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Abstract
Let 𝜉 be an analytic bracket-generating distribution. We show that the subspace
of germs that are singular (in the sense of control theory) has infinite codimen-
sion within the space of germs of smooth curves tangent to 𝜉. We formalize this
as an asymptotic statement about finite jets of tangent curves. This solves, in the
analytic setting, a conjecture of Eliashberg and Mishachev regarding an earlier
claim by Gromov about the microflexibility of the tangency condition.
From these statements it follows, by an argument due to Gromov, that the ℎ-
principle holds for maps and immersions transverse to 𝜉.
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1 INTRODUCTION

1.1 Context of the problem

Let 𝑀 be a smooth 𝑚-manifold. A distribution 𝜉 on 𝑀 of rank 𝑘 is a section of the Grassmann bundle of 𝑘-planes
Gr(𝑇𝑀, 𝑘), that is, a smooth choice of 𝑘-plane 𝜉𝑞 ⊂ 𝑇𝑞𝑀 at each point 𝑞 ∈ 𝑀. Given such 𝜉, its space of sections Γ(𝜉)
is a 𝐶∞-module of vector fields. The Lie bracket inductively defines the following sequence of modules:

Γ(𝜉)(1) ∶= Γ(𝜉), Γ(𝜉)(𝑛+1) = [Γ(𝜉)(𝑛), Γ(𝜉)(𝑛)]

where the rightmost expression denotes taking the 𝐶∞-span of all possible brackets. We have thus a tower which we call
the (fast) Lie flag:

Γ(𝜉)(1) ⊂ Γ(𝜉)(2) ⊂ Γ(𝜉)(3) ⊂ ⋯ ⊂ Γ(𝜉)(𝑛) ⊂ ⋯ ⊂ Γ(𝑇𝑀).

The pointwise rank of these modules may depend on the point 𝑞 ∈ 𝑀, so they do not arise, in general, as spaces of sec-
tions of a distribution. The case of interest for us is when there is some 𝑛0 such that Γ(𝜉)(𝑛0) = Γ(𝑇𝑀); in this case, we say
that the distribution 𝜉 is bracket-generating of step 𝑛0. This condition is generic and many families of distributions, like
contact or Engel, are particular examples.
This notion plays a central role in many areas of mathematics, including contact topology, geometric control theory,

geometry of PDEs, and Subriemannian geometry. It is natural, in all these settings, to study submanifolds of𝑀 tangent to
the distribution 𝜉; such a submanifold is said to be horizontal or integral.
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2 PINO and SHIN

In this paper, we focus on horizontal curves. For us, two properties are of interest:

∙ Local integrability: given a vector tangent to 𝜉, there is a smooth horizontal curve tangent to it.
∙ Microflexibility: given a horizontal curve 𝛾 ∶ 𝐼 → 𝑀 and a deformation through horizontal curves 𝛾𝑡 ∶ 𝐼′ → 𝑀 over
a closed subset 𝐼′ ⊂ 𝐼, we can find, for small times, a global horizontal deformation 𝛾𝑡 of 𝛾 agreeing with 𝛾𝑡 over 𝐼′.

The first property states that, locally, there are plenty of horizontal curves. This is easy to prove: any vector field tangent
to 𝜉 integrates to a family of horizontal curves. The second property asserts that horizontal curves, due to the bracket-
generating condition, should behave in a flexible manner, admittingmany deformations.When dealing with families, one
would additionally desire for these properties to hold parametrically and relative in the parameter (this will be spelled out
in detail in Section 2.4).
In [17, p. 84], Gromov states:

Claim 1.1 (Gromov). Let (𝑀, 𝜉) be a manifold endowed with a bracket-generating distribution. Local integrability and
microflexibility holds, parametrically and relative in the parameter, for smooth curves tangent to 𝜉.
Equivalently, in ℎ-principle language: the differential relation tang describing smooth curves in 𝑀 tangent to 𝜉 is

microflexible and locally integrable.

It turns out that this claim is actually false as stated. Bryant and Hsu showed in [9] that there are examples of bracket-
generating distributions (the simplest ones being Engel and Martinet distributions) that possess rigid horizontal curves,
that is, curves which cannot be deformed relative to their endpoints. Given such a rigid curve 𝛾, we can choose a deforma-
tion 𝛾𝑡 whose domain is a neighborhood of the endpoints (where we require it to be fixed) and a subinterval in the interior
(where we require it to be non-trivial). As such, it does not admit an extension to a global deformation, contradicting
microflexibility. Understanding rigidity has been a central problem in Subriemannian geometry since then [3, 27, 28].
Eliashberg and Mishachev conjectured in [14, p. 138] that Gromov’s Claim 1.1 should hold if we restrict to a suitable

subfamily of horizontal curves. In this paper we define such a subfamily, state a modification of Claim 1.1, and prove it
when 𝜉 is analytic.

1.2 Adjusting the claim

We need some preliminary notation and definitions: let (𝑀, 𝜉) be a smooth manifold equipped with a distribution. The
space of smooth horizontal maps 𝛾 ∶ [𝑎, 𝑏] → (𝑀, 𝜉), endowed with the 𝐶∞-topology, is denoted by 𝐶∞([𝑎, 𝑏],𝑀, 𝜉). The
subspace of maps with initial point 𝛾(𝑎) = 𝑞 ∈ 𝑀 is denoted as 𝐶∞𝑎,𝑞([𝑎, 𝑏],𝑀, 𝜉). Both of them are Fréchet manifolds.
One may then ask whether the space of horizontal maps with both ends fixed is a manifold as well. These spaces can

be described as the fibers of the smooth map.

Definition 1.2. The endpoint map is:

𝔈𝔭 ∶ 𝐶∞𝑎,𝑞([𝑎, 𝑏],𝑀, 𝜉) ⟶ (𝑀, 𝜉)

𝔈𝔭(𝛾) ∶= 𝛾(𝑏).

Allowing us to define:

Definition 1.3. A curve 𝛾 ∈ 𝐶∞𝑎,𝑞([𝑎, 𝑏],𝑀, 𝜉) is regular if the endpoint map𝔈𝔭 is a submersion at 𝛾. Otherwise, 𝛾 is said
to be singular.

That is, regularity of 𝛾 implies that the subspace of horizontal maps with endpoints 𝛾(𝑎) and 𝛾(𝑏) is a manifold at 𝛾, cut
out by 𝔈𝔭. It follows that any small perturbation of the endpoint 𝛾(𝑏) can be followed by a perturbation of 𝛾 itself. This is
an instance of microflexibility for regular curves: a deformation defined close to the endpoints can be extended to a global
one. One may show that a rigid curve is necessarily singular [8].
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PINO and SHIN 3

Despite this flexibility, regular curves are not the subclass of horizontal curves that we want to work with: whereas
regularity is a global property (i.e., it may be the case that 𝛾 is regular but some subinterval is not) microflexibility is local
(we must be able to extend any deformation, given over any closed subset). As such, we should focus on curves defined
by a local condition.
The obvious candidate would be the class of curves all whose subintervals are regular. Despite being natural, such a

class is hard to work with, because it is defined at the level of germs. Instead, one may consider the following definition
(we refer to Agrachev et al. [2] for an in-depth treatment):

Definition 1.4. Let 𝛾 ∶ [0, 1] → (𝑀, 𝜉) be a horizontal curve and let 𝜙𝑡 be a horizontal flow with 𝛾 as a flowline.
The curve 𝛾 is said to be ample1 at 0 if the linear subspaces[

𝑑𝑘

𝑑𝑘𝑡

|||||𝑡=0𝜙∗𝑡 𝜉
]
(𝛾(0)) ⊂ 𝑇𝛾(0)𝑀,

for varying 𝑘 ∈ ℤ≥0, span 𝑇𝛾(0)𝑀.

This definition, which may be interpreted as saying that 𝜉 is bracket-generating relative to 𝛾, is independent of the
choice of auxiliary horizontal flow 𝜙𝑡. Furthermore, unlike regularity, ampleness can be determined using the (infinite)
jet of 𝛾. Concretely: if the first 𝑟 derivatives in the definition are enough to span 𝑇𝛾(0)𝑀, we deduce that the ampleness of
𝛾 depends solely on the 𝑟-jet 𝑗𝑟𝛾(0). Such a jet is said to be ample.
We conjecture:

Conjecture 1.5. Let (𝑀, 𝜉) be bracket-generating. Then, local integrability and microflexibility hold, parametrically and
relative in the parameter, for ample curves tangent to 𝜉.

Onewould like to claim, additionally, that the family of ample curves is large (i.e., that only “a few”horizontal germs/jets
are being discarded). A first result in this direction says that regular curves are generic among horizontal curves of bracket-
generating distributions. This is a folklore result in the geometric control theory; it appeared first in [25] and was later
loosely stated without proof in [20, Corollary 7]. We also conjecture:

Conjecture 1.6. Let (𝑀, 𝜉) be bracket-generating. Then:

∙ Ample jets of order 𝑟 are open and dense among horizontal jets.
∙ The codimension of their complement goes to infinity with 𝑟.

In particular:

∙ Germs of ample curves are open and dense among horizontal germs.
∙ Their complement has infinite codimension.

Do note that, by definition of ampleness, the complement of the subset of ample germs/jets contains all germs/jets of
singular curves.

1.3 Statement of the main results

In this paper, we study Conjectures 1.5 and 1.6 when 𝜉 is analytic. Even if 𝜉 is assumed to be analytic, our statements refer
to smooth curves.
We do not solve the two conjectures. Instead, we replace ampleness by the notion of microregularity (see Section 7,

particularly Definitions 7.13 and 7.16). This is a technical definition, needed for our arguments, and which strongly relies
on 𝜉 being analytic. It will be immediate from its definition that:
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4 PINO and SHIN

∙ Microregularity can be checked at the level of jets.
∙ Amicroregular 𝑟-jet cannot be the 𝑟-jet of a singular curve.
∙ Microregular curves are regular over any subinterval.

We emphasize that definingmicroregular jets is a large part of our arguments. Once that is done, it will follow that:

Theorem 1. Let (𝑀, 𝜉) be bracket-generating and real analytic. Then, local integrability and microflexibility hold,
parametrically and relative in the parameter, for microregular curves tangent to 𝜉.

Furthermore:

Theorem 2. Let (𝑀, 𝜉) be bracket-generating and real analytic. Then:

∙ Microregular jets of order 𝑟 are open and dense among horizontal jets.
∙ Their complement has codimension of order 𝑂(𝑟).

In particular:

∙ Germs of microregular curves are open and dense among horizontal germs.
∙ Their complement has infinite codimension.

Theorem 2 is a key ingredient in the proof of Theorem 1.
The main idea behind both claims is as follows. Using tools from the theory of semianalytic and subanalytic sets, we

prove that 𝑇∗𝑀 admits a stratification that is adapted to 𝜉 (in a precise sense described in Section 6). This provides us with
control on the cotangent lifts of singular curves and thus on the singular curves themselves and their jets/germs.
We explain our precise setup in Section 2, including an outline of the proof in Section 2.5. In the remainder of this

section, we provide several useful rephrasings of Theorem 2, as well as some corollaries about the classification of maps
transverse to 𝜉.

Remark 1.7. The cotangent viewpoint we use to study singular curves is well-known in the Subriemannian geometry
literature, and stratification ideas have been used before to approach the Sard conjecture for the endpoint map [4, 7, 21, 22].

Remark 1.8. Our approach may also apply to prove the same results for 𝜉 smooth and generic (i.e., lying in an open dense
subset of the space of distributions defined by transversality with respect to a stratification in jet space). We leave this as
an open question, but we point out that a related analysis of jets was carried out in [12] to prove that a generic smooth 𝜉
with rank(𝜉) ≥ 3 admits no abnormal minimizers.
A more difficult problem, which was suggested to us by Sullivan, reads: Can these methods also be applied to more

general smooth distributions (for instance, generic with prescribed growth vector)?

Remark 1.9. After this paper appeared on the arXiv, Bhowmick [5] proved that microflexibility and local integrability
hold (also parametrically) for so-called “weakly regular” curves, under the assumption that 𝜉 is smooth and has constant
growth vector. There is no overlap between our approaches: Bhowmick usesNash–Moser techniques and a rather involved
algebraic argument to produce weakly regular jets lifting a given horizontal jet.
We do not know the precise relationship between the three notions of weakly regular, ample, andmicroregular (the last

one being only defined in the analytic setting) but we conjecture that the implications are as follows:

𝑤𝑒𝑎𝑘𝑙𝑦𝑟𝑒𝑔𝑢𝑙𝑎𝑟 ⟺ 𝑎𝑚𝑝𝑙𝑒 ⇒ 𝑚𝑖𝑐𝑟𝑜𝑟𝑒𝑔𝑢𝑙𝑎𝑟

If this is the case, Conjectures 1.5 and 1.6 are settled for 𝜉 of the constant growth vector.
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PINO and SHIN 5

Regarding the first conjectural equivalence, observe that ampleness and weak regularity, for a first-order jet 𝑗10𝛾, both
mean that the tangent space at 𝛾(0) is spanned by

image(𝜄𝛾′(0)Ω) =
𝑑

𝑑𝑡

||||𝑡=0𝜙∗𝑡 𝜉 mod 𝜉
and 𝜉, where Ω is the curvature of 𝜉 at 𝛾(0). Bhowmick called this 𝑑𝜆𝑠-regularity (not to be confused with regularity).
One may moreover try to relate these three notions to characteristic jets in the annihilator of 𝜉. This in fact motivates

how we define microregularity (Definition 7.16): a jet is microregular (roughly) if it cannot be lifted to a characteristic
curve. We expect a jet to be ample if and only if it is not the projection of a characteristic jet, which would yield the last
conjectural implication. Do note that not all jets solving the characteristic equation extend to characteristic curves.

1.4 Transverse maps

In [17, p. 84], Gromov used Claim 1.1 to argue that sheaves of maps transverse to bracket-generating distributions are
flexible and thus satisfy the complete ℎ-principle. This is still an open question, but some instances are known: the contact
case has been proven in [14, Section 14.2] and the Engel case in [24]. The paper settles the question for 𝜉 analytic:

Theorem 3. Let (𝑀, 𝜉) be an analytic, bracket-generating distribution. Let 𝑉 be a smooth manifold. Then both

∙ maps 𝑓 ∶ 𝑉 → 𝑀 with 𝑑𝑓 ∶ 𝑇𝑉 → 𝑇𝑀 → 𝑇𝑀∕𝜉 surjective,
∙ and immersions transverse to 𝜉,

satisfy an h-principle that is 𝐶0-close, parametric, and relative (both in the parameter and the domain).

That is, the construction and classification up to homotopy ofmaps and immersions transverse to 𝜉 reduces to the study
of their formal analogs (i.e., bundle maps 𝑇𝑉 → 𝑇𝑀∕𝜉 of maximal rank).
Let us briefly recall the strategy proposed by Gromov: given a formal transverse map/immersion of𝑉 into𝑀, we extend

it to a formal map 𝑉 × ℝ → 𝑀 which is a formal horizontal immersion in the ℝ direction and formally transverse in the
𝑉 directions. Then, one may use the microflexibility and local integrability of the horizontal immersion condition, as well
as the fact that being transverse is an open condition, to invoke holonomic approximation, producing thus a transverse
map 𝑉 → 𝑀.
This strategy can be carried out successfullywhen there are no singular curves. For contact structures, thiswas explained

in detail in [14, Section 14.2]. The proof there applies as well to fat distributions.
In the presence of singular curves, microflexibility fails and one must replace horizontal curves by a suitable subclass

(but the argument is otherwise the same). We claim that microregular curves are a nice replacement. This idea was used
already in the Engel case [24, Section 5.3]: there, the singular curves form a finite dimensional family and microregular
curves are very easy to construct.
In our setting, we must show that microregular immersions satisfy microflexibility and local integrability. This follows

from:

Corollary 1.10. Let (𝑀, 𝜉) be analytic and bracket-generating. Let be an open differential relation for curves in𝑀. Then:

∙ There is a weak equivalence between formal solutions of ∩microreg and formal solutions of ∩tang.
∙  ∩microreg is microflexible and locally-integrable.

Indeed, we can take to be the relation defining immersionsimm. The corollary will be proven in Section 7.6.
Corollary 1.10, together with Gromov’s argument, yield Theorem 3. We invite the reader to complete the proof by

referring to the contact [14, Section 14.2] and Engel [24, Section 5.3] cases.
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6 PINO and SHIN

1.5 Microregularity is generic for regular families

According to Theorem 2, singular germs have infinite codimension within the space of all horizontal germs. We can
transform this into a global genericity statement about families of microregular curves. The caveat is that, due to the
phenomenon of rigidity, this cannot hold for arbitrary families of horizontal curves. Instead:

Theorem 4. Let (𝑀, 𝜉) be bracket-generating and real analytic. Let 𝐾 be a compact manifold, playing the role of parameter
space. Fix an integer 𝑎.
Then, any family of regular horizontal curves (𝛾𝑘 ∶ 𝐼 → 𝑀)𝑘∈𝐾 can be 𝐶𝑎-perturbed, through regular horizontal curves, to

yield a family of microregular horizontal curves.
This also holds relative to a closed polyhedron 𝐾′ ⊂ 𝐾 in the parameter space. It also holds relative to a closed polyhedron

𝐼′ ⊂ 𝐼 in the domain, as long as the curves are regular in its complement.

This should be understood as a form of Thom transversality with respect to the locus of non-microregular jets, as long
as we start with a regular family. We prove it in Section 8.

2 SETUP AND OVERVIEWOF THE PROOF

For the rest of the paper, we fix a real analytic manifold𝑀 endowed with an analytic bracket-generating distribution 𝜉.
We will repeatedly make use of Gromov’s notation 𝑝(𝐴) to denote an arbitrary open neighborhood of 𝐴 of sufficiently
small size.
Our goal in this section is to introduce the conceptual setup required for Theorems 1 and 2. We phrase our results using

the language of jet spaces, as is customary in ℎ-principle. We recommend the reader to refer to the standard references
[14, 17].
In Section 2.1, we review jet spaces. Using this language, we discuss singularity and (micro)regularity at the level of jets

(Section 2.2), leading to precise rephrasings of Theorem 2 in Section 2.3. In Section 2.4, we spell out what local integrability
and microflexiblity mean in the context of this paper. Lastly, in Section 2.5 we sketch the proof of Theorem 2.

2.1 Notation: jet spaces

Jet spaces are the central objects of this paper. To simplify our notation, we have made some slightly non-standard choices
that we now explain.

2.1.1 Jet spaces of curves

The most important jet spaces we consider are jet spaces of curves. The relations we consider for them (being hori-
zontal/singular/regular/characteristic) are all diff-invariant (i.e., invariant under the action of diffeomorphisms on the
domain), so the precise domain of the curve is not important. As such, we look at curves with domain 𝑝(0) ⊂ ℝ with
the origin as marked point.
We then write 𝐽𝑟(𝑀) for the space of 𝑟-jets at 0 of curves𝑝(0) → 𝑀. All these spaces fit into a tower of affine bundles:

⋯→ 𝐽𝑟+1(𝑀) → 𝐽𝑟(𝑀) → ⋯ → 𝐽0(𝑀) = 𝑀.

This tower of jets can be extended on the left by adding a projection from 𝐽∞(𝑀), the space2 of infinite jets of maps
𝑝(0) → 𝑀 based at the origin.
An important remark is that, even though we have dropped the domain 𝑝(0) and the basepoint 0 from the notation,

these are not jets of submanifolds (for instance, the first jet is allowed to be zero). We write 𝑗𝑟𝛾 for the 𝑟-jet at 0 of the
curve 𝛾. Sometimes it will be convenient to write 𝐽𝑟𝑞(𝑀) for the subspace of 𝐽𝑟(𝑀) consisting of jets based at 𝑞 ∈ 𝑀.
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PINO and SHIN 7

2.1.2 The reparameterization action

𝑝(0) ⊂ ℝ admits a (germ of)ℝ∗-action by dilations fixing the origin. This reparameterizes the domain of our jets 𝐽𝑟(𝑀),
keeping their 0-jet fixed. As such, we obtain an action:

𝜌 ∶ ℝ∗ × 𝐽𝑟𝑞(𝑀) → 𝐽𝑟𝑞(𝑀)

Note that 𝜌 depends on the concrete parameterization of ℝ we have chosen.
Themap 𝜌 can be expressed explicitly in local coordinates. If we pick a chart𝑈 ⊂ 𝑀 → ℝ𝑛, any element 𝜎 ∈ 𝐽𝑟𝑞(𝑀) can

be written as (𝑞, 𝐿1, … , 𝐿𝑟), where 𝐿𝑖 denotes the coefficients of the 𝑖th derivative (which is well-defined in such a chart).
Then:

𝜌(𝑎, 𝜎) = (𝑞, 𝑎𝐿1, 𝑎
2𝐿2, … , 𝑎

𝑟𝐿𝑟).

The only fixed point is the jet of the constant function mapping to 𝑞.
Equivalently, and still in local coordinates, 𝐽𝑟𝑞(𝑀) is a graded vector space in which the pure 𝑖-order jets correspond

to degree 𝑖. The action 𝜌 is precisely the homogeneous/weighted scaling. We may then take the 𝜌-quotient, yielding a
weighted projectivization ℙ𝐽𝑟𝑞(𝑀).
In this paper, all operations and maps involving jets of curves are 𝜌-equivariant, and they induce maps between the

corresponding (weighted) projectivizations. The fact that these are compact (unlike the original jet spaces) will play a
(technical) role in Section 7.5 (and earlier in Corollary 7.6).

2.1.3 Curves in vector bundles

Our analysis of singular versus horizontal jets is based on a microlocal criterion that lifts singular curves to characteristic
curves in the cotangent bundle (Proposition 2.2, to be explained below). It is convenient to introduce some preliminary
definitions with this in mind.
Let 𝜋 ∶ 𝐸 → 𝑋 be a vector bundle. There is a natural action by dilations:

𝜂 ∶ ℝ∗ × (𝐸 ⧵ 𝑋) → (𝐸 ⧵ 𝑋).

The quotient of 𝐸 ⧵ 𝑋 by the 𝜂-action is the projective bundle ℙ𝐸 → 𝑋. We often think of 𝜂 as acting trivially on the base
𝑋, so the projection 𝜋 is 𝜂-equivariant.
A trivial but important remark is the following:

Lemma 2.1. Let 𝑋 be compact. Consider the projection map between jets of curves:

𝜋 ∶ 𝐽𝑟(𝐸 ⧵ 𝑋) → 𝐽𝑟(𝑋).

Lift the 𝜂-action to both spaces (trivially in the second). Then:

∙ The 𝜂 and 𝜌 actions commute with one another, yielding an (ℝ∗)2-action on both spaces.
∙ The map 𝜋 is (𝜌 ⊕ 𝜂)-equivariant.
∙ The quotients 𝐽𝑟(𝐸 ⧵ 𝑋)∕(𝜌 ⊕ 𝜂) and 𝐽𝑟(𝑋)∕(𝜌 ⊕ 𝜂) are smooth compact manifolds.
∙ If 𝐸 → 𝑋 is analytic, so are the quotients and the projection map.

Again, the important property here is compactness, which we will invoke in Section 7.5.
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8 PINO and SHIN

2.1.4 Other jet spaces

In this paper, we will make use of other jet spaces. For instance, we will often pullback jets of differential forms by jets of
curves. In order to keep notation light, we have opted to use the following alternate notation for these other jet spaces.
Let 𝐸 → 𝑋 be a smooth bundle. Then, 𝐸(𝑟) will denote the space of 𝑟-jets of sections. 𝐸(𝑟)𝑥,𝑒 will be used for the subspace

of those jets with basepoint 𝑥 ∈ 𝑋 and value 𝑒 ∈ 𝐸. Sometimes we will fix only the basepoint, writing 𝐸(𝑟)𝑥 . In all cases, we
will use 𝑗𝑟𝑥𝜎 for the 𝑟-jet at 𝑥 of the section 𝜎 ∶ 𝑋 → 𝐸.

2.2 The main characters in this story

Horizontality, singularity, and microregularity are constraints that a curve in (𝑀, 𝜉) may satisfy. We are interested in
studying 𝑟-jets of curves that satisfy the differential consequences of these constraints up to order 𝑟. All the material in
this subsection will reappear in a more formal manner in Section 7.

2.2.1 Horizontal jets

Being tangent to 𝜉 defines a first-order differential relation tang for curves. This relation is diff-invariant and can be
understood as a subset of 𝐽1(𝑀); we denote it by 𝐽1(𝑀, 𝜉). Its differential consequences define a refined relation 𝐽𝑟(𝑀, 𝜉) ⊂
𝐽𝑟(𝑀) for each 𝑟 (including 𝑟 = ∞) by prolongation; these are the 𝑟-jets of curves tangent to 𝜉 up to order 𝑟. We describe
𝐽𝑟(𝑀, 𝜉) in detail in Section 3.4.

2.2.2 Characteristic jets

We claim that being singular constrains the 𝑟-jets of a horizontal curve. This is best seen using the microlocal
characterization of singular curves introduced by Hsu in [20, Theorem 6]:

Proposition 2.2 (Hsu). Let 𝑍1 ⊂ 𝑇∗𝑀 be the annihilator bundle of 𝜉. Endow it with the tautological Liouville 1-form 𝜆. A
horizontal curve 𝛾 ∶ 𝐼 → 𝑀 is singular if and only if there exists a lift

𝛾 ∶ 𝐼 → 𝑍1 ⧵ 𝑀 ⊂ 𝑇∗𝑀 s.t. 𝑖𝛾′𝑑𝜆|𝑍1 = 0.
A curve satisfying this condition is said to be characteristic.

We will elaborate further on this symplectic formalism in Section 4. We then say that an element in 𝐽𝑟(𝑍1) (i.e., an 𝑟-jet
of curve) is characteristic (Definition 7.2) if it vanishes to order 𝑟 when evaluated in 𝑑𝜆|𝑍1 and is based away from the
zero section.
Due to the nature of our argument, it is sufficient to restrict our attention to a certain subspace 𝐽𝑟(𝑍1) of character-

istic jets, called the closure of the jets of tangency type. Roughly speaking, these are 𝑟-jets that can actually be tangent to
characteristic curves. This is explained further in Section 7.3.

2.2.3 Inadmissible jets

Motivated by Hsu’ result, we project 𝐽𝑟(𝑍1) to 𝐽𝑟(𝑀, 𝜉), yielding a closed subset 𝐽𝑟(𝑀, 𝜉)inadm which we call the locus of
inadmissible 𝑟-jets (Section 7.5). We point out that being inadmissible is not exactly the same as satisfying the singularity
condition up to order 𝑟. However, 𝑟-jets of singular curves are always inadmissible, so it is indeed sufficient for us to study
this condition.
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PINO and SHIN 9

2.2.4 Microregular jets

The locus of microregular jets 𝐽𝑟(𝑀, 𝜉)microreg (Definition 7.16) is the complement of 𝐽𝑟(𝑀, 𝜉)inadm ⊂ 𝐽𝑟(𝑀, 𝜉). Any germ
of curve extending a microregular 𝑟-jet is regular.
By taking the limit as 𝑟 → ∞ we can define the differential relation:

microreg ∶= 𝐽
∞(𝑀, 𝜉)microreg ⊂ 𝐽

∞(𝑀, 𝜉) ⊂ 𝐽∞(𝑀).

2.3 Rephrasings of Theorem 2

Using the definitions introduced in the previous subsection, we can provide a more precise reformulation of Theorem 2:

Theorem. Let (𝑀, 𝜉) be bracket-generating and real analytic. Then, 𝐽𝑟(𝑀, 𝜉)inadm ⊂ 𝐽𝑟(𝑀, 𝜉) is a closed subanalytic set
whose codimension is bounded from below by 𝑂(𝑟).

And yet another incarnation of Theorem 2:

Theorem. Let (𝑀, 𝜉) be bracket-generating and real analytic. Let𝐾 be a compactmanifold. Then, there exists 𝑟 = 𝑂(dim(𝐾))
such that any family of vectors (𝑣𝑘)𝑘∈𝐾 tangent to 𝜉 may be extended to a 𝐾-family of 𝑟-jets of curves (𝜈𝑘)𝑘∈𝐾 satisfying:

∙ 𝜈𝑘 has 𝑣𝑘 as first-order data,
∙ 𝜈𝑘 is a horizontal, microregular 𝑟-jet.

Furthermore, the 𝐾-family of extensions (𝜈𝑘)𝑘∈𝐾 may be assumed to agree with any given extension (𝜈𝑘)𝑘∈𝑝(𝜕𝐾) along the
boundary of the parameter space.

We point out that the same statement holds if, instead of first jets, we start with a family of horizontal 𝑎-jets. Lastly:

Theorem. The projection 𝐽∞
microreg

(𝑀, 𝜉) → 𝐽1(𝑀, 𝜉) is a Serre fibration with weakly contractible fibers. In particular, there
is a weak equivalence between the spaces of sections:

Γ(𝐽∞(𝑀, 𝜉)microreg) → Γ(𝐽1(𝑀, 𝜉)).

This statement says that the formal data associated with the microregular relationmicroreg is equivalent, up to homo-
topy, to the formal data associated withtang (which is contractible because 𝜉 is a bundle). Corollary 1.10 follows almost
immediately from it.
All these statements will be proven in Section 7.

2.4 What is the meaning of microflexibility and local integrability?

At this point, we should define the two central concepts appearing in Theorem 1. They are adaptations of the standard
definitions [14, Chapter 13] to our setting. Microflexibility in its parametric and relative forms reads:

Definition 2.3. Let 𝐾 be a compact, finite-dimensional manifold. We say that a 𝐾–family of microregular horizontal
curves (𝛾𝑘 ∶ 𝐼 → 𝑀)𝑘∈𝐾 is microflexible if, for any:

∙ closed subset �̃� ⊂ 𝐼,
∙ family of germs along �̃� of microregular horizontal curves (𝛾𝑘,𝑠)𝑘∈𝐾,𝑠∈[0,1] satisfying 𝛾𝑘,0 = 𝛾𝑘,

there is a family of microregular horizontal curves (𝛾𝑘,𝑠)𝑘∈𝐾,𝑠∈[0,𝛿] extending both (𝛾𝑘) and (𝛾𝑘,𝑠), for some 𝛿 > 0.
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10 PINO and SHIN

Additionally, microflexibility is relative in the parameter if, for any:

∙ CW-complex of positive codimension 𝐾 ⊂ 𝐾,
∙ family of microregular horizontal curves ( ˜̃𝛾𝑘,𝑠)𝑘∈𝑝(𝐾),𝑠∈[0,1] extending both (𝛾𝑘) and (𝛾𝑘,𝑠) in 𝑝(𝐾),

the family (𝛾𝑘,𝑠)𝑘∈𝐾,𝑠∈[0,𝛿] can be chosen to extend ( ˜̃𝛾𝑘,𝑠)𝑘∈𝐾,𝑠∈[0,𝛿] as well.

In Section 9, we prove that parametric and relative microflexibility holds for microregular curves, that is, any family
of microregular curves is microflexible. The proof of this statement is standard, albeit technical, but it does require us to
prove local integrability first.

Definition 2.4. We say that (parametric) local integrability holds for microregular curves in (𝑀, 𝜉) if the following state-
ment is true: let 𝐾 be any compact manifold. Let (𝑣𝑘)𝑘∈𝐾 be any finite-dimensional family of vectors tangent to 𝜉. We can
then extend (𝑣𝑘)𝑘∈𝐾 to a family of microregular horizontal curves (𝛾𝑘)𝑘∈𝐾 with 𝛾′𝑘(0) = 𝑣𝑘.
We will say that local integrability is relative in the parameter if the following holds: let �̃� ⊂ 𝐾 be a CW-complex of

positive codimension. Let (𝛾𝑘)𝑘∈𝑝(𝜕𝐾) be a family of microregular horizontal curves with 𝛾𝑘
′
(0) = 𝑣𝑘. Then, we may

choose (𝛾𝑘)𝑘∈𝐾 so that 𝛾𝑘 = 𝛾𝑘 for all 𝑘 ∈ 𝜕𝐾.

Most of the paper is dedicated to proving local integrability, which is essentially equivalent to Theorem 2.

2.5 Some words about the proof

We close this sectionwith a brief discussion of the techniques involved in the proof of Theorem 2: according to Hsu’s result
Proposition 2.2, we should study the kernel of 𝑑𝜆|𝑍1 in order to determine the space 𝐽𝑟(𝑍1) . We then project it down to
obtain the space of interest 𝐽𝑟(𝑀, 𝜉)inadm.
Due to the analyticity of 𝜉, we stratify𝑍1 into semianalytic submanifolds in amanner adapted to 𝑑𝜆 (Section 6). Describ-

ing the characteristic jets tangent to a given stratum is straightforward (Section 7.3, Proposition 7.9). Such a jet is said to
be of tangency type; the collection of all of them is denoted by 𝐽𝑟(𝑍1) .
However, a characteristic 𝑟-jet may not be tangent to the stratum in which it is based. If such an 𝑟-jet extends to an

actual characteristic curve, it will lie in the closure of the characteristic 𝑟-jets tangent to a (possibly different) stratum
(Proposition 7.15). This is the reason why we focus on the closure 𝐽𝑟(𝑍1) ; it is a closed semianalytic subvariety of 𝐽𝑟(𝑍1).
During this process, we have to pay particular attention to the locus inwhich the rank of 𝑑𝜆|𝑍1 isminimal. Characteristic

curves contained in this locus (i.e., curves which are not Goh) are an important subject of study in control theory [1, 23].
More generally, we have to pay attention to the vanishing of the successive curvatures of the Lie flag {Γ(𝜉)(𝑛)}𝑛=1,…,𝑛0 . The
key remark is Proposition 4.6: it states that, in the (cotangent) locus where the (𝑛 − 1)th curvature vanishes, it is sufficient
to study the characteristic jets of Γ(𝜉)(𝑛) tangent to 𝜉 (because the other jets are taken into account by the closure process
described above).
Lastly, we bound from below the codimensions of 𝐽𝑟(𝑍1) and its projection 𝐽𝑟inadm(𝑀, 𝜉). Using the bracket-generating

assumption, we prove that this bound increases linearly with 𝑟 (Lemma 6.7 and Proposition 7.14). This will conclude
the proof.
These arguments require some standard results from analytic geometry, as well as some careful linear algebra; we give

the necessary background in Section 5.
The outline presented in this subsection assumes that 𝜉 is regular (i.e., that the Lie flag is a flag of constant rank dis-

tributions). To prove the result without this assumption we will need to additionally stratify 𝑀 according to the growth
vector. Over the open strata, we will argue as we just outlined. The jets over lower-dimensional strata will be dealt with
separately (Section 7.4).
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PINO and SHIN 11

3 THE EHRESMANN LIFTINGMAP

In this section, we work with (𝑊𝑚,𝑙), a smooth𝑚-dimensional manifold endowed with a (not necessarily analytic nor
bracket-generating) distribution of rank 𝑙.
Our goal is discussingDefinition 3.1: it allows us tomanipulate horizontal curves byworking in (semi-)local coordinates

in which  looks like a connection. We adapt this discussion to the study of horizontal jets in Section 3.4. Finally, in
Section 3.5, we reintroduce the analyticity hypothesis; this provides us with finer control regarding the structure of the
space of horizontal jets.

3.1 Ehresmann charts

We mark a preferred point 𝑞0 ∈ 𝑊. By smoothness of , we can choose a chart 𝑈 ⊂ ℝ𝑚 → 𝑊 containing 𝑞0 such that
the distribution  is graphical with respect to ℝ𝑙. More precisely, identifying 𝑈 with its image, there is a locally defined
projection 𝜋 ∶ 𝑈 → ℝ𝑙 such that

𝑑𝑞𝜋| ∶ 𝑞 → 𝑇𝜋(𝑞)ℝ
𝑙

is an isomorphism for all 𝑞 in 𝑈.

Definition 3.1. We say that 𝑈 → 𝑊 is an Ehresmann chart for . The map 𝜋 ∶ 𝑈 → ℝ𝑙 is called the Ehresmann
projection map.

In this way, we can view our manifold𝑊, locally, as (an open subset in) the total space of a vector bundle with base ℝ𝑙
and fiber ℝ𝑚−𝑙. The distribution is thus viewed as an Ehresmann connection. From a control theory perspective: if we
project with 𝜋 and then take derivatives, we are effectively passing to the space of controls. We abuse notation and go back
and forth between𝑊 and 𝑈. We will write for the distribution in both cases.

3.1.1 Ehresmann charts associated with curves

In Section 8, we will need Ehresmann charts containing a given horizontal curve 𝛾.

Proposition 3.2. Let 𝛾 ∶ 𝐼 → (𝑊,) be a horizontal curve with domain 𝐼 either an interval or 𝕊1. Then, there is:

∙ An immersion 𝜙 ∶ 𝑈 ⊂ 𝐼 × ℝ𝑚−1 → 𝑊,
∙ and a map 𝛾 ∶ 𝐼 → 𝑈,

such that:

∙ 𝜙◦𝛾 = 𝛾,
∙ 𝜙∗ is graphical over 𝐼 × ℝ𝑙−1.

Proof. First, let us explain the proof when 𝛾 is immersed: the bundles 𝑇𝑊 and are trivial when pulled back to 𝐼. As such,
we can find vector fields spanning∕⟨𝛾′⟩ and extend them to a framing of 𝑇𝑊∕⟨𝛾′⟩ around 𝛾. We can then iteratively use
their flows to build the chart around 𝛾: The curve itself serves as the first axis, and the framing of ∕⟨𝛾′⟩ yields the next
(𝑙 − 1)-coordinates.
Now, the general setting with 𝐼 an interval (the circle case is almost the same): we cover 𝐼 by a finite, ordered collection

of intervals 𝐼𝑖 = [𝑎𝑖, 𝑏𝑖], whose only non-trivial intersections are the intervals 𝐼𝑖 ∩ 𝐼𝑖+1 = [𝑎𝑖+1, 𝑏𝑖]. Refining the covering,
we may assume that there is an Ehresmann chart 𝜙𝑖 ∶ 𝑈𝑖 ⊂ ℝ𝑚 → 𝑊 with image 𝑉𝑖 such that the conclusions of the
proposition apply to 𝜙𝑖 and the curve 𝛾|𝐼𝑖 . Wemay assume that the𝑈𝑖 ⊂ ℝ𝑚 are pairwise disjoint by applying translations.
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12 PINO and SHIN

The idea of the proof is to piece together the 𝜙𝑖 to yield the claimed 𝜙. From the perspective of𝑊, this piecing takes place
in a neighborhood of 𝛾([𝑎𝑖+1, 𝑏𝑖]).
First, we may assume that 𝛾 is immersed in the overlap [𝑎𝑖+1, 𝑏𝑖]. Indeed, either we can shrink 𝐼𝑖 and 𝐼𝑖+1 (and thus the

overlap) until that is the case or 𝛾 is constant in the overlap. In the latter case, we can shift 𝑏𝑖 to the right until we reach
an immersed point. It may be the case that in doing so 𝑏𝑖 reaches 𝑎𝑖+2; then we delete 𝐼𝑖+1.
Second, we may assume that each point in 𝛾([𝑎𝑖+1, 𝑏𝑖]) has a single preimage in 𝐼𝑖 (and in 𝐼𝑖+1). Indeed: either we can

shrink the overlap to achieve it or there are other intervals in 𝐼𝑖 with the same image. In the second case, we can assume
that these other intervals are immersed (by shrinking once again) and that there is a single interval 𝐼 = [𝑐, 𝑑] ⊂ 𝐼𝑖 with
this property (there are finitely many of them by compactness and we can thus iterate the following reasoning). Then,
we replace the interval 𝐼𝑖 by the three intervals [𝑎𝑖, 𝑑 − 𝛿], [𝑑 − 2𝛿, 𝑎𝑖+1 + 𝛿], and [𝑎𝑖+1, 𝑏𝑖]; here 𝛿 is a sufficiently small
constant. The proof for 𝐼𝑖+1 is symmetric.
Third, we shrink 𝑉𝑖 (and thus 𝑈𝑖), while still containing 𝛾|[𝑎𝑖 ,𝑎𝑖+1], so that 𝛾(𝑎𝑖+1) ∈ 𝜕𝑉𝑖 . This is achieved by finding

a curve connecting 𝛾(𝑎𝑖+1) to 𝜕𝑉𝑖 , and otherwise avoiding 𝛾|[𝑎𝑖 ,𝑎𝑖+1], and removing a small neighborhood. We proceed
symmetrically to obtain 𝛾(𝑏𝑖) ∈ 𝜕𝑉𝑖+1.
Fourth, we choose a curve 𝐿𝑖 ⊂ ℝ𝑚 glueing smoothlywith 𝜙−1𝑖 ◦𝛾|[𝑎𝑖 ,𝑎𝑖+1] at 𝑎𝑖+1, with 𝜙−1𝑖+1◦𝛾|[𝑏𝑖 ,𝑏𝑖+1] at 𝑏𝑖 , and otherwise

disjoint from the {𝑈𝑗}. By genericity, we may assume that this curve is graphical over ℝ𝑙.
We now construct 𝜙. Its domain𝑈 will be the union of the {𝑈𝑗}, together with small neighborhoods of the {𝐿𝑗} connect-

ing them. We impose 𝜙(𝐿𝑖) = 𝛾([𝑎𝑖+1, 𝑏𝑖]) so we can define 𝜙𝑖+1∕2 ∶= 𝜙|𝑝(𝐿𝑖) as in the first paragraph, using the fact that
the latter is immersed. Recall that the construction uses a framing adapted to to produce the chart.
The first subtlety is that the preimage of 𝛾([𝑎𝑖+1, 𝑏𝑖]) should be 𝐿𝑖 , and not the first axis. However, using the fact that 𝐿𝑖

is graphical, we can reason similarly for the subsequent coordinates so that 𝜙∗
𝑖+1∕2

 is graphical over ℝ𝑙 as well.
The second subtlety is that 𝜙𝑖+1∕2 should agree with 𝜙𝑖 close to 𝜙−1𝑖 ◦𝛾(𝑎𝑖+1) and with 𝜙𝑖+1 close to 𝜙

−1
𝑖+1
◦𝛾(𝑏𝑖). Close to

𝛾(𝑎𝑖+1), the coordinates provided by 𝜙𝑖 yield a framing. The same is true close to 𝛾(𝑏𝑖) using 𝜙𝑖+1. The connectedness of
the space of framings allow us to interpolate from one to the other as we move along 𝛾([𝑎𝑖+1, 𝑏𝑖]). By taking flows this
interpolating framing defines 𝜙𝑖+1∕2 in 𝑝(𝐿𝑖).
Lastly, we define 𝛾. It is the smooth curve in ℝ𝑚 given by 𝜙−1

𝑖
◦𝛾|[𝑏𝑖−1,𝑎𝑖+1] in 𝑈𝑖 and 𝜙−1𝑖+1∕2◦𝛾|[𝑎𝑖+1,𝑏𝑖] in 𝑝(𝐿𝑖). □

We will say that the map 𝜙, as in Proposition 3.2, is an Ehresmann chart adapted to 𝛾. This notion has been introduced
to streamline the arguments in Section 8, but it is not essential. Any reasoning that uses it can be replaced by covering 𝛾
by Ehresmann charts as in Definition 3.1 and working chart by chart.

3.2 The Ehresmann lifting map

Let us recall the following standard fact:

Lemma 3.3. The space 𝐶∞([0, 1],𝑊,) is a Fréchet manifold locally modeled on 𝐶∞([0, 1], ℝ𝑙) × ℝ𝑚−𝑙 .

Proof. Let 𝛾 ∈ 𝐶∞([0, 1],𝑊,) and fix an Ehresmann chart 𝑈 adapted to it. We claim that the map

𝐶∞([0, 1], 𝑈,) → 𝐶∞([0, 1], ℝ𝑙) × ℝ𝑚−𝑙,

𝜈 → (𝜋◦𝜈; 𝜈𝑙+1(0), … , 𝜈𝑚(0)),

which sends a horizontal curve to its projection and to the vertical component of its initial point 𝜈(0), is a local
homeomorphism close to 𝛾.
Indeed, its inverse is constructed as follows: fix 𝜈 ∈ 𝐶∞([0, 1], ℝ𝑙) contained in a neighborhood of 𝜋◦𝛾 and 𝑞 a lift of

𝜈(0) close to 𝛾(0). We use 𝑑𝜋 to lift 𝜈′ to a vector field defined over the slice 𝜋−1(𝜈) and tangent to . By existence and
uniqueness of ODEs, we can integrate this lifted vector field to obtain a horizontal curve 𝜈 that projects to 𝜈 and has 𝑞 as
basepoint. That this curve exists for all times in [0,1] follows because 𝜈 is sufficiently close to 𝜋◦𝛾 in ℂ∞.
We can then transfer the Fréchet structure from 𝐶∞([0, 1], ℝ𝑙) × ℝ𝑚−𝑙 to 𝐶∞([0, 1],𝑊,). For the purposes of this

paper, it is not important to look at the transition functions between charts of this form. □
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PINO and SHIN 13

Definition 3.4. The Ehresmann lifting map for curves (associated witth an Ehresmann chart) is the (partially defined)
mapping

𝐸 ∶ 𝐶∞([0, 1], ℝ𝑙) × ℝ𝑚−𝑙 → 𝐶∞([0, 1],𝑊,)

defined in the previous proof.

We will only use 𝐸 at the level of germs, so we do not need to be precise about its domain (which is an open in the vector
space we wrote).

3.2.1 Reduced endpoint maps

Recall the endpoint map from Definition 1.2. From Lemma 3.3, it is immediate that one can deform any horizontal curve
in the direction of . Analogously, in an Ehresmann chart 𝜙 ∶ 𝑈 → (𝑊,), the projection to ℝ𝑙 of our curves can be
freely manipulated.
As such, it is only in the vertical direction ℝ𝑚−𝑙 ≅ 𝑇𝑊∕ that the derivative of the endpoint map may fail to be

surjective. For this reason, we define:

Definition 3.5. Let 𝜙 ∶ 𝑈 → (𝑊,) be an Ehresmann chart (potentially adapted to a curve). Then, the reduced endpoint
map is the map:

𝔈𝔭𝜙 ∶ 𝐶
∞([0, 1], 𝑈, 𝜙∗) → ℝ𝑚−𝑙

𝛾 → 𝜋𝑚−𝑙◦𝛾(1),

where 𝜋𝑚−𝑙 ∶ 𝑈 → {0} × ℝ𝑚−𝑙 is the projection along ℝ𝑙.

3.3 Variations of curves

We now use the Fréchet model above (Lemma 3.3) to describe the tangent spaces of 𝐶∞([0, 1],𝑊,). Let us recall:

Definition 3.6. A smooth variation of a horizontal curve 𝛾 is a smooth map

Γ ∶ [0, 1] × [0, 𝜖] → 𝐶∞([0, 1],𝑊,) s.t.

∙ 𝛾𝑣 ∶= Γ|[0,1]×{𝑣} is a horizontal curve for all 𝑣,
∙ 𝛾0 = 𝛾.

We say that 𝜕Γ
𝜕𝑣
(𝑡, 0) is a variational vector field along 𝛾.

The tangent space of 𝐶∞([0, 1],𝑊,) at 𝛾 is precisely the set of 𝜕Γ
𝜕𝑣
(𝑡, 0), with Γ a variation of 𝛾. This description of the

tangent space is not explicit enough for our purposes. So instead we consider:

Lemma 3.7. The space of variational vector fields along 𝛾 ∈ 𝐶∞([0, 1], 𝑈,) is the image of the linear mapping:

𝑑𝜋◦𝛾𝐸 ∶ 𝐶
∞([0, 1], ℝ𝑙) ⊕ ℝ𝑚−𝑙 → 𝑇𝛾𝐶

∞([0, 1],𝑊,) ⊂ 𝐶∞([0, 1], 𝛾∗𝑇𝑊).
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14 PINO and SHIN

Identically, in order to produce a variation of 𝛾, we can use the following diagram:

𝐶∞([0, 1], ℝ𝑙) ⊕ ℝ𝑚−𝑙
𝐼
q→ 𝐶∞([0, 1], ℝ𝑙) × ℝ𝑚−𝑙

𝐸
q→ 𝐶∞([0, 1],𝑊,),

where 𝐼 denotes integrating a variation inℝ𝑙 and 𝐸 is the Ehresmann lifting map.

Proof. Let us prove both claims at once: fix a variational vector field 𝑉 of 𝜋◦𝛾 ⊂ ℝ𝑙 and a vertical displacement ℎ ∈ ℝ𝑚−𝑙.
The map 𝐼 takes 𝑉 and integrates it to an actual variation Γ̃𝑣 ∶= 𝜋(𝛾) + 𝑣𝑉 (this is canonical in the given Euclidean
structure). Lifting the family Γ̃𝑠 using the Ehresmann map 𝐸, with given basepoint 𝑣ℎ, yields a variation Γ𝑣 ∶= 𝐸◦Γ̃𝑣 of
𝛾. We then derive it with respect to 𝑣 to yield its variational vector field. This is, by construction, 𝑑𝜋◦𝛾𝐸(𝑉, ℎ). □

3.4 Jets

Our goal in this subsection is to define the Ehresmann lifting map on the level of jets.

Definition 3.8. An 𝑟-jet in 𝐽𝑟(𝑊) is horizontal if some (and thus every) representative curve has a tangency ofmultiplicity
𝑟 with. We let 𝐽𝑟(𝑊,) ⊂ 𝐽𝑟(𝑊) denote the space of horizontal 𝑟-jets.

We remark that if an 𝑟-jet of curve is horizontal with respect to  at 𝑞, it is horizontal with respect to any other
distribution having the same 𝑟-jet as at 𝑞.

Lemma 3.9. 𝐽𝑟𝑞(𝑊,) is an algebraic subvariety of 𝐽𝑟𝑞(𝑊).

Proof. Given an (𝑟 − 1)-jet of 1-form 𝑗𝑟−1𝛼 ∈ (𝑇∗𝑊)(𝑟−1)𝑞 and an 𝑟-jet of curve 𝑗𝑟𝛾 ∈ 𝐽𝑟𝑞(𝑊), we can pull back 𝑗𝑟−1𝛼 by 𝑗𝑟𝛾.
This provides a map:

(𝑇∗𝑊)
(𝑟−1)
𝑞 × 𝐽𝑟𝑞(𝑊) → (𝑇∗ℝ)

(𝑟−1)
0 ,

that is, polynomial in both entries.
We may now choose, locally around 𝑞, a coframing {𝛼𝑖}𝑖=1,…,𝑚−𝑙 of the annihilator of . Using the map above, we can

pair 𝑟-jets of curves passing through 𝑞 with each 𝑗𝑟−1𝑞 𝛼𝑖 , yielding an algebraic map:

𝐽𝑟𝑞(𝑊) → (𝑇∗ℝ)
(𝑟−1)
0 ×⋯ × (𝑇∗ℝ)

(𝑟−1)
0

whose zeroes are precisely the subvariety 𝐽𝑟𝑞(𝑊,). □

If 𝛾 is tangent to  with 𝛾(0) = 𝑞, its 𝑟-jet 𝑗𝑟𝛾 will belong to 𝐽𝑟𝑞(𝑊,). The proof of the following lemma shows the
converse: any horizontal 𝑟-jet can be realized as the 𝑟-jet of a horizontal curve.

Lemma 3.10. 𝐽𝑟𝑞(𝑊,) is a smooth algebraic subvariety that can be parameterized by the algebraic map:

𝑗𝑟𝑞𝐸 ∶ 𝐽
𝑟
𝜋(𝑞)

(ℝ𝑙) → 𝐽𝑟𝑞(𝑊,) ⊂ 𝐽
𝑟
𝑞(𝑊).

Proof. Weuse the lifting Lemma 3.7. Given any 𝑟-jet 𝜎 of curve inℝ𝑙 we can find an actual representative germ and apply to
it the map 𝐸. This yields a horizontal germwhose 𝑟-jet is, by definition, 𝑗𝑟𝑞𝐸(𝜎). This shows that 𝑗𝑟𝑞𝐸 is a homeomorphism
with its image.
In order to show that the map is algebraic, we now explain how 𝑗𝑟𝑞𝐸(𝜎) can be constructed inductively by solving for its

coefficients (in terms of the coefficients of 𝜎). This boils down to the usual method of solving an ODE formally.
In the coordinates provided by the Ehresmann chart 𝑈 → ℝ𝑚,  is graphical over ℝ𝑙. We write (𝑥1, … , 𝑥𝑙) for the

coordinates in ℝ𝑙 and (𝑦1, … , 𝑦𝑚−𝑙) for the coordinates in the complement 0 × ℝ𝑚−𝑙. Graphicality tells us that  can be
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PINO and SHIN 15

defined as the kernel of (𝑚 − 𝑙) 1-forms:

𝛼𝑖 ∶= 𝑑𝑦𝑖 −
∑
𝑓𝑖
𝑗
(𝑥, 𝑦)𝑑𝑥𝑗.

Given 𝛾 ∶ 𝐼 → ℝ𝑙 representing 𝜎, these 1-forms produce a system of ODEs upon restriction to 𝛾:

𝑥′(𝑡) = 𝛾′(𝑡)

𝑦′
𝑖
(𝑡) = 𝑓𝑖

𝑗
(𝑥(𝑡), 𝑦(𝑡))𝛾′

𝑗
(𝑡), (1)

whose unique solution with basepoint 𝑞 is the lift 𝐸◦𝛾.
Such a system of ODEs can be solved coefficient by coefficient by expanding 𝛾, 𝑓 and 𝑦 as power series. If we are given

the 𝑟-jet of 𝛾, the 𝑟-order Taylor series of 𝑥(𝑡) is given as a datum and we must solve for the coefficients of 𝑦(𝑡) up to order
𝑟. The second equation says that the 𝑖th coefficient of 𝑦(𝑡) (which is, up to a constant, the coefficient of the term of order
(𝑖 − 1) on the left-hand side) must be some polynomial combination of coefficients in the 𝑖th jet of 𝑥(𝑡) and the (𝑖 − 1)th
jet of 𝑦(𝑡). As such, it can be solved for.
Therefore, the algebraic variety 𝐽𝑟𝑞(𝑊,) ≅ 𝐽𝑟𝑞(ℝ𝑚,) is graphical over the affine subspace 𝐽𝑟𝜋(𝑞)(ℝ

𝑙) ⊂ 𝐽𝑟𝑞(ℝ
𝑚). In

particular, being a graph, it is smooth. □

Corollary 3.11. 𝐽𝑟𝑞(𝑊,) is a smooth algebraic variety of dimension 𝑙𝑟, where 𝑙 is the rank of.

Proof. As seen in the proof of Lemma 3.10, 𝐽𝑟𝑞(ℝ𝑚,) can be parameterized by 𝐽𝑟
𝜋(𝑞)

(ℝ𝑙). The latter has the claimed
dimension. □

Definition 3.12. The map 𝑗𝑟𝑞𝐸 defined in Lemma 3.10 is the Ehresmann lifting map for jets at the point 𝑞 ∈ 𝑊.

We note that the left-inverse of 𝑗𝑟𝑝𝐸 is the obvious (local) projection

𝑗𝑟𝑞𝜋 ∶ 𝐽
𝑟
𝑞(𝑊) → 𝐽𝑟

𝜋(𝑞)
(ℝ𝑙),

which is also algebraic.
Recall Sections 2.1.2 and 2.1.3:

Lemma 3.13. The Ehresmann map 𝑗𝑟𝑞𝐸 is 𝜌-equivariant.
In particular, it defines a smooth algebraic map between weighted projective spaces:

ℙ𝑗𝑟𝑞𝐸 ∶ ℙ𝐽
𝑟
𝜋(𝑞)

(ℝ𝑙) → ℙ𝐽𝑟𝑞(𝑊),

that is a homeomorphism with its image ℙ𝐽𝑟𝑞(𝑊,).

Proof. For an 𝑟-jet of curve 𝜎, choose a representative germ 𝛾. The curve 𝜌(𝑎, 𝛾)(𝑡) ∶= 𝛾(𝑎𝑡) is a representative of the repa-
rameterization 𝜌(𝑎, 𝜎). Since the Ehresmann map is given by solving an ODE, the image of 𝜌(𝑎, 𝛾) under the Ehresmann
map is 𝐸(𝜌(𝑎, 𝛾)) = 𝜌(𝑎, 𝐸(𝛾)). The claim follows by taking jets. □

3.5 The parametric Ehresmannmap on jets

If is smooth, the Ehresmann maps 𝑗𝑟𝑞𝐸 vary smoothly with 𝑞 ∈ 𝑈. As such, the same is true for the varieties 𝐽𝑟𝑞(𝑊,).
When is analytic, we have some additional structure that we will exploit later:

Proposition 3.14. Assume (𝑊,) is analytic. Then, the subspace of horizontal jets 𝐽𝑟(𝑊,) ⊂ 𝐽𝑟(𝑊) is a smooth
analytic subvariety.
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16 PINO and SHIN

It may be (locally) parameterized as follows: fix an analytic Ehresmann chart𝑈 ⊂ 𝑊. Then, the Ehresmannmaps 𝑗𝑟𝑞𝐸, for
𝑞 varying in𝑈, can be assembled to yield an analytic embedding which is a diffeomorphism with its image:

𝑗𝑟𝐸 ∶ domain(𝑗𝑟𝐸) ⊂ 𝐽𝑟(ℝ𝑙) × ℝ𝑚−𝑙 → 𝐽𝑟(𝑊,).

Proof. We revisit the proofs of Lemmas 3.10 and 3.9. If is analytic, then we can choose an analytic coframing{
𝛼𝑖 ∶=

∑
𝑗

𝑔𝑖
𝑗
(𝑥, 𝑦)𝑑𝑦𝑗 +

∑
𝑗

𝑓𝑖
𝑗
(𝑥, 𝑦)𝑑𝑥𝑗

}
𝑖=1,…,𝑚−𝑙

for . Contraction with the (𝑟 − 1)-jets 𝑗𝑟−1𝛼𝑖 produces the defining equations of the subset 𝐽𝑟(𝑊,). The analyticity of
𝛼𝑖 implies the analyticity of its (𝑟 − 1)-jet; the first claim follows.
Due to the graphicality of  over ℝ𝑙, after a linear change of coordinates, we may assume that 𝑔𝑖

𝑖
(𝑝) ≠ 0 for all 𝑖. That

implies that the reciprocals 1∕𝑔𝑖
𝑖
(𝑥, 𝑦) are analytic functions defined in a possibly smaller chart. Dividing the 𝛼𝑖 by 𝑔𝑖𝑖 (𝑥, 𝑦)

and then doing suitable combinations allows us to assume that is given by an analytic coframing of the form{
𝛼𝑖 ∶= 𝑑𝑦𝑖 −

∑
𝑗

𝑓𝑖
𝑗
(𝑥, 𝑦)𝑑𝑥𝑗

}
𝑖=1,…,𝑚−𝑙

.

We now solve for the coefficients of 𝑦(𝑡) in Equation (1). Now the zeroth-order coefficient of 𝑥(𝑡) varies, as a point in
ℝ𝑙, and so does the zero-order coefficient of 𝑦(𝑡), as an element in ℝ𝑚−𝑙. Since the functions 𝑓𝑖

𝑗
are analytic, the claim

follows. □

Corollary 3.15. Assume (𝑊,) is analytic. Then, 𝐽𝑟(𝑊,) is a smooth analytic variety of dimension 𝑙𝑟 + 𝑛, where 𝑙 is the
rank of.

Proof. We can cover𝑊 by analytic Ehresmann charts as in the proof of the proposition. In every such chart, 𝐽𝑟(𝑊,) is
an analytic graph over (a subset of) 𝐽𝑟(ℝ𝑙) × ℝ𝑚−𝑙, showing that it is a smooth analytic subvariety of 𝐽𝑟(𝑊). The dimen-
sion counting follows from the argument in Corollary 3.11. The extra 𝑛 dimensions arise due to the additional choice of
basepoint. □

4 THE SYMPLECTIC GEOMETRY OF THE ANNIHILATOR

Now, we review Hsu’s result Proposition 2.2. With this aim in mind, we go over the symplectic/microlocal formalism in
the annihilator subbundle

𝜋 ∶ 𝑍1 ∶= Ann(𝜉) ⊂ 𝑇
∗𝑀 ⟶ 𝑀.

We do not just think of it as a subbundle of the cotangent bundle, but as a submanifold of the exact symplectic manifold
(𝑇∗𝑀, 𝜆); here, 𝜆 is the tautological Liouville form. In certain situations, 𝑍1 ⧵ 𝑀 will be symplectic as well (for instance,
if 𝜉 is contact, 𝑍1 ⧵ 𝑀 is its symplectization), but this is most often not the case. Hsu’s theorem tells us that this failure is
equivalent to the existence of singular curves.
In this section, we assume that (𝑀, 𝜉) is:

∙ regular3 (to be explained in Section 4.1),
∙ not necessarily bracket-generating,
∙ not necessarily analytic.

Once we reintroduce the analiticity assumption, we will see that 𝜉 is regular in an open dense set of𝑀. This is why it is
sufficient for us to restrict to the regular case now (this is justified in detail in Sections 6 and 7).
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PINO and SHIN 17

4.1 Regular distributions

Regularity means that each Γ(𝜉)(𝑛) is the module of vector fields tangent to some distribution 𝜉𝑛. We then have a flag of
distributions:

𝜉 = 𝜉1 ⊂ 𝜉2 ⊂ 𝜉3 ⊂ ⋯ ⊂ 𝜉𝑛0 ,

and a dual flag

𝑍1 ⊃ 𝑍2 ⊃ 𝑍3 ⊃ … ⊃ 𝑍𝑛0 ,

consisting of the annihilators

𝑍𝑛 ∶= Ann(𝜉𝑛) = {𝛼 ∈ 𝑇
∗𝑀 |𝛼(𝑣) = 0 for every 𝑣 ∈ 𝜉𝑛}.

Definition 4.1. The curvature of 𝜉𝑛 is the skew-symmetric, bilinear map

𝜉𝑛 × 𝜉𝑛 ⟶ 𝜉𝑛+1∕𝜉𝑛 ⊂ 𝑇𝑀∕𝜉𝑛

𝑋, 𝑌 ↦ [𝑋,𝑌] mod 𝜉𝑛,

where 𝑋 and 𝑌 are vectors in 𝜉𝑛 based at the same point, locally extended to vector fields 𝑋 and 𝑌 tangent to 𝜉𝑛.

We leave as an exercise to show that this is well-defined using the Leibniz rule. The curvatures measure the
non-integrability of 𝜉. One may dualize this notion, yielding a linear map

𝑍𝑛 = Ann(𝜉𝑛) ⟶ ∧2 𝜉∗𝑛

𝛼 ↦ 𝑑𝛼|𝜉𝑛 .
Lemma 4.2. The annihilator 𝑍𝑛+1 is spanned by those covectors 𝛼 ∈ 𝑍𝑛 in the kernel of the dual curvature of 𝜉𝑛.

Proof. Let 𝑋 and 𝑌 be local vector fields tangent to 𝜉𝑛. This tangency condition implies 𝑑𝛼(𝑋, 𝑌) = −𝛼([𝑋, 𝑌]). Since
brackets of the form [𝑋, 𝑌] span 𝜉𝑛+1, the claim follows. □

4.2 The characteristic distribution is a partial connection

We are interested in studying:

Definition 4.3. We call ker(𝑑𝜆|𝑍1) the characteristic distribution (even though it may not have constant rank).
A vector tangent to ker(𝑑𝜆|𝑍1) is said to be characteristic.
In light of Proposition 2.2, we are only interested in characteristic vectors based away from the zero section𝑀 ⊂ 𝑍1.
Fix a ball 𝑈 ⊂ 𝑀, which we may assume is an Ehresmann chart for 𝜉. Each of the bundles 𝑍𝑛 is trivial over 𝑈. As

such, we may assume that we have a coframe {𝛼𝑖}𝑖=1,…,𝑖1 of 𝑍1 such that the {𝛼𝑖}𝑖=1,…,𝑖𝑛 span 𝑍𝑛. Such a coframe provides
coordinate functions (𝑎𝑖)𝑖=1,…,𝑖1 in the fibers of 𝑍1. In these coordinates, we have:

𝜆|𝑍1 =

𝑖1∑
𝑖=1

𝑎𝑖𝛼𝑖

𝑑𝜆|𝑍1 =

𝑖1∑
𝑖=1

𝑑𝑎𝑖 ∧ 𝛼𝑖 + 𝑎𝑖𝑑𝛼𝑖, (2)

where we are abusing notation and still denoting by 𝛼𝑖 its pullback to 𝑍1.
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18 PINO and SHIN

Lemma 4.4. Let𝜋 ∶ 𝑍1 → 𝑀 denote the natural projection. Fix a characteristic vector 𝑣 ∈ ker(𝑑𝜆|𝑍1) based at (𝑞, 𝛼). Then:
∙ 𝑑𝜋(𝑣) is tangent to 𝜉𝑞 ,
∙ 𝑣 is the unique vector contained in ker(𝑑𝜆|𝑍1), based at (𝑞, 𝛼), and projecting to 𝑑𝜋(𝑣).
Proof. Working in the local trivialization with fiber coordinates (𝑎𝑖)𝑖=1,…,𝑖1 as above, we write 𝑣 = 𝑣𝑣 + 𝑣ℎ, where 𝑣𝑣 is
vertical (i.e., tangent to the fiber) and 𝑣ℎ is horizontal. Evaluating this expression with 𝑑𝜆|𝑍1 we obtain the following
1-form in 𝑍1:

0 = 𝜄𝑣𝑑𝜆|𝑍1 =∑
𝑖

−𝛼𝑖(𝑣ℎ)𝑑𝑎𝑖 + 𝑑𝑎𝑖(𝑣𝑣)𝛼𝑖 + 𝑎𝑖𝜄𝑣ℎ𝑑𝛼𝑖. (3)

The first term consists of vertical 1-forms (i.e., vanishing on horizontal vectors), whereas the other two are horizontal. If
the first term is to vanish, all the coefficients 𝛼𝑖(𝑣ℎ) = 𝛼𝑖(𝑑𝜋(𝑣))must be zero, proving the first claim.
We now inspect the other two terms. It must hold that:∑

𝑖

𝑑𝑎𝑖(𝑣𝑣)𝛼𝑖 + 𝑎𝑖𝜄𝑑𝜋(𝑣)𝑑𝛼𝑖 = 0.

We first note that
∑
𝑖
𝑑𝑎𝑖(𝑣𝑣)𝛼𝑖 is a linear combination of the coframing (𝛼𝑖) of 𝑍1, with coefficients 𝑑𝑎𝑖(𝑣𝑣). As such,

𝛽 ∶=
∑
𝑖
𝑎𝑖𝜄𝑑𝜋(𝑣)𝑑𝛼𝑖 must also be a 1-form in 𝑍1. It follows that the coefficients 𝑑𝑎𝑖(𝑣𝑣) are uniquely determined by 𝑑𝜋(𝑣),

because they must be the coordinates of −𝛽 in terms of the coframing. □

We think of this statement as follows: ker(𝑑𝜆|𝑍1) provides at each point (𝑞, 𝛼) ∈ 𝑍1 a vector subspace of 𝑇(𝑞,𝛼)𝑍1. These
subspaces have different ranks and, as such, they may be regarded as a distribution with singularities (do note that this is
different from a differential system, which is the dual notion). The lemma tells us that ker(𝑞,𝛼)(𝑑𝜆|𝑍1) is a lift of a vector
subspace of 𝜉𝑞 and, as such, it resembles an Ehresmann connection which is defined only for some horizontal directions:

Corollary 4.5. The characteristic directions ker(𝑞,𝛼)(𝑑𝜆|𝑍1) are a lift of ker𝑞(𝑑𝛼|𝜉). In particular:
∙ 𝑑𝜆|𝑍1 at (𝑞, 𝛼) and 𝑑𝛼|𝜉 at 𝑞 have the same co-rank.
∙ ker(𝑞,𝛼)(𝑑𝜆|𝑍1) lifts 𝜉𝑞 completely if and only if 𝛼 ∈ 𝑍2.
∙ There is a bound rank(ker(𝑑𝜆|𝑍1)) ≤ rank(𝜉). Equality holds along 𝑍2.
Proof. All the statements follow by putting Lemmas 4.2 and 4.4 together. □

4.3 The key remark

We are ultimately interested in characteristic curves of 𝑍1. As advanced in Section 2.5, we will stratify 𝑍1 using 𝑑𝜆|𝑍1 ,
study the curves tangent to each stratum, and then take closures to account for those curves that move across strata.
Lemma 4.2 and Corollary 4.5 state that, along 𝑍2, every vector in 𝜉 can be lifted to ker(𝑑𝜆|𝑍1). This may seem

problematic, since we want to prove that characteristic/singular jets form a much smaller set than horizontal ones.
The key linear algebra observation is: even though every vector in 𝜉 can be lifted to ker(𝑑𝜆|𝑍1) along 𝑍2, the resulting

lift is not necessarily tangent to 𝑍2; this is only the case if the vector is also characteristic for 𝑍2. The same holds for higher
annihilators in the flag:

Proposition 4.6. The following identity holds for characteristic vectors:

ker(𝑑𝜆|𝑍1) ∩ 𝑇𝑍𝑛 = ker(𝑑𝜆|𝑍𝑛) ∩ 𝑑𝜋−1(𝜉).
Proof. First, we address the inclusion ⊂. According to Lemma 4.4, ker(𝑑𝜆|𝑍1) is a lift of (part of) 𝜉, showing that it is
contained in 𝑑𝜋−1(𝜉). The inclusion ker(𝑑𝜆|𝑍1) ∩ 𝑇𝑍𝑛 ⊂ ker(𝑑𝜆|𝑍𝑛) is automatic because 𝑑𝜆|𝑍𝑛 is the restriction of 𝑑𝜆|𝑍1
to 𝑍𝑛 ⊂ 𝑍1.
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PINO and SHIN 19

For the opposite inclusion ⊃ we use Equation (3). Recall that the coframing (𝛼𝑖)𝑖=1,…,𝑖1 is adapted to the dual flag, so
(𝛼𝑖)𝑖=1,…,𝑖𝑛 is a coframing of 𝑍𝑛. Suppose 𝑣 = 𝑣ℎ + 𝑣𝑣 ∈ ker(𝑑𝜆|𝑍𝑛) ∩ 𝑑𝜋−1(𝜉). Then:

𝜄𝑣𝑑𝜆|𝑍1 = 𝑖1∑
𝑖=1

−𝛼𝑖(𝑣ℎ)𝑑𝑎𝑖 + [𝑑𝑎𝑖(𝑣𝑣)𝛼𝑖 + 𝑎𝑖𝜄𝑣ℎ𝑑𝛼𝑖]

splits again as a vertical and a horizontal term. The former vanishes due to the inclusion 𝑣 ∈ 𝑑𝜋−1(𝜉). Wemust show that
the other one does as well.
The horizontal term reads:

𝑖1∑
𝑖=1

𝑑𝑎𝑖(𝑣𝑣)𝛼𝑖 + 𝑎𝑖𝜄𝑣ℎ𝑑𝛼𝑖 =

𝑖𝑛∑
𝑖=1

𝑑𝑎𝑖(𝑣𝑣)𝛼𝑖 + 𝑎𝑖𝜄𝑣ℎ𝑑𝛼𝑖, (4)

where we have used the inclusion 𝑣 ∈ ker(𝑑𝜆|𝑍𝑛) ⊂ 𝑇𝑍𝑛 to deduce that 𝑎𝑖, 𝑑𝑎𝑖(𝑣𝑣) ≠ 0 only if 𝑖 = 1, … , 𝑖𝑛. As such, the
horizontal term is exactly the same as the horizontal term for a characteristic vector of 𝑑𝜆|𝑍𝑛 , and it therefore vanishes by
assumption. □

Our proof of Theorem 2 can then be understood as being inductive (even though we will not quite phrase it as such):
we assume that we have addressed the characteristic curves contained in 𝑍𝑛 (using as inductive hypothesis that 𝜉𝑛 is
bracket-generating of one step less) so that we can focus on those passing through 𝑍𝑛−1 ⧵ 𝑍𝑛.

5 RECOLLECTIONS OF ANALYTIC GEOMETRY

The subspaces of jets that we consider in this paper will be controlled thanks to the analyticity of 𝜉. We recall now some
of the definitions that play a role in these constructions. Their main purpose is justifying that these spaces of 𝑟-jets are
suitably stratified by submanifolds and can be endowed with a proper notion of codimension.

5.1 Semianalytic sets

We now recall results from [6] mostly, but we refer the reader to [13, 15, 16, 18, 19, 26] as well. Following [6, Definition 2.1]
we define:

Definition 5.1. Let𝑊 be a real analyticmanifold and𝑈 ⊂ 𝑊 an open.Wewrite(𝑈) for the ring of real analytic functions
on 𝑈 and 𝑆((𝑈)) for the family of subsets of 𝑈 generated by

{ {𝑥 ∣ 𝑓(𝑥) > 0} ∣ 𝑓 ∈ (𝑈)}

and closed under finite intersection, finite union, and complement.
A subset 𝑋 of𝑊 is semianalytic if each 𝑥 ∈ 𝑊 has a neighborhood𝑈 such that 𝑋 ∩ 𝑈 ∈ 𝑆((𝑈)). We will say that 𝑋 is

smooth if it is a smooth submanifold (without boundary) of𝑊.

We then define:

Definition 5.2. Let𝑊 be a real analytic manifold. A stratification  of𝑊 is a partition into smooth semianalytic sets,
called strata, such that:

∙ every point has a neighborhood intersecting only finitely many strata,
∙ the frontier 𝑆 ⧵ 𝑆 of a stratum 𝑆 ∈  is a union of other strata.
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20 PINO and SHIN

We remark that the inclusion of a stratum 𝑆′ in the frontier of another stratum 𝑆 defines a partial order 𝑆′ < 𝑆. To
construct our stratifications, we will need to invoke the following result [6, Corollary 2.8]:

Proposition 5.3. The closure and the frontier of a semianalytic set are semianalytic.

For the purpose of stratifying our spaces of jets into smooth pieces, we will need [6, Proposition 2.10 and Corollary 2.11]
as well:

Proposition 5.4. Let 𝑊 be a real analytic manifold. Any locally finite family of semianalytic subsets (𝐴𝑗)𝑗 of 𝑊 can be
refined to a stratification of𝑊 (i.e., each 𝐴𝑗 will be a union of strata).

This proposition tells us that we can speak of the dimension of any semianalytic subset 𝐴 ⊂ 𝑊. Indeed, this is the
maximal dimension among the smooth strata in which it can be decomposed.

5.2 Subanalytic sets

Our arguments in Sections 6 and 7 require us to work with semianalytic sets in 𝐽𝑟(𝑍1), which we then project down to
𝐽𝑟(𝑀). However, unlike semialgebraic sets, semianalytic sets are not closed under projection. This leads us to the definition
of subanalytic set [6, Definition 3.1]:

Definition 5.5. Let𝑊 be a real analytic manifold. A subset 𝑋 of𝑊 is subanalytic if every 𝑝 ∈ 𝑊 admits a neighborhood
𝑈 such that 𝑋 ∩ 𝑈 is the projection of a relatively compact semianalytic set.
That is: there exists a real analytic manifold 𝑉 and a relatively compact semianalytic subset 𝐴 ⊂ 𝑊 × 𝑉 such that 𝑋 ∩

𝑈 = 𝜋(𝐴), where 𝜋 ∶ 𝑊 × 𝑉 → 𝑊 is the projection.

These spaces have a notion of dimension, which is the maximal dimension computed at any of its smooth points. This
follows from the fiber-cutting Lemma [6, Lemma 3.6]:

Proposition 5.6. Let𝑊, 𝑋, 𝑈, 𝑉, 𝐴, 𝜋 be as in the previous definition. Then, there exists a finite collection (𝐵𝑖)𝑖 of smooth
semianalytic sets in𝑊 ×𝑉, contained in 𝐴, such that 𝜋|𝐵𝑖 is an immersion and 𝑋 ∩ 𝑈 = ∪𝑖𝜋(𝐵𝑖).
That is, a subanalytic subset 𝑋 is the union of a finite collection of immersed submanifolds whose dimensions are

bounded above by the dimensions of the semianalytic sets 𝐴 that locally project down to 𝑋. This collection is not quite a
stratification of 𝑋, but this dimension control is sufficient for us.

5.3 Some technical lemmas

We now explain how one may partition a manifold into semianalytic subsets that are nicely adapted to singular dis-
tributions and 2-forms. This will play a key role in the next section. These statements boil down to elementary linear
algebra, and probably follow from some general stratification result involving analytic sections of jet spaces (in the spirit
of Thom–Boardman), but we do not know of an appropriate reference.
The first ingredient, from which the subsequent claims follow, reads:

Lemma 5.7. Let 𝐸 → 𝑊 be a real analytic vector bundle with connected base. Let {𝑒𝑖} be a finite collection of sections of 𝐸.
Then,𝑊 admits a partition into the semianalytic subsets

𝐴𝑗 ∶= {𝑞 ∈ 𝑊 ∣ rank(⟨𝑒1(𝑞), 𝑒2(𝑞), …⟩) = 𝑗}.
If𝑊 is connected, there is a (largest) 𝑗0 such that 𝐴𝑗0 is dense in𝑊.
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PINO and SHIN 21

Proof. We work locally, allowing us to assume that 𝐸 is trivial. We can then build a matrix 𝐵 whose columns are the local
coefficients of the vectors {𝑒𝑖}. The entries of 𝐵 are analytic functions, and therefore so are its minors. The set 𝐴𝑗 is given
by the vanishing of all (𝑗 + 1)-minors of 𝐵 and the non-vanishing of a 𝑗-minor. It is thus semianalytic.
We now justify the second claim: if 𝑗0 is the largest 𝑗 with 𝐴𝑗 non-empty, that means that all (𝑗0 + 1)-minors vanish

identically in𝑊 but some 𝑗0-minor does not. The zero set of all 𝑗0-minors is 𝐴𝑗−1; it must have positive codimension in
𝑊 because, due to connectedness, a non-zero analytic function cannot vanish over an open of𝑊. □

Corollary 5.8. Let𝑊 be a real analytic manifold endowed with a finite collection of analytic 1-forms {𝛼𝑖}. Then, any smooth
semianalytic subset 𝑉 ⊂ 𝑊 admits a partition into the semianalytic subsets

𝐴𝑗 ∶= {𝑞 ∈ 𝑉 ∣ rank(𝑇𝑞𝑉 ∩ ker(𝛼1, …)) = 𝑗}.

If 𝑉 is connected, there is a (smallest) 𝑗0 such that 𝐴𝑗0 is dense in 𝑉.

Before we start, let us remark that the key point of the proof (and the proofs of the claims that follow) is to write
the conditions we are interested in (which are defined only over 𝑉) as conditions in terms of (locally defined) analytic
functions in𝑊. This is what provides semianalyticity.

Proof. We work locally. Being a smooth semianalytic submanifold, 𝑉 is locally described by a finite collection of equa-
tions {𝑓𝑘 □0}𝑘∈𝐾 , where□ denotes =, <, or >. Let 𝐾0 ⊂ 𝐾 be the subcollection indexing those functions 𝑓𝑘 that vanish
on 𝑉.
We apply Lemma 5.7 to yield a partition  of𝑊 into subsets according to the rank of ⟨𝑑𝑓𝑘, 𝛼𝑖⟩𝑘∈𝐾0,𝑖 . Along 𝑉, this is

exactly the corank of 𝑇𝑉 ∩ ker({𝛼𝑖}) in 𝑇𝑊. We can then intersect the strata of  with 𝑉 to yield the claimed partition of
𝑉 into semianalytic sets. □

We may prove the analogous result for 2-forms:

Corollary 5.9. Let𝑊 be a real analytic manifold endowed with an analytic 2-form𝜔. Then, any smooth semianalytic subset
𝑉 ⊂ 𝑊 admits a partition into the semianalytic subsets

𝐴𝑗 ∶= {𝑞 ∈ 𝑉 ∣ rank(𝜔|𝑇𝑞𝑉) = 𝑗}.
If 𝑉 is connected, there is a (smallest) 𝑗0 such that 𝐴𝑗0 is dense in 𝑉.

Proof. Again, we describe 𝑉 locally using expressions of the form {𝑓𝑘 □0}𝑘∈𝐾 . We assume that the subcollection 𝐾0
(corresponding to□ being an equality) is minimal in the sense that the differentials {𝑑𝑓𝑘}𝑘∈𝐾0 are linearly independent.
We also fix a local analytic framing (𝑤𝑖)𝑖 of 𝑇𝑊.
The key objects to study are the analytic (𝑘0 + 2)–form

Ω ∶= 𝑑𝑓1 ∧⋯ ∧ 𝑑𝑓𝑘0 ∧ 𝜔,

and the associated (𝑘0 + 1)–forms 𝛽𝑖 ∶= 𝜄𝑤𝑖Ω. The point is that Ω is a (local) object in𝑊 which, along 𝑉, represents the
restriction 𝜔|𝑇𝑉 . Thus, rank(𝜔|𝑇𝑉) will be encoded in the rank of 𝐵 ∶= ⟨𝛽𝑖⟩𝑖 , as we now explain.
First, note that, along𝑉, wedgingwith 𝑑𝑓1 ∧⋯ ∧ 𝑑𝑓𝑘0 kills any form restricting to zero on𝑇𝑉. As such,Ω only depends

on 𝜔|𝑇𝑉 . In particular, Ω = 0 and rank(𝐵) = 0 if and only if 𝜔|𝑇𝑉 = 0. We henceforth assume otherwise.
Second, rank(𝐵) and rank(𝜔|𝑇𝑉) are pointwise quantities, so we can compute them at each point 𝑞 ∈ 𝑉. Fix a splitting

𝑇𝑞𝑉 ⊕ 𝐸𝑞 = 𝑇𝑞𝑊; we say the vectors tangent to 𝑇𝑞𝑉 are horizontal and the ones tangent to 𝐸𝑞 are vertical. Then, we can
write:

Ω𝑞 = 𝑑𝑞𝑓1 ∧⋯ ∧ 𝑑𝑞𝑓𝑘0 ∧ 𝜔𝑞

with 𝜔𝑞 annihilating 𝐸𝑞. Instead of using the framing (𝑤𝑖)𝑖 , we compute 𝐵 using a basis of 𝑇𝑞𝑊 adapted to this splitting.
Namely, we pick horizontal (𝑣𝑗 ∈ 𝑇𝑞𝑉)𝑗 and vertical (𝑒𝑘 ∈ 𝐸𝑞)𝑘 bases; we require 𝑒𝑘 to be dual to 𝑑𝑞𝑓𝑘.

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202200306 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [19/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



22 PINO and SHIN

It follows that, at 𝑞, 𝐵 is spanned by:

∙ The forms

𝜄𝑒𝑙Ω𝑞 = 𝑑𝑞𝑓1 ∧⋯ ∧ 𝑑𝑞𝑓𝑙 ∧⋯ ∧ 𝑑𝑞𝑓𝑘0 ∧ 𝜔𝑞.

These span a 𝑘0-dimensional subspace. This follows from the fact that 𝜔𝑞 is horizontal and the 𝑑𝑞𝑓𝑘 are linearly
independent.

∙ Together with the forms

𝜄𝑣𝑗Ω𝑞 = 𝑑𝑞𝑓1 ∧⋯ ∧ 𝑑𝑞𝑓𝑘0 ∧ (𝜄𝑣𝑗𝜔𝑞).

These form a subspace of dimension rank(𝜔|𝑇𝑞𝑉) = rank(𝜔|𝑇𝑞𝑉).
As such, rank(𝐵) = rank(𝜔|𝑇𝑉) + 𝑘0 (unless Ω is zero). The result then follows applying Lemma 5.7 to the collection {𝛽𝑖}
and intersecting the resulting strata with 𝑉. □

We may also prove a relative version of the previous Corollary, in which the two entries of the 2-form are tangent to
different subsets:

Corollary 5.10. Let𝑊 be a real analytic manifold endowed with an analytic 2-form𝜔. Let𝑉 ⊂ 𝑊 be a smooth semianalytic
subset. Then, any smooth semianalytic subset 𝑌 ⊂ 𝑊 contained in 𝑉 admits a partition into semianalytic subsets:

𝐴𝑗 ∶= {𝑞 ∈ 𝑌 ∣ rank(ker(𝜔|𝑇𝑉) ∩ 𝑇𝑞𝑌) = 𝑗}.
If 𝑉 is connected, there is a 𝑗0 such that 𝐴𝑗0 is dense in 𝑌.

Proof. Let {𝑓𝑘 □0}𝑘∈𝐾 be local functions defining𝑉 and let {𝑔𝑙 □0}𝑙∈𝐿 be an additional family of functions such that both
together define 𝑌. We assume that the subcollections {𝑓𝑘}𝑘∈𝐾0 and {𝑓𝑘, 𝑔𝑙}𝑘∈𝐾0,𝑙∈𝐿0 are minimal.
From the (𝑘0 + 2)-form Ω ∶= 𝑑𝑓1 ∧⋯ ∧ 𝑑𝑓𝑘0 ∧ 𝜔 we define the (𝑘0 + 𝑙0 + 1)–forms

𝛽𝑖 ∶= 𝑑𝑔1 ∧⋯ ∧ 𝑑𝑔𝑙0 ∧ 𝜄𝑤𝑖Ω,

where (𝑤𝑖)𝑖 is an analytic framing of 𝑇𝑊. These forms represent pairing a vector in 𝑇𝑉 with a vector in 𝑇𝑌 using 𝜔. We
reason as in the previous corollary but we omit the discussion involving a linear splitting.
The 𝐵 ∶= ⟨𝛽𝑖⟩𝑖 is zero dimensional if and only if ker(𝜔|𝑇𝑉) ⊃ 𝑇𝑌. Otherwise, 𝐵 is spanned by:

∙ The 𝑘0-dimensional subspace spanned by the forms

𝑑𝑔1 ∧⋯ ∧ 𝑑𝑔𝑙0 ∧ 𝑑𝑓1 ∧⋯ ∧ 𝑑𝑓𝑙 ∧⋯ ∧ 𝑑𝑓𝑘0 ∧ (𝜔|𝑇𝑉).
∙ The subspace spanned by the forms

𝑑𝑔1 ∧⋯ ∧ 𝑑𝑓𝑘0 ∧ (𝜄𝑣𝜔) with 𝑣 ∈ 𝑇𝑉,

which correspond to the 1-forms (𝜄𝑣𝜔)|𝑇𝑌 .
It follows that rank(𝐵) − 𝑘0 is the co-rank of ker(𝜔|𝑇𝑉) ∩ 𝑇𝑌 in 𝑇𝑌. Applying Lemma 5.7 to 𝐵 and intersecting with 𝑉
allows us to conclude. □

We will also need a combination of Corollaries 5.8 and 5.10 which, in fact, subsumes them:
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PINO and SHIN 23

Corollary 5.11. Let𝑊 be a real analytic manifold, 𝜔 an analytic 2-form, and {𝛼𝑖} a finite collection of analytic 1-forms. Let
𝑉 ⊂ 𝑊 be a smooth semianalytic subset. Then, any smooth semianalytic subset 𝑌 ⊂ 𝑊 contained in 𝑉 admits a partition
into semianalytic subsets:

𝐴𝑗 ∶= {𝑞 ∈ 𝑌 ∣ rank(ker(𝜔|𝑇𝑉) ∩ 𝑇𝑞𝑌 ∩ ker(𝛼1, …)) = 𝑗}.
If 𝑉 is connected, there is a 𝑗0 such that 𝐴𝑗0 is dense in 𝑌.

Proof. We fix families {𝑓𝑘 □0}𝑘∈𝐾 and {𝑔𝑙 □0}𝑙∈𝐿 as in the previous corollary.
The added difficulty now is that the collection {𝛼𝑖} is not necessarily linearly independent (by itself, or together with the

{𝑑𝑓𝑘}𝑘∈𝐾0 or {𝑑𝑔𝑙}𝑙∈𝐿0). As such we first invoke Lemma 5.7 to partition𝑉 depending on the rank of ⟨𝛼𝑖, 𝑑𝑓𝑘, 𝑑𝑔𝑙⟩𝑖,𝑘∈𝐾0,𝑙∈𝐿0 ;
we write 𝐵𝑟 for the locus with rank 𝑟.
Once we have done that, we proceed similarly to Corollary 5.10, but we have to do it simultaneously in different degrees.

Let us elaborate: we fix a local framing {𝑤𝑎} of 𝑇𝑊 and we look at the forms:

𝛽𝑎,𝐼 ∶= 𝛼𝑖1 ∧⋯ ∧ 𝛼𝑖|𝐼| ∧ 𝑑𝑔1 ∧⋯ ∧ 𝜄𝑤𝑎(𝑑𝑓1 ∧⋯ ∧ 𝜔),

where 𝐼 = (𝑎𝑖1 < ⋯ < 𝑎𝑖|𝐼|) ranges over all subsets of the index set of {𝛼𝑖}. We observe that, along 𝐵𝑟, rank(⟨𝛽𝑎,𝐼⟩|𝐼|=𝑟,𝑎) is
precisely the corank of ker(𝜔|𝑇𝑉) ∩ 𝑇𝑌 ∩ ker(𝛼1, …) within 𝑇𝑌.
Thus, the claim follows by partitioning 𝐵𝑟 in terms of the rank of ⟨𝛽𝑎,𝐼⟩|𝐼|=𝑟,𝑎 and taking suitable unions of the resulting

sets. □

Lastly, we can address the dual case:

Corollary 5.12. Let𝑊 be a real analytic manifold endowed with a finite collection of analytic vector fields {𝑤𝑖}. Then, any
smooth semianalytic subset 𝑉 ⊂ 𝑊 admits a partition into the semianalytic subsets

𝐴𝑗 ∶= {𝑞 ∈ 𝑉 ∣ rank(𝑇𝑞𝑉 ∩ ⟨𝑤𝑖⟩𝑖) = 𝑗}.
If 𝑉 is connected, there is a (smallest) 𝑗0 such that 𝐴𝑗0 is dense in 𝑉.

Proof. We can evaluate the (𝑤𝑖) in the differentials {𝑑𝑓𝑘}𝑘∈𝐾0 that annihilate 𝑇𝑉. In doing so we may form a matrix
with entries {𝑑𝑓𝑘(𝑤𝑖)}𝑖,𝑘. Its rank at each point of 𝑉 is the dimension of ⟨𝑤𝑖⟩𝑖∕𝑇𝑉. Applying Lemma 5.7, we partition 𝑉
in terms of this rank. We may then refine this partition by looking at the rank of ⟨𝑤𝑖⟩𝑖 instead. The difference between
these two numbers is precisely the rank of 𝑇𝑉 ∩ ⟨𝑤𝑖⟩𝑖 . We deduce that the set𝐴𝑗 is a union of semianalytic sets (and thus
semianalytic). □

6 STRATIFYING THE ANNIHILATOR

We work with (𝑀, 𝜉) analytic and bracket-generating. In this section, we describe a stratification of 𝑍1 = Ann(𝜉) that is
nicely adapted to 𝑑𝜆 (equivalently, adapted to the rank of the curvature(s) associated with 𝜉). Our discussion could easily
be adapted to the non-bracket-generating case, but this is unnecessary for our purposes.
First, we work under regularity assumptions (Section 6.1), and then we adapt our approach to the general case

(Section 6.2). In Section 6.3, the bracket-generating assumption will provide us with certain key dimension bounds.

6.1 The regular case

We write 𝑛0 for the index in which the Lie flag stabilizes. Then, the dual flag reads:

𝑍1 ⊃ 𝑍2 ⊃ 𝑍3 ⊃ ⋯ ⊃ 𝑍𝑛0.
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24 PINO and SHIN

Note that 𝑍𝑛0 is the zero section𝑀 precisely because 𝜉 is bracket-generating. For notational ease, we set 𝑍𝑛0+1 = ∅.
We are interested in stratifications satisfying the following properties:

Definition 6.1. Let (𝑀, 𝜉) be analytic, bracket-generating, and regular. A stratification  of 𝑍1 = Ann(𝜉) is said to be
Ehresmann–Liouville if:

∙ For every 𝑆 ∈  , there is 𝑛 such that 𝑆 ⊂ 𝑍𝑛 ⧵ 𝑍𝑛+1.
∙ For every 𝑆 ∈  and 𝑛 as above, the intersection

Ξ𝑆 ∶= 𝑇𝑆 ∩ ker(𝑑𝜆|𝑍𝑛) ∩ 𝑑𝜋−1(𝜉)
is a distribution of constant rank.

∙ The strata 𝑆 ∈  , as well as the corresponding Ξ𝑆 , are invariant under the scaling 𝜂-action.

The reasoning behind the definition of Ξ𝑆 is Proposition 4.6: it states that, along 𝑍𝑛, it is enough to study those curves
that project to 𝜉 and are characteristic for 𝑍𝑛.
Separately, from the last item we deduce that the restriction  ⧵ {𝑀} of an Ehresmann–Liouville stratification  to

𝑍1 ⧵ 𝑀 is equivalent to a stratification ℙ of ℙ(𝑍1) (and, in practice, it is often more convenient to think of the latter).
Recall that, following Proposition 2.2, we are only interested in what happens away from the zero section.

Proposition6.2. Let (𝑀, 𝜉) be real analytic, bracket-generating, and regular. Then, its annihilator𝑍1 admits anEhresmann–
Liouville stratification  .

Proof of Proposition 6.2. We restrict 𝑑𝜆 to 𝑍𝑛. We will work simultaneously on all pairs (𝑍𝑛, 𝑑𝜆|𝑍𝑛), producing a
stratification of 𝑍1. We will use the results from Section 5.3 repeatedly.
Wework locally in𝑀. As such, wemay choose an analytic coframing𝐴𝑛 of 𝜉𝑛. Then, over𝑍𝑛, we consider the (singular)

distribution

Ξ𝑍𝑛 ∶= ker(𝑑𝜆|𝑍𝑛) ∩ 𝑑𝜋−1(𝜉).
It is defined as the common kernel in 𝑇𝑍𝑛 of the 2-form 𝑑𝜆 and the coframing 𝐴𝑛 (pulled back to 𝑍𝑛). An application of
Corollary 5.11 then yields a partition

𝑛1 ∶=
(
𝑆
(1)
𝑛,𝑗

)
𝑗∈𝐽

(1)
𝑛

of 𝑍𝑛 into semianalytic subsets such that Ξ𝑍𝑛 has constant rank 𝑗 over 𝑆
(1)
𝑛,𝑗
. The 𝑆(1)

𝑛,𝑗
are not necessarily smooth.

Note that the piece 𝑆(1)
𝑛,rank(𝜉)

is precisely 𝑍𝑛+1, which we have partitioned according to the rank of Ξ𝑍𝑛+1 instead. Addi-
tionally, according to Equation (2), the distribution Ξ𝑀 associated with the zero section 𝑍𝑛0 = 𝑀 is 𝜉. We will henceforth
not pay attention to 𝑍𝑛0 .
We define 1 to be the partition of 𝑍1 which in each 𝑍𝑛 is given by 𝑛1 . Proposition 5.4 refines 1 to a stratification

2 by smooth semianalytic subsets. Because 1 was a refinement of the dual flag, so is 2; we denote by 𝑛2 the induced
stratification of 𝑍𝑛. We may iterate this process: we apply Corollary 5.11 to each triple (𝑆 ∈ 𝑛

2𝑙
, 𝑑𝜆|𝑍𝑛 , 𝐴𝑛). This yields a

partition of 𝑆 into semianalytic subsets according to the rank of Ξ𝑆 ∶= 𝑇𝑆 ∩ Ξ𝑍𝑛 . Since we do it for all 𝑆 ∈ 2𝑙, we obtain
a locally finite partition 2𝑙+1 of 𝑍1. We refine it again to a stratification 2𝑙+2 using Proposition 5.4.
We claim that this process terminates in finitely many steps (say, 𝑙0), yielding a stratification  ∶= 2𝑙0 whose strata

𝑆 ∈ 𝑛 ∶= 𝑛
2𝑙0
=
(
𝑆
(2𝑙0)
𝑛,𝑗

)
𝑗∈𝐽

(2𝑙0)
𝑛

have constant rank distributions Ξ𝑆 = 𝑇𝑆 ∩ Ξ𝑍𝑛 . Indeed: any infinite sequence of semianalytic subsets must necessarily
stabilize in dimension, and thus also in rank of the distribution.
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PINO and SHIN 25

Lastly, we claim that  is 𝜂-invariant. This follows from the fact that 𝑑𝜆 is homogeneous, so its kernel is dilation
invariant. In particular, we could have stratified ℙ(𝑍1) instead, following the same steps, and then take preimages. □

Remark 6.3. In the smooth setting, we cannot possibly expect the rank of 𝑑𝜆|𝑍𝑛 to cut out smooth submanifolds and,
indeed, one can construct examples where Cantor sets arise as the decomposing sets 𝑆. However, as we pointed out in
Remark 1.8, one expects Thom–Boardman transversality to produce a stratification of 𝑍1 if 𝜉 is smooth and generic.

6.2 The non-regular case

We will now adapt the previous definition and proof to the non-regular case. The main idea is to first stratify the base
manifold𝑀 to yield a dense piece in which regularity holds, and then stratify 𝑍1 over that piece as before. Over the other
pieces we will not have to be particularly careful: the fact that they are lower dimensional is enough for our dimension
counting arguments in Section 6.3.

Definition 6.4. Let (𝑀, 𝜉) be analytic, bracket-generating, possibly not regular. A pair of stratifications 𝑀 (of𝑀) and 
(of 𝑍1 = Ann(𝜉)) is Ehresmann–Liouville if:

∙ For each 𝑆 ∈ 𝑀 , the pointwise rank of 𝑇𝑆 ∩ Γ(𝜉)(𝑛) is constant and it thus arises from a distribution, which we denote
by 𝜉𝑆,𝑛 ⊂ 𝑇𝑆.

∙  is subordinated to the preimage in 𝑍1 of 𝑀 .
∙ When restricted to an open stratum of 𝑀 , the stratification  is Ehresmann–Liouville.

Wewrite𝑜𝑀 ⊂ 𝑀 for the open strata (one per connected component of𝑀) and𝑐𝑀 ⊂ 𝑀 for the other strata. Similarly,
we write 𝑜,𝑐 ⊂  for those strata lying, respectively, over 𝑜𝑀 and 𝑐𝑀 .

Proposition 6.5. Let (𝑀, 𝜉) be analytic and bracket-generating. Then,Ann(𝜉)admits anEhresmann–Liouville pair (𝑀,).

Proof. We work locally in𝑀, allowing us to trivialize 𝜉. Since 𝜉 admits a framing 𝐴1, each Γ(𝜉)(𝑛) is finitely generated by
brackets with entries in said framing; we denote this generating set by𝐴𝑛. We may then apply Corollary 5.12 to each𝐴𝑛 to
partition𝑀. We then intersect all these partitions and apply Proposition 5.4 to yield a stratification by smooth semianalytic
sets. We iterate this process: we first apply Corollary 5.12 to 𝐴𝑛 and each stratum of the previous stratification and then
Proposition 5.4. After finitely many steps the process terminates, yielding 𝑀 .
Let 𝑆 ∈ 𝑜𝑀 be an open stratum (there is one in each connected component due to analyticity). To construct , we follow

the proof of Proposition 6.2 verbatim with 𝑍1|𝑆 instead of 𝑍1. The key points are:
∙ 𝑍1|𝑆 is a semianalytic set of 𝑍1 (indeed, it is cut out by pulling back the equations of 𝑆). As such, we may apply Corol-
lary 5.11 to 𝑑𝜆, the pullback of a coframing of 𝜉, and 𝑍1|𝑆 . This partitions 𝑍1|𝑆 into sets that are semianalytic globally in
𝑍1.

∙ The set where 𝑑𝜆|𝑍1 has minimal rank is 𝑍2|𝑆 . Being the locus of minimal rank, it is semianalytic and, by our assump-
tions on 𝑆, it is a vector bundle of constant rank over 𝑆. We can apply Corollary 5.11 to stratify it as in the regular case.
Iterating this procedure defines the higher annihilators 𝑍𝑛|𝑆 and their partitions.

∙ Oncewehave partitioned𝑍1|𝑆 using this inductive procedure on𝑛, we apply Proposition 5.4 to thewhole of𝑍1.Whenwe
do so, we also take into account the partition of 𝑍1 induced by 𝑀 by taking preimages. This refines all these partitions
to a global stratification.

As in the regular case, we repeat this scheme until no further refinements are needed because the distributions Ξ𝑆 have
constant rank. The claimed properties hold by construction. □
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26 PINO and SHIN

6.3 Dimension counting

Suppose 𝜉 is regular. Fix a stratum 𝑆 ∈  . According to Lemma 4.4, ker(𝑑𝜆|𝑍𝑛) is a (partial) lift of 𝜉𝑛, so
rank(ker(𝑑𝜆|𝑍𝑛)) ≤ rank(𝜉𝑛).

It follows that ker(𝑑𝜆|𝑍𝑛) ∩ 𝑑𝜋−1(𝜉), which contains Ξ𝑆 , is a partial lift of 𝜉, so the analogous bound for their ranks holds.
The following more refined bound, which we will exploit, depends on the bracket-generating condition:

Lemma 6.6. Let (𝑀, 𝜉) be regular, analytic, and bracket-generating. Let  be an Ehresmann–Liouville stratification. Then

rank(Ξ𝑆) < rank(𝜉)

for every stratum 𝑆 ∈  not contained in the zero section.

Proof. Let 𝛼 ∈ 𝑆 ⊂ 𝑍𝑛 ⧵ 𝑍𝑛+1 based at 𝑞 ∈ 𝑀. According to Lemma 4.2, this means that 𝑑𝑞𝛼|𝜉𝑛 (as a form in the base) is
not zero (here we have chosen some extension of 𝛼 to a local section of 𝑍𝑛, but the concrete extension is not important).
Due to the Jacobi identity, this implies that 𝜉 is not completely contained in ker(𝑑𝛼|𝜉𝑛 ). It follows from Corollary 4.5 that
ker𝛼(𝑑𝜆|𝑍𝑛) ∩ (𝑑𝛼𝜋)−1(𝜉𝑞) is a lift with strictly less rank than 𝜉𝑞. The same follows then for (Ξ𝑆)𝛼.
Now, we use the bracket-generating condition: our reasoning applies in each 𝑍𝑛 ⧵ 𝑍𝑛+1 with 𝑛 < 𝑛0. If 𝜉 is bracket-

generating, every 𝛼 ≠ 0 is contained in such a 𝑍𝑛. □

We obtain similar dimension bounds in the non-regular case:

Lemma 6.7. Let (𝑀, 𝜉) be analytic and bracket-generating, with Ehresmann–Liouville pair (𝑀,). Then:

∙ rank(𝜉 ∩ 𝑇𝑆) < rank(𝜉) for every stratum 𝑆 ∈ 𝑐𝑀 other than the open ones.
∙ rank(Ξ𝑆) < rank(𝜉) for every stratum 𝑆 ∈ 𝑜 not contained in the zero section.

Proof. For the first claim, we just need to observe that 𝑆 has positive codimension in 𝑀. By construction, 𝜉 ∩ 𝑇𝑆 is a
smooth distribution in 𝑆. The bracket-generating condition then implies that it must be strictly smaller than 𝜉.
The second claim follows directly by applying Lemma 6.6 to the open strata. □

7 LOCAL INTEGRABILITY

We are now ready to analyze the codimension of the locus of inadmissible jets within the space of all horizontal jets. This
will allow us to prove Theorem 2. We rely on the results from the two previous sections.
We work with (𝑀, 𝜉) analytic and bracket-generating (but possibly non-regular). We write 𝑍1 ∶= Ann(𝜉) for its

annihilator. We apply Proposition 6.5 to obtain an Ehresmann–Liouville pair (𝑀,) adapted to 𝜉.

7.1 Jets tangent to semianalytic sets

First, we prove an auxiliary lemma:

Lemma 7.1. Let 𝑆 be a smooth semianalytic subset of an analytic manifold𝑊. Then, 𝐽𝑟(𝑆) is a semianalytic subset of 𝐽𝑟(𝑊).

Proof. We work locally. Let (𝑓𝑖 □0)𝑖∈𝐾 be the defining equations of 𝑆, with 𝐾0 ⊂ 𝐾 indexing the equalities.
Then, 𝐽𝑟(𝑆) is the subset of jets that annihilate the analytic 1-forms (𝑑𝑓𝑖)𝑖∈𝐾0 and whose basepoints lie in 𝑆. As such, it

is the intersection of two semianalytic sets. □
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PINO and SHIN 27

7.2 Characteristic jets

We recall:

Definition 7.2. An 𝑟-jet in 𝐽𝑟(𝑍1) is characteristic if:

∙ 𝑑𝜆|𝑍1 vanishes to order 𝑟 on any of its representatives.
∙ It is based in 𝑍1 ⧵ 𝑀.

The space of all characteristic jets is denoted by 𝐽𝑟(𝑍1, 𝑑𝜆) ⊂ 𝐽𝑟(𝑍1).

We note that this does not depend on the choice of representative. The following can be proven similar to Lemma 3.9:

Lemma 7.3. Fix 𝛼 ∈ 𝑍1. Then, 𝐽𝑟𝛼(𝑍1, 𝑑𝜆) is an algebraic subvariety of 𝐽𝑟𝛼(𝑍1).

We can prove a jet analog of Hsu’s theorem Proposition 2.2:

Lemma 7.4. Let 𝛾 ∶ 𝑝(0) → (𝑀, 𝜉) be a singular curve. Then, 𝑗𝑟𝛾 ∈ 𝐽𝑟(𝑀, 𝜉) admits a characteristic lift to 𝐽𝑟(𝑍1, 𝑑𝜆).

Proof. According to Hsu’s result, we can lift 𝛾 to a characteristic curve in 𝑍1. We then take 𝑟-jets at 0 (but the reader should
note that we could take jets at any other point, showing that the jet we obtain is part of a family). □

Recall the actions 𝜌 and 𝜂 on jets defined in Sections 2.1.2 and 2.1.3. Invoking that 𝜆|𝑍1 is analytic:
Lemma 7.5. 𝐽𝑟(𝑍1, 𝑑𝜆) is a (𝜌 ⊕ 𝜂)-invariant semianalytic subvariety of 𝐽𝑟(𝑍1).

Proof. Locally in𝑀, fix a framing {𝑣𝑗} of 𝑇𝑍1. We can consider the analytic 1-forms 𝜄𝑣𝑗𝑑𝜆 and plug them into an 𝑟-jet of
curve in 𝑍1. This yields (locally) an analytic map between jet spaces

𝐽𝑟(𝑍1) →
(
ℝdim(𝑍1) → ℝ

)(𝑟−1)
0

. (5)

Its zero set away from the zero section is precisely 𝐽𝑟(𝑍1, 𝑑𝜆) which is then semianalytic. Invariance is immediate from
the discussion in Sections 2.1.2 and 2.1.3, together with the homogeneity of 𝑑𝜆. □

We can now project to the base manifold:

Corollary 7.6. The projection map

𝑗𝑟𝜋 ∶ 𝐽𝑟(𝑍1) → 𝐽𝑟(𝑀)

is analytic. The image of 𝐽𝑟(𝑍1, 𝑑𝜆) is subanalytic and contained in 𝐽𝑟(𝑀, 𝜉).

Proof. In local coordinates over𝑀, 𝑍1 is trivialized by a coframing {𝛼𝑖}, yielding fiber coordinates (𝑎𝑖). We recall the local
expression Equation (2):

𝑑𝜆|𝑍1 = 𝑖1∑
𝑖=1

𝑑𝑎𝑖 ∧ 𝛼𝑖 + 𝑎𝑖𝑑𝛼𝑖,

where the pullback of 𝛼𝑖 to 𝑍1 is denoted in the same manner.
We may assume that the framing of 𝑍1 used in the previous lemma is adapted to this trivialization. That is, the framing

may be decomposed into a horizontal part (𝜕𝑞𝑗 )𝑗=1,…,dim(𝑀) and a vertical part (𝜕𝑎𝑖 )𝑖=1,…,rank(𝑍1). Then, the vertical part of
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28 PINO and SHIN

Equation (5) reads:

𝐽𝑟(𝑍1) →
(
ℝrank(𝑍1) → ℝ

)(𝑟−1)
0

𝜎 → (𝑑𝜆(𝜎′, 𝜕𝑎1), …).

We can readily expand

𝑑𝜆(𝜎′, 𝜕𝑎𝑖 ) = −𝛼𝑖(𝜎
′) = −𝛼𝑖((𝜋◦𝜎)

′),

showing that 𝜋◦𝜎 is tangent to each 𝛼𝑖 up to order 𝑟 (and thus horizontal) if 𝜎 is characteristic.
The subanalyticity claim follows from Lemma 7.5, together with the fact that projections of (relatively compact) semi-

analytic sets are subanalytic (Section 5.2). However, this is not immediate in our setting, because the sets we deal with are
not compact. To fix this, we work instead in the (𝜌 ⊕ 𝜂)-quotient, which is compact (Lemma 2.1).
Indeed, 𝐽𝑟(𝑍1, 𝑑𝜆)∕(𝜌 ⊕ 𝜂) is semianalytic in 𝐽𝑟(𝑍1)∕(𝜌 ⊕ 𝜂) and closed, and thus compact. Then, its projection

in 𝐽𝑟(𝑀)∕𝜌 is subanalytic. Equivalently, any 𝜋(𝐽𝑟(𝑍1, 𝑑𝜆)) ∩ 𝑈, with 𝑈 ⊂ 𝐽𝑟(𝑀) compact, is the image of a compact
semianalytic slice contained in 𝐽𝑟(𝑍1, 𝑑𝜆), proving the claim. □

Given a characteristic 𝑟-jet 𝜎, it is not a priori clear that there is a characteristic curve representing it. Such a statement
would hold, using the Ehresmann chart formalism of Section 3.4, if 𝑑𝜆|𝑍1 was of constant rank. This precisely motivates
our interest in stratifying 𝑍1. We explain this next.

7.3 Characteristic jets of tangency type

Following Corollary 7.6, we would now be inclined to study singular jets in 𝐽𝑟(𝑀, 𝜉) as the image of 𝐽𝑟(𝑍1, 𝑑𝜆) under
projection. The issue with this is that we do not actually know how to control the behavior of all characteristic jets. Our
methods only control those that interact nicely with the Ehresmann–Liouville pair (𝑀,)4. It turns out (Proposition 7.15)
that this is enough for our goals.
First, we look at those jets that lie over the open strata 𝑜𝑀 of 𝑀 . We will study those tangent to smaller strata in the

next subsection. Recall that 0 ⊂  denotes the strata lying over 𝑜𝑀 .

Definition 7.7. An 𝑟-jet 𝜎 ∈ 𝐽𝑟(𝑍1) is characteristic of tangency type if 𝜎 ∈ 𝐽𝑟(𝑆, Ξ𝑆), for some stratum 𝑆 ∈ 𝑜 not
contained in the zero section.
We denote the space of all such jets as 𝐽𝑟(𝑍1, 𝑑𝜆) .

Unlike a general characteristic jet, a jet in 𝐽𝑟(𝑍1, 𝑑𝜆) extends to a characteristic curve. Indeed, such a jet will be based
in the interior of some stratum 𝑆, so we can extend it to a curve tangent to Ξ𝑆 (using the Ehresmann formalism from
Lemma 3.10).
The following preliminary lemma describes the jets of tangency type more concretely:

Lemma 7.8. Let 𝑆 ∈ 𝑜 contained in 𝑍𝑛. Then:

𝐽𝑟(𝑍1, 𝑑𝜆) ∩ 𝑆 = 𝐽
𝑟(𝑆) ∩ 𝐽𝑟(𝑍𝑛, 𝑑𝜆) ∩ 𝜋

−1(𝐽𝑟(𝑀, 𝜉)) = 𝐽𝑟(𝑆) ∩ 𝐽𝑟(𝑍1, 𝑑𝜆),

where the intersection on the left-hand side denotes taking the jets of 𝐽𝑟(𝑍1) based on 𝑆 (but not necessarily tangent to it).
In particular, 𝐽𝑟(𝑍1, 𝑑𝜆) ∩ 𝑆 is semianalytic.

Proof. For the first equality: according to Definition 6.1, Ξ𝑆 is the collection of vectors tangent to 𝑆 on which 𝑑𝜆|𝑍𝑛 and
the defining forms of 𝜉 vanish, so the claim follows by definition.
For the second equality: we invoke the analogous equality for vectors given in Proposition 4.6.
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PINO and SHIN 29

The last claim follows because the three spaces in the middle (or the two on the right) are semianalytic. This was
shown for 𝐽𝑟(𝑍𝑛, 𝑑𝜆) in Lemma 7.5 and the proof for 𝜋−1(𝐽𝑟(𝑀, 𝜉)) is analogous. Semianalyticity of 𝐽𝑟(𝑆) was justified in
Lemma 7.1. □

From which it follows:

Proposition 7.9. 𝐽𝑟(𝑍1, 𝑑𝜆) is a smooth semianalytic subset of 𝐽𝑟(𝑍1).

Proof. 𝐽𝑟(𝑍1, 𝑑𝜆) is described locally as the graph of an Ehresmann lifting map for jets, which is analytic because each
Ξ𝑆 is analytic. This proves smoothness and analyticity at its interior points.
To prove semianalyticity (including frontier points), we write

𝐽𝑟(𝑍1, 𝑑𝜆) ∶=
∐
𝑆∈𝑜

(𝐽𝑟(𝑍1, 𝑑𝜆) ∩ 𝑆).

The claim then follows from Lemma 7.8 and the fact that  is finite. □

Lemma 7.10. Let (𝑀, 𝜉) be analytic and bracket-generating. Then, the dimension of 𝐽𝑟(𝑍1, 𝑑𝜆) is at most

(rank(𝜉) − 1)(𝑟 − 1) + 2 dim(𝑀).

Proof. It was shown in Lemma 6.7 that Ξ𝑆 , for every 𝑆 ∈ 𝑜, has rank at most rank(𝜉) − 1. The Ehresmann charts arising
from Lemma 3.10 allow us to explicitly parameterize the piece of 𝐽𝑟(𝑍1, 𝑑𝜆) corresponding to 𝑆 using jets of curves in
ℝrank(Ξ𝑆) (plus a choice of basepoint). Thus:

dim(𝐽𝑟(𝑍1, 𝑑𝜆) ∩ 𝑆) ≤ dim(𝐽𝑟(ℝrank(Ξ𝑆))) + dim(𝑆)

= (rank(Ξ𝑆) − 1)(𝑟 − 1) + dim(𝑆)

≤ (rank(𝜉) − 1)(𝑟 − 1) + 2 dim(𝑀).

□

7.4 Horizontal jets of submanifold type

Having looked at jets lying over open strata, we now single out those tangent to the smaller strata in 𝑀 :

Definition 7.11. A horizontal 𝑟-jet 𝜎 ∈ 𝐽𝑟(𝑀, 𝜉) is of the submanifold type if it is tangent to 𝑆 ∈ 𝑐𝑀 . In particular, it is
tangent to the distribution 𝜉 ∩ 𝑇𝑆.
The space of all jets of the submanifold type is denoted by 𝐽𝑟(𝑀, 𝜉)𝑀 .

Do note that these jets may not be singular at all (but we discard them in case they do contain some singular jets).

Proposition 7.12. 𝐽𝑟(𝑀, 𝜉)𝑀 is a smooth semianalytic subset of 𝐽𝑟(𝑍1). Its dimension is bounded above by:

(rank(𝜉) − 1)(𝑟 − 1) + dim(𝑀).

Proof. The proof is exactly the same as in Proposition 7.9 and Lemma 7.10. The equality

𝐽𝑟(𝑀, 𝜉)𝑀 =
∐
𝑆∈𝑐𝑀

𝐽𝑟(𝑀, 𝜉) ∩ 𝐽𝑟(𝑆),
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30 PINO and SHIN

together with Lemma 7.1, proves semianalyticity. Using Ehresmann charts and the dimension counting of Lemma 6.7
proves the claimed dimension bound. □

7.5 Inadmissible jets

So far we have only controlled those characteristic/singular jets that are tangent to strata. However, it is possible for a
characteristic/ singular curve to jump across strata. Indeed, this is awell-knownphenomenon in subriemannian geometry,
and it is the key obstruction in proving one the main open problems in the field: the Sard conjecture for the endpoint map
[4, 7, 21, 22].
To take into account this jumping phenomenon we define:

Definition 7.13. An 𝑟-jet 𝜎 ∈ 𝐽𝑟(𝑀, 𝜉) is inadmissible if any of the following conditions holds:

∙ It is in the image of the projection 𝐽𝑟(𝑍1, 𝑑𝜆) → 𝐽𝑟(𝑀, 𝜉).
∙ It is contained in 𝐽𝑟(𝑀, 𝜉)𝑀 .
∙ It is in the closure of one of the previous two sets.

The space of inadmissible jets is denoted by 𝐽𝑟(𝑀, 𝜉)inadm.

From the results in the previous subsections it readily follows:

Proposition 7.14. Let (𝑀, 𝜉) be analytic and bracket-generating. Then, 𝐽𝑟(𝑀, 𝜉)inadm is a closed subanalytic set of 𝐽𝑟(𝑀, 𝜉)
of dimension at most

(rank(𝜉) − 1)(𝑟 − 1) + 2 dim(𝑀).

Proof. According to Proposition 7.9, the space of tangency-type jets 𝐽𝑟(𝑍1, 𝑑𝜆) is semianalytic. One may then argue as in
Corollary 7.6 and show that its projection to 𝐽𝑟(𝑀, 𝜉) is subanalytic (the one subtlety again is taking (𝜌 ⊕ 𝜂)-invariance
into account).
Similarly, Proposition 7.12 shows that the jets of the submanifold type 𝐽𝑟(𝑀, 𝜉)𝑀 form a semianalytic (and, in particular,

subanalytic) set.
Additionally, according to Proposition 5.3, closures of semianalytic sets are also semianalytic, so our previous reasoning

applies again. This shows that 𝐽𝑟(𝑀, 𝜉)inadm is subanalytic (and closed due to being a closure).
The dimension bounds from Proposition 7.9 and Proposition 7.12 prove the second claim. We note that taking closures

does not increase the dimension. □

The reader may wonder why we are interested in inadmissible jets. Indeed, we could have defined a singular jet to be
the image of a characteristic jet. Those are the jets that actually solve the singularity condition up to order 𝑟, and are thus
much more natural to be studied. Here is the fundamental property of inadmissible jets, which allows us to disregard
general singular jets:

Proposition 7.15. Let 𝛾 ∶ 𝑝(0) → (𝑀, 𝜉) be a singular curve. Then, 𝑗𝑟𝛾 ∈ 𝐽𝑟(𝑀, 𝜉)inadm.

Proof. By local finiteness of the stratification 𝑀 , there exists a sequence of points 𝑡𝑖 →𝑖→∞ 0, and intervals 𝑝(𝑡𝑖) ⊃ 𝑡𝑖 ,
such that the images 𝛾(𝑝(𝑡𝑖)) are all contained in the same stratum 𝑆 ∈ 𝑀 . Do note that 𝑆 may not be the stratum
containing 𝛾(0) (but 𝛾(0) ∈ 𝑆).
Now, there are two options: if 𝑆 ∈ 𝑐𝑀 , the jets 𝑗

𝑟
𝑡𝑖
𝛾 are all of submanifold type. Then, 𝑗𝑟𝛾 is in the closure of 𝐽𝑟(𝑀, 𝜉)𝑀 .

As such, it is inadmissible.
Otherwise, if 𝑆 ∈ 0𝑀 , we use Hsu’s result Proposition 2.2 to lift 𝛾 to a characteristic curve 𝛾. As such 𝑗

𝑟𝛾 ∈ 𝐽𝑟(𝑍1, 𝑑𝜆).
We just need to show that it in fact belongs to 𝐽𝑟(𝑍1, 𝑑𝜆) .
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PINO and SHIN 31

We argue as before: by local finiteness of  there is a subsequence 𝑡′
𝑖
→𝑖→∞ 0, with neighborhoods 𝑝(𝑡′𝑖 ) ⊃ 𝑡

′
𝑖
, such

that the images 𝛾(𝑝(𝑡′
𝑖
)) are all contained in a stratum 𝑆′ lying over 𝑆. The jets 𝑗𝑟

𝑡′
𝑖

𝛾 are all characteristic and tangent to

𝑆′, so they belong to 𝐽𝑟(𝑍1, 𝑑𝜆) . Their limit 𝑗𝑟𝛾 then belongs to the closure. □

The point is that a singular jet may be spurious: it may satisfy the singularity condition up to order 𝑟, but not arise as
the jet of an actual singular curve. Such jets are not taken into account in our arguments (but it would be interesting to
find an argument to detect/control them as well; we leave this as an open question).
In the same direction, many of our inadmissible jets are not necessarily singular (for instance, those tangent to lower

strata of 𝑀), but we discard them for convenience because they form small families nonetheless.

7.6 Microregular jets and the proof of Theorem 2

We have essentially completed the proof of Theorem 2, but let us spell it out.

Definition 7.16. A horizontal 𝑟-jet 𝜎 ∈ 𝐽𝑟(𝑀, 𝜉) is microregular if it is not inadmissible. The space of all microregular
jets is denoted by 𝐽𝑟(𝑀, 𝜉)microreg.
A curve 𝛾 is microregular if each jet is microregular for some 𝑟.

Note that even though 𝑟 depends on the jet a priori, there exists a uniform 𝑟 for all jets of the curve, by openness of
microregularity for jets and compactness of the curve.
We will sometimes speak of the microregular differential relationmicroreg. Do note that it is indeed differential (since

it depends on finite jets), but of arbitrarily high order.

Proof of Theorem 2, including rephrasings. According to Proposition 7.14, the set 𝐽𝑟(𝑀, 𝜉)microreg is open and dense.
Furthermore, the codimension of its complement 𝐽𝑟(𝑀, 𝜉)inadm ⊂ 𝐽𝑟(𝑀, 𝜉) is bounded below by:

dim(𝐽𝑟(𝑀, 𝜉)) − dim(𝐽𝑟(𝑀, 𝜉)inadm) ≥ [rank(𝜉)(𝑟 − 1) + dim(𝑀)] − [(rank(𝜉) − 1)(𝑟 − 1) + 2 dim(𝑀)]

≥ 𝑟 − 2 dim(𝑀) − 1,

which is linear in 𝑟. This proves the infinite codimension of inadmissible jets as 𝑟 goes to infinity.
By taking representative germs and invoking Proposition 7.15, it follows that the space of singular germs has infinite

codimension within the space of all horizontal germs.
Let𝐾 be a compactmanifold. To show that a family of horizontal vectors (𝑣𝑘)𝑘∈𝐾 can be extended to a family ofmicroreg-

ular jets, we need an additional observation. Write 𝐽𝑟(𝑀, 𝜉, 𝑣𝑘) for the horizontal 𝑟-jets with a given 𝑣𝑘 as its first jet. This
is an analytic subspace of 𝐽𝑟(𝑀, 𝜉) of codimension 𝑙 (which is independent of 𝑟). As such, the intersection

𝐽𝑟(𝑀, 𝜉)inadm ∩ 𝐽
𝑟(𝑀, 𝜉, 𝑣𝑘) ⊂ 𝐽

𝑟(𝑀, 𝜉, 𝑣𝑘)

is subanalytic and of codimension 𝑂(𝑟). By taking 𝑟 sufficiently large, it has codimension larger than dim(𝐾), proving
that we can find a family of preimages (𝜈𝑘)𝑘∈𝐾 in 𝐽𝑟(𝑀, 𝜉)microreg. Observe now that the same reasoning applies when our
starting point is a family of integral 𝑎-jets, for any fixed integer 𝑎.
By taking 𝑟 to infinity and using the previous reasoning, we deduce that

𝐽∞(𝑀, 𝜉)microreg → 𝐽1(𝐼,𝑀, 𝜉)

is a Serre fibration. Even further, reasoning as above with𝐾 = 𝔻𝑁 , for varying𝑁 and relative to the boundary, shows weak
contractibility of its fibers. □

Proof of local integrability in Theorem 1. Let 𝐾 be a compact manifold. According to Theorem 2, any family of vectors
(𝑣𝑘)𝑘∈𝐾 in 𝐽1(𝑀, 𝜉) can be extended, for 𝑟 sufficiently large, to a family of 𝑟-jets (𝜈𝑘)𝑘∈𝐾 in 𝐽𝑟(𝑀, 𝜉)microreg.
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32 PINO and SHIN

In turn, we can choose a𝐾-family of germs of horizontal curves (𝛾𝑘)𝑘∈𝐾 representing the jets (𝜈𝑘)𝑘∈𝐾 . This can be done
by working in a Ehresmann chart, taking representative germs in the projection, and lifting them up (Lemma 3.10). Being
microregular is an open condition for jets (according to Theorem 2), so all the jets of 𝛾𝑘 (in a sufficiently small interval)
are microregular.
The same reasoning applies in the relative case. □

Proof of Corollary 1.10. First, we note that being open means that it defines a subset 𝑅 ⊂ 𝐽𝑎(𝑀), for some 𝑎. Its prolon-
gations (i.e., differential consequences in 𝐽𝑟(𝑀)), due to openness, are the preimages of 𝑅 under the usual forgetful map
𝐽𝑟(𝑀) → 𝐽𝑙(𝑀).
According to Theorem 2, any 𝐾-family of integral 𝑎-jets (𝑣𝑘)𝑘∈𝐾 in 𝐽𝑎(𝑀, 𝜉) can be extended, for 𝑟 sufficiently large,

to a family of 𝑟-jets (𝜈𝑘)𝑘∈𝐾 in 𝐽𝑟(𝑀, 𝜉)microreg; this holds also relatively. The claim follows by considering families taking
values in 𝑅. □

8 AN INSTANCE OF THOM TRANSVERSALITY

In the next section, we will prove the microflexibility (Definition 2.3) of the microregular differential relation microreg,
completing the proof of Theorem 1. Themain idea is straightforward: given any local deformation (𝛾𝑠)𝑠∈[0,1] of a microreg-
ular curve 𝛾, we use regularity in the complement of the deformation region to extend it to a global deformation (𝛾𝑠)𝑠∈[0,𝛿].
This is essentially automatic from the definition of regularity. The issue is that the resulting deformation is not necessarily
made of microregular curves (although they are regular by construction).
To deal with this, we invoke the fact that the space of inadmissible jets has large codimension (Theorem 2) so regularity

may be used to avoid it. This can be understood as a form of Thom transversality with respect to the inadmissible jets once
we have regularity. In this section, we work out this transversality statement Theorem 4 in detail.

8.1 A preparatory lemma

The regularity condition will allow us to deform families of curves while keeping their endpoint fixed. In order to do this,
we first need to assign to each regular curve a finite family of variations that realize every possible move of the reduced
endpoint.

Lemma 8.1. Let (𝑊𝑚,𝑙) bracket generating and not necessarily analytic. Fix a regular horizontal curve 𝛾 ∶ [0, 1] →
(𝑊,). Let𝜙 ∶ 𝑈 ⊂ ℝ𝑚 → 𝑊 be anEhresmann chart adapted to 𝛾, with reduced endpoint𝔈𝔭𝜙, and projection𝜋 ∶ 𝑈 → ℝ𝑙 .
We abuse notation and regard and 𝛾 as objects in𝑈.
Then, there is a family of curves (𝛾𝑣 ∶ [0, 1] → (𝑈,))𝑣∈ℝ𝑚−𝑙 satisfying:

∙ 𝛾0 = 𝛾.
∙ 𝛾𝑣 = 𝛾 in 𝑝({0}).
∙ 𝜋◦𝛾𝑣 = 𝜋◦𝛾 in 𝑝({0, 1}).
∙ The variations Γ𝑣 ∶= 𝜕𝑣|𝑣=0(𝛾𝑣) satisfy that 𝑑𝛾𝔈𝔭𝜙|⟨Γ𝑣⟩𝑣∈ℝ𝑚−𝑙 is surjective.
In particular,𝔈𝔭𝜙|(𝛾𝑣)𝑣∈𝑝(0) is a diffeomorphism with image a little vertical ball:

𝑝(𝛾(1)) ⊂ {𝜋◦𝛾(1)} × ℝ𝑚−𝑙.

Proof. Let 𝑒𝑙+1, … , 𝑒𝑚 be the standard basis of vector fields in𝑈 ⊂ ℝ𝑚 tangent to the last (𝑚 − 𝑙)-coordinates. By regularity
of 𝛾 there are variational vector fields Γ𝑖 that surject onto them using the differential 𝑑𝛾𝔈𝔭 of the restricted endpoint map.
We see the Γ𝑖 as lifts of compactly-supported variational vector fields Γ̃𝑖 of 𝜋◦𝛾.
Wewrite Γ̃𝑣 ∶=

∑𝑚

𝑖=𝑙+1
𝑣𝑖Γ̃𝑖 for the (compactly-supported) variational vector fieldmapping to 𝑣 ∶=

∑𝑚

𝑖=𝑙+1
𝑣𝑖𝑒𝑖 . We arbi-

trarily extend the Γ̃𝑣 to curves 𝛾𝑣 inℝ𝑙 that agree with 𝜋◦𝛾 close to their endpoints. Their lifts with initial point 𝛾(0) yield
the claimed family 𝛾𝑣. □
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PINO and SHIN 33

Definition 8.2. Under the assumptions and conclusions of the previous lemma, we say that (𝛾𝑣)𝑣∈ℝ𝑚−𝑙 is a variational
endpoint family associated to 𝛾 and that 𝔈𝔭𝜙|(𝛾𝑣)𝑣∈𝑝(0) is a variational endpoint map.
Corollary 8.3. Let (𝑈,) be a bracket-generating Ehresmann chart. Fix a family of regular horizontal curves (𝛾𝑘 ∶ [0, 1] →
(𝑈,))𝑘∈𝔻𝑏 . Then, they admit a variational endpoint family (𝛾𝑘,𝑣)𝑘∈𝔻𝑏,𝑣∈ℝ𝑚−𝑙 , parametrically in 𝑘.

Proof. To each curve 𝛾𝑘, we assign a variational endpoint family (𝛾𝑘𝑣 )𝑣∈𝑝(0) using the Lemma (these do not vary smoothly
in 𝑘). The corresponding infinitesimal variations (Γ𝑘𝑣)𝑣∈ℝ𝑚−𝑙 can be extended arbitrarily to the nearby curves; we denote
these by (Γ𝑘

𝑘′,𝑣
)𝑘′∈𝑝(𝑘),𝑣∈ℝ𝑚−𝑙 . Since 𝑑𝔈𝔭𝜙|(Γ𝑘𝑣) is an isomorphism, the samemust be true for 𝑑𝔈𝔭𝜙|(Γ𝑘𝑘′,𝑣) by continuity for

those 𝑘′ sufficiently close to 𝑘. We can thus assume, by a change of basis parametric in 𝑘′, that 𝑑𝔈𝔭𝜙(Γ
𝑘
𝑘′,𝑣
) = 𝑣.

Now, we cover 𝔻𝑏 by finitely many of these opens 𝑝(𝑘𝑖). Using a partition of unity 𝜒𝑖 , we set

Γ𝑘,𝑣 ∶=
∑
𝑖

𝜒𝑖Γ
𝑘𝑖
𝑘,𝑣
.

Since 𝑑𝔈𝔭𝜙 is linear, it follows that Γ𝑘,𝑣 maps to 𝑣. We extend these variational vector fields arbitrarily to horizontal curves
(with compactly-supported projection and given initial point). □

8.2 The proof

Let us restate Theorem 4 in its relative and parametric versions:

Proposition 8.4. Let (𝑀, 𝜉) be bracket-generating and real analytic. Let 𝐾′ ⊂ 𝐾 be compact manifolds (possibly with
boundary).
Let (𝛾𝑘 ∶ [0, 1] → (𝑀, 𝜉))𝑘∈𝐾 be a family of horizontal curves parameterized by 𝐾. We assume that:

∙ 𝛾𝑘 is microregular for all 𝑘 ∈ 𝑝(𝐾′).
∙ 𝛾𝑘 is microregular at every 𝑡 ∈ 𝑝(𝜕([0, 1])), for all 𝑘.
∙ 𝛾𝑘 is regular for all 𝑘.

Then, given any integer 𝑎, the family can be 𝐶𝑎-perturbed, relative to the boundary in the parameter and the domain, to yield
a family of microregular horizontal curves.

Such a statement was explained already in [24, Proof of Theorem 1] and [10] in the setting of Engel manifolds. Themain
point (both here and there) is that, unlike most transversality statements, one cannot argue purely locally. Indeed, we
need to invoke regularity (which is a global property) in order to produce, during the deformation process, curves with
the correct boundary conditions.

Proof of Theorem 4 and Proposition 8.4. We fix a triangulation  of 𝐾. If  is sufficiently thin, given any simplex 𝜎 ∈  ,
the curves (𝛾𝑘)𝑘∈𝜎 will all be contained in an Ehresmann chart adapted to them.
We have to deform the family (𝛾𝑘)𝑘∈𝐾 to achieve microregularity. This is done one (sufficiently small) neighborhood

 (𝜎) of a cell 𝜎 ∈  at a time; at every step we invoke Theorem 2 to perturb the curves in order to avoid the inadmis-
sible jets. We order the  (𝜎) arbitrarily but increasingly in dimension. If 𝐾′ is not empty, we require that  extends a
triangulation of 𝐾′; the cells corresponding to 𝐾′ are ignored in our argument. Standard arguments (see, for instance, [11,
Proposition 30]) show that:

∙  (𝜎) can be identified with 𝔻dim(𝐾).
∙ The neighborhood of the previous cells is, in this model, of the form 𝑝(𝕊dim(𝜎)−1) (and, in particular, empty if 𝜎 is a
vertex).
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34 PINO and SHIN

Now, we work in a concrete  ∶=  (𝜎) ⊂ 𝐾. The curves (𝛾𝑘)𝑘∈ are all adapted to an Ehresmann chart 𝜙 ∶ 𝑈 → 𝑀

with projection 𝜋 ∶ 𝑈 → ℝ𝑙. This may be assumed applying Proposition 3.2 to each 𝛾𝑘 and using the fact that  can be
chosen to be arbitrarily thin (so all curves (𝛾𝑘)𝑘∈ are contained in the Ehresmann chart associated with one of them).
We pass back and forth between 𝑈 and𝑀 to avoid cluttering the notation.
We fix 𝑟 = 𝑂(𝑛) sufficiently large so that 𝐽𝑟(𝑀, 𝜉)inadm has codimension larger than dim(𝐾) + 1 + dim(𝑀). We project

down 𝐽𝑟(𝑈, 𝜉)inadm to 𝐽𝑟(ℝ𝑙); the image 𝐽𝑟(ℝ𝑙)inadm is, by construction, closed, subanalytic, and of codimension larger
than dim(𝐾) + 1. We then apply standard Thom transversality to (𝜋◦𝛾𝑘)𝑘∈ to yield a 𝐶𝑎-deformed family (𝜋◦𝛾𝑘)𝑘∈
whose 𝑟-jets avoid 𝐽𝑟(ℝ𝑙)inadm. In the region corresponding to previous cells, we do not have to deform because we had
already achieved microregularity there. We also do not need to deform close to the endpoints {0, 1}.
We lift (𝜋◦𝛾𝑘)𝑘∈ to a family (𝛾𝑘)𝑘∈ using the Ehresmann lifting map of 𝑈. The initial points are chosen to be the

initial points of (𝛾𝑘)𝑘∈ . However, the lifting process does not respect the endpoint: the endpoints of the family (𝛾𝑘)𝑘∈
have been displaced in a 𝐶𝑎-small manner and therefore they do not satisfy the desired boundary conditions.
To address this, we use the results from the previous subsection. Before we start the induction, we instead apply Corol-

lary 8.3 to (𝛾𝑘)𝑘∈ , enlarging it to a family (𝛾𝑘,𝑣)𝑘∈ ,𝑣∈𝑝(0). Do note that the 𝛾𝑘,0 = 𝛾𝑘 have the desired endpoint but
the others do not. Indeed, the curves (𝛾𝑘,𝑣)𝑣∈𝑝(0) have the same initial point as 𝛾𝑘, but the endpoint varies in a little
(vertical) ball.
We may then argue as above but with the family (𝛾𝑘,𝑣)𝑘∈ ;𝑣∈𝑝(0) instead; this yields a deformed family

(𝛾𝑘,𝑣)𝑘∈ ,𝑣∈𝑝(0). Since the variational endpoint map of each 𝛾𝑘 provided a diffeomorphism between 𝑝(𝑣) and a lit-
tle vertical ball, the same is true for the deformed family (here we use the 𝐶𝑎-smallness of the perturbation). In particular,
for each 𝑘, there is exactly one curve 𝛾𝑘,𝑣(𝑘) in (𝛾𝑘,𝑣)𝑣∈𝑝(0) with the desired endpoint. Do note that 𝛾𝑘,𝑣(𝑘) is smooth,
because its projection 𝜋◦𝛾𝑘,𝑣(𝑘) is smooth.
This concludes the inductive step, producing a family of microregular, horizontal curves (𝛾𝑘,𝑣(𝑘))𝑘∈𝐾 . Now, we prove

that this family is homotopic to (𝛾𝑘)𝑘∈𝐾 through a regular horizontal family. Indeed, the two are 𝐶𝑎-close. In particular,
by working in the Ehresmann chart𝑈 and lifting, we can interpolate between them using a 𝐶𝑎-small family of horizontal
and regular curves (but potentially with the wrong endpoint). We apply the closing argument of the previous paragraph
to this interpolation. This concludes the proof. □

Remark 8.5. Let us comment on a slightly subtle point in the proof. The set 𝐽𝑟(ℝ𝑙)inadm is a finite collection of immersed
submanifolds in 𝐽𝑟(ℝ𝑙) (Proposition 5.6), but not necessarily a stratification satisfying Whitney’s conditions (which
is usually the assumption in order to invoke Thom transversality with respect to it). However, Whitney’s conditions
are not needed in our setting, in which the singularity set 𝐽𝑟(ℝ𝑙)inadm is to be avoided altogether due to the high
codimension assumption.
Indeed,we cover the submanifolds of 𝐽𝑟(ℝ𝑙)inadm by open balls in 𝐽𝑟(ℝ𝑙). The balls covering the frontier of a submanifold

cover also a neighborhood of it, so the collection of balls may be chosen to be finite. Then, we argue inductively, starting
from the smaller submanifolds. At each step, we apply Thom transversality to avoid them.
A similar observation can be found in [17, Remark in p. 33].

9 MICROFLEXIBILITY

In this section, we prove the microflexibility of microregular curves. The argument is very similar to the proof of
Proposition 8.4.

Proof of microflexibility in Theorem 1. Let us recall the setup: we have a family of microregular curves (𝛾𝑘 ∶ [0, 1] →
(𝑀, 𝜉))𝑘∈𝐾 and a family of local deformations (𝛾𝑘,𝑠 ∶ 𝑝(𝐼) → (𝑀, 𝜉))𝑘∈𝐾,𝑠∈[0,1] defined in a neighborhood of some closed
subset 𝐼 ⊂ [0, 1]. Wewant to extend this deformation to a global one, defined in an arbitrarily small time interval 𝑠 ∈ [0, 𝛿].
First, note that it may be assumed that 𝐾 = 𝔻𝑏 and that the family (𝛾𝑘)𝑘∈𝔻𝑏 maps into an Ehresmann chart 𝜙(𝑈). This

is done as in Proposition 8.4, by triangulating 𝐾 and working relatively to previous simplices. Similarly, due to com-
pactness, we can find a finite collection of disjoint intervals 𝐼𝑖 ⊂ [0, 1] ⧵ 𝐼 such that, together with 𝑝(𝐼), they cover
[0,1]. By working with a particular 𝐼𝑖 , we reduce the problem to the case in which 𝐼 = {0, 1}. We proceed under these
simplifying assumptions.

 15222616, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202200306 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [19/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



PINO and SHIN 35

Due to microregularity, the curves (𝛾𝑘)𝑘∈𝔻𝑏 are regular in both [0, 1∕2] and [1∕2, 1]. We can apply Corollary 8.3 on each
half, keeping the middle fixed, to yield a variational endpoint family for both ends:

(𝛾𝑘,𝑣1,𝑣2 )𝑘∈𝔻𝑏;𝑣1,𝑣2∈ℝ𝑚−𝑙 ,

that is, 𝑣1 controls the vertical displacement over 𝛾(0) and 𝑣2 the displacement over 𝛾(1). We may assume that, under the
local projection 𝜋 ∶ 𝑈 → ℝ𝑙 provided by the Ehresmann chart, the variations are trivial in 𝑝({0, 1∕2, 1}). In particular,
for 𝑘 fixed, all the projected curves agree with 𝜋◦𝛾𝑘 at the endpoints and middle point.
We now modify the variational family close to its endpoints. Namely, we define a new family

(𝛾𝑘,𝑣1,𝑣2,𝑠)𝑘∈𝔻𝑏;𝑣1,𝑣2∈ℝ𝑚−𝑙;𝑠∈[0,1]

whose projection 𝜋◦𝛾𝑘,𝑣1,𝑣2,𝑠 agrees with 𝜋◦𝛾𝑘,𝑣1,𝑣2 away from the endpoints, but close to them is given by the deformation
𝜋◦𝛾𝑘,𝑠. We choose the middle point as the lifting point so 𝛾𝑘,𝑣1,𝑣2,𝑠(1∕2) = 𝛾𝑘(1∕2).
Now, we are almost done. For 𝑠 = 0, the restricted endpoint maps are diffeomorphisms. The same is true from small

𝑠 ≤ 𝛿 by continuity. Therefore, there are unique values 𝑣1(𝑘, 𝑠), 𝑣2(𝑘, 𝑠) such that the family

(𝛾𝑘,𝑣1(𝑘,𝑠),𝑣2(𝑘,𝑠),𝑠)𝑘∈𝔻𝑏,𝑠∈[0,𝛿]

is a global deformation extending (𝛾𝑘,𝑠)𝑘∈𝐾,𝑠∈[0,1] for small time. The issue is that this family is regular (because we have
explicit variational families showing that this is the case), but not microregular. Then, we must apply transversality in
Theorem 4, relative to the already microregular region, to perturb it slightly and obtain a family satisfying the claimed
properties. □
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ENDNOTES
1Not to be confused with the concept of ampleness in the context of ℎ-principle.
2We think of 𝐽∞(𝑀) as a quasi-topological space [17, Sections 1.4 and 2.2]. Let 𝐾 be a compact manifold. We say that a family of maps 𝐾 →
𝐽∞(𝑀) is continuous if it extends to a continuous family of representative curves. Having this notion of continuity is sufficient for our ℎ-
principle purposes.

3 In the literature, this is sometimes called being equiregular.
4Due to this, we cannot use our results to prove the analogous statement for 𝜉 smooth. Indeed, if we were able to control all characteristic jets,
one would note that these only depend on the 𝑟-jet of 𝜉 itself. Then, we would conclude by replacing 𝜉 by an analytic distribution with the
same 𝑟-jet.
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