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ABSTRACT

In this thesis, we propose an innovative paradigm for constructing generative models, fundamentally

rethinking the conventional framework used in image generation and representation learning. Our

approach centers around designing a domain-specific architecture that enables unified, unsuper-

vised image generation and representation learning. This architecture incorporates a meticulously

engineered bottleneck data structure, which is crafted with an acute understanding of the specific

requirements of the task at hand, the characteristics of the data involved, and the computational

constraints inherent to the problem. This bottleneck structure is pivotal, as it directly addresses the

tasks to be solved by facilitating a learning process that generates useful outputs without reliance on

direct supervision. This stands in stark contrast to traditional methodologies, which typically involve

training large-scale foundation models in a self-supervised manner and subsequently fine-tuning

them on annotated data for specific downstream tasks. Our proposed method eliminates the need

for such fine-tuning and does not require annotated data at any stage of the pre-training process.

To demonstrate the effectiveness and robustness of our proposed design, we have conducted

extensive validation across a variety of challenging tasks, each chosen to test different facets of the

model under diverse experimental settings. These tests are crucial for proving the versatility and

applicability of our approach in real-world scenarios, showcasing its potential to handle complex,

unsupervised learning tasks in two experimental settings.

For the first experimental setting, we develop a neural network architecture which, trained in

an unsupervised manner as a denoising diffusion model, simultaneously learns to both generate

and segment images. Learning is driven entirely by the denoising diffusion objective, without any

annotation or prior knowledge about regions during training. A computational bottleneck, built

into the neural architecture, encourages the denoising network to partition an input into regions,

denoise them in parallel, and combine the results. Our trained model generates both synthetic

images and, by simple examination of its internal predicted partitions, a semantic segmentation of

those images. Without any finetuning, we directly apply our unsupervised model to the downstream

xi



task of segmenting real images via noising and subsequently denoising them.

For the second experimental setting, we cast multiview reconstruction from unknown pose as a

generative modeling problem. From a collection of unannotated 2D images of a scene, our approach

simultaneously learns both a network to predict camera pose from 2D image input, as well as the

parameters of a Neural Radiance Field (NeRF) for the 3D scene. To drive learning, we wrap both

the pose prediction network and NeRF inside a Denoising Diffusion Probabilistic Model (DDPM)

and train the system via the standard denoising objective. Our framework requires the system

accomplish the task of denoising an input 2D image by predicting its pose and rendering the NeRF

from that pose. Learning to denoise thus forces the system to concurrently learn the underlying 3D

NeRF representation and a mapping from images to camera extrinsic parameters. To facilitate the

latter, we design a custom network architecture to represent pose as a distribution, granting implicit

capacity for discovering view correspondences when trained end-to-end for denoising alone. This

technique allows our system to successfully build NeRFs, without pose knowledge, for challenging

scenes where competing methods fail. At the conclusion of training, our learned NeRF can be

extracted and used as a 3D scene model; our full system can be used to sample novel camera poses

and generate novel-view images.

Extensive experiments conducted as part of this thesis demonstrate the profound capability

of our proposed factorized architecture and its integral structured computational bottleneck to

address and resolve classical challenges in the field of computer vision, doing so end-to-end by

purely learning to generate from unlabeled data. These experimental evaluations were rigorous and

meticulously designed to test the versatility and robustness of our model under various scenarios,

showcasing its ability to operate effectively across a broad spectrum of conditions without any

dependency on labeled datasets. Specifically, the results of our experiments reveal that our model

not only accomplishes accurate unsupervised image segmentation but also excels in generating high-

quality synthetic images. This is evidenced across multiple datasets, where the model consistently

performs with high precision and reliability, thereby indicating its suitability for diverse real-world

xii



applications. The ability of our model to segment images without supervision is particularly

noteworthy, as it demonstrates a significant leap in the capability of generative models to understand

and interpret complex visual data autonomously. Moreover, our research marks a pioneering

advance in the field by being potentially the first to successfully tackle unsupervised pose estimation

and 3D reconstruction within a diffusion-based framework for 360-degree scenes. This achievement

is particularly significant, as it addresses a long-standing challenge in computer vision—achieving

reliable 3D understanding from 2D inputs in an unsupervised manner. Our approach not only

estimates the pose but also reconstructs the 3D geometry of the scene without any prior knowledge

or external annotations, paving the way for new applications and improvements in areas such as

virtual reality, augmented reality, and robotic navigation. These findings not only validate the

efficacy of our novel generative architecture but also underscore its potential to transform the

landscape of unsupervised learning in computer vision, opening up new avenues for research and

application that were previously thought to be reliant on extensive labeled data. The success of

these experiments thus provides a robust foundation for further exploration and development of

unsupervised learning technologies in image and scene understanding.
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CHAPTER 1

INTRODUCTION
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Figure 1.1: The proposed universal architectural design of this thesis. Middle: An encoder analyzes
noisy images and generates latent information through a structured computational bottleneck, which
can be interpreted by a synthesis module to produce clean reconstructions. By customizing the
architectures, our model can learn unsupervised representations while generating high-quality
outputs for different tasks: Top: A factorized diffusion architecture for unsupervised segmentation,
which partitions the denoising network within a diffusion model into an unsupervised region mask
generator and parallel per-region decoders. Bottom: Wrapping NeRF inside diffusion which consists
of a camera prediction encoder to generate poses as local latent information. A globally shareable
3D model is optimized jointly through the decoder-like rendering system, driven by the denoising
objective from multiple 2D images.

Supervised deep learning has been instrumental in driving significant advancements across a

broad spectrum of computer vision tasks. The power of discriminative representations learned

1



through supervised methods has fundamentally transformed the field, leading to remarkable achieve-

ments in various domains. Notably, supervised learning has catalyzed progress in image classifica-

tion, as evidenced by pioneering works such as those by [Deng et al., 2009, Simonyan and Zisserman,

2015, He et al., 2016, Huang et al., 2017], which introduced and refined deep convolutional neural

networks, setting new benchmarks in accuracy and efficiency. Similar advancements have been

extended to object detection [Girshick et al., 2014, Redmon et al., 2016, Liu et al., 2016], where

innovative approaches have led to more robust and faster detection algorithms. This progress is

paralleled in the fields of semantic and instance segmentation, with seminal works [Long et al., 2015,

He et al., 2017] to precisely delineate objects at both pixel and instance levels, thereby improving

the systems’ ability to interpret and interact with visual environments in a more meaningful way.

The development of these advancements has been the strategy of supervised pre-training over

large-scale datasets, which yields rich, useful visual features that push state-of-the-art performance

across these tasks. The success of this approach demonstrates the value of comprehensive and

diverse datasets like ImageNet [Deng et al., 2009], which provide the foundational knowledge

necessary for training highly effective models. However, despite these benefits, the reliance on

extensively annotated datasets introduces significant challenges. The requirement for fine-grained

labeling, necessary for training accurate models, escalates in cost and complexity as the size of the

dataset increases. This scaling issue is exacerbated in tasks requiring detailed annotation, such as

precise object segmentation or the identification of subtle nuances in large sets of images, making the

process not only cost-prohibitive but also time-consuming and labor-intensive. This burgeoning need

for vast amounts of labeled data poses a critical bottleneck in the scalability of supervised learning

frameworks, prompting a growing interest in alternative methodologies that can bypass the intensive

demands of manual annotation. As such, there is an increasing emphasis on exploring unsupervised

and semi-supervised learning paradigms, which aim to reduce dependency on labeled data while

still leveraging the underlying structure and information present within unlabeled datasets to achieve

comparable or even superior performance. This shift represents a pivotal evolution in the approach
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to training deep learning models, aiming to maintain the momentum of innovation in computer

vision while addressing the practical limitations imposed by dataset annotation requirements.

This growing need for high-quality labeled datasets alongside the complexity and costs as-

sociated with their creation motivates a significant shift towards the development of large-scale

foundation models that do not require any annotated data for pre-training [Caron et al., 2019,

Doersch et al., 2015, Zhang et al., 2016, Larsson et al., 2017, He et al., 2020, Chen et al., 2020a,b].

Such models offer a promising direction by potentially reducing the reliance on costly labeled data

while still enabling powerful, scalable learning systems.

With the recent rapid advancements in deep generative models [Kingma and Welling, 2014,

Goodfellow et al., 2014, Xu et al., 2018, Zhang et al., 2017, van den Oord et al., 2016, Li and Malik,

2018, Ho et al., 2020, Song et al., 2021, Rombach et al., 2022], a new frontier in representation

learning has opened up, illustrating that image generation can not only facilitate realistic image

synthesis but also serve as a viable proxy task for capturing high-level semantic information. This

approach leverages the inherent capabilities of generative models to understand and recreate the

distribution of input data, thus learning valuable features that can be applied across a variety

of tasks. Several pioneering research efforts have begun to explore how representation learning

can be effectively integrated within the framework of generative models. For instance, Zhang et

al. [Zhang et al., 2023] have explored the potential of incorporating spectral clustering techniques

to dissect and harness the rich information contained within a pre-trained stable diffusion model.

Their work demonstrates how advanced clustering methods can be used to identify and extract

meaningful patterns and features from the model, which are crucial for enhancing its generative

and discriminative capabilities. Similarly, Du et al. [Du et al., 2023] have adopted a Low-Rank

Adaptation (LoRA) strategy on a labeled subset to refine the performance of various generative

models, including diffusion models and GANs. By focusing on extracting scene intrinsic maps

from these models, their approach highlights the adaptability and utility of generative frameworks

in understanding and replicating complex scene dynamics. This adaptation enhances the model’s
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understanding of fundamental scene characteristics, such as lighting, geometry, and texture. These

examples underscore the potential of generative models not just as tools for image creation but as

robust platforms for deep, nuanced learning of visual representations. By moving towards systems

that can autonomously learn from vast amounts of unlabeled data, researchers are paving the way

for more efficient, scalable, and cost-effective solutions in the field of computer vision. This shift

is not merely a response to the limitations of labeled datasets but also an embrace of the richer,

more diverse learning opportunities that generative models provide. As these technologies continue

to evolve, they promise to unlock new capabilities and applications that will further enhance our

ability to analyze, interpret, and interact with visual information in innovative ways.

Unfortunately, while self-supervised learning approaches [Caron et al., 2019, Doersch et al.,

2015, Zhang et al., 2016, Larsson et al., 2017, He et al., 2020, Chen et al., 2020a,b] have proven

effective as feature extractors, leveraging extremely large training sets or extended training periods,

they cannot inherently directly address and solve specific end tasks on their own. This limitation un-

derscores a critical challenge within the domain of self-supervised learning, where despite significant

advances in feature extraction and representation learning, the transition to practical applications

remains dependent on further supervised intervention. Many self-supervised methods [He et al.,

2020, Chen et al., 2020a,b], therefore, necessitate a subsequent phase of supervised fine-tuning,

such as linear probing, to adapt these pre-trained networks to specific downstream tasks. This step

is essential to refine the broad, generalizable features extracted during the self-supervised phase

into task-specific models that perform effectively on targeted applications. This requirement for

fine-tuning highlights a fundamental gap in self-supervised approaches, where the initial learning

phase, despite its sophistication and breadth, does not culminate in a standalone solution ready for

direct application. In the realm of generative representation learning, the situation presents similar

challenges. Existing works [Baranchuk et al., 2022, Chen et al., 2023b, Zhang et al., 2023, Du

et al., 2023] predominantly rely on large-scale pre-trained generative models which are capable

of synthesizing and manipulating complex data distributions, potentially leading to the extraction
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of interpretable features. However, while these features provide a rich representation of the data,

fine-tuning is necessary to address end tasks. Consequently, even with advanced generative models,

additional steps involving post-processing or fine-tuning with further labeled data are indispensable.

This requirement not only extends the development cycle but also adds complexity and resource

demands, particularly in scenarios where labeled data is scarce, expensive, or difficult to procure.

This continued reliance on labeled data for fine-tuning postulates a significant limitation in the au-

tonomous capabilities of both self-supervised and generative learning paradigms. Thus, while these

innovative learning strategies offer substantial improvements over traditional generative methods in

terms of extracting versatile features, the complete pipeline from training to practical application

often still hinges on incorporating supervised learning elements to achieve the desired performance

on specific tasks. This dependency on post-processing or fine-tuning raises an ongoing challenge in

the field: the development of methodologies that can truly operate independently of labeled data

from scratch, thereby realizing the full potential of unsupervised and generative learning techniques.

In parallel with the progress of various training paradigms for generation and representation

learning, deep network architecture design is a foundational element in increasing the model capa-

bility. It dictates how a network processes information, learns from data, and represents knowledge,

fundamentally influencing its ability to understand and tackle complex tasks. A well-crafted archi-

tecture can enhance the learning capacity, generalize well across different datasets, and improve

overall performance, making it a cornerstone in the development of intelligent systems. For exam-

ple, in Denoising Diffusion Probabilistic Model (DDPM) [Ho et al., 2020], the denoising UNet

stands out as a core architectural design. This specialized version of the UNet architecture [Ron-

neberger et al., 2015] is tailored for image denoising, learning to map noisy images to clean ones

by minimizing the difference between predicted and ground truth images. The denoising UNet’s

encoding-decoding pathways, along with skip connections, play a crucial role in preserving spatial

information, effectively removing noise while retaining essential image details. This architecture

is key to recovering the image distribution during DDPM training, although additional steps such
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as fine-tuning with annotations may be required for comprehensive representation learning. For

another recently proposed application of Neural Radiance Fields (NeRF) [Mildenhall et al., 2020],

the architectural design is centered around representing the 3D scene and rendering new views.

NeRF typically employs a multi-layer perceptron (MLP) as its core architecture, comprising fully

connected layers with non-linear activations. This setup allows the network to learn intricate

mappings from input coordinates to output color and density values. To synthesize novel views,

NeRF utilizes ray marching along camera rays, evaluating the network along each ray to estimate

color and opacity. However, NeRF requires pose information, and existing architectures do not

support training from unknown poses for complex scenes with only training once.

In this thesis, we propose an innovative approach within the context of generative models

by designing a domain-specific architecture that incorporates specialized, structured components

tailored to specific tasks or domains. This architecture is intended to enhance traditional generative

model designs with the ability to directly learn useful representations in an unsupervised manner,

thereby bypassing the limitations often associated with standard models that require extensive

labeled datasets. To achieve this, we adopt an encoder-decoder architecture enhanced with struc-

tured representations and denoising diffusion objectives, allowing the system to learn powerful

representations for a variety of tasks. The encoder component of this architecture is designed to

take a noisy image as input and process it through multiple layers, extracting and condensing the

information into a latent representation. This latent space is crafted through a carefully designed

structured computational bottleneck, which plays a crucial role in ensuring that the representations

are highly informative and relevant for the tasks at hand. The structured bottleneck is a pivotal

element of our architecture, designed to impose specific constraints on the information flow within

the network. This forces the encoder to focus on extracting only the most essential features from

the input data, which are necessary for successful task performance. By doing so, it enhances

the efficiency and effectiveness of the representation learning process. Following the encoder,

the decoder component takes over by taking the structured latent representation and working to
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reconstruct the original input image. This reconstruction is not a mere replication of the input but

a reassembly that incorporates and reflects the structured information encapsulated in the latent

representation. The decoder’s ability to accurately reconstruct the original image from the modified

latent space serves as a testament to the quality and utility of the learned representations. The

entire encoder-decoder system is trained end-to-end with a focus on minimizing a denoising loss

function. This training approach ensures that both the encoder and decoder are optimized in unison,

allowing the structured computational bottleneck to effectively shape the learning process and

directly generate useful, task-specific representations. The training strategy is specifically designed

to allow for continuous adaptation and improvement of the bottleneck’s structure, making the system

increasingly effective over time. Furthermore, the general design of our system is visualized in

Figure 1.1 (middle), which provides a schematic representation of the encoder-decoder flow and

highlights the key components and their interactions. By customizing this architecture for different

domains or tasks, our model is not only capable of learning unsupervised representations but also

excels at generating high-quality outputs tailored to the specific requirements of each task. This

adaptability and versatility demonstrate the potential of our proposed architecture to transform the

landscape of generative modeling, making it a powerful tool for a wide range of applications where

unsupervised learning is desirable or necessary.

• Factorized Diffusion for Segmentation (Figure 1.1, top): In the proposed architecture, a

specialized denoising encoder is utilized to process the input image, transforming it into a

latent segmentation representation. This representation captures essential features and structural

information of the input, optimized for segmenting the image into distinct, meaningful regions.

This latent segmentation representation is not just a compressed form of the input image; it

is a refined, structured output that encapsulates the core aspects of the image necessary for

precise segmentation. The encoder leverages advanced denoising techniques to ensure that this

representation is both clean and informative, making it ideally suited for the segmentation task.

This involves sophisticated neural network layers that apply a series of transformations, each

designed to refine the information and enhance its relevance to the task.
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Once this latent representation is formed, it is fed into a parallel decoding scheme. This innovative

aspect of the architecture allows for simultaneous, multi-path decoding, where each path is

responsible for reconstructing a specific aspect of the original image. This parallel decoding

approach enhances the accuracy and quality of the output by enabling specialized handling

of different features or regions of the image. The parallel decoders work in synergy, each

contributing to the final reconstructed output by focusing on different layers or aspects of the

latent representation. Some paths might focus on delineating edges and boundaries, while others

might enhance texture or color consistency within segmented regions. This method allows for a

comprehensive and nuanced reconstruction of the image, with each segment clearly defined and

distinct from its neighbors.

Furthermore, the parallel decoding scheme incorporates feedback mechanisms between the paths,

enabling them to adjust and refine their outputs based on the results of other paths. This inter-path

communication ensures that the final segmentation is not only accurate but also cohesive, with

all segments well-integrated and visually consistent, making it a powerful tool for a variety of

applications that require precise image analysis and generation.

• Wrapping NeRF inside Diffusion with Unknown Pose (Figure 1.1, bottom): In the proposed

architecture, a sophisticated camera prediction system plays a central role by generating camera

pose as local latent information in an entirely unsupervised manner. This system is designed to

autonomously determine the orientation and position of the camera from which an image was

captured, using only the image data itself without the need for pre-labeled pose information. This

capability is particularly crucial for tasks involving 3D reconstruction from 2D images where

accurate pose estimation is essential for synthesizing consistent and realistic three-dimensional

views. The camera prediction system employs advanced machine learning techniques that enable

it to infer these pose parameters by analyzing patterns and geometrical consistency across a

sequence of images. It leverages deep neural networks trained to recognize and interpret the

subtle cues that indicate camera position and orientation, such as vanishing points, object sizes,
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and relative positions in different images. This training is enhanced by a multi-view learning

approach, where the system examines multiple images of the same scene taken from different

angles, learning to understand how changes in camera pose affect the appearance of objects and

scenes.

Once the camera poses are predicted, the system uses this information to sample differentiable

rays that are crucial for generating global 3D latent information. These rays, emanating from the

camera’s viewpoint through the scene, interact with the 3D environment, allowing the system to

compute intersections with virtual objects and thereby reconstruct the three-dimensional structure

of the scene. This process involves a sophisticated rendering technique that simulates how light

travels through space and interacts with surfaces, capturing the essence of the scene’s geometry

and appearance.

This joint multi-view learning and rendering framework is integral to our system. It not only

enhances the accuracy of pose prediction by providing a rich context for understanding camera

dynamics but also facilitates the extraction and integration of comprehensive 3D information

from multiple viewpoints without pose annotations. By combining these views, the system can

construct a detailed and accurate 3D model of the scene, enriched by the nuances that each

separate view provides. The entire process is trained in an end-to-end manner, ensuring that

both local latent information (camera pose) and global latent information (3D structure) are

continuously refined and optimized through iterative learning. This results in a robust system

capable of performing complex tasks such as photorealistic 3D reconstruction from a series

of 2D images, all conducted in an unsupervised framework. The potential applications of this

technology are vast, ranging from virtual reality and film production to architectural modeling

and archaeological reconstruction, providing tools that can transform flat images into realistic,

interactive 3D experiences.
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CHAPTER 2

FACTORIZED DIFFUSION ARCHITECTURES FOR

UNSUPERVISED IMAGE GENERATION AND SEGMENTATION

2.1 Introduction

(a) Simultaneous Image and Region Generation (b) Segmentation of a Novel Input Image

(c) Generated Images (d) Generated Regions (e) Real Images (f) Segmentations

Figure 2.1: Unifying image generation and segmentation. (a) We design a denoising diffusion
model with a specific architecture that couples region prediction with spatially-masked diffusion
over predicted regions, thereby generating both simultaneously. (b) An additional byproduct of
running our trained denoising model on an arbitrary input image is a segmentation of that image.
Using a model trained on FFHQ [Karras et al., 2019], we achieve both high quality synthesis of
images and corresponding semantic segmentations (c-d), as well as the ability to accurately segment
images of real faces (e-f). Segmenting a real image is fast, requiring only one forward pass (one
denoising step).

Supervised deep learning yields powerful discriminative representations, and has fundamentally

advanced many computer vision tasks, including image classification [Deng et al., 2009, Simonyan

and Zisserman, 2015, He et al., 2016, Huang et al., 2017], object detection [Girshick et al., 2014,

Redmon et al., 2016, Liu et al., 2016], and semantic and instance segmentation [Long et al., 2015,

He et al., 2017, Kirillov et al., 2023]. Yet, annotation efforts [Deng et al., 2009], especially those
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involving fine-grained labeling for tasks such as segmentation [Lin et al., 2014], can become

prohibitively expensive to scale with increasing dataset size. This motivates an ongoing revolution

in self-supervised methods for visual representation learning, which do not require any annotated

data during a large-scale pre-training phase [Caron et al., 2019, Doersch et al., 2015, Zhang

et al., 2016, Larsson et al., 2017, He et al., 2020, Chen et al., 2020a,b]. However, many of these

approaches, including those in the particularly successful contrastive learning paradigm [He et al.,

2020, Chen et al., 2020a,b], still require supervised fine-tuning (e.g., linear probing) on labeled data

to adapt networks to downstream tasks such as classification [He et al., 2020, Chen et al., 2020a] or

segmentation [Caron et al., 2021, Zhang and Maire, 2020].

In parallel with the development of self-supervised deep learning, rapid progress on a variety of

frameworks for deep generative models [Kingma and Welling, 2014, Goodfellow et al., 2014, Xu

et al., 2018, Zhang et al., 2017, van den Oord et al., 2016, Li and Malik, 2018, Ho et al., 2020, Song

et al., 2021, Rombach et al., 2022] has lead to new systems for high-quality image synthesis. This

progress inspires efforts to explore representation learning within generative models, with recent

results suggesting that image generation can serve as a good proxy task for capturing high-level

semantic information, while also enabling realistic image synthesis.

Building upon generative adversarial networks (GANs) [Goodfellow et al., 2014] or variational

autoencoders (VAEs) [Kingma and Welling, 2014], InfoGAN [Chen et al., 2016] and Deep In-

foMax [Hjelm et al., 2019] demonstrate that generative models can perform image classification

without any supervision. PerturbGAN [Bielski and Favaro, 2019] focuses on a more complex

task, unsupervised image segmentation, by forcing an encoder to map an image to the input of a

pre-trained generator so that it synthesizes a composite image that matches the original input image.

However, here training is conducted in two stages and mask generation relies on knowledge of

predefined object classes.

Denoising diffusion probabilistic models (DDPMs) [Ho et al., 2020] also achieve impressive

performance in generating realistic images. DatasetDDPM [Baranchuk et al., 2022] investigates
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the intermediate activations from the pre-trained U-Net [Ronneberger et al., 2015] network that

approximates the Markov step of the reverse diffusion process in DDPM, and proposes a simple

semantic segmentation pipeline fine-tuned on a few labeled images. In spite of this usage of

labels, DatasetDDPM demonstrates that high-level semantic information, which is valuable for

downstream vision tasks, can be extracted from pre-trained DDPM U-Net. Diff-AE [Preechakul

et al., 2022] and PADE [Zhang et al., 2022] are recently proposed methods for representation

learning by reconstructing images in the DDPM framework. However, their learned representations

are in the form of a latent vector containing information applicable for image classification.

In contrast to all of these methods, we demonstrate a fundamentally new paradigm for unsuper-

vised visual representation learning with generative models: constrain the architecture of the model

with a structured bottleneck that provides an interpretable view of the generation process, and from

which one can simply read off desired latent information. This structured bottleneck does not exist

in isolation, but rather is co-designed alongside the network architecture preceding and following it.

The computational layout of these pieces must work together in a manner that forces the network,

when trained from scratch for generation alone, to populate the bottleneck data structure with an

interpretable visual representation.

We demonstrate this concept in the scenario of a DDPM for image generation and the selection

of semantic segmentation as the interpretable representation to be read from the bottleneck. Thus, we

frame unsupervised image segmentation and generation in a unified system. Moreover, experiments

demonstrate that domain-specific bottleneck design not only allows us to accomplish an end

task (segmentation) for free, but also boosts the quality of generated samples. This challenges

the assumption that generic architectures (e.g., Transformers) alone suffice; we find synergy by

organizing such generic building blocks into a factorized architecture which generates different

image regions in parallel.

Figure 3.2 provides an overview of our setting alongside example results, while Figure 3.1

illustrates the details of our DDPM architecture which are fully presented in Section 3.3. This

12



architecture constrains the computational resources available for denoising in a manner that en-

courages learning of a factorized model of the data. Specifically, each step of the DDPM has the

ability to utilize additional inference passes through multiple copies of a subnetwork if it is willing

to decompose the denoising task into parallel subproblems. The specific decomposition strategy

itself must be learned, but, by design, is structured in a manner that reveals the solution to our target

task of image segmentation. We summarize our contributions as three-fold:

• Unified learning of generation and segmentation. We train our new DDPM architecture once,

obtaining a model directly applicable to two different tasks with zero modification or fine-tuning:

image generation and image segmentation. Segmenting a novel input image is fast, comparable

in speed to any system using a single forward pass of a U-Net [Ronneberger et al., 2015] like

architecture.

• Unsupervised segmentation for free. Our method automatically learns meaningful regions

(e.g., foreground and background), guided only by the DDPM denoising objective; no extra

regularization terms, no use of labels.

• Higher quality image synthesis. Our model generates higher-quality images than the baseline

DDPM, as well as their corresponding segmentations simultaneously. We achieve excellent

quantitative and qualitative results under common evaluation protocols (Section 2.4).

Beyond improvements to image generation and segmentation, our work is a case study of a new

paradigm for using generation as a learning objective, in combination with model architecture as a

constraint. Rather than viewing a pre-trained generative model as a source from which to extract

and repurpose features for downstream tasks, design the model architecture in the first place so that,

as a byproduct of training from scratch to generate, it also learns to perform the desired task.
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2.2 Related Work

Image Segmentation. Generic segmentation, which seeks to partition an image into meaningful

regions without prior knowledge about object categories present in the scene, is a longstanding

challenge for computer vision. Early methods rely on combinations of hand-crafted features based

on intensity, color, and texture cues [Canny, 1986, Martin et al., 2004], clustering algorithms [Shi

and Malik, 2000], and a duality between closed contours and the regions they bound [Arbeláez

et al., 2011]. Deep learning modernized the feature representations used in these pipelines, yielding

systems which, trained with supervision from annotated regions [Martin et al., 2001], reach near

human-level accuracy on predicting and localizing region boundaries [Bertasius et al., 2015, Shen

et al., 2015, Xie and Tu, 2015, Kokkinos, 2016].

Semantic segmentation, which assigns a category label to each pixel location in image, has been

similarly revolutionized by deep learning. Here, the development of specific architectures [Long

et al., 2015, Ronneberger et al., 2015, Hariharan et al., 2015] enabled porting of approaches for

image classification to the task of semantic segmentation.

Recent research has refocused on the challenge of learning to segment without reliance on

detailed annotation for training. Hwang et al. [2019] combine two sequential clustering modules for

both pixel-level and segment-level to perform this task. Ji et al. [2019] and Ouali et al. [2020] follow

the concept of mutual information maximization to partition pixels into two segments. Savarese

et al. [2021] further propose a learning-free adversarial method from the information theoretic

perspective, with the goal of minimizing predictability among different pixel subsets. Note that

even completely unsupervised foreground/background segmentation is a non-trivial task. Liu et al.

[2021], a recent advance in this regime, produces similar region mask output, yet depends entirely

upon motion cues from video for training. We achieve such unsupervised learning from static

images alone.

Learning Segmentation in Generative Models. Previous generative model-based approaches

learn semantic segmentation by perturbing [Bielski and Favaro, 2019] or redrawing [Chen et al.,
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2019] generated foreground and background masks. Despite good performance, these methods

apply only to two-class partitions and require extra loss terms based upon object priors in training

datasets.

Denoising diffusion probabilistic models (DDPMs) [Ho et al., 2020] achieve state-of-the-art

performance in generating realistic images. Their noise schedule in training may offer advantages for

scaling up models in a stable manner. Recent works [Baranchuk et al., 2022, Preechakul et al., 2022,

Zhang et al., 2022] explore representation learning capability in DDPMs. DatasetDDPM [Baranchuk

et al., 2022] examines few-shot segmentation with pre-trained diffusion models, but requires human

labels to train a linear classifier. With the default U-Net architecture [Ronneberger et al., 2015],

it loses the efficiency and flexibility of generating image and masks in a single-stage manner.

Diff-AE [Preechakul et al., 2022] and PADE [Zhang et al., 2022] perform representation learning

driven by a reconstruction objective in the DDPM framework. Unfortunately, their learned latent

vectors are not applicable to more challenging segmentation tasks and they require a pre-trained

interpreter to perform downstream image classification.

DiffuMask [Wu et al., 2023] takes a pre-trained Stable Diffusion model [Rombach et al., 2022],

which is built using large-scale text-to-image datasets (and thus solves a far less challenging

problem), and conducts a post-hoc investigation on how to extract segmentation from its attention

maps. Neither our system, nor the baseline DDPM to which we compare, makes use of such

additional information. Furthermore, DiffuMask does not directly output segmentation; it is

basically a dataset generator, which produces generated images and pseudo labels, which are

subsequently used to train a separate segmentation model. Our method, in contrast, is both

completely unsupervised and provides an end-to-end solution by specifying an architectural design

in which training to generate reveals segmentations as a bonus.

MAGE [Li et al., 2022] shares with us a similar motivation of framing generation and repre-

sentation learning in a unified framework. However, our approach is distinct in terms of both (1)

task: we tackle a more complex unsupervised segmentation task (without fine-tuning) instead of
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image classification (with downstream fine-tuning), and (2) design: ‘masks’ play a fundamentally

different role in our system. MAGE adopts an MAE [He et al., 2022]-like masking scheme on input

data, in order to provide a proxy reconstruction objective for self-supervised representation learning.

Our use of region masks serves a different purpose, as they are integral components of the model

being learned and facilitate factorization of the image generation process into parallel synthesis of

different segments.

BlobGAN [Epstein et al., 2022] is a generative model for creating images with fine-grained

control over the spatial arrangement of content. It leverages blob-like components instead of

accurate region masks as basic building blocks for the synthesis process, allowing for intuitive

content manipulation. In the generative modeling space, BlobGAN serves a different purpose than

our method: BlobGAN excels in scenarios requiring explicit spatial control and interactive editing,

while our factorized diffusion approach provides a framework for learning high-quality image

generation and segmentation.
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2.3 Factorized Diffusion Models

Figure 2.2: Factorized diffusion architecture. Our framework restructures the architecture of
the neural network within a DDPM [Ho et al., 2020] so as to decompose the image denoising
task into parallel subtasks. All modules are end-to-end trainable and optimized according to the
same denoising objective as DDPM. Left: Component factorization. An Encoder, equivalent to
the first half of a standard DDPM U-Net architecture, extracts features henc. A common Middle
Block processes Encoder output into shared latent features hmid. Note that Middle Block and
hmid exist in the standard denoising DDPM U-Net by default. We draw it as a standalone module
for a better illustration of the detailed architectural design. A Mask Generator, structured as
the second half of a standard U-Net receives hmid as input, alongside all encoder features henc

injected via skip connections to layers of corresponding resolution. This later network produces a
soft classification of every pixel into one of K region masks, m0,m1, ...,mK . Right: Parallel
decoding. A Decoder, also structured as the second half of a standard U-Net, runs separately for
each region. Each instance of the Decoder receives shared features hmid and a masked view of
encoder features henc⊙mi injected via skip connections to corresponding layers. Decoder outputs
are masked prior to combination. Though not pictured, we inject timestep embedding t into the
Encoder, Mask Generator, and Decoder.

Figure 3.1 illustrates the overall architecture of our system, which partitions the denoising

network within a diffusion model into an unsupervised region mask generator and parallel per-

region decoders.
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2.3.1 Unsupervised Region Factorization

To simultaneously learn representations for both image generation and unsupervised segmentation,

we first design the region mask generator based on the first half (encoder) of a standard DDPM

U-Net. We obtain input xt, a noised version of x0, via forward diffusion:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I),

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, 1), (2.1)

where αt = 1− βt, ᾱt =
∏t

s=1 αt.

In addition to the encoder half of the U-Net, we instantiate a middle block consisting of layers

operating on lower spatial resolution features. Parameterizing these subnetworks as θenc and θmid,

we extract latent representations:

henc = θenc(xt, t), (2.2)

hmid = θmid(henc, t) (2.3)

where henc encapsulates features at all internal layers of θenc, for subsequent use as inputs, via skip

connections, to corresponding layers of decoder-style networks (second half of a standard U-Net).

We instantiate a mask generator, θmask, as one such decoder-style subnetwork. A softmax layer

produces an output tensor with K channels, representing K different regions in image x0:

mk = θmask(hmid,henc, t) (2.4)

Following a U-Net architecture, henc feeds into θmask through skip-connections.
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2.3.2 Parallel Decoding Through Weight Sharing

We aim to extend a standard DDPM U-Net decoder θdec to consider region structure during

generation. One simple design is to condition on m = {m0,m1, ...} by concatenating it with

input hmid and henc along the channel dimension:

ϵ̂ = θdec(concat[hmid,m], concat[henc,m], t), (2.5)

where hmid and henc are generated from Eq. 2.2 and Eq. 2.3. We downsample m accordingly

to the same resolution as hmid and henc at different stages. However, such a design significantly

modifies (e.g., channel sizes) the original U-Net decoder architecture. Moreover, conditioning with

the whole mask representation may also result in a trivial solution that simply ignores region masks.

To address these issues, we separate the decoding scheme into multiple parallel branches of

weight-shared U-Net decoders, each masked by a single segment. Noise prediction for k-th branch

is:

ϵ̂k = θdec(hmid,henc ⊙mk, t) (2.6)

and the output is a sum of region-masked predictions:

ϵ̂ =
K−1∑
k=0

ϵ̂k ⊙mk (2.7)

2.3.3 Optimization with Denoising Objective

We train our model in an end-to-end manner, driven by the simple DDPM denoising objective.

Model weights θ = {θenc, θmid, θdec, θmask} are optimized by minimizing the noise prediction
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Algorithm 1
Training Masked Diffusion

Input: Data x0
Output: Trained model θ
Initialize: Model weights θ,

Timesteps T
for iter = 1 to Itertotal do

Sample t ∈ [1, T ]
Sample xt using Eq. 3.1
Calculate ϵ̂ using Eq. 2.7
Backprop with Eq. 2.8.
Update θ.

end for
return θ

Algorithm 2
Image and Mask Generation

Input: Noise xT , trained model θ
Output:

Image x̂0 and segmentation m̂0
Initialize: xT ∼ N (0, 1)
for t = T to 1 do

Sample z using Eq. 2.10
Perform reversed diffusion using Eq. 2.9
if t = 1 then

collect m̂0 using Eq. 2.4
return x̂0 and m̂0.

end if
end for

loss:

L = E||ϵ− ϵ̂||22 (2.8)

Unlike previous work, our method does not require a mask regularization loss term [Savarese et al.,

2021, Bielski and Favaro, 2019, Chen et al., 2019], which pre-defines mask priors (e.g., object size).

Algorithm 1 summarizes training.

2.3.4 Segmentation via Reverse Diffusion

Once trained, we can deploy our model to both segment novel input images as well as synthesize

images from noise.

Real Image Segmentation. Given clean input image x0, we first sample a noisy version xt through

forward diffusion in Eq. 3.1. We then perform one-step denoising by passing xt to the model. We

collect the predicted region masks as the segmentation for x0 using Eq. 2.4.

Image and Mask Generation. Using reverse diffusion, our model can generate realistic images and

their corresponding segmentation masks, starting from a pure noise input xT ∼ N (0, 1). Reverse
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diffusion predicts xt−1 from xt:

xt−1 = 1/
√
αt(xt −

1− αt√
1− ᾱt

θ(xt, t)) + σtz, (2.9)

z ∼ N (0, 1) if t > 1 else z = 0. (2.10)

where σt is empirically set according to the DDPM noise scheduler. We perform T steps of reverse

diffusion to generate an image. We also collect its corresponding mask using Eq. 2.9 when t = 1.

Algorithm 2 summarizes this process.
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2.4 Experiments

We evaluate on: (1) real image segmentation, (2) image and region mask generation, using

Flower [Nilsback and Zisserman, 2008], CUB [Wah et al., 2011], FFHQ [Karras et al., 2019],

CelebAMask-HQ [Lee et al., 2020], and ImageNet [Russakovsky et al., 2015].

Evaluation Metrics. For unsupervised segmentation on Flower and CUB, we follow the data

splitting in IEM [Savarese et al., 2021] and evaluate predicted mask quality under three commonly

used metrics, denoted as Acc., IOU and DICE score [Savarese et al., 2021, Chen et al., 2019].

Acc. is the (per-pixel) mean accuracy of the foreground prediction. IOU is the predicted foreground

region’s intersection over union (IoU) with the ground-truth foreground region. DICE score is

defined as 2 F̂∩F
|F̂ |

[Dice, 1945]. On ImageNet, we evaluate our method on Pixel-ImageNet [Zhang

et al., 2020b], which provides human-labeled segmentation masks for 0.485M images covering 946

object classes. We report Acc., IOU and DICE score on a randomly sampled subset, each class

containing at most 20 images. For face datasets, we train our model on FFHQ and only report

per-pixel accuracy on the CelebAMask test set, using provided ground-truth.

For image and mask generation, we use Fréchet Inception Distance (FID) [Heusel et al., 2017]

for generation quality assessment. Since we can not obtain the ground-truth for generated masks, we

apply a supervised U-Net segmentation model, pre-trained on respective datasets, to the generated

images and measure the consistency between masks in terms of per-pixel accuracy. In addition to

quantitative comparisons, we show extensive qualitative results.

Implementation Details. We train Flower, CUB and Face models at both 64× 64 and 128× 128

resolution. We also train class-conditioned ImageNet models with 64 × 64 resolution. For all

experiments, we use the U-Net [Ronneberger et al., 2015] encoder-middle-decoder architecture

similar to [Ho et al., 2020]. We use the decoder architecture as our mask generator and set the

number of factorized masks K as 3. For 64× 64 the architecture is as follows: The downsampling

stack performs four steps of downsampling, each with 3 residual blocks. The upsampling stack is

setup as a mirror image of the downsampling stack. From highest to lowest resolution, U-Net stages
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use [C, 2C, 3C, 4C] channels, respectively. For 128× 128 architecture, the down/up sampling block

is 5-step with [C,C, 2C, 3C, 4C] channels, each with two residual blocks, respectively. We set

C = 128 for all models.

(a) Real Images (b) Segmentation

Figure 2.3: Segmentation on Flower.
Methods Acc. IOU DICE

GrabCut [Rother et al., 2004] 82.0 69.2 79.1
ReDO [Chen et al., 2019] 87.9 76.4 -

IEM [Savarese et al., 2021] 88.3 76.8 84.6
IEM+SegNet [Savarese et al., 2021] 89.6 78.9 86.0

Ours 90.1 79.7 87.2

Table 2.1: Comparisons on Flower.

We use Adam to train all the models with a learning rate of 10−4 and an exponential moving

average (EMA) over model parameters with rate 0.9999. For all datasets except ImageNet, we

train 64 × 64 and 128 × 128 models on 8 and 32 Nvidia V100 32GB GPUS, respectively. For

Flower, CUB and FFHQ, we train the models for 50K, 50K, 500K iterations with batch size of 128,

respectively. For ImageNet, we train 500K iterations on 32 Nvidia V100 GPUS with batch size 512.

We adopt the linear noise scheduler as in Ho et al. [Ho et al., 2020] with T = 1000 timesteps.
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2.4.1 Image Segmentation

To evaluate our method on real image segmentation, we set t as 30 for forward diffusion process.

For Flower and CUB, Figures 2.3 and 2.4 show test images and predicted segmentations. Tables 2.1

and 2.2 provide quantitative comparison with representative unsupervised image segmentation

methods: GrabCut [Rother et al., 2004], ReDO [Chen et al., 2019] and IEM [Savarese et al., 2021].

As shown in Table 2.1 and Table 2.2, our method outperforms all competitors.

(a) Real Images (b) Segmentation

Figure 2.4: Segmentation on CUB.
Methods Acc. IOU DICE

GrabCut [Rother et al., 2004] 72.3 36.0 48.7
PerturbGAN [Bielski and Favaro, 2019] - 38.0 -

ReDO [Chen et al., 2019] 84.5 42.6 -
IEM [Savarese et al., 2021] 88.6 52.2 66.0

IEM+SegNet [Savarese et al., 2021] 89.3 55.1 68.7

Ours 89.6 56.1 69.4

Table 2.2: Comparisons on CUB.

We also visualize the predicted face parsing results on FFHQ and CelebAMask datasets in

Figure 3.2(c)(d) and Figure 2.5. Our model learns to accurately predict three segments corresponding
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to semantic components: skin, hair, and background. Note that the term "hair" refers to the structure

surrounding the face, as the hair component is predominant in these regions. This particular

semantic partitioning emerges from our unsupervised learning objective, without any additional

prior. With ground-truth provided on CelebAMask-HQ, we also compare the pixel accuracy and

mean of IOU with a supervised U-Net and DatasetDDPM [Baranchuk et al., 2022]. For the former,

we train a supervised segmentation model with 3-class cross-entropy loss. For the unsupervised

setting, we perform K-means (K=3) on the pre-trained DDPM, denoted as DatasetDDPM-unsup.

Table 2.3 shows that we outperform DatasetDDPM by a large margin and achieve a relatively small

performance gap with a supervised U-Net.

(a) Real Images (b) Segmentation

Figure 2.5: Segmentation on CelebA.
Methods Acc. mIOU

Supervised UNet 95.7 90.2

DatasetDDPM-unsup. [Baranchuk et al., 2022] 78.5 69.3

Ours 87.9 80.3

Table 2.3: Segmentation comparisons on CelebA.

Figure 2.6 shows the accurate segmentation results for ImageNet classes: ostrich, pekinese,
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papillon, and tabby. We compare with supervised U-Net and DatasetDDPM-unsup in Table 2.4. We

show more visualizations in Appendix Section 2.5.3.

(a) Real Images (b) Segmentation

Figure 2.6: Segmentation on ImageNet.
Methods Acc. mIOU

Supervised UNet 85.7 74.1

DatasetDDPM-unsup. [Baranchuk et al., 2022] 74.1 60.4

Ours 80.7 67.7

Table 2.4: Segmentation comparisons on ImageNet.

2.4.2 Image and Mask Generation

We evaluate our method on image and mask generation. As shown in Figure 2.7, 2.8, 3.2(c)(d)

and 2.11, our method is able to generate realistic images. In the upper row of Table 2.5, we see

a consistent quality improvement over the original DDPM. This suggests our method as a better

architecture than standard U-Net through separating computational power to each individual image

segment, which may benefit the denoising task during training. More importantly, our method can

produce accurate corresponding masks, closely aligned with the semantic partitions in the generated
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image.

We evaluate the segmentation quality. Since there is no ground-truth mask provided for generated

images, we apply the U-Net segmentation models (pre-trained on respective labeled training sets)

to the generated images to produce reference masks. We measure the consistency between the

reference and the predicted parsing results in terms of pixel-wise accuracy. We compare our method

with a pre-trained DDPM baseline, in which we first perform image generation, then pass them

to DatasetDDPM-unsup to get masks. As shown in Table 2.5 (bottom), our method consistently

achieves better segmentation on generated images than the DDPM baseline. Note that, different

from the two-stage baseline, our method performs the computation in a single stage, generating

image and mask simultaneously. Appendix Section 2.5.3 shows more visualizations.

Table 2.5: Image and mask generation comparison on all datasets. (upper: FID(↓) bottom: Acc. (↑))
Models Flower-64 Flower-128 CUB-64 CUB-128 FFHQ-64 FFHQ-128 ImageNet-64

DDPM 15.81 14.62 14.45 14.01 13.72 13.35 7.02
Ours 13.33 11.50 10.91 10.28 12.02 10.79 6.54

DDPM 80.5 82.9 84.2 83.7 84.2 84.2 71.2
Ours 92.3 92.7 91.4 91.2 90.3 90.7 84.1

2.4.3 Ablation Study and Analysis

Multi-branch Decoders with Weight Sharing. Separating computation in multi-branch decoders

with weight sharing is an essential design in our method. We show the effectiveness of this design

by varying how to apply factorized masks in our decoding scheme: (1) concat: we use single branch

to take concatenation of h and m. (2) masking hmid: we use m to mask hmid instead of henc. (3)

w/o weight sharing: we train decoders separately in our design. Table 2.6 shows separate design

consistently yields better visual features than other designs for CUB. This suggests that our design

benefits from fully utilizing mask information in the end-to-end denoising task and avoids a trivial

solution where masks are simply ignored. Investigation on Mask Factorization. Our architecture
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is able to generate factorized representations, each representing a particular segment of the input

image. We show this by visualizing the individual channels from softmax layer output in our mask

generator. As shown in Figure 2.9, skin, hair, and background are separated in different channels.

Mask Refinement along Diffusion Process. In the DDPM Markov process, the model implicitly

formulates a mapping between noise and data distributions. We validate that this occurs for both

images and latent region masks by visualizing image and mask generation along the sequential

reversed diffusion process in Figure 2.10. We observe gradual refinement as denoising steps

approach t = 0.

Face Interpolation. We also investigate the face interpolation task on FFHQ. Similar to standard

DDPM [Ho et al., 2020], we perform the interpolation in the denoising latent space with 250

timesteps of diffusion. Figure 2.12 shows good reconstruction in both pixels and region masks,

yielding smoothly varying interpolations across face attributes such as pose, skin, hair, expression,

and background.

Zero-shot Object Segmentation. We evaluate zero-shot object segmentation on both PASCAL

VOC 2012 [Everingham et al.] and DAVIS-2017 videos [Pont-Tuset et al., 2017]. Baseline DDPM

generation is not solved for these datasets when training from scratch without external large-

scale datasets (e.g., LAION [Schuhmann et al., 2022] used in Stable Diffusion [Rombach et al.,

2022]). We directly adopt zero-shot transfer from our pre-trained ImageNet model by applying

the conditional label mapping. We detail the mapping rule in Appendix Section 2.5.4. Figure 2.13

shows the accurate segmentation results for images of classes: aeroplane, monitor, person, and sofa

from VOC. Since our method does not require any pixel labels, we evaluate the performance of

each object class individually. Our method achieves a favorable high accuracy of 0.78 and mIOU

of 0.54 when averaging over all 20 classes. We also report the results for each individual class in

Appendix Section 2.5.5. We also show video segmentation on DAVIS-2017 in Figure 2.14 and

Appendix Section 2.5.6, without any labeled video pre-training.
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(a) Generated Images (b) Generated Masks

Figure 2.7: Generation on Flower.

(a) Generated Images. (b) Generated Masks.

Figure 2.8: Generation on CUB.
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Figure 2.9: Mask factorization (3 parts) on FFHQ.

Figure 2.10: Generation refinement along diffusion.
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(a) Generated Images (b) Generated Masks

Figure 2.11: Conditional generation on ImageNet.
Methods IOU.(↑) FID (↓)

Concat 20.7 14.21
Masking hmid 20.2 14.33

w/o weight sharing 50.5 17.21

Ours 56.1 10.28

Table 2.6: Ablations of decoding scheme on CUB.

Figure 2.12: Interpolations of FFHQ with 250 timesteps of diffusion.
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(a) Real Images (b) Segmentation

Figure 2.13: Segmentation on VOC-2012.

(a) Frames of ‘Bear’

(b) Frames of ‘Dog’

Figure 2.14: Segmentation on DAVIS-2017.
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2.5 Appendix

2.5.1 Hierarchical Factorized Diffusion

We conduct a further investigation is to reorganize our architectural design to support hierarchical

mask factorization in place of a flat set of K regions. We formulate a hierarchical factorized

diffusion architecture to progressively refine segmentation results from a coarse initial prediction to

a fine, detailed final segmentation. This approach helps in capturing both global context and fine

details in the segmentation task. As shown in Figure 2.15, the first level replicates the factorized

diffusion architecture depicted in Figure 3.1 to generate initial region masks of m0
0,m

0
1, ..., each

applied on the noisy input for the next level factorized diffusion process. Each branch of the second

level architectures generates finer representations of region masks m1
0,m

1
1, ..., constructing the

final denoising output as
∑

im
0
i

(h0i+
∑

j h
1
jm

1
j )

2 . The nested architectural design can be instantiated

as infinite levels of factorized diffusion, which is a promising way to handle multi-scale scenes.

AS a proof of concept, we conduct the experiment on the shape 3D dataset [Burgess and Kim,

2018] with a 2-level hierarchy. We first visualize each level’s region mask in Figure 2.16. We

observe that for the first level generates a coarse-level segmentation, based on which, second-level

factorized diffusion generates fine-level segmentations of 3d shapes. Figure 2.17 provides a more

direct visualization of partitions at each level through a 3-class mapping.

2.5.2 Additional Segmentation Results

We show more segmentation results for Flower, CUB, FFHQ, CelebA and ImageNet. As shown in

Figures 2.19, 2.20, 2.21, 2.22, and 2.23, our method consistently predicts accurate segmentations

for real image inputs.
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Figure 2.15: Hierarchical factorized diffusion architecture.

2.5.3 Additional Generation Results

We show more generation results for Flower, CUB, FFHQ, and ImageNet (classes: flamingo, water

buffalo, garbage truck, and sports car). As shown in Figures 2.24, 2.25, 2.26, and 2.27, our method

consistently produces images and masks with high quality.

2.5.4 Label Mapping for Zero-shot Transfer

At the current stage of diffusion model research, generation is not solved for PASCAL VOC when

training from scratch without an extrernal large-scale dataset (e.g., LAION used in stable diffusion).

There is no baseline DDPM model that can achieve this. As such, we adopt our conditional ImageNet

model to perform zero-shot segmentation on VOC by mapping class labels from ImageNet to VOC.
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Level 1 Level 2-1

Level 2-3

Level 2-2

Figure 2.16: Mask factorization for each level. Level 1: visualization of each mask channel at the
first level. Level 2-1, 2-2, 2-3: visualization of each mask channel per branch at the second level.

2.5.5 Additional Zero-shot Results on VOC

We report pixel accuracy and mIOU of each class in VOC in Table ??, which demonstrates that our

method can achieve reasonable high performance. We also provide more segmentation results of

‘bicycle’, ‘chair’, ‘potted plant’ and ‘train’ in Figure 2.28.

2.5.6 Additional Zero-shot Results on DAVIS

We provide more DAVIS-2017 video segmentation results of ‘classic-car’, ‘dance-jump’ in Fig-

ure 2.31.
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Table 2.7: We perform class label mapping from ImageNet to VOC, and report zero-shot transfer
Accuracy and mIOU per class on VOC validation dataset.

VOC Class. ImageNet Class. Num. of VOC-val Image Accuracy mIOU

1:aeroplane 895:warplane 136 0.82 0.57
2:bicycle 671:mountain-bike 108 0.79 0.47
3:bird 94:hummingbird 168 0.83 0.58
4:boat 814:speedboat 115 0.81 0.51
5:bottle 907:wine-bottle 133 0.76 0.47
6:bus 779:school-bus 114 0.73 0.54
7:car 817:sports-car 191 0.74 0.48
8:cat 281:tabby 206 0.82 0.66
9:chair 765:rocking-chair 175 0.75 0.64
10:cow 346:water-buffalo 102 0.82 0.45
11:diningtable 532:dining-table 89 0.69 0.62
12:dog 153:maltese-dog 204 0.82 0.67
13:horse 603:horsecart 104 0.84 0.53
14:motorbike 670:motorscooter 117 0.76 0.52
15:person 981:ballplayer 584 0.77 0.46
16:potted plant 883:vase 116 0.74 0.46
17:sheep 348:ram 89 0.84 0.64
18:sofa 831:studio-couch 109 0.73 0.51
19:train 466:bullet-train 126 0.76 0.56
20:tv/monitor 664:monitor 106 0.73 0.47

Average - - 0.78 0.54
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Level 1

Level 2-1

Level 2-3

Level 2-2 Level 2

Combined
Segmentations

Figure 2.17: Segmentations for each level. Level 1: 3-color-coded region assignments at the first
level. Level 2-1, 2-2, 2-3: 3-color-coded region assignments per branch at the second level. Level 2
combined segmentations: 9-color-coded region assignments at the second level.

(a) Acc. (b) IOU. (c) DICE

Figure 2.18: Segmentation results on CUB with t ∈ {0, 10, 20, 30, 40, 50, 60}.
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(a) Real Images (b) Segmentation

Figure 2.19: Segmentation on Flower.

(a) Real Images (b) Segmentation

Figure 2.20: Segmentation on CUB.
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(a) Real Images (b) Segmentation

Figure 2.21: Segmentation on FFHQ.

(a) Real Images (b) Segmentation

Figure 2.22: Segmentation on CelebA.
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(a) Real Images (b) Segmentation

Figure 2.23: Segmentation on ImageNet.

(a) Generated Images (b) Generated Masks

Figure 2.24: Generation on Flower.
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(a) Generated Images (b) Generated Masks

Figure 2.25: Generation on CUB.

(a) Generated Images (b) Generated Masks

Figure 2.26: Generation on FFHQ.
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(a) Generated Images (b) Generated Masks

Figure 2.27: Conditional ImageNet generation.

(a) Real Images (b) Segmentation

Figure 2.28: Segmentation on VOC-2012.

Figure 2.29: Frames of ‘Classic-car’ Figure 2.30: Frames of ‘Dance-jump’

Figure 2.31: Segmentation on DAVIS-2017.
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2.6 Summary

We propose a factorized architecture for diffusion models that is able to perform unsupervised image

segmentation and generation simultaneously, while being trained once, from scratch, for image

generation via denoising alone. Using model architecture as a constraint, via carefully designed

component factorization and parallel decoding schemes, our method effectively and efficiently

bridges these two challenging tasks in a unified framework, without the need of fine-tuning or

alternating the original DDPM training objective. Our work is the first example of engineering

an architectural bottleneck so that learning a desired end task becomes a necessary byproduct of

training to generate.

Our work is at the stage of a new architectural design for diffusion-based segmentation and

generation, with 2- or 3-class segmentation results demonstrating improvements across multiple

datasets, scaling up to ImageNet. Our initial investigation into hierarchical extensions suggests a

promising future path towards handling complex scenes.
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CHAPTER 3

GENERATIVE LIFTING OF MULTIVIEW TO 3D FROM UNKNOWN

POSE: WRAPPING NERF INSIDE DIFFUSION

3.1 Introduction

Structure from motion is a well-studied problem in computer vision, with a substantial history

of research focusing on the specific task of reconstructing a 3D scene from a collection of 2D

images captured from different viewpoints. When the 3D pose (camera extrinsics) for each 2D

view is unknown, classic approaches [Snavely et al., 2006, Agarwal et al., 2011] explicitly estimate

correspondence between 2D views (e.g., by matching local feature descriptors) prior to optimizing

a shared 3D geometry whose reprojections are consistent with those views. Neural Radiance Fields

(NeRFs) [Mildenhall et al., 2020, Barron et al., 2021, Martin-Brualla et al., 2021, Barron et al., 2023]

have led a revolution toward widespread use of differentiable 3D scene representations [Mildenhall

et al., 2020, Fridovich-Keil et al., 2022, Kerbl et al., 2023] that are compatible with deep learning

techniques. However, the problem of jointly solving for both the 3D reconstruction and the pose,

when neither is known a priori, remains an open problem. Recent attempts to connect learning of

camera pose with NeRFs operate under simplifying assumptions, such as coarse pose initialization

(only learning adjustments) [Lin et al., 2021] or front-facing (as opposed to arbitrary 360◦) views of

the scene [Wang et al., 2021].

In parallel with the development of differentiable 3D representations, progress across a variety

of paradigms for generative models [Goodfellow et al., 2014, Kingma and Welling, 2014, Ho

et al., 2020], has transformed the landscape for designing and training systems using deep learning.

Learning to synthesize data provides an unsupervised training objective and scaling compute,

parameters, and datasets is a path toward foundation models [Bommasani et al., 2021] whose feature

representations can subsequently be repurposed to specific downstream tasks. However, large-scale

foundation models are not the only setting in which generative learning is appropriate. Nor is
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Figure 3.1: Wrapping NeRF inside Diffusion. We learn a 3D scene reconstruction by training
a denoising diffusion model (DDPM) on a dataset of 2D views of the scene. The architecture of
our DDPM consists of two components. Left: An Encoder predicts the pose of a single noisy 2D
input image. Right: A NeRF is rendered from the predicted camera pose to create a 2D output
image that is treated as the predicted denoising of the input view. The system must learn parameters
of both the Encoder and NeRF so that any 2D view can be denoised by predicting a camera and
rendering the scene. The NeRF rendering process is differentiable with respect to rays shot from
the camera, which themselves depend on the camera-to-world transformation matrix produced by
the encoder. All modules are end-to-end trainable, and the system is optimized by the simple MSE
loss on denoising.

manipulation of pre-trained models (e.g., extracting features, fine-tuning, or prompting) the only

strategy for applying generative learning to solve downstream tasks.

Yuan and Maire [2023] demonstrate an alternative strategy that utilizes a generative model

and relies solely on a generative learning objective, yet directly solves a downstream task (image

segmentation) as a byproduct of training the generative model. Their strategy is to constrain the

architecture of the generative model such that it must synthesize an image by first predicting

a segmentation and then generating the corresponding image regions in parallel. Trained as a

Denoising Diffusion Probabilistic Model (DDPM) [Ho et al., 2020], segmentation emerges as

the bottleneck representation in a network that first partitions a noisy input into regions and then

denoises each region in parallel.

We port this general concept to the problem of multiview 3D reconstruction from unknown

pose, where we devise an internal pose prediction network and a NeRF comprising the task-specific

architecture encapsulated within our DDPM; see Figure 3.1. We solve a small-scale generative

modeling problem: learning to generate images in the collection of 2D views of a single scene.
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Training examples are noised 2D images (views), the DDPM output is a predicted denoised image,

and the loss is the denoising objective. Inside our generative wrapper, the model architecture dictates

that we map a noisy image to a predicted camera pose and then render the NeRF from that pose to

synthesize the clean output image. Successfully performing denoising in this manner requires that:

(a) the NeRF stores a 3D scene representation consistent with all of the 2D views, and (b) the pose

prediction network implicitly solves the 2D view correspondence problem by mapping each 2D

input image to camera coordinates from which it is reconstructed by rendering the NeRF.
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Figure 3.2: Unifying pose prediction, 3D reconstruction, and novel-view image generation.
Our trained system (Figure 3.1) can be deployed for multiple tasks. Pose prediction (top): We can
predict the pose of a previously unseen real image by adding a small amount of noise (forward
diffusion) and feeding it to our Encoder (Fig 3.1, left). Rendering our learned NeRF from that
camera pose should reconstruct the real image. Direct NeRF usage (middle): Our learned NeRF
can be extracted and directly used to render the scene (e.g., along a manually specified camera
path). Sampling cameras and views (bottom): Performing sequential diffusion denoising from pure
Gaussian noise input synthesizes a camera pose from which rendering the NeRF generates a novel
view of the scene.

Figure 3.2 illustrates how our trained system jointly solves pose prediction and 3D reconstruction.

Our system enables predicting the 3D pose for new (unseen) images, and re-rendering the learned

scene from different camera poses which can be generated from noise or provided explicitly. As
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Figure 3.3: Pose distribution representation and multi-pose rendering for 360◦ scenes. In order
to perform view denoising by learning a NeRF and predicting the pose from which to render it, our
system (Figure 3.1) must implicitly solve multiview correspondence by mapping training images
(of unknown pose) into consistent locations in the 3D environment. We enable training via gradient
descent to discover such solutions for challenging multiview datasets (e.g., spanning 360◦) by
augmenting our architecture with the capacity to represent uncertainty over a pose distribution. Left:
Our encoder, given a noisy image xt, predicts parameters for multiple cameras and a corresponding
probability distribution over cameras, spose. Right: During training, we render the NeRF from
each predicted camera and use the best reconstruction to calculate the denoising loss; an auxiliarly
classification loss pushes the predicted camera distribution to upweight the selected output. At test
time, we render using only the single camera predicted as most likely by the classifier.

Figure 3.3 shows and Section 3.3 describes in detail, we significantly expand the complexity of

multiview reconstruction problems our system can solve by replacing our simple pose prediction

network with a more expressive version. This alternative maintains a representation of uncertainty

over a distribution of multiple possible poses, which gives our system, trained from scratch by

gradient descent, the implicit capacity to explore more view correspondence configurations.

Our contributions are:

• A new approach to 3D reconstruction from unknown pose based entirely on generative training.

Denoising is a generative wrapper that “lifts” an architecture consisting of a forward model for

pose prediction and differentiable rendering to learn view correspondence and 3D reconstruction.
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Compared to an autoencoder, this fully generative wrapper benefits learned reconstruction quality.

• A novel architecture for pose prediction that enables representing uncertainty during training,

allowing us to learn 3D reconstructions from 2D views of arbitrary and unknown pose.

• New capabilities for 3D NeRF reconstruction which are demonstrated through experiments on

arbitrary 360-degree poses. While Wang et al. [2021] can reconstruct under certain assumptions

about an unknown camera (e.g., forward-facing views of the scene), they fail on image collections

from unconstrained pose (e.g., 360◦ views). Our method successfully reconstructs a NeRF and

infers camera pose for these challenging datasets.
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3.2 Related Work

Neural Radiance Fields (NeRFs) [Mildenhall et al., 2020] have emerged as a powerful framework

for 3D scene reconstruction and view synthesis, with multiple extensions and improvements [Barron

et al., 2021, Martin-Brualla et al., 2021, Barron et al., 2023]. NeRF++ [Zhang et al., 2020a] adds

spatially-varying reflectance and auxiliary tasks for better training. PixelNeRF [Yu et al., 2021]

extends NeRF to generate high-quality novel views from one or few input images, but still requires

camera pose information. NeRF−− [Wang et al., 2021] jointly optimizes camera intrinsics and

extrinsics as learnable parameters while training NeRFs. However, their proposed training scheme

and camera parameterization cannot handle large camera rotation and is restricted to forward-facing

views of the scene.

Generative models for 3D reconstruction aim to infer the underlying 3D structure of a scene

from a set of 2D images. These models often learn a latent representation of the 3D scene and

use it to generate novel views or perform other tasks such as object manipulation or scene editing.

Generative Radiance Fields (GRAFs) [Schwarz et al., 2020] combine NeRFs with VAEs or GANs

to generate novel 3D scenes without explicit 3D geometry. GRAFs learn a latent space encoding

scene structure, with NeRF mapping points in this space to 3D radiance fields. DiffRF [Müller

et al., 2023] leverages the diffusion prior to perform 3D completion in a two-stage manner, which is

further improved by SSD-NeRF [Chen et al., 2023a] with a single stage training scheme and an

end-to-end objective that jointly optimizes a NeRF and diffusion. Multiple works combine NeRF

with generative models for the purpose of 3D synthesis [Chan et al., 2021, Meng et al., 2021, Gu

et al., 2021], including ones that place NeRF and diffusion models in series [Poole et al., 2022, Lin

et al., 2023, Wang et al., 2023a]. Our framework’s nested structure differs, as our aim is not to learn

to generate novel 3D scenes; we aim to use generative training to solve the classic multiview 3D

reconstruction problem.

Pose estimation is the challenging task of estimating object or camera position and orientation

within a scene. COLMAP [Schönberger and Frahm, 2016, Schönberger et al., 2016] uses a
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Structure-from-Motion (SfM) [Schönberger and Frahm, 2016] approach for pose estimation, can

handle challenging scenes with varying lighting conditions and viewpoints, and is widely used

in NeRF training. However, this collection of techniques requires a large number of images for

accurate pose estimation; pre-processing also restricts flexibility. PoseDiffusion [Wang et al., 2023b]

and Camera-as-Rays [Zhang et al., 2024] use a diffusion model to denoise camera parameters and

rays. Although sharing similar spirit in adopting diffusion, these methods require a supervised

pertaining stage. More importantly, diffusion serves as a different role in our model: instead of

denoising cameras to recover the pose distribution, we modulate a pose prediction system embedded

inside the diffusion training process, yielding pose information as a latent representation.
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3.3 Method

3.3.1 Unsupervised Pose Prediction from a Single Image

Our pose module (Figure 3.1, left) consists of several components designed to predict, from a 2D

image, the position and orientation of a camera in the scene. We design the encoder based on a

standard DDPM U-Net. We obtain input xt, a noise version of x0, via forward diffusion:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I),

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, 1), (3.1)

where αt = 1 − βt, ᾱt =
∏t

s=1 αt. We encode the pose information in the form of a camera-to-

world transformation matrix, Twc = [Ro|ts], where Ro ∈ SO(3) represents the camera’s rotation,

and ts ∈ R3 represents its translation. Following [Wang et al., 2021], we adopt Rodrigues’ formula

to form the rotation matrix Ro from axis-angle representation:

Ro = I + sin(ϕ)[ω]× + (1− cos(ϕ))[ω]2× (3.2)

where ϕ is the rotation angle, ω is a normalized rotation axis, and [ω]× is the skew-symmetric matrix

of the rotation axis vector ω.

Different from [Wang et al., 2021], which formulates ωi and translation tsi as trainable pa-

rameters, for each input image xi, our system maps the corresponding U-Net encoder features to

two 3-dimensional input-dependent feature vectors. By doing so, we not only learn to fit the pose

information during training, but also obtain a pose predictor network applicable to any input 2D

image.

51



3.3.2 3D Optimization with Denoising Rendering

With the predicted camera pose from the U-Net Encoder, the system is able to perform denoising

via differentiable rendering. Specifically, as shown in the right side of Figure 3.1, we sample the

differentiable coordinates cpos, which are fed into a NeRF MLP model to learn object density and

opacity, generating a 2D image reconstruction x̂0.

Benefiting from the compatibility between NeRF reconstruction loss and DDPM denoising

objective, we train our model end-to-end by simply minimizing the pixel-wise distance from x̂0 to

x0. Model weights of the camera predictor (U-Net encoder) and NeRF MLPs are optimized with

loss:

L = E||x̂0 − x0||22 (3.3)

Algorithm 3 summarizes training.

3.3.3 Multi-pose Rendering for Scene Reconstruction from 360◦ Views

A failure to estimate poses accurately can occur when rotation perturbations exceed a certain

threshold in Eq. 3.2, which prevents learning from 360◦ views of a scene [Wang et al., 2021]. Even

with good reconstruction in 2D space, an overfitting issue can occur during optimization, where

NeRF compensates by creating multiple disjoint copies of scene fragments instead of a unified 3D

reconstruction. We address these issues via a higher capacity pose predictor capable of representing

uncertainty (Figure 3.3).

Pose distribution prediction. A simple camera parameterization is to restrict position to a fixed-

radius sphere with fixed intrinsics, and the constraint of always looking towards the origin at (0, 0, 0).

Assuming the object in a 360◦ scene is centered, rotated, and scaled by some canonical alignment,

such a parametrization has only two degrees of freedom. However, this simplistic approach restricts

model capacity for capturing diverse viewpoints or extensive rotations.
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Algorithm 3 Generative Lifting to 3D:
Single Camera Pose Prediction & NeRF

Input: Multiview image collection X
Output: Encoder (pose predictor) & NeRF
Initialize: Model weights θ, Timesteps T
for iter = 1 to Itertotal do

Sample x0 ∈ X , t ∈ [1, T ].
Sample xt using Eq. 3.1.
Predict Ro using Eq. 3.2 and ts.
Compute x̂0 by rendering the NeRF from the pose predicted for xt (see Figure 3.1).
Backprop from loss in Eq. 3.3.
Update model weights.

end for
return θ

Algorithm 4 Generative Lifting to 3D using Pose Distribution Modeling & Multi-pose NeRF
Rendering

Input: Multiview image collection X
Output: Encoder (multi-pose predictor & classifier) & NeRF
Initialize: Model weights θ, Timesteps T , and initial pose of candidate cameras
for iter = 1 to Itertotal do

Sample x0 ∈ X , t ∈ [1, T ].
Sample xt using Eq. 3.1.
Predict poses and corresponding spose, as in Figure 3.3.
Compute {x̂i

0} using multi-pose rendering (Figure 3.3).
Backprop along the path of the best render via Eq. 3.4.
Update model weights.

end for
return θ
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We propose a more flexible approach that allows for a wider range of camera positions and

orientations. Given a 2D image captured from a specific viewpoint, instead of predicting a single

transformation, we sample the camera’s position from a distribution of multiple cameras that cover

a larger range of positions and orientations on a sphere.

As Figure 3.3 shows, different candidate cameras spread over the sphere, pointing to the origin

at initialization. Each input view predicts parameters for all cameras in the distribution. An auxiliary

classifier head predicts the probability of the input view corresponding to each camera in the

distribution. Early in training, such a design facilitates searching over multiple pose hypotheses in

order to discover a registration of all views into a consistent coordinate frame. Only one camera

prediction per input view need be correct, as long as the system also learns which one.

Joint optimization with multi-pose rendering. We render the NeRF separately from each candidate

camera to produce a set of 2D images {x̂i
0}. During backpropagation, we only allow the gradient to

pass selectively to optimize the best match between the true image and the rendered reconstruction.

The selected branch index serves as a pseudo-label to co-adapt the classifier head in a self-supervised

bootstrapping manner. The total loss for joint training is:

L = min
i

||x̂i
0 − x0||22 + λCrossEntropy(spose, argmin

i
||x̂i

0 − x0||22) (3.4)

where λ is the trade-off parameter between view reconstruction and camera classification. We set

λ as 0.1 in experiments and investigate its effect in an ablation study. Algorithm 4 summarizes

training.

3.3.4 Novel View Generation

Figure 3.2 illustrates the different modalities in which our trained system can be used.

Pose prediction & reconstruction. Given input image x0, we sample a noisy version xt through

forward diffusion in Eq. 3.1. We then pass xt to the model. Our system estimates the camera pose
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of xt with respect to the scene and recovers a clean image reconstruction with one-step denoising.

Sampling from pose trajectory. Though not trained with any camera pose information, our system

can generate novel views using a pre-defined camera trajectory, acting as a conventional NeRF

model.

Sampling from Gaussian noise. A unique property of our system is its support for sampling

cameras and scene views. Using reverse diffusion, our model can generate a realistic novel view

and the corresponding camera pose, starting from a pure noise input xT ∼ N (0, 1). We perform T

steps of reverse diffusion (predict xt−1 from xt) to progressively generate a novel view.
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3.4 Experiments

We conduct the experiments on the face-forwarding dataset LLFF Mildenhall et al. [2019] with a

resolution of 378× 504, using the single camera prediction system depicted in Alg. 3. To handle

360◦ scenes, we adopt the multi-pose rendering as in Alg. 4 on ShapeNet Car Chang et al. [2015]

(5 scenes), Lego and Drums Mildenhall et al. [2020] with a resolution of 128 × 128. Instead of

simultaneously optimizing two networks: one ‘coarse’ and one ‘fine’, we only use a single network

to represent 360◦ scenes for all methods. We initialize 8 camera candidates spread over 8 quadrants

of a sphere for the ShapeNet Car scene, and 12 candidates over 4 quadrants of a semi-sphere for

Lego and Drums.

3.4.1 Implementation Details

For all experiments, we use a U-Net Ronneberger et al. [2015] encoder as the pose prediction

module. The downsampling stack performs five steps of downsampling, each with 2 residual blocks.

From highest to lowest resolution, U-Net stages use [C,C, 2C, 2C, 4C] channels, respectively. We

set C = 64 for all models. Figure 3.12 details the network architecture. We use 100 denoising steps

for all models.

Our method involves two sets of trainable parameters: NeRF model weights and pose prediction

network weights; we adopt separate Adam optimizers, with learning rates 1e−4 and 2e−5 for NeRF

and pose prediction, respectively. We set (β1, β2) as (0.9, 0.999) for both optimizers. We adopt

the same batch size and learning rate scheduler used to train the corresponding baseline NeRF as

in Mildenhall et al. [2020]. We train all models for 200k iterations. Code segments 3.1, 3.2 and 3.3

detail our camera parameterization.
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(a) Ground Truth 2D View

(b) 2D Reconstruction

(c) Predicted Disparity

(d) Point Cloud from NeRF

Figure 3.4: Reconstructions of images unseen during training on three scenes from
LLFF [Mildenhall et al., 2019].

3.4.2 Multi-view 3D Reconstruction

We measure the quality of reconstructions obtained by the top pipeline in Figure 3.2. We directly

input previously unseen images from different views to generate reconstructions.

LLFF dataset. Figure 3.4 shows we obtain good-quality reconstructions and disparity predic-

tions. Point cloud visualization plots the density and opacity output from our NeRF model at 3D

coordinates.

360◦ scenes. Camera motions with large rotation perturbations cause failures in NeRF--; it

cannot handle 360◦ scenes like Lego. Our method solves this challenging case from a single

input image, without relative pose estimation between image pairs. To obtain reconstructions, we
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Table 3.1: Multiview reconstruction quality (PSNR, SSIM, & LPIPS). Our system, without
pose knowledge, reconstructs 3D scenes from challenging image collections (views spanning 360◦)
on which NeRF-- [Wang et al., 2021] fails. Supervised denotes standard NeRF training using
ground-truth camera pose.

PSNR (↑) SSIM (↑) LPIPS (↓)

Type Scene Supervised NeRF-- Ours Supervised NeRF-- Ours Supervised NeRF-- Ours

Fern 22.22 21.67 17.02 0.64 0.61 0.42 0.47 0.50 0.55
Flower 25.25 25.34 22.42 0.71 0.71 0.58 0.36 0.37 0.43
Fortress 27.60 26.20 22.02 0.73 0.63 0.50 0.38 0.49 0.51

Forward- Horns 24.25 22.53 17.48 0.68 0.61 0.43 0.44 0.50 0.55
Facing Leaves 18.81 18.88 14.44 0.52 0.53 0.42 0.47 0.47 0.60

Orchids 19.09 16.73 14.34 0.51 0.39 0.40 0.46 0.55 0.58
Room 27.77 25.84 22.36 0.87 0.84 0.48 0.40 0.44 0.49
Trex 23.19 22.67 19.96 0.74 0.72 0.62 0.41 0.44 0.51

Car 28.98 ✗ 26.43 0.95 ✗ 0.92 0.08 ✗ 0.08
360◦ Lego 25.44 ✗ 21.38 0.92 ✗ 0.86 0.09 ✗ 0.12

Drums 22.12 ✗ 18.65 0.89 ✗ 0.82 0.08 ✗ 0.16

determine the camera pose for the input image based on the maximum score of the classification

head in Figure 3.3 before rendering. As Figure 3.5 shows, we generate good reconstructions and

point clouds.

To quantify the quality of our reconstructions, we compare the PSNR, SSIM, LPIPS Zhang et al.

[2018] with supervised NeRF (using pre-processed pose information), and NeRF--. As Table 3.1

shows, for face-forwarding scenes, our method achieves reasonably high performance. We cannot

beat NeRF-- because we aim to solve a more general pose prediction problem from a single input,

instead of fitting camera parameters as trainable variables. For 360◦ scene views, which NeRF--

completely fails to handle, our method still yields good reconstructions. This validates the design

choice of our multi-pose rendering system in tolerating large camera pose perturbations.

3.4.3 Visualization of Pose Optimization

As shown in Figure 3.6, we also demonstrate that our pose prediction system can generate reasonable

pose estimates, though not in the same coordinate system, compared with ground-truth cameras.

Camera distribution evolution during optimization To better demonstrate the pose prediction
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(a) Point Cloud. (b) 2D reconstruction

(c) Point Cloud. (d) 2D reconstruction

Figure 3.5: Reconstructions on 360◦ scenes.

(a) Fern GT. (b) Fern Pred. (c) Car GT. (d) Car Pred. (e) Lego GT. (f) Lego Pred.

Figure 3.6: Visualization of camera poses for Fern, Car, and Lego.

refinement during the optimization process, we visualize the camera poses at different training

iterations for the Car scene. As shown in Figure 3.7, the candidate poses refers to all possible

predictions over 8 quaternions while the selected poses represent those with maximum classification

scores. During training, the learned candidate poses tend to cover the sphere uniformly, with the

selected pose distributions gradually converge to that provided by the pre-processed dataset. We

observe simultaneous refinements of both 3D model and pose prediction along the training process.
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Figure 3.7: Joint 3D and pose optimization for Car during training.

λ Acc. PSNR

0.01 28 ✗
0.02 72 19.43
0.05 66 18.88
0.1 98 26.43
0.2 90 22.19
0.5 100 ✗
1.0 100 ✗

Table 3.2: Effect of λ.

3.4.4 Novel View Synthesis

From camera trajectory: We show that our joint-learned 3D model, even learned with unknown

pose, can generate novel views using a manually designed camera trajectory as in a supervised

NeRF. In Figure 3.8, we generate novel views using a continuous spiral camera path (pointing to

the origin) for three different challenging scenes.

From Gaussian noise: Given the nice property of denoising diffusion training, we have the

flexibility to generate novel views from Gaussian noise progressively. In the DDPM Markov process,

the model implicitly formulates a mapping between noise and data distributions. We validate this

by visualizing the reconstructed x̂t−1 and x̂0 along the sequential reversed diffusion process in

Figure 3.9. We observe gradual refinement as denoising steps approach t = 0.

3.4.5 Abalation Studies

Training with clean images. Training NeRF with denoising diffusion is an essential part of

our method. We show the effectiveness of this design by varying the input with clean images

in our method, in which case our architecture downgrades to an autoencoder (AE). As shown in

Figure 3.10, the baseline trained with clean images (denoted as AE) yields an incorrect 3D model

for the Car scene. This suggests the failure of camera pose prediction, hence leading to a NeRF

over-fitting issue. Moreover, AE fails to perform novel-view synthesis given a pre-defined camera
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(a) Car3D.

(b) Lego.

(c) Drums.

Figure 3.8: Novel view synthesis from circle trajectory.

trajectory, as shown in Figure 3.13. Thus, denoising diffusion training not only provides a new way

to perform novel view synthesis, but also significantly improves the learned 3D reconstruction.

Candidate camera numbers in multi-pose rendering. For Lego and Drums on a semi-sphere,

we choose to use 12 candidate cameras instead of 4 at initialization for each view. The 4-way case

poses an easier camera classification task to the system, but restricts flexibility for discovering view

correspondence and thereby pushes the NeRF to overfit on incorrect pose predictions. Increasing

capacity to 12 cameras during training addresses this issue and prevents the system from converging

to a suboptimal solution. As shown in Figure 3.11, 4× and 8× variants fail to converge to the

correct pose distributions, while the 12× succeeds.

Trade-off between classification and reconstruction. Due to the discrepancy between training and
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Figure 3.9: Novel view synthesis from Gaussian noise.

testing in our multi-pose system, the quality of rendering highly relies on the camera classification

accuracy. To evaluate the performance of this self-supervised classifier, we use the camera index

which produces the minimum reconstruction loss as ground-truth. We study the effect of the

classification loss term by alternating λ ∈ {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}, generating trade-offs

between the accuracy and PSNR for Car. As shown in Table 3.2, NeRF training yields a poor

reconstruction and even an optimization failure when the classification accuracy is low. When we

set λ as a large value, the model runs into a local minimum: the classifier obtains 100% accuracy at

early training iterations and poses cannot be jointly optimized to discover correspondence.
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(a) Ours (b) AE (c) AE-Pred (d) GT

Figure 3.10: Learning w/o denoising diffusion.

(a) 4× (b) 8× (c) 12× (d) GT

Figure 3.11: Poses learned with different camera number.
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3.5 Appendix

Figure 3.12: Detailed architecture of pose prediction network. A shared encoder trunk processes
an input image and branches into heads for predicting a set of candidate camera poses, as well as a
score vector indicating the probability the image was acquired from each of the predicted cameras.

1 import torch as th

2 import pytorch3d.transforms as tf

3 def gen_rotation_matrix_from_xyz(xyz, in_plane=th.from_numpy(np.array([0.0,

0.0, 0.0])).cuda().float()):

4 cam_from = xyz

5 cam_to = th.from_numpy(np.zeros(3)).float().cuda()

6 tmp = th.from_numpy(np.array([0.0, 1.0, 0.0])).float().cuda()

7

8 diff = cam_from - cam_to

9 forward = diff / th.linalg.norm(diff)

10 crossed = th.cross(tmp, forward)

11 right = crossed / th.linalg.norm(crossed)
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12 up = th.cross(forward, right)

13

14 R = th.stack([right, up, forward])

15 R_in_plane = tf.rotation_conversions.euler_angles_to_matrix(in_plane, "XYZ

")

16 return R_in_plane @ R

Code 3.1: Obtain rotation matrix from camera position

1 import torch as th

2 def lkat(eye, target, up):

3 forward = normalize(target - eye)

4 side = normalize(th.cross(forward, up))

5 up = normalize(th.cross(side, forward))

6

7 zero = th.zeros(1).float().cuda()

8 one = th.ones(1).float().cuda()

9 trans_v0 = th.cat([side[0:1], up[0:1], -forward[0:1], zero]) # (3, 1)

10 trans_v1 = th.cat([ side[1:2], up[1:2], -forward[1:2],zero])

11 trans_v2 = th.cat([side[2:3], up[2:3], -forward[2:3], zero])

12 trans_v3 = th.cat([ -th.dot(side, eye)[None], -th.dot(up, eye)[None], th.

dot(forward, eye)[None], one])

13 c2w = th.stack([trans_v0, trans_v1, trans_v2,trans_v3], dim=0)

14 return c2w

Code 3.2: Camera transformation with pointing to the origin.

1 import torch as th

2 eye_candidates = th.Tensor([[1,1,1],[1,-1,1],[-1,1,1],[-1,-1,1],

3 [1,1,1],[1,-1,1],[-1,1,1],[-1,-1,1],

4 [1,1,1],[1,-1,1],[-1,1,1],[-1,-1,1]]).cuda()

5 r = th.tensor([4.0]).float().cuda()

6 target = th.from_numpy(np.zeros(3)).float().cuda()

7 up = th.from_numpy(np.array([0.0, 1.0, 0.0])).float().cuda()
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8

9 # h: the output of the last residual block in pose prediction model.

10 h1 = linear1(h.squeeze(-1)).squeeze() # (12*3, )

11 h2 = linear2(h.squeeze(-1)).squeeze() # (12, ), score vector

12

13 zero = th.zeros(1).float().cuda()

14 init_cam_pos = th.cat([ zero, zero, r) # (3, 1)

15 all_poses = []

16

17 for index in range(12):

18 h3= th.sigmoid(h1[3*index:index*3+3])

19 h3 = th.diag(eye_candidates[index])@h3

20 h3 = h3/th.linalg.norm(h3)

21 R1 = gen_rotation_matrix_from_xyz((h3)

22 eye = (R1 @ init_cam_pos)

23 look_at1 = lkat(eye, target, up)

24 pose1 = th.eye(4).float().cuda()

25 pose1[:3, :3] = look_at1[:3, :3]

26 pose1[:3, 3] = -look_at1[:3, :3] @ look_at1[3, :3]

27 all_poses.append(pose1[:3,:4])

28 all_poses = th.stack(all_poses, 0)

29 return all_poses, h2 #pose distribution (12,3,4), scores (12, 1)

Code 3.3: Pose distribution prediction with 12× camera candidates
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(a) Ours

(b) AE Baseline

Figure 3.13: Diffusion training benefits novel view synthesis on Car3D. Our system, wrapped
within a DDPM for training, significantly outperforms the same architecture trained as a simple au-
toencoder (AE). Training with the more challenging denoising task yields more robust generalization
for the pose prediction network and NeRF scene representation.
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3.6 Summary

We propose a novel technique that places NeRF inside a probabilistic diffusion framework to

accurately predict camera poses and create detailed 3D scene reconstructions from collections

of 2D images. Our approach enables training NeRF from images with unknown pose. Using

a carefully constrained architecture and differentiable volume renderer, we learn a camera pose

predictor and 3D representation jointly. Our experimental results and ablation studies confirm the

effectiveness of this method, demonstrating its capability to produce high-quality reconstructions,

localize previously unseen images, and sample novel-view images, all while trained in an entirely

unsupervised manner.
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CHAPTER 4

CONCLUSION

This thesis presents a new approach to generative learning by proposing to design domain-specific

architectures that directly solve end tasks when trained with the sole objective of denoising, without

reliance on annotated data. These architectures utilize a computational bottleneck that specifically

caters to the needs of the task and the data involved, allowing for learning processes that directly ad-

dress the challenges posed by unsupervised learning scenarios. This stands in contrast to traditional

approaches, which often depend on large-scale pre-trained models fine-tuned on specific datasets.

The effectiveness of this approach is demonstrated through rigorous experimentation across

various tasks, showcasing the model’s versatility and robustness. Notably, the thesis reports success

in unsupervised image segmentation and generation of synthetic images. This is a significant

achievement as it proves the model’s capacity to perform complex tasks without labeled data.

Furthermore, we apply this architectural design strategy to produce an innovative solution to the

challenging problem of pose estimation and 3D reconstruction from 2D images. Our successful

unsupervised learning of camera poses and 3D geometry, within a diffusion framework, highlights

the potential of this approach to impact areas such as virtual reality, augmented reality, and robotic

navigation, where understanding 3D spaces from 2D inputs is crucial.

Overall, this thesis validates the effectiveness of combining domain and task-specific compu-

tational architectures with generative training objectives to learn interpretable, structured latent

representations. This research paves the way for further exploration and development in unsuper-

vised learning, potentially transforming how computer vision tasks are approached in the future.
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