect (recall that M/r << 1 to satisfy the linearized regime).

We conclude that the anisotropic effects at leading order in M/r are due to the time

shift induced by the relative displacement kicks of the clocks, which give rise to measurable

angular fluctuations.

1.6 Limits of Validity

This solution is not exact. The linear approximation to gravity breaks down at large M , and

because of quantum uncertainty, the point-particle approximation breaks down at small M .

(We will continue to assume that the clocks are represented classically, as point-like tracers

of local proper time; this does not affect our conclusions in the regime of interest.)

For a single particle decay, the linear approximation breaks down close to the axis 1.

It leads to unphysical effects if the impact parameter is less than the Schwarzschild radius

for mass M : the scattering angle becomes large, and the orbits of clocks carry them across

the singularity on the axis. Putting back the units, from eq. (1.5) we see that the linear

approximation is valid only for
2GM

c2(t± z)
<< 1 (1.36)

and at angles from the axis greater than

θ2 ≳
4GM

Rc2
. (1.37)

Thus, for any M there is also a lower bound on R (see fig. 1.4).

Upon making the coordinate transformation given by eq. (1.7), angles on the sphere will

1. In reality, quantum effects de-localize the photon. One could smooth out the singular behaviour using
a Gaussian distribution (e.g. a coherent state), which would lead to finite curvature on the axis.
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Figure 1.4: Shaded regions schematically show the range of validity for the spherical decay
solution imposed by linearity of classical gravitational distortion at large M , and localization
of quantum mass-energy of the decaying particle at small M . For a system of N particles,
the boundaries are displaced as shown.

become distorted, i.e. θ ̸= θ̃. However, one can show that the leading order difference

satisfies

cosθ̃ − cosθ ∼ GM

Rc2
ln

(
1 + cosθ

1− cosθ

)
(1.38)

So long as R is much larger than the Schwarzschild radius and we are not too close to the

poles, we may use θ ≈ θ̃ in all of our formulas since the displacement and velocity kicks are

O(M/r), and the difference in angles will contribute at sub-leading order.

For many particles, the solution also requires R to be much larger than the Schwarzschild

radius for the whole central mass. For N particles of mass M on the same world line, we

require

R ≳ Rmin = 2GNM/c2; (1.39)

otherwise, the sphere of clocks is inside the Schwarzschild radius of the mass, forming a black

hole.

So far, we have considered only the limits of the classical solution. In a real physical

system, the quantum properties of a point particle add other constraints. The mass-energy
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of the particle is delocalized in space and time by an amount that depends on the character of

its quantum state. For example, the de Broglie wavelength, λM = ℏ/Mc, gives the minimum

spatial uncertainty of position for a massive particle that is localized in time. This value is

shown in fig. 1.4.

In the classical solution, the source is a single pointlike object with a definite trajectory.

In quantum reality, it is a single quantum object whose wave function in space depends on

its localization in time. Temporal coherence leads to correlations that are nonlocal in proper

time, which affects the coherence of the metric distortion in the timelike direction.

The wave packet of particle location spreads out in space and time. The minimum spatial

width of a location wave function for a measurement of duration τ , or “standard quantum

uncertainty” [Caves, 1980a,b], is given by

⟨∆x2⟩ > ℏτ/NM (1.40)

for a state of total mass NM . On the surface of a causal diamond with R = cτ , the spatial

uncertainty in the central world line leads to an angular quantum uncertainty,

⟨∆Θ2⟩ ∼ ⟨∆x2⟩/R2 ∼ (cτ/R)(ℏ/NMc)R−1 > ℏ/NMcR. (1.41)

Thus, the quantum bounds become important when both M and R are small. fig. 1.4 shows

the range of classical and quantum validity in Planck units:

mP ≡
√
ℏc/G, rP ≡ ctP ≡

√
ℏG/c3 = ℏ/mP c. (1.42)
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1.7 Quantum Superpositions

1.7.1 Quantum Superposition of Randomly Oriented Decays

In the region of validity shown in fig. 1.4, the calculation far from the polar axis is a good

approximation for both general relativity and quantum mechanics. In that regime, it can

be reliably extrapolated to consider quantum states of the nonlocalized metric of a causal

diamond. The entire setup, including the geometry itself and the sphere of clocks used to

measure it, can be treated as a coherent quantum system.

If a decaying particle is a quantum system, the quantum nonlocality of the “spooky”

two-particle decay state also leads to a delocalized, Schrödinger-cat-like macroscopic su-

perposition of space-times. As usual in quantum mechanics, there is no paradox: if the

preparation of states is causal, the quantum coherence of the decaying-particle products en-

tangles with the coherent causal diamonds of the distorted space-time, and the corresponding

displacements of clocks.

Suppose the null particles from a decay are created in a quantum S-wave state, whose

wave function is an isotropic superposition of all directions. This leads to a superposition of

space-time distortion patterns. The wave function of the space-time includes a superposition

of all the different orientations of the classical gravitational distortions, each one an eigenstate

of the particle decay axis. Each metric in the superposition is coherent over a macroscopic

causal diamond, starting with the decay and ending with the null incoming reflection from

the boundary that carries the clock readings back to the observer. The wave function can

be described as a sum of state amplitudes over histories, where the sum includes not just a

world line, but a whole causal diamond. A measurement of a particle axis will always find

itself with a causal-diamond history consistent with it.

The classical solution shows that fractional distortion ∆ of time displacement, as mea-

sured by observed clocks, varies coherently on the causal diamond surface of radius R ac-
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cording to eq. (1.25),

∆ = δτ/(R/c) = cT2(θ)/R ≃ 5Mc

24R
(3cos2θ − 1) (1.43)

The system with a single particle can be extrapolated by linear superposition to a system

of many particles. If there are N decaying particles of mass Mi in the causal diamond, the

large-angle coherence does not decrease from averaging their effects: instead, the amplitudes

of their distortions linearly add. The coherent quantum state of time distortions on the

sphere from N such decays on the same world line can be written as a sum

|∆(θ, ϕ)⟩ =
N∑
i=1

αi(n⃗i)|∆(θ, ϕ)i⟩, (1.44)

where each element of the sum represents a decay along a different random axis n⃗i.

Each decay creates the same universal distortion pattern relative to its own axis. Their

sum does not give a universal pattern, but it does give a universal power spectrum: the spher-

ical harmonic distortion coefficients αℓm from each decay pattern ∆(θ, ϕ)i add in quadrature.

For example, for equal mass particles M = Mi, the quadrupolar variances add to give fluc-

tuations with a total quadrupolar variance

⟨∆2⟩2 =
2∑

m=−2

N∑
i=1

α2m(i)2 ∼ N(GM/Rc2)2, (1.45)

where α2m(i) denote the quadrupolar amplitudes for each decay, derived above (see eq. (1.25)).

Note that for a given total mass NM , the gravitational distortion decreases with N but in-

creases with an adopted granularity scale M . This result depends only on standard physics,

and a conservative application of the quantum correspondence principle, that the gravity of

a quantum system is the same as that of an identical classical one.

The same estimate applies to large-angle gravitational distortions created by non-interacting
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massless null particles that enter and leave the boundary of a volume with radius R. For a

gas with with a mean occupation of N particles inside R, eq. (1.45) approximately gives the

variance of large-angle gravitational fluctuations on the surface.

This framework is self-consistent until N is large enough that the gravity of the particles

affects the mean curvature of the causal diamond. For consistency, in order not to form a

black hole with radius less than R, we require

R < RS = 2G(NM)/c2 (1.46)

so their number must not exceed

Nmax ∼ c2R/2GM. (1.47)

For a gas of particles that saturates the bound N = Nmax, the quadrupolar gravitational

redshift distortion,

⟨∆2⟩2 ∼ GM/2Rc2, (1.48)

decreases with R, which shows that a large system has a nearly-determinate, classical metric.

Note that Planck’s constant ℏ does not appear in eq. (1.48): although it is a quantum

uncertainty, based on superposition of multiple decays, its magnitude is determined by the

assumed discreteness scale, M .

1.7.2 Coherent Quantum-Gravitational Fluctuations

For particle states confined to a volume of size R, extrapolation to Nmax in eq. (1.48) gives

an estimate of the gravitational fluctuations created by randomly-oriented particle states

with a UV cutoff M . This applies approximately to the case of a system filled with particles

whose density approximately saturates the bound, such as a cosmological solution or black
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hole on the scale of the horizon. For a UV cutoff at the Planck scale M = mP , eq. (1.48)

with R = cτ becomes

⟨∆2⟩2 ∼ ⟨δτ2⟩/τ2 ∼ tP /τ. (1.49)

As expected, quantum-gravitational fluctuations are of the order of unity for τ at the

Planck scale. The surprising feature of eq. (1.49) is the linear inverse dependence on τ for

duration τ much longer than tP . The gravitational effects of vacuum field fluctuations in

effective field theory have long been studied in the context of inflationary universes (e.g.,

[Starobinsky, 1982, Weinberg, 2008b, Baumann, 2011]). In these systems, gravitational quan-

tum uncertainty decreases as a higher power with scale: the typical relic metric fluctuation

on the scale of an inflationary horizon of radius cτ is

⟨∆2⟩EFT ∼ (tP /τ)
2. (1.50)

The different results arise from different models of quantum coherence. The larger fluctu-

ations in the decaying-particle system can be traced to the fact that a point particle creates

a displacement that is coherent on scale cτ for a causal diamond of any duration τ . The

coherence scale in the effective field system is that of the particle wave function, ∼ ℏ/Mc,

so the variance is reduced by a factor ∼ 1/τ . Our classical solution explicitly shows that

the physical gravitational effect corresponds to the former case: the gravity of a point parti-

cle imprints a large-angle, quasi-tidal coherent geometrical structure on macroscopic scales,

much larger than the de Broglie wavelength of the particle.

For causally-coherent gravity, the large-angle, macroscopic distortion actually increases

with duration, with variance

⟨δτ2⟩2 ∼ τ tP . (1.51)

This scaling behavior follows directly from the classical solution via eq. (1.45): the coherent

large-angle memory of each Planck-energy single-particle state is independent of R, so the
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total distortion grows with the duration in the same way as a random walk.

Our semiclassical treatment meshes well with previous arguments that suggest macro-

scopic coherence of geometrical quantum states. For physical field states not to exceed the

black hole mass in any volume, gravity requires macroscopic nonlocal coherence in the in-

frared [Cohen et al., 1999, Banks and Draper, 2020, Cohen and Kaplan, 2021]. Nonlocally

coherent geometrical states (“entanglement wedges”) are also key elements in recent resolu-

tions of the black hole information paradoxes, incorporated into an account of fine-grained

entropy [Almheiri et al., 2020]. Formal methods based on conformal descriptions of near-

horizon states show that coherence can produce physical metric distortions comparable in

amplitude to those estimated here, both for black hole horizons and causal diamond surfaces

in flat space-time [Zurek, 2020, Banks and Zurek, 2021].

The time distortions on the causal diamond surface can be continuously extrapolated to

provide a physical heuristic picture of what happens when a black hole evaporates. As a

black hole evaporates (or is assembled) one particle at a time, each particle maps onto a

coherent, mostly quadrupolar distortion that extends across the entire horizon surface, of

the order of one Planck length in amplitude. A long-lived horizon is a superposition of a

sequence of many such distortions. This simple picture of coherent horizon distortions agrees

with a “quantum-first” analysis of evaporation [Giddings, 2017, 2019]. In this view, states

of Planck-scale “quantum foam” are wave functions coherently spread everywhere across the

horizon, no matter how large it is.

1.8 Conclusion

The Schrödinger-cat-like states of space-times with quantum decaying particles— superpo-

sitions of different geometries with macroscopically distinguishable physical properties, such

as quadrupole moments of observable time distortions— show concretely how quantum-

gravitational coherence works. The quantum construction uses particle-like states of matter,
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with superpositions of wave functions localized to causal diamonds, instead of quantized

plane-wave states that extend to infinity, so it allows both preparation and measurement of

states from a single world line. Directional indeterminacy of quantum states is reconciled with

gravity via a conventional correspondence principle, leading to quantum-geometrical states

that are directionally coherent on null surfaces. It explicitly shows nonlocal, anisotropic

effects of gravitational coherence manifested in a local measurement.

Our analysis shows that macroscopic coherence of quantum gravity has concrete physical

consequences. Coherence leads to quantum-gravitational distortions on large angles and

macroscopic scales, with variance that grows linearly with duration. The smaller variation

predicted by effective field theory does not account for the physical effects of directional

causal coherence.

The anisotropic distortion of time is a real physical effect, not a gauge artifact: in prin-

ciple, it can be measured with actual clocks or laser interferometers. The permanent time

displacement between the observer’s clock and any of the other clocks is an objective measur-

able quantity. Different states correspond to physically different geometries on macroscopic

scales.

It is possible that the coherence of active quantum gravity could be measured not just in

principle, but in an actual experiment. Although the distortions of physical black hole hori-

zons are likely to be unobservable, a direct measurement of causal diamond distortions may

be accessible to Michelson interferometers correlated to reveal spacelike coherence [Chou

et al., 2017, Richardson et al., 2021]. The effect of coherent horizons would produce pri-

mordial perturbations during cosmic inflation of the order of eq. (1.49), much larger than

standard inflation theory, and could create new causally-coherent symmetries of angular cor-

relations in cosmic microwave background anisotropy. These symmetries appear to be con-

sistent with anomalous correlations measured in the CMB on large angular scales [Hogan,

2019, 2020b, Hagimoto et al., 2020, Hogan and Meyer, 2021].
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CHAPTER 2

GRAVITY OF GLUONIC FLUCTUATIONS

2.1 Introduction

A widely repeated calculation for the value of the cosmological constant, based on summing

the zero point fluctuations of quantum fields, gives a famously wrong answer [Weinberg, 1989,

Padmanabhan, 2003, Weinberg, 2008a]: the sum of zero-point mode-fluctuation energies up

to a UV cutoff at mass scale M leads to a cosmological constant Λ equivalent to a mass

density of order ρΛ ∼ M4c3/ℏ3, which leads to a gravitational cosmic acceleration rate of

order HΛ ∼ (M/mP )
2/tP , or a cosmological constant

Λ ∼ (M/mP )
4/t2P , (2.1)

where tP =
√

ℏG/c5 denotes the Planck time. For M equal to the Planck mass mP =√
ℏc/G, the predicted value of Λ is larger than the observed value by about 122 orders of

magnitude. Experiments [Adelberger et al., 2009, Kapner et al., 2007] rule out proposed

modifications of gravity or quantum field fluctuation amplitudes with a cutoff at the milli-eV

mass scale that would give the correct value of Λ.

For this reason, it is widely agreed that there must be a basic conceptual error in the

way this calculation is formulated. There needs to be a basic symmetry of quantum gravity

that makes the gravitation of vacuum field fluctuations nearly vanish, and also a mechanism

to account for the nonzero measured value of the actual cosmological constant.

One possibility is that symmetries of quantum geometry make Λ exactly vanish for point-

like particles, but allow a small nonzero Λ from the gravity of nonlocal vacuum fluctuation

states of interacting fields. In this case, the value of ρΛ would be much less than the Planck

value quoted above, suppressed by a power of the field energy scale. A long-studied exam-

ple is the hypothesis [Zel’Dovich, 1967, Zeldovich, 1968, Schutzhold, 2002, Bjorken, 2003,
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Brodsky and Shrock, 2011, Bjorken, 2010, Klinkhamer and Volovik, 2009, Poplawski, 1990,

Hogan, 2020a] is that the cosmological constant arises from quantum fluctuations in the

strong interaction vacuum.

Studies of this hypothesis have generally sought to compute the expected low-energy

energy momentum tensor from the system of QCD quantum fields. In this paper, we in-

stead analyze the system geometrically, using classical gravitational models. We estimate

the gravitational effect of QCD field fluctuations by analyzing simple idealized classical sys-

tems whose energy-momentum structure resembles that of pions, the lowest-energy QCD

excitations. The energy-momentum of these systems is dominated by the kinetic energy

of pointlike quarks and massless gluons, and the nonlocal self-attractive interaction of the

gluons. We then use these systems to estimate the coherent quantum-gravitational effects of

pion-like vacuum fluctuations in causal diamonds, and show that they approximately agree

with the measured cosmic acceleration.

In our simple models, fluctuations of gluonic tension produce secular repulsive gravitation.

The energy-momentum tensor of a homogeneous condensate of massless gluons in localized

virtual fluctuations takes a form proportional to the metric, with pressure and density related

by p = −ρc2 in one or more dimensions. For more than one dimension, this equation of state

violates the strong energy condition, so its gravitational effect is repulsive. In field language,

this behavior for gluonic fluctuations in strongly-interacting QCD vacua arises from the

gravitational effect of a trace anomaly [Schutzhold, 2002]. The one-dimensional case is also

familiar from early models of pions which modeled strong interactions as strings.

Like early phenomenological models of hadrons (e.g. Andersson et al. [1983]), our analysis

does not provide a rigorous connection to QCD field degrees of freedom. However, it provides

a simple classical model for gravitational effects of nonlinear QCD fluctuations, and shows

how they depend critically on nonlocal causal coherence of field states in more than one

dimension. It provides physical insights into how the gravity of vacuum fluctuations works at
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a microscopic level, in particular the reason for the small value of the cosmological constant.

Simply put, the model shows that if quantum degrees of freedom of gravity are coherent

in causal diamonds, cosmic acceleration from quantum fluctuations of QCD has about the

same magnitude (with opposite sign) as Newtonian gravitational acceleration at the edge of

a proton.

2.2 Causally Coherent Gravity of Gluonic Fluctuations

We study the dynamics and gravity of two idealized models with different geometries. The

first model, shown in fig. 2.1, is a bubble: a spherical volume of gluonic matter is ap-

proximated by a uniform isotropic tension and density with the locally Lorentz-invariant

relationship

p = −ρc2 (2.2)

in three dimensions, bounded by a uniform shell of dustlike quark material of constant total

mass. The other model, discussed in section 2.5, is a more traditional idealized model of

pions, where a straight gluonic string with p = −ρc2 in one dimension joins two light pointlike

quarks. The two systems have similar dynamics: they start at small radius with a large γ

factor, expand to a maximum size determined by the masses of the quarks and the tension

of the gluons, then recollapse.

We do not provide a derivation that this equation of state is the correct one for QCD

vacuum fluctuations, but point out that any homogeneous vacuum state must be locally

Lorentz invariant, so its mean energy-momentum tensor must transform like the metric:

Tab = −ρgab. Our model demonstrates that if fluctuations of stress-energy are confined to

compact causal diamonds with this equation of state and a size and total mass equal to

that of the pion, it produces a global relative acceleration between neighboring test bodies

consistent with that of the cosmological constant.
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As discussed below, tension in more than one dimension is required for gravity to produce

cosmic acceleration, so we focus on the bubble model. Since it is spherically symmetric,

gravity outside the bubble is simply a Schwarzschild metric. Inside the bubble, the effect of

the quarks on a test particle resembles displacements by a null shock on a causal diamond,

whose outwards and inwards gravitational displacements cancel over a whole orbit. The

main gravitational effect in the interior is from the gluonic matter.

We find that gravity inside the bubble produces a mean repulsive residual velocity, in the

sense that on average it causes test particles within the orbit to accelerate systematically

apart from each other in the radial direction. Ultimately this unique behavior can be traced

to the exotic nature of the source, whose mass-energy, dominated for much of its orbit by

the gluonic matter with p = −ρc2, violates the strong energy condition. (The string model,

which does not violate this condition, also creates repulsive gravitational impulses along

some directions, but not in a global average.)

We then adapt the classical model to estimate the mean gravitational effect of QCD

vacuum fluctuations. Gravitationally repulsive virtual gluonic material is borrowed from

vacuum, so its gravitational effect only extends over a compact causal diamond with a radius

∼ ℏ/mπc determined by the pion mass mπ. Since all of space in a sense lies “inside a virtual

bubble”, this model leads to a simple picture of how cosmic repulsion works. Within the

causal diamond of a fluctuating bubble, test bodies on one side of the bubble accelerate away

from the center, and if quantum gravity is causally coherent, also away from the entire future

light cone beyond the center. The acceleration is approximately the Newtonian gravitational

acceleration for a mass with the bubble density and bubble radius, rather than a cosmic

radius. As discussed further below, virtual bubbles thus create gravitational fluctuations

whose secular gravitational repulsion is much smaller than eq. (2.1):

Λ ∼ (mπ/mP )
6/t2P . (2.3)
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As shown below, the bubble estimate approximately agrees with the measured cosmolog-

ical constant for parameters similar to physical pions: for mass M = mπ, it requires a bubble

radius R0 ∼ 2.0 ℏ/mπc, about two femtometers. Such close agreement is remarkable, since

the model is idealized in several important ways. For example, a smaller radius would be ex-

pected from the fact that real QCD fluctuations do not have a maximally-repulsive isotropic

equation of state; their gravity would be expected to behave like something in between the

bubble and the string.

The model provides a well controlled connection, albeit still idealized, between the mea-

sured properties of pions and the measured cosmological constant. The rather close agree-

ment, based on a simple correspondence argument and a highly idealized model system,

suggests that if gravitational states of the field vacuum are coherent in causal diamonds, an

absolute value for the cosmological constant can in principle be derived from properties of

Standard Model fields. Realistic numerical studies of gravitational effects from the QCD vac-

uum would not require a theory of quantum gravity, but would require a coherent nonlocal

calculation of expected mass-energy flows in the vacuum state.

2.3 Gluonic Bubble Model

2.3.1 Bubble Model with Light Quarks

The idealized “gluonic bubble” model ( fig. 2.1) is a spherical ball of total mass M , filled

with uniform gluon gas of the unique Lorentz-invariant form p0 = −ρ0c2, surrounded by

a thin sheet of pressureless quark dust of total mass m on the surface. It captures the

nonlocal, nonabelian self-tension of the gluon fields in an idealized way that complements

the 1D string model more commonly used for pions. It allows for a solution of the Einstein

equations and derivation of gravitational effects for an isotropic pressure in 3D. We call it a

bubble model to differentiate from the bag model, an idealized picture of a stable nucleon
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Figure 2.1: Spacetime diagram of the gluonic bubble model. The diamond represents a
bubble of total mass M filled with gluonic material g with p = −ρc2 and gravitational
timescale T0, with a spherical quark shell q of mass m << M on a nearly-null trajectory. The
shell first propagates outwards to maximum radius R0, then collapses inwards, separated by a
small nonrelativistic reversal region. The timelike world line represents a freely falling body.
The gravity of the gluonic matter produces an outwards residual velocity δvg ∼ +R2

0/cT
2
0

during the time a body spends within the bubble (eq. (2.9)).

in a confining vacuum. The bubble model, like the string model, is an idealized picture of

the dynamical mass-energy of QCD fields in a pion-like state, designed to approximate the

virtual fluctuating energy flows of the QCD vacuum.

The quarklike surface of the bubble is dust, that is, it has no tension or pressure, and

is infinitesimally thin. Its mass is constant as it expands, so the mass density thins out,

and the inwards acceleration from the constant gluonic tension increases. The equation of

motion is thus not the same as the string model, but the solutions are similar. For light

quarks m << M , the bulk of the orbit is relativistic inwards or outwards motion. There is

a brief turnaround near maximum expansion where the velocities are much less than c.

2.3.2 Residual Velocity From a Bubble Orbit with Light Quarks

In the bubble model, there is no gravitational radiation, so the outgoing and incoming parts

of the orbit are identical under time reversal. The inwards and outwards shocks from the
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passage of the quark surface identically cancel, so there is no residual gravitational effect

of the quark surface on the motion of test particles, apart from those of a “background”

Schwarzschild solution of mass M , which is the space-time outside the bubble.

However, worldlines that pass through the interior of the bubble’s causal diamond accu-

mulate outwards acceleration while they are inside. The mean gravitational effect on test

bodies during the time that they pass within the volume of the bubble leaves behind an

outwards “residual velocity” whose mean cumulative effect resembles cosmic acceleration.

It is a well known result in general relativity that the gravitational acceleration at radius

r relative to the center of a homogeneous sphere is

a(r) = v̇ = −(4π/3)Gr(ρ+ 3p/c2). (2.4)

This Newtonian weak field limit is valid for a system much smaller than the Schwarzschild ra-

dius of the contained mass. For empty space outside the sphere, the solution is Schwarzschild

so it approaches flat space at large radii. In the opposite limit where matter uniformly fills

a large volume, the exact solutions are FRW cosmologies.

The effect of general relativity is captured by the last term, the Newtonian gravitational

effect of pressure. The large negative pressure within the volume of a gluon bubble leads to

a net positive acceleration or gravitational repulsion at radius r,

ag(r) = v̇ = +r/T 2
0 , (2.5)

where we have defined a gravitational timescale

T0 ≡ (8πGρ0/3)
−1/2, (2.6)
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for a gluonic bubble of maximum radius R0 and density

ρ0 = (M −m)(4πR3
0/3)

−1. (2.7)

In the light quark limit m << M , we can ignore the short turnaround part of the orbit.

A worldline at radius r spends a time τg(r) = 2(R0 − r)/c inside the bubble. The outward

velocity accumulated at radius r during this time is

δv(r)g = τg(r)a(r)g = +2r(R0 − r)/cT 2
0 (2.8)

This quantity vanishes both at r = R0 and r = 0, so there is no residual velocity kick for a

world line on the maximal boundary of the bubble or at the origin. In between, the residual

velocity is positive, with a maximum value at r = R0/2,

δvg(r = R0/2) = +R2
0/cT

2
0 . (2.9)

After a bubble orbit, two particles on opposite sides of the center are moving apart by the

sum of their two kicks. Several sample trajectories are shown in fig. 2.2.

In the classical solution, this outwards velocity kick is combined with an inwards ac-

celeration accumulated while a world line lies outside the bubble, where the metric is a

Schwarzschild solution of mass M . The source in this regime includes the gravity of the

(mostly relativistic) quark material as well as the total mass of the gluonic material. As

noted above, the quark contribution vanishes in the limit of light quarks, since the inwards

and outwards shocks cancel.
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Figure 2.2: Trajectories of test particles (blue/purple) accelerating within the causal diamond
(red) of a bubble with m << M and R0 = 1, according to eq. (2.5). The acceleration
increases with increasing r, but the total time inside the bubble decreases with increasing r,
so the maximum residual velocity eq. (2.8) occurs at r = R0/2. For illustration, the motion
of the test particles is exaggerated in this plot by a factor of R2

0/T
2
0 compared to that of the

bubble wall, or about 40 orders of magnitude for QCD fluctuations.

2.3.3 Gluonic Bubble Solution for m ̸= 0

To rigorously solve for the dynamics of the bubble, we will apply the Israel junction condi-

tions following Barrabès and Israel [1991]. We will begin by considering gluing two general

spacetimes, then restrict ourselves to the spherically symmetric case, and finally further

restrict to the weak field regime (still allowing for the possibility of relativistic velocities).

In this section we work in units where c = 1 to avoid keeping track of factors of c when

raising and lowering tensor indices with the metric. Consider two distinct spacetime mani-

folds M+,M− with associated metrics g+αβ(x
µ
+), g

−
αβ(x

µ
−). The two spacetimes are bounded

by hypersurfaces Σ+,Σ− with induced metrics g+ab, g
−
ab (a, b = 1, 2, 3). We can glue the

spacetimes together by making the identification Σ+ = Σ− = Σ with intrinsic coordinates

ξa.

We can construct a tetrad of vectors nµ, eµ
(a)

(µ = 0, 1, 2, 3) (which can be defined in
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both spacetime regions) satisfying

nµn
µ|+ = nµn

µ
∣∣
− = 1 , nµe

µ
(a)

∣∣∣
±
= 0 (2.10)

where the vectors eµ
(a)

are adapted to the hypersurface Σ such that

g±ab = gαβ e
α
(a)e

β
(b)

∣∣∣
±

(2.11)

We can parametrically define Σ such that Φ ≡ R(t)− r = 0 on the hypersurface. This gives

a natural identification of hypersurfaces of Φ > 0 with M+ and hypersurfaces of Φ < 0 with

M−. We can then define nµ to be normal to surfaces of constant Φ such that nµ = α−1∂µΦ,

where α is chosen to ensure normalization.

One can show that by appropriate choice of intrinsic coordinates ξa we can make g+ab(ξ) =

g−ab(ξ) = gab(ξ). However, there will be a discontinuous jump in the normal extrinsic curva-

ture defined by

Kab = −nµeν(b)∇νe
µ
(a)

(2.12)

In Newtonian gravity, this gives rise to the familiar jump in the normal derivative of the

Newtonian potential. The induced surface stress-energy can be related to the jump in the

extrinsic curvature by an analog of the Einstein equations

−8π

(
Sab −

1

2
gabS

)
= [Kab] (2.13)

where [F ] denotes (F+−F−) |Σ, i.e. the difference in F across the hypersurface Σ. The full

stress-energy tensor restricted to the hypersurface Σ is then given by

T
µν
Σ = −Sabeµ

(a)
eν(b)|α|δ(Φ) (2.14)
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Now, we will restrict our attention to spherically symmetric spacetimes. In Eddington-

Finkelstein coordinates, the metric can be written as

ds2 = eψdu(feψdu+ 2ζdr) + r2dΩ (2.15)

where u = t − ζr∗, dr∗/dr = 1/f and f(u, r) = 1 − 2m(u, r)/r. ζ = ±1 denotes whether

the hypersurface Σ is moving outward (increasing r) or inward. The Einstein equations then

give us differential equations for the functions m,ψ.

∂um = 4πr2T ru (2.16)

∂rm = −4πr2Tuu (2.17)

∂rψ = 4πrTrr (2.18)

For the bubble model being considered, the stress-energy inside of the shell is that of a de-

Sitter spacetime with positive cosmological constant and stress-energy proportional to the

spacetime metric.

T dSµν = −ρgµν (2.19)

In the Eddington-Finkelstein coordinates we find

Tuu = T rr = T θθ = T
ϕ
ϕ = −ρ (2.20)

Therefore we get that Trr = 0, T ru = 0, which by eq. (2.18),(2.16) imply ψ = 0, f = f(r).

Solving eq. (2.17) assuming the exterior region to be Schwarzschild, we find

f+ = 1− 8π

3
ρr2 (2.21)

f− = 1− 2M

r
(2.22)
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Now we may explicitly define the tetrad in terms of the chosen coordinates. We will switch

back to using the more familiar t, r coordinates.

nµ = − 1

(f − f−1Ṙ2)1/2

(
δrµ + Ṙδtµ

)
(2.23)

where the over-dot signifies the derivative with respect to coordinate time t. The intrinsic

metric for the timelike spherical shell is given by

ds2Σ = −dλ2 + r2dΩ2 (2.24)

where λ is the proper time of a co-moving observer on the shell. Then we can choose the

rest of our tetrad vectors to be

e
µ
(1)

=
1

(f − f−1Ṙ2)1/2

(
δ
µ
t + Ṙδµr

)
(2.25)

e
µ
(2)

= δ
µ
θ (2.26)

e
µ
(3)

= δ
µ
ϕ (2.27)

One can compute the extrinsic curvature using eq. (2.12), which produces the following

stress-energy on the spherical shell:

−Sab = σδa1δ
b
1 (2.28)

T
µν
Σ = |α|σeµ

(1)
eν(1)δ(r −R(t)) (2.29)

where σ is the surface energy density of the shell given by

σ = −ζ [m]

4πr2
(2.30)
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The form of eq. (2.29) is that of a pressureless dust in the rest frame of the shell. In the

weak-field limit this reduces to the usual form

T
µν
Σ ≈ γm

4πr2
vµvνδ(r −R(t)) (2.31)

where vµ = dxµ/dt, γ = (1− Ṙ2)−1/2. The evolution of the shell radius R(t) is determined

by conservation of stress-energy and is given by

[
sgn(nν∂µr)(f + (dR/dλ)2)1/2

]
= −M

r
(2.32)

Using the definition for nµ and f± we find

Γm =M − 4

3
πr3ρ (2.33)

where Γ is defined by

2Γ = (f+ + (dR/dλ)2)1/2 + (f− + (dR/dλ)2)1/2 (2.34)

In the weak field limit with dR/dλ >> 1 this reduces to

Γ ≈ γ = (1− Ṙ2)−1/2 (2.35)

which is consistent with the expected mass/energy conservation law.

Next, let us define the glued metric over the entire spacetime by

g̃µν = g+µνΘ(Φ) + g−µνΘ(−Φ) (2.36)

where Θ(x) is the Heaviside step function, and Φ again parameterizes the hypersurface Σ.

45



Other quantities with an over tilde are defined to have a similar meaning. Since the metric

can be made continuous along Σ, we get

∂αg̃µν = ∂αg
+
µνθ(Φ) + ∂αg

−
µνθ(−Φ) + [gµν ]δ(Φ)∂αΦ

= ∂̃αgµν (2.37)

A direct consequence of eq. (2.37) is that the Christoffel symbols suffer a step discontinuity,

but there is no δ(Φ) contribution. Therefore, the radial acceleration experience by an observer

crossing the shell does not produce an instantaneous displacement kick.

However, the Riemann tensor does contain such a delta function contribution, indicating

that two nearby test bodies would experience an instantaneous relative velocity kick.

Rαβµν = R̃αβµν − 2[Γαβ[µ]nν]αδ(Φ) (2.38)

From this point forward we shall operate in the weak-field limit exclusively and assume

γ >> 1,m << M . The full stress-energy tensor for a gluonic bubble connected to a shell of

mass m > 0 is given by eq. (2.19) and (2.31)

Tµν = −ρgµνΘ(R(t)− r) +
γm

4πR(t)2
δ(r −R(t))vµvν (2.39)

where ρ is the energy density of the gluonic region which acts as a perfect fluid with p = −ρ

and vµ = (−1, Ṙ, 0, 0) is the four velocity of the shell. Conservation of stress-energy gives

the equation of motion for the surface of the bubble:

R̈ = −4πρR(t)2

mγ3
(2.40)

This still assumes the bubble is small so the gravitational effect on the wall is negligible
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compared to the gluon tension.

Finding a closed-form analytic solution to this differential equation is quite difficult. It

is easier to find an approximate solution for γ(t) during the initial era and the turn-around.

The total mass of the system is conserved and is given by

M =
4

3
πρR(t)3 + γm (2.41)

For highly relativistic initial velocity, we have Ṙ ≈ 1, R(t) ≈ t. During this portion of the

evolution, we have

γ(t) ≈ γ0 −
4

3m
πρt3 (2.42)

Near the turn-around point, the shell will become sub-relativistic. The equation of motion

then approximates to

R̈ ≈ −
4πρR2

0

m
(2.43)

where R0 is the maximum value of R at the turn-around. The solution is

R(t) ≈ R0 −
2πρR2

0

m
(t− t0)

2 (2.44)

γ(t) ≈ 1 +
8π2ρ2R4

0

m2
(t− t0)

2 (2.45)

where R(t0) = R0. Before the turnaround, both R(t), γ(t) are monotonic functions of time,

so we can smoothly connect the cubic and quadratic regions for γ(t). Numerical solutions

to eq. (2.40) are plotted in Fig. 2.3. The corresponding boost factor γ is plotted in fig. 2.4.

In the limit of zero quark mass, the period of a single orbit of the bubble is given by

T = 2R0. For a test body which begins at rest at position r, the time spent inside of

the bubble interior in the zero quark mass limit is given by τ = 2(R0 − r). For the case
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Figure 2.3: Trajectory of the shell R(t) (solution to eq. (2.40)) for fixed bubble tension and
variable initial boost factor γ0. For γ0 ∼ 1, the trajectory is no longer predominantly nearly
null, and the turnaround is less abrupt. The units of the spatial axis have been re-scaled by
ℏ/Mc while the units of the time axis have been re-scaled by ℏ/Mc2.
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Figure 2.4: γ boost factor γ = (1− Ṙ2)−1/2 of the shell for fixed bubble tension and variable
initial boost factor γ0. The early and late time behavior are approximated in eq. (2.42) and
(2.45).
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0 ̸= m << M , the period is given by

T = 2

ˆ R0

0

dR

|Ṙ|
(2.46)

where 4
3πρR

3
0 =M −m. From eq. (2.41) we find that

Ṙ = ±
(
1− m2

(M − (4/3)πρR3)2

)1/2

(2.47)

Plugging this into eq. (2.46), making a variable substitution, and substituting γ0 = M/m

we get

T = 2R0

ˆ 1

0

(
1− 1

γ20(1− (1− γ−1
0 )x3)2

)−1/2

dx (2.48)

Taylor expanding for γ0 >> 1 the orbit period is approximately

T ≈ 2R0

(
1 +

1

3γ0
+

1

27γ20
(
√
3π + 9ln3 + 6lnγ0)

)
(2.49)

The time spent inside of the bubble by a test body to leading order in m/M is given by

τ ≈ 2(R0 − r)
(
1 +

m

3M

)
(2.50)

Meanwhile, the radial acceleration experienced by a test body scales as

v̇ =
2M

R3
0

(
1− m

M

)
(2.51)

Therefore the accumulated residual velocity after a single orbit is given by

δv ≈ 4M

R3
0

r(R0 − r)

(
1− 2m

3M

)
(2.52)

Since the true quark masses would yield γ0 ∼ 10, there will be a small but finite correction to
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the estimate for the radius of the bubble needed to produce the observed cosmic acceleration

computed in section 2.4.2.

2.4 Cosmic Acceleration

2.4.1 Gravity of Virtual Fluctuations

In our model of the gravitational effect of the vacuum, we will assume that virtual point par-

ticles have no gravitational mass. The whole gravitational effect of virtual QCD fluctuations

lies within bubbles, and is dominated by gluons. Since a virtual fluctuation has zero mean

energy and “borrows” energy only causally, the only gravitational effect is internal to the

causal diamond occupied by the gluonic field fluctuation [Brodsky and Shrock, 2011]. Thus,

nonlocal gluonic fluctuations produce a residual velocity between particles approximated by

the classical bubble solution, given by eq. (2.9) for each fluctuation on scale R0.

Consider gravitational repulsion from a space-filling vacuum of virtual pion-like bubbles as

a model for how the physical cosmological constant is produced by QCD vacuum fluctuations.

A small secular acceleration comes from the accumulation of small mutually repulsive velocity

kicks within each orbit. The characteristic acceleration time is

TΛ = R0/δvg ∼ cT 2
0 /R0, (2.53)

that is, it is larger than the gravitational timescale T0 by a factor cT0/R0. In Planck units,

T 2
0 ∼M−4 and R0 ∼M−1, which leads to a “cosmic” acceleration rate

T−1
Λ ∼M3. (2.54)

This approximately agrees with the observed value of Λ. As explained in more detail below,

it is much smaller than the value that would correspond to a universe filled with gluonic
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plasma of density ρ0, or with thermal or quantum field excitations on the same scale, which

is the standard estimate as in eq. (2.1),

T−1
0 ∼M2. (2.55)

The difference between the residual effect of a fluctuation, and the residual effect of a volume

uniformly filled with the same material, arises because the gravitational acceleration from

fluctuations comes only from the mass of material on the bubble scale R0, instead of a volume

with a gravitational radius ∼ cT0.

In this microscopic physical picture of how cosmic acceleration works, test particle tra-

jectories, which are shown in fig. 2.2 in flat-space coordinates, correspond to geodesics of the

emergent, slightly curved cosmological metric.

2.4.2 Cosmic Acceleration From Virtual Bubbles

The bubble model allows a more precise comparison of virtual bubble parameters with mea-

sured cosmic acceleration. Fits to cosmological dataTanabashi et al. [2018], Prat et al. [2022]

yield an estimated value Λ0 that corresponds to acceleration on a cosmic scale with a rate

T−1
Λ ≡

√
Λ

3
= 1.0× 10−61 t−1

P

√
Λ

Λ0
. (2.56)

(A pure-vacuum cosmology would have a Hubble radius and event horizon radius c/HΛ =

cTΛ.) We now evaluate the bubble parameters for which this mean cosmic acceleration

matches the mean repulsive acceleration of test particles in the bubble model.

For virtual fluctuation states coherent on causal diamonds, the physical picture is that

a test particle inside any virtual bubble accelerates away from the entire universe on the

opposite side of the bubble’s center at the mean rate given by the bubble model. The mean

acceleration is given by the mean repulsive velocity impulse over a bubble orbit (eq. (2.8)),
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divided by the duration of the orbit 2R0/c, which we equate with cosmic acceleration:

T−1
Λ = (1/2)⟨δvg/R0⟩B , (2.57)

where ⟨⟩B denotes a volume average over the world lines that pass through the bubble. Since

the impulse accounts for a whole orbit, an average that gives equal weight to each element

of the bubble 3-volume also accounts for the time average of the fluctuating acceleration:

⟨δvg(r)⟩B =

´ R0
0 drr2δvg(r)´ R0

0 drr2
(2.58)

This weighting yields

T−1
Λ = 3R0/20cT

2
0 , (2.59)

so writing the result in Planck units,

T−2
0 ≡ 8πGρ0/3 = 2M4(R0M)−3, (2.60)

we obtain

T−1
Λ = (3/10)M3(R0M)−2. (2.61)

Apart from the numerical coefficient, with R0M ∼ 1 this is the same result as the simple

estimate in eq. (2.54).

As a brief aside, we address a potential ambiguity in the averaging done in eq. (2.58).

It may appear at first that since we are treating a single bubble with a center of mass,

there is a preferred origin and the direction of acceleration averages to zero over the volume.

However, this is merely an artifact of the fact that we have chosen to work in the coordinate

description. If we analyze the geodesic deviation equation, we find that all nearby geodesics

experience a uniform (coordinate independent) relative repulsion while passing through the
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orbit of the bubble. If two nearby geodesics are initially separated by Da, then their relative

separation over time is given by eq. (9)

d2Da

dt2
=

8πρ

3
Da (2.62)

If one measures the acceleration of proper distance, we find that no form of spatial averaging

can eliminate the acceleration between nearby test bodies. See appendix B. for more details.

Combining these results, the predicted cosmological constant from virtual gluonic bubbles

in Planck units is:

Λbubble = 3H2M6, (2.63)

where

H ≡ (3/10)(R0M)−2. (2.64)

For bubbles with the physical pion mass (M = mπ0 = 135MeV), we find

Λbubble(M = mπ)

Λ0
=

(
R0mπc

2.0 ℏ

)−4

. (2.65)

That is, for pion-mass fluctuations to give the right cosmological constant, the one parameter

in this simple model— the size of a bubble in units of the de Broglie wavelength for its mass—

needs to be

R0 = 2.0 ℏ/mπc, (2.66)

for their mean gravity to produce the observed cosmic acceleration. This idealized model

shows quantitatively how a cosmological constant close to the observed value results from

the gravitational effect of vacuum fluctuations in QCD fields, as long as the quantum states

of the fields and their gravity are coherent on causal diamonds.
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2.4.3 Improvements on the Idealized Bubble Model

The comparison of cosmological and microscopic measurements in eqs. (2.65) and (2.66), is

precise, but it is not accurate: it is based on a highly idealized model system and is not

expected to produce exact agreement with the physical cosmological constant. In the real

QCD vacuum, coherent gluonic wave states have a more complex 4D structure than the

bubble model. The quantum wave function of virtual gluonic matter is not a homogeneous

sphere, that of quarks is not a thin shell, actual pion states are not radially homogeneous,

and virtual stress is not isotropic as in the bubble. A more stringlike gluon state, which

has less repulsive gravity, would require a smaller value of R0 to match the observed cosmic

acceleration. The estimate just given also does not allow for finite quark mass, m ̸= 0, but

since physical quark masses have m << mπ, this difference produces only a small fractional

change, as shown in the solution above (eq. (2.52)).

There are also ambiguities in our idealized application of the correspondence principle to

virtual orbits, which depend on how quantum gravity actually works in detail. For example,

the volume average taken above (eq. (2.58)) uses the mean acceleration of bodies relative to

the center of the bubble over an orbit, but it might be more accurate to include a directional

projection of the component of radial acceleration onto the opposite hemisphere of the causal

diamond. Such a projection factor would change the answer by a small numerical factor.

In principle, nonlocally-coherent gravitational effects of vacuum QCD fluctuations could be

better approximated with an explicit calculation of nonlinear quantum field dynamics.

2.4.4 Remarks

Why QCD?

It is natural to ask, why QCD? What’s special about its vacuum, compared to the other

fields, that make it source the cosmological constant?
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In a coherent relational model of locality, there are straightforward physical reasons

why the gravitational effect of vacuum fluctuations for most standard model fields should

vanish. The classical gravity of a null particle with momentum p is simple: it creates a

null shock with a displacement δτ = Gp/c4, with an observable portion that depends on

the location of the particle relative to observer [Mackewicz and Hogan, 2022]. A zero-point

field vacuum excitation, generated by a creation operator on an infinite plane wave mode,

creates a completely delocalized state, so according to the correspondence principle, there is

no observable gravitational effect: essentially, everything “moves together”.

This argument applies to the Standard Model fields whose interactions and correlations

fall off in the infrared. As noted above, the vacuum fluctuations of gluons are uniquely

different from those of other forces. The “IR slavery” of the QCD vacuum confines baryons

into bags, and leads to a finite range at the Fermi scale for strong Yukawa interactions

mediated by pions. The same effect makes QCD vacuum gravity different from that of the

other forces: the vacuum fluctuations of QCD correspond to coherent localized bubbles of

energy flow on the Fermi scale, so the argument just given for delocalized vacuum states does

not apply. Renormalization required for quantum field theory fails to account correctly for

gravitational entanglement of causal structure with long wavelength modes [Hollands and

Wald, 2004, Stamp, 2015], so it is plausible that the IR slavery of vacuum QCD fluctuations

leads to different gravitational effects from other fields.

Outside of hadrons, the QCD vacuum at low temperature is a coherent condensate,

whose mean gravitating density is negligible [Brodsky and Shrock, 2011]. Its fluctuations

resemble the lightest resonant excitations, pions, which are spatially extended but localized.

Nearly all of their virtual energy comes from the massless gluon field. In the gluonic bubble

model, fluctuations in the tensile gluon interaction energy produce a small but cosmologically

detectable repulsive gravity. Estimates of the effective equation of state from field theory

[Schutzhold, 2002, Bjorken, 2003, 2010, Klinkhamer and Volovik, 2009, Poplawski, 1990]
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reproduce the estimate from our bubble model.

The other non-abelian forces of the Standard Model, the weak interactions, are mediated

by massive particles with a short range, and the nonlocal space-time correlations of their

vacuum fluctuations are qualitatively different from QCD. For these, the “zero momentum

mode” of fluctuations takes the form of a globally spatially uniform scalar condensate with

homogeneous fluctuations around the minimum of an effective potential. This Higgs con-

densate, whose order parameter describes the low-temperature vacuum expectation value

of the effective potential, apparently has zero gravitation [Weinberg, 1989]. As explained

in the Appendix, the difference in gravitational effect from the space-filling QCD vacuum

can be understood from an exponential suppression of the trace anomaly at weaker coupling

strength [Schutzhold, 2002].

Causal Coherence of Virtual Fluctuations

The bubble model illustrates classically how a fluctuation could have a durable macroscopic

physical effect if positional relationships among world lines are determined by coherent causal

diamonds. In such an emergent relational holographic picture, classical locality emerges as

a consistent approximation on large scales, based on relationships of a causal diamond with

those it is nested in. Exact relational positions within causal diamonds are indeterminate.

In our model, systematic secular effects of fluctuations are assumed to lead to a durable

effect on the classical metric. This hypothesis leads to the assumption used in our estimate

of mean acceleration of test particles, relative to the center of the bubble. On average, the

acceleration applies to test particles in relation to the future light cones on the opposite side

of a pion-like causal diamond vacuum fluctuation. The coherence propagates local coherent

acceleration to the future light cone of a microscopic causal diamond, which leads to coherent

acceleration of the same magnitude on a cosmic scale.

The bubble model illustrates concretely how causal coherence of virtual fluctuation states
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is connected with the small nonzero value of the cosmological constant. According to this

scenario, the wildly wrong estimate of vacuum fluctuation density in eq. (2.1) results from

an incorrect physical interpretation of vacuum energy that does not take directional causal

coherence of virtual states into account; it arises from the incorrect model of locality built

into a particular interpretation of field theory.

Careful studies of entanglement and decoherence in virtual field fluctuations confirm the

need to account for causal consistency to avoid apparent paradoxes with nonrelativistic quan-

tum thought-experiments [Danielson et al., 2022, Belenchia et al., 2019]. The decomposition

into modes that are used to construct a vacuum state— the differentiation between radia-

tion and vacuum— depends on the choice of Cauchy surfaces used to describe the system.

Apparent paradoxes are resolved when field states are measured on Cauchy surfaces that

correspond to correlated measurements.

Similar causal coherence of primordial virtual fluctuations has recently been used in a

model that explains some observed anomalies of cosmological anisotropy at large angular

separation [Hogan and Meyer, 2022, Hogan et al., 2023]. In that context, directional hemi-

spherical coherence leads to a causal “shadow” in primordial virtual correlation, which is

observed as a symmetry of temperature correlations at large angles.

Why Now?

Typically, field-based models of cosmic acceleration require introduction of new fields with

new, arbitrary and very small dimensionless parameters, in some cases accompanied by

an anthropic explanation [Weinberg, 1989]. In the gluonic-bubble scenario, Λ is not an

independent parameter, but should have a precisely calculable value from Standard Model

field fluctuations and standard semiclassical gravity.

In principle, this scenario roughly accounts for the well-known puzzle sometimes nick-

named the “why now” coincidence— the fact that the timescale associated with fundamental
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cosmic acceleration coincides with the current age of the universe, which in turn presumably

is determined by astrophysical timescales, such as those determined by stellar evolution.

The very long evolution timescale of stars and other astrophysical systems in Planck units

originates mainly from the cube of the nucleon mass [Hogan, 2000]:

Tastro/tP ∼ (mP /mproton)
3. (2.67)

(Additional dimensionless factors that are numerically less significant, such as the electro-

magnetic coupling and electron/nucleon mass ratio, depend on the specific astrophysical

system.) The exponentially large dimensionless number mP /mproton, which expresses the

weakness of gravity on a nuclear scale, appeared mysterious to Planck, Eddington and Dirac,

but now has a natural interpretation in the context of modern unified field theory, because

of the logarithmic running of the QCD coupling constant with energy scale [Wilczek, 1999].

In any case, because nucleon masses are determined by the same scale that fixes masses

of pions and QCD vacuum fluctuation bubbles, the astrophysical timescale Tastro naturally

(roughly) coincides with the bubble model for TΛ, since they originate from the same large

dimensionless number.

2.5 Gravity of a Gluonic String Model

2.5.1 Non-rotating string model

We now consider the gravitational effect if the gluonic material does not uniformly fill a

causal diamond as it does in the bubble model. Consider an extended particle of total mass

M represented by two “quarks” of mass m << M connected by a one dimensional string with

mass per length µ = µ0M
2(c/ℏ), where µ0 is a dimensionless parameter that characterizes

the gluonic tension. The system has zero angular momentum, so the quarks travel on radial

trajectories connected by the straight string. It starts with zero length, stretches to length
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LM = ℏ/µ0Mc, then re-contracts under the string tension.

For a classical model of strongly interacting gluonic quantum field excitations like pions,

we can take the parameter µ0 to be less than but of the order unity. Values µ0 << 1

correspond to longer strings, which break apart into many shorter strings as new quark pairs

are created. Values µ0 > 1 describe systems smaller than the de Broglie wavelength, so they

do not correspond to physical quantum states.

As in the bubble model, very light quarks of mass m << M , with a negligible fraction of

the total mass, start with very high gamma-factor γ = M/2m relative to the center, so the

trajectories are nearly null. Their kinetic energy is converted to string energy as they travel.

Eventually γ ≈ 1, and for a time short compared to LM/c, they enter a subrelativistic regime

where the string tension turns them around. For pion-like systems with m << M , the short

subrelativistic regime is a small fraction of the whole trajectory, so the main effects do not

depend strongly on the value of m.

M

single orbit

M − δM

impulses

gravitational 
waves

Figure 2.5: Causal diagram of gravitational radiation from a single gluonic string orbit. For
M >> m, displacement is concentrated near anisotropic, spherical null shocks.

2.5.2 Gravitational Waves

As shown in more detail in the linear solution below, a gluonic string produces gravitational

waves (fig. 2.5). A simple estimate of the radiation rate from dimensional arguments shows
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how the rate of energy loss scales with M . In one orbit, a fully relativistic string with deficit

angle δθ radiates a fraction

δθ ∼ δM/M ∼ µG/c2 ∼ µℏ/cm2
P (2.68)

of its energy as gravitational radiation. For a gluonic string of length LM = ℏ/µ0Mc with

m << M , the decay rate by gravitational radiation in Planck units is about

tP /τd ∼ µ20(M/mp)
3. (2.69)

The string model displays roughly the same energy flow between QCD fluctuations and the

gravitational vacuum as the bubble model, but it does not produce the same mean classical

repulsion as gravity from bubble-like fluctuations.

2.5.3 Linear String Solution for m ≥ 0

i. Equations of Motion

For all computations in this section we will work in units where c = 1, G = 1 and restore

units when needed. The energy-momentum tensor

T ab = T abs + T abp (2.70)

consists of two parts: that of particles (representing quarks),

T abp = mδ(x)δ(y)(δ(z − z1(t))v
a
1u
b
1 + 1 ↔ 2), (2.71)

whose four-velocity is

ua = γva = γ1,2(1, 0, 0, ż1,2), (2.72)
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and that of a string (representing gluons),

T abs = µδ(x)δ(y)T abθ(z − z2(t))θ(z1(t)− z), (2.73)

where µ is the constant mass per unit length of the string, T ab ≡ tatb − zazb, and θ(x) is

the heaviside step function which is 1 for x > 0 and vanishes elsewhere.

The equations of motion are similar for the two models, the string and the bubble. They

are not identical: in the bubble, the quark surface mass density decreases with radius, so the

inward acceleration at the edge for constant p increases with radius.The difference between

solutions is small for m << M , since the turnaround happens within a small fractional

change in radius.

In the string model, conservation of total stress-energy ∇aT
ab = 0 gives an equation of

motion for the positions of the quarks z1,2(t),

d

dt
(γ1,2ż1,2) = ∓ µ

m
≡ ∓α. (2.74)

The solution for a uniformly accelerated relativistic particle with constant (proper) acceler-

ation α, initial 3-velocity v0, and initial position z0 = 0 is given by

z1,2(t) = ± 1

α
[γ0 − (1 + (γ0v0 − αt)2)1/2]. (2.75)

The acceleration parameter is given by α = µ/m. Note that the turnaround time (or

equivalently, the duration of time for which the particle is non-relativistic) is approximately

δt ∼ 1/α ∼ L/γ0.

In the string model, we will see later that the peaks in the “radiative” part of the curvature

occur at the retarded time associated with the turnaround of each particle. The period of the

trajectory is T = 2γ0v0/α. Therefore the fraction of time during which the trajectory is non-

61



ultra-relativistic is δt/T ∼ 1/γ0v0 ∼ 1/γ0 << 1. However, we will see later that the relative

acceleration experienced by nearby test bodies scales like v̇ ∼ α2, so that δv ∼ v̇δt ∼ α.

ii. Gravitational Effect

To determine the gravitational effect of such a system, we begin with the linearized Einstein

equations (eq. (14)) in the Lorenz gauge ∇ah̄ab = 0. The solution to this equation is found

by integrating over the intersection of the source world sheet with the past light cone, as in

eq. (15). Since the delta function depends both explicitly on x⃗′ and implicitly through tret,

we need to use the Jacobian of the coordinate transformation to evaluate the integrals of the

delta functions.

The metric perturbation associated with the low mass particles is

h̄
p
ab =

4mγ1v
1
av

1
b

α1|x⃗− X⃗1(tret)|
+

4mγ2v
2
av

2
b

α2|x⃗− X⃗2(tret)|
(2.76)

where

α1,2 = 1− n̂1,2·
dX⃗1,2

dt
(tret) (2.77)

n̂1,2 =
x⃗− X⃗1,2(tret)

|x⃗− X⃗1,2(tret)|
(2.78)

From this point forward, evaluation at retarded time will be understood unless explicitly

stated otherwise. The metric perturbation associated with the string is

h̄sab = 4µln

(
z − z2 +

√
s2 + (z − z2)2

z − z1 +
√
s2 + (z − z1)2

)
Tab (2.79)

where s2 = x2+ y2 denotes the transverse distance from the string. We note here that while

in the case of the infinite string the spacetime is flat with an angular deficit, the dynamic

string does in fact produce curvature. We are most interested in the leading order in 1/r
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behavior of the metric perturbation. In this limit, n̂→ x̂ and tret ≈ t− r + cosθz1,2(tret).

h̄sab =
4µ

r
(z1 − z2)Tab +O

(
1

r2

)
(2.80)

h̄
p
ab =

4m

r

(
γ1v

1
av

1
b

1− cosθż1(tret)
+ 1 ↔ 2

)
+O

(
1

r2

)
(2.81)

In the far field limit, the retarded time can be solved explicitly as a function of u = t − r

and θ.

t
1,2
ret =

1

αsin2θ

(
uα± γ0cosθ ∓ |cosθ|

√
(sin2θ + (uα± γ0cosθ)2)

)
(2.82)

Since we are primarily interested in the far field behavior of the curvature, we need

only consider derivatives which act on the time dependent terms in eq. (2.80) and (2.81).

One can show that ∂tret/∂t = 1/α1,2 and ∇tret = −n̂/α1,2. In other words, ∇af(tret) =

−Kaḟ(tret)/α1,2, where Ka = −∇au = ta + ra is a radially out-going null vector. In this

limit, the linearized Riemann tensor simplifies to

Rabcd ≈ 2K[aK|[dḧc]|b] (2.83)

The relevant components of the Riemann tensor for eq. (9) are plotted in Fig. fig. 2.6 as

a function of the retarded time coordinate u = t − r. Note the sharp spikes in curvature,

which occur at the turnaround points of the quarks as viewed by a stationary observer.

The effective stress-energy tensor for the gravitational waves is given by

TGW
ab =

1

32π

〈
h̄cd,a h̄

cd,b−
1

2
h̄,a h̄,b−h̄cd,d h̄cb,a−h̄cd,d h̄ca,b

〉
(2.84)

where ⟨...⟩ denotes an average over several wavelengths of the radiation. Although this

object is not gauge invariant (and therefore its physical interpretation is unclear), the total
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Figure 2.6: Components of the Riemann curvature tensor from eq. (9) plotted as a function
of retarded time u = t−r for γ0 = 10, α = 10, θ = π/4. The curvature spikes at the retarded
times associated with the turnaround of each quark. Due to the highly relativistic motion,
the turnaround is no longer simultaneous as seen by an observer away from the equator
(θ = π/2).

integrated flux of energy to null infinity as defined by

P = − lim
r→∞

ˆ
T0adS

a (2.85)

is gauge invariant and is therefore a physically meaningful quantity. It turns out that the

dynamics of the string do not contribute directly to the stress energy of the gravitational

waves in this setup, although the string does indirectly contribute by determining the dy-

namics of the quarks. Restoring units, the total integrated power in the string model scales

like

P = f(γ0)α
2m2Gc−1 (2.86)

where f(γ0) is plotted in fig. 2.7 on a log-linear scale. We see that the asymptotic scaling of

P is logarithmic in γ0, hence confirming the previous assumption that the power does not

strongly depend on the mass of the quarks in the m << M limit. For a pion mass of 135

MeV and quark masses of about 3− 5 MeV, we get γ0 =M/2m ∼ 101 and f(γ0) ∼ 101. In
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agreement with the estimate given by eq. (2.69), the timescale of decay is

τ−1
d =

P

M
∼ 101µ20(M/mp)

3τ−1
p (2.87)

f(γ0)

y~18.41 Log10 γ0+2.23

5 10 50 100
γ0

10

20

30

40

f(γ0)

Figure 2.7: Plot of f(γ0) in eq. (2.86) on a log-linear scale, demonstrating an asymptotically
logarithmic scaling of the power.

2.6 Strong Energy Condition, Quantum Trace Anomaly, and

Dimensional Dependence

We now explore how the particular nature of the QCD interactions can allow for a repulsive

gravitational effect. Consider a congruence of timelike geodesics described by a vector field

ua. The expansion, shear, and twist of the congruence are defined by

θ = qab∇aub (2.88)

σab = q ca q
d
b ∇(cud) −

1

3
θqab (2.89)

ωab = q ca q
d
b ∇[cud] (2.90)
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where qab denotes the spatial part of the metric that is orthogonal to ua, and (a, b), [a, b] de-

note symmetrization and antisymmetrization of indices, respectively. Raychaudhuri’s equa-

tion tells us how the expansion evolves with time.

dθ

dτ
= −1

3
θ2 − σabσ

ab + ωabω
ab −Rabu

aub (2.91)

Here Rab denotes the Ricci tensor. As is typically done, we will ignore the twist. For a

congruence which initially has zero expansion and shear, we have (after using the Einstein

field equations to replace Rab with Tab)

dθ

dτ

∣∣∣∣
t=0

= −8π

(
Tab −

1

2
gabT

)
uaub (2.92)

where T = gabTab, which evaluates to T = −T00 + T11 + T22 + T33 in global inertial

coordinates. For a perfect fluid in 3 spatial dimensions (in units where c = 1),

Tab = diag(ρ, p, p, p), (2.93)

so eq. (2.92) becomes
dθ

dτ

∣∣∣∣
t=0

= −4π(ρ+ 3p) (2.94)

Therefore if the perfect fluid obeys an equation of state p < −ρ/3 (such that the strong

energy condition Rabuaub > 0 is violated), the expansion of the congruence will initially be

positive, leading to a repulsive gravitational effect. As the expansion and shear grow, the

RHS of eq. (2.91) will eventually reach zero, but the sign of the rate of change of expansion

can never become negative.

Now consider another fundamental constraint: a perfect fluid composed purely of a clas-

sical non-abelian gauge field (e.g., massless noninteracting point particles, such as photons),

the equation of state is p = ρ/3, which does not violate the strong energy condition. The
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form of the field strength tensor in classical Yang Mills theory is such that the trace of the

stress-energy tensor always vanishes, similar to classical Maxwell theory. However, quantum

interactions between the gluons and quarks and the self-interaction of gluons lead to what

is known as a trace anomaly, i.e. a non-vanishing of the trace of the quantum stress energy

tensor.

In order for the strong energy condition to be violated by quantum interactions, eq. (2.88)

tells us that the equation of state must satisfy ρ+T/2 < 0, or T < −2ρ. For a perfect fluid,

we have T = −ρ + 3p. This puts a constraint on the magnitude of the trace anomaly if

QCD vacuum fluctuations are to serve as the source of accelerating cosmic expansion. It has

been hypothesized Schutzhold [2002] that this trace anomaly can produce the violation of

the strong energy condition needed to produce a repulsive gravitational effect.

The vanishing of the trace of the stress-energy tensor is synonymous with conformal

invariance of the action of a field theory, i.e. S =
´
d4x

√
−gL is invariant under gµν →

Ω(xα)gµν . In ref. Schutzhold [2002] it is shown that this conformal invariance is preserved

under the standard QFT renormalization procedures for free fields in flat space but not for

self-interacting fields in flat space or free fields in curved spacetimes. It is estimated there

that the self-interacting gluonic field gives rise to a negative energy density and pressure

proportional to the renormalization group β function, with a corresponding cosmological

constant that is many orders of magnitude too large.

According to our interpretation, where the gravitational effect of virtual fluctuations is

evaluated using a causally coherent bubble model, the magnitude is about right. This result

is consistent with the idea that active gravity entangles long wavelength field modes with

causal structure, which is not accounted for in standard renormalization proceduresHollands

and Wald [2004], Stamp [2015].

Although the sharp boundary and spherical symmetry of the bubble model are artificial,

we conjecture that the physical gravitational effect is indeed microscopic, localized at the
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Fermi scale. Unlike the model sketched in ref. Schutzhold [2002], the cosmic acceleration

is a true cosmological constant, with a value determined entirely by the properties of the

stable QCD ground state vacuum. These arguments suggest that at very high temperatures

in the early universe, when QCD had significantly weaker interactions, the value was much

smaller, but there are no observable consequences of this variation.

Schutzhold [2002] also shows that free fields in curved space gives a positive energy density

with a cosmological constant that is many orders of magnitude too small, which supports our

conjecture that fluctuations of the other Standard Model fields do not contribute significantly

to the gravitational energy of the vacuum. The effects of the anomaly are nonperturbative,

and are exponentially suppressed for coupling constants that are not of order unity.

Finally, we address why the bubble model of the pion behaves differently from the string

model for producing a repulsive gravity. Although the string model of the pion is commonly

used as a toy model in other contexts, it does not work as a gravitational model because of

the dimensionality of the matter distribution. In order to violate the strong energy condition

in D spatial dimensions, the fluid must satisfy

T00 +
1

2
T = ρ+

1

2
(−ρ+Dp) < 0 → ρ+Dp < 0 (2.95)

Therefore, a pressure p = −ρ in D = 1 spatial dimensions (i.e. a straight string) cannot

violate the strong energy condition: more than one dimension of tension is needed to account

for cosmic acceleration.

2.7 Conclusion

The gluonic bubble model demonstrates the classical gravitational coupling of a single pion-

like oscillation with geometry. Our proposal for the cosmological constant is that fluctuations

in the QCD vacuum have a similar relationship with gravity. Delocalized zero-point fluc-
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tuations of field vacua contribute nothing to the mean density that couples to gravity, but

locally coherent fluctuations have a net repulsive effect that mimics a uniform cosmologi-

cal constant. This effect occurs for the strong interactions in particular because of gluonic

tension, represented in our toy model by highly tensile gluonic gas. Our model shows how

this works geometrically in classical systems, and why a nonlocally coherent 4D structure is

needed to obtain a net repulsive gravitational effect.

Although the bubble model adopted here is a simplified idealization of real QCD vac-

uum states, the essential elements that create the cosmological constant of the magnitude

estimated here— nonlocal directional causal coherence of vacuum states, and a tension from

the strong non-abelian self-interactions of gluon fields— must also appear in the states of

the physical QCD vacuum. In this scenario, the absolute value of the physical cosmological

constant can in principle be calculated exactly from a nonlinear computation of spacelike

correlations of 4D mass-energy flows in the virtual QCD vacuum. Such a calculation would

allow more precise tests than the approximate agreement obtained here with a highly ideal-

ized picture.
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APPENDIX A

A.1 Tensor Harmonics

In this section we lay out some properties of tensor spherical harmonics that will be used

for the mode sum in Chapter 1. Consider a tensor field with spin s. We can decompose any

tensor on the sphere into a mode sum over rank s tensors weighted by spherical harmonics

Yl,m in the following manner

Yj,l,s,m =
l∑

ml=−l

s∑
ms=−s

⟨l,ml; s,ms|j,m⟩Yl,ml
ts,ms (A.1)

=
s∑

ms=−s
⟨l,m−ms; s,ms|j,m⟩Yl,m−ms

ts,ms (A.2)

where the ts,ms are a basis of spin s unit tensors satisfying

t∗α· tβ = δα,β (A.3)

and the ⟨_|_⟩ are Clebsch-Gordon coefficients. For the case of gravitational radiation, we

will be concerned with s = 2 tensor harmonics, specifically the transverse ones, which can

be separated into “electric” (E) and “magnetic” (M) parts. Here, the dot product between

spin 2 tensors is taken to mean

A·B =
∑
i,j

Ai,jBi,j (A.4)

To extract the angular spectrum of a rank two tensor defined on the sphere, we can use rank

2 tensor spherical harmonics. Define the rank 2 tensor spherical harmonics

(Tj,ℓ,m)ab(Ω) = Yj,ℓ,2,m(Ω) =
∑
α,β

⟨ℓ, α; 2, β|j,m⟩Yℓα(Ω)(tβ)ab (A.5)
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where the tα are a set of orthonormal rank 2 tensors. These tensor harmonics satisfy an

orthogonality relation given by

ˆ
dΩ(T ∗

j′,ℓ′,m′)ab(Tj,ℓ,m)ab = δj,j′δℓ,ℓ′δm,m′ (A.6)

The choice of basis employed here for the tα is

t2 =
1

2
(x̂x̂− ŷŷ) +

i

2
(x̂ŷ + ŷx̂) (A.7)

t1 = −1

2
(x̂ẑ + ẑx̂)− i

2
(ŷẑ + ẑŷ) (A.8)

t0 =
1√
6
(2ẑẑ − x̂x̂− ŷŷ) (A.9)

t−1 =
1

2
(x̂ẑ + ẑx̂)− i

2
(ŷẑ + ẑŷ) (A.10)

t−2 =
1

2
(x̂x̂− ŷŷ)− i

2
(x̂ŷ + ŷx̂) (A.11)

(t∗α)
ab(tβ)ab = δαβ (A.12)

Any tensor function defined on the sphere can be decomposed into a series of these tensor

harmonics.

fab(Ω) =
∑
j,ℓ,m

Cj,ℓ,m(Tj,ℓ,m)ab(Ω) (A.13)

The coefficients can be extracted using the orthogonality properties of the tensor harmonics.

Cj,ℓ,m =

ˆ
dΩ(T ∗

j,ℓ,m)abfab (A.14)

Finally, we recall the definition of the Spherical Harmonics, Legendre Polynomials, and

Associated Legendre Polynomials.

Yℓm(θ, ϕ) =

√
2ℓ+ 1

4π

√
(ℓ−m)!

(ℓ+m)!
Pmℓ (cosθ)eimϕ (A.15)
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Pmℓ (x) = (−1)m(1− x2)m/2
dm

dxm
Pℓ(x) (m ≥ 0) (A.16)

P−m
ℓ = (−1)m

(ℓ−m)!

(ℓ+m)!
Pmℓ (A.17)

Pℓ(x) =
1

2ℓℓ!

dℓ

dxℓ
(x2 − 1)ℓ (A.18)

A.1.1 Transverse Tensor Spherical Harmonics

As mentioned above, there are two types of transverse tensor harmonics.

TEl,m =

√
(l + 1)(l + 2)

2(2l + 1)(2l − 1)
Tl,l−2,m +

√
3(l − 1)(l + 2)

(2l − 1)(2l + 3)
Tl,l,m (A.19)

+

√
l(l − 1)

2(2l + 1)(2l + 3)
Tl,l+2,m

TMlm =

√
l + 2

2l + 1
Tl,l−1,m +

√
l − 1

2l + 1
Tl,l+1,m (A.20)

These satisfy orthogonality conditions given by

ˆ
dΩTElm·TE∗

l′m′ = δll′δmm′ (A.21)
ˆ
dΩTMlm·TM∗

l′m′ = δll′δmm′ (A.22)
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One can show using a series of recursion relations that the transverse harmonics have the

following explicit form

TEl,m = (θ̂θ̂ − ϕ̂ϕ̂)
1√

2l(l + 1)(l − 1)(l + 2)

(
2
∂2

∂θ2
+ l(l + 1)

)
Yl,m (A.23)

+ (θ̂ϕ̂+ ϕ̂θ̂)

√
2

l(l + 1)(l − 1)(l + 2)
im

∂

∂θ

(
Yl,m
sinθ

)

TMlm = −(θ̂θ̂ − ϕ̂ϕ̂)

√
2

l(l + 1)(l − 1)(l + 2)
m
∂

∂θ

(
Yl,m
sinθ

)
(A.24)

− (θ̂ϕ̂+ ϕ̂θ̂)
1√

2l(l + 1)(l − 1)(l + 2)

(
2
∂2

∂θ2
+ l(l + 1)

)
Yl,m

A.1.2 Memory Decomposition

First, we apply these definitions to the memory tensor defined in Chapter 1, Section . We

take the result from eq. (1.13) and expand in a basis of transverse tensor harmonics. Note

importantly that the transverse tensor harmonics are not defined for l < 2. In the case we

are considering, we have axisymmetry, so only the m = 0 modes contribute. Looking at the

form of eq. (1.13), we see that we must have that

∆D =
M

r

( ∞∑
l=2

alT
E
l,0

)
·D0 (A.25)

We can determine the al using the orthogonality condition eq. (60).
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al =

ˆ
dΩTE∗

l,0 · (θ̂θ̂ − ϕ̂ϕ̂)

=

√
2

l(l + 1)(l − 1)(l + 2)

√
2l + 1

4π

ˆ
dΩ

(
2
d2

dθ2
+ l(l + 1)

)
Pl(cosθ)

= −

√
2π(2l + 1)

l(l + 1)(l − 1)(l + 2)

ˆ
dcosθ

(
2cotθ

d

dθ
+ l(l + 1)

)
Pl(cosθ)

= 2

√
2π(2l + 1)

l(l + 1)(l − 1)(l + 2)

ˆ
dxx

d

dx
Pl(x)

= 4

√
2π(2l + 1)

l(l + 1)(l − 1)(l + 2)
(l even) (A.26)
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APPENDIX B

B.1 Curvature Identities

Here we summarize some curvature identities that are referenced in the work. The first is

the Bianchi identity

∇[aRbc]de = 0 (B.1)

The first contracted Bianchi identity is

∇aRabcd = ∇cRdb −∇dRcb (B.2)

Taking the divergence of the Bianchi identity gives

□Rbcde = −∇a∇bRcade −∇a∇cRabde (B.3)

The Riemann curvature tensor can be decomposed into its totally trace-free part (Weyl

tensor) and it’s trace (Ricci tensor and scalar).

Rabcd = Cabcd +
1

2
(Racgbd −Radgbc −Rbcgad +Rbdgac) +

R

6
(gadgbc − gacgbd) (B.4)

In general, the antisymmetric covariant derivative on any tensor can be related to the Rie-

mann curvature tensor via

(∇a∇b −∇b∇a)T
c1...cm
d1...dn

= −
∑
i

R ci
abe T

c1...e...cm
d1...dn

+
∑
j

R e
abdj

T c1...cmd1...e...dn
(B.5)

It then follows that in the linearized theory, we have

(∇a∇b −∇b∇a)Rcdef = 0 (B.6)

81



Using eq. B.6, B.4 and the Einstein field equations in eq. B.3 we have a linearized wave

equation for the Riemann tensor.

□Rabcd = −32π∇[a∇|[dTc]|b] − 16πη[c[b∇a]∇d]T (B.7)

B.2 Timelike Congruences

Consider a congruence of timelike geodesics whose tangent vectors are defined by the vector

field ua(xµ). We can define the expansion θ, shear σab, and twist ωab of the congruence by

examining the tensor field ∇aub. Define the metric qab of the 3 dimensional hypersurface

orthogonal to ua via the relation gab = −uaub + qab. Then we have

θ = qab∇aub (B.8)

σab = ∇(aub) −
1

3
θqab (B.9)

ωab = ∇[aub] (B.10)

The geodesic deviation equation then gives an evolution equation for the expansion, shear,

and twist.

d

dτ
θ = −Rabuaub + 2ω2 − 2σ2 − 1

3
θ2 (B.11)

d

dτ
σab = Ccbadu

cud +
1

2
R̃ab −

2

3
θσab − σacσ

c
b − ωacω

c
b +

1

3
qab(σ

2 − ω2) (B.12)

d

dτ
ωab = −2

3
θωab − 2ωc[aσ

c
b] (B.13)

where

R̃ab = qacqbdR
cd − 1

3
qabqcdR

cd (B.14)
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In the linearized and low velocity regime, these equations reduce to

d

dt
θ ≈ −R00 (B.15)

d

dt
σab ≈ C0ba0 +

1

2
R̃ab (B.16)

d

dτ
ωab ≈ 0 (B.17)
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