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M AT E R I A L S  S C I E N C E

Electronic structure orientation as a map of in-plane 
antiferroelectricity in β′-In2Se3
Joseph L. Spellberg1,2, Lina Kodaimati1, Prakriti P. Joshi2, Nasim Mirzajani1,2,  
Liangbo Liang3, Sarah B. King1,2*

Antiferroelectric (AFE) materials are excellent candidates for sensors, capacitors, and data storage due to 
their electrical switchability and high-energy storage capacity. However, imaging the nanoscale landscape of AFE 
domains is notoriously inaccessible, which has hindered development and intentional tuning of AFE materials. Here, 
we demonstrate that polarization-dependent photoemission electron microscopy can resolve the arrangement 
and orientation of in-plane AFE domains on the nanoscale, despite the absence of a net lattice polarization. 
Through direct determination of electronic transition orientations and analysis of domain boundary constraints, 
we establish that antiferroelectricity in β′-In2Se3 is a robust property from the scale of tens of nanometers to tens 
of micrometers. Ultimately, the method for imaging AFE domain organization presented here opens the door to 
investigations of the influence of domain formation and orientation on charge transport and dynamics.

INTRODUCTION
Antiferroelectric (AFE) materials, featuring antiparallel, switchable, 
permanent dipoles (1, 2), are excellent for energy-dense capacitors 
(3) and memory devices with robust storage capabilities (4, 5). Ra-
tional design and development of AFE materials, however, have 
wrestled with the challenge of imaging AFE domains on the nano
scale to determine, for example, how nanoscale and mesoscale elec-
tronic properties arise from atomic structure (6). Given the lack of a 
net permanent dipole in AFE materials, piezoresponse force micros-
copy (PFM) offers little to no domain contrast, depending on a 
material’s electrostriction coefficient. Furthermore, PFM cannot 
provide information on the orientation of domains, only that do-
mains are different (7–9). Ferroic domains, such as those in AFE 
materials, are commonly on the order of tens to hundreds of nano-
meters (10, 11), below the optical diffraction limit, making ferroic 
domains challenging to study with optical microscopy. Methods such 
as scanning tunneling microscopy (STM) and scanning transmis-
sion electron microscopy (STEM) that can resolve AFE domains by 
imaging atomic positions are challenging to scale from the nano
scale to the micrometer scale as point-scanning techniques. Both meth-
ods are also challenging to combine with ultrafast imaging methods, 
and STEM requires electron-transmissive samples. These challenges 
have not only inhibited material development but also made it ex-
tremely challenging to determine how AFE domain formation af-
fects other critical properties, such as excited-state dynamics, known 
to be important in other ferroic materials (12). Here, we introduce 
how polarization-dependent photoemission electron microscopy (PD-
PEEM) can image in-plane AFE domains, demonstrating a new way 
to resolve in-plane AFE domain structure on the nanoscale, and ap-
ply this technique to β′-In2Se3.

Indium(III) selenide (In2Se3) is a semiconductor with a complex 
phase diagram that includes two-dimensional van der Waals ferro-
electric and AFE phases (13–19). The metastable β′ phase, which forms 

in thin-film samples due to substrate interactions when cooling 
from the high-temperature β phase (13–19), exhibits in-plane ferro-
elasticity and antiferroelectricity down to the monolayer limit 
(1, 7, 20). Antiferroelectricity occurs in β′-In2Se3 due to a nano
stripe superstructure that forms as it cools from the hexagonal, high-
temperature β phase (13, 15). The nanostripes form along any one of 
three symmetrically equivalent [1120] lattice vectors, defined by the 
structure of the symmetric high-temperature β phase, and have been 
observed with STM, STEM, and electron diffraction (7, 15, 21, 22). 
Adjacent nanostripes are composed of antiparallel atomic displace-
ments resulting in the lack of a net permanent dipole moment 
(Fig. 1A) (20, 23).

Here, we show how PD-PEEM can image the AFE domains of 
β′-In2Se3 on the nanoscale by directly measuring the energy- and 
polarization-dependent transition dipole moment (TDM). Previous 
PEEM studies have successfully imaged ferroelectric and ferromag-
netic domains, but these studies have relied on x-ray and ultraviolet 
excitation to induce single-photon photoemission (PE), rather than 
probing optical transitions as in this work, and to date, those methods 
have not been used to resolve AFE domains (24–28). Despite having 
zero net permanent dipole, the small atomic distortions that give rise to 
the AFE nature of β′-In2Se3 lead to electronic structure modifications 
that can be observed with PD-PEEM. Our method identifies AFE do-
main orientation, routinely achieves <100-nm spatial resolution—as 
good as 10-fold enhanced resolution compared to standard optical bire-
fringence—and allows the identification of AFE properties inaccessible 
to conventional optical microscopy. Using first-principles density func-
tional theory (DFT), we calculate the photon energy–dependent TDMs 
and match our calculations with experimentally measured photon en-
ergy–dependent maps of TDM orientations. We use this technique to 
demonstrate how the simultaneous nanoscale spatial resolution and 
wide-field imaging of PD-PEEM enable detailed analysis of AFE do-
main patterns, showing that the AFE domains of β′-In2Se3 are robust 
across tens of micrometers. This work opens a new way to probe antifer-
roelectricity on the nanoscale and sets the stage for further investiga-
tions of the unique electronic structure at ferroic domain boundaries 
such as charge transport (12, 29), carrier lifetimes (30), and electrical 
properties (31).
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RESULTS
Imaging domains with PD-PEEM
Contrast in PD-PEEM arises from the dependence of PE intensity on 
the angle between the laser electric field polarization (θE) and 
material’s local TDM (θTDM), as shown schematically in Fig. 1 (B and 
C). This technique has been used previously to image the localized 
electronic states in black phosphorus (32) and polymer packing align-
ment (33). The PE intensity is maximized at the θE that is paral-
lel to the θTDM, and the relationship between PE intensity and θE 
is defined by

where A is the amplitude of the modulation and C is the nonpolarization-
dependent PE baseline. A detailed description of the optical selec-
tion rules of PD-PEEM can be found in (32). Incrementally rotating 
through the full 180° range of laser polarization, we observe the do-
mains of β′-In2Se3 by their polarization-dependent PE intensity. 
Figure S3 shows examples of PD-PEEM images of a β′-In2Se3 flake. 
To better visualize the domains, we generate difference images by 
subtracting each image with laser excitation θE from the image ac-
quired with the orthogonal laser polarization (θE + 90°). A movie 
showing PE intensity with respect to rotating θE is included in the 
Supplementary Materials. Figure 1D shows the difference image be-
tween PD-PEEM images recorded at θE = 140° and θE = 50° where 
bright regions correspond to θTDM = 140°. Integrating the PE in-
tensity over the three indicated regions of interest and fitting to 
Eq. 1 (Fig. 1E), we identify three domain orientations offset from 
each other by ~60° (θTDM,1 = 19 ± 3°, θTDM,2 = 77 ± 2°, and θTDM,3 = 

140 ± 3°) comprising a threefold symmetric set of directions in the 
180° range of unique θE.

By fitting the PE intensity of every pixel to the difference images 
as a function of θE, we can directly map the local θTDM alignment. To 
improve signal quality, we apply 2 × 2 pixel binning before fitting. A 
θTDM map of β′-In2Se3 with hν = 3.1 eV (Fig. 1F) shows the charac-
teristic cross-hatch domain pattern seen previously in optical bire-
fringence experiments (20). Optical and atomic force microscopy 
(AFM) images of the same flake (fig. S4) show that the observed 
contrast does not originate from topographical features but is due to 
local variations in electronic structure and domain orientation. 
There are predominantly three domain orientations (resolved as 
blue, cyan, and brown) (34, 35), each containing one of the regions 
of interest. This threefold symmetry is consistent with domains of 
similarly oriented nanostripes, which can exist along one of the 
three symmetric [1120] lattice vectors.

PD-PEEM provides several notable advantages for imaging do-
mains with different θTDM in comparison to other techniques, as 
summarized in table S1. First, PD-PEEM is a wide-field laser-based 
technique easily compatible with ultrafast spectroscopy (36–38), 
unlike STM and STEM. Second, there is a wider range of unique θE 
that results in observable contrast in PD-PEEM compared to optical 
birefringence, one of the standard methods for imaging of AFE do-
mains. Figure 2A schematically shows possible arrangements of do-
mains in a material with in-plane polarization, and Fig. 2 (B and C) 
shows how these domains would be observed by optical birefrin-
gence and PEEM, respectively. The periodicity of intensity with re-
spect to laser polarization for optical birefringence is 90° (39, 40). 

IPE(θ) = Acos2(θE − θTDM) + C (1)

B C

CB

VB

e–
e– e–

En
er
gy

EVac

EF

hν

e–
e–

e–e– e–

θE θTDM

θE
θTDM

D E

N
or

m
. P

E 
 in

t. 
(a

rb
. u

.)

F

0°

90°

θ

0 60 180120

3 µm

θTDM(°)

3 µm

[1
12

0]

[1100]

A

PEEM

e–

hν

1 2

P
E
 in
t. 

1

θ
E
(°)

0 90 180

θ
Eθ = 0°

θ
E

0 6–6
Diff. PE int. (arb. u.)

19° 77° 140°

0 50 150100 200 250
θ
E
(°)

0.9

0.95

140°

50°

In
Se

Fig. 1. Polarization-dependent imaging of β′-In2Se3. (A) Atomic structure of a supercell of β′-In2Se3. (B) Energy-level diagram of polarization-dependent two-
photon PE process. CB, conduction band; VB, valence band. (C) Schematic of PD-PEEM for spatially dependent θTDM. White shading indicates maximum PE intensity. 
(D) Difference image from PD-PEEM with hν = 3.1 eV. (E) PE intensity versus laser polarization from the three regions indicated. Dots are normalized PE intensity, and 
curves are fits to Eq. 1 regions in (D). (F) Map of θTDM fit to each 2 × 2 binned pixel in the difference PD-PEEM data. Maps of R2 for all pixel-by-pixel fittings are shown 
in fig. S5. arb. u., arbitrary units.
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This means that θTDM directions (which often correspond to the bi-
refringent axis) cannot be determined uniquely with this method 
because two perpendicular orientations would equally rotate the 
incident light and produce the same image (Fig. 2B). Similarly, do-
mains oriented perpendicular to each other cannot be separately 
resolved, regardless of the incident polarization (40). PEEM inten-
sity, however, has 180° periodicity with respect to laser polarization, 
meaning that all domain orientations can be uniquely identified. 
Therefore, PD-PEEM provides information regarding the alignment 
of domains that optical birefringence cannot resolve (Fig. 1C). 
Third, electron imaging is bounded by a lower diffraction limit com-
pared to imaging with photons. PEEM imaging allows the identifi-
cation of features smaller than the optical diffraction limit (32) 
while retaining wide-field spectroscopic capabilities, which enables 
faster imaging and domain analysis over larger regions compared to 
point-scanning techniques. A map of β′-In2Se3 domains from a 
zoomed-in field of view (Fig. 2D) shows readily apparent small fea-
tures on the order of 100 nm that would be lost when imaging with 
a lower-resolution technique such as optical microscopy (Fig. 2E). 
The flake in Fig. 2E is on a thick layer of SiO2 to boost contrast, while 
the PEEM experiments are conducted on Si substrates with native 
oxide. An example of both methods applied to the same flake is 
shown in fig. S6. Comparisons of the spatial resolution of these two 
methods are shown in figs. S7 to S9, where we can achieve a spatial 
resolution as good as 51 nm with PD-PEEM, a 10-fold improvement 
over optical birefringence.

Energy-dependent TDM
To better understand the contrast mechanism enabling the observa-
tion of β′-In2Se3 domains with PD-PEEM, we performed DFT cal-
culations to determine the frequency-dependent dielectric function 
and optical transition matrix of a supercell of β′-In2Se3. Using previ-
ously published atomic positions for a supercell of the AFE lattice 
measured experimentally (20), we calculated the band structure and 
TDM angle with respect to nanostripe direction for a range of exci-
tation energies from 1.3 to 3.4 eV, corresponding to across bandgap 
transitions in the PEEM measurements. Although β′-In2Se3 has 
no net permanent dipole, DFT confirms that there is polarization 

anisotropy in across bandgap transitions. The magnitude of this an-
isotropy is quantified by the linear optical dichroism as discussed in 
the Supplementary Materials. The calculated optical dichroism, the 
gray trace in Fig. 3, varies for different excitation energies but is 
nonzero across the calculated range with a mean of ~0.3. The atomic 
distortions, which give rise to the nanostripe superstructure in β′-
In2Se3, create electronic structure anisotropy that can be probed 
with polarization-dependent photoexcitation. In addition to confirm-
ing the nonzero dichroism, our calculations also predict that the 
TDM is oriented either parallel or perpendicular to the nanostripe 
direction, depending on the excitation energy. The black points in 
Fig. 3 show that these are the only directions that the TDM orienta-
tion can take. There is no particular energy where the TDM angle 
changes, but rather the orientation varies as a function of photon 
energy. Polar plots showing absorption intensity versus polarization 
angle for two excitation energies are shown in the inset. Absorption 
of hν = 2.40 eV (orange curve) is oriented along the nanostripe 
direction and has relatively strong dichroism; absorption of hν = 
3.05 eV (blue curve) is perpendicular to the nanostripe direction and 
has much weaker, but still nonzero, dichroism.

This binary selection of allowed values for θTDM is consistent 
with the 180° periodicity observed in the PD-PEEM response. The 
laser aligns with the θTDM only once for each 180° rotation and sug-
gests that θTDM is restricted to be oriented parallel or perpendicular 
to the stripe direction (fig. S10), which is consistent with optical di-
chroism and birefringence experiments (7, 15, 20).

We confirmed the energy dependence of the TDM orientation 
and dichroism experimentally. Figure 4 (A and B) shows maps from 
two polarization-dependent PEEM experiments on a β′-In2Se3 flake 
that was illuminated with 3.06 and 2.40 eV photons, respectively. 
These excitation energies result in two- and three-photon processes 
(fig. S11). While the same domain patterns are observed in both 
images, θTDM measured in each domain is phase shifted by ~90° 
(θTDM,306 eV = 110 ± 5° and θTDM,2.40eV = 194 ± 6°) between the two 
measurements (Fig. 4C and fig. S12), in agreement with the DFT 
prediction. The PE response for both excitation energies has low di-
chroism, but it is stronger for hν = 2.40 eV, consistent with the vari-
ability in dichroism predicted by DFT. While limitations on DFT’s 
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Fig. 2. Comparison of optical birefringence and PD-PEEM. (A) Schematic of different domain structures where the arrows indicate spatially variant θTDM. (B) Schematic 
of visualization of the same domains using optical birefringence. (C) Schematic of visualization of different domain orientations in PD-PEEM. In both schematics, white 
indicates greater intensity measured at the detector and gray indicates less intensity. (D) θTDM map from PD-PEEM on a β′-In2Se3 flake with hν = 3.1 eV. Scale bar, 1 μm. 
(E) Optical birefringence image of β′-In2Se3 with the same scale as in (D), where “P” and “A“ are the directions of the optical polarizer and analyzer, respectively. 
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energetic accuracy prevents our energy-dependent results from be-
ing used to assign lattice directions, the agreement between experi-
ment and theoretical calculations suggests that the across bandgap 
TDMs in β′-In2Se3 are preferentially oriented parallel or perpen-
dicular to the nanostripe direction, depending on hν and which 
electronic states are coupled with a photon.

Domain boundary orientations
To demonstrate how nanoscale domain resolution combined with a 
wide field of view enables detailed analysis of AFE materials, we 
analyzed the geometry of domains and domain boundary arrange-
ments observed in the PD-PEEM data. Previous atomic-scale STEM 
imaging of individual domain walls in β′-In2Se3 established that the 
formation of boundaries between AFE domains is governed by 
three geometric rules, which we analyze and confirm in our experi-
ments by measuring boundary orientations across the entire field of 
view (Fig. 5A and figs. S13 and S14), namely, (i) nanostripes form 
along the [1120] lattice directions, (ii) domain walls can form in six 
discrete directions along either the [1120] or [1100] lattice vectors, 
and (iii) domain boundaries always bisect the angle formed by adja-
cent nanostripes (7, 20). These three rules, as illustrated schemati-
cally in Fig. 5B, establish both which domain shapes are possible and 
how nanostripes can and cannot orient within domains. A complete 
geometric analysis describing how these rules extend to larger 
spatial scales and how domains and domain boundaries can be 
combined to make different geometric patterns is included in the 
Supplementary Materials (figs. S15 to S18). Here, we show that the 
domain patterns observed in PD-PEEM are fully consistent with 
the geometry defined by atomic-scale nanostripes, directly connecting 
the domains resolved over a 30-μm field of view to the atomic dis-
tortions in the lattice that give rise to antiferroelectricity.

We measured the angles of the domain wall boundaries of the 
flake discussed in Fig. 1 across the entire 30-μm field of view 
(fig. S13) and constructed a histogram of the angle of each domain 
boundary with respect to the coordinate system of the PEEM image 
(Fig. 5C). The angles of the domain walls are grouped into six dis-
crete orientations, spaced by 30 ± 5°. Each specific domain wall di-
rection corresponds to a unique pair of domain orientations. For 
example, all domain walls with an angle of about 20° (cluster A; 

indicated in yellow) correspond to boundaries between domains 
with θTDM ⋍ 80° and 140° (resolved as cyan and brown, respectively, 
in Figs. 1F and 5A). Similarly, every other boundary orientation 
uniquely corresponds to a pair of domains (Fig. 5D). The histogram 
clusters can be divided into perpendicular pairs. For example, 
boundary classes A and D separate the same two domain types 
(θTDM ⋍ 80° and 140°) and are oriented about 90° from each other. 
The same correspondence between perpendicular domain boundar-
ies is true for the other four directions.

These findings are all consistent with two perpendicular, three-
fold symmetric sets of boundary orientations ( [1120] or [1100] ). We 
also identify the rotation of θTDM between adjacent domains ΔθTDM 
to be 60° or 120° and the angle is bisected by their boundary, as il-
lustrated in Fig. 5D. These are the same angles that nanostripes form 
at boundaries, as determined by STEM (7), confirming that the 
atomic nanostripe directions and θTDM values have equivalent rela-
tionships to the boundaries that contain them. Therefore, these two 
quantities must be aligned along the same two axes. The shape and 
orientation of a particular domain restrict the nanostripe direction 
and θTDM that it can contain (discussed in detail in the Supplemen-
tary Materials). From this, we can confirm that the two optical axes 
identified with the energy-dependent measurement are oriented 
parallel and perpendicular to the nanostripe direction, further sup-
porting the DFT calculations (fig. S19).

Each of the three “rules” for β′-In2Se3 AFE domains are rigorously 
consistent for the micrometer domains observed with PD-PEEM 
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across the entire 30-μm field of view and across multiple flakes 
(fig. S14). While we cannot specify which optical axis corresponds 
to which lattice vector, the energy-dependent measurement in con-
junction with the shape analysis confirms that the electronic struc-
ture orientation is dictated by the atomic distortions such that θTDM 
is always parallel or perpendicular to the nanostripe direction. This 
analysis is only possible because of the simultaneous spatial resolu-
tion and field of view of PD-PEEM and shows the opportunities that 
this technique provides in understanding the nanoscale and meso-
scale structure of AFE materials (37).

DISCUSSION
In this work, we use PD-PEEM to image the in-plane AFE domain 
structure of β′-In2Se3 over multiple length scales from tens of nano-
meters to tens of micrometers with <100-nm spatial resolution. We 
use these capabilities to show that the domain structure of β′-In2Se3 
is highly robust and shows an impressive degree of fidelity across 
large spatial regions and multiple samples.

The photon energy–dependent electronic transition orientation 
of β′-In2Se3 creates both challenges and opportunities in the future 
study of β′-In2Se3. Because the birefringence of a material is related 
to the optical TDM (39), we note that care must be taken when using 
optical measurements to study polarization or lattice directions in 
β′-In2Se3 given the variation in θTDM as a function of photon energy. 
When broadband white light is used, the measured angle of maxi-
mum photoabsorption will not necessarily align with the direction 
of AFE polarization; rather, the measured angle will represent a con-
volution of the simultaneous responses of multiple photon energies. 
This is further complicated by the nonuniform relationship between 
optical dichroism and excitation energy. However, in experiments 

with precise excitation energy, β′-In2Se3 presents an exciting plat-
form for the investigation of anisotropic electronic structure and 
properties. The findings presented in this work show that PD-PEEM 
can accurately resolve domains even when there is no net lattice po-
larization. Even minor distortions, like those that form the nano
stripes of β′-In2Se3, lead to electronic structure changes that are 
sufficiently strong to be readily resolved in PD-PEEM. Our results 
exemplify the opportunities for using PD-PEEM in studying the 
physics of in-plane ferroelectrics, antiferroelectrics, and other do-
main structures of materials.

MATERIALS AND METHODS
Sample preparation
In2Se3 flakes were mechanically exfoliated from a bulk crystal grown 
by chemical vapor transport (2D Semiconductors) under N2 atmo-
sphere. The flakes were transferred via polydimethylsiloxane stamp 
(41) onto Si with native oxide substrates and annealed on a hot plate 
at 300° to 350°C for 30 min. Upon cooling to room temperature, the 
β′ phase is produced (figs. S1 and S2). Samples were then observed 
in cross-polarized optical microscopy to verify the presence of AFE 
domains on the flakes. Subsequent characterization with AFM 
(Bruker MM8, ScanAsyst) and Raman microscopy (HORIBA LabRAM 
HR Evolution confocal Raman microscope) determined flakes 
thicknesses and phases, respectively. All flakes discussed in this work 
have thicknesses of a few hundreds of nanometers.

Photoemission electron microscopy
PE experiments were conducted in a PE electron microscope (Focus 
GmbH, Scienta Omicron GmbH). Laser illumination is directed to 
the chamber through a thin-film polarizer and a λ/2 waveplate on a 
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rotational stage. In the chamber, the laser beam reflects off a Rh 
mirror to be incident on the sample at 4° from the surface normal, 
causing the polarization to be effectively in the plane of the sample. 
Illumination is from an optical parametric chirped pulse amplifier 
(Class 5 Photonics; Figs. 1 and 5; figs. S3, S11, S14, A and B, and 
S18F; and movie S1), a home-built nonlinear optical parametric am-
plifier (Figs. 2D and 4A, and figs. S6C, S8, S9, S11A, S12A, and 
S19A), or the second harmonic of a 1035-nm laser (Coherent 
Monaco; Fig. 4B and figs. S11B, S12B, and S19B). All experiments 
were conducted with 4-MHz repetition rates.

Density functional theory
DFT calculations were performed using the Vienna ab initio simula-
tion package (VASP; version 5.4.4), where the projector augmented 
wave method was used for pseudopotentials (42, 43), and the elec-
tron exchange-correlation functional was chosen as the generalized 
gradient approximation of Perdew, Burke and Ernzerhof (44). The 
monolayer AFE nanostripe structure (20) was fully relaxed by 
the conjugate gradient scheme until the maximum force was less 
than 0.01 eV/Å on each atom. The total energy was converged 
to 10−6 eV. The energy cutoff of the plane waves was chosen as 
350 eV. The k-point sampling in the Brillouin zone (BZ) corre-
sponds to Γ-centered 1 × 12 × 1 k-grid. In addition, a vacuum re-
gion of ~18 Å in the z direction was used to avoid spurious 
interactions between the neighboring cells. The optimized in-plane 
lattice constants are a = 27.668 Å and b = 4.076 Å while c is fixed to 
25 Å. On the basis of the nanostripe structure, a 1 × 7 × 1 supercell 
was built, for which only the Γ-point in the BZ was considered while 
other parameters are unchanged. For such a supercell, we computed 
its frequency-dependent dielectric function using VASP, which 
also generates the optical transition matrix elements between 
any valence and conduction states. These optical transition 
matrix elements enable us to obtain the TDM of a specific elec-
tronic excitation.
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