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an experienced racial-ethnic 
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Haotian Zong4

Despite the importance of measuring racial-ethnic segregation and diversity in the United States, 
current measurements are largely based on the Census and, thus, only reflect segregation and diversity 
as understood through residential location. this leaves out the social contexts experienced throughout 
the course of the day during work, leisure, errands, and other activities. the National Experienced 
Racial-ethnic Diversity (NERD) dataset provides estimates of diversity for the entire United States at the 
census tract level based on the range of place and times when people have the opportunity to come into 
contact with one another. Using anonymized and opted-in mobile phone location data to determine co-
locations of people and their demographic backgrounds, these measurements of diversity in potential 
social interactions are estimated at 38.2 m × 19.1 m scale and 15-minute timeframe for a representative 
year and aggregated to the Census tract level for purposes of data privacy. as well, we detail some of 
the characteristics and limitations of the data for potential use in national, comparative studies.

Background & Summary
Developing an empirical measure of socio-spatial dynamics and their uneven patterns is crucial for under-
standing how urban development policies and the built environment shapes social life. Research has shown 
that people’s daily activity patterns, access to places, and social interactions are shaped by current and histor-
ical urban development practices1–3, social networks4–7, residential neighborhoods8–10, employment opportu-
nities11–14, educational context15, and other amenities associated with everyday activities16,17. Housing policies 
such as redlining and zoning, which entrenched racial and socioeconomic segregation2,3,18–25 through concen-
trating poor, minority residents in certain parts of the city, results in unequal school funding and school dis-
tricting13,15,26, environmental decisions that site industrial facilities and polluting infrastructures in poor and 
minority neighborhoods27,28, amongst other impacts, all which contribute to lack of socio-spatial diversity. 
Despite this plethora of potential negative impacts, until recently, social science researchers have not been able 
to consistently measure these dynamics in both a fine-grain resolution and at scale.

The National Experienced Racial-ethnic Diversity (NERD) dataset29 uses 24-hour location data for over 
66 million anonymized, de-identified, and opted-in devices, compliant with the General Data Protection 
Regulation and the California Consumer Privacy Act, in the Spectus Clean Room platform through their Data 
for Good program (https://spectus.ai/social-impact/). Given its de-identified nature, this data has been exempted 
from the need to obtain Institutional Review Board approvals by our main author’s institution. We estimate 
15 minute time overlaps of smart device stays in 38.2 m × 19.1 m grids across the United States in 2022. For each 
device, we infer probabilities of racial and ethnic backgrounds given their home Census block groups at the time 
of data collection, and calculate the probability of diverse social contact potential during that space and time. 
These measures are then aggregated to time periods of a day at the local time: “late night” (between midnight 
and 5:59am), “morning” (between 6:00am and 11:59am, “afternoon” (between 12:00 pm and 4:59 pm), “evening” 
(between 5:00 pm and 9:59 pm), and “late evening” (between 10:00 pm and 11:59 pm) as well as whether they 
occur on a weekday or weekend, and then to the Census tract in order to preserve privacy and develop a gener-
alizable measure of the actual racial-ethnic diversity of a place. Figure 1 below illustrates this process.
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Currently, data from the United States Census Bureau serves as the main administrative data source for 
reliable demographic estimates. Surveys from the Census Bureau such as the decennial census or the American 
Community Survey (ACS) represents residential locations updated, at best, yearly using the five-year averages 
from the ACS. While this data provides a crucial understanding of social mix and spatial stratification, it is not 
sufficiently representative of the dynamic demographic changes that might occur throughout the day as people 
move through a neighborhood. Moreover, its spatial proximity is only reliable at the level of the census block 
group and does not provide a sense of the social context experienced by people, which is determined by where 
they are in time and with whom they may cross paths. Researchers have recently begun to take advantage of 
increasing availability of fine-grained human mobility data to better characterize social segregation and diversity 
and the potential for social contact.

New human mobility data to understand social segregation and diversity and potential contact has been used 
in previous literature to demonstrate that experienced social context is more diverse29,30 and heterogeneous31 
than previously understood through traditional means. The COVID-19 pandemic also catalyzed research on 
social contact32–40, which resulted in publicly available derivative datasets such as those describing human flows 
during the pandemic33. These studies typically look at a handful of the most populous cities or states; there has 
not been a study or public use dataset covering the entire United States to understand the diversity of social 
contexts.

We propose that the NERD dataset is a more accurate measurement of diversity than Census-based data 
sources as it is experienced, which we show diverges from standard measurements of diversity. We also propose 
a measure of diversity that only measures a hyper-locally experienced social context, unlike more traditional 
measurements of segregation, such as the dissimilarity index, which takes into account an areal unit’s residen-
tial racial proportions in relation to larger geographies, such as a that of a tract to a metropolitan region. This 
data can be used by researchers to develop a more accurate understanding of the determinants of experienced 
diversity; beyond research, we suggest this data can be used by policy makers to compare across geographies to 
understand the longer-term impacts of policies designed to encourage social mixing and access to neighborhood 
opportunities.

Methods
This study uses anonymized, de-identified, and opted-in location records derived from mobile phone appli-
cations (MPA) from users that have opted-in to share data with a range of applications in categories such as 
games, sports, weather, and navigation, for the entire United States. The data used in this study is high-resolution 
location data from a collection of MPA provided through the Spectus Data Clean Room41. Our data comes from 
the weeks of March 7–20, June 6–19, September 12–25, and December 12–25, 2022. For the entire U.S. during 
this period, there are almost 66 million people, with stays having an average accuracy of 21 meters. MPA data 
has been widely applied to studies in human mobility32,33,40,42,43 transportation44, public health45, and urban 

Fig. 1 Process of deriving the NERD dataset from original smart device pings. This figure describes the steps 
involved in deriving the final data product. This includes the following: (1) Cluster the pings to find stays, 
(2) Find stays that are within 15 minutes of each other, (3) Find stays that are also within the same geohash-8 
of each other, (4) Group the stays that overlap both in their 15 minute intervals and geohashes, (5) Calculate 
weekday/weekend and time intervals, (6) For each group of spatio-temporally overlapped stay and time interval, 
calculate the diversity measure at the geohash-level, (7) Overlay Census traccts, (8) Aggregate geohash-level 
measures to the Census tracts.

https://doi.org/10.1038/s41597-024-03490-y


3Scientific Data |          (2024) 11:638  | https://doi.org/10.1038/s41597-024-03490-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

segregation46. There are two intrinsic biases in the data: application usage frequency and smartphone ownership 
rates. The first bias is resolved by excluding unusual usage patterns. The second is more complex: According to 
a Pew Research Center study in 2021, while smartphone ownership is above 95% for adults in the 18–29 and 
30–49 age ranges, ownership drops to 83% for adults between 50 and 64, and to 61% for adults 65 years or older. 
Those who have a high school education or less and those who make less than $30,000 a year also have a lower 
than average smartphone ownership rate of 75% and 76%, respectively. Though some argue that smartphone 
ownership does not significantly skew mobility estimates47, this study corrects population estimates by reweight-
ing estimates using official datasets as reference. This and other sources of possible bias and validation checks are 
described in more detail in the “Technical Validation” section.

In addition to the main data source, we use three U.S. Census Bureau data products to evaluate the demo-
graphic profiles of devices based on their home Census tracts and block groups. The first is ACS data for 
2017–2021, extracted from the National Historical GIS database48. Second, Metro- and Micro-politan statis-
tical areas were extracted from the Census Bureau’s Delineation Files49 (https://www.census.gov/geographies/
reference-files/time-series/demo/metro-micro/delineation-files.html). This dataset is used at the Census tract 
level to validate the residential population as sampled by the ACS in comparison to the residential population 
as estimated by our MPA data. The last Census Bureau dataset we use is the Longitudinal Employer-Household 
Dynamics (LEHD) Origin-Destination Employment Statistics (LODES) data at the block group level50. The 
LEHD program collects administrative data on employment and LODES is a data product that is annually 
created to provide residential and employment statistics for U.S. workers at the census block group level. It 
uses state-provided unemployment insurance and job earnings records to derive employment and residential 
locations.

Stays and home areas. The main baseline dataset in this study are stays, areas that devices spend a sig-
nificant amount of time in away from their home, derived from the underlying location pings from the MPA 
data using a propriety version of the Sequence Oriented Clustering algorithm51 (SOC). SOC is based on the 
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm52 and the Ordering Points 
To Identify Clustering Structure (OPTICS) algorithm53 to identify over 43 million stays. The SOC algorithm is 
specific to GPS trajectories: It clusters pings of varying densities in space and time by their latitude, longitude, and 
timestamp, and also accounts for noise in the trajectories.

The SOC algorithm consists of the following steps: (1) For all chronologically ordered pings in a particular 
area, compute the geographical distance and time difference between the first and last points in a sequence Si. (2) 
Extract spatial-temporal clusters Si such that ≤ ∀ ∈ >+ ε εdist p p p S dist p p( , ) , , ( , )ia ia i i i j1
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considered false positives.
In order to identify home areas, Cuebiq uses stays to compute a probability-based score for each possible 

home location based on (1) the number of days spent at a given location in the last month, (2) the daily average 
number of hours spent at that location, and (3) whether the time of the day spent at the location is daytime or 
nighttime. Each possible home area is where individuals have stayed more than two days in the past month. 
More days, higher average number of hours spent in an area, and spending time there during nighttime increases 
the score. As home areas have the possibility of changing, these calculations are created daily to account for those 
possible moves, whether permanent or temporary. To ensure privacy, the home areas are up-leveled to the home 
census block group for research purposes. Not all devices have identifiable home block groups. As such, we 
remove those data not associated with a home block group. A random sample of Cook County on August 1, 2022 
shows around 66 percent of the total data used has a home block group. For the purposes of enhanced privacy, 
all calculations for the final NERD data are done at the census tract level on tracts that have more than unique 
20 devices over the period of analysis. The 613 tracts for the 50 U.S. States and Washington, D.C. that have fewer 
than that number of unique devices are removed from the dataset.

Stay durations as calculated as the time difference between the latest and first ping in a stay cluster and given 
a geohash location. Geohash is a hierarchical system of indexing space: The earth is subdivided into grids, with 
each grid nesting further subdivided grids. A letter or number identifier indexes the position of that grid in each 
“layer”. Figure 2 below shows stylized grid identifiers for geohash-1 and geohash-2.

Stays are aggregated to the geohash-8 level, which represents a 38.2 m × 19.1 m spatial resolution, our base-
line unit of analysis. Figure 3 provides a sense of scale at this spatial resolution. As the geohash algorithm is a 
way to geocode latitude and longitude and represent location as a hierarchical unique identifier in the world, it 
can be faster method of conducting a spatial join or clustering multiple stays than previous methods often used 
with mobile phone location data such as the DBSCAN algorithm29,54. Moreover, it allows us to identify possible 
organic space-time intersections not associated with known points of interest.
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Because these data are derived from mobile devices that are typically, but not exclusively, carried on individ-
uals, we also consider the possibility that there are devices in the data that do not represent human activity. For 
instance, these could be mobile devices such as tablets that may have a fixed location, but nevertheless produce 
pings. As such, we take two steps to remove these data: (1) We remove data where the duration of stays that are 
longer than 12 hours. (2) We remove data in which there are more than 20 stays at the exact latitude and longi-
tude for a given day as another filter to detect immobile devices likely not associated with an individual. Figure 4 
shows the distribution of the duration and number of stays across the country for 2022 after this filtering step. 
Activities, as described by the number of stays at each hour, increases during the day, with the most activity 
around 4 pm, while stay durations are their highest after 5 pm.

Fig. 2 Geohash system of spatial indexes. This figure illustrates what the geohash hierarchical spatial index 
is. The world is first divided into a grid, with the first level containing one character in the hash, and each 
subsequent grid cell is further sub-divided, with each subdivided grid containing the original character of the 
parent hash and another character.

Fig. 3 Example of geohash-8 scale from San Francisco, CA (Map data: Imagery Copyright 2024 Airbus, 
CNES/Airbus, Landsat/Copernicus, Maxar Technologies) d. This image shows the size of geohash-8, which is 
approximately the size of street-corner in San Franciso, CA.
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Census tract crosswalk and population weighting. The home block groups provided by Cuebiq are in 
2010 administrative boundaries. Given that the 2017–2021 American Community Survey (ACS) most closely 
represents the 2022 population, we use Relationship Files provided by the U.S. Census Bureau (https://www.
census.gov/geographies/reference-files/time-series/geo/relationship-files.html) to crosswalk the 2017–2021 ACS 
data, which uses 2020 boundaries, to 2010 boundaries. Using the Relationship Files, which provides separate 
“parts” of all 2020 block groups, their corresponding 2010 block groups, and the area of the 2010 block group it 
represents. Each block group “part” is given a weight where =wp

area

area
p

p

,2020

,2010
, for each “part” p. Then areap,2020 is the 

area that this part takes up in a 2020 Census block group and areap,2010 is the area that this part takes up in a 2010 
Census block group. Because these are pieces of a block group, we calculate the weighted average of the 2017–
2021 ACS data to 2010 boundaries based on these “parts”, such that each census block group’s values are 
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boundary. We aggregate these values to the tract-level to enhance the privacy of these measures. To correct for 
over- or under-representation of each tract’s population, we weight each tract’s Census characteristics such that 
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imputation of race and ethnicity membership. In order to impute demographic characteristics, we use 
the home tract for each device calculated for a particular day - as home locations may change throughout the year 
- to associate a probabilistic demographic profile for each individual based on ACS data. We use the following 
categories for race and ethnicity: Non-Hispanic White, non-Hispanic Black, non-Hispanic Asian, Hispanic, and 
non-Hispanic Other. For instance, if the tract’s population is 50% non-Hispanic White, 20% non-Hispanic Black, 
10% Asian, 10% Hispanic, and 10% Other, these percentages represent the probability that the individual living 
in this tract belongs to each of these groups.

Experienced diversity. At its core, our measure of experienced diversity is the probability that randomly 
selecting two people from an area during a certain time period will result in two individuals of different race 
and ethnicity memberships. We use geohash-8, which has a 38.2 m × 19 m spatial resolution as our spatial unit 
of analysis and use 15 minute time windows as the temporal unit of analysis. Dit measures the diversity in a time 
period and geohash.
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periods we find ∑ Dt jit across the number of timer periods of interest. When a stay has a long enough duration 
such that it overlaps with t, t + 1, … they will appear in multiple Djit. Thus, this measure thus also represents a 
time-weighted diversity measure, in which longer overlaps between stays will result in their inclusion into more 
time intervals.

Fig. 4 Average Stay durations (a) and Number of Stays (b) across the United States in 2022 for the months of 
March, June, September, and December. This figure shows two charts: The top chart (a), shows the average 
durations of the stays across days of the week and hours of the day for March (darker blue), June (light blue), 
September (pink), December (red). The bottom charts the average number of stays across the same time weekly 
period for the same months, with the same colors representing each month.
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aggregation to the census tract and time periods. In order to aggregate geohash-level measurements 
to the tract level (see Fig. 1), we create a weighted sum of the geohash measures by calculating how many stops 
are contained within each geohash-8 i and tract l. We create weights wi to cross walk the geohash-level diversity 
measures Djit to a tract-level diversity measure Djlt, defined by the number of stays contained in each geohash-8 
and tract per day. This is in order to take into consideration that activity is heterogeneously distributed across a 
Census tract and, as such, certain areas of the tract might naturally experience more activity than others. Given 
that we are creating weights based on individual stay locations, the same geohash-8 could have different weights 
for different tracts when they overlap multiple tracts. However, geohash-8 is smaller than the smallest Census 
tract and, thus, we do not expect high proportions of membership in more than one tract.

The tract-level measures are then =
∑Djlt

w D

I
i i jit

l
 for each period for all Il geohashes in tract l. To calculate the 

final aggregate measures for each racial-ethnic group we allow Djl
D

T
t jlt=

∑  where T is the total number of 
15-minute intervals in each period of the day and in each day of the week, including those intervals that have no 
stays. Djl’s are averaged across weekdays and weekends for each period of the day. And finally, the tract-level 
diversity for each period of the day and weekday/weekend are summed across different racial-ethnic groups to 
get = ∑D Dl j jl. Additionally, we only present measures for tracts for which there are more than 20 unique 
devices in the aggregate.

Data processing. The above method is coded in Python in a Jupyter notebook on the Spectus Clean Room 
platform. We created an extract, transform, load (ETL) pipeline to process the data and create the NERD dataset. 
Because the data is indexed by the date on which it was processed our pipeline iterates over days. Within each day, 
we process the 1,000 most populous counties individually, given the size of the original stay data, and the other 
2,142 counties in groups of 15. The populous and smaller counties are run in parallel. An incrementor indexes the 
counties and dates to be processed. Each run of a populous county or a group of 15 counties took approximately 
2–20 minutes to complete the entire data processing on the 4 nodes with 8 CPUs and 64 GB RAM per node.

Data Records
The NERD data product is a U.S. Census tract level dataset of experienced diversity for representative weeks 
from 2022 using 2010 tract boundaries and 2021 5-Year ACS. Along with these measures, we include accom-
panying Census demographic and socioeconomic data and residential diversity measures from the 2021 5-year 
ACS that have been cross-walked to 2010 Census boundaries in order to facilitate the census comparison pro-
cess. Experienced diversity is presented in its total (“total_diversity_exp”) and composite metrics (“white_diver-
sity_exp”, “black_diversity_exp”, “asian_diversity_exp”, “hispanic_diversity_exp”, “other_diversity_exp”). The 
accompanying Census data are made available for two reasons: The first is to allow users to easily compare the 
experienced diversity data to standard calculations such as residential diversity and Census characteristics. The 
second is that the Cuebiq mobility data is only available at the 2010 Census block group level; therefore, we 
provide the cross-walked Census data for 2021 5-year ACS with 2010 boundaries. The Census data is from the 
IPUMS National Historical Geographic Information System database48. A copy of the data can be downloaded 
from the Open Science Framework55. The data is separated by state for ease of download in the format diver-
sity_intervals_[STATE ABBREVIATION].geojson. Each file is in the GeoJSON geospatial data format. A CSV for 
each file also been added in the format diversity_intervals_[STATE ABBREVIATION].csv. These files exclude the 
geometries for reduce the size of the file. Below is the data dictionary:

•	 STATEFP10: 2010 Census state FIPS code
•	 COUNTYFP10: 2010 Census county FIPS code
•	 TRACTCE10: 2010 Census tract FIPS code
•	 GEOID10: Census tract identifier; a concatenation of 2010 Census state FIPS code, county FIPS code, and 

census tract code
•	 NAME: Full name of the Core Based Statistical Area
•	 total_pop: Total Population in 2020
•	 white_perc: Percentage Non-Hispanic White Alone in 2020
•	 black_perc: Percentage Non-Hispanic Black Alone in 2020
•	 indigenous_perc: Percentage Non-Hispanic American Indian and Alaska Native alone in 2020
•	 asian_perc: Percentage Non-Hispanic Asian alone in 2020
•	 pac_isl_perc: Percentage Non-Hispanic Native Hawaiian and Other Pacific Islander Alone in 2020
•	 other_perc: Percentage Non-Hispanic Some Other Race Alone in 2020
•	 two_more_perc: Percentage Non-Hispanic Two or More Races in 2020
•	 hispanic_perc: Percentage Hispanic in 2020
•	 total_scho: Population 25 years and over in 2020
•	 ba_perc: Percentage Bachelor’s Degree in 2020
•	 ma_perc: Percentage Master’s Degree in 2020
•	 prof_perc: Percentage Professional School Degree in 2020
•	 phd_perc: Percentage Doctorate Degree in 2020
•	 ba_higher_perc: Percentage Bachelor’s Degree or Higher in 2020
•	 median_inc: Median household income in the past 12 months (in 2021 inflation-adjusted dollars)
•	 white_diversity_exp: White Experienced Diversity in 2022
•	 black_diversity_exp: Black Experienced Diversity in 2022
•	 asian_diversity_exp: Asian Experienced Diversity in 2022
•	 hispanic_diversity_exp: Hispanic Experienced Exposure in 2022

https://doi.org/10.1038/s41597-024-03490-y
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•	 other_diversity_exp: Some Other Race Alone Experienced Diversity in 2022
•	 total_diversity_exp: Total Experienced Diversity in 2022
•	 total_diversity_resi: Residential Diversity Based on 2020 Census
•	 diff: Difference in Percentage between Total Experienced Diversity and Residential Diversity
•	 interval: The time period of the day: “late night” (between midnight and 5:59am), “morning” (between 

6:00am and 11:59am, “afternoon” (between 12:00 pm and 4:59 pm), “evening” (between 5:00 pm and 9:59 pm), 
and “late evening” (between 10:00 pm and 11:59 pm)

•	 weekday: “weekday”’ for Mondays through Fridays, “weekend” for Saturdays through Sundays

technical Validation
Because the underlying cell phone data is unintentionally collected, we assume that it has different sources 
of bias and uncertainty, including bias in representation of the United States population and uncertainty in 
the temporal and geographic variation of this representation. In order to validate the NERD dataset for public 
use, we look at several bias, sensitivity, and heterogeneity checks of the underlying data. Additionally, we com-
pare it to the Census population to check night-time populations and the patterns of work-related stays to the 
Longitudinal Employer-Household Dynamics in 2019 and 2020 to test the populations during the day.

Comparison to census demographics. We find the Pearson correlation between the original, before 
de-biasing, MPA sample population density in 2022 and the Census population density is 81.8% while the 
Spearman correlation coefficient is 93.4% for the whole country, which is similar or higher to previous studies56–58.  
Analyses for years prior to 2022 show similar results.

Sensitivity analysis of geohash and time bucket. We perform resolution and time bucket sensitiv-
ity analyzes to optimize our spatial unit of analysis. Figure 5a uses a sample of stays from Cook County, IL in 
August 1, 2022 and shows that larger geohashes result in higher mean diversity scores, as these are larger units 
that would capture more stays within each unit. For instance, at geohash 4, the diversity in Cook County ranges 
from 0.6562–0.6563 for time periods between 5–30 minutes while for geohash 8 the diversity is around 0.44955–
0.4525. Diversity also increases with larger time buckets, which would also capture more stays within that time 
unit, with a range between 0.45–0.4575 between 5 and 120 minute buckets.

However, the behavior of geohash-9 and beyond do not follow the patterns of larger resolution geohash 
units as geohash-9 is 4.8 m × 4.8 m. Figure 5b below shows that at geohash-9, longer time buckets do not exhibit 
a clear upward pattern in diversity. One possibility here is that since geohash-9 is smaller than the median 
accuracy of the stay data, a stay’s true location occurs in a random selection of geohash units around the actual 
location of the stay. Our choice of geohash-8 is premised on these studies that suggest it is the smallest possible 
unit of analysis.

Geographic variation. Another concern with a dataset with a national scope is the possible heterogeneity 
of representativeness, given that smart device usage could have an urban bias. We associate each tract with its 
Metropolitan or Micropolitan membership, or lack thereof. Looking at the across-Core Based Statistical Area 
(CBSA) correlation between the Census and the original MPA data population, before we correct for biases, 
we can see that the relationship is linear on a log-log scale, with a Pearson correlation of 0.957, regardless of the 
CBSA type, as shown by Fig. 6a. Moreover, when we do a within-CBSA comparison of the population to MPA 
data population for different types of CBSAs at the tract level(see Fig. 6), the most frequent correlation in each 
group is higher for Micropolitan and smaller areas (see Fig. 6b): it is 0.65 for ‘Not Metro or Micro’ areas, 0.63 

Fig. 5 Geohash spatial resolution tests. This figure shows: For chart (a), diversity levels going up as diversity is 
calculated on using larger time buckets, from 5 min to 30 minute for geohash 5–8, while we see diversity going 
down in larger time bins for geohash 9; for chart (b), a comparison with diversity increasing for time buckets 
from 5–120 minutes in geohash 9, while geohash 9 is largely decreasing or flat during the same time period.
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for Micropolitan areas, and 0.6 for Metropolitan areas. There is more variability in the CBSA correlations with 
smaller populations, but overall, these results show that, compared to the Census population, the MPA data is also 
surprisingly consistent geographically in terms of its night-time population representation.

Comparison to employer-household dynamics. Work-home pairs reflect the dynamics of commuting 
behaviors. Similar to home block group areas, the MPA data also identifies the work block group areas based on 
cell phone users’ trajectories, using a similar method of home area identification, but looking at the most com-
mon and frequent locations during the day. Cell phone users with both home and work block groups identified 
by the SOC algorithm are compared here with the work-home pairs from the Longitudinal Employer-Household 
Dynamics Origin-Destination Employment Statistics (LODES).

Given the impact of COVID-19 on human commuting behaviors, we focus on comparing the MPA data 
and LODES work-home pairs in 2019 (before pandemic) and 2020 (during pandemic), as another layer of tem-
poral validation. We retrieve the daily average workers on weekdays of the second full week in March, June, 
September, and December for 2019 and 2020. Figure 7 below compares the home, work, and origin-destination 
pairs between the cell phone and LODES datasets in 2019 and 2020 by state. Correlations are over 0.8 when 
we compare either home locations or work locations regardless of year, while the correlations drop to 0.35 if 
we compare workers with both work and home locations matched, as both the LODES and MPA origin and 

Fig. 6 Scatterplot of CBSA (a) and distribution of tract-level correlation (b) for Log Population vs. Log MPA 
Counts per CBSA (Note: As Kernel Density Estimation (KDE) approximates density, it extends beyond 1, while 
rug shows density of correlation ranges from [−1, 1]). This figure shows: In chart (a), a scatterplot of CBSA-
level natural-log population count on the x-axis and the natural-log of the original cell phone stay counts on 
the y-axis. The charts shows a broadly linear relationship. The colors of each point in the scatterplot are blue for 
CBSAs labeled Metropolitan, green for CBSAs labeled Micropolitan, and orange for CBSAs that are too small 
for either label. In chart (b), there are three kernel-density estimates (KDE) of the distribution of within-CBSA 
travel-level correlations between the natural-log population count and the natural-log of the original cell phone 
stay counts, with each KDE colored using the same color scheme as chart (a).

Fig. 7 Pearson correlation between LODES and cell phone data at the block group level by state. This figure 
shows the Pearson correlation at the block group-level between the cell phone data population counts and the 
LEHD Origin-Destination Employment Statistics for work, home, and the work-home origin-destination pair 
by state. Comparisons in 2019 are shown in blue and those for 2020 are down in orange.
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destination matrices are fairly sparse. Here, the OD pair refers to what both LODES and the MPA data have 
estimated to be the “work” and “home” block groups of a device. During the pandemic, the correlations at either 
home or work locations are slightly lower than before. The correlation decrease is likely due to the fact that many 
workers can either move to other dwellings or work from home, but LODES keeps using the registered homes 
and offices from state and federal records.

Usage Notes
In this section, we provide a description of the data product and address some of the limitations of the current 
version of this data.

Figure 8 shows a comparison between the NERD and residential diversity measures for a representative 
weekday afternoon. In Fig. 8a, we plot each tract-level residential diversity for the entire country against the 
NERD measure. The Supplementary Information shows these plots for all time periods.

Figure 9 shows provides a choropleth map of experienced diversity. Note that tracts missing diversity meas-
ures in this dataset are due to lack of large enough sample size of 20 unique individuals within the space and time 
bounds) in the data.

Table 1 shows the mean, standard deviation, minimum, maximum, and percentile breakdowns of each meas-
ure by their time and weekday/weekend intervals. It should be noted that all individual race and ethnicity diver-
sity measures have a theoretical range of 0–0.25 while total diversity measures have a theoretical range of 0–0.8.

Fig. 8 Residential and Experienced diversity scatterplot (a) and distribution (b) for weekday afternoons. This 
figure shows: In chart (a), a scatterplot between the residential and experienced diversity measures for weekday 
afternoons, with a red line showing the one-to-one ratio, and in chart (b), the distribution of the experienced 
diversity in turquoise and the residential diversity in pink, with median lines colored in the same way.

Fig. 9 Total Experienced Racial and Ethnic Diversity for Weekday Afternoons. This map shows a choropleth of 
the experienced diversity for weekday afternoons across the US at the Census tract level. The bins are 0–0.071, 
0.071–0.19, 0.19–0.282, 0.282–0.369, 0.369–0.449, 0.449–0.524, 0.524–0.603, 0.603–0.8.
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Figure 10 shows the experienced diversity measure decomposed by race and ethnicity breakdown for White, 
Asian, Hispanic, Black, and Other Single Race, as well as the difference between the total experienced versus 
residential diversity.

Weekend Weekend Weekend Weekend Weekend Weekend Weekend Weekend Weekend Weekend

12 am – 5:59 
am

6 am – 11:59 
am

12 pm – 
4:59 pm

5 pm – 
9:59 pm

10 pm - 
11:59 pm

12 am – 5:59 
am

6 am – 11:59 
am

12 pm – 
4:59 pm

5 pm - 
9:59 pm

10 pm 
-11:59 pm

Count 72444 72444 72444 72444 72444 72402 72402 72402 72402 72799

Total Div. 
Exp

mean 0.049 0.236 0.278 0.214 0.082 0.068 0.208 0.288 0.240 0.092

std 0.041 0.098 0.111 0.098 0.056 0.053 0.089 0.112 0.103 0.064

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25% 0.022 0.160 0.193 0.137 0.040 0.029 0.139 0.202 0.160 0.043

50% 0.040 0.239 0.283 0.209 0.069 0.055 0.207 0.293 0.240 0.079

75% 0.065 0.310 0.361 0.285 0.110 0.092 0.273 0.372 0.318 0.126

max 0.589 0.563 0.603 0.577 0.492 0.579 0.650 0.621 0.585 0.519

White Div. 
Exp

mean 0.018 0.091 0.107 0.081 0.030 0.024 0.080 0.111 0.091 0.033

std 0.012 0.034 0.039 0.033 0.018 0.016 0.032 0.039 0.035 0.021

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25% 0.009 0.064 0.077 0.055 0.016 0.012 0.055 0.081 0.064 0.018

50% 0.015 0.093 0.111 0.081 0.026 0.021 0.081 0.115 0.093 0.030

75% 0.023 0.117 0.137 0.106 0.040 0.033 0.104 0.141 0.118 0.045

max 0.172 0.191 0.214 0.201 0.144 0.176 0.250 0.213 0.209 0.149

Black Div. 
Exp.

mean 0.009 0.041 0.048 0.038 0.015 0.013 0.036 0.050 0.043 0.017

std 0.009 0.032 0.037 0.031 0.015 0.014 0.028 0.038 0.034 0.018

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25% 0.002 0.014 0.017 0.013 0.004 0.003 0.013 0.019 0.015 0.004

50% 0.005 0.032 0.038 0.028 0.009 0.007 0.027 0.039 0.032 0.010

75% 0.013 0.061 0.073 0.056 0.020 0.017 0.053 0.075 0.064 0.023

max 0.096 0.165 0.187 0.165 0.137 0.172 0.159 0.205 0.179 0.152

Asian Div. 
Exp

mean 0.005 0.024 0.028 0.022 0.009 0.007 0.022 0.030 0.025 0.010

std 0.010 0.026 0.030 0.026 0.014 0.013 0.024 0.031 0.028 0.016

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25% 0.001 0.007 0.008 0.006 0.002 0.001 0.006 0.009 0.007 0.002

50% 0.002 0.014 0.017 0.013 0.004 0.003 0.013 0.018 0.015 0.004

75% 0.005 0.030 0.035 0.027 0.010 0.008 0.027 0.037 0.031 0.011

max 0.198 0.173 0.193 0.195 0.173 0.196 0.170 0.195 0.189 0.177

Hispanic 
Div Exp.

mean 0.012 0.058 0.068 0.053 0.021 0.017 0.051 0.070 0.059 0.023

std 0.012 0.039 0.045 0.038 0.019 0.017 0.035 0.046 0.041 0.021

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25% 0.004 0.025 0.030 0.021 0.006 0.005 0.022 0.031 0.025 0.007

50% 0.008 0.048 0.057 0.042 0.014 0.011 0.042 0.059 0.048 0.016

75% 0.017 0.089 0.104 0.079 0.029 0.024 0.076 0.106 0.089 0.034

max 0.113 0.190 0.206 0.194 0.143 0.144 0.193 0.211 0.191 0.151

Other Div 
Exp.

mean 0.005 0.022 0.026 0.020 0.008 0.006 0.020 0.027 0.022 0.009

std 0.008 0.012 0.014 0.013 0.008 0.009 0.011 0.014 0.013 0.009

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25% 0.002 0.015 0.018 0.013 0.004 0.003 0.013 0.019 0.015 0.004

50% 0.003 0.020 0.023 0.018 0.006 0.005 0.017 0.024 0.020 0.006

75% 0.006 0.026 0.031 0.024 0.009 0.008 0.023 0.032 0.026 0.011

max 0.177 0.160 0.176 0.190 0.150 0.178 0.165 0.200 0.170 0.155

Total Div 
Resi.

mean 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.355 0.356

std 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202 0.202

min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

25% 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.172 0.172

50% 0.352 0.352 0.352 0.352 0.352 0.352 0.352 0.352 0.352 0.353

75% 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.531 0.532

max 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800 0.800

Table 1. Experienced Diversity by Race and Ethnicity Breakdown.
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Figure 11 shows the variation in experienced diversity by period of the day for weekdays and weekends for 
the ten most populous CBSAs, which corresponds to Fig. 4 showing the most activity in the afternoons.

There are certain limitations to the current version of this data product due to the need to preserve privacy 
and to establish ease of use through the aggregation of measures, the continued research efforts in this area to 

Fig. 10 Experienced Diversity by Race for Weekday Afternoons: White (a), Other (b), Hispanic (c), Black  
(d), Asian (e), and Difference between the Experienced and Residential Diversity (f). The choropleth ranges 
from dark blue to yellow. This figure shows choropleths of the experienced diversity for weekday afternoons for 
White (a) population with bins 0–0.033, 0.033–0.088, 0.088–0.13, 0.13–0.17, 0.17–0.204, 0.204–0.25 ranging 
from light green to dark green, Other (b) population with bins 0–0.012, 0.012–0.031, 0.031–0.048, 0.048–0.077, 
0.077–0.135, 0.135–0.25 ranging from light pink to dark magenta, Hispanic (c) population with bins 0–0.018, 
0.018–0.055, 0.055–0.095, 0.0955–0.14, 0.14–0.188, 0.188–0.25 ranging from light orange to dark orange, 
Black (d) population with bins 0–0.014, 0.014–0.043, 0.043–0.079, 0.079–0.122, 0.122–0.17, 0.17–0.25 ranging 
from light blue to dark blue, Asian (e) population with bins 0–0.01, 0.01–0.032, 0.032–0.062, 0.062–0.104, 
0.104–0.162, 0.162–0.25 ranging from light brown to dark brown, and difference between the Experienced and 
Residential Diversity (f) with bins −0.532–0.182, −0.182–0.088, −0.088–0.027, −0.027−0, 0–0.01, 0.01–0.135, 
0.135–0.202, 0.202–0.314, 0.314–0.714 ranging from red to blue.
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validate this novel form of big data, the neighborhood- versus people-centric nature of the NERD data product, 
and issues of margins of error possibly influencing the measurement of diversity measures. Future iterations of 
this data product will aim to address these questions.

First, the original measurements that we calculated are at a 15 minute time interval and geohash-8 level, 
though we aggregated the data across time and to the level of the Census tract. This is to allow these measures to 
be easily compared to standard measures of diversity and other demographic characteristics, which are generally 
using Census administrative boundaries. The second reason for lowering the public-facing spatial and tempo-
ral resolution of our data to the tract level is to preserve privacy: Not only do we filter out those tracts that do 
not have more than 20 unique devices to ensure personal disclosure avoidance, the aggregation measures also 
ensure that particularly sensitive areas such as schools, hospitals, and religious buildings cannot be singled out 
and re-identified.

Second, there are limitations in the data given the ongoing need to validate various dimensions of the data: 
Researchers have been aware of the population and temporal biases in the data. First, ownership is not equally 
distributed across all demographic groups, which we discussed earlier. Moreover, because we do not have infor-
mation on individual users, only their home block groups, the representation of the sample within each block 
group may be unevenly distributed. In other words, we have corrected for geographic imbalances in population 
while assuming that, on average, the smart phone data is an unbiased sample within each block group. For 
instance, in addition to age, particular race, ethnicity, and class groups might be over- or under- represented 
in each block group. Future research will aim to better discover and adjust for these demographic variations 
with more advanced post-stratification techniques. Lastly, the temporal biases of smart phone data have been 
tested at locations such as polling stations59, sports games60, and airports61. However, given the lack of available 
ground-truth data covering longer periods and variation in activities, it remains difficult to comprehensively 
validate these data for temporal variation in their biases.

Third, our NERD measures observe potential for diverse race and ethnic interaction for observed stays 
within a neighborhood. That is, it measures all 24-hour activities in a neighborhood and encompasses the char-
acteristics of the neighborhood that might draw people to the neighborhood. These could be the mixture of 
residents within the neighborhood, but it could be associated with schools, job centers, transportation infra-
structure, public space, and other amenities in the neighborhood. In this sense, it is a neighborhood-centric 
- as opposed to an ego-centric - measure. Some users of this data product may also be interested in estimating 
the social exposure for residents of a particular tract, that is, the exposures across space of particular groups 
of people that share a common place of residence. Another possible future iteration of NERD could aggregate 
exposures across the daily trajectories of devices and associate these with the home tract.

Lastly, these measures have not accounted for the larger margins of error in the ACS 5-Year surveys com-
pared to the decennial Census, which has been shown to overestimate aggregate segregation measures such as 
the racial dissimilarity index62, the information theory index, and the variance ratio index for income63. Because 
the decennial Census samples around 1 in 6 households in the United States, or about a 17% sample rate, and the 
ACS 5-Year’s sampling rate has ranged between 8% to 10%63, the ACS will generally underestimate the variation 
in the overall population compared to the decennial Census. While future iterations of NERD may incorporate 
margins of error in our estimates, a previous study using simulation techniques suggest that smaller popula-
tion areas may over-estimate segregation62 and accounting for covariance between ACS observations leads to 
true margins that may vary with proportion of minority percentage64. Thus, we may expect these measures to 

Fig. 11 Total Experienced Diversity by Top 10 CBSAs. Levels of experienced diversity for weekday (a) and 
weekend (b) for late morning, morning, afternoon, evening, and late evening for the top 10 CBSAs: Boston-
Cambridge-Newton, MA-NH, Philadelphia-Camden-Wilmington, PA-NJ-DE-MD, New York-Newark-Jersey 
City, NY-NJ-PA, Atlanta-Sandy Springs -Alpharetta, GA, Dallas-Fort Worth-Arlington, TX, Washington-
Arlington-Alexandra-, DC-VA-MD-WV, Houston-The Woodlands-Sugar Land, TX, Chicago-Naperville-Elgin, 
IL-IN-WI, Los-Angeles-Long Beach-Anaheim, CA, Miami-Fort Lauderdale-Pompano Beach, FL.
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under-estimate the actual experienced diversity to varying degrees, with smaller population and lower minority 
areas more likely to under-estimate diversity.

Code availability
This dataset was created using privately available human mobility data derived through cell phone GPS locations 
from MPA pings in Cuebiq’s Spectus Clean Room. While access to the original data is restricted, the data product 
and code underlying the methods is available on Open Science Framework55. Python 3.6 and SQL were used to 
generate the data outputs.
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