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Evidence from comprehensive 
independent validation studies 
for smooth pursuit dysfunction 
as a sensorimotor biomarker 
for psychosis
Inga Meyhoefer 1,2,3, Andreas Sprenger 4, David Derad 4, Dominik Grotegerd 1, 
Ramona Leenings 1, Elisabeth J. Leehr 1, Fabian Breuer 1, Marian Surmann 1, Karen Rolfes 1, 
Volker Arolt 1,2, Georg Romer 5, Markus Lappe 2,6, Johanna Rehder 6, Nikolaos Koutsouleris 7,8,9, 
Stefan Borgwardt 10,11, Frauke Schultze‑Lutter 3,12,13, Eva Meisenzahl 3, Tilo T. J. Kircher 14, 
Sarah S. Keedy 15, Jeffrey R. Bishop 16, Elena I. Ivleva 17, Jennifer E. McDowell 18, 
James L. Reilly 19, Scot Kristian Hill 20, Godfrey D. Pearlson 21, Carol A. Tamminga 17, 
Matcheri S. Keshavan 22, Elliot S. Gershon 15, Brett A. Clementz 18, John A. Sweeney 23,24, 
Tim Hahn 1, Udo Dannlowski 1 & Rebekka Lencer 1,2,10*

Smooth pursuit eye movements are considered a well-established and quantifiable biomarker of 
sensorimotor function in psychosis research. Identifying psychotic syndromes on an individual level 
based on neurobiological markers is limited by heterogeneity and requires comprehensive external 
validation to avoid overestimation of prediction models. Here, we studied quantifiable sensorimotor 
measures derived from smooth pursuit eye movements in a large sample of psychosis probands 
(N = 674) and healthy controls (N = 305) using multivariate pattern analysis. Balanced accuracies of 
64% for the prediction of psychosis status are in line with recent results from other large heterogenous 
psychiatric samples. They are confirmed by external validation in independent large samples including 
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probands with (1) psychosis (N = 727) versus healthy controls (N = 292), (2) psychotic (N = 49) and non-
psychotic bipolar disorder (N = 36), and (3) non-psychotic affective disorders (N = 119) and psychosis 
(N = 51) yielding accuracies of 65%, 66% and 58%, respectively, albeit slightly different psychosis 
syndromes. Our findings make a significant contribution to the identification of biologically defined 
profiles of heterogeneous psychosis syndromes on an individual level underlining the impact of 
sensorimotor dysfunction in psychosis.

Keywords  Smooth pursuit eye movements, Machine learning, Individual prediction, Psychosis, Bipolar, 
Depression

Given the generally weak associations between clinically defined psychiatric diagnoses with specific neurobiologi-
cal alterations of the central nervous system, the development and validation of biomarkers has been a major goal 
in psychiatric research for decades1. Many studies have combined a large number of variables and/or multiple 
biomarkers using multivariate pattern recognition approaches2–9. There is growing interest in parameters affect-
ing the stability of these results including internal and external validation procedures as well as sample sizes of 
training and validation samples as validation sample size must be regarded as major risk of misestimation10–13. 
This finding might explain why larger data sets tend to display weaker (presumable closer to “true”) accuracies 
(e.g. in the classification of depressive patients vs. healthy controls 60–65% accuracy based on structural MRI 
data in N = 2240 participants11 or 54–56% accuracy based on different neuroimaging modalities in N = 1809 
participants14) than many previous findings in small samples (e.g.Refs.15,16).

One well-established and quantifiable biomarker in psychosis research is smooth pursuit eye movements 
(SPEM). SPEM testing involves having individuals visually track a small moving object relying on continuous 
sensorimotor processing of perceptual motion signals into dynamic adjustments of motor actions17. Thus, specific 
SPEM parameters reflect the ability of the brain to continuously receive visual motion information and simul-
taneously generate, monitor and adjust motor output accordingly to provide a clear visual percept of a moving 
object of interest. As early as 1908, numerous studies have emphasized SPEM dysfunctions as a biomarker for 
schizophrenia and other psychotic disorders indicating specific impairments of visual sensorimotor processing 
not only in stable but also early states of the disorder18–26.

The assessment of SPEM was recently included in studies initiated by the Bipolar-Schizophrenia Network on 
Intermediate Phenotypes (B-SNIP) consortium aiming to develop a biologically valid framework (e.g. biologically 
defined phenotypes) for psychotic disorders (i.e. stable probands with schizophrenia, schizoaffective disorder, or 
psychotic bipolar-I disorder)9,27–30. With regard to psychosis symptoms in the B-SNIP1 sample, Reininghaus and 
colleagues31 reported evidence of a transdiagnostic dimension underlying affective and non-affective psychotic 
symptoms. In line with this, results from the first recruitment period of the B-SNIP study (B-SNIP1, N = 674) 
indicate SPEM deterioration not only in schizophrenia but also in probands with schizoaffective and bipolar 
disorder with psychotic symptoms20. These findings, consistent with smaller sample studies25, imply that SPEM 
deficits can be regarded as a transdiagnostic biomarker for psychosis.

To determine the specificity of the relationship between psychotic symptoms and SPEM performance, it 
is essential to study probands with disorders that lack psychotic symptoms such as non-psychotic affective, 
substance, attention-deficit/hyperactivity, and obsessive–compulsive. Such studies revealed either intact SPEM 
performance or only minimal SPEM deficits32–36. As sample sizes were rather small for most of these studies, 
however, conclusions remain unclear. Underlining its usefulness as a biomarker, subtle SPEM deficits were not 
only found in chronically ill but also in first episode patients23,37,38 and in unaffected first-degree relatives of 
schizophrenia patients20,39. Such subtle SPEM deficits are reflected by specific impairments of certain SPEM 
measures, e.g. during SPEM initiation, while other SPEM measures, e.g. sustained eye velocity, appear unimpaired 
indicating that certain compensation mechanisms within the oculomotor systems, e.g. derived from prediction, 
are in play20,40. Thus, we would expect that similar SPEM disturbances would also be present in a clinical high-
risk state for psychosis41 which has not been investigated so far.

To provide comprehensive internal and external validation in the present study, we developed a machine-
learning based model that was trained on a set of traditional measures characterizing specific SPEM subfunc-
tions, i.e. mean eye velocity, initial eye acceleration and initiation latency20, in the large sample of the B-SNIP1 
study. We then applied several external validation steps to determine stability and specificity in an independent 
sample of psychosis probands (external validation-1: B-SNIP2 sample), in bipolar probands with and without 
psychosis symptoms (external validation-2: Psychosis and Affective Research Domains and Intermediate Phe-
notypes (PARDIP) sample), in probands with predominately affective disorders as well as psychosis probands 
(external validation-3: DFG-Forschergruppe 2107 (FOR2107) sample) and, following an exploratory approach, 
in clinical high risk as well as recent-onset psychosis and depression states (external validation-4: Personalised 
Prognostic Tools for Early Psychosis Management (PRONIA) sample), see Fig. 1. Our aim was to develop an 
algorithm based on SPEM characteristics which allows evaluation of psychosis-related sensorimotor transfor-
mation function on an individual level. Ideally, such SPEM characteristics can be assessed in a short 5-min test 
ensuring practical utility.

Results
Demographics, clinical characteristics, and SPEM descriptive information for proband groups by study can 
be found in Tables 1, 2. With regard to the B-SNIP1 sample, there were no significant differences for age 
(T(977) = 1.20, p = 0.23) and sex (χ(1) = 1.16, p = 0.28) between psychosis probands and healthy controls. 
However, healthy controls yielded higher cognition scores than psychosis probands (T(953) = 5.93, p < 0.001). 
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Correlations between SPEM performance and possible confounds, i.e. cognition scores or chlorpromazine 
equivalents were negligible, see Supplementary Tables 8–10.

Machine training and internal validation: B‑SNIP1
The model distinguished psychosis probands from healthy controls by SPEM variables with a mean balanced 
accuracy of 63.96% (p < 0.001, Table 3; for further results parameter refer to Supplementary Table 4). On average 
53% of the psychosis probands and 75% of the control subjects were correctly classified (sensitivity = 52.97%, 
specificity = 74.96%, Table 3). Mean likelihood ratios42 resulted in: positive test result = 2.18, negative test 
result = 0.63.

External validation‑1: B‑SNIP2
Validation in the B-SNIP2 sample included n = 666 psychosis probands and n = 289 healthy controls (n = 64 
participants could not be entered into the machine due to at least one missing value). Emphasizing high valid-
ity, the B-SNIP1 derived model discriminated psychosis probands from healthy controls in the independent 
B-SNIP2 sample with a balanced accuracy of 65.03% (see Table 3 and Supplementary Table 4). About 56% of 
the psychosis probands and 74% of the control subjects were correctly classified (sensitivity = 56.01%, specific-
ity = 74.05%, Table 3).

External validation‑2: PARDIP
For the PARDIP sample, n = 44 bipolar probands with psychosis symptoms, n = 33 bipolar probands without 
psychosis symptoms and n = 70 healthy controls were included in the validation procedure (n = 9 participants 
were excluded due to at least one missing value). Our trained model could distinguish bipolar probands with 
psychosis symptoms from healthy controls with a balanced accuracy of 65.52% (Table 3 and Supplementary 
Table 4). About 68% of the bipolar probands with psychosis were correctly classified as psychosis probands and 
63% of the control subjects were correctly classified as healthy controls (sensitivity = 68.18%, specificity = 62.86%, 
Table 3). Furthermore, about 61% of the bipolar probands without psychosis symptoms were classified as controls 
(which means that they are closer to the healthy non-psychotic than the psychosis category, Table 3).

External validation‑3: FOR2107
To validate the machine in predominately affective psychopathology, data from n = 94 probands with major 
depression and n = 25 probands with bipolar disorder, both groups without psychotic symptoms, from the 
FOR2107 consortium were entered into the analyses. Using the B-SNIP1 machine, nearly 81% of the probands 
with major depression and 60% of the probands with bipolar disorder were classified as being closer to the healthy 
non-psychotic than the psychosis category, Table 3.

As proof of principle, we also validated the B-SNIP1 machine on n = 51 psychosis probands and n = 72 healthy 
controls from FOR2107 revealing a balanced accuracy of 58.37% (Table 3 and Supplementary Table 4). In 
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Figure 1.   Overview of study samples that were included into the machine training and validation procedures.
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Table 1.   Descriptive information and clinical characteristics for proband groups by study. CPZ equivalents 
Chlorpromazine equivalents, B-SNIP Bipolar-Schizophrenia Network on Intermediate Phenotypes, SZ 
probands with schizophrenia, SAD probands with schizoaffective disorder, BP probands with bipolar disorder, 
PARDIP Psychosis and Affective Research Domains and Intermediate Phenotypes, BPwP bipolar probands 
with psychosis, BPwoP bipolar probands without psychosis, FOR2107 DFG Forschergruppe 2107, MDwoP 
probands with major depression without psychosis, PRONIA Personalised Prognostic Tools for Early Psychosis 
Management, ROD recent-onset depression probands, CHR clinical-high-risk- for psychosis probands, ROP 
recent-onset-psychosis probands. Table represents means and standard deviations given in parentheses. 
aGroup of psychosis probands include SZ, SAD, and BP probands, bGroup of psychosis probands include 
n = 27 SZ, n = 18 SAD, n = 2 Brief psychotic disorder, n = 1 Delusional disorder, n = 2 BPwP, n = 1 MDwP; 
due to small samples, no specific results for psychosis subgroups are given, cTotal score indicating cognition 
abilities were estimated using the following measures: B-SNIP1, B-SNIP2, PARDIP = Wide Range Achievement 
Test 4 (WRAT4 55; FOR2107 = Multiple Choice Vocabulary Test, version B (MWT-B 74, original MWT-B 
scores were transformed to the IQ scale 74; PRONIA = Wechsler Adult Intelligence Scale Matrix Reasoning 75. 
dPsychosis features were estimated using the following measures the following measures: B-SNIP1, B-SNIP2, 
PARDIP, and PRONIA = Positive And Negative Syndrome Scale (PANSS 66 ); FOR2107 = Scale for Assessment 
of Positive Symptoms (SAPS) and Scale for Assessment of Negative symptoms (SANS) 67, SAPS and SANS 
global/summary scores were converted to PANSS scores 68; eDepressive symptoms were estimated using the 
following measures: B-SNIP1, B-SNIP2, PARDIP = Montgomery-Åsberg Depression Rating Scale (MADRS 
69); FOR2107 = Original Beck Depression Inventory, 1978 version 70; PRONIA = Beck Depression Inventory-II 
(BDI-II 71); fFor B-SNIP1, B-SNIP2, PARDIP and FOR2107 sample, mania was estimated using the Young 
Mania Rating scale 73. Mania was not assessed in the PRONIA sample. gChlorpromazine equivalents were 
assessed based on the computations by Andreasen and colleagues 80. hSignificant differences between controls 
and psychosis probands were found for cognition total score (p < .001). iSignificant differences between 
controls and psychosis probands were found for age (p < .001), sex distribution (p = .003) and cognition 
total score (p < .001). jSignificant differences were found for sex distribution (p = 0.01), cognition total score 
(p < 0.001; controls > BPwP, controls > BPwoP), and psychosis positive (p = 0.03). kSignificant differences 
were found for sex distribution (p = .004), psychosis positive (p < .001; psychosis probands > controls 
and MDwoP and BPwoP), psychosis negative (p < 0.001; psychosis probands > controls and MDwoP, 
controls < psychosis probands and MDwoP and BPwoP), depression (p < .001; psychosis probands and 
MDwoP and BPwoP > controls), mania (p = .04; post-hoc tests Bonferroni-corrected were all non-significant), 
and medication (p > 0.001; psychosis probands > BPwoP and MDwoP). lSignificant differences were found for 
psychosis positive (p < 0.001; ROP > ROD and CHR and controls), psychosis negative (p < 0.001; ROP and ROD 
and CHR > controls), and depression (p < 0.001; ROP and ROD and CHR > controls).

Study N Age

Sex Cognitionc Illness duration Psychosisd Depressione Maniaf Medicationg

% Male Total score (Years) Positive Negative Total score Total score CPZ

B-SNIP1 (machine training and internal validation)h

 Controls 305 36.5 (12.4) 45 103.80 (14.00)

 Psychosis probandsa 674 35.5 (12.5) 49 97.66 (15.19) 15.41 (11.91) 15.89 (5.64) 14.81 (5.43) 10.74 (9.32) 5.91 (6.29) 467.11 (438.99)

  SZ 265 34.5 (12.5) 67 94.88 (16.02) 13.58 (11.77) 17.07 (5.68) 16.56 (5.64) 8.72 (8.30) 5.63 (5.83) 522.83 (435.50)

  SAD 178 36.3 (11.6) 40 96.68 (14.90) 16.64 (11.24) 18.04 (5.36) 16.03 (5.21) 14.29 (9.68) 7.28 (6.62) 531.03 (526.92)

  BP 231 36.0 (13.00) 35 101.59 (13.59) 16.55 (12.34) 12.92 (4.47) 11.90 (3.96) 10.25 (9.38) 5.20 (6.42) 340.09 (317.84)

B-SNIP2 (external validation-1)i

 Controls 292 33.4 (11.2) 40 101.13 (11.17)

 Psychosis probandsa 727 38.6 (12.2) 50 93.53 (14.30) 17.92 (12.89) 16.16 (6.78) 14.90 (7.00) 11.41 (10.24) 8.11 (7.78) 538.87 (1001.07)

  SZ 288 39.8 (12.5) 60 90.67 (13.76) 18.94 (12.73) 17.18 (6.75) 17.04 (7.10) 9.15 (9.10) 7.63 (6.65) 653.12 (1137.71)

  SAD 264 40.1 (11.8) 45 91.78 (13.69) 21.05 (13.21) 17.51 (6.92) 14.84 (6.85) 13.27 (10.48) 9.64 (8.24) 539.97 (1064.84)

  BP 175 34.1 (11.0) 41 101.90 (13.24) 11.32 (10.01) 12.48 (5.15) 11.56 (5.64) 12.15 (10.94) 6.47 (8.28) 297.47 (278.29)

PARDIP (external validation-2)j

 Controls 71 37.7 (13.4) 55 103.65 (15.16)

 BPwP 49 41.1 (11.2) 43 92.46 (15.46) 11.9 (8.7) 16.22 (6.60) 16.84 (6.84) 17.86 (12.46) 12.14 (9.20) 339.61 (328.08)

 BPwoP 36 39.4 (13.1) 25 93.49 (13.81) 9.4 (9.6) 13.76 (3.74) 17.41 (6.98) 17.15 (11.05) 10.15 (7.86) 164.43 (122.31)

FOR2107 (external validation-3)k

 Controls 72 34.2 (13.2) 39 112.42 (14.92) 11.22 (0.14) 7.34 (0.56) 2.71 (3.51) 0.53 (1.17)

 Psychosis probandsb 51 35.0 (10.2) 69 109.67 (11.19) 9.6 (9.6) 13.43 (3.33) 13.21 (5.99) 13.89 (11.19) 1.67 (1.41) 675.75 (370.33)

 MDwoP 94 35.0 (11.7) 40 112.78 (13.41) 6.4 (7.3) 11.34 (0.36) 10.89 (4.32) 12.16 (9.60) 1.09 (1.95) 98.52 (139.15)

 BPwoP 25 38.4 (11.6) 48 113.69 (19.32) 8.5 (8.9) 11.47 (0.75) 10.91 (4.18) 11.88 (13.45) 1.69 (1.97) 244.34 (151.94)

PRONIA (external validation-4)l

 Controls 16 24.3 (3.6) 31 11.85 (2.15) 7.06 (0.25) 7.00 (0.00) 3.07 (2.56)

 ROD 17 20.7 (5.5) 59 9.43 (1.81) 0.7 (0.5) 7.00 (0.00) 14.88 (6.23) 22.71 (11.36) 31.67 (17.62)

 CHR 19 21.0 (3.6) 37 11.57 (1.70) 9.44 (2.13) 14.13 (4.92) 31.06 (8.98) 80.95 (67.60)

 ROP 11 24.1 (6.5) 36 11.63 (1.77) 0.6 (0.6) 19.91 (8.11) 19.27 (9.80) 28.10 (16.39) 152.15 (101.87)
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detail, about 43% of the psychosis probands and 74% of the control subjects were correctly classified (sensitiv-
ity = 43.14%, specificity = 73.61%, Table 3).

External validation‑4: PRONIA
Validation in high-risk and recent-onset psychotic or depressive disorder could be computed in n = 11 probands 
with recent-onset psychosis, n = 17 probands with recent-onset depression, n = 19 participants with clinical high 
risk of psychosis, and n = 16 controls (PRONIA study). Emphasizing the validity of the machine, about 94% 
of the controls were categorized as healthy. However, in contrast to previous results in chronically ill psycho-
sis probands, only 18% of the recent-onset psychosis probands were classified as psychosis patients (Table 3). 
Interestingly, the machine labeled nearly 42% of the participants with clinical high risk of psychosis as psychosis 
probands (Table 3). Of the probands with recent-onset, non-psychotic depression, 76% were classified as healthy 
controls (Table 3).

Table 2.   Descriptive results of smooth pursuit eye movements for proband groups by study. B-SNIP bipolar-
schizophrenia network on intermediate phenotypes, SZ probands with schizophrenia, SAD probands with 
schizoaffective disorder, BP probands with bipolar disorder, HC healthy controls, PARDIP psychosis and 
affective research domains and intermediate phenotypes, BPwP bipolar probands with psychosis, BPwoP 
bipolar probands without psychosis, FOR2107 DFG Forschergruppe 2107, MDwoP probands with major 
depression without psychosis, PRONIA personalised prognostic tools for early psychosis management, 
ROD recent-onset depression probands, CHR clinical-high-risk- for psychosis probands, ROP recent-
onset-psychosis probands, SD standard deviation. a Significant differences between controls and psychosis 
probands were found for maintenance gain, early gain, initial eye acceleration, and latency (all p > .001). 
bSignificant differences between controls and psychosis probands were found for maintenance gain, early gain, 
initial eye acceleration, and latency (all p > 0.001). cSignificant differences were found for maintenance gain 
(p < 0.001; BPwP < controls), early gain (p < 0.001; BPwP < controls and BPwoP), and initial eye acceleration 
(p = 0.008; BPwP < controls). dSignificant differences were found for maintenance gain (p = 0.009; psychosis 
probands < controls and MDwoP), early gain (p < 0.001; psychosis probands < controls and MDwoP), and 
initial eye acceleration (p < 0.001; psychosis probands < MDwoP, BPwoP < MDwoP). eSignificant differences 
were found for early gain (p < 0.001; CHR < controls).

Study N

Maintenance 
gain (%/100)

Early gain 
(%/100)

Initial eye 
acceleration (°/
sec2) Latency (ms)

Mean SD Mean SD Mean SD Mean SD

B-SNIP1 (machine training and internal validation)a

 Controls 305 0.93 0.10 0.79 0.19 80.28 35.49 175.84 26.59

 Psychosis probands 674 0.86 0.17 0.64 0.25 61.54 34.52 183.75 37.23

  SZ 265 0.84 0.19 0.62 0.26 60.30 37.23 182.01 40.01

  SAD 178 0.88 0.15 0.66 0.24 63.13 34.00 188.90 38.00

  BP 231 0.86 0.17 0.67 0.24 61.76 31.66 181.80 32.88

B-SNIP2 (external validation-1)b

 Controls 292 0.93 0.05 0.76 0.15 80.99 30.62 180.01 30.61

 Psychosis probands 727 0.85 0.13 0.59 0.21 72.91 37.84 196.18 43.33

  SZ 288 0.85 0.13 0.57 0.21 70.16 38.85 195.88 45.70

  SAD 264 0.84 0.14 0.57 0.21 68.68 37.00 198.29 43.07

  BP 175 0.88 0.12 0.65 0.19 83.81 35.46 193.53 39.62

PARDIP (external validation-2)c

 Controls 71 0.91 0.11 0.76 0.18 75.85 31.93 184.94 32.66

 BPwP 49 0.81 0.16 0.58 0.22 57.32 30.82 191.13 49.20

 BPwoP 36 0.87 0.14 0.70 0.19 65.52 29.23 188.25 43.69

FOR2107 (external validation-3)d

 Controls 72 0.90 0.08 0.72 0.17 97.87 32.79 164.46 15.94

 Psychosis probands 51 0.85 0.15 0.61 0.18 83.07 29.07 164.53 16.73

 MDwoP 94 0.90 0.09 0.72 0.15 103.92 34.00 162.56 14.65

 BPwoP 25 0.87 0.10 0.65 0.15 82.08 28.40 168.91 15.51

PRONIA (external validation-4)e

 Controls 16 0.91 0.06 0.77 0.10 107.79 24.08 165.36 18.66

 ROD 17 0.89 0.10 0.70 0.19 114.32 42.53 169.19 21.96

 CHR 19 0.81 0.22 0.60 0.22 99.46 34.92 178.34 17.49

 ROP 11 0.90 0.08 0.67 0.14 114.23 46.02 168.59 17.22
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Effects of sample size on model performance
Training models in reduced (randomly selected 50% of the B-SNIP1 sample) and larger (com-
bined B-SNIP1 and B-SNIP2) samples showed that balanced accuracies (50% B-SNIP1 = 62.28%, 
B-SNIP1 = 63.96%, B-SNIP1 + B-SNIP2 = 65.87%), specificities (50% B-SNIP1 = 78.48%, B-SNIP1 = 74.96%, 
B-SNIP1 + B-SNIP2 = 80.94%) and sensitivities (50% B-SNIP1 = 46.08%, B-SNIP1 = 52.97%, 
B-SNIP1 + B-SNIP2 = 50.80%) were rather unaffected by sample size (Supplementary Tables 6, 7 and Supple-
mentary Fig. 1).

Discussion
In the current study we examined a set of traditional SPEM measures (i.e. predictive eye velocity maintenance 
gain, early eye velocity maintenance gain, initial eye acceleration, and eye latency; Leigh & Zee17; Lencer et al.20) 
and their interactions as quantifiable biological indicators of psychosis-related visual sensorimotor dysfunction 
in large samples of probands with psychotic disorders. This is an important approach since identified SPEM 
deteriorations point to specific deficits in the transformation of sensory motion signals into motor action being 
associated with alterations in occipito-parieto-frontal networks24,43.

To overcome limitations by classical frequentist statistics, we implemented multivariate pattern analyses (e.g. 
supervised machine learning approaches)44 using internal (i.e. a hold-out subsample consisting of participants 
that were not used for training) and external (i.e. an independent dataset) validation in sufficient large data 
samples11 to allow for clinically relevant single-subject statements pointing to sensorimotor transformation 
deficits. Most importantly, we not only trained and internally validated the machine-learning algorithm in a 
single sample but also applied and externally validated the machine in an independent large sample of psychosis 

Table 3.   Prediction accuracies for all samples and model results for the comparison of chronic psychosis 
probands vs. controls. B-SNIP bipolar-schizophrenia network on intermediate phenotypes, PARDIP psychosis 
and affective research domains and intermediate phenotypes, BPwP bipolar probands with psychosis, BPwoP 
bipolar probands without psychosis, FOR2107 DFG Forschergruppe 2107, MDwoP probands with major 
depression without psychosis, PRONIA personalised prognostic tools for early psychosis management, 
ROD recent-onset depression probands, CHR clinical-high-risk- for psychosis probands, ROP recent-onset-
psychosis probands, BAC balanced accuracy score. a p-value < 0.001, indicated for BAC score as this metric 
was used to identify the best performing model. bBAC, sensitivity, and specificity can only be computed for 
comparisons including psychosis patients and controls (as these groups from the B-SNIP1 sample were used 
in the machine training and internal validation processes). For all other samples true label and predicted label 
(psychosis proband or healthy control) are given. Main results are displayed in bold.

True label

Predicted label

BACb Sensitivityb SpecificitybPsychosis probands n (%) Controls n (%)

B-SNIP1 (training and internal validation)

 Psychosis probands vs. controls, 
fold 1

Controls (n = 104) 32 (30.77%) 72 (69.23%)
61.97 54.71 69.23

Psychosis probands (n = 223) 122 (54.71%) 101 (45.29%)

 Psychosis probands vs. controls, 
fold 2

Controls (n = 89) 22 (24.72%) 67 (75.28%)
63.80 52.32 75.28

Psychosis probands (n = 237) 124 (52.32%) 113 (47.68%)

 Psychosis probands vs. controls, 
fold 3

Controls (n = 112) 22 (19.64%) 90 (80.36%)
66.11 51.87 80.36

Psychosis probands (n = 214) 111 (51.87%) 103 (48.13%)

 Mean 63.96a 52.97 74.96

B-SNIP2 (external validation-1)

 Psychosis Probands vs. controls
Controls (n = 289) 75 (25.95%) 214 (74.05%)

65.03 56.01 74.05
Psychosis probands (666) 373 (56.01%) 293 (43.99%)

PARDIP (external validation-2)

 BPwP vs. controls 65.52 68.18 62.86

Controls (n = 70) 26 (37.14%) 44 (62.86%)

BPwP (n = 44) 30 (68.18%) 14 (31.82%)

BPwoP (n = 33) 13 (39.39%) 20 (60.61%)

FOR2107 (external validation-3)

 Psychosis probands vs. controls 58.37 43.14 73.61

Controls (n = 72) 19 (26.39%) 53 (73.61%)

Psychosis Probands (n = 51) 22 (43.14%) 29 (56.86%)

MDwoP (n = 94) 18 (19.15%) 76 (80.85%)

BPwoP (n = 25) 10 (40.00%) 15 (60.00%)

PRONIA (external validation-4)

Controls (n = 16) 1 (6.25%) 15 (93.75%)

ROD (n = 17) 4 (23.53%) 13 (76.47%)

CHR (n = 19) 8 (42.11%) 11 (57.89%)

ROP (n = 11) 2 (18.18%) 9 (81.82%)
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probands and healthy controls (external validation-1: B-SNIP2), in a sample of bipolar probands with and 
without psychotic symptoms (external validation-2: PARDIP), in a sample of probands with affective disorders 
without psychotic symptoms and psychosis probands (external validation-3: FOR2107), and in a sample with 
recent-onset psychosis or depression and clinical high risk of psychosis (external validation-4: PRONIA). Our 
main finding shows high consistency for the identification of psychosis probands vs. healthy controls by these 
sensorimotor indicators throughout the four different samples (B-SNIP1: 63.96%, B-SNIP2: 65.03%, PARDIP: 
65.52%, FOR2107: 58.37%). However, it is important to consider that our model performed notably better in 
accurately classifying controls as controls (specificities in the different samples ranged from 63 to 75%) than 
psychosis probands as psychosis probands (sensitivities ranged from 43 to 68%).

Although a balanced accuracy score of nearly 64% as derived from our training sample (B-SNIP 1) may be 
regarded as insufficient for SPEM performance to be used as a single screening instrument for determining 
psychosis-related sensorimotor transformation function, it significantly exceeds chance level and remains within 
the range of expectable results in similar heterogenous psychiatric sample sizes11. Additionally, a likelihood ratio 
for a positive test result of 2.18 could be interpreted as small (but important) changes in probability42. Our second 
key finding emphasizes the generalization to new data when applying the model to an independent cohort of 
chronically ill psychosis probands and healthy controls. Regarding the first external validation in the B-SNIP2 
sample (external validation-1), our machine yielded a comparable (even slightly higher) balanced accuracy of 
65.03% when discriminating the two groups. This result is particularly meaningful due to (a) the independence 
of both data sets and (b) slight differences in the SPEM task design underlining the robustness of classification 
results by our model. A third cohort with chronically ill psychosis probands and healthy controls was derived 
from the FOR2107 consortium (external validation-3) and could be classified correctly with a balanced accuracy 
of 57.64%.

Our findings support the original suggestions by Diefendorf and Dodge45 to use SPEM as a neurobiological 
diagnostic tool coming with multiple advantages including standardized measurements and brief 5-min test-
ing feasible even for severely impaired patients. Here, we applied a constellation of SPEM tasks consisting of 
full-ramp and foveo-petal step-ramp trials at 18.7 degrees of visual angle constant velocity. These specific SPEM 
tasks allow the computation of the four key measures to evaluate SPEM performance and can be recommended 
for future studies. Our results add to previous findings based on traditional group analyses in indicating that 
SPEM is a valuable psychosis-related biomarker of sensorimotor integrity being useful even at the single-subject 
level20. Besides its diagnostic value this biomarker bears highly relevant information for establishing personal-
ized treatment regimes.

Very recently St Clair and colleagues46 applied a multiclass machine-learning model to differentiate patients 
with schizophrenia, bipolar affective disorder, major depression disorder, and healthy controls on the basis of 
98 eye movement symptoms (including several SPEM variables). The model was tested in two validation sets 
achieving balanced accuracies for schizophrenia patients of 73% and 75%. Both validation sets were relatively 
small (test-1 internal validation: n = 30 schizophrenia, n = 35 bipolar, n = 33 depression, n = 35 controls; test-2 
external validation: n = 60 schizophrenia, n = 184 controls) which entails an increased risk of misclassification11. 
To avoid this common short coming we have used a large internal validation sample as well as applied our 
machine to several extensive independent data sets. Of note, the task from St Clair and colleagues took about 
15 min in total yielding a total of 98 eye movement measures47 derived from free viewing, fixation duration, and 
smooth pursuit tasks46 limiting its clinical practicability.

To further determine the model’s specificity regarding the relationship between psychotic symptoms and 
SPEM performance we applied the machine to other patient groups. To this regard, there has been an extensive 
discussion concerning similarities and differences between schizophrenia and bipolar disorder48. Machine-
learning models based on brain data have been used to discriminate both patient groups49, though often merging 
data from bipolar patients with and without history of psychotic episodes50.

Similarly, St Clair and colleagues46 did not specify psychosis symptoms in those patients suffering from 
bipolar disorder and major depression which we found has a significant impact as demonstrated by our external 
validation-2 sample from the PARDIP. In line with the idea of the relationship between SPEM deterioration and 
psychotic psychopathology, our machine classified about 68% of the bipolar probands with psychosis correctly 
as psychosis patients, while 61% of the bipolar probands without psychosis symptoms were classified as healthy 
(which means that they are closer to healthy individuals). Underlining its generalizability, 60% of the bipolar 
probands without psychotic symptoms from the FOR2107 study (external validation-3) were also rated closer 
to the healthy non-psychotic category.

Broadening the perspective of specificity regarding SPEM deficits in affective disorders, we found that nearly 
81% of probands suffering from major depression without psychotic episodes (FOR2107 study, external vali-
dation-3) were classified as healthy indicating closer affiliation to the non-psychotic category. This result is in 
line with previous findings of only minor impaired SPEM performance from traditional group statistics36 and 
multivariate pattern analyses based on brain data indicating major depression and schizophrenia as two end 
points of an interjacent continuum50.

Our external-validation sample 4 from the PRONIA study was used to test our model in young probands 
being at clinical high risk for psychosis or experiencing a first psychotic or first depressive episode. Interest-
ingly, about 42% of probands with clinical high risk of psychosis were categorized as psychosis probands which 
might support the idea of an underlying susceptibility of SPEM deficits in the psychosis spectrum51. Indeed, 
the specific SPEM measures of predictive and early maintenance gain indicated the worst performance in this 
proband group compared to all three other PRONIA groups (see Table 2). However, this group is extremely 
heterogeneous as indicated by large standard deviations in the early and maintenance gains (see Table 2). Note, 
transition rates for CHR to ROP are about 25% within 3 years indicating a high heterogeneity of CHR subjects 
regarding susceptibility to psychosis52. In contrast, in the relatively small (n = 11) and heterogeneous sample of 
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recent-onset psychosis probands our machine only classified two probands (18%) as belonging to the psycho-
sis group. Despite the small sample size, this observation points to possible differences in SPEM performance 
between recent-onset and chronic states of psychosis (see also Table 1 for information about illness duration) 
as discussed previously53. That study observed subtle impairments of immediate sensorimotor processing in 
first-episode psychosis patients with only short duration of treatment, e.g. after 6 weeks, which appeared to be 
compensated by predictive drive to pursuit. In more detail, first-episode patients demonstrated slightly worse 
performance in the pure-ramp task (comparable to the step-ramp task in the current study) but were unaffected 
in the oscillating task (comparable to the triangle wave task in the current study). Deficits were discussed as 
possible medication effects with regard to their serotonergic antagonism of brainstem sensorimotor systems. 
However, same as in the present study, no associations between SPEM variables and medication dosage were 
found53. Indeed, in our ROP group (which might be comparable to the first-episode patients after short duration 
of treatment from the study by Lencer and colleagues53), early maintenance gain -driven by immediate senso-
rimotor processing- was considerably reduced while predictive maintenance gain was unaffected (see Table 2). 
Notably, 76% of probands with recent-onset depression and 94% of healthy controls from the PRONIA sample 
were correctly classified as not belonging to the psychosis group.

Despite the clear strengths of the study, some limitations need to be discussed: (1) SPEM results for initial eye 
acceleration and latency differed between laboratories/recording devices (Supplementary Table 11). To estimate 
the impact of these two variables on the prediction of our machine, we additionally trained a machine in the 
B-SNIP1 sample using only the two eye velocity gain measures as predictors. The machine was able to distinguish 
psychosis probands from healthy controls with a balanced accuracy of 61.90% (Supplementary Table 12) which 
is close to the main result using all SPEM variables (63.96%). However, laboratory conditions and/or recording 
devices may have an impact on the measurement of SPEM initial eye acceleration and latency that could have 
affected prediction results. (2) As we trained the machine in a sample of chronically ill psychosis probands, 
possible effects of medication have to be taken into account. Although we found only small and inconsistent 
correlations between SPEM and chlorpromazine equivalents, effects of medication cannot be fully ruled out53. 
(3) Furthermore, we found significant differences in cognition scores between psychosis probands and healthy 
controls in the B-SNIP1 sample. There might be effects of cognitive skills that cannot be entirely discarded. (4) 
Despite our comprehensive validation samples, our machine was not validated in a group of MDD with psychosis. 
(5) There is a discrepancy between sensitivity (53%) and specificity (75%) implying our model to be particularly 
suitable to correctly identify healthy probands as healthy. (6) No follow-up data of samples from the PRONIA 
study is available to evaluate transition rates of those CHR participants with bad SPEM performance.

Our comprehensive findings support SPEM as an indicator of sensorimotor transformation impairments 
relevant to patients suffering from chronic psychosis. Thus, our machine learning algorithm based on the per-
formance in a 5 min SPEM task can help to obtain an overview of sensorimotor transformation profiles on an 
individual level that might inform treatment decisions in rehabilitation contexts, e.g. regarding sensorimotor 
remediation strategies.

Future studies should broaden this biomarker approach by combining indicators of sensorimotor function 
with multiple other relevant neurobiological measures, e.g. brain structure indices, to improve individual predic-
tion accuracies and to inform personalized therapeutic decisions for psychotic disorders. Additionally, future 
studies should target the question whether SPEM-Impairments can indicate illness progression independently 
from the factor of illness duration.

Methods
Subjects
SPEM data from five independent samples were included in the following analyses (Fig. 1):

B‑SNIP1
First, the machine was trained and internally validated with SPEM data from the B-SNIP1 sample consisting of 
n = 674 chronically ill psychosis probands (n = 265 schizophrenia, n = 178 schizoaffective, and 231 bipolar with 
psychotic symptoms) and 305 healthy controls. Participants were recruited by the B-SNIP consortium across 
five sites in the US (Baltimore, Boston, Chicago, Dallas, Hartford; Tamminga et al.27). Diagnoses were derived 
by a consensus of experienced clinicians based on all available clinical information and the Structured Clinical 
Interview for DSM-IV54. Inclusion criteria comprised (1) age between 15 and 65 years; (2) reading score of the 
Wide Range Achievement Test ≥ 6055; (3) no history of a neurologic disorder; (4) normal or corrected to normal 
vision (minimum of 20/40 acuity), (5) no history of substance abuse within the last month or substance depend-
ence within the last three months, and negative urine toxicology on study day. Additionally, healthy controls were 
not allowed to have a personal or family history (first-degree) of psychotic or bipolar disorders, to have a history 
of recurrent mood disorder or to exhibit a history of psychosis spectrum personality traits56. The protocol of the 
study was approved by institutional review boards at each of the study sites and participants provided written 
informed consent. For group differences in SPEM performance see Lencer et al.20.

Second, the remaining study samples were used (a) as external validation data for the machine trained in 
the B-SNIP1 sample and (b) for investigating psychosis-related specificity of SPEM against probands with pre-
dominately affective disorders.

External validation‑1: B‑SNIP2
B-SNIP2 is the follow-up to B-SNIP1. SPEM data were available from n = 727 chronically ill psychosis probands 
(n = 288 schizophrenia, n = 264 schizoaffective, and 175 bipolar with psychotic symptoms) as well as n = 292 
healthy controls recruited in Boston, Chicago, Dallas, Hartford, and Athens (GA). Inclusion criteria were 
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identical to B-SNIP1. For further details on B-SNIP2 eye movements see Huang et al., 202162, but SPEM data 
have not been published so far.

External validation‑2: PARDIP
SPEM data from the multisite PARDIP consortium were available from n = 49 bipolar probands with psychotic 
symptoms (BPwP), n = 36 bipolar probands without psychotic symptoms (BPwoP), and n = 71 healthy controls. 
The PARDIP study took place in Dallas, Boston, and Hartford. It was nested within the B-SNIP consortium 
using similar inclusion criteria but, importantly, there was no overlap between PARDIP and B-SNIP participants. 
Further information on inclusion criteria and group differences in SPEM performance see Brakemeier et al.57.

External validation‑3: FOR2107
In collaboration with the bicentric FOR2107 project (https://​for21​07.​de/, Kircher et al.58), SPEM data were 
measured in n = 94 probands with major depressive disorder without psychotic symptoms (MDwoP), n = 25 
bipolar probands without psychotic symptoms (BPwoP), n = 51 psychosis probands, and n = 72 healthy controls 
at the Münster site.

External validation‑4: PRONIA
Following an exploratory approach for testing the validity of our machine developed in stable probands with 
chronic psychosis, SPEM data were also collected in collaboration with the multisite PRONIA consortium 
(https://​www.​pronia.​eu/, Koutsouleris et al.59) from n = 11 probands with recent-onset psychosis, n = 19 probands 
with a high clinical risk for the development of psychosis, n = 17 probands with recent-onset depression, and 
n = 16 healthy controls at the Münster site.

All patients were medicated as prescribed by their doctors except for regular or current sedative medication 
which was an exclusion criterium (see chlorpromazine equivalents at time of testing in Table 1). Note, prior to 
inclusion ROP patients from the PRONIA sample had not been allowed to take any antipsychotic medication 
for longer than 90 days (within the past 24 months) with a daily dose rate at or above the minimum dosage of 
DGPPN S3-guidelines60.

Participants gave written informed consent according to the Declaration of Helsinki. Each study was approved 
by the respective local ethics committee.

Eye movement measurement and task
At all sites, the SPEM target consisted of a small stimulus (0.5°) moving back and forth in the horizontal plane 
at 18.7°/s constant velocity displayed on a monitor to constitute full-ramp trials within triangle wave tasks and 
foveo-petal step-ramp trials61. Participants were instructed to follow the stimulus with their eyes as accurately 
as possible while sitting in front of the monitor with their heads stabilized using a chin and forehead restraint. 
Across all studies, eye movements were recorded in a quiet and darkened room.

For B-SNIP1, B-SNIP2, and PARDIP samples (for further details refer to Brakemeier et al.57; Huang et al.62; 
Lencer et al.20), participants were seated 60 cm from a 22-inch CRT monitor (1360 × 768 resolution; 150 Hz 
refresh rate) and eye movements were recorded using an Eyelink II (SR Research Ltd., Ontario/Canada) recording 
device at 500 Hz sampling rate. The stimulus comprised a red cross in a box covering 0.5° moving horizontally 
between ± 12° across the screen.

In B-SNIP1 and PARDIP studies, 48 full-ramp and 32 foveo-petal step-ramp trials61 both at 18.7° of visual 
angle per second constant velocity, were applied in order to assess SPEM performance. In full-ramp trials, the 
stimulus moved back and forth with constant velocity in a triangular waveform. During step-ramp trials, the 
target started from the central position, stepped either to the right or the left (2.4° of visual angle in a randomized 
order) and afterwards moved towards the peripheral opposite direction at 18.7° of visual angle per second con-
stant velocity. The stimulus re-crossed the central line after 133 ms allowing the initiation of SPEM without a 
necessary catch-up saccade61. Additionally, some trials with 9.7° of visual angle/second and 26.6° of visual angle/
second target velocities as well as trials with intervals where the target was blanked were displayed to enhance 
attention but were not included into the analyses (30% of trials). In order to ensure data quality, additional cali-
bration trials were presented between blocks of trials. SPEM measurement was conducted identically across sites.

For B-SNIP2 a slightly different task order was applied: Here, 48 full-ramp trials at 18.7° of visual angle per 
second constant velocity and a total of 48 foveo-petal step-ramp trials (32 × 18.7° of visual angle/second; 8 × 9.7° 
of visual angle/second; 8 × 26.6° of visual angle/second; randomized for direction; Rashbass61) were presented in 
two test sets (each consisting of 48 trials) including six alternating blocks of either eight full-ramp or step-ramp 
trials. Step-ramp trials at 9.7° of visual angle/second and 26.6° of visual angle/second velocities were shown to 
enhance attention but were not included into the analyses. To ensure data quality, additional calibration trials 
were displayed between blocks of trials. SPEM measurement was conducted identically across sites.

FOR2107 and PRONIA eye movements were recorded using an Eyelink 1000 (SR Research Ltd., Ontario/
Canada) recording device at 500 Hz sampling rate. Participants were seated 60 cm from a 22-inch CRT monitor 
(1360 × 768 resolution; 150 Hz refresh rate). Stimulus and task were identical to B-SNIP2.

Eye movement data processing
All SPEM data were analyzed using the identical routines in MatLab (The MathWorks, Natick, MA) developed 
by one of the authors (AS). Eye position data were filtered using a one-dimensional Gaussian filter (30 Hz) and, 
subsequently, smoothed eye velocity was computed with central median differentiation of 9 ms20,57,63. Sections of 
saccades and blinks were automatically detected and excluded from computations of SPEM variables. To revise 
automatic calculations, individual velocity traces were checked by visual inspection.

https://for2107.de/
https://www.pronia.eu/


10

Vol:.(1234567890)

Scientific Reports |        (2024) 14:13859  | https://doi.org/10.1038/s41598-024-64487-6

www.nature.com/scientificreports/

To assess the different sensorimotor aspects of SPEM performance, the following variables were 
computed20,36,57 (see Fig. 2, adapted from Ref.57):

Predictive maintenance gain during continuous pursuit was calculated from triangular wave tasks as the ratio 
of median eye velocity to target velocity from middle sections (300–840 ms after stimulus direction reversal) 
over all full-ramp trials (total duration of a ramp is 1200 ms). Predictive maintenance gain highly depends on 
predictive drive, i.e. cognitive input to the pursuit system for sustained SPEM under closed-loop conditions.

In contrast, measures from foveo-petal step-ramp tasks represent rapid sensorimotor transformations using 
immediate visual motion and early performance feedback.

This included first, early maintenance gain as the ratio of median eye velocity to target velocity from mid-
dle sections (350-550 ms after stimulus onset) over all unpredictable step-ramp trials, thus reflecting early eye 
velocity under visual feedback control64. Typically, early maintenance gain is considerably lower compared to 
sustained predictive maintenance gain.

Second, for the computation of initial eye acceleration under open-loop conditions, when visual feedback is 
not yet available, eye velocity was smoothed using a Savitzky-Golay finite impulse response filter (polynomial 
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Figure 2.   Examples of pursuit stimuli with pursuit recordings (eye position and eye velocity) in a control 
subject and a psychosis proband. Foveopetal step-ramp tasks (A) are used to measure saccade free pursuit 
initiation. Variables of interest are pursuit latency (time between target step and green dot), initial eye 
acceleration (blue line) and early maintenance gain (blue line in grey shaded intervals). Triangular wave tasks 
(B) are used to measure sustained predictive maintenance gain in predefined intervals (blue line in grey shaded 
intervals) excluding artifacts induced by target reversals. The figure has been adapted from one of our prior 
publications by Brakemeier and colleagues57.



11

Vol.:(0123456789)

Scientific Reports |        (2024) 14:13859  | https://doi.org/10.1038/s41598-024-64487-6

www.nature.com/scientificreports/

order of 3 and a frame length of 63). The onset of eye acceleration was defined as eye velocity exceeding a noise 
threshold (above 3.2 standard deviations of mean resting eye velocity which was calculated from 200 ms before 
to 100 ms after ramp-onset, Carl & Gellman65) for at least 20 ms. Initial eye acceleration was then computed 
using robust linear regression slope (RobustFit® in MatLab) in a 100 ms time window starting with the accelera-
tion onset over all trials.

Third, eye latency was determined as time that had elapsed between onset of stimulus movement and onset 
of eye acceleration65 over all trials.

Psychometric, cognitive, and clinical measures
Psychosis‑related symptoms
For B-SNIP1, B-SNIP2, PARDIP, and PRONIA studies, psychosis-related symptoms were rated using the posi-
tive and negative syndrome scale (PANSS)66 while the FOR2107 study used the Scale for Assessment of Positive 
Symptoms (SAPS) and the scale for assessment of negative symptoms (SANS)67. To provide comparability, SANS 
and SAPS scores were converted to PANSS scores68, see Supplementary Table 1.

Depression
Depressive symptoms were quantified with the Montgomery–Åsberg Depression Rating Scale (MADRS; Mont-
gomery & Åsberg69) in the B-SNIP1, B-SNIP2 and PARDIP studies and using the original Beck Depression 
Inventory in the 1978 version70 in the FOR2107 sample. For PRONIA, the Beck Depression Inventory-II (BDI-
II)71 was applied. Severity gradation (MADRS72, BDI71) is given in Supplementary Table 2.

Mania
For B-SNIP1, B-SNIP2, PARDIP and FOR2107 samples, mania was estimated using the Young Mania Rating 
scale73. Mania was not assessed in the PRONIA sample.

Cognitive abilities
A total score indicating cognitive abilities was estimated using the Wide Range Achievement Test 4 (WRAT455) 
in the B-SNIP1, B-SNIP2, and PARDIP samples. For the FOR2107 study, the Multiple-Choice Vocabulary Test, 
version B (MWT-B74) was used. Scores were converted to the IQ scale74. For the PRONIA sample the Wechsler 
adult intelligence scale matrix reasoning75 was applied to evaluate cognition.

Statistical analyses
Machine learning approach
The machine learning model was trained in the B-SNIP1 sample to distinguish psychosis probands from healthy 
(non-psychotic) controls using PHOTONAI software76 and scikit-learn toolboxes77. A k-fold nested cross-val-
idation procedure was applied to split data used to train the model from data taken for internal validation. 
Thus, to obtain the most informative model, parameters were optimized using an inner cycle (10 folds) and the 
best performing model chosen by highest balanced accuracy ([sensitivity + specificity]/2 taking into account 
imbalanced data sets) was deployed to an outer cycle (3 folds). Special attention was given to ensure that there 
was (1) no information leakage between train and validation data76 and (2) a sufficient large validation set to 
provide stable and meaningful results for unseen (external) samples11. For specifications of the best model see 
Supplementary Table 3.

For each of the models the following preprocessing steps were applied: (1) SPEM variables were standardized 
by scaling. (2) Missing values (predictive maintenance gain = 0%, early maintenance gain = 0.51%, initial eye 
acceleration = 1.23%, eye latency = 0.51%) were imputed with the median of the corresponding variable. (3) In 
order to consider different group sizes (674 psychosis probands and 305 healthy controls), data were balanced 
by either randomly under sampling the majority class or oversampling the minority class using SMOTE78. (4) 
Principal component analysis was applied to reduce the dimensional space.

Predictors included the four SPEM variables described above (i.e. predictive maintenance gain, early main-
tenance gain, initial eye acceleration, and eye latency). Then, multiple classifiers with default parameters were 
used to optimize representation of the underlying data (Support vector machine, Random forest, Gaussian naïve 
bayes, Logistic regression, Ada boost) and to discriminate the label group membership (i.e. psychosis proband or 
healthy control). Additionally, for the support vector machine, kernel (linear, rbf) and regularization (C = [0.1, 
0.3, 0.5, 0.7, 0.9, 1]) parameters were optimized.

Statistical inference was examined using permutation tests79. Therefore, true results were compared to a 
permutation distribution created from 1000 random rearrangement of the two group labels (healthy controls 
vs. psychosis group) to the predictors.

Additionally, we trained machine learning algorithms to separate psychosis probands in the B-SNIP1 sam-
ple. In line with the idea of SPEM deterioration across the whole psychosis spectrum, results for distinguishing 
individual proband groups are close to chance level (balanced accuracies: schizophrenia vs. schizoaffective 
probands 52.65%, schizophrenia vs. bipolar probands 52.48%, schizoaffective vs. bipolar probands 51.00%, Sup-
plementary Table 5).

External validation of the model was investigated by applying the best performing model from B-SNIP1 to 
B-SNIP2 (external validation-1), PARDIP (external validation-2), FOR2107 (external validation-3), and PRONIA 
(external validation-4) samples. Here, in accordance with the idea that there is a specific relationship between 
SPEM performance and psychosis syndromes, we also applied the model to other non-psychotic psychiatric 
patient groups expecting them not to be classified as psychosis probands (thus be closer to the healthy non-
psychotic control group).
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To examine the effect of sample size on model performance, additional models were trained and internally 
validated in randomly selected half of the B-SNIP1 and in the combined B-SNIP1 and B-SNIP2 samples.

Kendall’s Tau correlation coefficients were computed between SPEM measures and chlorpromazine 
equivalents80. Additionally, correlations were calculated between SPEM measures and WRAT4 scores as well as 
z-scores of the Brief assessment of cognition in schizophrenia (BACS; Keefe et al.81). Analyses were computed 
in the B-SNIP1 sample. Results are reported using Bonferroni–Holm-corrected alpha level adjusted for each of 
the studies over all four SPEM variables82,83.

Data availability
The data can be provided by Rebekka Lencer pending scientific review and a completed material transfer agree-
ment. Requests for the data should be submitted to: Rebekka Lencer, lencer@uni-muenster.de.
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