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ABSTRACT

High-dimensional statistics focuses on data whose ambient dimension is extremely large

relative to the number of data points. In such regimes, classical asymptotic theory and

traditional estimators often break down. This thesis proposes and analyzes new estimation

procedures for two statistical settings where the number of parameters to be estimated is

large but there exist special sparsity structures that can be exploited.

Part I of this thesis studies the estimation of the topic-word matrix under the probabilistic

Latent Semantic Indexing model. Here, we assume that the ordered entries of the topic-word

matrix’s columns rapidly decay to zero; this assumption is partly motivated by the empirical

observation that word frequencies in a text often follow Zipf’s law. We introduce a new

spectral estimation procedure that thresholds words based on their corpus frequencies, and

show that its ℓ1 error rate depends on the vocabulary size p only via a logarithmic term.

The vocabulary size p is typically very large in practice, and prior works have not adequately

addressed this high-dimensional data regime.

Part II of this thesis studies regression problems where the feature vectors are indexed

by the vertices of a given graph. We propose a generalization of the Elastic Net penalty

that is applicable when the true signal is believed to be smooth or piecewise constant with

respect to the given graph. We derive the estimation and prediction error bounds under

the assumptions of correlated Gaussian design and network alignment, and also provide a

coordinate descent procedure based on the Lagrange dual objective to facilitate computations

for large-scale problems.
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CHAPTER 1

SPARSE TOPIC MODELING

1.1 Introduction

Topic modeling has proven to be a useful tool for dimensionality reduction and exploratory

analysis in natural language processing. Beyond text analysis, it has also been successfully

applied in areas such as population genetics [Pritchard et al., 2000, Bicego et al., 2012], social

networks [Curiskis et al., 2020] and image analysis [Li et al., 2010].

1.1.1 The statistical model

In this project, we focus on the probabilistic Latent Semantic Indexing (pLSI) model intro-

duced in Hofmann [1999]. This simple bag-of-words model involves three variables, namely

topics (which are unobserved), words and documents.

Suppose we observe n documents written using a vocabulary of p words. For each 1 ≤

i ≤ n, let Ni denote the length of document i. The corpus matrix D ∈ Rp×n, which is a

sufficient statistic under the pLSI model and which records the empirical frequency of each

word in each document, is defined by

Dji =
count of word j in document i

Ni
for all 1 ≤ i ≤ n, 1 ≤ j ≤ p

Let {D∗i : 1 ≤ i ≤ n} denote the columns of D, each of which contains only non-negative

entries that sum up to 1. The pLSI model specifies that the raw word counts for each

document {NiD∗i : 1 ≤ i ≤ n} are independently generated, with

NiD∗i ∼ Multinomial(Ni, [D0]∗i) (1.1)

for some matrix D0 ∈ Rp×n whose columns are {[D0]∗i : 1 ≤ i ≤ n}. Here, the columns
1



of D0 specify how words are assigned to documents, and these columns are required to

be probability vectors with non-negative entries summing up to 1. Note that (1.1) implies

E(D) = D0. If we let Z := D − D0, we can write the observation model in a “signal plus

noise” form:

D = D0 + Z (1.2)

The pLSI model further assumes that, for some unobserved K ∈ N (which denotes the

number of topics), we can factorize D0 as

E(D) = D0 = AW (1.3)

for some matrices A ∈ Rp×K and W ∈ RK×n. Like D0, the columns of A and W are

required to be probability vectors, so that they can only contain non-negative entries that

sum up to 1. A assigns words to topics, while W assigns topics to documents. In this project,

we focus more specifically on estimating the topic-word matrix A.

One can think of (1.3) as equivalent to requiring that the following Bayes formula holds

for any word j and document i:

P(word j| document i) =
K∑
k=1

P(word j| topic k) · P(topic k| document i) (1.4)

In most applications, K ≪ min(n, p) and thus (1.3) impose a low-rank structure on

E(D). We note that the number of topics K plays a role similar to that of the number of

principal components in principal component analysis. For technical reasons, we will assume

throughout that K is fixed as n, p and the document lengths Ni’s vary. This is reasonable if

one expects a priori that the number of topics covered by the corpus is small and bounded.

2



1.1.2 Related works and unaddressed issues

Before outlining our contributions in Section 1.1.3, it is important to provide context by

discussing previous works that are relevant to the estimation of A under the pLSI model. In

particular, we want to highlight some of the unaddressed issues from prior papers that our

work aims to resolve.

1.1.2.1 The separability condition

We first present the definition of anchor words and the separability condition.

Definition 1 (Anchor words and separability). We call word j an anchor word for topic k

if row j of A has exactly one nonzero entry at column k. The separability condition is said

to be satisfied if there exists at least one anchor word for each topic k ∈ {1, . . . , K}.

Observe that the decomposition D0 = AW in general may not be unique, but under the

separability condition, A is identifiable. The separability condition was first introduced in

Donoho and Stodden [2003] to ensure uniqueness in the Non-negative Matrix Factorization

(NMF) framework. The interpretation in our context is that, for each topic, there exist some

words which act as unique signatures for that topic.

The separability condition greatly simplifies the problem of estimating A, as one can

identify the anchor words for each topic as a first step. Prior works exploiting anchor words

mainly differ in how anchor words are used to estimate the remaining non-anchor rows of A.

Arora et al. [2012] start from the word co-occurrence matrix DDT and apply a successive

projection algorithm to rows of DDT to find one anchor word per topic. The matrix DDT is

then re-arranged into four blocks where the top left K ×K block corresponds to the anchor

words identified, and A is estimated by taking advantage of the special structure of this block

partition. More recently, Bing et al. [2020b] consider a matrix B ∈ Rp×K obtained from

A via multiplication by diagonal matrices. Unlike A, all rows of B sum up to 1, so anchor

3



rows of B are simply canonical basis vectors in RK . The non-anchor rows of B are then

obtained via regression given the anchor rows of B. The topic matrix A can subsequently

be recovered through an appropriate normalization of B.

A major drawback of these methods is that they rely heavily on the separability as-

sumption, which suffices for uniqueness of the decomposition (1.3) but is far from necessary.

This issue is related to the following question, which is of central importance in the NMF

literature: given a collection of points {r1, . . . , rm} ⊆ RK−1 presumed to lie within the

convex hull of unobserved vertices {v∗1, . . . , v
∗
K}, when is recovery of these vertices possible?

In the NMF context, separability means that each vertex coincides with a point in the ob-

served point cloud, in which case we only need to identify which of the ri’s correspond to

simplex vertices. However, this is a very strong assumption and several efforts have been

made to relax it. Javadi and Montanari [2020] show that vertex recovery is still possible

under a uniqueness assumption that generalizes separability. Ge and Zou [2015] introduce

the notion of subset separability which is also much weaker than separability. We note that

many of the separability-based methods proposed in topic modeling, such as those in Arora

et al. [2012], Bing et al. [2020a] and Bing et al. [2020b], have no obvious extension if the

separability assumption is relaxed. This may not be important if the given corpus contains

many specialized words and the topics are sufficiently distinct (an example is a collection of

research papers), but may matter more if the topics overlap significantly and the vocabulary

is generic (for instance, a collection of high school English essays).

1.1.2.2 The SVD-based approach in Ke and Wang [2022]

Ke and Wang [2022] are the first to establish the minimax-optimal rate of
√

p
nN for the

ℓ1-loss ∥Â − A∥1 :=
∑p

j=1

∑K
k=1 |Âjk − Ajk| where, for simplicity, all document lengths

are assumed to be equal to N . Their procedure links topic estimation to the NMF setting

discussed in the previous subsection and is summarized as follows. Let M := diag(n−1D1n)
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where 1n := (1, 1, . . . , 1)T ∈ Rn. Given K, the approach proposed in Ke and Wang [2022]

considers the first K left singular vectors ξ̌1, . . . , ξ̌K ∈ Rp of M−1/2D. Elementwise division

of ξ̌2, . . . , ξ̌K by ξ̌1 (also known as SCORE normalization [Jin, 2015]) yields a matrix Ř ∈

Rp×(K−1), whose rows ř1, . . . , řp ∈ RK−1 can be shown to form a point cloud contained in

a K-vertex simplex (up to stochastic errors). Since this corresponds precisely to the NMF

setup discussed in the previous subsection, the simplex vertices can now easily be recovered

using a suitable vertex hunting algorithm. Once these vertices are identified, A can then be

estimated via a series of normalizations.

The work by Ke and Wang [2022] is an important contribution that motivates several

other methods for topic modeling, including ours. However, this method was developed using

strong assumptions on the parameter regimes and the behavior of word frequencies. More

specifically, Corollary 3.1 of Ke and Wang [2022] states that the error upper bound
√

p log n
nN

is only applicable if we assume N > p4/3 or p ≤ N < p4/3 and n ≥ max(Np2, p3, N2p5). As

the vocabulary size p is typically large, these are highly unrealistic assumptions on (n,N, p).

For example, the Associated Press (AP) dataset used in Ke and Wang [2022] (a corpus of

news articles frequently used for topic model evaluation) has n = 2, 134 and p = 7, 000.

A typical AP article has between 300 and 700 words, so it is clear that none of the above

assumptions holds. The error bound provided without these assumptions is p2

N
√
N

√
p log n
nN ,

which, when p is large and grows with n, may not necessarily converge to zero. Several other

works that claim to establish minimax-optimal rates also do so by assuming N > p; see

Theorem 4.1 of Wu et al. [2022] and Remark 10 of Bing et al. [2020a].

In this project, we do not seek to re-establish the rate
√

p
nN . Rather, we aim to pro-

vide a consistent error bound valid for all realistic parameter regimes (especially when

p > max(n,N)). We propose to resolve some of the outstanding issues of the estimator

in Ke and Wang [2022] by leveraging a sparsity structure that is often empirically observed

in text documents, resulting in:
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1. Improved error bounds: We observe that even the minimax-optimal rate
√

p
nN

of Ke and Wang [2022] scales significantly with p. As the number of documents n

increases, we can expect several previously unobserved words to be added to the corpus,

whereas the average document length N may not change by much. However, many of

these words may occur rarely, so the effective dimension of the parameter space may

be quite small compared to the observed vocabulary size. This motivates us to restrict

the parameter space by imposing a suitable column-wise sparsity assumption on A,

which enables an error bound that does not scale with p except for log factors.

2. An increased signal-to-noise ratio: The approach in Ke and Wang [2022] may not

be suitable if many words in the corpus occur with low frequency. If for each word j

we define hj :=
∑K

k=1Ajk, the theoretical guarantees in Ke and Wang [2022] require

min1≤j≤p hj ≥ cK
p for some c ∈ (0, 1). Note that since the columns of A sum up to 1,

we always have 1
p

∑p
j=1 hj = K

p . Therefore, since hj roughly indicates the frequency

of word j in the corpus, this assumption restricts the frequencies of the least frequent

words to be of the same order as the average frequency of all words.

Such a restrictive assumption is needed in Ke and Wang [2022] because when many

low-frequency words exist in the corpus, their procedure involves division by small

and noisy numbers. This is a problem with their pre-SVD normalization step where

D is pre-multiplied by the p × p diagonal matrix M−1/2, as the diagonal entries of

M := diag(n−1D1n) corresponding to infrequent words are usually small. This is

also an issue with their elementwise division step, thus leading to higher errors from

infrequent words in the point cloud obtained from their procedure (see Figures 1.8

and 1.17 for illustration). Although we also use SCORE normalization [Jin, 2015], our

removal of infrequent words leads to a point cloud with a higher signal-to-noise ratio.
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1.1.2.3 Sparse topic modeling approaches

To our knowledge, Bing et al. [2020b] and Wu et al. [2022] are the only two prior works that,

like ours, impose additional sparsity constraints on A. However, the sparsity assumptions

proposed in these papers are not appropriate for dealing with large p; rather, they are more

suitable for dealing with large K.

1. Bing et al. [2020b] assume that A is elementwise sparse, in the sense that the total

number of nonzero entries of A (denoted as ∥A∥0) is small. Their proposed procedure

is then shown to satisfy the error upper bound

∥Â− A∥1 ≲ K

√
∥A∥0 log(p ∨ n)

nN
(1.5)

We note here that ∥A∥0 can still be very large. Indeed, let p̃ denote the number of

words whose corresponding rows in A are not entirely zero. Technically we can have

p > p̃, but words corresponding to zero rows of A are not observed with probability

one, so p̃ covers the entire set of all distinct words observed in the corpus. We have

p̃ ≤ ∥A∥0 ≤ Kp (1.6)

In fact, one can see that their error bound depends on p from the error decomposition

∥Â − A∥1 ≲ I + II + III in Theorem 2 of Bing et al. [2020b]. For example, I =

K
γ

√
p log(n∨p)

nN +
pK log(p∨n)

γnN for some constant γ. This, together with (1.6), shows

that the bound (1.5) is not very different from the rate
√

p
nN in Ke and Wang [2022],

except for possibly better dependence on K. Moreover, their theoretical results depend

on several strong assumptions on the frequency of anchor words selected by their

procedure. In contrast, our procedure is less affected by the frequency of anchor words,

both in theory and in practice.
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2. Wu et al. [2022] assume that each row of A has at most sA nonzero entries. Since A

has K columns, this sparsity assumption is only useful if K is large. Theorem 4.1 of

Wu et al. [2022] then shows that their proposed estimator of A satisfies

∥Â− A∥1 ≲ K

√
sA log n

nN
(1.7)

However, upon close examination of their proof, the ℓ1 bound they achieve is actually

K

√
∥A∥0 log n

nN (similar to (1.5)) so (1.7) is only possible by assuming that p = O(1)

and using ∥A∥0 ≤ psA. Furthermore, their result assumes N3/4 ≥ p which, as we have

noted in our discussion of Ke and Wang [2022], is highly restrictive.

In comparison with these two papers, our sparsity assumption is more compatible with the

“large p” setting, and we do not assume p = O(1) as in Wu et al. [2022].

1.1.3 Our contributions

We summarize the main contributions of this project below.

• We propose a new spectral procedure (Definition 5) for estimating A. This procedure

takes into account the observation that, in most text datasets, the vocabulary size

p is often large but many words occur very infrequently in the corpus. When K is

unknown, a new estimator of K is also proposed (see Lemma 8).

• We introduce a new column-wise ℓq-sparsity assumption (Assumption 5) for A. This

assumption is motivated by Zipf’s law [Zipf, 1936] and links a word’s frequency of

occurrence in a topic to its rank. Our proposed procedure is then shown to be adaptive

to the unknown sparsity level s in the ℓq-sparsity definition (1.19).

• We provide an error bound for our procedure using the ℓ1 loss ∥Â − A∥1 in Theorem

7. Under our sparsity assumption (1.19), our error bound is shown to be valid for
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all parameter regimes and only depends on p via weak factors. The common pre-

processing step of removing infrequent words is incorporated into our procedure and

accounted for in our analysis.

• Finally, in Section 1.2.4, we show that our theoretical results may still hold when the

separability assumption is relaxed if we choose a suitable vertex hunting procedure for

non-separable point clouds in Definition 5.

Extensive experiments with synthetic datasets to confirm the effectiveness of our esti-

mation procedure under a wide variety of parameter regimes are presented in Section 1.3.

Furthermore, we also demonstrate the usefulness of our method for text analysis, as well as

for other applications where the pLSI model is also relevant, in Section 1.4.

1.1.4 Notations

For any set S, let |S| denote its cardinality, and let Sc denote its complement if it is clear

in context with respect to which superset. For any k ∈ N, let [k] denote the index set

{1, . . . , k}. We use 1d to denote the vector in Rd with all entries equal to 1. For a general

vector v ∈ Rd, let ∥v∥r denote the vector ℓr norm, for r = 0, 1, . . . ,∞, and let diag(v) denote

the d × d diagonal matrix with diagonal entries equal to entries of v. For any a, b ∈ R, let

a ∨ b := max(a, b) and a ∧ b := min(a, b).

Let Im denote the m × m identity matrix. For a general matrix Q ∈ Rm×l and r =

0, 1, . . . ,∞, let ∥Q∥r denote the vector ℓr-norm of Q if one treats Q as a vector. Let ∥Q∥F

and ∥Q∥op denote the Frobenius (i.e. ∥Q∥F = ∥Q∥2) and operator norms of Q respectively.

For any index j ∈ [m] and i ∈ [l], let Qji or Q(j, i) denote the (j, i)-entry of Q. For index sets

J ⊆ [m] and I ⊆ [l], let QJI denote the submatrix of Q obtained by selecting only rows in

J and columns in I (in particular, either J or I can be a single index). Also, let QJ∗ denote

the submatrix of Q obtained by selecting rows in J and all columns of Q; Q∗I is similarly

defined. This means Qj∗ and Q∗i denote the jth row and ith column of Q respectively. For
9



an integer k ≤ m ∧ l, let γk(Q) denote the kth largest singular value of Q, and if Q is a

square matrix then, if applicable, let λk(Q) denote the kth largest eigenvalue of Q. If m = l,

then tr(Q) denotes the trace of Q.

Let C, c > 0 denote absolute constants that may depend on K and q; we assume that K

and q are fixed, unobserved constants. Let C∗, c∗ > 0 denote numerical constants that do

not depend on the unobserved quantities like K and q (this only matters when we discuss

the estimation of K). The constants C, c, C∗, c∗ may change from line to line.

In our paper, for ease of presentation, we assume N1 = · · · = Nn = N . Our results

also hold if we assume the document lengths satisfy maxi∈[n]Ni ≤ C∗mini∈[n]Ni (i.e. if

N1 ≍ · · · ≍ Nn), in which case N = 1
n

∑n
i=1Ni denotes the average document length.

1.2 Our procedure for estimating A and its theoretical properties

For simplicity, we will first assume separability in order to explain our procedure. A discus-

sion of possible relaxations of this condition will be deferred to Section 1.2.4.

1.2.1 The oracle procedure to estimate A given D0

Our oracle procedure concerns how A can be estimated if the non-stochastic matrix D0,

rather than D, is observed. Let J ⊆ [p] be an arbitrary collection of words in our vocabulary.

We first need the definition of a vertex hunting procedure, which is relevant to the NMF

setup discussed in Section 1.1.2.1.

Definition 2 (Vertex hunting). Given K, a vertex hunting procedure is a function that takes

a collection of points in RK−1 and returns K points in RK−1.

Remark 1. A good vertex hunting procedure should return the vertices of the smallest

K-simplex containing the given point cloud. We will use V(·) to denote such a procedure.
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The following definition of an ideal point cloud is based on the separability assumption.

Any reasonable vertex hunting procedure should be able to successfully recover the simplex

vertices from an ideal point cloud.

Definition 3 (Ideal point cloud). Given K, an ideal point cloud is a collection of points in

RK−1 contained in the simplex defined by K vertices, such that the K vertices themselves

belong to the point cloud.

We are now ready to define the oracle procedure.

Definition 4 (Oracle procedure). Given inputs K, D0, vertex hunting procedure V(·) and a

set of words J ⊆ [p], the oracle procedure returns Ã ∈ Rp×K defined as follows:

1. (SVD) Perform SVD on [D0]J∗ to obtain Ξ = [ξ1, . . . , ξK ] ∈ R|J |×K containing the

first K left singular vectors of [D0]J∗.

2. (Elementwise division) Divide ξ2, . . . , ξK elementwise by ξ1 to obtain R ∈ R|J |×(K−1).

This means Rjk = ξk+1(j)/ξ1(j), for k = 1, . . . , K − 1 and j ∈ J .

3. (Vertex hunting) Treat the rows {rj : j ∈ J} of R as a point cloud in RK−1. Apply

the vertex hunting procedure V(·) on this point cloud to obtain vertices v∗1, . . . , v
∗
K .

4. (Recovery of Π) For each j ∈ J , solve for πj ∈ RK from the linear equation

 1 . . . 1

v∗1 . . . v∗K

 πj =

 1

rj

 (1.8)

In other words, πj satisfies
∑K

k=1 πj(k) = 1 and rj =
∑K

k=1 πj(k)v
∗
k, for each j ∈ J .

Let Π ∈ R|J |×K be the matrix whose rows are {πj : j ∈ J}.

5. (Normalization) Normalize the columns of diag(ξ1) ·Π ∈ R|J |×K so that the entries of

each column sum up to 1. This yields ÃJ∗. Set ÃJc∗ = 0 to obtain Ã.
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Our oracle procedure makes use of the SCORE normalization idea which was originally

proposed for network data analysis [Jin, 2015]. The elementwise division step (Step 2) is

the most important step, as it provides a connection between singular vectors of D0 (or

associated variables) and the NMF setup described in Section 1.1.2.1. The words in J are

represented by the point cloud {rj : j ∈ J}, which can be shown to be contained entirely

in some K-vertex simplex. If the simplex vertices are identifiable and the vertex hunting

procedure is successful in recovering them in Step 3, then (1.8) allows us to exactly recover

the probabilistic weights {πj : j ∈ J} associated with each word in J , which are connected

to A via the relation

diag(ξ1) · Π = AJ∗ · diag(V1) (1.9)

for some vector V1 ∈ RK containing only positive entries. This explains the column nor-

malization step (Step 5), which essentially reverses the elementwise division step. For more

details, we refer the reader to the proof of Lemma 13.

Based on the relation (1.9), we can show the following result.

Lemma 1. Suppose the set J contains at least one anchor word for each topic k ∈ [K], and

the vertex hunting procedure V(·) can successfully recover the simplex vertices from any ideal

point cloud. The oracle procedure in Definition 4 then returns Ã satisfying ÃJc∗ = 0 and

ÃJ∗ = AJ∗ · diag(∥AJ1∥−11 , . . . , ∥AJK∥−11 ) (1.10)

The proof of Lemma 1 is identical to that of Lemma 13. The sole difference is that in

Lemma 13, the set J is chosen as in (1.11) and we use Assumption 3.

Remark 2. Our oracle procedure differs from that of Ke and Wang [2022] in two important

ways. First, note that Step 1 only requires SVD to be performed on a submatrix of D0.

In general, we want the set J to contain words that occur with sufficiently high frequencies

in the corpus so that the point cloud generated from our procedure has a higher signal-to-
12



noise ratio. When p is large, we can often expect the corpus to contain many infrequently

occurring words whose corresponding rows in A should be estimated as zero. Our oracle

procedure yields Ã which is a good oracle approximation of A if ∥AJc∗∥1 is small, as in that

case the diagonal matrix in (1.10) is close to the identity matrix.

Second, note that we consider the SVD of a submatrix of D0 and not M−1/20 D0 as in Ke

and Wang [2022], where M0 := diag(n−1D01n). This simplifies some parts of our theoretical

analysis and allows us to obtain error bounds that depend less strongly on p.

1.2.2 Estimation procedure for A given D

Our procedure to estimate A below is designed to closely approximate the oracle procedure.

Here we first assume K is known. The estimation of K is deferred to Section 1.2.5, and the

choice of the vertex hunting procedure will be discussed in conjunction with identifiability

assumptions on A.

Definition 5 (Estimation procedure for A). Given inputs K, observation matrix D and

vertex hunting procedure V(·), our estimation procedure returns Â defined as follows:

1. (Thresholding) Let M := diag(n−1D1n) and pn := p ∨ n. Compute the set of words

J :=

{
j ∈ [p] : M(j, j) ≥ α

√
log pn
nN

}
(1.11)

Here, α is a user-specified universal constant (see Remark 3).

2. (Spectral decomposition) Compute the first K eigenvectors ξ̂1, . . . , ξ̂K ∈ R|J | of the

submatrix GJJ of the p× p matrix G, where

G := DDT − n

N
M (1.12)

Here, we assume all entries of ξ̂1 are of the same sign, in which case we can choose ξ̂1

13



to have all positive entries. If some entries of ξ̂1 are negative, choose ξ̂1 such that the

majority of entries are positive, and apply Remark 4.

3. (Elementwise division) Divide ξ̂2, . . . , ξ̂K elementwise by ξ̂1 to obtain R̂ ∈ R|J |×(K−1),

with rows {r̂j : j ∈ J}. This means R̂jk = ξ̂k+1(j)/ξ̂1(j), for k ∈ [K − 1] and j ∈ J .

4. (Vertex hunting) Treat the rows of R̂ as a point cloud in RK−1. Apply the vertex

hunting procedure V(·) to this point cloud to obtain vertices v̂∗1, . . . , v̂
∗
K .

5. (Estimation of Π) For each j ∈ J , solve for π̂⋄j ∈ RK from

 1 . . . 1

v̂∗1 . . . v̂∗K

 π̂⋄j =

 1

r̂j

 (1.13)

Obtain π̂j from π̂⋄j by first setting any negative entries to 0 and then normalizing so

that the entries of π̂j sum up to 1. Let Π̂ be the matrix whose rows are {π̂j : j ∈ J}.

6. (Normalization) Normalize all columns of diag(ξ̂1) · Π̂ so that they have unit ℓ1-norm.

This yields ÂJ∗. Set all entries of ÂJc∗ to zero to obtain Â.

As Steps 3-5 are also based on the SCORE normalization idea [Jin, 2015], we call this

procedure the Thresholded Topic-SCORE (TTS). However, Step 1, Step 2 and Step 6 contain

significant differences when compared with Topic-SCORE in Ke and Wang [2022].

Remark 3 (Choice of α). The set J in (1.11) is chosen by examining the row sums of

the observation matrix D, which indicate how frequently the words occur in the corpus.

In (1.11), α is meant to be a universal constant and thus does not affect our error rates,

which are not optimized over constants. In our theoretical discussion, we choose α = 8 for

convenience, but for most datasets this value of α may result in too many words not meeting

the threshold.
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In practice, a good choice of α is important for obtaining a good estimator of A. Based

on our experiments, we recommend a smaller value of α, such as α = 0.005. This choice of

α should produce reasonable results for commonly observed values of (n,N, p). Based on

what we observe from experiments, if n ∈ [1000, 5000], N ∈ [300, 700], p ∈ [5000, 10000], we

can typically expect around 10-40% of words to be removed.

Remark 4 (Signs of ξ̂1’s entries). In the oracle procedure, ξ1 is the first left singular vector

of [D0]J∗ and so by Perron’s theorem, the entries of ξ1 are all positive. In Step 2, ξ̂1 is

the first eigenvector of GJJ which is not necessary a Perron matrix, so ξ̂1 technically may

contain negative entries. Any word j for which ξ̂1(j) is negative should have corresponding

rows of A set to zero after Step 2, and then in Step 3 we form the point cloud by computing

ξ̂k+1(j)/ξ̂1(j) for k ∈ [K − 1] and j ∈ J with ξ̂1(j) > 0 only.

In our theoretical analysis as well as in practice, however, this scenario will not happen

with high probability. This is because G is chosen so that maxj∈J |ξ̂1(j) − ξ1(j)| is small.

Since any word j that meets our threshold occurs with sufficiently high frequency, ξ1(j)

will also be sufficiently large for any j ∈ J , which implies |ξ̂1(j) − ξ1(j)| ≪ ξ1(j) and thus

ξ̂1(j) ≥ ξ1(j)/2 for all j ∈ J .

The set J as defined in (1.11) is data-dependent. It is quite useful to note that J can

be approximated by the non-stochastic sets (1.14) with high probability. The proof of the

lemma below can be found under Theorem 11(b).

Lemma 2. Let M0 := diag(n−1D01n), and let

J± :=

{
j ∈ [p] : M0(j, j) > α±α

√
log pn
nN

}
(1.14)

where α is from the definition of J in (1.11) and α− > 1 and α+ ∈ (0, 1) are some suitably

chosen constants depending on α (for example if α = 8, we can let α+ = 1
2 , α− = 2). Then

the event E := {J− ⊆ J ⊆ J+} occurs with probability at least 1− o(p−1n ).
15



The following lemma bounds the size of J , and is obtained by bounding |J+| and using

Lemma 2.

Lemma 3 (Size of J). With probability at least 1− o(p−1n ),

|J | ≤

(
K

αα+

√
Nn

log pn

)
∧ p (1.15)

Our procedure requires the eigenvalue decomposition of a symmetric |J |×|J |matrix. The

bound (1.15) can be significantly smaller than min(n, p) if nN ≪ p2 and N ≪ n (ignoring

weak factors), which are reasonable assumptions for many text datasets. We can there-

fore expect the eigenvalue decomposition step in our procedure to be more computationally

scalable than the SVD step (on a p× n matrix) in Ke and Wang [2022].

1.2.3 Error bounds for Â under separability

We first discuss our theoretical results under separability, which is assumed in all of our

proofs in Section 1.5. We begin by listing the assumptions underlying our analysis.

Assumption 1 (A and W are well-conditioned). Let ΣW := n−1WWT . For some constant

c ∈ (0, 1),

σK(A) ≥ c
√
K and σK(ΣW ) ≥ c (1.16)

Assumption 2 (The topic-topic correlation matrix is regular). The entries of ATA satisfy

the following for some constant c > 0:

min
1≤k,l≤K

ATA(k, l) ≥ c (1.17)

Assumption 3 (Separability). Each topic k ∈ [K] has at least one associated anchor word

j belonging to the set J− defined in (1.14).
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Assumption 4 (Vertex hunting efficiency). Given K and an ideal point cloud defined in

Definition 3, the vertex hunting function V(·) recovers the K vertices correctly. Furthermore,

whenever V(·) is given as inputs two point clouds {x1, . . . , xm} and {x′1, . . . , x
′
m}, the out-

puts {v1, . . . , vK} and {v′1, . . . , v
′
K} satisfy for some absolute constant C > 0 (up to a label

permutation)

max
k∈[K]

∥vk − v′k∥2 ≤ C max
j∈[m]

∥xj − x′j∥2 (1.18)

Assumption 5 (Column-wise ℓq-sparsity). Let the entries of each column A∗k of A be

ordered as A(1)k ≥ · · · ≥ A(p)k. For some q ∈ (0, 1) and s > 0, the columns of A satisfy

max
k∈[K]

(
max
j∈[p]

jA
q
(j)k

)
≤ s (1.19)

Here, we assume that q is a fixed constant, whereas s is allowed to grow with n.

Remark 5. We justify why Assumptions 1, 2 and 3 are reasonable below.

1. Equation (1.16) assumes the topic vectors in A are not too correlated. The assumption

on W in (1.16) is necessary even when W is known, as its role is similar to that of the

design matrix in the regression setting. Note that since the columns of A and W sum

up to 1, we always have σ1(A) ≤
√
K and σ1(ΣW ) ≤ 1 (see Lemma 12(a)).

2. The matrix ATA ∈ RK×K can be thought of as the topic-topic correlation matrix, since

its entries are inner products of the columns of A. Therefore, (1.17) is especially true if

the K topics are related to one another. However, even if the corpus covers unrelated

topics, we expect all columns of A to assign significant weights to grammatical function

words (such as ‘and’, ‘the’ in English) and filler words, which occur frequently in all

documents regardless of the topics involved.

3. In light of Lemma 2, Assumption 3 requires that each topic has at least one anchor

word that occurs in the corpus frequently enough so that it is included in J . Such an
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assumption on the frequency of anchor words is also commonly seen in other works that

exploit the separability condition, and Assumption 3 is not strong since the threshold

level of order
√

log pn
nN in the definition of J− is quite low. For comparison, Bing

et al. [2020b] makes the same assumption but with the threshold level of order log pn
N ,

which may be higher than ours if the number of documents n far exceeds the average

document length N .

Remark 6 (Vertex hunting for separable point clouds). Ke and Wang [2022] mentions two

vertex hunting algorithms which are suitable for separable point clouds, namely Successive

Projection (SP) [Araújo et al., 2001] and Sketched Vertex Search (SVS) [Jin et al., 2017].

Given a point cloud r1, . . . , rm, SP starts by finding the point rj whose Euclidean norm

is the largest and sets this as the first estimated vertex v̂1. Then, for each 2 ≤ k ≤ K, we can

obtain v̂k from v̂1, . . . , v̂k−1 by setting v̂k as the point rj that maximizes ∥(I − Pk−1)rj∥2,

where Pk−1 denotes the projection matrix on the linear span of v̂1, . . . , v̂k−1. SP can be

shown to satisfy Assumption 4 when the volume of the true simplex is lower bounded by a

constant [Gillis and Vavasis, 2013], which is a simple consequence of Theorem 12(f).

On the other hand, SVS starts by applying k-means clustering on the point cloud

{r1, . . . , rm} to obtain cluster centers ĉ1, . . . , ĉL, where L is a tuning parameter that is

much larger than K. These clusters are meant to reduce the noise levels in the point cloud.

Next, SVS exhaustively searches for all simplexes whose K vertices are located on these

cluster centers, in order to find the simplex S such that the maximum distance from any ĉl

to S is minimized. In comparison to SP, SVS is more robust to noise in the point cloud but

is computationally much slower if K is not small. SVS satisfies Assumption 4 under mild

regularity conditions [Jin et al., 2017].

Note that these vertex hunting algorithms are only meant for separable point clouds, as

the simplex vertices they produce are designed to belong to the convex hull of the point

cloud. For more implementation details of SVS and SP, we refer the reader to Section A of
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Ke and Wang [2022].

Remark 7 (ℓq-sparsity). To our knowledge, our work is the first to consider the ℓq-sparsity

assumption (1.19) in the topic modeling context, although similar assumptions have been

adopted in other statistical settings such as sparse PCA and sparse covariance estimation

(see for example Ma [2013] and Cai and Zhou [2012]). (1.19) imposes an assumption on the

decay rate of the ordered entries of the columns of A, but does not restrict how small (or

large) the smallest (or largest, assuming s ≥ 1) entries of A’s columns can be. Thus, our

theoretical results are valid even in the presence of severe word frequency heterogeneity.

Note that if columns A∗k has s nonzero entries, then we always have maxj∈[p] jA
q
(j)k
≤ s.

However, in light of (1.6) where we observe that ∥A∥0 ≥ p̃, there exists at least one column

of A with at least ⌊p̃/K⌋ nonzero entries, and so s in (1.19) cannot be much smaller than p if

we impose hard sparsity (q = 0) on all columns of A. Therefore, the ℓq-sparsity assumption

(1.19) gives us more flexibility as it allows for the possibility that most entries of A are

small but nonzero. When q ≈ 0, we can approximate the assumption of hard sparsity on all

columns of A, whereas when q is close to 1, then (1.19) with s = O(1) corresponds to Zipf’s

law, which is the empirical observation that word frequency in text data is often inversely

proportional to word rank.

The restriction that q ∈ (0, 1) is primarily due to the fact that we use the ℓ1 loss ∥Â−A∥1.

Since the columns of A sum up to 1, the columns of A already satisfy ℓq-sparsity with

q = s = 1, but this alone is not sufficient to control the error term ∥AJc∥1 resulting from

our thresholding step.

We are now ready to discuss our main theoretical results. Let Ξ̂ = [ξ̂1, . . . , ξ̂K ] ∈ R|J |×K

contains the first K eigenvectors of GJJ where G is defined as in (1.12). Recall its oracle

counterpart Ξ = [ξ1, . . . , ξK ] ∈ R|J |×K which contains the first K left singular vectors of

[D0]J∗. Let {Ξj : j ∈ J} and {Ξ̂j : j ∈ J} denote the rows of Ξ and Ξ̂ respectively.

Lemma 4 (Row-wise error bounds for Ξ̂). For all j ∈ [p], let hj :=
∑K

k=1Ajk. With
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probability 1 − o(p−1n ), there exist ω ∈ {±1} and a (K − 1) × (K − 1) orthonormal matrix

Ω∗ such that, if we define Ω := diag(ω,Ω∗) ∈ RK×K , we have

∥ΩΞ̂j − Ξj∥2 ≤ C

√
hj log pn

nN
for all j ∈ J (1.20)

The proof can be found in Lemma 25 and is an application of the well-known Davis-

Kahan theorem (more specifically, we need to use the row-wise perturbation version of the

theorem as proven in Lemma F.1 of Ke and Wang [2022]). We note here that the bound

(1.20) depends on p only via the log term, and the hj ’s, which indicates how frequently one

may encounter word j in the corpus, determines the magnitude of the bound (1.20).

As a consequence of the above lemma, one can provide error bounds for the point cloud

obtained from our procedure. Again, recall that {rj : j ∈ J} is the oracle point cloud from

Step 3 of Definition 4, and {r̂j : j ∈ J} is the point cloud from Step 4 of Definition 5.

Corollary 5 (Error bounds for the point cloud). With probability 1− o(p−1n ), there exists a

(K − 1)× (K − 1) orthonormal matrix Ω∗ such that

max
j∈J
∥Ω∗r̂j − rj∥2 ≤ C

(
log pn
nN

)1/4

(1.21)

The proof can be found in Lemma 26. To elaborate further on (1.21), we can show that

with high probability,

∥Ω∗r̂j − rj∥2 ≤ C

√
log pn
hjnN

for all j ∈ J (1.22)

Observe that unlike (1.20), the bound (1.22) is inversely proportional to
√
hj due to the

fact that the point cloud is obtained from the elementwise division step. Since we do not

restrict how small min1≤j≤p hj can be, the error bound (1.22) may be uncontrollable without

appropriate thresholding of infrequent words. However, with the choice of J as in (1.11),
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one can show minj∈J hj ≥ c
√

log pn
nN with high probability, which when combined with (1.22)

leads to (1.21).

From (1.22), we can also obtain bounds on how much the probabilistic weights {π̂j : j ∈

J} from Step 5 of Definition 5 deviate from the oracle weights {πj : j ∈ J} from Step 4 of

Definition 4). The proof of the following corollary can be found under Lemma 27.

Corollary 6 (Error bounds for Π̂). With probability 1− o(p−1n ),

max
j∈J
∥π̂j − πj∥1 ≤ C

(
log pn
nN

)1/4

(1.23)

Note that while {Ξj : j ∈ J} and {rj : j ∈ J} can be recovered only up to an orthonormal

transformation Ω∗, the bound (1.23) does not depend on Ω∗. We also note that the bounds

(1.20), (1.21) and (1.23) are derived without using the ℓq-sparsity assumption (Assumption

5).

The next theorem is our main result, which provides the error rate for estimating A using

the ℓ1 loss ∥Â− A∥1. Recall the definition of Ã in Lemma 1.

Theorem 7 (Estimation error for Â). Suppose Assumptions 1-4 are satisfied. Then with

probability 1− o(p−1n ),

∥ÂJ∗ − ÃJ∗∥1 ≤ C

(
log pn
nN

)1/4

(1.24)

If we further assume the ℓq-sparsity assumption (Assumption 5) and s
(
log pn
nN

)1−q
2

= o(1),

we also have with probability 1− o(p−1n ),

∥ÃJ∗ − AJ∗∥1 = ∥AJc∗∥1 ≤ Cs

(
log pn
nN

)1−q
2

(1.25)
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and therefore with probability 1− o(p−1n ),

∥Â− A∥1 ≤ C

( log pn
nN

)1/4

+ s

(
log pn
nN

)1−q
2

 (1.26)

for some constant C that may depend on K and q.

The proof of the above statements can be found in Section 1.5.5.

Remark 8. The bounds (1.24) and (1.25) can be interpreted as the estimation error and the

approximation error respectively for using an estimator of A whose row support is contained

in the set J . Note that the approximation error (1.25) is smaller if q is closer to 0; here

we assume s does not grow too quickly relative to nN . In the most favorable setting where

s = O(1) and 0 < q < 1/2 (strong sparsity regime), the aggregate error (1.26) is of the

order
(
log pn
nN

)1/4
, which clearly converges to zero as nN → ∞. On the other hand, if

s ≥ 1 and 1/2 < q < 1 (weak sparsity regime), the bound (1.26) is dominated by the term

s
(
log pn
nN

)1−q
2 .

Remark 9. We note again that the bound (1.26), which does not depend on p except for log

terms, is valid for all parameter regimes and in particular for the high-dimensional setting

where p≫ max(n,N). This justifies the use of our method for many text datasets where the

number of unique words observed across all documents is extremely large. Also, the bound

(1.26) does not depend on maxj∈[p] hj or minj∈[p] hj and is thus completely unaffected by

variations in word frequencies. In these regards, our result improves upon the theoretical

guarantees presented in prior works such as Ke and Wang [2022], Bing et al. [2020a], Arora

et al. [2012] and Wu et al. [2022].

1.2.4 Relaxation of the separability condition

Our main result (Theorem 7) may also hold under alternative identifiability assumptions on

A if we use a suitable vertex hunting procedure that is effective even for non-separable point
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clouds. Recall v∗1, . . . , v
∗
K are the simplex vertices from the oracle point cloud {rj : j ∈ J} in

Definition 4 and v̂∗1, . . . , v̂
∗
K are the estimated vertices based on the point cloud {r̂j : j ∈ J} in

Definition 5. The assumptions we made concerning separability and vertex hunting efficiency,

namely Assumptions 3 and 4, are only useful in our analysis insofar as they allow the following

bound to hold with high probability:

max
k∈[K]

∥v̂∗k − v∗k∥2 ≤ max
j∈J
∥r̂j − rj∥2 (1.27)

Figure 1.1: Top left: a non-separable point cloud (blue) contained in a simplex (black) with
3 vertices. Top right: Estimated vertices from SVS (red). Bottom left: Estimated vertices
from SP (red). Bottom right: Estimated vertices from AA (red).

However, this bound may also hold if we adopt the identifiability assumption and the

Archetype Analysis (AA) vertex hunting procedure proposed in Javadi and Montanari [2020].

Figure 1.1 provides an example of a non-separable point cloud where AA recovers the simplex

vertices much more effectively than SP and SVS, which only search for possible vertices within

the point cloud itself or its convex hull. Section 1.5.6 summarizes important results from
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Javadi and Montanari [2020] that are relevant to this project. In our estimation procedure

for A, once we obtain the matrix R̂ whose rows are {r̂j : j ∈ J} from Step 3 of Definition 5,

the estimated simplex vertices can be obtained via AA by solving the following minimization

problem:

minimize D(V ; R̂) over V s.t. D(r̂j ;V ) ≤ δ2 for all j ∈ J (1.28)

Here the rows of V represent the simplex vertices; see Section 1.5.6 for the definition of

the distance function D(·, ·). The main theoretical result of Javadi and Montanari [2020]

(Theorem 31) is that the AA algorithm is robust to noise in the point cloud under certain

conditions. In particular, if we replace Assumptions 3 and 4 by the following assumptions:

(i) The matrix R from Step 2 of the oracle procedure (Definition 4) satisfies α-uniqueness

for some absolute constant α > 0. Here, α-uniqueness (described in Definition 6) is an

identifiability assumption on the simplex vertices that is more general than separability.

(ii) The convex hull of the rows of R contains a (K − 1)-dimensional ball of radius µ > 0

(iii) The vertex hunting procedure V(·) is defined by (1.28) with δ ≍
(
log pn
nN

)1/4
. This

value of δ is chosen based on Corollary 5 and Theorem 31.

then, in light of Theorem 31, (1.27) continues to hold and our main result, Theorem 7,

remains valid. Alternatively, if we do not wish to use the α-uniqueness condition for identi-

fiability, we can also assume that the distance from the oracle simplex vertices {v∗1, . . . , v
∗
K}

to the convex hull of the oracle point cloud {rj : j ∈ J} is not larger than δ. In light of

Theorem 32, this assumption can also be used to obtain (1.27).

Beside from Javadi and Montanari [2020], Ge and Zou [2015] also discusses an alternative

identifiability assumption called subset separability. This notion can be illustrated by the

point cloud in Figure 1.1 (top left), with K = 3. The point cloud (in blue) is contained in

a triangle but is not separable as none of the triangle’s vertices belongs to the point cloud.
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However, each edge of the triangle contains several blue points and thus can clearly be

identified from the point cloud. The vertices can then be identified by taking intersections of

the edges. Ge and Zou [2015] also provides a vertex hunting procedure which, under subset

separability and additional regularity assumptions, can also be shown to be robust to noise

in the point cloud, in the sense of (1.27).

In terms of computation, Javadi and Montanari [2020] describes two algorithms to solve

the following Lagrangian variant of (1.28):

V̂λ = argmin
V

[D(R̂;V ) + λD(V ; R̂)] (1.29)

Note that the objective function in (1.29) is non-convex and thus may have multiple minima.

While AA may significantly reduce statistical error in the vertex hunting step when separa-

bility is not applicable, the trade-off is that its computational cost may be higher than that

of the SP algorithm for separable point clouds.

1.2.5 Estimation of K

Our discussion so far assumes K is known. When K needs to be estimated, it is natural to

examine the spectrum of any matrix that should be of rank K under the pLSI model.

Recall the definition of G in (1.12), and define G0 :=
(
1− 1

N

)
D0D

T
0 . From Lemma

21, with probability 1− o(p−1n ) we have (here C∗ is a numerical constant not dependent on

unobserved constants but may depend on the choice of α)

∥(G−G0)JJ∥op ≤ C∗K
√
K

√
n log pn

N
(1.30)

Furthermore one can show [G0]JJ has rank K with high probability. By a simple application

of Weyl’s inequality, we then obtain the estimator (1.32) for K.
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Lemma 8. Let gn be a quantity satisfying

c

√
nN

log pn
≥ gn ≥ C∗K

√
K (1.31)

where C∗ in (1.31) is the constant from (1.30) and c is another constant that may depend

on K. If

K̂ := max

{
k : λk(GJJ ) > gn

√
n log pn

N

}
(1.32)

then K̂ = K with probability 1− o(p−1n ).

The proof can be found under Corollary 22. In (1.31), the quantity gn needs to be chosen

to override the term C∗K
√
K but cannot converge to +∞ too quickly. Without any prior

information on K, one can choose gn to be a quantity that slowly converges to +∞, such as

gn = 8 log pn. If one has prior knowledge on an upper bound for K (for example if K ≤ 30),

the quantity gn can be determined more specifically.

The estimator (1.32) is based on the bound (1.30), which depends on K and so we need

to assume gn ≥ C∗K
√
K. However, one can also show that with probability at least 1− 1

n+p ,

∥(D −D0)J∗∥op ≤ 4

√
n log(n+ p)

N
(1.33)

(see Lemma 4 of Klopp et al. [2021]). This bound does not depend on K. Under similar

assumptions on σK(A) and σK(W ), we can consider the following estimator

K̂ ′ := max

{
k : σk(DJ∗) > 4

√
n log(p+ n)

N

}
(1.34)

and also show that, based on (1.33), K̂ ′ = K with high probability. The advantage of (1.32)

over (1.34) is computational: both Step 2 of Definition 5 and (1.32) use the eigendecompo-

sition of GJJ , whereas (1.34) requires us to additionally perform SVD on DJ∗.
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Figure 1.2: Scree plots of the eigenvalues of GJJ for three synthetic datasets, with K ∈
{3, 5, 10}, n = N = 500 and p = 5, 000. The x-axis is log-scaled. The red dots represent
the largest K eigenvalues (excluding the largest one), while the blue dots represent all other
eigenvalues.

There are many choices of the quantity gn that may satisfy (1.31) when nN is sufficiently

large. In practice, the estimation of K may be sensitive to the choice of the eigenvalue cutoff,

and moreover real datasets may not always adhere to our assumptions. As Lemma 8 suggests

the spectrum of GJJ is useful for estimating K, we note that it is often possible to determine

the eigenvalue cutoff by inspecting the scree plot of GJJ ’s eigenvalues. Figure 1.2 displays

the scree plots for several synthetic datasets with different values of K. In some situations,

the top K eigenvalues of GJJ are separated from the other eigenvalues by a discernible gap,

thus helping one to visually determine K. When such a gap is unavailable, one can use

the Kneedle algorithm [Satopaa et al., 2011] to find the point of maximum curvature of the

scree plot; this is a common technique to determine the number of principal components in

principal component analysis.
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1.3 Experiments with synthetic data

In this section, we assess the empirical performance of our estimator through a series of

synthetic experiments1. The controlled environment provided by these experiments allows

us to better understand the behavior of our method in different parameter regimes.

Throughout this section, we benchmark our estimator’s performance against the following

well-established methods: (a) Latent Dirichlet Allocation [Blei et al., 2003]; (b) the anchor

word recovery (AWR) approach in Arora et al. [2012], a procedure based on the non-negative

factorization of the second-order moment DDT ; (c) the Topic-SCORE procedure in Ke and

Wang [2022]; and (d) the Sparse Topic Model solver proposed in Bing et al. [2020b]. We

note the following regarding the procedure in Bing et al. [2020b]:

• This procedure removes infrequently occurring words in the same manner as ours, but

with the threshold α
√

log pn
nN in (1.11) replaced by 7 log pn

nN . This threshold is lower than

ours if log pn
nN is sufficiently small. In practice, however, the constant 7 used in their

threshold is quite large and thus leads to excessive thresholding in some of our datasets,

especially when the word frequencies decay according to Zipf’s law.

• This procedure requires a list of anchor words for each topic k ∈ [K] as input, rather

than just the number of topics K. We therefore need to estimate a partition of anchor

words using a special procedure which is included in their original implementation.

Clearly, whether the anchor words are estimated and partitioned correctly has an

impact on the overall estimation of A.

We therefore caution the reader that these factors put the Sparse Topic Model solver of Bing

et al. [2020b] at a comparative disadvantage in our experiments.

1. The code for our method and all the experiments presented in this section can be found on Github at
the following link: https://github.com/yatingliu2548/topic-modeling
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Data generation mechanism. For simplicity, we ensure all documents are of the same

length N . For each experiment, we create a document-to-topic matrix W ∈ RK×n by

independently drawing the columns W∗i ∈ RK , i = 1, . . . , n from the Dirichlet distribution

with parameter αW = 1K . We generate the matrix A ∈ Rp×K either without anchor words

or with 5 anchor words per topic, in which case whenever word j is an anchor word for topic

k, we set Ajk = δanchor where δanchor ∈ {0.0001, 0.001, 0.01}. In order to mimic the behavior

of real text data, the entries of column k of A corresponding to non-anchor words are then

chosen such that they decay according to Zipf’s law. This means for each column k of A, we

ensure that the frequency f(j) of the jth most frequent non-anchor word follows the pattern

f(j) ∝
1

(j + bzipf)
azipf

(1.35)

where azipf = 1, bzipf = 2.7. Each column of A is subsequently normalized to unit ℓ1-norm.

The pattern (1.35) has indeed been empirically shown to hold approximatively for word

frequencies in real datasets; see Zipf [1936] and Piantadosi [2014]. Figure 1.12a in Section

1.5.7 illustrates the distribution of word frequencies generated under our data generation

mechanism.

Having specified both A and W , the observation matrix D is then generated according to

the pLSI model described in Section 1.1.1. We fit our method and the four benchmarks while

varying the values of n, p,N, and K. In all of our experiments, unless otherwise specified,

the constant α in the threshold (1.11) is fixed at α = 0.005. We evaluate the estimation

error of all methods relative to the true underlying A by computing the ℓ1 loss per topic

L1(Â, A) = min
Π∈P

1

K
∥ÂΠ− A∥1

where P denotes the set of all K ×K permutation matrices.
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Varying (p,N,K). We first provide a snapshot of our method’s relative performance in

different parameter regimes by fixing n = 500 and varying (p,N,K). Here we specify 5 anchor

words per topic and set the anchor word frequency to δanchor = 10−3. The median L1(Â, A)-

errors over 50 trials are plotted in Figure 1.3. As Figure 1.3 shows, our method (in blue)

outperforms all other methods in most parameter regimes considered here. Interestingly, the

estimation errors of AWR and LDA often appear constant as a function of document length

N . As N increases, the errors from both Topic-SCORE and our method display a clearer

pattern of consistency relative to AWR and LDA; this observation is also made by Ke and

Wang [2022] in a similar experimental setup. However, our method’s errors decay to zero

much faster than all other benchmarks when the vocabulary size is large (p ∈ {5000, 10000}).

We note that in these experiments, the approach proposed by Bing et al. [2020b] does

not perform very well. In particular, for small p and small N , the number of topics re-

turned by this method is smaller than the expected number of topics K, which prevents us

from comparing its results with all four other methods. On inspection, we find that this is

due to over-thresholding of the vocabulary, which leaves too few words to reliably estimate

the matrix A. To provide a fair comparison with Bing et al. [2020b], we also compare all

five methods using the data generation mechanism proposed in Bing et al. [2020b]. This

means that the non-anchor entries of each column of A no longer display the Zipf’s law

pattern (1.35), but instead are generated from a Uniform distribution. We note that this

data generation mechanism ensures all the non-anchor words for each topic are of roughly

equal frequency and is thus also favorable to Topic-SCORE [Ke and Wang, 2022], which

assumes minj∈[p] hj ≥ ch̄ where h̄ := 1
p

∑p
j=1 hj . The results are displayed in Figure 1.14 of

Section 1.5.7. Under this uniform data generation mechanism, our method (with α = 0.005)

displays identical performance relative to Topic-SCORE, and both SCORE-based methods

still perform well relative to other benchmarks in most parameter regimes. As expected,

we also find that fewer words are removed by thresholding, in comparison with the Zipf’s
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Figure 1.3: Median L1(Â, A) errors for all methods based on 50 independent trials. Here the
number of documents is fixed (n = 500). In each panel, the errors are plotted as a function
of document length N (log-scaled on the x-axis). The panels display results for different
values of (p,K), as specified by row and column labels.

law setting where our ℓq-sparsity assumption (1.19) is more likely to hold with small s and

many more words occur infrequently. These experiments empirically suggest that 1) TTS

improves upon the performance of Topic-SCORE when the columns of A exhibit a Zipf’s

law (or ℓq-sparsity) decay pattern, and 2) our procedure’s performance remains reasonable

and is similar to that of Topic-SCORE when the ℓq-sparsity assumption (1.19) is violated.

Varying the number of documents n. We now focus on the effect of varying n on the es-

timation error. Fixing this time N = 500 and p = 10, 000, the L1(Â, A)-errors are presented

in Figure 1.4 with K = 5 and K = 10. Our method (in blue) consistently outperforms other
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methods and also displays a clear trend of consistency as n increases. When K increases, the

estimation problem becomes more difficult due to the larger number of parameters, and so

more documents are needed to achieve a reasonable performance. Nonetheless, our method

still performs well when K = 10 and n is reasonably large, whereas the error from Topic-

SCORE decays to zero very slowly with this larger value of K.

Figure 1.4: L1(Â, A)-errors from all methods as a function of n, for K ∈ {5, 10} with p and N
fixed. Vertical error bars centered about the median errors indicate the errors’ interquartile
ranges computed based on 50 independent trials.

Varying the dictionary size p. Figure 1.5a shows how the L1(Â, A)-errors vary as the

vocabulary size p increases, with N = 500, K = 5 and n ∈ {1000, 5000, 10000}. We do

not include the errors from the procedure in Bing et al. [2020b] as they are higher than

those of LDA. As expected, the errors for all methods increase with the dictionary size

p. However, our method mostly outperforms the other benchmarks, even in some high-

dimensional parameter regimes where p > max(n,N). The performance of Topic-SCORE

only converges to ours when p is too large relative to n, a setting which is challenging for all

methods.

Additionally, our method also outperforms most other benchmarks in terms of compu-
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tational runtime when p is large. Our method’s runtime is similar to that of AWR and is

consistently better than that of Topic-SCORE, primarily due to our thresholding of infre-

quent words before performing eigendecomposition.

(a) L1(Â, A)-errors as a function of p, with K =
5 and N = 500. Results are obtained based on
15 independent trials.

(b) L1(Â, A)-errors as a function of K, with n =
p = 103 and N = 500. Results are obtained
based on 50 independent trials.

Figure 1.5: L1(Â, A)-errors as a function of the dictionary size p (left) and the number of
topics K (right). Vertical bars around median errors indicate interquartile ranges.

Varying the number of topics K. Figure 1.5b shows how the L1(Â, A)-errors vary as K

increases, with n = p = 1000 and N = 500. The main observation here is that LDA and

AWR may be preferable to our method if K is a priori known to be large while the dataset

we possess is relatively small. As Figure 1.5b illustrates, the SCORE-based methods perform

worse than LDA and AWR when K > 15, but this is because the number of documents is

quite small in this experiment (n = 1000). If n and N are large enough, one can expect our

method to accommodate a larger number of topics; see Figure 1.4 for an illustration.

Relaxation of the separability assumption. Section 1.2.4 suggests that the vertex hunt-

ing algorithm from Javadi and Montanari [2020] may reduce the vertex hunting error in some

situations when separability fails to hold. Figure 1.6 compares the overall L1(Â, A)-errors
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Figure 1.6: L1(Â, A)-errors as a function of n when we use three different vertex hunting
algorithms in the vertex hunting step of TTS. Here, p = 104 and N = 500 are fixed, and
K ∈ {5, 10, 15}. The number of topics per document is either 0, 1 or 5. Results are averaged
over 50 independent experiments.

as a function of n when we use Successive Projection (SP), Sketched Vertex Analysis (SVS)

and Archetype Analysis (AA) in the vertex hunting step of TTS. As expected, when there

are no anchor words, using the AA algorithm rather than SP/SVS can significantly improve

the estimation of Â, especially when K is large. Again, this is because SP and SVS are not

designed for non-separable point clouds and also perform better with small K. In fact, the

AA algorithm also often works well under separability, since the α-uniqueness condition in

Javadi and Montanari [2020] is satisfied. The main trade-off for this stronger statistical per-

formance is the computational cost of solving the non-convex optimization problem required

by AA. Nonetheless, the fact that our method accommodates non-separable datasets makes

TTS more widely applicable compared to methods based on anchor words identification,

such as those proposed in Bing et al. [2020b] and Arora et al. [2012].

The importance of appropriate thresholding. Figure 1.7a shows how the L1(Â, A)-

error varies as the threshold level in (1.11) increases from zero, and Figure 1.7b shows the
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corresponding percentage of words removed. For this dataset, the performance of our method

when α = 0 (no thresholding) is not too different from Topic-SCORE. As the threshold level

increases, infrequent words that contribute noise to the point cloud are removed, thus leading

to an improvement in the estimation of AJ∗. However, an excessively high threshold means

we set too many rows of A to zero, and so the error from estimating AJc∗ becomes higher.

This explains the pattern observed in Figure 1.7a, which demonstrates the importance of

choosing a balanced threshold in our procedure.

(a) Average L1(Â, A)-error as a function
of the threshold parameter α.

(b) Corresponding percentage of the
words discarded by thresholding as a
function of α.

Figure 1.7: L1(Â, A)-error averaged over 20 independent trials and the percentage of words
removed as α increases, for a synthetic dataset with p = 5000, n = N = 500.

As we mentioned, the universal parameter α should be independent of (p, n,N,K). Our

recommended value of α = 0.005 is obtained based on numerous such experiments with

synthetic data where we vary the values of (p, n,N,K). This choice of α also works well in

all real data applications of Section 1.4, where several parameter regimes are involved.

Additional experiments and conclusion. We also evaluate the impact of other aspects

of the data generation mechanism on our estimator’s performance. We find that changing

δanchor, which controls the frequency of anchor words, does not significantly impact the

overall performance of TTS. This is an advantage of SCORE-based methods over methods
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that rely on anchor words identification, which are often affected by the frequency of anchor

words both in theory and in practice. Additionally, when we increase the parameter azipf in

(1.35), we find that our estimator’s performance improves significantly. This is not surprising

as a larger azipf means the ordered entries of A’s columns decay to zero faster, and our

theoretical results also show that a strong sparsity regime (when q is close to 0 in Assumption

5) is favorable to our method. Further details about these experiments are deferred to Section

1.5.7. Finally, we check the performance of our method on a set of semi-synthetic experiments

based on the Associated Press dataset (included in the R package tm [Feinerer et al., 2015]),

thereby allowing us to test a different data generating mechanism. The results are also

presented in Section 1.5.7.

Overall, we have illustrated that our method (a) performs well in a wide variety of

parameter regimes, and notably in the high-dimensional setting where p is large, and (b)

performs well even if our sparsity assumption is violated (see the discussion on the uniform

data generation mechanism, and also note that we use a weak sparsity regime with azipf ≈ 1

in most of our experiments). This makes our method applicable to the vast majority of

real-world text datasets, which often are high-dimensional and exhibit Zipf’s law decay.

However, alternative methods such as LDA and AWR may still be competitive in some

settings, especially when the pLSI model fails to hold or if the number of documents n and

the document length N are unusually small relative to the number of topics K.

1.4 Practical applications in text analysis and beyond

In this section, we deploy our method on real-world datasets. Given the results of the

previous section, we focus here on the comparison of our method with Topic-SCORE [Ke

and Wang, 2022] and LDA [Blei et al., 2003].

Real datasets seldom have ground truth for A, and some may even lack an obvious

choice for the number of topics K. Consequently, in this section we evaluate the estimators’
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performance using, when appropriate, the following metrics:

(a) Topic Resolution as a measure of topic consistency. We fit each estimator on two disjoint

halves of the data and report the cosine similarity between estimated topics (after an

appropriate permutation of the columns of A). Mathematically, letting Â(i), i ∈ {1, 2}

denote the estimated topic-word matrices obtained for each half of the data, we define

the “average topic resolution” η as the mean cosine similarity (a classical similarity metric

in natural language processing) between aligned topics:

η = max
σ∈ΠK

1

K

K∑
k=1

Â
(1)⊤
∗k Â

(2)
∗σ(k)

∥Â(1)
∗k ∥2∥Â

(2)
∗σ(k)∥2

, (1.36)

where ΠK denotes the set of all permutations of [K]. Thus, higher resolution indicates

better-defined and more consistent topic vectors (although this does not necessarily mean

better ℓ1-error).

(b) Multiscale Topic Refinement and Coherence (Fukuyama et al. [2021]): In the absence

of an obvious number of topics K, we fit the method for multiple values of K and an-

alyze the resulting topic hierarchy to check the stability of our estimator. We follow

in particular the methodology of Fukuyama et al. [2021], which was developed to guide

the choice of an appropriate number of topics K for LDA [Blei et al., 2003] by inves-

tigating the relationships among topics of increasing granularity. Given a hierarchy of

topics, the method evaluates which topics consistently appear, constantly split, or are

merely transient. We use these tools here (and its associated package alto [Fukuyama

et al., 2021]) to analyze our estimator. The method of Fukuyama et al. [2021] starts by

computing the alignment of topics across the hierarchy using the transport distance: for

each K, this method computes how the mass of topic j ∈ {1, · · · , K} is split amongst

the K + 1 topics at the next level of the hierarchy. We refer the reader to the original

work by Fukuyama et al. [2021] for a more detailed explanation of topic transport align-
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ment. Once the relationships between consecutive topic models have been established,

the method of Fukuyama et al. [2021] allows visualization of (a) topic refinement (i.e.,

whether topics increase in granularity, as indicated by a small number of ancestors in

the hierarchy; or conversely, whether topics are perpetually recombined from one level

of the hierarchy to the next); and (b) topic coherence (whether a topic appears across

multiple values of K). We choose here to favour methods with improved topic coherence

and topic refinement, since there are markers of topic stability.

We explore the comparison between our method, LDA and Topic-SCORE under diverse

parameter regimes (with varying n, N and p).

1.4.1 Research articles (high p, high n, low N)

For our first experiment, we consider a corpus of 20,140 research abstracts belonging to

(at least) one of four categories: Computer Science, Mathematics, Physics and Statistics2.

After pre-processing of the data (including the removal of standard stop words, numbers,

and punctuation), our dataset involves a dictionary of size p = 81, 649 and n = 20, 140

documents with an average document size of N = 157 words.

We first evaluate the topic consistency of all methods in estimating the topic-word matrix

A using the mean topic resolution defined in equation (1.36). Table 1.1 displays the average

topic resolution over 25 random splits of the data. As highlighted in the introductory para-

Methods Average Topic Resolution(η) Interquantile range
LDA (Blei et al) 0.304 (0.270,0.330)
TTS (this paper) 0.332 (0.310,0.360)

Topic-SCORE (Ke et al) 0.145 (0.093,0.179)

Table 1.1: Average Topic Resolution on research article data. The interquartile range for
the average topic resolution was computed over 25 random splits of the data.

2. The data is available on Kaggle at this link. Although the original data set comprises six topics (with
the addition of Quantitative Biology and Finance), due to the low representation of these last two topics
(< 4% of the data), we drop them from our analysis.
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graph to this section, topic resolution can be taken as an indicator of the stability of the

estimator of Â between two separate portions of the data. A method that produces higher

topic resolution with a narrower interquartile range indicates a more stable estimation of

the topic-word matrix A. As shown in Table 1.1, our approach consistently outperforms

LDA and Topic-SCORE on this metric; it offers the highest average topic resolution score.

Topic-SCORE’s performance exhibits more significant fluctuations, as indicated by its larger

interquartile range.

Taking a closer look at the estimation of A, we consider the 10 most representative

words generated by each of the three methods for every topic (obtained by selecting the

top 10 largest entries in each column of Â). The results are presented in Tables 1.2, 1.3,

and 1.4. For the topics of Computer Science and Statistics, the top 10 most representative

words produced by our method agree with 70% of LDA’s most representative words in the

corresponding topics. There is much less agreement for the topic of Physics, but upon closer

inspection we find that some of the words produced by our method in that category (such

as ‘magnetic’, ‘energy’) are more indicative of the topic of Physics, whereas all of the top 10

words for Physics produced by LDA are generic words that can appear in other categories.

In contrast, the results of Topic-SCORE (Table 1.4) seem to diverge substantially from

those of LDA and our method. It appears that the top 10 most representative words for

Physics, Mathematics and Statistics from Topic-SCORE are dominated by infrequently oc-

curing words and foreign words; the foreign words can be traced back to a few rare abstracts

written in English and followed by a foreign language translation. This supports our hy-

pothesis that Topic-SCORE amplifies the effects of infrequent words, unless significant ad

hoc data pre-processing (removal or merger of rare words, and removal of documents with

significant numbers of rare words) is applied.

In order to further investigate the performance gap between TTS and Topic-SCORE, we

visualize the point cloud from both methods in Figure 1.8. As expected, we observe that the
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Top 10 most representative words per topic
Computer Science “learning" “network" “networks" “model" "can" “neural"

“deep" “using" "models" “data"
Physics “model" “can" “system" “field" “energy" “systems"

“magnetic" “models" “using" “phase"
Mathematics “problem" “can" “algorithm" “show" “method" “paper"

“results" “also" “time" “using"
Statistics “data" “model" “can" “learning" “using" “models"

“method" “approach" “based" “paper"

Table 1.2: Most common words found by our method

Top 10 most representative words per topic
Computer Science “data" “network" “learning" “networks" “can" “model"

“using" “new" “paper" “based"
Physics “show" “data" “analysis" “two" “can" “problem"

“results" “field" “system" “performance"
Mathematics “can" “used" “models" “using" “model" “paper"

“number" “method" “proposed" “approach"
Statistics “model" “results" “show" “can" “learning" “method"

“using" “based" “data" “also"

Table 1.3: Most common words found by LDA

Topic-SCORE point cloud is severely stretched by a set of low-frequency words that include

several foreign words. Again, with the presence of many rare words in the dataset, the lack

of thresholding and the use of the pre-SVD multiplication step in Topic-SCORE contribute

to a significant distortion of the point cloud. In comparison, the thresholding approach we

adopt yields a more compact point cloud. As demonstrated in Figure 1.8b, our method

effectively recaptures the essential vertices of the point cloud simplex. A closer look at the

words surrounding each vertex, as shown in Figure 1.8b, allows us to easily identify which

simplex vertex belongs to which topic (Physics, Math, Computer Science and Statistics when

moving in the anticlockwise direction). Under this “large p” regime and in the presence of a

myriad of rare words that may introduce significant noise, our method not only distinguishes

words effectively but also clusters them into well-defined topics.

We note that this dataset comes with manually curated topic labels for each document.
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Top 10 most representative words per topic
Computer Science “data" “can" “model" “using" "learning" “show"

“results" “method" “paper" “also"
Physics “della" “quantum" “theory" “del" “year" “teoria"

“quantistica" “per" “nel" “delle"
Mathematics “die" “der" “collectors" “problem" “able" “assumptions" “coupon"

“wir" “based" “one"
Statistics “der" “und" “music" “automatischen" “learning" “sheet"

“die" “musikverfolgung" “deep" “algorithms"

Table 1.4: Most common words found by Topic SCORE

(a) Point cloud for K = 4 from Topic-
SCORE (b) Point cloud for K = 4 from our method

Figure 1.8: Comparison of the 3-dimensional point clouds from TTS (right) and Topic-
SCORE (left), projected on the first two axes for visualization. Estimated vertices are
colored red, and the point clouds are represented by gray dots. Most outlying words in
Topic-SCORE’s point cloud are thresholded away by TTS, thus contributing to higher point
cloud stability for our method.

As a final verification, we analyze the performance of the different methods when used for

recovering the ground truth labels for each document. Having estimated A, it is quite natural

in light of the pLSI model to perform regression of D against Â in order to yield an estimator

of W . To this end, we use the estimation procedure for W in Ke and Wang [2022], where

the problem of estimating W given Â is reduced to a weighted constrained linear regression

problem:

∀i ∈ [n], Ŵ∗i = argminω∈[0,1]K
1

p

p∑
j=1

1

Mjj
(Dji −

K∑
k=1

Âjkωki)
2 (1.37)

We strongly emphasize that the aim of this experiment is to evaluate the estimation of A,
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and we do not claim here that our method provides state-of-the-art results in the estimation

of W . Other potentially better estimation procedures are available for W , many of which do

not require estimating A first. Rather, as topic labels are available for this dataset, we use

this simple estimation procedure for W via Â as another way of comparing the quality of Â

obtained from TTS, Topic-SCORE and LDA. Since the Ŵ obtained from (1.37) depends on

Â as input, it stands to reason that a better estimation procedure for A may be reflected in

a better agreement between Ŵ and the provided topic labels for each document, if we use

(1.37) to estimate W .

Let yki = 1 if document i is labeled as belonging to topic k (and yki = 0 otherwise).

We compute the average l1 distance D(Ŵ , y) and cosine similarity Sk between the permuted

matrix Ŵ and the provided labels y for each topic k as follows:

D(Ŵ , y) := min
σ∈ΠK

1

nK

∑
ki

|Ŵσ(k)i − yki|, Sk = max
σ∈ΠK

∑n
i=1 Ŵσ(k)iyki

∥Ŵσ(k)∗∥2∥yk∗∥2
(1.38)

Here, a smaller value of the l1 distance or a larger value of the cosine similarity score between

y and Ŵ indicate greater alignment with the provided topic labels. The results are displayed

in Table 1.5.

Methods SCS SPhys SMath SStat S̄ D(Ŵ , y)

LDA(Blei et al) 0.671 0.576 0.534 0.493 0.569 0.403
TTS(this paper) 0.610 0.748 0.636 0.494 0.622 0.305

Topic SCORE(Ke et al) 0.670 0.545 0.588 0.373 0.544 0.348

Table 1.5: The evaluation of Ŵ obtained via estimating A first by using the three methods.
S̄ is the average cosine similarity across all K topics

Table 1.5 indicates that our method improves the estimation of W overall and provides

the best topic alignment on average, when using (1.37) to estimate W . This suggests that

our procedure yields a more accurate estimator of A.
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1.4.2 Single cell analysis (low p, high n, low N)

In this subsection, we consider a different application area for our methodology: the analysis

of single-cell data. We revisit the mouse spleen dataset presented by Goltsev et al. [2018].

This dataset consists of a set of images from both healthy and diseased mouse spleens. Each

sample undergoes staining with 30 different antibodies via the CODEX process, as detailed

in Goltsev et al. [2018]. In Chen et al. [2020], each spleen sample is divided into a set of

non-overlapping Voronoi bins, and the count of immune cell types is recorded in each bin. In

this framework, each bin can be viewed as a document and cell types correspond to words.

It is of interest to determine appropriate groupings of cell types (topics), as this may help

one study the interactions between cells.

Since this dataset does not come with ground-truth labels, we sample two disjoint sets

of size n = 10, 000 out of the 100,840 Voronoi tessellations across all spleen samples (where

10,000 is a number chosen to be large enough to ensure a “high n” regime while still allowing

all methods to have reasonable computational runtimes). On the contrary, there are only

24 different cell types (p = 24), while the average “document” length is N = 11.2 with an

interquartile range of (6, 16). While Chen et al. [2020] focus on evaluating estimators of the

matrix W , here we repurpose the use of this dataset to study our estimator of A. In this

dataset, the precise number of topics K is unknown. We thus apply the three methods for

different values of K and use the metrics introduced at the beginning of this section (topic

resolution, topic coherence and refinement) to compare the three methods. The results are

presented in Figures 1.9 and 1.10.

Discussion of the results. Due to the structured nature of this dataset, all methods

perform remarkably well, exhibiting an average topic similarity above 0.95. Going into more

details, we see that our method outperforms Topic-SCORE in terms of topic resolution. In

particular, Topic-SCORE (in red) appears to have more variable performance, as reflected
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in its larger interquartile ranges and its jittery resolution as a function of K. Interestingly,

in this specific instance, LDA seems to score higher on topic resolution (although we again

emphasize that all methods perform very well on this metric). Additionally, Figure 1.10a

shows the refinement and coherence of the topics for our method as K increases, in contrast

to those of LDA in Figure 1.10b. In this data example, our method seems to provide topics

with higher refinement (fewer ancestors per topic) and higher coherence (note in particular

the stability of topic 1, 2, and 18) compared to LDA. In Figure 1.10b, it can be observed

that topics 1, 2, and 18 are dispersed across different branches within the refinement plot as

K varies.

Figure 1.9: Median Topic Resolution as a function of K on the Mouse Spleen Data [Goltsev
et al., 2018, Chen et al., 2020]. Vertical error bars represent the interquartile range for the
average topic resolution scores over 25 trials.

1.4.3 Microbiome examples (low p, low n, high N)

We finish our discussion with an application of our method to microbiome data analysis.

In particular, we reanalyze two datasets that have been previously analyzed through topic

modeling: the colon dataset of Yachida et al. [2019] and the vaginal microbiome example

of Callahan et al. [2017], which was re-analyzed in Fukuyama et al. [2021] using LDA.

Microbiome data are represented in the form of a count matrix. In this matrix, each column

corresponds to a different sample, while each row represents various taxa of bacteria. The
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(a) Topic refinement for our method as K varies,
provided by the package alto [Fukuyama et al.,
2021].

(b) Topic refinement for LDA [Blei et al., 2003]
as K varies, provided by the package alto
[Fukuyama et al., 2021].

Figure 1.10: Comparison of the refinement and coherence of topics recovered using our
method (left) and LDA (right).

entries within the matrix represent the abundance of each bacteria in a given sample. Taking

samples to be documents and bacteria as words, topic modeling offers an interesting way of

exploring communities of bacteria (“topics”) [Sankaran and Holmes, 2019]. For the sake of

conciseness, we present the results here for the colon dataset of Yachida et al. [2019], and

refere the reader to Section 1.5.8 for the results on the other dataset.

After pre-processing and eliminating species with a relative abundance below 0.001%,

this dataset contains microbiome counts for p = 541 distinct taxa from n = 503 samples.

In contrast, the length of each “document” is extremely high, with around N = 43 million

bacteria per sample. We test all three methods for different values of K and display the

average topic resolution in Figure 1.11. On this metric, our method exhibits significantly

better results than both LDA and Topic SCORE for up to 15 topics. After 15 topics, LDA

outperforms all SCORE-based methods in terms of topic resolutions. However, this comes

at a much higher computational cost: while each of the SCORE methods in this example
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could be fitted in under a minute, each of the LDA fits took on the order of tens of minutes.

Note that LDA’s high topic resolution could also be due to the higher weight of the prior

in the estimation of the topic-word matrix A, which, due to the relatively small size of the

dataset, could have a stabilizing effect on estimation. On the other hand, the performance

of Topic-SCORE quickly drops to 0.65 as K increases, before reaching a plateau at around

K ≈ 10. By contrast, for small K, our method exhibits a resolution up to 40% higher than

Topic Score (for K = 10) before also decreasing as the number of topics increases.

Figure 1.11: Topic resolution (measured by the average cosine similarity between halves of
the data) of our method (in blue) and Topic-SCORE (red) on the microbiome dataset of
Yachida et al. [2019]. Topic resolution is averaged over 25 random splits of the data.

To understand the gap in performance between Topic-SCORE and our method, we again

visualize the point clouds obtained by both methods. The visualization can be found in

Figure 1.17 in Section 1.5.8. Similarly to our first example with text analysis, we observe

that the point cloud of Topic-SCORE is heavily distorted; in contrast, ours is more compact.

1.5 Proofs and supplementary materials

All proofs make use of notations described in Section 1.1.4. Assumptions 1-4 (which include

separability) are assumed from Section 1.5.1 to Section 1.5.4, whereas the sparsity assumption

(Assumption 5) is further imposed in Section 1.5.5.
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1.5.1 Properties of the set J

Lemma 9 (Weak sparsity of A). Order the ℓ2 row norms of A so that

∥A(1)∗∥2 ≥ · · · ≥ ∥A(p)∗∥2

Then the matrix A satisfies maxj∈[p] j∥A(j)∗∥2 ≤ K.

Proof. Observe that for any j ∈ [p],

j∥A(j)∗∥2 ≤
p∑

l=1

∥Al∗∥2 ≤
p∑

l=1

∥Al∗∥1 = K

since A contains only non-negative entries and each column sums up to 1.

Lemma 10. If M0 := diag(n−1D01n) and hj := ∥Aj∗∥1, then for any j ∈ [p],

σK(ΣW )hj ≤M0(j, j) ≤ hj

Proof. Note that

M0(j, j) =
1

n

n∑
i=1

[D0]ji =
1

n

n∑
i=1

K∑
k=1

AjkWki =
K∑
k=1

Ajk

(
1

n

n∑
i=1

Wki

)

and observe that hj :=
∑K

k=1Ajk and for each k ∈ [K] (recall ΣW := 1
nWWT ),

σK(ΣW ) ≤ ΣW (k, k) =
1

n

n∑
i=1

W 2
ki ≤

1

n

n∑
i=1

Wki ≤ 1

Theorem 11. Define pn := p ∨ n, τn :=
√

log pn
Nn . Let

J := {j ∈ [p] : M(j, j) > ατn} , J± := {j ∈ [p] : M0(j, j) > α±ατn}
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for some suitably chosen α > 0 and 0 < α+ < 1 < α−. The following statements hold:

(a) For a fixed j ∈ [p], we have

P(|M(j, j)−M0(j, j)| ≥ t) ≤ 2 exp
(
−nNt2/2

)

(b) The event

E := {J− ⊆ J ⊆ J+}

occurs with probability at least 1 − o(p−1n ). Here, we can select α = 8, α+ = 1
2 , α− = 2.

Note that this implies that on E, minj∈J hj > α+ατn.

(c) We have

∥AJc
−∗∥

2
F ≤

[
2K(βτn)

−1 ∧ p
]
(βτn)

2 = o(1)

where β :=
α−α

σK(ΣW )
= 16

σK(ΣW )
≤ C, and the same is true of ∥AJc∗∥2F on event E.

(d) |J+| ≤ Kτ−1
n

αα+
∧ p =

Kτ−1
n
4 ∧ p, and the same is true of |J | on event E.

(e) σK(AJ∗) > c
√
K for some absolute constant c > 0 on event E. This implies |J | ≥ K

and [D0]J∗ have rank K on E.

(f) There exists an absolute constant c ∈ (0, 1) such that the entries of AT
J∗AJ∗ are all

greater than c on event E.

Proof. (a) Denote Z := D −D0. We introduce the set of p-dimensional one-hot vectors

{Tim : 1 ≤ i ≤ n, 1 ≤ m ≤ N}

for each word in the dataset; note that Tim ∼ Multinomial(1, [D0]∗i) and these one-hot
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vectors are mutually independent. It follows that each column of Z satisfies

[Z]∗i =
1

N

N∑
m=1

(Tim − E[Tim]) (1.39)

Note that for a given j ∈ [p]:

M(j, j)−M0(j, j) =
1

n

n∑
i=1

Zji =
1

nN

n∑
i=1

N∑
m=1

(Tim(j)− E[Tim(j)]) (1.40)

and since |Tim(j)− E[Tim(j)]| ≤ 1, we can apply Hoeffding’s inequality to conclude

P(|M(j, j)−M0(j, j)| ≥ t) ≤ 2 exp
(
−nNt2/2

)

(b) Note that α− > 1. We have

P(J− ̸⊆ J) = P
(
∪j∈J− {M(j, j) ≤ ατn}

)
≤
∑
j∈J−

P (M(j, j) ≤ ατn)

≤
∑
j∈J−

P (M(j, j)−M0(j, j) ≤ ατn − α−ατn)

≤
∑
j∈J−

P (|M(j, j)−M0(j, j)| ≥ (α− − 1)ατn)

≤
∑
j∈J−

2 exp
(
−Nn(α− − 1)2α2τ2n/2

)
≤ 2p

1−(α−−1)2α2/2
n

where in the last step we used |J−| ≤ p. We want to choose 1 − (α−−1)2α2

2 < −1 or

equivalently (α− − 1)α > 2.
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Note that 0 < α+ < 1. We further have

P(J ̸⊆ J+) = P
(
∪j∈Jc

+
{M(j, j) > ατn}

)
≤
∑
j∈Jc

+

P (M(j, j)−M0(j, j) > (α− αα+)τn)

≤
∑
j∈Jc

+

P

(
|M(j, j)−M0(j, j)| > (1− α+)α

√
log pn
nN

)

≤
∑
j∈Jc

+

2 exp

(
−Nn(1− α+)

2α2 log pn
2Nn

)

≤ 2p
1−(1−α+)

2α2/2
n

Again, we want to choose 1− (1−α+)
2α2

2 < −1 or equivalently (1−α+)α > 2. A suitable

choice is α = 8, α+ = 1
2 , α− = 2.

(c) From Lemma 10, we have

M0(j, j) ≥ σK(ΣW )∥Aj∗∥1 ≥ σK(ΣW )∥Aj∗∥2

and so if we define

L := {j ∈ [p] : ∥Aj∗∥2 > βτn} where β :=
α−α

σK(ΣW )
=

16

σK(ΣW )

then L ⊆ J− by definition of J−, and thus ∥AJc
−∗∥F ≤ ∥ALc∗∥F . Now, if we order the
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ℓ2 row norms ∥A(1)∗∥2 ≥ · · · ≥ ∥A(p)∗∥2 and apply Lemma 9,

∥ALc∗∥2F =
∑
j ̸∈L
∥Aj∗∥22 =

∑
j ̸∈L

min(∥Aj∗∥22, β
2τ2n)

≤
p∑

j=1

min(∥A(j)∗∥
2
2, β

2τ2n) ≤
p∑

j=1

min

(
K2

j2
, β2τ2n

)

≤
∫ ∞
0

min(β2τ2n, K
2t−2)dt

Let t0 satisfies β2τ2n = K2t−2 or t0 = K
βτn

. We continue:

∥ALc∗∥2F ≤ t0β
2τ2n +K2

∫ ∞
t0

t−2dt

= t0β
2τ2n +K2t−10 = 2t0β

2τ2n

= 2Kβτn = 2Kβ

√
log pn
Nn

= o(1)

given our assumption that σK(ΣW ) > c for some absolute constant c > 0. Moreover, it

is also clear from the definition of L that

∥ALc∗∥2F ≤ p(βτn)
2

(d) For all j ∈ J+ := {j ∈ [p] : M0(j, j) > αα+τn}, note that hj ≥ M0(j, j) > α+ατn.

Then observe that

K =

p∑
j=1

hj ≥
∑
j∈J+

hj ≥ |J+|αα+τn = 4|J+|τn

(e) Here we use the assumption that σK(A) > c
√
K for some absolute constant c > 0.
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Observe that by Weyl’s inequality for singular values, on event E we have

σK(AJ∗) ≥ σK(A)− ∥AJc∗∥op

≥ σK(A)− ∥AJc∗∥F

≥ c
√
K − o(1) ≥ c

√
K/2

when nN is sufficiently large, since in part (c) we have shown ∥AJc
−∗∥F ≤ C

(
log pn
Nn

)1/4
.

Hence, AJ∗ has rank K on E , and by Sylvester’s rank inequality,

K = rank(AJ∗) + rank(W )−K ≤ rank([D0]J∗) ≤ rank(AJ∗) = K

(f) Here we use the assumption that the entries of ATA are bounded below by an absolute

constant. For any k, l ∈ [K], since ATA = AT
J∗AJ∗ + AT

Jc∗AJc∗, on event E the (k, l)-

entry of AT
J∗AJ∗ satisfies

(AT
J∗AJ∗)(k, l) = (ATA)(k, l)−

∑
j ̸∈J

AjkAjl

≥ c− ∥AJck∥2∥AJcl∥2

≥ c− ∥AJc∗∥2F = c− o(1) ≥ c/2

when nN is sufficiently large.

1.5.2 Properties of unobserved quantities

Lemma 12. The following statements are true:

(a) σ1(A) ≤
√
K and σ1(ΣW ) ≤ 1, where ΣW := 1

nWWT .
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(b) If Ξ ∈ R|J |×K contains the first K left singular vectors of [D0]J∗, then ΞTAJ∗ is in-

vertible. If V := (ΞTAJ∗)
−1 ∈ RK×K then V satisfies the following:

(i) Ξ = AJ∗V

(ii) The singular values of V are the inverses of the singular values of AJ∗

(iii) The columns V1, . . . , VK of V are eigenvectors of the matrix Θ := ΣWAT
J∗AJ∗,

associated with the eigenvalues

λk(Θ) =
σ2k([D0]J∗)

n
for 1 ≤ k ≤ K

(c) The matrix Θ0 := ΣWATA ∈ RK×K satisfies the following:

(i) The entries of Θ0 are all positive and bounded below by an absolute constant c1 > 0.

(ii) The gap between its first two eigenvalues is bounded below by an absolute constant

c2 > 0.

(iii) The entries of the unit-norm leading positive eigenvector of Θ0 are all bounded

below by an absolute constant c3 > 0.

(d) On event E, the results of part (c) also apply to Θ, possibly with smaller absolute con-

stants c1, c2, c3 > 0.

(e) There exist absolute constants c, C > 0 such that on E, the entries of the first column of

V satisfy
c√
K
≤ min

k∈[K]
V1(k) ≤ max

k∈[K]
V1(k) ≤

C√
K

and if ξ1, . . . , ξK are the columns of Ξ, then for any j ∈ J , its first column satisfies

chj√
K
≤ ξ1(j) ≤

Chj√
K
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(f) Let Q ∈ RK×K be defined by QT = [diag(V1)]−1V , and note that the entries of the first

row of Q are all equal to 1. If v∗1, . . . , v
∗
K ∈ RK−1 are defined by the relation

Q =

 1 . . . 1

v∗1 . . . v∗K


then we have

c ≤ σK(Q) ≤ σ1(Q) ≤ C

Consequently, v∗1, . . . , v
∗
K are affinely independent (which means the simplex defined by

their convex hull is non-degenerate) and maxk∈[K] ∥v∗k∥2 ≤ C.

Proof. (a) The kth diagonal entry of ATA is ∥A∗k∥22 ≤ ∥A∗k∥1 = 1, so tr(ATA) ≤ K which

implies σ1(A) ≤
√
K. Similarly,

σ1(ΣW ) =
σ1(W

TW )

n
≤ tr(WTW )

n
=

∑n
i=1 ∥W∗i∥22

n
≤
∑n

i=1 ∥W∗i∥1
n

= 1

(b) By singular value decomposition, we have

[D0]J∗ = ΞΛBT

where Λ = diag(σ1, . . . , σK) ∈ RK×K contains the singular values of [D0]J∗ and B ∈

Rn×K contains its right singular vectors. Here ΞTΞ = BTB = IK . Then

Ξ = ΞΛBTBΛ−1 = [D0]J∗BΛ−1 = AJ∗WBΛ−1

If we let V = WBΛ−1 ∈ RK×K , then Ξ = AJ∗V . Furthermore, since

ΞTΞ = ΞTAJ∗V = IK
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we can see that V can be defined as the inverse of ΞTAJ∗, thus proving (i). Also, since

ΞTΞ = V TAT
J∗AJ∗V = IK

we have V V TAT
J∗AJ∗V V T = V V T , which implies V V T = (AT

J∗AJ∗)
−1 and (ii) follows.

Now let ξ1, . . . , ξK be the columns of Ξ, and let V1, . . . , VK be the columns of V . Note

that ξk = AJ∗Vk. Since [D0]J∗[D0]
T
J∗ξk = σ2kξk and ΣW := 1

nWWT , we have

AJ∗ΣWAT
J∗AJ∗Vk = AJ∗ΣWAT

J∗ξk =
1

n
[D0]J∗[D0]

T
J∗ξk =

σ2k
n
ξk =

σ2k
n
AJ∗Vk

Multiplying both sides by (AT
J∗AJ∗)

−1AT
J∗ on the left, we have

ΣWAT
J∗AJ∗Vk =

σ2k
n
Vk

and so V1, . . . , VK are eigenvectors (not necessarily orthonormal) of Θ := ΣWAT
J∗AJ∗,

associated with eigenvalues σ2k/n for k = 1, . . . , K. This proves (iii).

(c) For any 1 ≤ k, l ≤ K, (i) follows from our assumptions:

Θ0(k, l) =
K∑
s=1

ΣW (k, s) · (ATA)(s, l)

≥ min
t,u∈[K]

(ATA)(t, u) ·
K∑
s=1

ΣW (k, s)

≥ min
t,u∈[K]

(ATA)(t, u) · ΣW (k, k)

≥ min
t,u∈[K]

(ATA)(t, u) · σK(ΣW ) > c

Let γ(Θ0) := λ1(Θ0)− λ2(Θ0) ≥ 0 denote the gap between the first two eigenvalues of

Θ0. The proof of (ii) is an asymptotic argument. If we consider a sequence {Θ(n)
0 } that
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varies with n as n→∞, then (ii) follows if we can establish that

lim inf
n→∞

γ(Θ
(n)
0 ) > 0

Assume to the contrary that lim infn→∞ γ(Θ
(n)
0 ) = 0. Then there exists a subsequence

{Θ(nm)
0 }∞m=1 such that the gap between the first two eigenvalues decays to zero. Since

∥Θ(n)
0 ∥op ≤ ∥Σ

(n)
W ∥op∥A(n)∥2op ≤ K

and K is fixed as n varies, there must exist a further subsequence that converges to

some matrix Θ
(∞)
0 . By part (i), this matrix Θ

(∞)
0 has entries that are bounded below by

some absolute constant c > 0, and yet its first two eigenvalues are equal (by eigenvalue

continuity). By Perron’s theorem (see Section 8.2 of Horn and Johnson [2012] for a

reference), such a matrix Θ
(∞)
0 cannot exist.

(iii) is also proven in a similar manner. Let η
(n)
0 ∈ RK denote the leading unit-norm

positive eigenvector of Θ(n)
0 ; its entries are all positive by Perron’s theorem. Suppose

there exists some k ∈ [K] such that

lim inf
n→∞

η
(n)
0 (k) = 0

Note that the mapping from a matrix in RK×K with strictly positive entries to its

leading unit-norm positive eigenvector is continuous (this will be further elaborated in

part (d)). Again, this implies that there exists a subsequence {Θ(nm)
0 } that converges

to some Θ
(∞)
0 having strictly positive entries, and yet its leading eigenvector contains a

zero entry. This contradicts Perron’s theorem.

(d) In light of Theorem 11(f) which shows AT
J∗AJ∗ has entries bounded below by c > 0 on

E , (i) is proven similarly as in part (c).
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We will first show (iii). Note that we refrain from applying the asymptotic arguments

of part (c) directly to Θ since, unlike Θ0, Θ depends on J which is random. Also, the

sin θ theorem is not applicable to eigenvectors of Θ and Θ0 as these matrices are not

symmetric. Hence, we opt for the approach presented below.

Define the open domain

E = {Ψ ∈ RK×K : Ψ(k, l) > 0 for all k, l ∈ [K]}

and define f : E → RK as the function mapping a matrix in E to its leading unit-norm

positive eigenvector. Also, fix Ψ0 ∈ E and 1 ≤ k, l ≤ K. For any real-valued t in a

neighborhood of zero, consider the function

fΨ0
kl (t) := f(Ψ0 + teke

T
l )

where ek and el are the kth and lth canonical basis vectors of Rk respectively.

Since the algebraic multiplicity of the first eigenvalue of any matrix in E is 1 (Perron’s

theorem), by Theorem 2 of Greenbaum et al. [2020], for any Ψ0 ∈ E and any k, l ∈

[K], the function fΨ0
kl (·) is continuously differentiable around 0 (more specifically, one

can write fΨ0
kl (t) =

x(t)
∥x(t)∥2

for some eigenvector function x(t) that is analytic in a

neighborhood of 0). Therefore, the function f itself is continuously differentiable on

E, and we can define its derivative f ′(Ψ) as a matrix in RK2×K containing all the

partial derivatives of f at Ψ ∈ E. Since these partial derivatives are all continuous,

f ′ : E → RK2×K is a continuous function.

Now if c > 0 is an absolute constant such that all the entries of Θ0 and Θ are greater

than c (the latter on event E), then Θ and Θ0 belong to the set

E′ = {Ψ ∈ RK×K : Ψ(k, l) ≥ c for all k, l ∈ [K] and ∥Ψ∥op ≤ K}
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which is a compact subset of E. Let η and η0 be the unit-norm positive first eigenvectors

of Θ and Θ0 respectively. On event E , by Theorem 9.19 of Rudin et al. [1976],

∥η − η0∥2 = ∥f(Θ)− f(Θ0)∥2 ≤ max
Ψ∈E′

∥f ′(Ψ)∥op∥Θ−Θ0∥F

≤ C∥ΣW ∥op∥ATA− AT
J∗AJ∗∥F

= C∥ΣW ∥op∥AT
Jc∗AJc∗∥F ≤ C∥AJc∗∥2F = o(1)

where we note that ATA = AT
J∗AJ∗ + AT

Jc∗AJc∗. Hence, for any k ∈ [K],

η(k) ≥ η0(k)− ∥η − η0∥2 ≥ c− o(1) > c/2

if nN is sufficiently large. We have shown mink η(k) ≥ c/2 > 0 on E .

As for (ii), we have shown in (b)(iii) for Θ (and the proof is similar for Θ0) that

λk(Θ) =
σ2k([D0]J∗)

n
, λk(Θ0) =

σ2k(D0)

n

Note that since ∥A∥op ≤
√
K and ∥W∥op ≤

√
n,

max[σk([D0]J∗), σk(D0)] ≤ ∥A∥op∥W∥op ≤
√
Kn

and by Weyl’s inequality for singular values (which can be applied after appending zero

rows to the matrix AJ∗ so as to match the dimension of A),

|λk(Θ)− λk(Θ0)| ≤
|σk([D0]J∗)− σk(D0)||σk([D0]J∗) + σk(D0)|

n

≤
∥AJc∗∥op∥W∥op(2

√
Kn)

n

≤ 2
√
K∥AJc∗∥op = o(1)
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on event E , so

|λ1(Θ)− λ2(Θ)| ≥ |λ1(Θ0)− λ2(Θ0)| − o(1)

≥ c− o(1) ≥ c/2

if nN is sufficiently large, for some absolute constant c > 0.

(e) Since we assume σK(A) ≥ c
√
K for some c ∈ (0, 1),

max
k∈[K]

V1(k) ≤ ∥V1∥2 ≤ σ1(V ) = σ−1K (AJ∗) ≤ σ−1K (A) ≤ C√
K

and since

∥V1∥2 ≥ σK(V ) = σ−11 (AJ∗) ≥ σ−11 (A) ≥ 1√
K

and 1
∥V1∥2

V1 is the unit-norm leading positive eigenvector of Θ, on event E we have

min
k∈[K]

V1(k) = ∥V1∥2 min
k∈[K]

{
V1(k)

∥V1∥2

}
≥ c√

K

Since ξ1 = AJ∗V1, it follows that on event E , for any j ∈ J ,

chj√
K
≤ ξ1(j) ≤

Chj√
K

(f) It can be seen by the definition of Q that

σK(Q) ≥ σK(V )

maxk∈[K] V1(k)
≥ c > 0

and

σ1(Q) ≤ σ1(V )

mink∈[K] V1(k)
≤ C
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for some c, C > 0. Thus, maxk∈[K] ∥v∗k∥2 ≤ C and Q has independent columns, which

implies v∗1, . . . , v
∗
K are affinely independent.

Lemma 13. Let AJ1, . . . , AJK be the columns of AJ∗. Under Assumption 4 on the vertex

hunting function V(·), the oracle procedure in Definition (4) returns

ÃJ∗ = AJ∗ · diag(∥AJ1∥−11 , . . . , ∥AJK∥−11 ) (1.41)

on event E.

Proof. Note that from Lemma 12(b)(i), we have Ξ = AJ∗V . Let 1J be the vector of size |J |

with entries all equal to 1. Now, by the definition of R,

[1J , R] = [diag(ξ1)]−1Ξ = [diag(ξ1)]−1AJ∗V

Recall from Lemma 12(f) the definition QT := [diag(V1)]−1V =

 1 . . . 1

v∗1 . . . v∗K


T

. Then

[1J , R] = [diag(ξ1)]−1AJ∗ · diag(V1)QT = Π

 1 . . . 1

v∗1 . . . v∗K


T

(1.42)

where Π is defined as follows:

Π := [diag(ξ1)]−1AJ∗ · diag(V1) ∈ R|J |×K (1.43)

From (1.42) and (1.43), we can see that Π contains only non-negative entries and the

rows of Π sum up to 1. This means the rows of R (the point cloud) lie inside the convex hull

of simplex vertices {v∗1, . . . , v
∗
K} ⊆ RK−1.
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By Assumption 3, for each topic there exists at least an anchor word for that topic in

the set J on event E . This means that the point cloud contains at least one point on each

vertex v∗1, . . . , v
∗
K . By Assumption 4, the vertex hunting procedure V(·) returns precisely

the vertices v∗1, . . . , v
∗
K . Now let {πj : j ∈ J} ⊆ RK denote the rows of Π. From taking the

transpose of (1.42), Π is then estimated correctly by solving

 1 . . . 1

v∗1 . . . v∗K

 πj =

 1

rj


Now, by the definition of Π in (1.43),

diag(ξ1) · Π = AJ∗ · diag(V1) (1.44)

and thus (1.41) follows if we normalize diag(ξ1) · Π to ensure its columns sum up to 1.

1.5.3 Concentration inequalities involving Z = D −D0

Remark 10. This section contains all the concentration inequalities necessary for our anal-

ysis, and is comparable to Section E in the appendix of Ke and Wang [2022].

Lemma 15 and Lemma 16 are similar to Lemmas E.1 and E.2 of Ke and Wang [2022] in

that they are simple applications of Bernstein’s inequality. However, it is crucial to note that

our results are applicable even when minj∈[p] hj is extremely small, as we only restrict our

attention to j ∈ J+ (where J+ is defined in Section A). In contrast, Lemmas E.1 and E.2 of

Ke and Wang [2022] require minj∈[p] hj ≥ cK/p (or at least minj∈[p] hj ≫ (Nn)−1 log n).

Lemma 17 in our paper is based on standard techniques for deriving concentration in-

equalities for U-statistics. Our results here can be compared to Lemmas E.3-E.6 of Ke and

Wang [2022], which use a truncation argument and the fact that the product of two sub-

Gaussian variables is sub-exponential. Our bounds do not depend on p except for log factors
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and are applicable to all parameter regimes (in particular when p ≫ n ∨ N), whereas the

bounds in Lemmas E.3-E.6 Ke and Wang [2022] depend heavily on p and minj∈[p] hj .

Lemma 14 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables with

E(Xi) = 0 and Var(Xi) ≤ σ2i for all i. Let σ2 := n−1
∑n

i=1 σ
2
i . Then for any t > 0,

P

(
n−1

∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

)
≤ 2 exp

(
− nt2/2

σ2 + bt/3

)

Lemma 15. Denote h̃j := hj ∧ 1. With probability at least 1− o(p−1n ),

|M(j, j)−M0(j, j)| ≤ C∗

√
h̃j log pn

nN
for all j ∈ J+ (1.45)

Proof. Similar to (1.40), for a fixed j ∈ J+ we have

M(j, j)−M0(j, j) =
1

n

n∑
i=1

Zji =
1

nN

n∑
i=1

N∑
m=1

(Tim(j)− E[Tim(j)])

Note that since Tim(j) ∼ Bernoulli(D0(j, i)), |Tim(j)− E[Tim(j)]| ≤ 1 and

Var(Tim(j)) ≤ D0(j, i) =
K∑
k=1

AjkWki ≤
K∑
k=1

Ajk = hj (1.46)

(and also Var(Tim(j)) ≤ 1). We apply Bernstein’s inequality to conclude for any t > 0:

P (|M(j, j)−M0(j, j)| ≥ t) ≤ 2 exp

(
− nNt2/2

h̃j + t/3

)

One can choose t = C∗
√

h̃j log pn
nN or t = C∗ log pn

nN depending on whether h̃j ≥ log pn
nN holds.
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Thus with probability at least 1− o(p−2n ),

|M(j, j)−M0(j, j)| ≤ C∗max

√ h̃j log pn

nN
,
log pn
nN


≤ C∗

√
h̃j log pn

nN

since if j ∈ J+, then h̃j > α+α
√

log pn
nN ≥ c∗ log pn

nN when nN is sufficiently large so that
log pn
nN ≤ 1. We then take union bound over j ∈ J+.

Lemma 16. Denote {Zj : j ∈ J+} ⊆ Rn as the rows of Z in J+, and {Wk : k ∈ [K]} ⊆ Rn

as the rows of W . With probability at least 1− o(p−1n ),

|ZT
j Wk| ≤ C∗

√
nh̃j log pn

N
for all j ∈ J+ and k ∈ [K] (1.47)

Proof. Note that

Zji =
1

N

N∑
m=1

(Tim(j)− E[Tim(j)]) (1.48)

and so for any j ∈ J+ and k ∈ [K],

ZT
j Wk =

n∑
i=1

ZjiWki =
1

nN

n∑
i=1

N∑
m=1

nWki(Tim(j)− E[Tim(j)])

We note that |nWki(Tim(j) − E[Tim(j)])| ≤ n and Var[nWki(Tim(j) − E[Tim(j)])] ≤ n2h̃j ,

so by Bernstein inequality, for any t > 0,

P(|ZT
j Wk| > t) ≤ 2 exp

(
− nNt2/2

n2h̃j + nt/3

)

We can let t = C∗
√

nh̃j log pn
N and again by noting that h̃j ≥ α+α

√
log pn
nN ≥ c∗ log pnnN if
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j ∈ J+, we obtain (1.47).

Lemma 17. With probability at least 1− o(p−1n ),

|ZT
j Zl − E(ZT

j Zl)| ≤ C∗

√
nh̃j h̃l log pn

N
for all j, l ∈ J+ with j ̸= l (1.49)

|ZT
j Zj − E(ZT

j Zj)| ≤ C∗

√
nh̃2j log pn

N
+

C∗

N

√
nh̃j log pn

N
for all j ∈ J+ (1.50)

Proof. Denote Xim(j) := Tim(j)− E[Tim(j)]. Fix j, l ∈ J+. By (1.48), note that

ZT
j Zl =

n∑
i=1

ZjiZli =
1

N2

n∑
i=1

N∑
m=1

N∑
s=1

Xim(j)Xis(l)

=
1

N2

n∑
i=1

N∑
m=1

Xim(j)Xim(l) +
1

N2

n∑
i=1

∑
1≤m,s≤N

m̸=s

Xim(j)Xis(l)

=
n

N
V1 +

N − 1

N
V2

where we define

V1 :=
1

nN

n∑
i=1

N∑
m=1

Xim(j)Xim(l)

V2 :=
1

N(N − 1)

n∑
i=1

∑
1≤m,s≤N

m̸=s

Xim(j)Xis(l)

Note that E(V2) = 0, and we need an upper bound on |V1 − E(V1)| and |V2|. We will deal

with V2 first. Define SN as the set of permutations on {1, . . . , N} and N ′ := ⌊N/2⌋. Also

define

Wi(Xi1, . . . , XiN ) :=
1

N ′

N ′∑
m=1

Xi,2m−1(j)Xi,2m(l)

Then by symmetry (note that the inner sum over m, s in the definition of V2 has N(N − 1)
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summands),

V2 =

∑n
i=1

∑
π∈SN Wi(Xi,π(1), . . . , Xi,π(N))

N !

Define, for a given π ∈ SN ,

Qπ :=
n∑

i=1

N ′Wi(Xπ(1), . . . , Xπ(N))

so that N ′V2 = 1
N !

∑
π∈SN Qπ. For arbitrary t, s > 0, by Markov’s inequality and the

convexity of the exponential function,

P(N ′V2 ≥ t) ≤ e−stE(esN
′V2) ≤ e−st

∑
π∈SN E(esQπ)

N !

Also, define Q = Qπ for π being the identity permutation. Observe that

Q =
n∑

i=1

N ′∑
m=1

Qim where Qim = Xi,2m−1(j)Xi,2m(l)

so Q is a (double) summation of mutually independent variables. We have |Qim| ≤ 1,

E(Qim) = 0 and E(Q2
im) ≤ h̃j h̃l. The rest of the proof for V2 is similar to the standard

proof for the usual Bernstein’s inequality and one can skip to the conclusion (1.51).

If we denote G(x) = ex−1−x
x2

, observe G(x) is increasing. Hence,

E(esQim) = E

(
1 + sQim +

s2Q2
im

2
+ . . .

)

= E[1 + s2Q2
imG(sQim)]

≤ E[1 + s2Q2
imG(s)]

≤ 1 + s2h̃j h̃lG(s) ≤ es
2h̃j h̃lG(s)
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Hence,

e−stE(esQ) = exp(−st+N ′nh̃j h̃ls
2G(s))

Since this bound is applicable to all the other Qπ and not just π being equal to the identity

permutation, we have

P(N ′V2 ≥ t) ≤ exp(−st+N ′nh̃j h̃ls
2G(s)) = exp

(
−st+N ′nh̃j h̃l(e

s − 1− s)
)

Now we choose s = log

(
1 + t

N ′nh̃j h̃l

)
> 0. Then

P(N ′V2 ≥ t) ≤ exp

[
−t log

(
1 +

t

N ′nh̃j h̃l

)
+N ′nh̃j h̃l

(
t

N ′nh̃j h̃l
− log

(
1 +

t

N ′nh̃j h̃l

))]

= exp

[
−N ′nh̃j h̃lH

(
t

N ′nh̃j h̃l

)]

where we define the function H(x) = (1+x) log(1+x)−x. Note that we have the inequality

H(x) ≥ 3x2

6 + 2x

for all x > 0. Hence,

P
(
N ′V2 ≥ t

)
≤ exp

(
− t2/2

N ′nh̃j h̃l + t/3

)
or by rescaling,

P(N ′V2 ≥ N ′nt) ≤ exp

(
− N ′nt2/2

h̃j h̃l + t/3

)
(1.51)

We can choose t2 =
C∗h̃j h̃l
N ′n log pn and note that h̃j h̃l ≥ (α+α)

2 log pn
nN if j, l ∈ J+. Hence,

with probability 1− o(p−1n ) (even after taking union bound over j, l ∈ J+),

|V2| ≤ C∗

√
nh̃j h̃l log pn

N
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As for V1, we can just apply the usual Bernstein’s inequality. Let µij = E[Tim(j)] = [D0]ji

and define µil similarly; note µij ≤ h̃j . Since Xim(j) = Tim(j)− µij ,

Xim(j)Xim(l) = Tim(j)Tim(l)− µijTim(l)− µilTim(j) + µijµil (1.52)

If j ̸= l then Tim(j)Tim(l) = 0 and so

Var[Xim(j)Xim(l)] = Var
[
µijTim(l) + µilTim(j)

]
≤ E[µijTim(l) + µilTim(j)]2

= µ2ijµil + µ2ilµij = µijµil(µij + µil)

≤ µijµil ≤ h̃j h̃l

since µij + µil ≤ 1. Hence, by Bernstein’s inequality,

P (|V1 − E(V1)| ≥ t) ≤ 2 exp

(
− −nNt2/2

h̃j h̃l + t/3

)

which is similar to (1.51), so we obtain with probability 1− o(p−1n ) that

n

N
|V1 − E(V1)| ≤

C∗

N

√
nh̃j h̃l log pn

N
≤ C∗

√
nh̃j h̃l log pn

N

and (1.49) is proven.

If j = l then since T 2
im(j) = Tim(j), (1.52) leads to

X2
im(j) = Tim(j)(1− 2µij) + µ2ij

67



and since |1− 2µij | ≤ 1 and Var(Tim(j)) = µij(1− µij),

Var[X2
im(j)] ≤ µij ≤ h̃j

and so we obtain (1.50) since with probability 1− o(p−1n )

n

N
|V1 − E(V1)| ≤

C∗

N

√
nh̃j log pn

N

Corollary 18. With probability 1− o(p−1n ), the following statements hold:

∥[ZWk]J+∥2 ≤ C∗
√

nK log pn
N

for all 1 ≤ k ≤ K (1.53)

∥[ZZT − E(ZZT )]jJ+∥2 ≤ C∗

√
nh̃jK log pn

N
for all j ∈ J+ (1.54)

∥[ZZT − E(ZZT )]J+J+∥F ≤ C∗K

√
n log pn

N
(1.55)

Proof. This follows from (1.47), (1.49) and (1.50) after squaring the error bounds and sum-

ming them up. We note that
∑

j∈J+ h̃j ≤
∑p

j=1 hj = K.

1.5.4 Estimation errors for singular vectors and the point cloud

We will use the following theorem (a row-wise perturbation bound for eigenvectors) from Ke

and Wang [2022].

Lemma 19 (Lemma F.1 of Ke and Wang [2022]). Let B0 and B be m × m symmetric

matrices with rank(B0) = K, and assume B0 is positive semi-definite. For 1 ≤ k ≤ K, let

δ0k and δk be the kth largest eigenvalues of B0 and B respectively, and let u0k and uk be the

kth eigenvectors of B0 and B. Fix 1 ≤ s ≤ k ≤ K. If for some c ∈ (0, 1), suppose (by
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default, if s = 1 then δ0s−1 − δ0s =∞)

min(δ0s−1 − δ0s , δ
0
k − δ0k+1, min

l∈[K]
δ0l ) ≥ c∥B0∥op, ∥B −B0∥op ≤ (c/3)∥B0∥op

Write U0 = [u0s, . . . , u
0
k], U = [us, . . . uk] and Ξ = [u01, . . . , u

0
K ]. There exists an orthonormal

matrix O such that for all 1 ≤ j ≤ p,

∥(UO − U0)j∗∥2 ≤
5

c∥B0∥op
(∥B −B0∥op∥Ξj∗∥2 +

√
K∥(B −B0)j∗∥2)

If we define

G := DDT − n

N
M

G0 :=

(
1− 1

N

)
D0D

T
0

then the above lemma can be applied to the submatrices GJJ and [G0]JJ (see Lemma 25).

Lemma 20. With probability 1− o(p−1n ), we have

∥(G−G0)J+J+∥op ≤ C∗K

√
nK log pn

N

and for any j ∈ J+, row j of (G−G0)J+J+ has ℓ2 norm satisfying

∥(G−G0)jJ+∥2 ≤ C∗K

√
nhj log pn

N

Proof. From basic properties of the multinomial distribution, we can show that

E(ZZT ) =
n∑

i=1

Cov(Z∗i) =
n∑

i=1

Cov(D∗i) =
n

N
M0 −

1

N
D0D

T
0
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and therefore

G−G0 = DDT − n

N
M −

(
1− 1

N

)
D0D

T
0

= (D0 + Z)(D0 + Z)T − n

N
M −

(
1− 1

N

)
D0D

T
0

= ZDT
0 +D0Z

T + ZZT − n

N
M +

1

N
D0D

T
0

= ZDT
0 +D0Z

T + (ZZT − E[ZZT ]) +
n

N
(M0 −M)

and so we can write (G−G0)J+J+ = E1 + E2 + E3 where

E1 := (ZDT
0 +D0Z

T )J+J+

E2 := (ZZT − E[ZZT ])J+J+

E3 :=
n

N
(M0 −M)J+J+

We can deal with E3 first. From (1.45), with probability 1− o(p−1n ) we have

∥E3∥op ≤
C∗n
N

√
(maxj∈J+ h̃j) log pn

nN
≤ C∗

N

√
n log pn

N

and for any j ∈ J+,

∥[E3]j∗∥2 =
n

N
|M(j, j)−M0(j, j)| ≤

C∗

N

√
nh̃j log pn

N

From (1.54) and (1.55), with probability 1− o(p−1n )

∥E2∥op ≤ ∥E2∥F ≤ C∗K

√
n log pn

N
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∥[E2]j∗∥2 ≤ C∗

√
nh̃jK log pn

N

If we denote A1, . . . , AK as the columns of A and W1, . . . ,Wk as the rows of W ,

D0Z
T =

K∑
k=1

Ak(ZWk)
T

and so from (1.53) and the fact that
∑K

k=1 ∥Ak∥2 ≤
∑K

k=1 ∥Ak∥1 ≤ K,

∥E1∥op ≤ 2∥[D0Z
T ]J+J+∥op ≤ 2

K∑
k=1

∥Ak∥2∥ZJ+∗Wk∥2 ≤ C∗K

√
nK log pn

N

Let Z1, . . . , Zp denote the rows of Z. From (1.47), (1.53) and the fact that
∑K

k=1Ak(j) = hj

and hj ≤ K, for any j ∈ J+:

∥[E1]j∗∥2 ≤
K∑
k=1

Ak(j)∥ZJ+∗Wk∥2 +
K∑
k=1

|ZT
j Wk|∥Ak∥2

≤ C∗hj

√
nK log pn

N
+ C∗K

√
nh̃j log pn

N

≤ C∗K

√
nhj log pn

N

Since the bounds for ∥E1∥op and ∥[E1]j∗∥2 dominate those for E2 and E3, our result follows.

Lemma 21. With probability 1− o(p−1n ), we also have

∥(G−G0)JJ∥op ≤ C∗K

√
nK log pn

N
(1.56)

and for any j ∈ J ,

∥(G−G0)jJ∥2 ≤ C∗K

√
nhj log pn

N
(1.57)
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Proof. This is simply a consequence of the previous lemma and the fact that J ⊆ J+ with

probability 1−o(p−1n ), which implies that (G−G0)JJ is a submatrix of (G−G0)J+J+ . Note

that we refrain from applying the argument of the previous lemma directly to (G−G0)JJ ,

since J and Z are not independent (whereas J+ is a non-random index set).

Corollary 22. Let gn be a quantity satisfying

c

√
nN

log pn
≥ gn ≥ C∗K

√
K (1.58)

where C∗ in (1.58) is the constant from (1.56) and c is another constant to be determined.

If

K̂ := max

{
k : λk(GJJ ) > gn

√
n log pn

N

}

then K̂ = K with probability 1− o(p−1n ).

Proof. We have shown in Lemma A.3(e) that [G0]JJ has rank K on E . By Weyl’s inequality,

λK+1(GJJ ) ≤ ∥(G−G0)JJ∥op ≤ C∗K
√
K

√
n log pn

N
≤ gn

√
n log pn

N

This implies K̂ ≤ K. On the other hand, again by Weyl’s inequality,

|λK(GJJ )− λK([G0]JJ )| ≤ C∗K
√
K

√
n log pn

N
≤ gn

√
n log pn

N

and since G0 :=
(
1− 1

N

)
D0D

T
0 , by our assumption that σK(A) ≥ c

√
K and σK(ΣW ) ≥ c,

λK([G0]JJ ) ≥
(
1− 1

N

)
σ2K(AJ∗)σ

2
K(W ) ≥ cKn > 2gn

√
n log pn

N

when nN is sufficiently large and c in (1.58) is chosen appropriately. Hence,

λK(GJJ ) ≥ λK([G0]JJ )− |λK(GJJ )− λK([G0]JJ )| > gn

√
n log pn

N
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and thus K ≤ K̂ with probability 1− o(p−1n ).

Recall that Ξ̂ contains the first K eigenvectors of GJJ and Ξ contains the first K left

singular vectors of [D0]J∗, or equivalently the first K eigenvectors of [G0]JJ . We will provide

a coordinate-wise error bound for Ξ̂ in Lemma 25. First we need a few lemmas.

Lemma 23. For any j ∈ J , ∥Ξj∗∥2 ≤ Chj.

Proof. Note Ξ = AJ∗V so Ξj∗ = Aj∗V . Hence,

∥Ξj∗∥2 ≤ ∥V ∥op∥Aj∗∥2 ≤ ∥V ∥op∥Aj∗∥1 ≤ σ−1K (A)hj ≤ Chj

since we have shown before that the singular values of V are just the inverses of the singular

values of AJ∗.

Note that on event E , [D0]J∗ and hence [G0]JJ has rank K.

Lemma 24. On event E,

cnK ≤ λk([G0]JJ ) ≤ nK for all k ∈ [K] and λ1([G0]JJ ) ≥ cn+ max
2≤k≤K

λk([G0]JJ )

Proof. We note that [D0D
T
0 ]JJ = AJ∗WWTAT

J∗ = nAJ∗ΣWAT
J∗. Hence,

λ1([G0]JJ ) ≤ n∥A∥2op∥ΣW ∥op ≤ nK

λK([G0]JJ ) ≥ n[σK(AJ∗)]
2σK(ΣW ) ≥ n[σK(A)]2σK(ΣW ) ≥ cnK

We also note that for any two matrices P and Q, the nonzero eigenvalues of PQ are the same

as those of QP . Thus the nonzero eigenvalues of [D0D
T
0 ]JJ are the same as the nonzero

eigenvalues of WWTAT
J∗AJ∗ =: nΘ. We have already shown in Lemma 12(d) that the gap

between the first two eigenvalues of Θ are at least an absolute constant on E . Hence, our

result follows.
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Lemma 25 (Row-wise estimation error for Ξ̂). Denote {Ξj : j ∈ J} as the rows of Ξ and

{Ξ̂j : j ∈ J} as the rows of Ξ̂. With probability 1 − o(p−1n ), there exist ω ∈ {±1} and an

orthonormal matrix Ω∗ ∈ R(K−1)×(K−1) such that, if Ω := diag(ω,Ω∗) ∈ RK×K , we have

∥ΩΞ̂j − Ξj∥2 ≤ C

√
hj log pn

nN
for all j ∈ J

Proof. Let ξ̂1 and ξ1 be the first eigenvectors of [G]JJ and [G0]JJ respectively. The gap

between the first two eigenvalues of [G0]JJ is at least cn, which is much greater than

C∗K
√

nK log pn
N (the high-probability bound on ∥(G − G0)JJ∥op). By applying Lemma

19, there exists ω ∈ {±1} such that with probability 1− o(p−1n ), for all j ∈ J ,

|ωξ̂1(j)− ξ1(j)| ≤ C
hj∥(G−G0)JJ∥op +

√
K∥(G−G0)jJ∥2

n

≤ C
hj

√
n log pn

N +

√
nhj log pn

N

n

≤ C

√
hj log pn

nN

where we applied hj ≤ K.

Let Ξ∗ = [ξ2, . . . , ξK ] contain the other (K − 1) eigenvectors of [G0]JJ , and define Ξ̂∗

similarly. Again, since the smallest nonzero eigenvalue of [G0]JJ is at least cnK, there exists

an orthonormal matrix Ω∗ ∈ R(K−1)×(K−1) such that for all j ∈ J ,

∥(Ξ̂∗Ω∗ − Ξ∗)j∗∥2 ≤ C

√
hj log pn

nN

We then define Ω = diag(ω,Ω∗) and combine the above results.

Lemma 26 (Estimation error for the point cloud). With probability 1− o(p−1n ), all entries

of ξ̂1 have the same sign and there exists an orthonormal matrix Ω∗ ∈ R(K−1)×(K−1) such
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that

max
j∈J
∥Ω∗r̂j − rj∥2 ≤ C

(
log pn
nN

)1/4

Proof. First, we note that WLOG, we can assume ω = 1. This is because from the previous

lemma, for any j ∈ J , since hj ≥ c
√

log pn
nN ,

|ωξ̂1(j)− ξ1(j)| ≤ C

√
hj log pn

nN
≤ Chj

(
log pn
nN

)1/4

whereas we also know from Lemma 12(e) that

ξ1(j) > chj > 0

We can see that |ωξ̂1(j) − ξ1(j)| ≪ ξ1(j) with high probability as nN is sufficiently large,

and this implies ωξ̂1(j) ≥ ξ1(j)/2. If ξ̂1 is defined such that the majority of its entries are

positive (and in fact its entries are all of the same sign with high probability), we can simply

assume ω = 1 from now on.

Denote {Ξj : j ∈ J} as the rows of Ξ and {Ξ̂j : j ∈ J} as the rows of Ξ̂. Now, since by

definition,  1

rj

 = [ξ1(j)]
−1Ξj ,

 1

Ω∗r̂j

 = [ξ̂1(j)]
−1ΩΞ̂j

it follows that

∥Ω∗r̂j − rj∥2 =

∥∥∥∥∥ 1

ξ̂1(j)
ΩΞ̂j −

1

ξ1(j)
Ξj

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

ξ̂1(j)
(ΩΞ̂− Ξj)−

ξ̂1(j)− ξ1(j)

ξ̂1(j)
rj

∥∥∥∥∥
2

≤ |ξ̂1(j)|−1(∥ΩΞ̂j − Ξj∥2 + ∥rj∥2|ξ̂1(j)− ξ1(j)|)
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We have noted in Lemma 13 that the point cloud {rj : j ∈ J} lies entirely in the convex

hull of v∗1, . . . , v
∗
K , and Lemma 12(f) shows that maxk∈[K] ∥v∗k∥2 ≤ C, so we also have

maxj∈J ∥rj∥2 ≤ C. We have also noted before that

ξ̂1(j) ≥
ξ1(j)

2
> chj

with high probability. Therefore, with probability 1− o(p−1n ), for all j ∈ J :

∥Ω∗r̂j − rj∥2 ≤ C

√
log pn
hjnN

≤ C

(
log pn
nN

)1/4

since minj∈J hj ≥ c
√

log pn
nN with probability 1− o(p−1n ).

Lemma 27. If we denote the rows of Π̂ from our proposed procedure as {π̂j : j ∈ J} and

the rows of Π from the oracle procedure as {πj : j ∈ J}, then with probability 1− o(p−1n ),

max
j∈J
∥π̂j − πj∥1 ≤ C

(
log pn
nN

)1/4

Proof. Recall that π̂⋄j ∈ RK is the unnormalized vector solving

 1 . . . 1

v̂∗1 . . . v̂∗K

 π̂⋄j =

 1

r̂j

 ⇐⇒
 1 . . . 1

Ω∗v̂∗1 . . . Ω∗v̂∗K

 π̂⋄j =

 1

Ω∗r̂j


Therefore,

π̂⋄j = Q̂−1

 1

Ω∗r̂j

 where Q̂ :=

 1 . . . 1

Ω∗v̂∗1 . . . Ω∗v̂∗K
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We also have

πj = Q−1

 1

rj

 where Q =

 1 . . . 1

v∗1 . . . v∗K


Consequently,

∥π̂⋄j − πj∥2 ≤ ∥Q̂−1∥op∥Ω∗r̂j − rj∥2 + ∥Q̂−1 −Q−1∥op

√
∥rj∥22 + 1

Note that maxj∈J ∥rj∥2 ≤ C since the rj ’s are in the convex hull of v∗1, . . . , v
∗
K . Also, since

QT = [diag(V1)]−1V , we have ∥Q−1∥op ≤ C since

max
k∈[K]

V1(k) ≤
C√
K

and ∥V −1∥op = σ1(A) ≤
√
K

Now, we note that with probability 1− o(p−1n ),

∥Q̂−Q∥op ≤ ∥Q̂−Q∥F ≤
√
K max

k∈[K]
∥Ω∗v̂∗k − v∗k∥2

≤
√
Kmax

j∈J
∥Ω∗r̂j − rj∥2 ≤ C

(
log pn
nN

)1/4

= o(1)

where we used Assumption 4, since in the oracle procedure the vertex hunting algorithm

correctly returns v∗1, . . . , v
∗
K . Therefore,

∥Q̂−1 −Q−1∥op = ∥Q̂−1(Q− Q̂)Q−1∥op ≤ ∥Q̂−1∥op∥Q̂−Q∥op∥Q∥−1op ≤ C

(
log pn
nN

)1/4

Here we note σK(Q̂) ≥ σK(Q) − ∥Q̂ − Q∥op ≥ c − o(1) ≥ c/2 if nN is large enough, so

∥Q̂−1∥op ≤ C. Therefore, we obtain

∥π̂⋄j − πj∥2 ≤ C

(
log pn
nN

)1/4
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Now if we define π̂j =
π̃⋄j
∥π̃⋄j ∥1

where π̃⋄j (k) = max(π̂⋄j (k), 0), then since ∥π̂j∥1 = ∥πj∥1 = 1,

∥π̂j − πj∥1 ≤ ∥π̂j − π̃⋄j ∥1 + ∥π̃
⋄
j − πj∥1

= |1− ∥π̃⋄j ∥1|∥π̂j∥1 + ∥π̃
⋄
j − πj∥1

= |∥πj |1 − ∥π̃⋄j ∥1|+ ∥π̃
⋄
j − πj∥1

≤ 2∥πj − π̃⋄j ∥1

≤ 2∥πj − π̂⋄j ∥1 ≤ 2
√
K∥π̂⋄j − πj∥2

≤ C

(
log pn
nN

)1/4

1.5.5 Estimation error of Â

In this section, we will additionally impose the ℓq-sparsity assumption (1.19) for q ∈ (0, 1).

Lemma 28. Under Assumption 5, if β :=
α−α

σK(ΣW )
and τn :=

√
log pn
nN , on event E

∥AJc∗∥1 ≤
K

1− q
s(βτn)

1−q (1.59)

Remark 11. We assume from now on that s does not grow too quickly relative to nN so

that the RHS of (1.59) is o(1).

Proof. On event E we have J− ⊆ J , so j /∈ J implies M0(j, j) ≤ α−ατn where τn :=
√

log pn
nN .

Since σK(ΣW )hj ≤ M0(j, j), j /∈ J implies Ajk ≤ hj ≤ βτn for any k ∈ [K] on E . Then
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with probability 1− o(p−1n ), for any k ∈ [K],

∥AJck∥1 =
∑
j ̸∈J

min(Ajk, βτn) ≤
p∑

j=1

min(A(j)k, βτn)

≤
p∑

j=1

min(s1/qj−1/q, βτn) ≤
∫ ∞
0

min(s1/qt−1/q, βτn)dt

Now, let t0 := s(βτn)
−q so that s1/qt

−1/q
0 = βτn. Then continuing from the above display,

∥AJck∥1 ≤ t0βτn + s1/q
∫ ∞
t0

t−1/qdt

= t0βτn +
q

1− q
s1/qt

1−1/q
0 =

1

1− q
t0βτn

=
1

1− q
s(βτn)

1−q

and the result follows by summing up this bound across k ∈ [K]. Note that the assumption

q ∈ (0, 1) ensures the integrals above converge.

Lemma 29. On event E, if ÃJ∗ is defined as in (1.41),

∥ÃJ∗ − AJ∗∥1 = ∥AJc∗∥1 ≤
K

1− q
s(βτn)

1−q (1.60)

Proof. We note that the columns of ÃJ∗ sum up to 1, the columns of A sum up to 1, and

as a result of the definition of ÃJ∗ in (1.41),

ÃJ∗ − AJ∗ = ÃJ∗ · diag(∥AJc1∥1, . . . , ∥AJcK∥1)

Then ∥ÃJ∗ − AJ∗∥1 = ∥AJc∗∥1 and our result follows from the previous lemma.

Theorem 30. With probability 1− o(p−1n ), for some constant C that may depend on K and
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q, we have

∥Â− A∥1 ≤ C

( log pn
nN

)1/4

+ s

(
log pn
nN

)1−q
2


Proof. Consider the unnormalized matrices

Â⋄J∗ := diag(ξ̂1)Π̂ and Ã⋄J∗ := diag(ξ1)Π

Then with probability 1− o(p−1n ), for any j ∈ J ,

∥(Â⋄ − Ã⋄)j∗∥1 = ∥ξ̂1(j)π̂j − ξ1(j)πj∥1

≤ |ξ̂1(j)|∥π̂j − πj∥1 + |ξ̂1(j)− ξ1(j)|∥πj∥1

≤ C

[
hj

(
log pn
nN

)1/4

+

√
hj log pn

nN

]

≤ Chj

(
log pn
nN

)1/4

(1.61)

where again we note that on event E , hj > α+α
√

log pn
nN if j ∈ J . Since

∑p
j=1 hj = K, with

probability 1− o(p−1n ),

∥Â⋄J∗ − Ã⋄J∗∥1 ≤ C

(
log pn
nN

)1/4

= o(1) (1.62)

Now, ÂJ∗ and ÃJ∗ are defined by normalizing the columns of Â⋄J∗ and Ã⋄J∗, so we have

for each j ∈ J and k ∈ [K]

Âjk =
Â⋄jk
∥Â⋄Jk∥1

and Ãjk =
Ã⋄jk
∥Ã⋄Jk∥1

=
Ajk

∥AJk∥1
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Therefore, for each j ∈ J and k ∈ [K],

|Âjk − Ãjk| =

∣∣∣∣∣ Â⋄jk
∥Â⋄Jk∥1

−
Ã⋄jk
∥Ã⋄Jk∥1

∣∣∣∣∣
≤
|Â⋄jk − Ã⋄jk|

∥Â⋄Jk∥1
+ Ã⋄jk

∣∣∣∣∣ 1

∥Â⋄Jk∥1
− 1

∥Ã⋄Jk∥1

∣∣∣∣∣
≤
|Â⋄jk − Ã⋄jk|+ Ãjk∥Â⋄Jk − Ã⋄Jk∥1

∥Â⋄Jk∥1

=
|Â⋄jk − Ã⋄jk|

∥Â⋄Jk∥1
+

Ajk∥ÂJk − Ã⋄Jk∥1
∥AJk∥1∥Â⋄Jk∥1

(1.63)

Now,

∥AJk∥1 = 1− ∥AJck∥1 ≥ 1− 1

1− q
s(βτn)

1−q ≥ c

for some absolute constant c ∈ (0, 1) as nN becomes sufficiently large. Furthermore, since

by definition of Π we have Ã⋄Jk = diag(ξ1)Π = AJ∗ · diag(V1) and mink∈[K] V1(k) ≥ c√
K

, so

∥Ã⋄Jk∥1 = V1(k)∥AJk∥1 ≥ c

and thus

∥Â⋄Jk∥1 ≥ ∥Ã
⋄
Jk∥1 − ∥Ã

⋄
Jk − Â⋄Jk∥1 ≥ c− C

(
log pn
nN

)1/4

≥ c/2

as nN becomes sufficiently large. Hence, we have from (1.63), (1.61) and (1.62) that

|Âjk − Ãjk| ≤ Chj

(
log pn
nN

)1/4

and so for any j ∈ J ,

∥Âj∗ − Ãj∗∥1 ≤ Chj

(
log pn
nN

)1/4
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which, since
∑p

j=1 hj = K, implies

∥ÂJ∗ − ÃJ∗∥1 ≤ C

(
log pn
nN

)1/4

(1.64)

We combine (1.59), (1.60) and (1.64) to obtain what we need to prove.

1.5.6 Results on Archetype Analysis [Javadi and Montanari, 2020]

To facilitate our discussion on relaxing the separability assumption, we summarize the results

of Javadi and Montanari [2020] in this section.

We first introduce the notations in this paper. For a point u ∈ Rd and a matrix V ∈

Rm×d, let

D(u;V ) := min{∥u− V Tπ∥22 : π ∈ ∆m}, where

∆m := {x ∈ Rm : xT1m = 1 and xj ≥ 0 for all j ∈ [m]}

In words, D(u;V ) is the square of the distance between u and conv(V ), where conv(V )

denotes the convex hull of the rows of V . If U ∈ Rp×d is a matrix with rows u1, . . . , up ∈ Rd,

we generalized the above definition by letting

D(U ;V ) :=

p∑
l=1

D(ul;V ) (1.65)

Now, consider a factorization of the form X0 = W0H0, where the rows of X0 ∈ Rm×(K−1)

form a point cloud, W0 ∈ Rm×K is a matrix of weights whose rows are in ∆K , and the rows

of H0 ∈ RK×(K−1) are the K simplex vertices.

Definition 6 (α-uniqueness). We say that the point cloud X0 = W0H0 satisfies uniqueness

with parameter α > 0 (or α-uniqueness) if for all H ∈ RK×(K−1) with conv(X0) ⊆ conv(H),
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we have

D(H;X0)
1/2 ≥ D(H0;X0)

1/2 + α[D(H;H0)
1/2 + D(H0;H)1/2] (1.66)

The motivation behind this assumption is quite clear. Any H with conv(X0) ⊆ conv(H)

is a plausible explanation of the data. For H0 to be identifiable, we want D(H;X0) >

D(H0;X0) if H ̸= H0, and so (1.66) is a quantitative formulation of this requirement.

Note that if X0 = W0H0 is a separable factorization, then it always satisfies uniqueness

with α = 1. Indeed, whenever conv(H0) = conv(X0), one has D(H;X0) = D(H;H0) and

D(H0;X0) = D(H0;H) = 0.

The vertex hunting procedure considered in Javadi and Montanari [2020] is as follows.

Suppose we observe X which is a noisy version of X0:

X = X0 + Z = W0H0 + Z (1.67)

Let x1, . . . , xm be the rows of X. We can obtain an estimator Ĥ of H0 by solving the

following optimization problem (Archetype Analysis):

minimize D(H;X) s.t. D(xi;H) ≤ δ2 for all i ∈ [m] (1.68)

where δ ≥ maxi∈[m] ∥Zi∗∥2. In light of Corollary 5, we want to choose δ ≥ C
(
log pn
nN

)1/4
in our context, where C is the constant in (1.21) (replace X0 in (1.67) with the point cloud

matrix R from out oracle procedure, and X with the point cloud matrix R̂ from Definition

5).

The main theoretical result of Javadi and Montanari [2020] is that their vertex hunting

procedure is robust to noise in the point cloud.

Theorem 31 (Theorem 1 of Javadi and Montanari [2020]). Suppose X0 satisfies the α-

uniqueness assumption, and conv(X0) contains a (K − 1)-dimensional ball of radius µ > 0.
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Consider the vertex hunting procedure defined by (1.68), with δ = maxi∈[m] ∥Zi∗∥2. If

max
i∈[m]

∥Zi∗∥2 ≤
αµ

30K3/2

then

∥Ĥ −H0∥2F ≤
C2K5

α2
δ2 (1.69)

Here, the constant C may depend on µ and the maximum/minimum singular values of H0,

and we ignore the vertex label permutation (by redefining Ĥ if necessary).

Using similar proof techniques as in the above theorem, we can also show the following

robustness result for Archetype Analysis without using the α-uniqueness condition (the proof

is omitted for brevity). In (1.70), we do not need to assume separability (in which case one

has D(H0;X0) = 0), but we want the distance from the vertices in H0 to the convex hull of

the point cloud X0 to be no larger than δ. Again, δ ≍
(
log pn
nN

)1/4
when applied to our topic

modeling setup.

Theorem 32. Using the same assumptions as in Theorem 31 except the α-uniqueness condi-

tion, if maxi∈[m] ∥Zi∗∥2 ≤ δ ≤ µ
2K+2 , the vertex hunting procedure (1.68) satisfies for some

constants C1, C2 > 0:

∥Ĥ −H0∥2F ≤ C1D(H0;X0) + C2δ
2 (1.70)

In practice, the vertex hunting procedure defined (1.68) is difficult to use. When applied

on real dataset, one may prefer to work with the Lagrangian form of (1.68):

Ĥλ = argmin
H

[D(X;H) + λD(H;X)] (1.71)

Algorithms to solve this non-convex optimization problem are available in Section 4 of Javadi

and Montanari [2020].
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1.5.7 Further details on experiments with synthetic data

1.5.7.1 Zipf’s law: illustrations and comparisons

Most of the synthetic experiments we use in this paper rely on the generation of documents

where word frequencies follow a Zipf’s law distribution (see Equation 1.35). Figure 1.12a

illustrates instances of such frequency distributions for a dictionary of size p = 10, 000 words

as we vary the parameters of this distribution (namely, the values of αzipf and βzipf). Fig-

ure 1.12b compares the frequency heterogeneity resulting from sampling frequencies f(j)’s

from a Zipf’s law distribution (Equation 1.35) to frequencies sampled from a Uniform dis-

tribution:

f(j) ∝ Uniform(0, 1).

These two figures illustrate the fast decay in word frequencies under Zipf’s law. With azipf =

1 and bzipf = 2.7 (a choice of parameters empirically observed to fit the behavior of real text

data), only 10% of words have frequencies above 0.001. The rate of decay increases rapidly as

the parameter αzipf increases (Figure 1.12a). By comparison, under the uniform distribution

often assumed in other papers, all word frequencies are of the same order of magnitude. Our

weak sparsity assumption, imposed on the row sums of the topic matrix A, is well-aligned

with the empirically observed Zipf’s law.

1.5.7.2 Synthetic data from the uniform distribution of non-anchor words

For experiments involving the uniform distribution, the data generation mechanism is as

follows:
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(a) Illustrations of word frequency distributions
under Zip’s law. As αzipf increases, the frequencies
decay faster.

(b) Word frequencies generated under the Uni-
form distribution (red) and the Zipf’s law dis-
tribution (blue) with azipf = 1 and bzipf = 2.7.

Figure 1.12: Comparisons between word frequencies from different generation mechanisms.
Both axes are log-scaled.

∀i ∈ [n], W∗i ∼ Dirichlet(1K)

∀j ∈ {5K + 1, · · · p} and k ∈ [K], Ajk ∼ Uniform(0, 1) (1.72)

and for j ∈ [5K], each topic k ∈ [K] has 5 anchor words, with Ajk = δanchor if word j is

an anchor word of topic k and Ajk = 0 otherwise. This setup is identical to the main text,

except for the uniform distribution used to generate word frequencies. As noted before, the

assumption that word frequencies all have roughly the same amplitude does not align with

our weak sparsity assumption (Assumption 5) or the behavior of word frequencies in real

text data [Corral et al., 2015]. Nonetheless, we also perform experiments in this setting and

report the results in Figure 1.13a. Results are averaged over 50 experiments. We use K = 5,

αdirichlet = 1, and 5 anchor words with intensity δanchor = 0.001.
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(a) Median ℓ1 error L1(Â, A) = minΠ∈P
1
K ∥ÂΠ−A∥1 for different methods.

(b) Percentage of thresholded words as a function of n,N and p.

Figure 1.13: Performance of the different methods under the uniform frequency generation
mechanism detailed in Equation 1.72. For small vocabulary size p, the method of Bing et al.
[2020b] does not appear as the number of topics it estimated was less than the true value
K = 5; therefore, we were unable to evaluate its performance.
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Figure 1.14: Same experiments as those in Figure 1.13. Results here are plotted as a function
of N

We note that Topic-SCORE [Ke and Wang, 2022] and our method perform similarly

under the uniform generating distribution. As shown in Figure 1.13b, our method does not

threshold much in this regime, which is expected since all word frequencies are roughly of

the same order. While our method is mainly designed to leverage the weak sparsity of the

matrix A, experiments suggest that it performs well even if the weak sparsity assumption is

violated.

1.5.7.3 Varying additional parameters

We also examine the effects of the anchor word frequency δanchor and the Zipf’s law parameter

αzipf on the performance of our estimator.

As observed in Figure 1.15, the frequency of the anchor words does not appear to have

a great impact on the results of the SCORE-based methods; this suggests SCORE-based

methods are less dependent on the presence of anchor words. Increasing the frequency of

anchor words seems to improve the performance of LDA [Blei et al., 2003] and the method

of Bing et al. [2020a].
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Figure 1.15: Performance of various estimators as δanchor varies. Here the number of topics
is fixed at K = 3 and the dictionary has size p = 5, 000. 5 anchor words are used per topic.
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Figure 1.16: Performance of various estimators as αzipf varies. The number of topics is fixed
to K = 5 and the dictionary has size p = 10, 000. Each topic has 5 anchor words with
frequency δanchor = 0.001.

As observed in Figure 1.16, our method offers significant improvement over others when

the word frequency decay rate is higher. In comparison, Topic-SCORE’s performance does

not vary much when αzipf increases. This suggests that our method is able to leverage the

sparsity structure to improve estimation.
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1.5.8 Further details on real-data experiments

In this section, we provide additional discussions of how our method can be applied to

microbiome data analysis. We focus on two microbiome datasets; one is the colon dataset

of Yachida et al. [2019] from before (with low p, low n, high N) and the other is the vaginal

microbiome data of Callahan et al. [2017] (with medium p, medium n, high N).

1.5.8.1 Microbiome dataset from Yachida et al. [2019]

As depicted in Figure 1.11, our approach consistently produces a higher average topic reso-

lution score compared to Topic SCORE [Ke and Wang, 2022]. To understand the reasons for

the gap in performance between Topic-SCORE and our method, we compare the point clouds

produced by both (illustrated in Figures 1.17a and 1.17b). It is evident that low-frequency

words (words with small hj) heavily distort the point cloud obtain from Topic-SCORE, thus

leading to higher errors in the subsequent vertex hunting step. In comparison, the point

cloud obtained from our method is much less distorted. This suggests that the threshold-

ing step in our method, which is not present in the Topic-SCORE algorithm, is helpful in

improving the signal-to-noise ratio of the point cloud.

(a) Point cloud produced by Topic-SCORE (b) Point cloud from our method

Figure 1.17: Comparison of the point clouds obtained by our method (right) and Topic-
SCORE (left), with K = 3. Simplex vertices are colored red. Note that the point cloud from
Topic-SCORE is heavily distorted by a few outliers.

91



1.5.8.2 Microbiome dataset from Callahan et al. [2017]

We also revisit the dataset of Callahan et al. [2017], which serves as an example in Fukuyama

et al. [2021] to justify their topic refinement procedure. This dataset comprises amplicon

sequence variant (ASV) counts for 2,699 different bacterial species from 2,179 longitudinal

samples collected throughout pregnancy in 135 individuals [Callahan et al., 2017]. In this

case, the average sample length is around N = 157, 500. In Fukuyama et al. [2021], based

on the refinement results of the LDA, the authors conclude that the topic analysis should

be done using K = 7 topics, or with up to K = 12 if one allows for the possibility of

spurious topics. We thus fit up to 12 topics and plot the average resolution (Figure 1.18)

and refinement from various methods in Figure 1.19. We find that our method performs

better than Topic-SCORE and similarly to LDA in terms of average resolution. For a small

number of topics (K ≤ 7), our method seems preferable to LDA in terms of topic resolution,

achieving better resolution at a lower computational cost.

Figure 1.18: Topic resolution scores for our method, Topic-SCORE, and LDA as K varies.

LDA seems to perform better with topic coherence at K = 7 (the recommended choice

of K by Fukuyama et al. [2021]), although for small K our method also compares favorably.

For K ≥ 8, when compared with LDA, our method seems to yield topics that are often

recombined from one hierarchy level to the next (lower topic coherence). This suggests that

the choice K = 7 by the authors is appropriate, and also suggests that for large K and

datasets of moderate size, LDA seems to be a preferable choice.
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Figure 1.19: Topic coherence and refinement (computed by the method of Fukuyama et al.
[2021]) from Topic-SCORE, our method and LDA (in that order) for the vaginal microbiome
data of Callahan et al. [2017]. Topics are colored by coherence.
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CHAPTER 2

THE GENERALIZED ELASTIC NET PENALTY

2.1 Introduction

In this project, we propose a novel ℓ1 + ℓ2-penalty, which we refer to as the Generalized

Elastic Net, for regression problems where the feature vectors are indexed by vertices of a

given graph and the true signal is believed to be smooth or piecewise constant with respect to

this graph. Under the assumption of correlated Gaussian design, we derive upper bounds for

the prediction and estimation errors, which are graph-dependent and consist of a parametric

rate for the unpenalized portion of the regression vector and another term that depends on

our network alignment assumption. We also provide a coordinate descent procedure based

on the Lagrange dual objective to compute this estimator for large-scale problems. Finally,

we compare our proposed estimator to existing regularized estimators on a number of real

and synthetic datasets and discuss its potential limitations.

2.1.1 Problem formulation and the proposed penalty

Consider the usual linear regression model

Y = Xβ∗ + ϵ (2.1)

where the design matrix X ∈ Rn×p is random with independent and identically distributed

(i.i.d.) rows, β∗ ∈ Rp is the unknown true parameter, and ϵ = (ϵ1, . . . , ϵn)
T ∈ Rn are

i.i.d. zero-mean Gaussian variables with (unknown) variance σ2 and are independent of the

design matrix X. In addition to observing the responses y = (y1, . . . , yn)
T ∈ Rn, we also

observe an undirected simple graph G = (V,E) with p vertices and m edges. Here, the p

vertices index the entries of β∗ as well as the columns of X (which we can think of as feature
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vectors). This situation typically entails significant correlation between feature vectors, thus

leading to an ill-conditioned design matrix. For simplicity, we assume throughout this paper

that the rows of X are i.i.d. N(0,Σ)-distributed. In our setting, the minimum eigenvalue of

Σ ∈ Rp×p may be very small and β∗ might be nearly unidentifiable. Although the addition

of an unpenalized intercept should present no difficulty, we assume no intercept in our model

to simplify the theoretical analysis.

We further assume that β∗ is structured with respect to the graph G so that prediction

and estimation can be done with small error, even in the high-dimensional setting where

p ≫ n. As the entries of β∗ are indexed by the vertices of G, a natural assumption is

that β∗i and β∗j should be similar if i and j are adjacent vertices on the graph G. This

assumption is related to the notion of network cohesion as discussed in Chapter 4 of Kolaczyk

[2009]: vertices may display similar characteristics because they are connected (contagion),

or they may be connected because they have similar characteristics (homophily). Note that,

however, many prior works such as Li et al. [2019] discuss network cohesion in the context

where observations (the responses y1, . . . , yn and the rows x1, . . . , xn of X) are indexed by

a graph’s vertices and thus may no longer be i.i.d., whereas we focus on the case where the

features (the columns of X) are indexed by the graph’s vertices. Following Li et al. [2019],

we also use the term network cohesion to cover both homophily and contagion, without

distinguishing the difference in causal direction between them.

More specifically, the notion of network cohesion encourages us to assume either that

the number of edges (i, j) ∈ E where βi ̸= βj is small (sparse signal jumps), or that β∗ is

smooth enough so that Γβ∗ lies in an ℓq-ball, where Γ is the edge-incidence matrix of the

graph G and 0 < q ≤ 1 (note that when q ∈ (0, 1), an ℓq-ball is not convex - see Figure 7.1

of Wainwright [2019] for an illustration of what this "ball" looks like). Mathematically, in

our theoretical analysis we assume either

∥Γβ∗∥0 ≤ s (2.2)
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or
m∑
j=1

|(Γβ∗)j |q ≤ Rq (2.3)

for some s≪ m or some Rq > 0, respectively (see Section 2.1.4 for the precise definition of

any mathematical symbol). Assumption (2.2) means that the number of edges with nonzero

signal jumps is small and the true signal has several piecewise constant regions on the graph,

whereas Assumption (2.3) means the signal is smooth over the graph in the ℓq-sense. We

use the term network alignment to refer to either Assumption (2.2) or Assumption (2.3). In

our experiments, we sometimes also consider the notion that β∗ is smooth over the graph

in the sense that ∥Γβ∗∥∞ is small. We emphasize that we allow for the possibility that the

entries β∗ are all nonzero, as long as β∗ satisfies (or can be well approximated by an oracle

β that satisfies) either Assumption (2.2) or Assumption (2.3).

Under Model (2.1) and either Assumption (2.2) or (2.3), we study the prediction and

estimation errors of the following estimator

β̂ := arg min
β∈Rp

1

n
∥Y −Xβ∥22 + λ1∥Γβ∥1 + λ2∥Γβ∥22 (2.4)

which can also be rewritten as

β̂ := arg min
β∈Rp

1

n
∥Y −Xβ∥22 + λ1

∑
(i,j)∈E

|βi − βj |+ λ2
∑

(i,j)∈E
(βi − βj)

2 (2.5)

Note that our focus is mainly on the penalty λ1∥Γβ∥1+λ2∥Γβ∥22 where Γ is the incidence

matrix of a general graph. Following the naming conventions in Zou and Hastie [2005] and

Tibshirani and Taylor [2011], we refer to this penalty as the Generalized Elastic Net (GEN)

penalty. The estimator (2.4) can be easily extended to the generalized linear model (GLM)

setting, by replacing the term 1
n∥Y −Xβ∥22 with another negative log-likelihood function from

an exponential family distribution (see Chapter 9 of Wainwright [2019] for more examples).
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For instance, if we have binary responses that can be modeled with the logistic GLM, then

using the logistic log-likelihood function gives

β̂logistic :=
1

n

n∑
i=1

log(1 + e⟨xi,β⟩)−
〈
1

n

n∑
i=1

yixi, β

〉
+ λ1∥Γβ∥1 + λ2∥Γβ∥22 (2.6)

where x1, . . . , xn are the rows of X and y1, . . . , yn are the entries of Y which are binary. For

simplicity, we only focus on analyzing the estimator (2.4) under Model (2.1), but analogous

theoretical results for the GLM setting should follow by adapting the theoretical framework

of Chapter 6 of Bühlmann and van de Geer [2011].

2.1.2 Motivating applications

As network-linked features are quite common and we do not restrict our attention to any

particular type of graph, our proposed penalty is potentially applicable to a wide variety of

settings. We provide below a non-exhaustive list of concrete examples where our penalty

may be relevant.

Example 1: Structural MRI analysis. We consider the use of structural magnetic reso-

nance images (sMRI) of the brain in diagnosing Alzheimer’s disease, as in Xin et al. [2014].

In this case, the rows x1, . . . , xn of X might represent sMRI features of n human subjects

and the responses y1, . . . , yn are binary variables indicating each subject’s disease status.

The estimator (2.6) can thus be applied using a 3D grid graph representing contiguous brain

voxels. In Xin et al. [2014], the Generalized Fused Lasso penalty λL∥β∥1+λ1∥Γβ∥1 is used,

and this penalty leads to a solution that is both sparse and smooth. However, it may be

more reasonable to assume only that the true signal aligns with the graph, in which case the

estimator (2.6) may fare better for the purpose of predicting Alzheimer’s disease.
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Example 2: Microarray analysis with prior information. Following Segal et al. [2003],

we can also consider a microarray dataset with X = [xij ] where xij is the expression level

of the jth gene for the ith test subject, and yi is an outcome measure for subject i which

can be continuous or discrete. Often, we have prior knowledge from previous biomedical

research in the form of gene regulatory pathways which can serve as our graph G (see Li

and Li [2008] for specific examples). We can incorporate this prior information using our

GEN penalty. In Li and Li [2008], the penalty λL∥β∥1+λ2β
T L̃β is used instead, where L̃ is

the normalized Laplacian matrix. Assuming the vast majority of genes has no effect on the

outcome may make it easier to interpret the estimated parameters (in terms of which genes

may be responsible for the outcome). However, if many of these genes can be grouped into

clusters with small (but nonzero) baseline effects on the outcome, using our penalty may

lead to better predictions.

Example 3: Microarray analysis without prior information. In the previous exam-

ple, without any prior information about gene regulatory pathways, we can take G to be the

complete graph in our GEN penalty. The penalty λL∥β∥1+λ1∥Γβ∥1, where Γ is the incidence

matrix of a complete graph, has been studied in She [2008] under the name Clustered LASSO.

Example 4: Temporal data. Given a time series {Xt}t∈N, we consider fitting an au-

toregressive model of the form Xt =
∑p

j=1 βjXt−j + ϵt. If the time points t are sampled

sufficiently far apart such that our data points (Xt, Xt−1, . . . , Xt−p) can be considered inde-

pendent across t, it may be reasonable to apply our method with G being a p-vertex chain

graph.
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2.1.3 Comparison with related works

The standalone ℓ1 penalty λ1∥Γβ∥1, which is often known as the total variation penalty

on graphs, has been studied extensively in the context of the graph trend filtering problem

where the design matrix is the identity. More precisely, given the model Y = β∗ + ϵ, the

trend filtering estimator for β∗ is

β̂tf := arg min
β∈Rn

1

n
∥Y − β∥22 + λ1∥Γβ∥1 (2.7)

This estimator is also known as the analysis estimator, in the terminology of Elad et al.

[2007]; see Hütter and Rigollet [2016], Wang et al. [2015], Ortelli and van de Geer [2021] and

Guntuboyina et al. [2020] for results on prediction error bounds for the estimator (2.7) and

its constrained form when Γβ∗ is sparse. The graph considered in the trend filtering problem

is usually a chain or grid graph due to applications such as image denoising, but results for

other types of graphs such as trees and star graphs are also available in the literature. The

analysis matrix Γ in (2.7) can be generalized to higher order total variation operators (as

defined in Wang et al. [2015]). In comparison, we focus solely on the case where Γ is the

incidence matrix defined in (2.9), and our design matrix X is random with i.i.d. rows rather

than a pre-specified matrix consisting of fixed vectors from some dictionary.

When the design matrix is general, the estimator

β̂GL := arg min
β∈Rp

1

n
∥Y −Xβ∥22 + λ1∥Γβ∥1 (2.8)

has been proposed by Tibshirani and Taylor [2011] (under the name Generalized LASSO

estimator) as well as Land and Friedman [1997] (where the penalty is called variable fusion).

These works mainly address computational techniques for the estimator (2.8), rather than

theoretical guarantees when β∗ aligns with the graph. The idea of working with the dual

objective to derive our algorithms comes from Kim et al. [2009] and Tibshirani and Taylor
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[2011]. Our analysis of the prediction and estimation errors for the estimator (2.4) is also

applicable to (2.8), and to our knowledge no similar analysis with random design is available

in the literature. However, the error bounds for our estimator (2.4) are better due to the

improved minimum eigenvalue in the denominator of the bounds in Theorem 33.

Two previously introduced penalties which involve the Lasso penalty to induce sparsity

but are closely related to GEN have also been studied in the context where the design matrix

can be non-identity; they serve as the main benchmarks in both our theoretical results and

our experiments. The Smooth Lasso penalty λL∥β∥1+λ2∥Γβ∥22 was first proposed by Hebiri

and van de Geer [2011], in which the theoretical analysis assumes fixed design and thus relies

on a restricted eigenvalue assumption (Assumption B(Θ) in Hebiri and van de Geer [2011])

on the expanded Gram matrix n−1X̃T X̃ (see Section 2.1.4 for definition of X̃). The Fused

Lasso penalty λL∥β∥1+λ1∥Γβ∥1 was first proposed by Tibshirani et al. [2005] for the chain

graph. These two methods implicitly assume that the true signal is both sparse and aligned

with the graph. Such an assumption can be overly restrictive, and sparsity of β∗ may not

always be a natural assumption in the general graph setting. When ∥β∗∥0 = p, error bounds

proven for these estimators usually involve the term p log p
n . In comparison, our penalty only

assumes network alignment and should also work well in the sparse-and-smooth case when

the zero entries of β∗ form large contiguous blocks on the graph. The Fused Lasso and the

Smooth Lasso should only perform better than ours when sparsity holds but the network

alignment assumption is significantly violated. Empirically, when β∗ aligns with the graph

but is not sparse, choosing the tuning parameters by cross-validation often results in λL

being set to almost zero for both the Fused Lasso and the Smooth Lasso.

In Li et al. [2018], the penalty λ2∥Γ̂β∥22 + λ1∥Γ̂β∥1 + λL∥β∥1 is introduced and referred

to as the Graph Total Variation (GTV) method, which involves three hyperparameters that

require tuning. Unlike our penalty, the incidence matrix Γ̂ is obtained by first estimating Σ

with Σ̂ (which can depend on the design X or side information) and then treating Σ̂ as the
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adjacency matrix of a graph Ĝ with weighted edges. Note that this is a two-step process,

and the graph Ĝ here also differs from our setting in that we do not consider non-binary edge

weights, since in many applications only a graph structure is provided. Computationally,

since we need to use 3D grid search for hyperparameter tuning and the matrix Γ̂ is very

dense, the estimator introduced in Li et al. [2018] does not scale well. Furthermore, even

when we use the true covariance Σ to form Γ̂, the performance of GTV in most of our

synthetic experiments does not compare favorably with that of our method, Fused Lasso or

Smooth Lasso. The theoretical analysis in Li et al. [2018] does not account for the error in

estimating Σ with Σ̂, which we believe cannot be overlooked.

2.1.4 Notations and definitions

For any positive integer n, we denote [n] as the set {1, . . . , n}. For any matrix A, we denote

by A† the Moore-Penrose inverse of A. For any vector v, ∥v∥0 refers to the number of nonzero

entries of v, and ∥v∥p for 1 ≤ p ≤ ∞ refers to the usual ℓp-norm of v. We write 1(·) for the

indicator function. For a vector v ∈ Rk and any set S ⊆ [k], we denote by vS ∈ Rk to be

the vector with the jth coordinate given by (xS)j = xj1(j ∈ S). For any vector θ ∈ Rm, we

write Sθ to refer to the support {j ∈ [m] : θj ̸= 0} of θ. We use s to denote ∥Γβ∗∥0. For

any positive semi-definite matrix M , let γmax(M) and γmin(M) denote its maximum and

minimum eigenvalues respectively, and ker(M) the null space of M . Ik denotes the identity

matrix of size k-by-k.

The notation ≲ means that the left-hand side (LHS) is bounded by the right-hand side

(RHS) multiplied by an absolute constant (not dependent on any parameter of interest) that

is omitted. The notation ≳ is similarly defined. The notation ≍ means that both ≲ and ≳

hold. The constants C, c, c1, c2 are absolute constants which are allowed to change line by

line.

Throughout this project, the graph G = (V,E) we consider is undirected and has no
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self-loops. We identify the set of vertices V with [p] and the set of edges E with [m]; note

that m ≤ p2, and p ≲ m if the graph has no isolated vertices. We also denote the maximum

degree of the graph G by d and the number of connected components of G by nc (which is

also the dimension of the null space of Γ). The edge-vertex incidence matrix of the graph

G is denoted by Γ ∈ {−1, 0, 1}m×p, which is defined as follows: each edge e = (i, j) ∈ E is

represented by a row Γe,· ∈ {−1, 0, 1}p of Γ whose kth entry is given by

Γe,k =


1 if k = min(i, j)

−1 if k = max(i, j)

0 otherwise.

(2.9)

The unnormalized Laplacian matrix of the graph G (see Chung and Graham [1997]) is then

defined by L := ΓTΓ. We denote by Π ∈ Rp×p the projection matrix onto the kernel of Γ.

Note that we will use the facts Π = ΠT , Π2 = Π and Π+ Γ†Γ = Ip throughout the proofs.

In our theoretical analysis, we frequently make use of some definitions and conventions

from Hütter and Rigollet [2016]. We denote s1, . . . , sm to be the columns of Γ† ∈ Rp×m.

The inverse scaling factor of Γ is defined as

ρ(Γ) := max
j∈[m]

∥sj∥2 (2.10)

while the compatibility factor of Γ for a nonempty set S ⊆ [m] is defined as

kS := inf
β∈Rp

√
|S|∥β∥2
∥(Γβ)S∥1

(2.11)

Following Hebiri and van de Geer [2011], we also employ the notations

Ỹ :=

Y

0

 , X̃ :=

 X
√
λ2nΓ

 , ϵ̃ :=

 ϵ

−
√
λ2nΓβ

∗

 (2.12)
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Note that Ỹ = X̃β∗ + ϵ̃ and we can write our estimator as

β̂ = arg min
β∈Rp

1

n
∥Ỹ − X̃β∥22 + λ1∥Γβ∥1 (2.13)

2.2 Theoretical results

In this section, we aim to provide non-asymptotic bounds showing that the estimator (2.4) is

consistent in prediction and estimation under a network alignment assumption, even in the

high-dimensional setting where p≫ n. We also show that the ℓ2 component of the penalty

helps alleviate the effects of an ill-conditioned covariance matrix Σ. Note that the tuning

parameters λ1 and λ2 in our theoretical analysis are dependent on unobserved quantities

β∗, Σ and σ; therefore, we cannot use the theoretical values for λ1 and λ2 in practice and

must in general rely on cross-validation. We do not attempt to optimize the constants in

our bounds, as our focus is on understanding how the performance of our estimator depends

on the quantities n, p, s (or Rq), Σ and the graph G.

2.2.1 Main theorem

We begin by introducing bounds for the prediction and estimation errors that are applicable

to all graphs. However, these bounds may not be optimal for some graphs, especially the

p-vertex chain graph as in that case ρ(Γ) =
√
p. The proof of Theorem 33 relies on the

projection argument used in Hütter and Rigollet [2016] to derive error bounds for the trend

filtering estimator (2.7). For simplicity, in the discussion of our theoretical results, we assume

that γmax(Σ), nc and σ2 are of constant order as n goes to infinity. Recall that nc is the

dimension of ker(Γ), d is the maximum degree of all vertices of G, L := ΓTΓ, and kS is

defined in (2.11).

Theorem 33 (Main theorem). Fix δ > 0 and choose λ1 = 32σρ(Γ)

√
γmax(Σ) log p

n , λ2 ≤
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λ1
8∥Γβ∗∥∞ . Given any set S satisfying both

144γmax(Σ)(
√
nc + δ)2

n
+

36λ21|S|k
−2
S

σ2
≤ 1

2
γmin

(
1

64
Σ + λ2L

)
(2.14)

and

λ1∥(Γβ∗)−S∥1 ≤
σ2

18
(2.15)

with probability at least 1− c1 exp(−nc2)− 2
m − e−δ

2/2 we have

∥Σ1/2(β̂−β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) nc + δ2

n
+

λ21|S|k
−2
S

γmin

(
1
64Σ + λ2L

)+λ1∥(Γβ∗)−S∥1 (2.16)

∥β̂ − β∗∥22 ≲
σ2γmax(Σ)

γ2min

(
1
64Σ + λ2L

) nc + δ2

n
+

λ21|S|k
−2
S

γ2min

(
1
64Σ + λ2L

) +
λ1∥(Γβ∗)−S∥1

γmin

(
1
64Σ + λ2L

) (2.17)

Note that Theorem 33 is actually valid for any matrix Γ. However, if Γ is the incidence

matrix of the graph G, we can further bound k−2S by applying Lemma 3 of Hütter and

Rigollet [2016], which states that k−2S ≲ min(d, |S|).

Denote β∗ = β∗1 + β∗2 , where β∗1 ∈ ker(Γ) and β∗2 ∈ ker(Γ)⊥. Note that the first term

in the RHS of (2.17) represents the error from estimating β∗1 , which is the unpenalized

component of β∗. The latter two terms represent the error from estimating the penalized

component β∗2 , and given a particular graph G we need to further bound ρ(Γ) and k−2S for

that graph.

The estimation error bound (2.17) is only different from the prediction error bound

(2.16) by a factor of γmin

(
1
64Σ + λ2L

)
in the denominator. This means we have to make a

stronger assumption about how fast γmin

(
1
64Σ + λ2L

)
may decay to zero in order to ensure

the estimation error, rather than just the prediction error, is also small. For example, when

we specialize our bounds for the 3D grid with p vertices, the prediction error bound (2.30)

only requires γmin

(
1
64Σ + λ2L

)
≫ s log p

n but the estimation error bound for this graph
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requires γmin

(
1
64Σ + λ2L

)
≫
√

s log p
n .

The conditions (2.14) and (2.15) on S are the result of using Lemma 34. They are

equivalent to requiring that the RHS of (2.16) is sufficiently small (smaller than Cσ2 for some

absolute constant C > 0). Assuming γmin

(
1
64Σ + λ2L

)
is not too small, it is reasonable to

expect the prediction error to converge to zero as n become sufficiently large.

Theorem 2.1 is applicable to the estimator β̂GL in (1.50) (which corresponds to setting

λ2 = 0). However, when γmin(Σ) is small, we may not have a meaningful error bound for

β̂GL. Generally, we want λ2 to be as large as possible to improve the minimum eigenvalue

term without introducing additional errors, and thus the choice λ2 = λ1
8∥Γβ∗∥∞ is appropriate.

When ∥Γβ∗∥∞, the maximum signal difference between adjacent vertices, is small (which is

reasonable under the assumption of network cohesion on β∗) and γmin(Σ) is very close to

zero, the improvement of the minimum eigenvalue term can be significant. In contrast, in

Theorem 3 of Hebiri and van de Geer [2011] and Theorem 1 of Li et al. [2018], similar proof

ideas are used but the dependence between the ℓ2 and ℓ1 tuning parameters is such that

λ2 ∝ λ1
∥Lβ∗∥∞ . Since L is the second-order graph difference operator (see Wang et al. [2015] for

the definitions of higher-order total variation operators), the quantity ∥Lβ∗∥∞ = ∥ΓTΓβ∗∥∞

is not as related to Assumption (2.2) or (2.3) and can be much larger than ∥Γβ∗∥∞ for graphs

with some high-degree nodes. For example, for the star graph with p nodes where the entries

of β∗ are 0 at the central node and 1 at the leaves, ∥Γβ∗∥∞ = 1 but ∥Lβ∗∥∞ is of order

p. The choice of λ2 in Theorem 33, however, suggests that the regularization effects of the

ℓ2 component of the penalty may be diminished if ∥Γβ∗∥∞ is large. This is consistent with

what we observe in our synthetic experiments: when ∥Γβ∗∥∞ is large, cross-validation often

yields λ2 ≈ 0.

The proof of Theorem 33 relies on the following lemma to relate the empirical quadratic

form 1
n∥Xv∥22 to the corresponding theoretical quantity ∥Σ1/2v∥22, uniformly for all v ∈ Rp.

This lemma is an extension of the main result in Raskutti et al. [2010] for our setting and
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may be of independent interest.

Lemma 34 (Restricted eigenvalue property for random Gaussian design). If X ∈ Rn×p has

i.i.d. N(0,Σ) rows and m ≥ 2, n ≥ 10, then the event

{
∀v ∈ Rp :

∥Xv∥2√
n
≥ 1

4
∥Σ1/2v∥2 − 3

√
γmax(Σ)nc

n
∥v∥2 − 6

√
2ρ(Γ)

√
γmax(Σ) log p

n
∥Γv∥1

}

holds with probability at least 1− c1 exp(−nc2), for some universal constants c1, c2 > 0.

By setting S = SΓβ∗ and applying k−2S ≲ min(d, |S|), we obtain the following bounds

which are applicable when β∗ is piecewise constant on the graph G. When ρ(Γ) ≳ 1, the

second term in (2.18) and (2.19) should dominate.

Corollary 35. If ∥Γβ∗∥0 = s, with probability at least 1 − c1 exp(−nc2) − 2
m − e−δ

2/2 we

have

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) (nc + δ2

n
+ ρ2(Γ)min(d, s)

s log p

n

)
(2.18)

∥β̂ − β∗∥22 ≲
σ2γmax(Σ)

γ2min

(
1
64Σ + λ2L

) (nc + δ2

n
+ ρ2(Γ)min(d, s)

s log p

n

)
(2.19)

provided that the RHS of (2.18) is smaller than Cσ2.

On the other hand, if we set S = ∅, we obtain the following bounds that are applicable

when ∥Γβ∗∥1 is small. When β∗ is smoothly varying over G and ∥Γβ∗∥0 is large, these

bounds are more helpful in explaining our estimator’s good performance.

Corollary 36. With probability at least 1− c1 exp(−nc2)− 2
m − e−δ

2/2,

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) nc + δ2

n
+ σρ(Γ)

√
γmax(Σ) log p

n
∥Γβ∗∥1 (2.20)
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∥β̂−β∗∥22 ≲
σ2γmax(Σ)

γ2min

(
1
64Σ + λ2L

) nc + δ2

n
+

σρ(Γ)

γmin

(
1
64Σ + λ2L

)√γmax(Σ) log p

n
∥Γβ∗∥1 (2.21)

provided that the RHS of (2.20) is smaller than Cσ2.

We can also consider the notion that Γβ∗ is ℓq-sparse (0 < q < 1), in the sense that∑m
j=1 |(Γβ∗)j |q ≤ Rq (Assumption (2.3)). This notion of weak sparsity has been considered

in Raskutti et al. [2011] (where β∗ is assumed to lie in an ℓq-ball) and Cai and Zhou [2012]

(where, in the context of covariance estimation, the columns of the covariance matrix are as-

sumed to lie in an ℓq-ball). In contrast, Hebiri and van de Geer [2011] defines the smoothness

of the true signal using ℓ2-norm, in the sense that
∑m

j=1 |(Γβ∗)j |2 ≤ R2 for some R2 > 0. If

there exists an edge with a large signal difference, R2 can be very large. For smaller values

of q, we can more easily accommodate the occasional large signal jump with a reasonably

small Rq, which appears in the bound (2.22).

By choosing S to trade off the last two terms in the RHS of (2.16), we obtain the following

bound for the prediction error. The proof is routine and is thus omitted.

Corollary 37. With probability at least 1− c1 exp(−nc2)− 2
m − e−δ

2/2, if Assumption (2.3)

holds for some q ∈ (0, 1), we have

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) nc + δ2

n

+min

 [σρ(Γ)]2−q
(
γmax(Σ) log p

n

)1−q/2
Rqd

1−q

[γmin

(
1
64Σ + λ2L

)
]1−q

,
[σρ(Γ)]

2
1+q

(
γmax(Σ) log p

n

) 1
1+q

R
2

1+q
q[

γmin

(
1
64Σ + λ2L

)]1−q
1+q


(2.22)

provided that the RHS of (2.22) is smaller than Cσ2.
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2.2.2 Discussion of the quantity γmin
(

1
64Σ + λ2L

)
When Γ = Ip, our penalty is just the original Elastic Net penalty. In that case, since ρ(Γ) = 1

and k−2S ≤ 1, the corresponding estimator β̂EN satisfies with high probability

∥Σ1/2(β̂EN − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2Ip

) ∥β∗∥0 log p
n

(2.23)

Here, it is clear the minimum eigenvalue term is bounded below by λ2. When Γ is an

incidence matrix of a graph, however, Γ has a nontrivial kernel and so the behavior of the

quantity γmin

(
1
64Σ + λ2L

)
is less clear.

We conjecture that under reasonable assumptions about (Σ, L), γmin

(
1
64Σ + λ2L

)
is

bounded below by cλ2 for some absolute constant c, at least when λ2 is in a neighborhood

of zero. We emphasize that the proof of Theorem 33 makes no assumption about how Σ is

related to the graph G or its Laplacian L. When we only have γmin

(
1
64Σ + λ2L

)
≥ cλ2,

(2.18) yields

∥Σ1/2(β̂ − β∗)∥22 ≲ σ
√
γmax(Σ)∥Γβ∗∥∞

(
nc + δ2

ρ(Γ)
√
n log p

+ ρ(Γ)min(d, s)s

√
log p

n

)
(2.24)

but we fail to obtain any theoretical guarantee of consistency in estimation when Γβ∗ is

sparse. If we can assume γmin

(
1
64Σ + λ2L

)
≥ c
√
λ2, however, we obtain from (2.19) that

∥β̂ − β∗∥22 ≲ σ
√
γmax(Σ)∥Γβ∗∥∞

(
nc + δ2

ρ(Γ)
√
n log p

+ ρ(Γ)min(d, s)s

√
log p

n

)
(2.25)

The bounds (2.24) and (2.25) may be more applicable when Σ is ill-conditioned and

γmin(Σ) cannot be assumed to be bounded away from zero. Unfortunately, characterizing

the spectrum of the sum of two symmetric matrices in terms of the spectra of the sum-

mands is known to be a difficult problem, and we leave as an open problem the question
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of identifying a reasonable assumption on (Σ, L) (which may both have nontrivial kernels)

under which γmin

(
1
64Σ + λ2L

)
≥ cλ2 holds. In comparison to our work, Corollary 1 of

Hebiri and van de Geer [2011] (which assumes fixed design) assumes that its restricted

eigenvalue constant ϕµn , defined with respect to the matrix X̃T X̃/n, may be greater than

µn or √µn without further justification; here µn plays a similar role as our λ2. In order

to prove γmin

(
1
64Σ + λ2L

)
≥ cλ2, Lemma 1 of Li et al. [2018] assumes that, for some ab-

solute constant cl > 0, minj∈[p]
∑p

k=1 |Σjk| ≥ cl and maxj∈[p]
∑p

k=1 |Σ̂jk − Σjk| ≤ cl/4;

again, note that Σ̂ acts as the adjacency matrix of the graph considered in Li et al. [2018].

Such assumptions may be too restrictive as the same absolute constant cl is used in both

assumptions.

In Section 2.4.2, we provide empirical evidence to show that, in many situations where

the true covariance matrix Σ reflects the structure of the graph G (that is, features indexed

by adjacent or nearby nodes are more correlated) and Σ is degenerate, the improvement of

the minimum eigenvalue term is significant and can be better than cλ2 (or even c
√
λ2).

2.2.3 Error bounds for specific types of graphs

In this section, we apply our results to some specific graph structures that are also explored

in Hütter and Rigollet [2016]. Throughout this section, s denotes ∥Γβ∗∥0 and Rq denotes the

bound on
∑m

j=1 |(Γβ∗)j |q. We only present prediction error bounds here as the estimation

error bounds are different only by a factor of γmin

(
1
64Σ + λ2L

)
in the denominator. We

mainly assume σ2γmax(Σ)

γmin(
1
64Σ+λ2L)

is of constant order, but we also specialize the bound (2.24)

assuming γmin

(
1
64Σ + λ2L

)
≳ λ2 for the case when Γβ∗ is sparse to illustrate the effects of

the ℓ2 component in our penalty when γmin(Σ) is very small. In that situation, the bounds

for the standalone ℓ1 penalty provide no control on the errors.

The 2D grid. From Proposition 4 of Hütter and Rigollet [2016] as well as our lower bound
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result on ρ(Γ) for the 2D grid (proven in the Appendix), we have the following lemma.

Lemma 38. If Γ is the incidence matrix of the 2D grid with p vertices, then

1 ≲ ρ(Γ) ≲
√

log p

We therefore obtain the following corollary for the 2D grid.

Corollary 39. Let Γ be the incidence matrix of the 2D grid with p vertices. With the same

choice of δ, λ1 and λ2 as in Theorem 33, with high probability we have

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) (1 + δ2

n
+

s(log p)2

n

)
(2.26)

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) 1 + δ2

n
+ σ

√
γmax(Σ)(log p)2

n
∥Γβ∗∥1 (2.27)

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) 1 + δ2

n
+

σ2−qRq

(
γmax(Σ)(log p)

2

n

)1−q/2

[γmin

(
1
64Σ + λ2L

)
]1−q

(2.28)

provided that the RHS of the bounds above are smaller than Cσ2. If γmin

(
1
64Σ + λ2L

)
≳ λ2,

we also have

∥Σ1/2(β̂ − β∗)∥22 ≲ σ
√

γmax(Σ)∥Γβ∗∥∞
(

1 + δ2√
n log p

+
s log p√

n

)
(2.29)

The rates obtained in (2.26) and (2.29) are good if s is of small order relative to n.

For example, if there is a small island of size k-by-k where β∗ attains a value distinct from

its background value outside that island (this situation can correspond to finding abnormal

spots on an MRI scan), then (2.26) gives us the rate k(log p)2

n , provided that σ2γmax(Σ)

γmin( 1
64Σ+λ2L)

is of constant order. This can be compared with the rate obtained by the Lasso estimator,

which is k2 log p
n if the background value outside the island is zero (but it fails to achieve this
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rate if the background value is nonzero). However, in the situation where the 2D grid can

be divided in the middle into a left island and a right island and β∗ is constant on each of

these islands, then s ≍ √p and our rates are meaningful only in the p≪ n setting.

The r-dimensional grid (r ≥ 3). From Proposition 6 of Hütter and Rigollet [2016] as well

as our lower bound result on ρ(Γ) for the r-dimensional grid, we can conclude that ρ(Γ) in

this case is of constant order, assuming r is fixed.

Lemma 40. If Γ is the incidence matrix of the r-dimensional grid with p vertices and r ≥ 3,

then

c(r) ≤ ρ(Γ) ≤ C(r)

for some constants c(r), C(r) that only depend on r.

We obtain the following corollary for the r-dimensional grid.

Corollary 41. Let Γ be the incidence matrix of the r-dimensional grid with p vertices, where

r ≥ 3 is fixed. With the same choice of δ, λ1 and λ2 as in Theorem 33, with high probability

we have

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) (1 + δ2

n
+

s log p

n

)
(2.30)

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) 1 + δ2

n
+ σ

√
γmax(Σ) log p

n
∥Γβ∗∥1 (2.31)

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) 1 + δ2

n
+

σ2−qRq

(
γmax(Σ) log p

n

)1−q/2
[γmin

(
1
64Σ + λ2L

)
]1−q

(2.32)

provided the RHS of the bounds above are smaller than Cσ2. If γmin

(
1
64Σ + λ2L

)
≳ λ2, we

also have

∥Σ1/2(β̂ − β∗)∥22 ≲ σ
√

γmax(Σ)∥Γβ∗∥∞

(
1 + δ2√
n log p

+ s

√
log p

n

)
(2.33)
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If we consider r = 3 and there is a small island of size k-by-k-by-k where β∗ attains a

value distinct from its background value outside that island, then (2.30) gives us the rate
k2 log p

n , whereas the Lasso gives us the rate k3 log p
n if we further assume the background

value is zero. This suggests that if the signal is both sparse and smooth over the graph, in

some situations using our estimator is preferable to using the Lasso. More generally, if the

island is not cubic but rather has an arbitrary shape, ∥Γβ∗∥0 should be the island’s surface

area, whereas ∥β∗∥0 should be the island’s volume.

The complete graph. As previously mentioned, we can consider regularization with the

complete graph when there is no prior structural information available.

Lemma 42. If Γ is the incidence matrix of the complete graph with p vertices, ρ(Γ) ≍ 1
p .

Proof. In Proposition 10 of Hütter and Rigollet [2016], replace any ‘≤’ sign with ‘=’.

If we replace the term min(d, s) by p (since d ≍ p), we obtain the following corollary:

Corollary 43. Let Γ be the incidence matrix of the complete graph with p vertices. With

the same choice of δ, λ1 and λ2 as in Theorem 33, with high probability we have

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) (1 + δ2

n
+

s log p

pn

)
(2.34)

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) 1 + δ2

n
+

σ

p

√
γmax(Σ) log p

n
∥Γβ∗∥1 (2.35)

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) 1 + δ2

n
+

σ2−q Rq
p

(
γmax(Σ) log p

n

)1−q/2
[γmin

(
1
64Σ + λ2L

)
]1−q

(2.36)

provided that the RHS of the above bounds are smaller than Cσ2. If γmin

(
1
64Σ + λ2L

)
≳ λ2,
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we also have

∥Σ1/2(β̂ − β∗)∥22 ≲ σ
√

γmax(Σ)∥Γβ∗∥∞

(
p(1 + δ2)√

n log p
+ s

√
log p

n

)
(2.37)

In the case when the signal takes k ≪ p different values, with k − 1 of those attained on

small islands of size l≪ p, s is of order klp, and (2.34) yields the rate kl log p
n , provided that

σ2γmax(Σ)

γmin( 1
64Σ+λ2L)

is of constant order. This is the same as the rate we obtain for the Lasso if the

complement of the small islands has value zero. However, if there are two large components

with two different values, s is of order p2 and so (2.34) only guarantees some control when

p ≪ n. If γmin

(
1
64Σ + λ2L

)
is of order λ2, then (2.37) only gives us a meaningful bound

when p≪
√
n, provided that ∥Γβ∗∥∞ is of constant order.

The star graph. Here, we consider the graph with p nodes and with one center node

connected to p−1 leaves. A similar penalty has been considered by Ollier and Viallon [2017]

to model stratified data, and this penalty is useful particularly when most outer nodes share

the same value as the central node.

Lemma 44. If Γ is the incidence matrix of the star graph with p vertices, then ρ(Γ) ≍ 1.

Proof. From Proposition 12 in Hütter and Rigollet [2016], any column sj of Γ† has ∥sj∥22 =

1− 1
p .

Corollary 45. Let Γ be the incidence matrix of the star graph with p vertices. With the

same choice of δ, λ1 and λ2 as in Theorem 33, with high probability we have

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) (1 + δ2

n
+

s2 log p

n

)
(2.38)

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) 1 + δ2

n
+ σ

√
γmax(Σ) log p

n
∥Γβ∗∥1 (2.39)
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∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin

(
1
64Σ + λ2L

) 1 + δ2

n
+

(
σ2γmax(Σ)R

2
q log p

n

) 1
1+q

[γmin

(
1
64Σ + λ2L

)
]
1−q
1+q

(2.40)

provided that the RHS of the above bounds are smaller than Cσ2. If γmin

(
1
64Σ + λ2L

)
≳ λ2,

we also have

∥Σ1/2(β̂ − β∗)∥22 ≲ σ
√
γmax(Σ)∥Γβ∗∥∞

(
1 + δ2√
n log p

+ s2
√

log p

n

)
(2.41)

For the star graph, we obtain meaningful bounds for the prediction error, even in the

high-dimensional setting where p≫ n.

The chain graph. When Γ is the p-vertex chain graph (1D grid graph), ρ(Γ) = √p and

Theorem 33 does not yield an error bound that is meaningful in the p ≫ n setting. We

modify the proof of Theorem 33 using an idea in Theorem 6 of Wang et al. [2015] to obtain

the following bound when ∥Γβ∗∥1 is small.

Theorem 46. Let Γ be the incidence matrix of the p-vertex chain graph, and fix δ > 0. With

an appropriate choice of λ1 and λ2 ≤ λ1
8∥Γβ∗∥∞ , with high probability we have

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin(
1
64Σ + λ2L)

1 + δ2

n
+

(σ2γmax(Σ)∥Γβ∗∥1)2/3

γ
1/3
min

(
1
64Σ + λ2L

) 3

√
p log p

n2
(2.42)

provided that the bound above is smaller than Cσ2.

The bound above is meaningful when n≫
√
p log p and thus sufficient to justify the use of

our estimator when Γ is the chain graph. Optimal error bounds under the assumption of hard

sparsity on Γβ∗ are available in the literature if X is identity (see for example Ortelli and

van de Geer [2021] and Guntuboyina et al. [2020]). However, such bounds are often derived

under a “minimum length” condition, which requires that the distances between jumps for
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the true signal are roughly of the same order. The bound (2.42), on the other hand, requires

minimal assumptions. We leave open for future work the analysis of our estimator (2.4)

under the assumption of hard sparsity on Γβ∗.

2.3 Computation

In this section, we describe our coordinate descent procedure to compute the estimator (2.4).

For convenience, we will work with the following definition of β̂ where we replace the loss

1
n∥Y − Xβ∥22 in (2.4) by 1

2∥Y − Xβ∥22. Note that this simply corresponds to a different

scaling of λ1 and λ2.

β̂ := arg min
β∈Rp

1

2
∥Y −Xβ∥22 + λ1∥Γβ∥1 + λ2∥Γβ∥22 (2.43)

Again, let Ỹ :=

Y

0

 ∈ Rn+m, X̃ :=

 X
√
2λ2Γ

 ∈ R(n+m)×p so that we can write

β̂ := arg min
β∈Rp

1

2
∥Ỹ − X̃β∥22 + λ1∥Γβ∥1 (2.44)

If we fix λ2, the solution path in terms of λ1 for (2.44) as well as its dual objective

is piecewise linear, and a path-finding algorithm for the dual objective yielding the entire

solution path in terms of λ1 has been proposed in Tibshirani and Taylor [2011]. However,

for the purpose of selecting tuning parameters, this is of limited usefulness since λ2 needs

to be fixed. The solution path in terms of λ2 is not piecewise linear, and so we cannot use

a LARS-like algorithm to get the entire path in terms of both (λ1, λ2). Also, as mentioned

in Tibshirani and Taylor [2011], the set of knots in the solution path becomes very large as

the problem size increases, and at each knot we must solve a large least squares problem

(especially at the regularized end of the path, which is typically the region of interest in this
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paper) in order to compute the whole path. If we want to compute (2.44) for a small set of

candidate (λ1, λ2) values, then the path algorithm in Tibshirani and Taylor [2011] is unlikely

to be the most efficient.

2.3.1 Coordinate descent on the dual objective

Our coordinate descent algorithm builds upon the dual problem derived in Tibshirani and

Taylor [2011] for the Generalized Lasso. Tibshirani and Taylor [2011] suggests, without

explicit derivations, that we can use coordinate descent on the dual problem to compute the

solution of (2.44) for a fixed value of (λ1, λ2). Coordinate descent cannot be directly applied

to the primal objective (2.44) as the ℓ1-penalty here is not separable in terms of β; in such

a situation, coordinate descent does not necessarily converge. However, the dual objective

(2.47) has a non-smooth component that is separable, and thus convergence is guaranteed

(since conditions (A1), (B1)-(B3) and (C2) from Tseng [2001] hold). For completeness,

we fully derive this coordinate descent algorithm on the dual and provide experiments to

convince the reader that our estimator can be efficiently computed.

Define Y̌ := X̃X̃†Ỹ ∈ Rm+n, Γ̌ := ΓX̃† ∈ Rm×(m+n). From Equation (36) of Tibshirani

and Taylor [2011], the dual problem is:

û = arg min
u∈Rm

1

2
∥Y̌ − Γ̌Tu∥22 subject to ∥u∥∞ ≤ λ1,Γ

Tu ∈ row(X̃) (2.45)

and the primal-dual relation, as in Equation (37) of Tibshirani and Taylor [2011], is:

β̂ = X̃†(Y̌ − Γ̌T û) + z (2.46)

where z ∈ ker(X̃). In most situations, the augmented matrix X̃ :=

 X
√
2λ2Γ

 has a

trivial kernel, in which case row(X̃) = Rp and we can ignore z as well as the constraint
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ΓTu ∈ row(X̃). Now if we let Q := Γ̌Γ̌T ∈ Rm×m and b := Γ̌Y̌ ∈ Rm, then we can write

the dual objective as:

û = arg min
u∈Rm

1

2
uTQu− bTu subject to ∥u∥∞ ≤ λ1 (2.47)

We denote the projection map from R onto [−λ, λ] by Tλ(·):

Tλ(x) :=


λ if x > λ

x if − λ ≤ x ≤ λ

−λ if x < −λ

(2.48)

Our coordinate descent algorithm is presented below.
Algorithm 1: Coordinate descent on the dual objective
Input: λ1, λ2,Γ, Y,X, tolerance ϵ

Output: β̂ as defined in (2.43)

1 Compute Q = Γ̌Γ̌T = (ΓX̃†)(ΓX̃†)T and b = Γ̌Y̌ = ΓX̃†Ỹ

2 Initialize û
(0)
i ← 0 for all i ∈ [m]

3 while ∥û(k) − û(k−1)∥2 > ϵ do

4 û
(k+1)
i ← Tλ1

(
bi−
∑

j<iQij û
(k+1)
j −

∑
j>iQij û

(k)
j

Qii

)

5 Compute β̂ ← X̃†(Y̌ − Γ̌T û)

6 Return β̂

For general GLM loss functions, we can also derive the dual problem with a separable non-

smooth constraint; however, we may not be able to write the coordinate descent updates in

closed form (we can only do so in Algorithm 1 because the dual objective (2.47) is quadratic).

In this case, we can use coordinate proximal gradient descent, in which we apply the projection

operator to the gradient descent update for each coordinate.

In the Appendix, we also provide an alternative algorithm to compute (2.43), based on

the interior point method applied to the dual objective (as in Kim et al. [2009]). This
117



algorithm will be denoted as IP in the following section.

2.3.2 Runtime comparisons

We compare the runtimes for computing the estimator (2.4) using Algorithm 1 (CD), IP,

ADMM, and the Embedded Conic Solver (ECOS) from Domahidi et al. [2013] applied to

the primal objective. ECOS is a generic solver for second-order cone programs (SOCP)

that performs well for small or medium-sized problems. We use the highly optimized ECOS

implementation in the Python package CVXPY to serve as a benchmark for comparing the

runtimes of our algorithms. Figure 2.1 shows the growth of empirical runtimes as n or p

increases for signals over the chain graph (where m = p− 1) with ∥Γβ∗∥∞ = 0.3 fixed; here,

the hyperparameters λ1, λ2 are chosen according to our theory so as to satisfy λ2 = λ1
8∥Γβ∗∥∞ .

As we can see from Figure 2.1, our coordinate descent algorithm scales well as n and p

increase, and its runtime does not exceed 10 seconds if n and p are both smaller than 1,000.

More generally, when λ2 is not too close to zero, the matrix Q = Γ̌Γ̌T is not ill-conditioned

and our coordinate descent algorithm performs quite well. We note that this is the setting

where our estimator (2.4) should be preferred over the Generalized Lasso estimator β̂GL in

(1.50), whose accuracy is impeded by the ill-conditioned nature of the matrix Q when λ2 is

equal to zero. While our estimator requires a two-dimensional grid search to choose (λ1, λ2),

Algorithm 1 can significantly reduce the time it takes to perform hyperparameter tuning,

even for large-scale problems where p and n are both in the thousands. Note that when both

n and p are not too large, the generic SOCP solver ECOS can also be competitive.

As for our interior point method, the main computational bottleneck is the cost of solv-

ing a linear equation involving the Hessian matrix; in other words, we need to solve the

problem Ax = b for each iteration, where A is an m-by-m matrix. Solving it requires O(m3)

operations, and thus IP can do well only if the number of iterations required is small. Figure

2.1(b) shows that in the case of the chain graph, when we fix n and increase p, IP still
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performs better than the generic solver ECOS and scales well with p.

(a) p = 2000 (b) n = 2000

Figure 2.1: Runtimes of different algorithms (reported on the log scale) when (a) p is fixed
but n increases, or (b) n is fixed but p increases. The tolerance levels for IP, CD, and ECOS
are set at 10−4. The tolerance level for ADMM is 10−3. Signals are defined on a 1D chain
graph with p vertices. In both situations, CD has the best runtime scaling, and IP scales
better than ECOS.

(a) n = 2000, 2D grid (b) n = 2000, star graph

Figure 2.2: Runtimes of different algorithms (reported on the log scale) when n is fixed
but p increases. (a) Signals are defined on a p-vertex 2D grid graph (m = 2p − 2

√
p)

with ∥Γβ∗∥∞ = 0.66. (b) Signals are defined on a p-vertex star graph (m = p − 1) with
∥Γβ∗∥∞ = 0.5. The tolerance levels for IP, CD, and ECOS are set at 10−4. The tolerance
level for ADMM is 10−3. As before, (λ1, λ2) are chosen according to theory. In both
situations, CD has the best runtime scaling.

We also examine the runtimes for the 2D grid as well as the star graph when n is fixed

but p increases. For these graphs, IP no longer scales well with p whereas CD still has the
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best scaling, and ECOS is also competitive for small problem sizes.

2.4 Experiments

In this section, we present the empirical performance of our penalty λ1∥Γβ∥1 + λ2∥Γβ∥22
and compare with some existing penalized M-estimators in the literature, under several syn-

thetic settings where we vary the true signal structure and graph topology. Particularly,

we focus on the case where β∗ is not sparse but aligns with the graph G. The design ma-

trix is also allowed to be correlated in a way such that two vertices have more correlated

feature vectors if they are adjacent or nearby on the graph G. Such a covariance structure

is natural for node-indexed feature vectors and is in line with the notion of network cohe-

sion discussed in Section 2.1. We list the methods to which we compare our estimator below.

Graph-independent methods that do not take into account the graph provided. These

methods usually do not perform well in the setting we describe above, and they mainly serve

as benchmarks for comparison.

1. The ordinary least squares (OLS) estimator, which is a standard method in the setting

when p < n and the underlying signal is dense. It often does not perform well when

we are in the high-dimensional setting (p > n) or the design is highly correlated and

γmin(Σ) is close to zero.

2. The Lasso (L) penalty λL∥β∥1 from Tibshirani [1996], which can perform well in the

p ≫ n setting if the true signal is known to be sparse. In the p > n case, however, it

has been shown to select at most n variables before it saturates. As discussed in Zou

and Hastie [2005], the Lasso lacks the ability to select groups of correlated variables,

and it is empirically observed to suffer from unstable selections in the presence of high

correlation between features.
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3. The Elastic Net (EN) penalty λL∥β∥1 + λE∥β∥22, which was developed in Zou and

Hastie [2005] to deal with highly correlated predictors. The Elastic Net tends to

encourage strongly correlated predictors to be in or out of the model together while

also preserving sparsity of representation like the Lasso. It is a suitable candidate in

our setting due to our assumption of highly correlated design.

Graph-based methods that utilizes information from the given graph G (except for pos-

sibly the GTV method). We have described these methods in Section 2.1.3.

4. The Fused Lasso (FL) penalty λ1∥Γβ∥1 + λL∥β∥1 proposed in Tibshirani et al. [2005]

encourages the resulting estimate to be both sparse and piecewise constant with respect

to G. This penalty may be suitable if we believe the true signal is sparse and also forms

clusters on G (that is, in each cluster the true signal attains a single value). When

the true signal is not sparse, the tuning parameter λL is often set to zero if we use

cross-validation (CV) for hyperparameter selection, and FL degenerates into our GEN

penalty with λ2 = 0.

5. The Smooth Lasso (SL) penalty λ2∥Γβ∥22 + λL∥β∥1 in Hebiri and van de Geer [2011]

results in an estimate that is smooth, in the sense that ∥Γβ̂SL∥∞ is small. It is useful

when β∗ is sparse and we also believe ∥Γβ∗∥∞ is small. When the true signal is not

sparse and we use CV for hyperparameter selection, λL for SL is often set to zero, in

which case SL also degenerates into our GEN penalty with λ1 = 0.

6. The Graph Total Variation (GTV) penalty λ1∥Γ̂β∥1 + λ2∥Γ̂β∥22 + λL∥β∥1 in Li et al.

[2018] estimates Σ with some covariance estimator Σ̂ and then treats Σ̂ as the weighted

adjacency matrix of some graph Ĝ with incidence matrix Γ̂. In our experiments, as

suggested by Li et al. [2018], the estimator Σ̂ is obtained by hard-thresholding the

sample covariance matrix (see Bickel and Levina [2008] for details). This choice of

Σ̂ means that we also need to tune the covariance threshold in addition to the 3
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hyperparameters that appear in the GTV penalty. In general, however, Σ̂ can be any

covariance estimator and can also incorporate side information such as the graph G

provided in our setting.

7. We also denote by GTV-oracle the GTV penalty based on using the unobserved co-

variance matrix Σ (rather than Σ̂) to construct the corresponding incidence matrix

Γ̂oracle. Using the true covariance matrix should eliminate any error from covariance

estimation. However, if all entries of Σ are nonzero, computation of the GTV-oracle

estimator can be especially challenging, since the graph used in the GTV penalty here

is a weighted complete graph.

2.4.1 Experiments on synthetic data

We repeatedly generate training and testing data from the model y = Xβ∗ + ϵ, where the

rows of X are generated i.i.d. from N(0,Σ) and independent of ϵ which is generated from

N(0, σ2In). Hyperparameter selection via CV is performed using a separate validation data

set. We report the estimation error ∥β̂ − β∗∥2, as well as the prediction error 1
n∥Xtest(β̂ −

β∗)∥22 computed using the testing data.

2.4.1.1 Choices of Σ and the graph G

We consider the chain graph, the 2D grid graph and the barbell graph in our experiments.

The first two graphs allow for easier visualization of the true and estimated signals defined

on them. The barbell graph, which consists of two non-overlapping cliques connected by a

single path that has an endpoint in each clique, allows us to test the performance of our

method on a denser graph with a less homogenous degree distribution.

As previously mentioned, Σ is constructed so that nearby nodes have more correlated

feature vectors. For the chain graph, we use the Toeplitz covariance structure with Σij =

ρ|i−j| where, if not stated otherwise, we typically choose ρ = 0.5 (moderate correlation). For
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the 2D grid and barbell graph, we construct Σ by inverting the matrix L+0.5Ip (recall that

L denotes the Laplacian of the graph G) and then normalize Σ so that all covariates have

unit variance. The resulting covariance matrices obtained from this process are illustrated

in Figure 2.3.

Figure 2.3: Left: the covariance matrix obtained for a 2D grid graph with p = 3×3 vertices.
Right: the covariance matrix obtained for a barbell graph with two cliques {1, 2, 3} and
{7, 8, 9} connected by the path {3, 4, 5, 6, 7}. Note that correlation is higher for adjacent or
nearby vertices.

2.4.1.2 Hyperparameter selection and tuning time

We select hyperparameters based on 5-fold CV using a fine grid search, where each hyper-

parameter is chosen from a list of at least 20 values. The scorer for CV is the negative mean

squared error (MSE) − 1
n∥Y −Xβ̂∥22, which tends to select for hyperparameters with better

prediction performance.

Hyperparameter tuning for GEN is computationally manageable. When G is a chain

graph, the tuning time for GEN is comparable to that of other methods with two hyperpa-

rameters, namely the Elastic Net, the Fused Lasso and the Smooth Lasso. If we disregard the

covariance thresholding parameter, the GTV penalty still involves three hyperparameters,

and the graph Γ̂ used in the GTV penalty, computed using the covariance estimate Σ̂, has

more nonzero weighted edges compared to the given graph Γ. These factors contribute to
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longer tuning time for the GTV penalty. The tuning time is much worse for the GTV-oracle

penalty since the true covariance matrix Σ is denser than Σ̂, and so Γ̂oracle has many more

nonzero weighted edges than Γ̂ does. We present the tuning times for a toy example where

each hyperparameter is selected from a small grid search in Table 2.1. Here, since n and p

are both not too large, we use the SOCP solver ECOS (see Section 2.3.2) for all methods.

Table 2.1: Tuning times with ECOS when G is the chain graph. p = 110,m = 109, n =
210, σ = 1, and Σ is constructed as in Section 2.4.1.1. The GTV penalty is based on Γ̂ which
has around 200 nonzero weighted edges. The GTV-oracle penalty is based on Γ̂oracle which
has almost 6000 nonzero weighted edges. 5-fold CV is performed for each method on a small
grid with 5 candidate values [0, 0.1, 1, 10, 100] for each hyperparameter.

L EN FL SL GTV GTV-
oracle

GEN

# hyperparameters 1 2 2 2 3 3 2
time [seconds] 0.45 3.22 2.85 2.30 14.31 134.08 2.46

When the graph G contains more edges, we can expect the tuning time for GEN to

increase relative to other two-hypterparameter methods, as both the ℓ1 and ℓ2 components

of the GEN penalty depend on Γ. Table 2.2 repeats the above experiment but with G being

the barbell graph and Σ reflecting the structure of this graph. The tuning time with ECOS

for GEN is roughly double that of FL or SL, whose penalties contain only one component

depending on Γ.

Table 2.2: Tuning times with ECOS when G is the barbell graph. p = 110,m = 2461, n =
210, σ = 1, and Σ is constructed as in Section 2.4.1.1. The GTV penalty is based on Γ̂ which
has around 2500 nonzero weighted edges. As Σ for the barbell graph is denser than Σ in
Table 2.1, Σ̂ here is also denser than Σ̂ in Table 2.1.

L EN FL SL GTV GTV-
oracle

GEN

# hyperparameters 1 2 2 2 3 3 2
time [seconds] 0.44 2.51 4.62 4.57 52.47 131.91 9.68
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2.4.1.3 Comparisons between GEN, FL and SL when β∗ is dense but aligns

with G

In this section, we focus on the case when β∗ is not sparse but Γβ∗ is sparse or β∗ is otherwise

smooth with respect to G. As all parts of the true signals constructed in this section are

far from zero, the component λL∥β∥1 in the FL and SL penalties is of little use, and setting

λL > 0 worsens both prediction and estimation errors in this setting. Consequently, CV

yields λL values that are almost identically zero for both FL and SL. Essentially, in this

section, FL refers to the standalone λ1∥Γβ∥1 penalty, whereas SL refers to the standalone

λ2∥Γβ∥22 penalty.

We observe that FL performs well when β∗ has few signal jumps on G, regardless of

whether there exists large jumps (i.e. ∥Γβ∗∥∞ is large). SL, on the other hand, tends

to perform well when the signal is smooth with respect to G, in the sense that ∥Γβ∗∥∞

is small, even if the number of signal jumps ∥Γβ∗∥0 might be large. To demonstrate these

observations, we construct signals with varying smoothness (∥Γβ∗∥∞) and numbers of jumps

(∥Γβ∗∥0). Figure 2.4 illustrates the true signals on the 1D chain graph, whereas Figure 2.5

illustrates the true signals on the 2D grid graph (note that p is fixed for these graphs). For

the barbell graph, we let the signal values be constant (at 5 and 20 respectively) on each

clique. The lengths of the path connecting the two cliques are chosen from {1, 4, 7, 10, 13, 16}

(and so p has to vary), and we let the signal decrease from 20 to 5 gradually on the connecting

path, so that ∥Γβ∗∥∞ decreases from 15 to 1.46 while ∥Γβ∗∥0 increases from 1 to 16.

Figure 2.6 illustrates the performances of FL, SL and GEN in terms of estimation and

prediction errors. When ∥Γβ∗∥∞ is small, CV yields λ2 values that are larger relative to

λ1, which is consistent with our theory in that λ2 can be chosen up to Cλ1
∥Γβ∗∥∞ without

incurring additional errors. As can be seen from Figure 2.6, our GEN penalty adapts well to

true signals of various smoothness levels, thus demonstrating the importance of having both

the λ1∥Γβ∥1 and λ2∥Γβ∥22 components in our penalty. From the performances of FL and
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Figure 2.4: True signals defined on the chain graph with p = 110. The top left signal is piece-
wise constant and has the smallest ∥Γβ∗∥0 = 3 but the largest ∥Γβ∗∥∞ = 5. The bottom
right signal is the smoothest with the largest ∥Γβ∗∥0 = 99 and the smallest ∥Γβ∗∥∞ = 0.24.
The intermediate signals are constructed such that ∥Γβ∗∥0 decreases but ∥Γβ∗∥∞ increases
gradually. All 6 signals have ∥Γβ∗∥1 = 15.

Figure 2.5: True signals defined on the 2D grid with p = 15 × 15. The top left signal
is piecewise constant and has the smallest ∥Γβ∗∥0 = 28 but the largest ∥Γβ∗∥∞ = 3.
The bottom right signal is the smoothest with the largest ∥Γβ∗∥0 = 412 and the smallest
∥Γβ∗∥∞ = 0.24. All 6 signals have ∥Γβ∗∥1 between 84 and 120.
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(a) 1D chain

(b) 2D grid

(c) Barbell

Figure 2.6: Prediction and estimation errors for three graphs as ∥Γβ∗∥∞ and ∥Γβ∗∥0 vary.
Results are based on 500 resamplings. Vertical bars for each true signal connect the 25th

and 75th percentiles. The lines labeled by FL, SL and GEN connect the medians of errors.
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SL, we can see that the λ1∥Γβ∥1 penalty ensures good performance when the true signal is

piecewise constant, whereas the λ2∥Γβ∥22 penalty ensures good performance when the true

signal is smooth over G.

Note again that FL and SL in this setting correspond to the GEN penalty with λ2 or λ1

set to zero, respectively. Therefore, GEN’s superior performance over FL and SL in terms of

prediction error is not surprising, given that the scorer used for CV − 1
n∥Y −Xβ̂∥22 selects for

hyperparameters with stronger prediction performance. However, GEN is also consistently

better than FL or SL in terms of estimation error. This can be understood better by

examining the signal estimates obtained from the three procedures. Figure 2.7 compare

the estimated signals with the true signals defined on the 1D chain graph. FL recovers

the constant regions well but struggles with the smoothly increasing region, whereas the

SL estimate is better in the smoothly increasing region but cannot reproduce the constant

regions of the true signal. GEN, on the other hand, is able to recover the true signal in all

regions. We can also make the same observations when G is the 2D grid graph (but they

are harder to visualize).

Figure 2.7: Left: estimated signals obtained from FL, SL and GEN. Right: true signal. GEN
recovers the true signal well in both the constant and the smoothly increasing regions.

We also examine the performances of FL, SL and GEN as features become more correlated

and thus Σ becomes more ill-conditioned. Figure 2.8 shows the estimation errors for the

chain graph when Σ is the identity matrix (which is the limit of the Toeplitz covariance
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matrix as ρ → 0) and when Σ is the Toeplitz covariance matrix with ρ = 0.95. From our

theoretical results, we expect that when the features are highly correlated, the performance

of the standalone λ1∥Γβ∥1 penalty (FL) should be negatively affected by the ill-conditioned

nature of Σ. However, the λ2∥Γβ∥22 penalty should improve the minimum eigenvalue term

in the denominators of our error bounds, especially when ∥Γβ∗∥∞ is small and λ2 can be

chosen to be larger. Such an improvement is not as noticeable when Σ is the identity, which

is already well-conditioned.

Figure 2.8: Side-by-side comparison of the estimation errors for the chain graph when Σ
is the identity matrix (left) and when Σ has the Toeplitz structure with ρ = 0.95 (right).
∥Γβ∗∥1 is fixed at 15. Note the greater divergence between the estimation errors of FL and
GEN when there is higher correlation.

2.4.1.4 Performance comparisons as n and p vary

This section examines the performance of GEN relative to all other methods as n is fixed

and p increases, or as p is fixed and n increases. The covariance matrix Σ is constructed

as in Section 2.4.1.1, and the graphs we use are again the chain graph, the 2D grid and

the barbell graph. The true signal β∗ is again not sparse, but contains a mix of piecewise

constant regions and smoothly varying regions on the graph G (similar to the true signals

with intermediate values of ∥Γβ∗∥∞ and ∥Γβ∗∥0 in Figure 2.4 and Figure 2.5). Note that we
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do include the high-dimensional setting when n is smaller than p. As described in Section

2.4.1.2, hyperparameters for all methods are chosen based on the best prediction scores in

cross-validation. We only report the estimation errors in Figure 2.9, since the prediction

errors for all methods show the same trends.

As we can see from Figure 2.9, GEN consistently has the best performance in terms of

estimation errors (except for the barbell graph when GTV-oracle performs slightly better

for some values of (n, p)). With regard to graph-independent methods, OLS and the Lasso

clearly fail to perform well in our setting, and EN only provides limited improvements in

terms of estimation errors. FL and SL, whose penalties do take into account the graph G,

perform significantly better than the previous three methods but never better than GEN. The

performance of GTV, whose penalty depends on the covariance estimate Σ̂, is not consistent;

it can be reasonable for the barbell graph but, for the other two graphs, is not very different

from OLS, EN and the Lasso for certain values of (n, p). Interestingly, the performance of

GTV-oracle can surpass that of GEN for the barbell graph; this can be attributed to the

fact that Σ is constructed to reflect the graph structure and hence is a good estimate for

the graph G itself. The divergence between the estimation errors of GTV and GTV-oracle

therefore suggests that the covariance estimation error is not negligible, especially when p

is small relative to n. Note that GTV requires much more time than other methods for

hyperparameter selection and model training, as we have discussed in Section 2.4.1.2.

2.4.1.5 Performance comparisons when β∗ is both sparse and smooth over G

In Section 2.4.1.3 and Section 2.4.1.4, we have compared the performances of various esti-

mators when β∗ is dense. We now consider the case when G is the chain graph, and β∗

is sparse and has small variations in its successive entries, as illustrated in the left plot of

Figure 2.10. Such a signal structure should be more favorable to either FL or SL, and we

expect at least one of them to outperform GEN in this case.
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(a) 1D chain

(b) 2D grid

(c) Barbell

Figure 2.9: Estimation errors (reported on the log scale) based on 500 resamplings for all
estimators as p is fixed (p = 110 for chain graph, p = 121 for 2D grid, p = 66 for barbell
graph) but n increases (left), and as n = 90 is fixed but p increases (right). σ = 1 is fixed,
and in each plot ∥Γβ∗∥∞ is kept roughly constant. CV yields λL identically equal to zero
for the Lasso estimator, and thus its performance coincides with that of OLS.
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However, as can be seen in Table 2.3, GEN still has the best performance compared to all

other estimators. FL and SL perform better than the Lasso estimator, which in turn is better

than OLS as expected. Certainly, such a strong performance relative to the other estimators

may depend on the smoothness and sparsity levels of the true signal. Nonetheless, this

example clearly demonstrates that effectively leveraging the true signal’s smoothness over

G can be more important in reducing prediction and estimation errors than exploiting its

sparsity structure.

Figure 2.10: Left: Sparse and smooth signal with p = 100, ∥β∗∥0 = 40, ∥Γβ∗∥∞ = 0.39.
Right: The left signal is modified to include a spike, so that ∥Γβ∗∥∞ increases to 5. We use
σ = 1, n = 80 and the Toeplitz covariance matrix with ρ = 0.5 for Σ in this section.

We also consider a slight modification to the previous example, so that we have a sharp

spike in the zero region of the signal. Adding a single spike should not significantly change the

radius Rq of the ℓq-ball to which Γβ∗ belongs. However, since ∥Γβ∗∥∞ is now much larger,

CV yields λ2 identically equal to zero, and GEN degenerates into FL with λL = 0. As a

result, FL performs better than GEN (and so does GTV-oracle), although the deterioration

of GEN’s performance is not drastic and GEN still performs better than EN, SL, GTV and

the Lasso. It is therefore a question of interest for future research whether we can replace

the ℓ2 component of GEN with another penalty that is more robust to signal spikes, while

retaining the benefits of having the ℓ2 component as discussed in Section 2.4.1.3.
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Table 2.3: Prediction and estimation errors for the true signals in Figure 2.10; ‘L’ and
‘R’ denote errors for the left and right true signals respectively. The mean and standard
deviation of the errors based on 500 resamplings are shown below. Errors better than GEN’s
errors are shown in orange.

OLS L EN FL SL GTV GTV-
oracle

GEN

L: Est.
errors

6.92±
1.05

1.98±
0.36

1.98±
0.36

0.56±
0.08

0.40±
0.06

0.87±
0.13

0.38±
0.06

0.27±
0.05

L:
Pred.
errors

38.12±
15.33

2.94±
1.35

2.94±
1.35

0.28±
0.12

0.33±
0.14

0.72±
0.26

0.21±
0.11

0.15±
0.08

R: Est.
errors

7.25±
1.10

2.95±
0.59

2.95±
0.59

0.88±
0.17

1.75±
0.30

1.31±
0.22

0.75±
0.12

0.97±
0.18

R:
Pred.
errors

41.75±
15.95

6.19±
2.93

6.19±
2.93

0.67±
0.26

2.37±
0.93

1.44±
0.50

0.49±
0.19

0.87±
0.32

2.4.2 Empirical study of the quantity γmin
(

1
64Σ + λ2L

)
In Section 2.2, if Σ is ill-conditioned and we cannot assume γmin(Σ) is bounded away from

zero, then we assume that γmin

(
1
64Σ + λ2L

)
may be greater than cλ2 or c

√
λ2. These as-

sumptions lead to the bounds (2.24) and (2.25), which may allow for consistency in prediction

and estimation respectively.

We conjecture that γmin

(
1
64Σ + λ2L

)
≥ 1

64λ2 holds for all λ2 ∈ [0, 1] under reasonable

assumptions about (Σ, L); this implies γmin

(
1
64Σ + λ2L

)
≥ 1

64 min(λ2, 1). Figure 2.11

shows the growth of the quantity γmin

(
1
64Σ + λ2L

)
as a function of λ2, for the various types

of graphs and covariance matrices we have considered in Section 2.4. When G is the chain

graph and Σ has the Toeplitz structure, we generally have γmin

(
1
64Σ + λ2L

)
≥ 1

64

√
λ2 for

all λ2 ∈ [0, 1] unless ρ > 0.99. When G is the 2D grid or barbell graph and Σ is constructed

accordingly as in Section 2.4.1.1, we can also observe the same trends. Overall, when Σ is

ill-conditioned and λ2 can be chosen to be sufficiently large, the ℓ2 component of the GEN

penalty can significantly improve our error upper bounds.
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(a) Chain graph; ρ = 0.8 (b) Chain graph; ρ = 0.99 (c) Chain graph; ρ = 0.9985

(d) Complete graph; ρ = 0.99 (e) 2D grid; Σ from L+ 10−4Ip

(f) Barbell; Σ from L + 3 ×
10−4Ip

Figure 2.11: Growth of γmin(
1
64Σ+ λ2L) as a function of λ2 for various choices of Σ and G

(p = 100 for all plots). In (a), (b) and (c), G is the chain graph and Σ has Toeplitz structure
with varying ρ. In (d), G is the complete graph and Σ has Toeplitz structure. In (e) and (f),
we use the 2D grid and barbell graph, with corresponding (and highly correlated) covariance
structures as in Section 2.4.1.1.
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2.4.3 Real data analysis

2.4.3.1 COVID-19 trend prediction

We consider the problem of predicting the number of COVID-19 cases 14 days in advance

for a given county in California, using a New York Times-curated COVID-19 dataset. This

problem may be of importance for hospitals and local authorities, as they may wish to

anticipate potential spikes in COVID-19 cases based on current, local data. It is reasonable

to assume that the number of cases Ytc on day t in county c is Poisson-distributed, as in

Agosto and Giudici [2020], Bu et al. [2021] and Cori et al. [2013]. In this case, we can

apply the variance-stabilizing Anscombe transform x 7→ 2
√

x+ 3
8 to form Ỹtc. Following the

modeling approach in Cori et al. [2013], we may then consider the Gaussian model

Ỹtc =
21∑

s=14

αsYt−s,c + ϵtc (2.49)

where ϵtc ∼ N(0, σ2). In order to reduce temporal correlation between observations, the

days t are sampled such that consecutive time points are at least 7 days apart. We restrict

our analysis (a) to the period from June 2020 to July 2021 to avoid non-stationary effects in

the evolution of the pandemic due to the appearance of new virus strains, and (b) to the 25

densest counties in California where linear models are typically a better fit. As in Ngonghala

et al. [2022], we use cross-validation to evaluate the accuracy of our model; 6/7 of our data

is used for fitting and the remaining data is for performance evaluation (i.e. 2 months of

data). Fitting an OLS model based on (2.49) usually results in a satisfactory fit with an R2

score above 0.8 (see the Appendix).

We hypothesize that for densely populated counties, rising cases in neighboring counties

may further explain a significant fraction of the remaining variance in the data due to

population movements between counties. To test this hypothesis, we consider a model that

incorporates the number of cases from nearby counties within a two-hop radius of the given
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county c:

Ỹtc =
∑

k∈N2(c)

21∑
s=14

αskYt−s,k + ϵtc (2.50)

Table 2.4: Median RMSE achieved by various methods for 25 counties. OLS is fitted based
on model (2.49), and all other methods are based on (2.50). The best performances for each
county are highlighted in bold.

County OLS L EN FL SL GEN
Alameda 1.08 1.18 1.14 0.96 0.85 0.99
Butte 3.20 1.81 1.83 1.46 1.88 2.10
Contra Costa 1.21 1.79 1.69 3.47 2.49 3.35
Fresno 8.22 7.06 9.77 5.25 7.71 5.95
Los Angeles 4.92 6.92 7.34 5.28 6.06 4.56
Marin 6.11 3.92 5.49 5.47 3.38 4.18
Merced 7.94 9.75 9.03 9.26 9.68 6.08
Napa 3.93 3.97 5.53 3.92 3.90 2.96
Orange 1.84 4.44 3.97 3.34 2.08 2.56
Placer 2.20 1.35 1.89 1.27 1.55 1.53
Riverside 3.46 3.32 3.62 3.21 2.79 3.73
Sacramento 2.23 3.11 2.53 3.61 2.31 1.66
San Diego 1.43 1.67 1.00 0.98 0.88 0.91
San Francisco 1.41 2.23 1.05 1.23 1.33 1.39
San Joaquin 3.64 3.43 3.43 3.93 5.24 5.41
San Mateo 1.44 2.34 2.45 1.68 1.56 1.75
Santa Barbara 2.84 2.02 2.02 2.02 2.01 3.71
Santa Clara 1.14 2.04 1.85 1.05 1.10 1.03
Santa Cruz 6.56 3.86 4.62 3.55 4.17 4.59
Solano 2.10 3.86 3.72 2.03 2.93 2.62
Sonoma 1.74 3.47 3.60 2.78 2.62 2.67
Stanislaus 9.29 6.41 9.17 4.55 4.76 4.88
Sutter 4.07 7.51 7.51 4.33 2.58 1.94
Ventura 2.02 1.22 1.20 1.23 1.16 1.36
Yolo 3.43 5.13 4.54 1.93 2.45 1.79

Fitting model (2.50) is a high-dimensional problem, where the number of parameters p

can be up to 3 times the number of observations n, depending on the county. OLS therefore

is not a suitable method for model (2.50). Consequently, in this experiment we fit the

penalty-based methods (except GTV) based on (2.50) and compare with the performance

of OLS computed based on (2.49). The graph G we consider here is such that two feature
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vectors are connected if they are indexed by the same day t and by two adjacent counties,

or if they are indexed by the same county k and two consecutive time points.

We perform this prediction task for each of 25 most densely populated counties in Cal-

ifornia. For each county, we report the median root mean square error (RMSE) computed

on the test set in Table 2.4. As expected, incorporating the numbers of cases in neighbor-

ing counties allows us to outperform OLS based on (2.49) in 21 out of 25 counties. The

graph-dependent methods FL, SL and GEN perform better than other methods in 19 out

of 25 counties. Among these 19 counties, GEN has the best performance in 7 of them and

is therefore a competitive candidate for this prediction task. The improvement it yields can

be quite substantial; for the county Sutter in particular, GEN reduces the RMSE by 50%

compared to OLS and at least 25% compared to FL and SL.

2.4.3.2 Detection of Alzheimer’s disease

We test the GEN penalty’s performance in detecting Alzheimer’s disease, using an MRI

dataset available on Kaggle. The task is to classify whether the MRI images in the dataset

show signs of dementia. Since the responses are binary, we need to consider the logistic

extension (2.6) of our method as well as that of all other methods. The original dataset

has images labeled with moderate, mild, very mild and no dementia, but we exclude the

moderate cases due to the small number of training samples. We also exclude the very mild

cases since the images may be too similar to those with no dementia, thus leading to lower

prediction accuracy for all methods.

Since the features are 2D MRI images, it is natural to use the 2D grid graph as our graph

G, which is of size p = 32 × 32 = 1024 (we compress the original images to this size for

computational convenience). We use the first 800 images with no dementia and 400 images

with mild dementia in the original dataset. Out of these 1200 images, n = 480 images are

used as training data (note that n < p), 480 images are use for hyperparameter tuning,
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and the other 240 images constitute our testing data. For computation, we use ECOS for

all methods. Since GTV requires at least a 3D grid search for hyperparameter tuning, it is

too slow to be considered for this experiment. All other methods take at most 5 seconds of

training time.

The classification accuracies for all methods except GTV are reported in Table 2.5. As

expected, GEN shows better prediction performance than all other methods in consideration.

Table 2.5: Prediction accuracies for classification of Alzhemer’s disease status. Here, OLS is
replaced by logistic regression (LR), and the logistic extensions of all penalty-based methods
(except GTV) are used.

LR L EN FL SL GEN

Accuracy 82.08% 90.0 % 92.50% 91.25% 92.08% 92.92%

2.4.3.3 Estimation of crime patterns in Chicago

Consider the task of uncovering crime trends over time across the 77 communities of Chicago

(which we denote by the set C). Statistics on the number of crimes per community between

2004 and 2022 are available on the city’s data portal. The monthly crime rates (which are

defined here as the number of crimes per 100,000 inhabitants) vary over the years and across

the communities, and they are also subject to significant seasonal effects. Additional details

on the nature of the data and preprocessing are provided in the Appendix.

Let Y
(c)
my denote the crime rate for community c ∈ C, month m and year y. Since we are

working with count data, it is reasonable to pre-process the data by applying the Anscombe

transform to Y
(c)
my to form Ỹ

(c)
my . We then consider the following additive Gaussian model

Ỹ
(c)
my =

12∑
i=1

αi1[m = i] +
2022∑

j=2004

βj1[y = j] +
∑
c∈C

γk1[k = c] + ϵ
(c)
my (2.51)

where ϵ
(c)
my ∼ N(0, σ2). While our design matrix here is not equal to identity as in the trend
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filtering case, note that it contains “one-hot” encoding rather than i.i.d. rows from some

distribution P. The parameters (α, β) naturally exhibit temporal smoothness, since we expect

them to vary smoothly over time. The community offset parameter γ, on the other hand,

should exhibit spatial smoothness, as we expect neighboring communities to have similar

offsets. To define our GEN penalty, we encode these prior beliefs in a regularizing graph

G with 3 disconnected components: one chain graph reinforcing the temporal smoothness

of the month coefficients, another chain graph for that of the years, and a third component

encoding neighborhood adjacency. We compare our method’s performance with all other

methods except GTV.

Figure 2.12: RMSE achieved by different estimators as the proportion α of data used for
training varies.

Figure 2.12 compares the prediction performance (reported using RMSE computed on

held-out data across 40 independent trials) for all methods. Here, performance is assessed

for different data regimes: while the original dataset contains 17,094 observations, we use

a fraction α ∈ {0.5%, 1%, 2%, 5%} of data for estimation of the p = 108 parameters in our

model (α = 0.5% and α = 1% correspond to p > n and p ≈ n respectively). As shown

in Figure 2.12, GEN performs consistently better than all other methods, especially in the

data-sparse regime. While in this example we are more interested in the estimation of crime

patterns rather than prediction (note that the model (2.51) cannot be used to predict crime
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rates beyond 2022), Figure 2.12 provides evidence for GEN’s superior performance and can

be of interest if we are given a dataset with many missing values that require data imputation.

Fused Lasso Generalized Elastic Net

Ordinary Least Squares Lasso  Elastic Net

Smooth Lasso

Figure 2.13: Visualization of the community offsets γ produced by different estimators. Note
that GEN produces smoother estimates with greater magnitudes.

Figure 2.13 and Figure 2.14 visualize the estimates of the community offsets γ and the

temporal parameters (α, β) respectively. Note that the estimate of γ obtained from GEN

contains fewer zero entries and is significantly smoother when compared with other methods.

We can clearly see that GEN divides the communities into clusters with similar community

offsets. Only Smooth Lasso provides an estimate of γ that is close to GEN’s, but interestingly

the estimates obtained by GEN tend to be greater in magnitude. From Figure 2.14, we can

see that GEN, FL and SL produce smooth estimates to show that crime rates tend to decrease

in the colder months and that there is a general reduction in crime rates between 2002 and

2022.
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(a) Estimates of α (b) Estimates of β

Figure 2.14: Visualization of the estimates of the monthly parameters α and the yearly
parameters β’s produced by different methods. GEN, FL and SL produce smoother estimates
relative to graph-independent methods.

2.5 Proofs and supplementary materials

2.5.1 Proofs of theoretical results

We restate our theorems in this appendix for convenience.

Theorem 47 (Theorem 33). Fix δ > 0 and choose λ1 = 32σρ(Γ)

√
γmax(Σ) log p

n , λ2 ≤
λ1

8∥Γβ∗∥∞ . Given any set S satisfying both

144γmax(Σ)(
√
nc + δ)2

n
+

36λ21|S|k
−2
S

σ2
≤ 1

2
γmin

(
1

64
Σ + λ2L

)
(2.52)

and

λ1∥(Γβ∗)−S∥1 ≤
σ2

18
(2.53)
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with probability at least 1− c1 exp(−nc2)− 2
m − e−δ

2/2 we have

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

nc+δ2

n + λ21|S|k
−2
S

γmin

(
1
64Σ + λ2L

) + λ1∥(Γβ∗)−S∥1

and

∥β̂ − β∗∥22 ≲
σ2γmax(Σ)

nc+δ2

n + λ21|S|k
−2
S

γ2min

(
1
64Σ + λ2L

) +
λ1∥(Γβ∗)−S∥1

γmin

(
1
64Σ + λ2L

)
Proof. By definition,

β̂ = argmin
β

1

n
∥Y −Xβ∥22 + λ1∥Γβ∥1 + λ2∥Γβ∥22

We can also rewrite our estimator as:

β̂ = argmin
β

1

n
∥Ỹ − X̃β∥22 + λ1∥Γβ∥1

Using subdifferential calculus, we can see that β̂ must satisfy

2X̃T (Ỹ − X̃β̂)

n
= λ1Γ

T sign(Γβ̂)

where

[sign(x)]i =


1 if xi > 0,

any value in [−1, 1] if xi = 0,

−1 if xi < 0 .

Hence, we obtain

2

n
β̂T X̃T (Ỹ − X̃β̂) = λ1β̂

TΓT sign(Γβ̂) = λ1∥Γβ̂∥1
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and for any β ∈ Rp,

2

n
βT X̃T (Ỹ − X̃β̂) = λ1β

TΓT sign(Γβ̂) ≤ λ1∥Γβ∥1

By subtracting the previous equality from the inequality above, for any β ∈ Rp we have

2

n
(β − β̂)T X̃T (Ỹ − X̃β̂) ≤ λ1(∥Γβ∥1 − ∥Γβ̂∥1)

Since Ỹ = X̃β∗ + ϵ̃,

2

n
(β̂ − β)T X̃T X̃(β̂ − β∗)

≤ 2

n
ϵ̃T X̃(β̂ − β) + λ1(∥Γβ∥1 − ∥Γβ̂∥1)

=
2

n
ϵTX(β̂ − β)− 2λ2(β

∗)TΓTΓ(β̂ − β) + λ1(∥Γβ∥1 − ∥Γβ̂∥1)

≤ 2

n
ϵTX(β̂ − β) + 2λ2∥Γβ∗∥∞∥Γ(β̂ − β∗)∥1 + λ1(∥Γβ∥1 − ∥Γβ̂∥1)

≤ 2

n
ϵTX(β̂ − β) +

λ1
4
∥Γ(β̂ − β)∥1 + λ1(∥Γβ∥1 − ∥Γβ̂∥1)

where the last inequality follows if we choose λ2 ≤ λ1
8∥Γβ∗∥∞ .

We wish to bound 2
nϵ

TX(β̂ − β). As Π ∈ Rp×p denotes the projection matrix onto the

kernel of Γ, we have Ip = Π+ Γ†Γ. Hence,

2

n
ϵTX(β̂ − β) =

2

n
ϵTXΠ(β̂ − β) +

2

n
ϵTXΓ†Γ(β̂ − β) (2.54)

≤ 2

n
∥ΠXT ϵ∥2∥β̂ − β∥2 +

2

n
∥(Γ†)TXT ϵ∥∞∥Γ(β̂ − β)∥1

≤ 2

n
∥ΠXT ϵ∥2∥β̂ − β∥2 +

λ1
4
∥Γ(β̂ − β)∥1

where the last inequality follows if we choose λ1 ≥ 8
n∥(Γ

†)TXT ϵ∥∞ (with high probability).
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We obtain the bound:

2

n
(β̂ − β)T X̃T X̃(β̂ − β∗) ≤ 2

n
∥ΠXT ϵ∥2∥β̂ − β∥2 +

λ1
2
∥Γ(β̂ − β)∥1

+ λ1∥Γβ∥1 − λ1∥Γβ̂∥1
(2.55)

2

n
(β̂ − β)T X̃T X̃(β̂ − β∗) ≤ 2

n
∥ΠXT ϵ∥2∥β̂ − β∥2 +

λ1
2
∥Γ(β̂ − β)∥1 + λ1∥Γβ∥1 − λ1∥Γβ̂∥1

For any S ⊆ [m]:

λ1
2
∥Γ(β̂ − β)∥1 + λ1∥Γβ∥1 − λ1∥Γβ̂∥1

≤ λ1
2
∥(Γβ̂ − Γβ)S∥1 +

λ1
2
∥(Γβ̂)−S∥1 +

λ1
2
∥(Γβ)−S∥1 + λ1∥Γβ∥1 − λ1∥Γβ̂∥1

≤ 3λ1
2
∥(Γβ̂ − Γβ)S∥1 +

3λ1
2
∥(Γβ)−S∥1 −

λ1
2
∥(Γβ̂)−S∥1

≤ 3λ1
2
∥(Γβ̂ − Γβ)S∥1 + 2λ1∥(Γβ)−S∥1 −

λ1
2
∥(Γβ̂ − Γβ)−S∥1

≤ 2λ1∥(Γβ̂ − Γβ)S∥1 + 2λ1∥(Γβ)−S∥1 −
λ1
2
∥Γβ̂ − Γβ∥1

and so we have

2

n
(β̂ − β)T X̃T X̃(β̂ − β∗) +

λ1
2
∥Γβ̂ − Γβ∥1

≤ 2

n
∥ΠXT ϵ∥2∥β̂ − β∥2 + 2λ1∥(Γβ̂ − Γβ)S∥1 + 2λ1∥(Γβ)−S∥1

≤ 2

(
1

n
∥ΠXT ϵ∥2 +

λ1
√
|S|

kS

)
∥β̂ − β∥2 + 2λ1∥(Γβ)−S∥1

≤ 2

(√
2σ2γmax(Σ)

√
nc + δ√

n
+

λ1
√
|S|

kS

)
∥β̂ − β∥2 + 2λ1∥(Γβ)−S∥1

with high probability, where we used the definition of kS and Lemma 52. If we set β = β∗,
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we obtain

1

n
∥X̃(β̂ − β∗)∥22 +

λ1
4
∥Γβ̂ − Γβ∗∥1 ≤

(√
2σ2γmax(Σ)

√
nc + δ√

n
+

λ1
√
|S|

kS

)
∥β̂ − β∗∥2

+ λ1∥(Γβ∗)−S∥1

(2.56)

which implies

λ1∥Γβ̂ − Γβ∗∥1 ≤ 4

(√
2σ2γmax(Σ)

√
nc + δ√

n
+

λ1
√
|S|

kS

)
∥β̂ − β∗∥2 + 4λ1∥(Γβ∗)−S∥1

or that

576ρ2(Γ)
γmax(Σ) log p

n
∥Γβ̂ − Γβ∗∥21 =

576

1024

λ21
σ2
∥Γβ̂ − Γβ∗∥21

≤ 18
λ21
σ2

(√
2σ2γmax(Σ)

√
nc + δ

λ1
√
n

+

√
|S|
kS

)2

∥β̂ − β∗∥22 + 18
λ21
σ2
∥(Γβ∗)−S∥21

≤

(
72γmax(Σ)

(
√
nc + δ)2

n
+ 36

λ21|S|k
−2
S

σ2

)
∥β̂ − β∗∥22 + 18

λ21
σ2
∥(Γβ∗)−S∥21

≤

(
72γmax(Σ)

(
√
nc + δ)2

n
+ 36

λ21|S|k
−2
S

σ2

)
∥β̂ − β∗∥22 + λ1∥(Γβ∗)−S∥1 (2.57)

where we used the condition (2.53). Now if we apply Corollary 51 to (2.56), we have

(β̂ − β∗)T
(

1

64
Σ + λ2L

)
(β̂ − β∗) ≤

(√
2σ2γmax(Σ)

√
nc + δ√

n
+

λ1
√
|S|

kS

)
∥β̂ − β∗∥2

+ λ1∥(Γβ∗)−S∥1 +
72γmax(Σ)nc

n
∥β̂ − β∗∥22 + 576ρ2(Γ)

γmax(Σ) log p

n
∥Γβ̂ − Γβ∗∥21
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which, by (2.57) and the inequality nc
n ≤

(
√
nc+δ)2

n , implies

(β̂ − β∗)T
(

1

64
Σ + λ2L

)
(β̂ − β∗) ≤

(√
2σ2γmax(Σ)

√
nc + δ√

n
+

λ1
√
|S|

kS

)
∥β̂ − β∗∥2

+ 2λ1∥(Γβ∗)−S∥1 +

(
144γmax(Σ)(

√
nc + δ)2

n
+

36λ21|S|k
−2
S

σ2

)
∥β̂ − β∗∥22

If we now apply the condition (2.52), we obtain

(β̂ − β∗)T
(

1

64
Σ + λ2L

)
(β̂ − β∗) ≤

(√
2σ2γmax(Σ)

√
nc + δ√

n
+

λ1
√
|S|

kS

)
∥β̂ − β∗∥2

+ 2λ1∥(Γβ∗)−S∥1 +
1

2
γmin

(
1

64
Σ + λ2L

)
∥β̂ − β∗∥22

which, by using γmin

(
1
64Σ + λ2L

)
∥β̂ − β∗∥22 ≤ (β̂ − β∗)T

(
1
64Σ + λ2L

)
(β̂ − β∗), implies

both

γmin

(
1

64
Σ + λ2L

)
∥β̂ − β∗∥22 ≤2

(√
2σ2γmax(Σ)

√
nc + δ√

n
+

λ1
√
|S|

kS

)
∥β̂ − β∗∥2

+ 4λ1∥(Γβ∗)−S∥1

(2.58)

and

(β̂ − β∗)T
(

1

64
Σ + λ2L

)
(β̂ − β∗) ≤ 4λ1∥(Γβ∗)−S∥1

+ 2

√
2σ2γmax(Σ)

√
nc+δ√
n

+
λ1
√
|S|

kS√
γmin

(
1
64Σ + λ2L

)
√

(β̂ − β∗)T
(

1

64
Σ + λ2L

)
(β̂ − β∗)

(2.59)

The error bounds follow from (2.58) and (2.59) if we note that x2 − bx − c ≤ 0 implies

x2 ≤ 4max(b2, c) ≤ 4(b2 + c), for b, c > 0.

Theorem 48 (Theorem 46). Let Γ be the incidence matrix of the p-vertex chain graph, and
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fix δ > 0. With an appropriate choice of λ1 and λ2 ≤ λ1
8∥Γβ∗∥∞ , with high probability we have

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

γmin(
1
64Σ + λ2L)

1 + δ2

n
+

(σ2γmax(Σ)∥Γβ∗∥1)2/3

γ
1/3
min

(
1
64Σ + λ2L

) (p log p)1/3

n2/3
(2.60)

∥β̂ − β∗∥22 ≲
σ2γmax(Σ)

γ2min(
1
64Σ + λ2L)

1 + δ2

n
+

(σ2γmax(Σ)∥Γβ∗∥1)2/3

γ
4/3
min

(
1
64Σ + λ2L

) (p log p)1/3

n2/3
(2.61)

provided that the RHS of (2.60) is smaller than Cσ2.

Proof. The proof is identical to that of Theorem 47 up to (2.54). However, we need to bound

2
nϵ

TXΓ†Γ(β̂ − β) differently.

Let Γ = UΞV T be the singular value decomposition of Γ, and let ξ1, . . . , ξp−1 be the

nonzero singular values of Γ. Let u1, . . . , um and v1, . . . , vp denote the columns of U and V .

Denote by V[k] ∈ Rp×k the matrix containing the first k columns of V (k is to be specified

later) and V−[k] ∈ Rp×(p−k) the matrix containing the other p− k columns of V . Define the

projection matrix P[k] := V[k]V
T
[k]
∈ Rp×p.

Noting that Γ†Γ is a projection matrix, we have:

2

n
ϵTXΓ†Γ(β̂ − β)

=
2

n
ϵTXP[k]Γ

†Γ(β̂ − β) +
2

n
ϵTX(Ip − P[k])Γ

†Γ(β̂ − β)

≤ 2

n
∥P[k]X

T ϵ∥2∥Γ†Γ(β̂ − β)∥2 +
2

n
∥(Γ†)T (Ip − P[k])X

T ϵ∥∞∥Γ(β̂ − β)∥1

≤ 2

n
∥P[k]X

T ϵ∥2∥β̂ − β∥2 +
λ1
2
∥Γ(β̂ − β)∥1 (2.62)

if we choose λ1 ≥ 8
n∥(Γ

†)T (Ip − P[k])X
T ϵ∥∞ with high probability.

In order to choose k, we need to bound 8
n∥(Γ

†)T (Ip − P[k])X
T ϵ∥∞. Let s′1, . . . , s

′
m be

the columns of (Ip − P[k])Γ
†. Let ej , j ∈ [m], denote the jth canonical basis element. As in
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the proof of Theorem 6 of Wang et al. [2015], we have:

∥s′j∥
2
2 = ∥(Ip − V[k]V

T
[k])V Ξ†UT ej∥22

= ∥
[
0 V−[k]

]
Ξ†UT ej∥22 =

∥∥∥∥∥∥
p−1∑

i=k+1

ξ−1i ⟨ui, ej⟩vi

∥∥∥∥∥∥
2

2

=

p−1∑
i=k+1

ξ−2i ⟨ui, ej⟩
2 ≤ 2

p

p−1∑
i=k+1

ξ−2i

where we made use of the fact that the left singular vectors {ui}mi=1 of Γ, when Γ is the

incidence matrix of the chain graph with p vertices, satisfy ∀i ∈ [m] : ∥ui∥∞ ≤
√

2
p .

For the chain graph, the nonzero singular values ξi are such that

ξ2i = 4 sin2
(
πi

2p

)
= 2− 2 cos

(
πi

p

)
, for i = 1, . . . , p− 1

Hence, as in Wang et al. [2015],

max
j∈[m]

∥s′j∥
2
2 ≤

2

p

p−1∑
i=k+1

ξ−2i =
1

2p

p−1∑
i=k+1

sin−2
(
πi

2p

)

≤ 1

2p

∫ p

k
sin−2

(
πx

2p

)
dx =

cos
(
πk
2p

)
π sin

(
πk
2p

) ≤ 4p

π2k

where we used sin(x) ≥ x/2 and cos(x) ≤ 1 for x ∈ [0, π/2].

Similar to Lemma 53, we can then select λ1 = 64
π σ
√

p/k

√
γmax(Σ) log p

n . We also have

2
n∥P[k]X

T ϵ∥2 ≤ 4

√
2σ2γmax(Σ)k

n with probability at least 1− e−n/8 − e−k
2/2, as in Lemma

52. The rest of the proof is again identical to that of Theorem 33, and we obtain for any S

that

∥Σ1/2(β̂ − β∗)∥22 ≲
σ2γmax(Σ)

[
1+δ2
n + k

n

]
+ λ21|S|k

−2
S

γmin

(
1
64Σ + λ2L

) + λ1∥(Γβ∗)−S∥1
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with high probability. By setting S = ∅ and choosing k such that

σ2γmax(Σ)k

γmin

(
1
64Σ + λ2L

)
n
≍ λ1∥Γβ∗∥1 ≍ σ

√
pγmax(Σ) log p

kn
∥Γβ∗∥1

we obtain

k ≍

p log p∥Γβ∗∥21γ
2
min

(
1
64Σ + λ2L

)
n

σ2γmax(Σ)

1/3

and with this choice of k

σ2γmax(Σ)k

γmin

(
1
64Σ + λ2L

)
n
≍ (σ2γmax(Σ)∥Γβ∗∥1)2/3

γ
1/3
min

(
1
64Σ + λ2L

) (p log p)1/3

n2/3

We will often use the following lemma to compare probabilities involving two Gaussian

vectors.

Lemma 49 (Anderson’s Gaussian comparison inequality Anderson [1955]). Let X and Y

be two zero-mean Gaussian vectors with covariance ΣX and ΣY respectively. If ΣY −ΣX is

positive semi-definite, then for any convex set C satisfying C = −C,

P(X ∈ C) ≥ P(Y ∈ C)

Lemma 50 (Lemma 34). If X ∈ Rn×p has i.i.d. N(0,Σ) rows and m ≥ 2, n ≥ 10, then

the event

{
∀v ∈ Rp :

∥Xv∥2√
n
≥ 1

4
∥Σ1/2v∥2 − 3

√
γmax(Σ)nc

n
∥v∥2 − 6

√
2ρ(Γ)

√
γmax(Σ) log p

n
∥Γv∥1

}

holds with probability at least 1− c1 exp(−nc2), for some universal constants c1, c2 > 0.

Proof. We follow the proof outline of Raskutti et al. [2010]. First note that we can restrict
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our attention to v ∈ Rp satisfying ∥Σ1/2v∥2 = 1, as the inequality that defines the event

above is invariant to scaling of v. Define

V (r, s) := {v ∈ Rp : ∥Σ1/2v∥2 = 1, ∥Γv∥1 ≤ r, ∥v∥2 ≤ s}

and

M(r, s,X) := sup
v∈V (r,s)

(
1− ∥Xv∥2√

n

)
Bounding the expectation E(M(r, s,X)): By an application of Gordon’s inequality (see Sec-

tion 4.2 of Raskutti et al. [2010] for the details),

E

(
sup

v∈V (r,s)
(−∥Xv∥2)

)
= E

(
sup

v∈V (r,s)
inf

u∈Sn−1
uTXv

)
≤ E

(
sup

v∈V (r,s)
inf

u∈Sn−1
gTu+ hTΣ1/2v

)

= −E∥g∥2 + E

(
sup

v∈V (r,s)
hTΣ1/2v

)

where g ∼ N(0, In) independent of h ∼ N(0, Ip). We know that E∥g∥2 ≥ 3
4

√
n when n ≥ 10,

so we just need to upper bound E
(
supv∈V (r,s) h

TΣ1/2v
)
.

Since Π+ Γ†Γ = Ip,

hTΣ1/2v = hTΣ1/2(Π + Γ†Γ)v ≤ ∥ΠΣ1/2h∥2∥v∥2 + ∥(Γ†)TΣ1/2h∥∞∥Γv∥1

and by definition of V (r, s) we have ∥v∥2 ≤ s and ∥Γv∥1 ≤ r for all v ∈ V (r, s), so we obtain

E

(
sup

v∈V (r,s)
hTΣ1/2v

)
≤ sE∥ΠΣ1/2h∥2 + rE∥(Γ†)TΣ1/2h∥∞

Note that the spectral decomposition of Π = UΛUT , where U is an orthogonal matrix,

is such that Λ is a diagonal matrix with nc ones and p − nc zeros on the diagonal. Since
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γmax(Σ)Π − ΠΣΠ is positive semi-definite, by Lemma 49 we know that ∥
√

γmax(Σ)Πh∥2

stochastically dominates ∥ΠΣ1/2h∥2, and hence

E∥ΠΣ1/2h∥2 ≤
√
γmax(Σ)E∥Πh∥2

=
√

γmax(Σ)E∥UΛUTh∥2

=
√

γmax(Σ)E∥Λh∥2

=
√

γmax(Σ)E
√
h21 + · · ·+ h2nc

≤
√
γmax(Σ)nc

where we have used Jensen’s inequality and the rotational invariance of the standard Gaus-

sian distribution in the above derivations.

By Exercise 2.12 b) of Wainwright [2019], we also have for m ≥ 2:

E∥(Γ†)TΣ1/2h∥∞ = E max
j∈[m]

|⟨sj ,Σ1/2h⟩|

≤ 2
√

γmax(Σ)ρ(Γ)
√

logm ≤ 2
√
2
√
γmax(Σ)ρ(Γ)

√
log p

since {⟨sj ,Σ1/2h⟩ : j = 1, · · · ,m} is a collection of m zero-mean Gaussian variables with

variance at most γmax(Σ)maxj∈[m] ∥sj∥22 = γmax(Σ)ρ(Γ)2 (and in the last inequality we

used m ≤ p2).

We can therefore conclude

E

(
− inf

v∈V (r,s)
∥Xv∥2

)
≤ −3

4

√
n+ s

√
γmax(Σ)nc + 2

√
2r
√
γmax(Σ)ρ(Γ)

√
log p
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Dividing by
√
n and adding 1 on both sides, we obtain

E (M(r, s,X)) ≤ 1

4
+ s

√
γmax(Σ)nc

n
+ 2
√
2r
√
γmax(Σ)ρ(Γ)

√
log p

n

Concentration around the mean for M(r, s,X): As M(r, s,X) is a Lipschitz function of a

Gaussian vector (see Section 4.3 of Raskutti et al. [2010] for details), for all t > 0 we have:

P(|M(r, s,X)− EM(r, s,X)| ≥ t/2) ≤ 2 exp(−nt2/8)

Substituting t = t(r, s) := 1
4 + s

√
γmax(Σ)nc

n + 2
√
2r
√
γmax(Σ)ρ(Γ)

√
log p
n , we obtain

P
(
M(r, s,X) ≥ 3t(r, s)

2

)
≤ 2 exp(−nt(r, s)2/8)

Peeling : This part is adapted from Section 4.4 of Raskutti et al. [2010]. We have shown that

P

 sup
∥v∥2≤s,∥Γv∥1≤r
∥Σ1/2v∥2=1

(
1− ∥Xv∥2√

n

)
≥ 3

8
+

3

2

√
γmax(Σ)nc

n
s+ 3

√
2ρ(Γ)

√
γmax(Σ) log p

n
r


≤ 2 exp

− n

18

(
3

8
+

3

2
s

√
γmax(Σ)nc

n
+ 3
√
2ρ(Γ)r

√
γmax(Σ) log p

n

)2


Let g1(s) := 3
16 + 3

2

√
γmax(Σ)nc

n s and g2(r) := 3
16 + 3

√
2ρ(Γ)

√
γmax(Σ) log p

n r. We can

rewrite the above as

P

 sup
∥v∥2≤s,∥Γv∥1≤r
∥Σ1/2v∥2=1

(
1− ∥Xv∥2√

n

)
≥ g1(s) + g2(r)

 ≤ 2 exp
(
− n

18
[g1(s) + g2(r)]

2
)

Note that g1 ≥ µ and g2 ≥ µ where µ := 3
16 . For i = 1, 2, · · · , and j = 1, 2, · · · , we
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define the sets

Aij := {v ∈ Rp : ∥Σ1/2v∥2 = 1, 2i−1µ ≤ g1(∥v∥2) < 2iµ, 2j−1µ ≤ g2(∥Γv∥1) < 2jµ}

Also, we define the events

Eij :=
{
∃v ∈ Aij : 1−

∥Xv∥2√
n
≥ 2[g1(∥v∥2) + g2(∥Γv∥1)]

}

as well as the event

E :=

{
∃v ∈ Rp : ∥Σ1/2v∥2 = 1 and 1− ∥Xv∥2√

n
≥ 2 [g1(∥v∥2) + g2(∥Γv∥1)]

}

Note that E = ∪∞i=1∪
∞
j=1 Eij . Our goal is to prove that P(E) ≤ c1 exp(−nc2), from which

the lemma follows.

If we have v ∈ Aij such that 1− ∥Xv∥2√
n
≥ 2[g1(∥v∥2)+g2(∥Γv∥1)] holds, then by definition

of Aij ,

1− ∥Xv∥2√
n
≥ 2(2i−1µ+ 2j−1µ) = 2iµ+ 2jµ = g1(g

−1
1 (2iµ)) + g2(g

−1
2 (2jµ))

Again by definition of Aij , g1(∥v∥2) ≤ 2iµ and g2(∥Γv∥1) ≤ 2jµ, and so

∥v∥2 ≤ g−11 (2iµ) and ∥Γv∥1 ≤ g−12 (2jµ)
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Therefore, we must have

P(Eij) ≤ 2 exp
(
− n

18
[g1(g

−1
1 (2iµ)) + g2(g

−1
2 (2jµ))]2

)
= 2 exp

(
− n

18
(2i + 2j)2µ2

)
≤ 2 exp

(
− n

18
22iµ2

)
exp

(
− n

18
22jµ2

)

Hence,

P(E) ≤ 2
∞∑
i=1

∞∑
j=1

exp
(
− n

18
22iµ2

)
exp

(
− n

18
22jµ2

)

= 2

( ∞∑
i=1

exp
(
− n

18
22iµ2

))2

≤ 2

( ∞∑
i=1

exp

(
−ni

18
µ2
))2

= 2

(
exp

(
− n

18µ
2
)

1− exp
(
− n

18µ
2
))2

≤ c1 exp(−nc2)

Corollary 51. Under the settings of Lemma 50,

∥X̃v∥22
n

≥ vT
(

1

64
Σ + λ2L

)
v − 72γmax(Σ)nc

n
∥v∥22 − 576ρ(Γ)2

γmax(Σ) log p

n
∥Γv∥21

holds for all v ∈ Rp with probability at least 1− c1 exp(−nc2)

Proof. We argue in a manner similar to the proof of Theorem 7.16 in Wainwright [2019].

For any real numbers a, b, c such that c ≥ max(a− b, 0), we claim that c2 ≥ (1− δ)2a2 − b2

δ2

for any δ ∈ (0, 1). This is because if b ≥ aδ, then (1− δ)2a2− b2

δ2
≤ a2[(1− δ)2− 1] ≤ 0 ≤ c,

and if b < aδ, then since c ≥ a− b, we have c ≥ a− aδ = (1− δ)a.
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Letting c =
∥Xv∥2√

n
, a = 1

4∥Σ
1/2v∥2, b = 3

√
γmax(Σ)nc

n ∥v∥2+6
√
2ρ(Γ)

√
γmax(Σ) log p

n ∥Γv∥1

and δ = 1
2 , we obtain for all v ∈ Rp with probability at least 1− c1 exp(−nc2):

∥Xv∥22
n

≥ 1

64
∥Σ1/2v∥22 − 36

(√
γmax(Σ)nc

n
∥v∥2 + 2

√
2ρ(Γ)

√
γmax(Σ) log p

n
∥Γv∥1

)2

≥ 1

64
∥Σ1/2v∥22 − 72

γmax(Σ)nc
n

∥v∥22 − 576ρ(Γ)2
γmax(Σ) log p

n
∥Γv∥21

By adding λ2v
TLv to both sides, we obtain what we need to prove.

Lemma 52 (High-probability bound on ∥ΠXT ϵ∥2). For any δ > 0,

∥ΠXT ϵ∥2 ≤
√

2σ2nγmax(Σ)(
√
nc + δ)

with probability at least 1− e−n/8 − e−δ
2/2.

Proof. We make use of the fact that X and ϵ are independent. Note that XΠ has i.i.d.

N(0,ΠΣΠ) rows, which we denote by x̃1, · · · , x̃n. Then

∥ΠXT ϵ∥2 =

∥∥∥∥∥
n∑

i=1

ϵix̃i

∥∥∥∥∥
2

= ∥ϵ∥2

∥∥∥∥∥ 1

∥ϵ∥2

n∑
i=1

ϵix̃i

∥∥∥∥∥
2

which has the same distribution as ∥ϵ∥2∥x̃∥2, where x̃ ∼ N(0,ΠΣΠ) is independent of ϵ.

Since γmax(Σ)Π−ΠΣΠ is positive semi-definite, by Lemma 49, ∥x̃∥2 is stochastically dom-

inated by
√

γmax(Σ)∥Πh∥2 (where h ∼ N(0, Ip)), which in turn has the same distribution

as
√

γmax(Σ)∥h′∥2 where h′ ∼ N(0, Inc).

By an application of a concentration inequality for Lipschitz functions of Gaussian vec-
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tors, we have for any δ > 0 (see Example 2.28 of Wainwright [2019]):

P(∥h′∥2 ≥
√
nc + δ) ≤ e−δ

2/2

and we also have ∥ϵ∥2 ≤ σ
√
2n with probability at least 1 − e−n/8 (see Example 2.11 of

Wainwright [2019]). Combining all the pieces yields the result.

Lemma 53 (Choice of λ1). With probability at least 1− 2
m − e−n/8, we have

∥(Γ†)TXT ϵ∥∞ ≤ 4σρ(Γ)
√

γmax(Σ)n log p

and hence λ1 should be chosen such that λ1 ≥ 32σρ(Γ)

√
γmax(Σ) log p

n

Proof. Recall that the columns of Γ† ∈ Rp×m are denoted as s1, · · · , sm, and let the rows

of X be x1, · · · , xn, which by assumption are i.i.d. N(0,Σ) vectors.

For any t > 0:

P(∥(Γ†)TXT ϵ∥∞ ≥ t)

= P

(
max
j∈[m]

∣∣∣∣〈sj , n∑
i=1

ϵixi

〉∣∣∣∣ ≥ t

)

= P

(
∥ϵ∥2 max

j∈[m]

∣∣∣∣〈sj , 1

∥ϵ∥2

n∑
i=1

ϵixi

〉∣∣∣∣ ≥ t

)

≤ P

(
√
2nσ max

j∈[m]

∣∣∣∣〈sj , 1

∥ϵ∥2

n∑
i=1

ϵixi

〉∣∣∣∣ ≥ t

)
+ P(∥ϵ∥2 > σ

√
2n)

Using the same trick as in Lemma 52, x := 1
∥ϵ∥2

∑n
i=1 ϵixi ∼ N(0,Σ) independent of

ϵ. Also, we note again that P(∥ϵ∥2 > σ
√
2n) ≤ e−n/8. Hence, P(∥(Γ†)TXT ϵ∥∞ ≥ t) is
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bounded above by

P

(
√
2nσ max

j∈[m]
|⟨sj , x⟩| ≥ t

)
+ e−n/8 ≤ P

(√
2nγmax(Σ)σ max

j∈[m]
|⟨sj , g⟩| ≥ t

)
+ e−n/8

where g ∼ N(0, Ip) and we used Lemma 49 in the last inequality. Since {⟨sj , g⟩ : j ∈ [m]} are

Normal variables with variance at most ρ(Γ)2, by applying the union bound, the expression

above can be bounded above by

2 exp

(
− t2

4γmax(Σ)nσ2ρ(Γ)2
+ logm

)
+ e−n/8

If t is chosen such that t2 = 8 log(m)γmax(Σ)nσ2ρ(Γ)2, we can conclude that

∥(Γ†)TXT ϵ∥∞ ≤ 2
√
2σρ(Γ)

√
γmax(Σ)n logm ≤ 4σρ(Γ)

√
γmax(Σ)n log p

with probability at least 1− 2
m − e−n/8, where we used m ≤ p2.

Lemma 54 (Lemma 3 of Hütter and Rigollet [2016]). If Γ is the incidence matrix of a graph

G = (V,E) with maximum degree d and ∅ ≠ S ⊆ E, then

k−2S ≤ 4min(d, |S|)

Lemma 55 (Lower bound in Lemma 38). If Γ is the incidence matrix of the 2D grid, then

ρ(Γ) ≳ 1.

Proof. Let N :=
√
p. In the proof of Proposition 4 of Hütter and Rigollet [2016], it was

shown that Γ† has 2N(N − 1) columns ((s
(1)
i,j )i∈[N−1]

j∈[N ]

, ((s
(2)
i,j )j∈[N−1]

i∈[N ]

), each of which has

column norm such that

∥s(⋄)i,j ∥
2
2 =

N−1∑
k=0

N−1∑
l=1

1

(λk + λl)
2
⟨vl, di⟩2⟨vk, ej⟩2
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where ⋄ ∈ {1, 2}, λk = 2 − 2 cos kπ
N for 0 ≤ k ≤ N − 1 (these are the eigenvalues of

the Laplacian of the one-dimensional chain graph with N vertices), di is the ith column of

DT
1 where D1 is the incidence matrix of the chain graph with N vertices, e1, . . . , en are

the canonical basis vectors of RN , and vk ∈ RN (0 ≤ k ≤ N − 1) are the orthonormal

eigenvectors of the Laplacian of the one-dimensional chain graph with N vertices:

(v0)j =
1√
N

(vk)j =

√
2

N
cos

(
(j + 1/2)kπ

N

)
for 0 ≤ j ≤ N − 1, 1 ≤ k ≤ N − 1

Since ρ(Γ) is defined as the maximum column norm of Γ†, we can bound it below by the

column norm of s(⋄)i,j where i = j = ⋄ = 1. We have:

∥s(1)1,1∥
2
2 =

N−1∑
k=0

N−1∑
l=1

1(
4− 2 cos kπ

N − 2 cos lπ
N

)2 ⟨vl, d1⟩2⟨vk, e1⟩2

Using the inequality 2 − 2 cos(x) ≤ x2, we have 4 − 2 cos kπ
N − 2 cos lπ

N ≤
π2

N2 (k
2 + l2).

Furthermore, note that

⟨vl, d1⟩2 =
2

N

(
cos

(5/2)lπ

N
− cos

(3/2)lπ

N

)2

=
2l2π2

N3
sin2(x′)

for some x′ ∈
[
(3/2)lπ

N ,
(5/2)lπ

N

]
, by the mean value theorem. Given the inequality sin(x) ≥

x/2 for x ∈ [0, π/2], we can conclude that sin2(x′) ≥ (x′)2/4 ≥ 9
16

l2π2

N2 if we assume l ≤ N
5 ,

and so

⟨vl, d1⟩2 ≥
9π4

8

l4

N5
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if l ≤ N/5. Moreover, ⟨vk, e1⟩2 = 1
N if k = 0, and if we assume k ≤ 2

3πN , then 1− 9
8
k2π2

N2 ≥ 1
2

and an application of 1− cos(x) ≤ x2

2 gives

⟨vk, e1⟩2 =
2

N

[
cos

(
3kπ

2N

)]2
=

2

N

[
1−

(
1− cos

3kπ

2N

)]2
≥ 2

N

[
1− 9k2π2

8N2

]2
≥ 1

2N

Hence, if k ≤ 2
3πN , we have ⟨vk, e1⟩2 ≥ 1

2N . Let c = min
(

2
3π ,

1
5

)
= 1

5 . Now,

∥s(1)1,1∥
2
2 ≥

⌊cN⌋∑
k=0

⌊cN⌋∑
l=1

1(
4− 2 cos kπ

N − 2 cos lπ
N

)2 ⟨vl, d1⟩2⟨vk, e1⟩2

≥
⌊cN⌋∑
k=0

⌊cN⌋∑
l=1

(
N4

π4(k2 + l2)2

)(
9π4

8

l4

N5

)(
1

2N

)

=
9

16N2

⌊cN⌋∑
l=1

⌊cN⌋∑
k=0

l4

(k2 + l2)2

Since 1
(k2+l2)2

is a decreasing function of k,

∥s(1)1,1∥
2
2 ≥

9

16N2

⌊cN⌋∑
l=1

l4
∫ cN

0

1

(x2 + l2)2
dx

=
9

16N2

⌊cN⌋∑
l=1

l4
(l2 + c2N2) arctan(cN/l) + cNl

2l3(l2 + c2N2)

=
9

32N2

⌊cN⌋∑
l=1

l
(l2 + c2N2) arctan(cN/l) + cNl

l2 + c2N2

≥ 9

32N2

⌊cN⌋∑
l=1

l arctan(c)

=
9 arctan(c)

32N2

⌊cN⌋(⌊cN⌋+ 1)

2
≳ 1
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Lemma 56 (Lower bound in Lemma 40). If Γ is the incidence matrix of the r-dimensional

grid for r ≥ 3, then ρ(Γ) ≥ c(r), where c(r) is a constant depending only on r.

Proof. Note that the ≳ sign is used in this proof to omit constant multipliers that may

depend on r. Similarly to the previous lemma, it is sufficient to lower bound

∥s(1)1 ∥
2
2 =

N−1∑
l=1

N−1∑
k1=0

· · ·
N−1∑

kr−1=0

⟨vl, d1⟩2
∏r−1

j=1⟨vkj , e1⟩
2

(λl +
∑r−1

j=1 λkj )
2

where d1, e1 as well as λ0, . . . λN−1 and v0, . . . , vN−1 are defined in relation to the chain

graph with N vertices as in the previous lemma.

By applying the inequality 2− 2 cos(x) ≤ x2, we have

λl +
r−1∑
j=1

λkj

2

≤

2− 2 cos
lπ

N
+

r−1∑
j=1

(
2− 2 cos

kjπ

N

)2

≤ π4

N4

l2 +
r−1∑
j=1

k2j

2

Also, k ≤ 2
3πN implies ⟨vk, e1⟩2 ≥ 1

2N , and l ≤ N/5 implies ⟨vl, d1⟩2 ≥ 9π4

8
l4

N5 . Hence,

if we define c = min( 2
3π ,

1
5) =

1
5 as in the previous lemma,

∥s(1)1 ∥
2
2 ≳

1

Nr

⌊cN⌋∑
l=1

⌊cN⌋∑
k1=0

· · ·
⌊cN⌋∑

kr−1=0

l4

(l2 +
∑r−1

j=1 k
2
j )

2

≥ 1

Nr

⌊cN⌋∑
l=1

∫
0≤xj≤cN,j=1,...,r−1

l4

(l2 + ∥x∥22)2
dx

≥ 1

Nr

⌊cN⌋∑
l=1

∫
∥x∥2≤cN

l4

(l2 + ∥x∥22)2
dx

=
1

Nr

⌊cN⌋∑
l=1

∫ cN

0

∫
Sr−2

l4Rr−2

(l2 +R2)2
dσr−2(u)dR

where we changed to polar coordinates in the last equality; here, Sr−2 is the unit sphere in
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Rr−1, and σr−2 is a measure on Sr−2 such that, if A ⊆ Sr−2 is a Borel set and Ã is the set

of all points ru with 0 < r < 1 and u ∈ A, then σr−2(A) = (r − 1)mr−1(Ã), where mr−1 is

the Lebesgue measure on Rr−1 (see Exercise 6, Chapter 8 of Rudin [1974]). We continue:

∥s(1)1 ∥
2
2 ≳

1

Nr

⌊cN⌋∑
l=1

∫ cN

0

l4Rr−2

(l2 +R2)2
dR

≥ 1

Nr

⌊cN⌋∑
l=1

∫ cN

cN/2

l4Rr−2

(l2 +R2)2
dR

≳
1

N3

⌊cN⌋∑
l=1

∫ cN

cN/2

l4R

(l2 +R2)2
dR

where we used the fact that r ≥ 3. Note that
∫ b
a

R
(l2+R2)2

dR = b2−a2
2(b2+l2)(a2+l2)

and hence

∥s(1)1 ∥
2
2 ≳

1

N3

⌊cN⌋∑
l=1

l4N2

(l2 +N2)2
≥ 1

N

∫ N/10

0

l2

(l2 +N2)2
dl

where we used the fact that l2

(l2+N2)2
is increasing in l. Since

∫ N/10

0

l2

(l2 +N2)2
dl =

151− 1515 arctan(1/10)

1010
N

and 151− 1515 arctan(1/10) > 0, the proof is complete.

2.5.2 The interior point method on the dual objective

For the special case where the design matrix is the identity and λ2 = 0, Kim et al. [2009]

applies the interior point method on the dual objective. Similarly, we can apply interior

point method to solve our more general dual objective

β̂ := arg min
β∈Rp

1

2
∥Ỹ − X̃β∥22 + λ1∥Γβ∥1 (2.63)
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We will specify the update directions, update step size, and measure of suboptimality.

Let 1m denote the vector in Rm with all entries equal to 1. The dual problem only has

inequality constraints f1(u) = u − λ11m ≤ 0 and f2(u) = −u − λ11m ≤ 0. Let µ1, µ2 be

the dual variables corresponding to f1, f2. We apply the standard Newton’s updates on the

perturbed KKT conditions (by parameter t) of this dual problem. That is, the directions of

the updates (∆u,∆µ1,∆µ2) are solutions of the following linear system:

The residuals are:

rt(u, µ1, µ2) =


Γ̌Γ̌Tu− Γ̌Y̌ + µ1 − µ2

−diag(µ1)f1(u)− 1
t1m

−diag(µ2)f2(u)− 1
t1m

 (2.64)

By Newton’s method, we need to solve:

∇rt(u, µ1, µ2)


∆u

∆µ1

∆µ2

 = −rt(u, µ1, µ2) (2.65)

That simplifies to 3 linear equations below, where divisions between vectors are element-

wise:

[
Γ̌Γ̌T − diag(µ1/f1(u))− diag(µ2/f2(u))

]
∆u = −

[
Γ̌Γ̌Tu− Γ̌Y̌ − 1m

tf1(u)
+

1m
tf2(u)

]
(2.66)

∆µ1 = −
[
diag(µ1/f1(u))∆u+ µ1 +

1m
tf1(u)

]
(2.67)

∆µ2 = −
[
−diag(µ2/f2(u))∆u+ µ2 +

1m
tf2(u)

]
(2.68)
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The step size for each update are computed in a standard way as Section 11.7.3 of Boyd et al.

[2004]. We apply standard backtracking line search to find the step size s for the updates.

Choose parameters α, γ ∈ (0, 1) for backtracking. Denote the updates as (u+, µ+1 , µ
+
2 ).

For example, u+ = u + s∆u. To ensure the updates to be feasible, we first make sure that

µ+1 , µ
+
2 ≥ 0. That is, we set smax = min{1,min{−µ1i/∆µ1i|∆µ1i < 0},min{−µ2i/∆µ2i|∆µ2i <

0}}. Next, continuously set s = γs until f1(u+), f2(u+) < 0. Finally, set s = γs until

∥rt(u+, µ+1 , µ
+
2 )∥2 ≤ (1− αs)∥rt(u, µ1, µ2)∥2.

As a standard measure of suboptimality, the surrogate duality gap (see Section 11.7.2 of

Boyd et al. [2004] for details) at the kth iteration is:

η(k) = −f1(u(k))Tµ
(k)
1 − f2(u

(k))Tµ
(k)
2 (2.69)

And the residual at the kth iteration is:

r(k) = rt(u
(k), µ

(k)
1 , µ

(k)
2 ) (2.70)

Our interior point algorithm is presented below.
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Algorithm 2: Interior point method on the dual objective
Input: λ1, λ2,Γ, Y,X, tolerance ϵ

Output: β̂ as defined in (2.63)

1 Initialize u(0) = 0, µ(0)1 , µ
(0)
2 > 0, τ > 1

2 while r(k) > ϵ or η(k) > ϵ do

3 Set t = 2τm/η(k)

4 Compute update direction (∆u,∆µ1,∆µ2) as in (2.66), (2.67), (2.68)

5 Determine step size s by using α, γ backtracking line search

6 Update:

u(k+1) = u(k) + s∆u

µ
(k+1)
1 = µ

(k)
1 + s∆µ1

µ
(k+1)
2 = µ

(k)
2 + s∆µ2

7 Compute β̂ ← X̃†(Y̌ − Γ̌Tu)

8 Return β̂

2.5.3 Additional details on data processing

Chicago Crime Data. As per the main text, statistics on the number of crimes per

community between 2001 and 2022 are available on the city’s data portal. For the purpose

of our analysis, we consider the data between 2004 and 2022, since by preliminary inspection

of the data, the first years of collection seem to have more missing data (see Figure 2.15a).

We define the monthly crime rates as the number of crimes per 100,000 inhabitants. The

latter are computed from the raw crime data by aggregating crime counts over neighborhoods

and dividing by neighborhood population estimates found at the following link. These crime

rates are usually modeled by Poisson distributions (see Osgood [2000]), which we transform

here into a normal distribution through the use of an Anscombe transform. Examples of
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the resulting estimates are displayed on Figure 2.15b. We note that the crime rates vary

substantially over the years and across the communities, and are also subject to significant

seasonal effects.
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(a) Temporal evolution of the Anscombe trans-
formed crime rate (per 100,000) as a function of
time across 6 specific neighborhoods.
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month of the year to highlight seasonal effects.

Figure 2.15: Anscombe transform of the number of crimes per month per 100,000 inhabitants
in a few neighborhoods of Chicago. Note the seasonal effect in the crime rate and the
consistent drop across neighborhoods during the coldest months of the year.

COVID Data. We consider the problem of predicting the number of COVID-19 cases 14

days in advance for a given county in California. As decribed in the main text, this could

be an interesting use case for local public health decisions, such as for instance, trying to

plan 2 weeks in advance appropriate resources at a local clinic. To this end, we used the

New York Times-curated COVID database. The NYT COVID data provides a description

of the total number of cases across all US counties, from January 2020 to October 2022 (time

of writing). For the purpose of our analysis, we focus more specifically on analyzing new

cases in the 25 densest California counties using data from June 1st, 2020 to July 1st, 2021.

This time window was selected to provide more consistency in the epidemics dynamics: by

June 2020, all counties in California had non zero daily incidence data. On the other hand,

restricting the analysis to before July 2021 allows selecting a more cohesive window of time

where the epidemic propagation was not dominated by (other unobserved) covariates, such
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as the advent of new contagious strains of the virus (Delta in Summer 2021, and subsequently

Omicron in Winter 2022). We pre-process the data and make it amenable to data analysis

through the following steps:

1. Conversion of cumulative case counts to incidence data

2. Correction of aberrations and smoothing: we fix data aberrations (e.g. negative in-

cidences, due to small errors in the reporting) by imposing the lower bound on the

number of new cases to be 0. We further transform the incidence data using a seven-

day rolling average so as to get rid of known spurious phenomena (e.g. the “weekend

effect”, by which the number of new cases is lower over the weekend but typically

followed by a spike on the following Monday).

Figure 2.16: R2 for the simple autoregressive model of Equation 2.49 on the seven different
folds (see main text). Note that most models have R2 of over 0.8, thus indicating the validity
of the model.

3. Anscombe transform: We apply a variance stabilizing transform to transform incidence

data (here modeled as a Poisson process, as per Agosto and Giudici [2020], Bu et al.

[2021], Cori et al. [2013], Toharudin et al. [2020]): x̃← 2
√

x+ 3
8 .
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