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A robust model for cell type-specific
interindividual variation in single-cell RNA
sequencing data

Minhui Chen 1 & Andy Dahl 1

Single-cell RNA sequencing (scRNA-seq) has been widely used to characterize
cell types based on their average gene expression profiles. However, most
studies do not consider cell type-specific variation across donors. Modelling
this cell type-specific inter-individual variation could help elucidate cell type-
specific biology and informgenes and cell types underlying complex traits.We
therefore develop a new model to detect and quantify cell type-specific var-
iation across individuals called CTMM (Cell Type-specific linear MixedModel).
We use extensive simulations to show that CTMM is powerful and unbiased in
realistic settings. We also derive calibrated tests for cell type-specific inter-
individual variation, which is challenging given the modest sample sizes in
scRNA-seq. We apply CTMM to scRNA-seq data from human induced plur-
ipotent stem cells to characterize the transcriptomic variation across donors
as cells differentiate into endoderm. We find that almost 100% of
transcriptome-wide variability between donors is differentiation stage-
specific. CTMM also identifies individual genes with statistically significant
stage-specific variability across samples, including 85 genes that do not have
significant stage-specific mean expression. Finally, we extend CTMM to par-
tition interindividual covariance between stages, which recapitulates the
overall differentiation trajectory. Overall, CTMM is a powerful tool to illumi-
nate cell type-specific biology in scRNA-seq.

The technology of single-cell RNA sequencing (scRNA-seq) profiles
gene expression at the resolution of single cells. This resolutionmaybe
essential for understanding molecular mechanisms underlying many
complex traits because disease gene expression is highly cell type-
specific1–3. For example,APOE is a risk gene for Alzheimer’s disease that
is downregulated in astrocytes but is upregulated in microglia2. One
common application of scRNA-seq is to investigate differentially
expressed genes (DEG) that exhibit differences in mean expression
between cell types, such as diseased vs healthy4 or pre- vs post-
treatment5–7. Furthermore, methods to infer cell type labels in scRNA-
seq data primarily rely on differential mean expression between cell
types8,9.

Several studies have applied linear mixed models to scRNA-seq
data to account for variance across individuals, cell types, or experi-
mental batches10–14, but this variance has not been unbiasedly parti-
tioned across cell types, and the potential for bias and miscalibration
have not been evaluated. Understanding this variation could help
identify and characterize genes and cell types that cause inter-
individual variation in complex traits ranging from height to auto-
immune disorders. Studies using bulk RNA-seq have shown that gene
expression variability informs disease biology and drug
development15–17. However, bulk transcriptomics has poor resolution
on individual-cell types, which can cause both false positives and false
negatives. In particular, prior signals in bulk RNA-seq could be

Received: 26 February 2023

Accepted: 28 May 2024

Check for updates

1Section of Genetic Medicine, University of Chicago, Chicago, IL 60637, USA. e-mail: minhuic@uchicago.edu; andywdahl@uchicago.edu

Nature Communications |         (2024) 15:5229 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-5684-2504
http://orcid.org/0000-0001-5684-2504
http://orcid.org/0000-0001-5684-2504
http://orcid.org/0000-0001-5684-2504
http://orcid.org/0000-0001-5684-2504
http://orcid.org/0000-0001-6520-4766
http://orcid.org/0000-0001-6520-4766
http://orcid.org/0000-0001-6520-4766
http://orcid.org/0000-0001-6520-4766
http://orcid.org/0000-0001-6520-4766
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49242-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49242-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49242-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-024-49242-9&domain=pdf
mailto:minhuic@uchicago.edu
mailto:andywdahl@uchicago.edu


explained by variation in cell type proportions rather than variation in
gene expression within cell types18. Because scRNA-seq data has a cell-
level resolution, it provides an opportunity to powerfully partition
expression variation within and between cell types. This has recently
become possible with the proliferation of population-scale scRNA-seq
studies that contain hundreds of individuals13,19–22.

In this paper, we develop CTMM (Cell Type-specific linear Mixed
Model) to detect and quantify cell type-specific variation across indi-
viduals in scRNA-seq data. We performed a series of simulations to
evaluate CTMM’s performance in a broad range of realistic settings.
We then appliedCTMMto characterize transcriptomic variationacross
individual donors along the developmental trajectory from human
induced pluripotent stem cells (iPSCs) to endoderm. Transcriptome-
wide, CTMMfound that almost all interindividual variationwas specific
to each developmental time point, and the Full model found greater
correlations between nearby time points. We also identified specific
genes with statistically significant time point-specific variation across
individuals, including genes with known importance for cell plur-
ipotency and differentiation. Finally, we studied the recent data from
theOneK1K cohort and found thatCTMMcanbe applied to this kindof
large-scale, low-depth sequencing data.

Results
Overview of CTMM
CTMM is a linear mixed model that partitions single-cell gene
expression variation across individuals into two distinct components:
variation shared across cell types and variation specific to each cell
type.Wefit CTMMtocell type-specificpseudobulk (CTP) data, which is
the mean expression over cells within each cell type for each indivi-
dual. For a given gene, the CTP expression for individual i and cell type
c is:

yic: =
1
nic

Xnic

s = 1

yics ð1Þ

where yics is the gene expression level for the s-th cell fromcell type c in
individual i and nic is the number of cells in individual i from cell type c.
CTMM models the CTP expression data by:

yic =βc +αi + Γ ic +δic ð2Þ

Here,βc is themeanexpression level in cell type c, whichwemodel as a
fixed effect. αi captures differences between individuals that are
shared across cell types, which we model as a random effect:
αi ∼ iidN 0,σ2

α

� �
. Γ ic captures the difference between individuals that is

specific to cell type c, which we also model as a random effect:
Γ i, ∼ iidN 0,Vð Þ, where Γ i, is a vector of cell type-specific expression for
individual i across all C cell types andV is a C ×C matrix describing cell
type-specific variances and covariances across cell types. δic is the
noise due to measurement errors at single cells and/or variation from
cell subtypes, which we model by: δic ∼ ind N 0,

σ2
ic

nic

� �
, where σ2

ic is cell-
to-cell variance within individual i and cell type c. We estimate this
quantity from the cell-level data by σ̂2

ic: =
Pnic

s = 1 yics � yic
� �2

=ðnic � 1Þ. In
theMethods,weshowhow thismodel is derived froma singlecell-level
model, which alsomotivates our Gaussian assumption on δic based on
the central limit theorem. We also developed a version of CTMM that
applies to overall pseudobulk (OP) data, which averages over all cells
from all cell types for each individual. This is a useful analogy to bulk
sequencing data, but we find that it is far less powerful in our setting.

The focus of CTMM is on the covariancematrixV, which captures
cell type-specific variation across individuals. We consider three nes-
ted models of cell type-shared and -specific variation defined by the
structure ofV. In the simplestmodelwhereV=0, all variation is shared
homogeneously between cell types (“Hom”), with cell types differing
only inmean expression. The nextmodel allows independent variation

in each cell type (“Free”), i.e., cell type-specific variation, by allowing V
to be an arbitrary diagonal matrix. The richest model allows for arbi-
trary forms of covariance between cell types (“Full”), where V can be
any arbitrary semidefinite matrix and σ2

α =0 for identifiability
(Methods).

We explored several statistical methods to fit and test CTMM’s
parameters. Achieving calibrated and unbiased estimates in CTMM is
challenging because scRNA-seq datasets currently have small to
moderate numbers of donors, ranging fromone to hundreds, and thus
off-the-shelf asymptotic tests may fail. We implemented three
approaches to fit CTMM: maximum likelihood (ML), restricted max-
imum likelihood (REML), and method-of-moments (HE, as it is called
Haseman-Elston regression in genetics). Then, we implemented the
likelihood ratio test (LRT) andWald tests to compare the Free andHom
models, which tests whether interindividual variation is cell type-
specific or shared uniformly across cell types. Importantly, we develop
a novel testing framework based on jackknife (JK) to address false
positives in established tests that arise from the complexity of scRNA-
seq data (Methods).

Simulation
We simulated a series of scenarios to assess the performance of
CTMM. We simulated Hom and Free models by varying sample size,
level of cell type-specific variance, number of cell types, and cell type
proportions. We first evaluated the accuracy to quantify cell type-
specific variance. Supplementary Fig. 1 showed the estimation of cell
type-specific variance in the simulation of the Free model with varying
sample sizes from20 to 1000. As expected,whenfitting simulateddata
into the Freemodel, bothOP andCTP performedwell, as illustrated by
the roughly unbiased estimates of cell type-specific variance V. The
performance improved along with the increase in sample size. CTP
provided more precise estimates than OP, since CTP uses more
information thanOP bymodeling pseudobulk expression for each cell
type. Comparing methods for parameter estimation, likelihood-based
methods, including ML and REML had similar level of precision, and
both had better precision than HE, since likelihood-based methods
utilize more information than HE by assuming normal distribution of
random effects. Supplementary Fig. 2 showed estimates with varying
levels of cell type-specific variance. Our models provided unbiased
estimates of cell type-specific variance, even in the simulation of the
Hom model where there is no cell type-specific effect. Additionally,
Supplementary Fig. 3 showed that CTMM is unbiased across different
numbers of cell types. Supplementary Fig. 4 showed estimates with
varying cell type proportions. When decreasing the proportion of the
main cell type (with the largest cell type-specific variance), all models
performedwell except for HEwith CTP input, which broke downwhen
the main cell type proportion went below 10%. We also simulated
under the Full model, which had precise and unbiased estimates of
covariance between cell types when the sample size was above 50with
CTP (Supplementary Fig. 5).

We then evaluated the power of our models to detect cell type-
specific variance. Figure 1 showed positive rates of REML and HE using
OP or CTP data as input for different sample sizes. Under the simula-
tion of the Hom model where there is no cell type-specific variance,
different tests for cell type-specific variance with both OP and CTP
input were appropriately null with around 5% of the false positive rate,
except for REML (Wald), that is Wald test in REML using precision
matrix inferred from the Fisher information matrix. REML (JK), that is
jackknife-based Wald test in REML, and HE were inflated in CTP when
sample size was 50 or lower. Under the simulation of Free model, CTP
gainedmuch larger power thanOP, for example, when sample size was
50, CTP had tenfold positive rate over OP (100 versus 10% using REML
with LRT). REML (LRT) in CTP had the best power. Its true positive rate
reached above 80% even when the sample size was only 20 and
reached 100% when the sample size was 50. The other three tests in
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CTP, includingREML (Wald), REML (JK), andHE, also had over 70% true
positive rates when the sample size reached 100. ML and REML had
similar performance when fitting CTP (Supplementary Fig. 6). We also
assessed the impact of cell type proportions, number of cell types, and
level of cell type-specific variance. As expected, the power increased
when the main cell type became more common, when additional cell
types were included, or when cell type-specific variance increased
(Supplementary Fig. 6).

To examine the impact of uncertain estimates of νic, we repeated
the CTP simulation while incorporating noisy νic. To be more realistic,
this simulation was conducted with parameters estimated from real
data of iPSCs differentiation. We first evaluated the uncertainty of νic

by bootstrap resampling cells for all combinations of individual, cell
type, and gene. Most of them had a coefficient of variation around 0.2
(Supplementary Fig. 7). To incorporate this uncertainty into the
simulation, we added noise into νic when fittingmodels (Methods).We
tried five distributions of noise to cover the distribution of coefficient

of variation in real data (Supplementary Fig. 7). In the simulation of
Hommodel, when therewas no noise of νic, that is a fittingmodel with
real νic used in simulations, REML (LRT) and REML (JK) were well
calibrated, HE was slightly inflated (Fig. 2a). Along with the increase of
noise, REML (LRT)’s false positive rate increased quickly and reached
~80% when using a high level of noise (coefficient of variation =0.45);
REML (JK) was rather resistant to noise that it only completely broke
when unrealistically strong noise was added; while HE was not
impactedbynoise, it remained slightly inflated for all levels of noise.Of
note, estimates of cell type-specific variance were weakly biased in
REML under strong noise (Supplementary Fig. 8). In the simulation of
the Freemodel, we found that REML (JK) had 80% of positive rate even
when the cell type-specific variance is weak with 0.05 variance for the
first cell type; HE also had intermediate power with about 50% of
positive rate when the first cell type had 0.05 variance (Fig. 2b). Taken
together, REML (JK) is themostpowerful and robustmethod and is our
primary approach in our iPSCs analysis.

Fig. 2 | Power of CTMM in simulations with uncertain estimates of noise var-
iance (νic). a False positive rate under different levels of noise of νic in the simu-
lation of the Hom model. Dashed lines indicate the 10, 50, and 90% percentiles of
the transcriptome-wide distribution of coefficient of variation for νic in the real
iPSCs data; b True positive rate under noise of νic with a coefficient of variation of
0.33 in the simulation of Freemodel, with varying cell type-specific variance for the
first cell type from 0.05 to 0.5; cell type-specific variance for other three cell types

were fixed to 0.1; in Hom, all cell types had 0 cell type-specific variance. Dashed
lines indicate the 10 and 50% percentiles of the transcriptome-wide distribution of
cell type-specific variances in the real iPSCs data. A plot of false discovery rate and
positive predictive value is shown in Supplementary Fig. 9 with a 50:50 mixture of
genes simulated from the Hom and Freemodels. REML (LRT) REMLwith likelihood
ratio test, REML (JK) REML with jackknife-based Wald test.

Fig. 1 | Power of CTMM’s test of cell type-specific variance in simulations with
varying sample sizes. a In the simulation of the Hommodel, there is no cell type-
specific variance; b In the simulation of the Free model, each cell type has its own

cell type-specific variance. CTP cell type-specific pseudobulk, OP overall pseudo-
bulk, REML (Wald) REML with Wald test, REML (LRT) REML with likelihood ratio
test, REML (JK) REML with jackknife-based Wald test.
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Finally, we conducted simulations at the level of single cells to
evaluate the impact of sequencing depth and the number of cells
(Supplementary Note 1 Section 3.4). To assess whether our simulated
count distribution is realistic, we compared it to the real data using
countsimQC23. The comparison demonstrated a good fit to the real
data in terms of the mean-variance distribution and the fraction of
zeros per gene (Supplementary Fig. 10). We found that CTMM was
robust across a realistic range for sequencing depth and number of
cells (Supplementary Fig. 11A, C), though power improvedwith greater
read depth or number of cells (Supplementary Fig. 11B, D).

Application to human induced pluripotent stem cells
We applied our methods to differentiating iPSCs13. Before fitting
CTMM, we compared different approaches to imputing the cell type-
specific pseudobulk (yic, that is CTP). We evaluated single-gene
imputation with softImpute and MVN and transcriptome-wide impu-
tation with softImpute. We found that transcriptome-wide softImpute
performed best (Supplementary Fig. 12A, C), though MVN performed
similarly. We also compared approaches to impute the noise variance
(νic), which is required for CTMM. We observed similar results as for
the pseudobulk in terms of mean squared error (Supplementary
Fig. 12B, D). Based on these results, we used transcriptome-wide soft-
Impute in practice.

We fit the Free model with both OP and CTP data using ML, REML,
and HE (Supplementary Figs. 13, 14). We focus on REMLwith CTP, which
was most powerful and robust in simulations. Transcriptome-wide, we
found that the variation across individuals was almost entirely cell type-
specific, as the homogeneous variance has a median close to 0
(median =0:4%, Fig. 3a). By contrast, cell type-specific variance has a
median of 32.8% across cell types. Weighted by cell type proportions,
cell type-specific variation explained 14% of interindividual variation on
average across the transcriptome (Supplementary Note 1 Eq. 3). Addi-
tionally, cell type proportion differences explained 12%, and residual
cell-level variation (ν) explained 10%. The remaining variation is
explained by covariates, especially PCs of pseudobulk gene expression
(39%) and batch effects (21%). Note that cell subtype variation within an
individual will be captured in the residual variation in ν, which also
capturesmeasurement errors (i.e., RNA transcripts that exist but are not
sequenced), while interindividual variation in cell subtype proportions

will be captured in the interindividual covariance, V. This illustrates the
importance of modeling cell type-specific expression.

To evaluate the correlation of gene expression between cell types,
we next fit the Full model. As expected, the correlations between
adjacent development stages (CT1 andCT2, CT2 andCT3, andCT3 and
CT4) were larger than the correlations between more distant stages
(Fig. 3b). Furthermore, the correlation between CT2 and CT3 (median:
0.051) was smaller than the other adjacent stages (CT1-CT2 median:
0.318; CT3-CT4median: 0.322). This is consistentwith rapid changes in
molecular profiles at day 2 (CT3)13. These patterns were also observed
when fittingwithMLorHE (Supplementary Fig. 13).When fittingOP, as
expected, the estimates were far less precise, especially for HE (Sup-
plementary Fig. 14).

Figure 4a shows gene expression differentiation in mean and
variance in fitting CTPwith REML (JK). We foundmany genes that were
differentiated in variance between cell types, that is at least one cell
type with non-zero cell type-specific variance. Among them, the top
gene POU5F1 (Wald p=2:18 × 10�27), also known asOCT4, is one of the
three core transcription factors in the pluripotency gene regulatory
network24. This signal was also confirmed in HE with CTP, where
POU5F1 was the most significant signal in variance differentiation
(p= 1:33 × 10�28, Supplementary Fig. 15). Although this gene was also
significantly differentiated in mean, it is not outstanding in either
REML or HE and less likely to be discovered for further functional
analyses. To control for false positive, we identified candidate genes
for cell type-specific variance as ordered by p value in REML (JK)
meanwhile requiring significant signals after Bonferroni correction in
both REML (JK) and HE, with top 10 genes shown in Table 1. Among
them, 85 genes were not differentiated inmean (p>0:01 in REML), with
some of those genes involved in processes like cell differentiation and
growth (see top 10 of those genes in Table 2). Take NDUFB4 for
example, there was no differentiation in mean between cell types
(p=0:014 inREMLandp=0:125 inHE), while significant differentiation
in variance in both REML (p= 1:93× 10�19) and HE (p=9:62× 10�15)
(Fig. 5). We next performed GO enrichment analysis using
clusterProfiler25. We tested the top 100 CTMMgenes that did not have
significant differences in mean (p>0:05 after Bonferroni correction).
We founddozens of significant enrichments, almost all of which reflect
cellular metabolic activity (Supplementary Data 1). This finding aligns

Fig. 3 | Distribution of variance and correlation of cell type-specific effect
across transcriptome from REML with CTP data. a Homogeneous variance (σ2

α)
shared across cell types and cell type-specific variance was assessed across 11,231
genes from the Free model; b Correlation of cell type-specific effect between cell
types from the Fullmodel, with dark blue indicating pairs of adjacent cell types and
light blue indicating others. After removing genes with negative variances, 11,122

genes were left for correlation calculation. In a, values above 2 were truncated; in
b, values above 1.5 or below −1.5 were truncated. About 109 genes were excluded
from b, because of negative cell type-specific variance. Interior box plots show the
median and the first and third quartiles. The whiskers extend to values within 1.5
times the interquartile range from the first and third quartiles. CT cell type.
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with the known importance of variation inmetabolic state during iPSC
differentiation26. Of note, there were three marker genes used in
Cuomo et al.13 to indicate each stem cell differentiation stage, spanning
iPSC (NANOG), mesendoderm (T), and definitive endoderm (GATA6).
We successfully detected significant mean differentiation in all three
marker genes in both REML and HE; on the other hand, we detected
significant variancedifferentiation in all three genes inHE,while only in
the NANOG gene in REML, indicating loss of power in REML. We also
note that mean differentiation had much stronger signals than

variance differentiation in both REML and HE (Supplementary Fig. 16).
We compared p values for variance differentiation fromdifferent tests
when fitting CTP (Supplementary Fig. 17). Generally, p values from
different tests were largely consistent, except for REML with LRT.
Specifically, for REML (JK) and HE, there were 4776 genes that were
significant in both; 333 genes were significant only in HE, likely to be
false positive; 2017 genes were significant only in REML (JK), partially
due to false positive and partially due to higher power in REML (JK)
thanHE.We also conducted testswithOPdata. Consistentwith the low

Table 1 | Top 10 genes significantly differentiated in variance between cell types in REML, while remaining significant in HE,
with CTP data

Gene REML HE Function

p varianceð Þa pðmeanÞb pðvarianceÞ pðmeanÞ
POU5F1 2:18× 10�27 6:69 × 10�27 1:33× 10�28 2:49 × 10�23 Cell pluripotency24

HSPA8 4:32× 10�20 6:38× 10�40 1:51 × 10�19 7:54× 10�42 Cell pluripotency46

SUB1 1:09× 10�19 1:00× 10�10 6:07× 10�16 1:03× 10�11 Cell differentiation47

NOP16 1:24× 10�19 7:66× 10�49 7:65× 10�15 4:74 × 10�52 Cell growth48

RPL35 1:88× 10�19 7:17× 10�11 2:28× 10�20 5:70× 10�15 Cell proliferation and survival49

NDUFB4 1:93× 10�19 0:014 9:62× 10�15 0:125 Cell differentiation50

CCND1 2:75 × 10�19 7:57× 10�48 4:15 × 10�15 2:21× 10�44 Cell differentiation51

GYPC 1:34× 10�18 5:67× 10�37 1:10× 10�16 2:14 × 10�27 Cell differentiation52

PTMA 1:89× 10�18 1:10× 10�43 1:60× 10�16 4:79 × 10�40 Apoptosis53

SHFM1 2:36× 10�18 1:36× 10�7 1:20× 10�16 3:03× 10�5 Cell pluripotency54

apðvarianceÞ indicates p values for variance differentiation between cell types;
bpðmeanÞ indicatesp values formeandifferentiationbetween cell types.P values for testingmeandifferentiation andvariancedifferentiationwere calculatedusing the jackknife-basedWald testwith
CTP data from 94 individuals.

Fig. 4 | ContrastingCTMMwithordinarydifferential expression transcriptome-
wide. a Each point conveys the cell type-specificity of a gene, where the x-axis tests
for cell type-specific means (ordinary) while the y-axis tests for cell type-specific
interindividual variance (CTMM). Genes described in themain text are highlighted,
and Bonferroni-significance to adjust for multiple testing is illustrated as dashed
horizontal and vertical lines. All results are from CTMM fit using REML and tested
using the jackknife-based Wald test. b, c Plots quantify cell type-specificity of

interindividual variance (blue, left) and mean expression (orange, right) across
10,891 genes compared to eachdecile in the transcriptomeof EDS (b), or LOEUF (c).
Each point is the average across all genes in that decile, and error bars display one
standard error. P values correspond to the two-sided t-test for meta-regression of
these mean points. The x-axis ticks show the median value of each feature in each
decile.
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power observed in simulations, we identified 23 genes that were sig-
nificantly differentiated in variance in REML (LRT), and 0 genes were
identified in HE (Supplementary Fig. 18).

Gene features associated with cell type-specific variation
We next evaluated the relationship between CTMM results and four
gene features related to genome structure and evolution. We com-
pared CTMM’s measure of cell type-specificity, which is based on
interindividual variance, to a standard measure of cell type-specificity
basedonmeandifferences (Methods). First, we found that bothCTMM
and ordinary differential expression signals were enriched in genes
with larger enhancer domains (based on the number of enhancers or
enhancer domain score [EDS], Fig. 4b and Supplementary Fig. 19).
These results align with previous findings that genes with larger
enhancer domains were less likely to exhibit ubiquitous expression
across tissues27. Second, we examined ameasure of gene conservation
called LOEUF (loss-of-function observed/expected upper bound frac-
tion). We found that more-constrained genes have lower mean dif-
ferences across cell types (p = 1.0e-3, Fig. 4c), consistent with previous
findings that constrained genes were more frequently ubiquitously
expressed across tissues28,29. CTMM’s cell type-specificitymeasure also
correlates with LOEUF, but in the opposite direction (p = 1.2e-8,
Fig. 4c). Digging deeper, CTMM shows this primarily results from
decreases in cell type-shared variation (Supplementary Fig. 19). In
other words, stronger selection implies that cell types and individuals
are more constrained toward their averages, so cell type-specific
interindividual variation plays a larger role. We found qualitatively
similar results using pLI (Supplementary Fig. 19).

Application to peripheral blood mononuclear cells
The iPSC data13 we analyzed above used plate-based sequencing. We
next sought to confirm that CTMM is applicable to droplet-based
sequencing, a different scRNA-seq technology that generally trades off
a greater number of cells at the cost of lower read depth. We thus
applied CTMM to the recent droplet-based data from the OneK1K
cohort22. This dataset has many more individuals than the iPSC data

(N = 982 vs 125) and more cells per individual (1300 vs 300), but it has
far fewer reads per cell (~3 K vs ~0.5M). The cells themselves are also
very different, asOneK1K contains peripheral bloodmononuclear cells
(PBMCs) from living people rather than differentiating iPSCs from a
controlled lab experiment. Another important difference is that the
PBMC cell types are computationally inferred, while the iPSC cell types
are defined by experimental days. Finally, the PBMC cell type pro-
portions vary substantially (Supplementary Fig. 20). Our primary
analysis was restricted to cell typeswith at least ten cells in at least 90%
of individuals, resulting in seven cell types (CD4NC, CD4ET, CD8ET,
CD8NC, NK, BIN, and BMem, Supplementary Note 1 Section 4).

We find thatCTMMprovides powerful and robust estimates in the
OneK1K data. First, CTMM detected significant cell type-specific
interindividual variance for 2310 genes out of the 11,526 total genes
tested (p<0:05=11526, Supplementary Fig. 21). The top signal is RPS26
(p= 1:78× 10�167, Supplementary Fig. 22), which plays a key role in
regulating T cells30,31. Further, genetic variation causes interindividual
variation in this gene that is cell type-specific22 and is linked to complex
traits such as eczema and asthma32. As in the iPSCs, we tested GO
enrichment in the top CTMM genes. In this large dataset, almost all
genes have significant differential mean expression, so we tested the
top 100CTMMgenes irrespective of theirmean differences. Almost all
of the top enrichments relate to immune function, including several
that are specific to leukocytes (Supplementary Data 2). Second, CTMM
partitions transcriptome-wide interindividual variation into compo-
nents that are shared across cell types (10.9%) vs cell type-specific
(21.5% on average across cell types, Supplementary Fig. 23). This is an
interesting contrast with the iPSC results, where shared interindividual
variation was near zero. Biologically, this could be explained by dif-
ferences in cellular environment: individual-level covariates like age,
smoking, or BMImay have shared effects across cell types and they are
likely to have larger effects on PBMCs in whole blood than iPSCs in a
controlled lab. Finally, we evaluated CTMM’s Full model
transcriptome-wide to quantify interindividual covariance between
cell types. These estimates recapitulated expected relationships
between cell types (Supplementary Fig. 24). For example, the most-
correlated cell types are CD4NC and CD4ET; intuitively, this means that
an individual with an above-average expression of a gene in their
CD4NC cells will typically also have an above-average expression in
their CD4ET cells. The secondmost-correlated cell types are CD4NC and
CD8NC,which is consistentwith the observation that CD4NC andCD8NC
shared the most genetic effects in prior work22.

We next tested the robustness of CTMM to rarer cell types in a
secondary analysis that includes two additional cell types, MonoC and
CD8S100B. CTMM gave consistent results for the seven larger cell types
that are included in both analyses (Supplementary Figs. 25–29). As
expected, CTMM’s estimates are noisier for MonoC and CD8S100B,
which are rarer cell types. Nonetheless, adding these cell types enables
CTMM to discover new differentially-variable genes. For example, the
top newly-significant gene is TMEM176B (p= 5:45× 10�63 vs p=0:18 in
our primary analysis), which makes sense as this gene is primarily
expressed in MonoC (Supplementary Fig. 30). We conclude that
CTMM’s results are robust to variations in the input cell types, but its
estimates are less accurate for rarer cell types.

Discussion
Mean differences in gene expression across cell types are well docu-
mented and are the primary focus of most scRNA-seq analyses. Here,
we have introduced a new model called CTMM to quantify variance
differences across cell types in scRNA-seq data. Bulk expression ana-
lyses have established that interindividual variance in expression can
be important for characterizing disease biology33 and identifying
context-dependent genetic effects34. The key innovation in CTMM is
adapting Gaussian LMMs to scRNA-seq data, which is challenging
because scRNA-seq data are highly noisy and non-Gaussian. The key

Table 2 | Top ten genes significantly differentiated between
cell types in expression variancewhile not inmean (p>0:01) in
REML, meanwhile significantly differentiated in variance in
HE, with CTP data

Gene REML HE Function

pðvarianceÞa pðmeanÞb pðvarianceÞ pðmeanÞ
NDUFB4 1:93× 10�19 0:014 9:62× 10�15 0:125 Cell

differentiation50

NUTF2 1:06× 10�17 0:109 1:16× 10�16 0:081 Cell cycle55,
apoptosis56

SLX1A 6:11× 10�15 0:162 7:17× 10�18 0:202 Genome
stability57

EIF4A1 2:29 × 10�13 0:011 2:11× 10�10 0:698 Stem cell self-
renewal58

TFPI2 4:84× 10�13 0:024 7:30× 10�9 0:057 Cell
proliferation59

ATP5J2 6:30× 10�13 0:093 1:09 × 10�13 0:012 ATP synthesis60

SMAP1 1:02× 10�12 0:024 5:96× 10�10 0:049 Cell growth61

NDN 1:80× 10�12 0:011 8:21× 10�10 0:079 Cell growth62

KRT10 2:40× 10�12 0:218 1:16× 10�10 0:403

NDUFA1 4:28× 10�12 0:406 2:64× 10�11 0:702 Cell
differentiation50

apðvarianceÞ indicates p values for variance differentiation between cell types;
bpðmeanÞ indicates p values for mean differentiation between cell types. P values for testing
meandifferentiation andvariancedifferentiationwerecalculatedusing the jackknife-basedWald
test with CTP data from 94 individuals.
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idea is to summarize the scRNA-seq data into cell type-specific
pseudobulk21, which enables approximately unbiased inference with
CTMM on as few as 20 individuals. We carefully profile several stan-
dard methods to fit LMMs and propose a jackknife-based test using
REMLas themost powerful and robustmethod, whichwe supportwith
extensive simulations and analyses ofdifferentiating iPSCs andPBMCs.
We implement and freely release these methods as a user-friendly
Python package. We expect that CTMM will be an important step
toward robust and rich variance decompositions of scRNA-seq data,
which will be increasingly powerful and informative as scRNA-seq
sample sizes grow.

In the limiting case with infinite cells, when the measurement
error is reduced to 0, CTMM simplifies to a typical LMM on bulk
expression. In this case, CTMMwithOverall Pseudobulk (OP) datawere
comparable to decomposing variance in bulk expression data using
computationally deconvolved cell type proportions. The significant
benefit is that scRNA data provides much better estimates of cell type
proportions, which can both reduce false positives and improve
power. Likewise, CTMMwith Cell Type-specific Pseudobulk (CTP) data
becomes comparable to bulk analyses of sorted cells without the need
for sorting pre-defined cell types. In practice, when the number of cells
is limited, another significant benefit of CTMM over bulk analyses is
the ability to distinguish biological variance across individuals from
measurement error, which is especially important whenmeasurement
error varies across individuals, cell types, or experimental conditions.
However, the disadvantage of CTMM compared to bulk is that it
requires larger sample sizes, which is currently expensive.

CTMM has several important limitations. First, as scRNA data in
individual cells is highly non-Gaussian, CTMM’s Gaussian assumption
relies on combining many cells and the central limit theorem. In

practice, we require >10 cells per individual-cell type pair, which limits
CTMMto commoncell types. A related concern is that lowly-expressed
genes can be severely non-Gaussian, increasing the number of cells
needed for the Gaussian approximation. We find that higher overall
levels of a gene’s expression increase the power of CTMM (Supple-
mentary Fig. 31), which also holds for most tests of scRNA-seq data.
Second, CTMM assumes cell types are already known. Our iPSCs data
analysis solves this by defining cell types based on experimental days.
However, most studies infer cell types directly from the scRNA-seq
data, such as the cell types in our PMBC data analysis, inducing some
circularity; this is typically ignored2,7,35 yet will deflate estimates of cell
type-specific variance by construction. Third, CTMM assumes discrete
cell types,whereas continuous cell types aremore appropriate in some
cases, e.g., when defined by pseudo-time13,20,36 or degree of IFN
stimulation21. While incorporating continuous cell types is straight-
forward with overall pseudobulk data, it can only be expressed in cell
type-specific pseudobulk data by discretizing the continuous cell
types. Fourth, it is well-known that count data evince a complexmean-
variance relationship, and studies have observed that the variance of
gene expression across cells is dependent on mean expression37.
Nonetheless, simulations show that this problem is unlikely to be
important in practice (Supplementary Fig. 32). Moreover, we find
biologically plausible genes with significant differential variance but
without significant differential mean, showing that modeling variance
has utility beyond merely tagging mean signals. Fifth, CTMM only
considers pseudobulk data, which greatly improves computational
efficiency and facilitates its simplifying Gaussian assumptions. None-
theless, pseudobulk inherently discards cell-level information, which
sacrifices statistical power and resolution within cell types. Moreover,
cell type-specific pseudobulk necessarily discretized cells into

Fig. 5 | Estimates of cell type fixed effect and cell type-specific variance for
specific genes in REML with CTP data. Four genes were chosen as examples.
POU5F1 exhibited the strongest signal of variance differentiation among all genes;
NDUFB4 exhibited the strongest signal of variance differentiation among genes
without signals of mean differentiation (p>0:01); MIXL1 exhibited the strongest
signal of mean differentiation among all genes; and EOMES exhibited the strongest
signal of mean differentiation among genes without signals of variance

differentiation (p>0:01). The violin plot represents the distribution of cell type-
specific pseudobulk after standardizing overall pseudobulk tomean 0 and variance
1; circles indicate estimated cell type fixed effects; the length of the dashed line
indicates twice the sum of homogeneous variance shared across cell types and cell
type-specific variance. P values for testing mean differentiation and variance dif-
ferentiationwere calculatedusing the jackknife-basedWald testwithCTPdata from
94 individuals.
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categories, which can be somewhat arbitrary. Finally, despite our use
of careful nonparametric tests, our Free test for cell type-specificity
remains slightly inflated, emphasizing the importance of biologically
validating and replicating results. While this inflation is small for
sample sizes around ~100 and vanishes for sample sizes above ~300,
CTMM is not reliable for sample sizes below ~50. Nonetheless, CTMM’s
estimates remain unbiased (Supplementary Fig. 1), hence it can be
used to profile transcriptome-wide averages for any sample size. Also,
we developed a simplified version of CTMMwhich remains calibrated
for sample sizes ~50, but it assumes that all cell type-specific variances
are equal (Supplementary Fig. 33).

CTMM is a step toward translating well-established LMM meth-
odologies to scRNA-seq data. A key extension of CTMM is to quantify
cell type-specific heritability of gene expression, which is typically
more powerful than single-SNP tests of context-specific genetic
regulation12,21. Because CTMMmodels cell-level noise, it can eliminate
downwardbiases in heritability that areunavoidable in bulk expression
data. Another extension is to jointlymodel covariance across both cell
types and genes. For example, this enables identifying cell type-shared
and -specific networks. This, too, is necessarily biased in bulk expres-
sion data, where covarying measurement errors will confound biolo-
gically meaningful networks. The Full model can also be extended to
learn structured networks between cell types by leveraging penalized
covariance estimates38 or by specifically tailoring it to a given appli-
cation; for example, we could restrict V to be banded to capture
temporal structure in the differentiating iPSCs. It would also be useful
to extend CTMM to test for variance differences between groups of
individuals, e.g., disease cases and controls. Nonetheless, this will
require careful modeling and robustness tests to account for subtle
ascertainment biases. The long-term goal is to combine together these
features into a comprehensive model of transcriptomic covariation
across cells, cell types, individuals, and environments in order to
understand genetic and nongenetic drivers of complex diseases.
Overall, we consider CTMM an important step on a long path to fully
understanding the causes and consequences of variation within and
between individuals in scRNA-seq data.

Methods
Models
Overview of cell type-specific linear mixed models for gene
expression. We model the expression level of a given gene for indi-
vidual i, cell type c, and cell s by:

yics =βc +αi + Γ ic + ϵics ð3Þ

In thismodel, yics is the gene expression level for the s-th cell from
cell type c in individual i; note that the number ofmeasured cells varies
across individuals and cell types. βc is themean expression level in cell
type c, which we model as a fixed effect. αi captures differences
between individuals that are shared across cell types, which we model
as a randomeffect:αi ∼ iidN 0,σ2

α

� �
. Γ ic captures thedifferencebetween

individuals that is specific to cell type c, which we also model as a
randomeffect by Γ i, ∼ iidN 0,Vð Þ. Here Γ i, is a vector of cell type-specific
expression for individual i and V is a C ×C matrix describing cell type-
specific variances and covariances across cell types.

Finally, ϵics is the residual effect, which we assume to be i.i.d. for
each individual-cell type pair with E ϵics

� �
=0 and V ϵics

� �
= σ2

ic. We
directly estimate σ2

ic from the single cell-level data by
σ̂2
ic : =

Pnic
s = 1 yics � yic

� �2
=ðnic � 1Þ, where nic is the number of cells in

individual i and cell type c and yic is the average expression across all
nic cells (i.e., cell type-specific pseudobulk, defined below). σ̂2

ic is
unbiased even if ϵics is non-Gaussian, which is important because
expression in single cells is non-Gaussian. Note that this is impossible
in bulk expression data, even if sorted into cell types, because bulk
only measures average expression. That is, scRNA-seq data makes it

possible to distinguish true interindividual variation from
measurement noise.

Our focus is the covariance matrix V, which captures the differ-
ences and similarities between cell types (for a given gene). Thediagonal
terms capture cell type-specific variance. If there is no cell type-specific
variation between individuals, then Vcc =0 for all c. The off-diagonal
terms capture covariance between specific pairs of cell types; if all cell
types are equally similar to each other, then Vcc0 =0 for all c≠c0.

We consider three nested models of interindividual variation
defined by the structure of V. First, the homogeneous (Hom) model
assumes that V=0, i.e., that all expression variance is shared homo-
geneously across cell types without any cell type-specificity. Second,
the Free model allows arbitrary levels of cell type-specific variance by
allowing V to be an arbitrary diagonal matrix. Third, the Full model
captures arbitrary levels of covariance between specific cell type pairs
by allowing V to be any positive semidefinite matrix. Intuitively, the
Hom model captures variation across individuals, but assumes this
variation is identically shared across cell types. The Free model allows
cell type-specific variation, e.g., a gene that is largely similar between
individuals except in a single cell type. The Fullmodels allows complex
relationships among cell types, e.g., hierarchical relationships among
immune cell types.

A technical consideration in the Fullmodel is thatV and σ2
α are not

jointly identified. Specifically, passing a constant between σ2
α and V

does not change the likelihood (i.e., L σ2
α ,V

� � � Lðσ2
α � λ,V+ λ JCÞ,

where JC is C ×C matrix containing all 1s). Therefore, without loss of
generality, we set σ2

α =0 in the Fullmodel. The Fullmodel is statistically
challenging because its number of parameters scales quadratically
with the number of cell types, C. In practice, the Full model only has
precise estimates with hundreds to thousands of samples or, as below,
when aggregating together many genes.

Deriving models for overall and cell type-specific pseudobulk.
Directly modeling single cell expression as in Eq. 3 is challenging
computationally and statistically. Computationally, modeling indivi-
dual cells increases the number of observations by orders of magni-
tude because there can be dozens or hundreds of cells per individual-
cell type pair. Statistically, the individual cell’s expression is highlynon-
Gaussian, requiring additional assumptions and computationally
expensive generalized linear mixed models. Instead, we study scRNA-
seq data at the level of pseudobulk expression, which averages
expression over many cells. We consider both overall pseudobulk
(OP), which averages over all measured cells per individual, and cell
type-specific pseudobulk (CTP), which averages over cells in each cell
type per individual.

Specifically, the pseudobulkmeasures thatwe input to CTMMare:

yi : =
1
ni

XC
c = 1

Xnic

s = 1

yics andyic : =
1
nic

Xnic

s = 1

yics ð4Þ

where yi is the OP expression for individual i, and yic is the CTP
expression for individual i and cell type c.

Our cell-levelmodel in Eq. 3 implies the followingmixedmodel for
the OP expression:

yi =
X

c
Picβc|fflfflfflfflfflffl{zfflfflfflfflfflffl}

cell type�specif ic

mean

+ αi|{z}
cell type�shared

variation

+
X

c
PicΓ ic|fflfflfflfflfflffl{zfflfflfflfflfflffl}

cell type�specif ic

variation

+ δi|{z}
measurement

noise

ð5Þ

with δi: =
1
ni

PC
c = 1

Pnic
s = 1ϵics ∼

ind N 0,νi
� �

; νi: =
PC

c= 1
nic
n2
i
σ2
ic

δi is the measurement noise for individual i, with variance νi that
we estimate by plugging in our estimate of σ2

ic. P is the matrix of cell
type proportions, defined by Pic : =

nic
ni
.
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Our cell-level model in Eq. 3 also implies a mixed model on the
CTP expression data:

yic =βc +αi + Γ ic +δic ð6Þ

with δic: =
1
nic

Pnic
s = 1ϵics ∼

ind Nð0,νicÞ;νic =
σ2
ic

nic

Here,δic is the noise for individual i and cell type c, with variance
νic. By the central limit theorem, both δi and δic are approximately
Gaussian when nic is not too small, even though ϵics is very non-
Gaussian. Note that Eq. 6 is the same as Eq. 2.

Fitting and testing parameters of CTMM
We evaluated three approaches to estimate the parameters in CTMM:
ML, REML, and HE. We implemented ML by maximizing the likelihood
function using the BFGS algorithm implemented in the R function
`optim’ (Supplementary Note 1). REML was fit similarly using the
restricted likelihood, which residualizes covariates from the full like-
lihood (Supplementary Note 1). For both REML and ML, we reran 10
random restarts if the initial optimization attempt failed (Supple-
mentaryNote 1),which is important tomitigate bias from localmaxima
with modest sample sizes. We allowed negative variance components
to reduce bias, though the total expression variance was always posi-
tive. Due to the complexity of these likelihood functions, we evaluated
refining the BFGS solution with Nelder-Mead iterations; we found that
this is not necessary for the analyses considered in theMain text, but it
can be important for themore challenging analyses, such as fitting the
Free model with ML on OP data (Supplementary Fig. 34). We fit HE
analytically (Supplementary Note 1).

Because theCTP expression data is a vector of lengthNC, whereN
is the number of individuals, naively fitting CTMM inML and REML has
a computational complexity of OðN3C3Þ. We use several linear algebra
identities to simplify the complexity to OðNC3Þ. The relative gains will
increase asN andC grow,which areboth expected in future scRNA-seq
datasets.

Our primary test compared the Hom and Freemodels, which asks
whether interindividual variation is cell type-specific or shared uni-
formly across cell types. In other words, this is a test for differential
expression variance across cell types. By comparison, standard tests
for differential expression ask whether the mean expression levels, βc,
differ across cell types.

We implemented LRT and Wald tests to compare the Free and
Hommodels. For the LRT, we used C degrees of freedom because the
Free model adds variance components for each cell type (but see
ref. 39 and ref. 40 for amoredetailed discussionof these tests). For the
Wald test, we used an F-test with C numerator degrees of freedom and
N � R denominator degrees of freedom, where R is the number of
model parameters in the Free model, that is 2C + 1. We evaluated two
options to estimate the precision matrix for CTMM’s variance com-
ponent estimates, which is needed for theWald test. First, we used the
inverse of the Fisher information matrix for REML and ML, which is
consistent for large sample sizes. Second, we used a jackknife to
nonparametrically estimate the precision matrix by fitting the model
after excluding each sample in turn. For large sample sizes, both LRT
andWald tests are valid; however, we are interested in modest sample
sizes, and hence, we profile a wide range of approaches.

We tested for mean expression differentiation by evaluating the
null hypothesis that βc =βc0 for all cell types c and c0. β is the cell type
fixed effect (i.e., cell type-specific mean expression) and is estimated
using generalized least squareswith variancecomponentsfit under the
Free model. We used a Wald test for β with numerator degrees of
freedom C � 1 and denominator degrees of freedom N � R, where R is
the number of parameters in the Free model, that is 2C + 1. We esti-
mated the precisionmatrix for CTMM’s estimates of β using jackknife.
The jackknife includes re-fitting variance components, which is
important because these variance component estimates are noisy. As

the covariance matrix estimated by HE can be singular and the fixed
effects are not our focus, we tested formeanexpressiondifferentiation
simply using ordinary least squares.

We have also extended CTMM to accommodate additional ran-
dom effects (Supplementary Note 1). This can be essential in practice,
but it can be computationally infeasible as it requires inverting large
matrices. Fortunately, the primary use case involves blocked random
effects, such as experimental batch in our iPSC analysis. We derived a
different optimization approachdesigned specifically for this common
scenario, which simplified the computational complexity by orders of
magnitude. In our iPSC analysis, these manipulations reduced REML
computation time per gene from ~40 to ~10 s.

Prior LMM applications to scRNA-seq data
LMMs are a basic statistical framework for partitioning variation, and
several prior studies have applied LMMs to scRNA-seq data (Supple-
mentary Table 1). Most prior work has applied generic LMM methods
at the level of single cells. They fit variance components for batch
effects11,13, experimental context10, and/or some formof interindividual
variation11–14. Additionally, some of these studies model the non-
Gaussianity of cell-level expression data10,14. Despite the strengths of
these works, none aim to partition shared vs specific components of
interindividual variation. This is the key novelty in CTMM, and it
requires a different variance component model than the ones that
have been used in prior work. At a more technical level, CTMM
develops a novel testing framework based on jackknife rather than use
off-the-shelf tools, which solves biases in standard LMM variance
component tests due to the complexity of scRNA-seq data.

Simulation
We tested the performance of CTMM with a series of simulations
under Hom and Free models. We simulated gene expression for each
individual from Eq. 5 (for overall pseudobulk) and Eq. 6 (for cell type-
specific pseudobulk). We varied the number of individuals, cell type
proportions, number of cell types, and levels of cell type-specific var-
iance. For each simulated dataset, we evaluated all threemethods to fit
CTMM (ML, REML, and HE) and each applicable test for cell type-
specific interindividual variance (LRT and Wald). For each simulation
parameter setting, we ran 1000 replicate simulations to calculate the
average CTMM estimates, their sampling distributions, and the test
positive rate. We also simulated under the more complex Full model.
Further simulation details are provided in Supplementary Note 1, with
a list of simulation parameters in Supplementary Table 2.

We also performed simulations to assess CTMM’s sensitivity to
estimation errors in νic, the level of noise due to cell-level variation.
This is important because νic is not known in practice. Specifically, for
each νic, we draw xic i.i.d. from a Betað2,bÞ distribution and then add
+ xicνic or �xicνic before inputting νic to CTMM (Supplementary
Note 1). To span the range of estimation errors in the real iPSCs data,
we simulatedb= 20, 10, 5, 3, 2. Toevaluatepower under a rangeof Free
models, we varied cell type-specific variance for cell type 1 (V11) from
0.05 to 0.5 and fixed other cell type-specific variances to 0.1. For
simplicity, the Free model simulations are always used b= 5 (the most
realistic value). As this simulation focuses on CTMM’s utility in our real
data analysis, we simulated using the parameters we estimated in the
iPSCs data below (Supplementary Note 1), and we only examined CTP
as it is far more powerful. We ran 1000 replicates for each setting of
simulation parameters.

Differentiating iPSCs analysis
Data and model. Human induced pluripotent stem cells (iPSCs) are
derived from somatic cells that have been reprogrammed into an
embryonic-like pluripotent state. iPSCs can differentiate into diverse
cell types, with a concomitant transcriptomic trajectory across time as
the cells differentiate. We studied the transcriptome as iPSCs
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differentiate into endoderm using scRNA-seq data from 125 individual
donors13. Cells were collected on four consecutive days as the iPSCs
differentiated, starting from iPSCs, which we used to define four cell
types. We used the log-transformed gene expression data provided by
Cuomo et al., which has been through a thorough process of quality
control and normalization (https://zenodo.org/record/3625024#.Xil-
0y2cZ0s). The dataset includes 11,231 genes and 36,044 cells.

For the 33 individuals who had technical replicates in the data, we
only included the replicates with the largest number of cells. We
excluded individuals with fewer than 100 cells to better satisfy the
Gaussian approximation of δic, leaving 94 individuals.

For each gene, we standardized OP and CTP by scaling such that
OP has a mean of 0 and a variance of 1. We then fit this scaled OP and
CTP expression into Hom, Free, and Full models with ML, REML, and
HE. In all models, we adjusted for sex, neonatal diabetes, and the first
six principal components calculated on OP expression as fixed effects.
We used our extension of CTMM tomodel the experimental batch as a
random effect, which is important because the batch has large effects
that cannot be ignored yet has too many degrees of freedom to fit as
fixed effects (24 batches vs 94 individuals). We used Bonferroni cor-
rection to account for multiple testing across genes.

Impute pseudobulk data. For individual-cell type pairs with no more
than ten cells, yic and νic were set to missing. Requiring more than ten
cells is our default guidance (in practice, we find that our results are
robust to modifying this cutoff from ten cells to 5 or 20, Supplemen-
tary Fig. 35). We then imputed missing entries in yic and νic. We com-
pared three approaches to imputation (each applied separately to y
and ν). First, we imputed each gene separately using either
softImpute41 or MVN-impute (implemented in ref. 42). In brief, the
formermakes a low-rank approximation, while the latter approximates
individuals as independent and leverages correlations among cell
types. We also evaluated imputing all genes jointly across the tran-
scriptome using softImpute (in an N ×CG matrix, where G is the
number of genes); this is computationally impossible with MVN-
impute.

To evaluate imputation accuracy, we masked observed entries in
yic and νic and compared the imputed values to the masked true
values.Of note, if one cell type of an individual has less than or equal to
ten cells, all genes’ expression would be missing for the pair of indi-
vidual and cell type. To be realistic, we maintained this structure of
missingness by employing a “copy-mask” approach as in our prior
study42. We randomly sampled an individual with missing cell types
and masked the same cell types in another randomly chosen indivi-
dual. We repeated this process until 10% of all pairs of individual and
cell type were masked. We calculated correlation and mean squared
error (MSE) between imputed values and masked true values across
individuals for each gene-cell type pair. We conducted ten replications
of the process of masking and imputation and calculated the medians
of correlation and MSE across those repeats as final measures of
imputation accuracy. For νic, imputation might get negative values by
chance. We treated these negative variances in different ways in OP
and CTP expression data. InOP, we set negative variances to 0, so they
had little impact on the estimation of νi whilemaintaining information
from other cell types; in CTP, for each gene and cell type, we set them
to maximum raw νic in that specific gene and cell type, so they con-
tributed less to model likelihood. Note that standard approaches to
impute expression in single cells43,44 does not impute the pseudobulk
data, which has missing entries due to missing cells, not missing
expression within observed cells.

Enrichment of gene features related to enhancers and selection.
We evaluated four gene-level features: LOEUF, pLI, EDS, and the
number of enhancers. LOEUF and pLI were obtained from the Genome
AggregationDatabase (gnomAD) version 2.129. LOEUF andpLImeasure

a gene’s susceptibility to loss-of-function mutations, and they
approximately quantify the degree of selection on a gene. EDS and the
number of enhancers were obtained from Wang and Goldstein27. The
number of enhancers was computed from enhancer-gene links infer-
red by ref. 45 based on chromatin state and correlation of histone
modifications with gene expression. EDS is a comprehensive score
derived from 108 features associated with enhancer domains, includ-
ing the number of enhancers. It reflects the size and redundancy of
enhancer domains in a gene.

For each feature, genes were stratified into deciles based on their
respective feature scores. Subsequently, we computed both the mean
and median values of various gene expression properties within each
decile, as well as their standard errors. These gene expression prop-
erties are:

• the total interindividual variance, which sums the cell type-shared
variancewith the average cell type-specific variance: σ2

α + eV , whereeV = 1
C

PC
c= 1Vcc is the average cell type-specific variance.

• the proportion of interindividual variation that is cell type-spe-
cific, defined by eV

σ2
α +eV .• the amount of mean differences across cell types, quantified by

the variance of themean expression level across cell types: varðβÞ.
• the positive rate for two cell type-specificity tests: CTMM’s test of
cell type-specific interindividual variance and the ordinary test of
cell type-specific mean expression.

To robustly examine the broad relationship between CTMM
results and gene features, we performed a meta-regression of each
decile’smean andmedian CTMM results against the decile index using
ordinary least squares.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Processed single cell count data from iPSCs are publicly available from
Zenodo: https://zenodo.org/record/3625024#.Xil-0y2cZ0s. OneK1K
single-cell gene expression data are publicly available via Gene
Expression Omnibus (GSE196830 [https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE196830]). The simulated datasets and imputed
pseudobulk data were fully reproducible using the code provided in
the study and the publicly available iPSCs and OneK1K data. All data
generated during this study are included in this published article and
its supplementary information files.

Code availability
The CTMM Python package, along with Python (version 3.11.5) and R
(version 4.3.1) code used for all analyses in this paper, is available at:
https://github.com/Minhui-Chen/CTMM.
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