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ABSTRACT

Artificial intelligence (AI) has demonstrated increasing potential to assist humans in decision-

making tasks. However, AI systems solve problems differently than humans, leading to

varying performance in human-AI teams. An ideal human-AI collaboration system should

leverage the strengths of both humans and AI while mitigating their weaknesses. In this

dissertation, I will discuss how to empower humans with AI systems in decision-making tasks.

First, I will explain how to understand human-AI teams under different distribution types

and interactive interfaces (Chapter 2). Then, I will describe how to align AI models with

human perceptions for better decision support (Chapter 3). Third, I will explore how to

build AI-driven tutorials using selected concepts and examples to assist and teach humans in

fine-grained image classification tasks (Chapter 4). Finally, I will discuss future directions for

human-AI collaboration and how to enable better two-way communication between humans

and AI systems (Chapter 5).
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CHAPTER 1

INTRODUCTION

In the recent decades, there has been huge advances in the research and development of

Artifical Intelligence (AI) systems. With greater ability and capacity to process data, AI

systems have achieved remarkable performance in various tasks, such as image classification,

speech recognition, and natural language processing. Such advances have invited more

and more AI systems to be deployed in real-world applications in high-stakes domains

such as healthcare, criminal justice, and finance. As they are increasingly used to assist

humans in different kinds of tasks and domains, researchers start to wonder how to effectively

communicate and collaborate with AI systems. Although AI systems have shown remarkable

performance in various tasks, they solve problems in different ways than humans do, resulting

in different success and failure modes from humans. An ideal human-machine collaboration

system should leverage the strengths of both humans and machines, and mitigate their

weaknesses. In this way, the system can make better predictions than either humans or

machines alone, obtaining complementary performance [Bansal et al., 2019]. To achieve this

goal, we need to understand how machines solve problems. What are their strengths and

weaknesses? How do they make decisions? How to understand their predictions? How can we

better interact with them? These questions are especially important in high-stakes domains

where the decisions cannot made by AI systems alone. Therefore, we need more knowledge

and tools to empower humans to better understand and collaborate with AI systems.

In this dissertation, we focus on how to enable a two-way communication between humans

and AI systems. The goal is to enable humans to understand how AI systems make decisions

and to enable AI systems to make predictions in a way that is compatible with human

intuition or understandable to humans. We investigate how to achieve this goal in three

different aspects: understanding machines through data and explanations, learning from

humans for better decision support, and teaching humans with concepts and examples.
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1.1 Understanding Machines Through Data and Explanations

In this part, we focus on understanding machines in challenging prediction tasks. When

machines make predictions, they often rely on knowledge learned from data. However, the

data machines are trained on may not be representative of the real world, or may be biased

in some way. When the machine encounters unseen data, it may make mistakes. To achieve

complementary performance, we need to understand what performance humans may achieve

when their machine teammate are making predictions for out-of-distribution data. On the

other hand, when machines make predictions, they often do not provide explanations for

their decisions. We also need to understand how machines make their decisions in order to

better interact with them. Therefore, we also explore how to understand machine predictions

through interactive explanations. We design a novel interactive explanation system that

allows users to interact with the machine to obtain explanations for its predictions. We

also discuss how human understandings change when they interact with the machine. We

emphasize the importance of helping humans to understand the machine’s predictions in

order to better collaborate with them.

1.2 Learning from Humans for Better Decision Support

In this part, we focus on learning from humans for better decision support. When humans

make decisions, they often rely on their intuition and past experience. For example, when

they predict the outcomes of a new case, they often refer to similar cases they have seen

before. Such case-based decision making is common in many domains, such as healthcare

where radiologists refer to similar cases to make diagnoses and criminal justice where judges

refer to similar cases to make sentencing decisions. To achieve satisfactory performance,

decision makers relies on the similarity between the new case and the cases they have seen

before. Therefore, similarity judgments that are more compatible with human intuition can
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lead to better cases-based decision support. However, the perception of similarity between

cases may vary between AI systems and humans. To achieve better decision support, we need

to build AI systems that can capture the similarity between cases as perceived by humans.

In this part, we investigate how to learn human-compatible representations in AI systems

to retrieve decision support cases that are more effective for human decision makers. We

emphasize the importance of building AI systems that are aligned with human intuition to

better support human decision making.

1.3 Teaching Humans with Concepts and Examples

In this part, we focus on teaching image classification tasks with distinctive concepts and

informative examples. When making predictions on images, humans often rely on their

knowledge of the world and the concepts they have learned. For example, when they classify

images of birds, they often refer to specific concepts such as the shape of the beak, the color

of the feathers, and the size of the body. To build effective AI-driven tutorials, we need to

identify key concepts for the tasks and important examples associated with the concepts.

We propose a novel teaching paradigm with concept and example selection algorithm to

teach simulated human learners to do fine-grained image classification tasks. We evaluate the

effectiveness of the teaching on a number of fine-grained natural image classification tasks

and discuss how different selection methods can affect learner performance. We emphasize

the importance of finding informative concepts and examples as common ground between

humans and AI systems to transfer knowledge effectively and improve human performance.

1.4 Organization and Contributions

The rest of the thesis is organized as follows.

In Chapter 2, we investigate how to understanding the effect of out-of-distribution examples
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and interactive explanations on human-AI decision making. We show that human-AI teams

have different interactions when making predictions on in-distribution and out-of-distribution

examples. We also show that interactive explanations may not always improve human

performance and may reinforce human biases.

In Chapter 3, we investigate how to learn human-compatible representations for case-based

decision support. We show that AI systems that are trained to capture human similarity

judgments can produce human-compatible representations. With different decision support

selection policies, we show that human-compatible representations can lead to better decision

support and improve human performance.

In Chapter 4, we investigate how to teach fine-grained image classification with concept

and example selection. We show that teaching with informative concepts and associated

examples can improve human performance.

In Chapter 5, we discuss future directions for human-AI collaboration and how to enable

better two-way communication between humans and AI systems.
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CHAPTER 2

UNDERSTANDING THE EFFECT OF OUT-OF-DISTRIBUTION

EXAMPLES AND INTERACTIVE EXPLANATIONS

2.1 Overview

Although AI holds promise for improving human decision making in societally critical domains,

it remains an open question how human-AI teams can reliably outperform AI alone and

human alone in challenging prediction tasks (also known as complementary performance).

We explore two directions to understand the gaps in achieving complementary performance.

First, we argue that the typical experimental setup limits the potential of human-AI teams.

To account for lower AI performance out-of-distribution than in-distribution because of

distribution shift, we design experiments with different distribution types and investigate

human performance for both in-distribution and out-of-distribution examples. Second, we

develop novel interfaces to support interactive explanations so that humans can actively engage

with AI assistance. Using virtual pilot studies and large-scale randomized experiments across

three tasks, we demonstrate a clear difference between in-distribution and out-of-distribution,

and observe mixed results for interactive explanations: while interactive explanations improve

human perception of AI assistance’s usefulness, they may reinforce human biases and lead to

limited performance improvement. Overall, our work points out critical challenges and future

directions towards enhancing human performance with AI assistance.

In this chapter, we start with explanations derived from AI systems that help humans

understand the decisions made by AI systems. Most of the work in this chapter is published

in Liu et al. [2021]. This is a joint work with Vivian Lai and Chenhao Tan.
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2.2 Introduction

As AI performance grows rapidly and often surpasses humans in constrained tasks [Kleinberg

et al., 2018, He et al., 2015, McKinney et al., 2020, Silver et al., 2018, Brown and Sandholm,

2019], a critical challenge to enable social good is to understand how AI assistance can be

used to enhance human performance. AI assistance has been shown to improve people’s

efficiency in tasks such as transcription by enhancing their computational capacity [Lasecki

et al., 2017, Gaur et al., 2016], support creativity in producing music [Louie et al., 2020,

McCormack et al., 2019, Frid et al., 2020], and even allow the visually impaired to “see”

images [Wu et al., 2017, Gurari et al., 2018]. However, it remains difficult to enhance human

decision making in challenging prediction tasks [Kleinberg et al., 2015]. Ideally, with AI

assistance, human-AI teams should outperform AI alone and human alone (e.g., in accuracy;

also known as complementary performance [Bansal et al., 2021]). Instead, researchers have

found that while AI assistance improves human performance compared to human alone,

human-AI teams seldom outperform AI alone in a wide variety of tasks, including recidivism

prediction, deceptive review detection, and hypoxemia prediction [Lai and Tan, 2019, Lai

et al., 2020, Green and Chen, 2019b,a, Zhang et al., 2020, Poursabzi-Sangdeh et al., 2021,

Carton et al., 2020, Lin et al., 2020, Weerts et al., 2019, Beede et al., 2020, Wang and Yin,

2021, Lundberg et al., 2018].

To address the elusiveness of complementary performance, we study two factors: 1) an

overlooked factor in the experimental setup that may over-estimate AI performance; 2) the

lack of two-way conversations between humans and AI, which may limit human understanding

of AI predictions. First, we argue that prior work adopts a best-case scenario for AI. Namely,

these experiments randomly split a dataset into a training set and a test set (Fig. 2.1). The

training set is used to train the AI, and the test set is used to evaluate AI performance and

human performance (with AI assistance). We hypothesize that this evaluation scheme is too

optimistic for AI performance and provide limited opportunities for humans to contribute
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insights because the test set follows the same distribution as the training set (in-distribution).

In practice, examples during testing may differ substantially from the training set, and AI

performance can significantly drop for these out-of-distribution examples [McCoy et al., 2019,

Clark et al., 2019, Jia and Liang, 2017]. Furthermore, humans are better equipped to detect

problematic patterns in AI predictions and offer complementary insights in out-of-distribution

examples. Thus, we propose to develop experimental designs with both out-of-distribution

examples and in-distribution examples in the test set.

Second, although explaining AI predictions has been hypothesized to help humans un-

derstand AI predictions and thus improve human performance [Doshi-Velez and Kim, 2017],

static explanations, such as highlighting important features and showing AI confidence, have

been mainly explored so far [Green and Chen, 2019b, Lai and Tan, 2019, Bansal et al.,

2021]. Static explanations represent a one-way conversation from AI to humans and may

be insufficient for humans to understand AI predictions. In fact, psychology literature

suggests that interactivity is a crucial component in explanations [Lombrozo, 2006, Miller,

2018]. Therefore, we develop interactive interfaces to enable a two-way conversation between

decision makers and AI. For instance, we allow humans to change the input and observe

how AI predictions would have changed in these counterfactual scenarios (Fig. 2.6). We

hypothesize that interactive explanations improve the performance of humans and their sub-

jective perception of AI assistance’s usefulness. Although out-of-distribution examples and

interactive explanations are relatively separate research questions, we study them together in

this work as we hypothesize that they are critical missing ingredients towards complementary

performance.

To investigate the effect of out-of-distribution examples and interactive explanations on

human-AI decision making, we choose three datasets spanning two tasks informed by prior

work: 1) recidivism prediction (COMPAS and ICPSR) (a canonical task that has received

much attention due to its importance; COMPAS became popular because of the ProPublica
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Typical setup Proposed setup
training val test training val test

In-distribution
e.g., age >= 25

Out-of-distribution
e.g., age < 25

The test set follows the same distribution as the 
training set and may over-estimate AI performance.

The training set consists of in-distribution examples, while the test set 
includes both in-distribution and out-of-distribution examples. Humans are 
more likely to offer complementary insights for out-of-distribution examples.

Figure 2.1: An illustration of the typical setup and our proposed setup that takes into account
distribution types. For instance, in the recidivism prediction task we can use defendants
of younger ages to simulate out-of-distribution examples, assuming our training set only
contains older defendants referred as in-distribution examples. The fractions of data are only
for illustrative purposes. See details of in-distribution vs. out-of-distribution setup in §2.4.2.

article on machine bias [Angwin et al., 2016], and ICPSR was recently introduced to the

human-AI interaction community by Green and Chen [2019b,a], so it would be useful to see

whether same results hold in both datasets); 2) profession detection (BIOS) (the task is to

predict a person’s profession based on a short biography; this task is substantially easier

than recidivism prediction and other text-based tasks such as deceptive review detection, so

crowdworkers may have more useful insights to offer for this task). We investigate human-AI

decision making in these tasks through both virtual pilot studies and large-scale randomized

experiments. We focus on the following three research questions:

• RQ1: how do distribution types affect the performance of human-AI teams, compared

to AI alone?

• RQ2: how do distribution types affect human agreement with AI predictions?

• RQ3: how do interactive explanations affect human-AI decision making?

Our results demonstrate a clear difference between in-distribution and out-of-distribution.

Consistent with prior work, we find that human-AI teams tend to underperform AI alone

in in-distribution examples in all tasks. In comparison, human-AI teams can occasionally

outperform AI in out-of-distribution examples in recidivism prediction (although the difference

is small). It follows that the performance gap between human-AI teams and AI is smaller
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out-of-distribution than in-distribution, confirming that humans are more likely to achieve

complementary performance out-of-distribution.

Distribution types also affect human agreement with AI predictions. In recidivism

prediction (COMPAS and ICPSR), humans are more likely to agree with AI predictions

in-distribution than out-of-distribution, suggesting that humans behave differently depending

on the distribution type. Moreover, in recidivism prediction, human agreement with wrong

AI predictions is lower out-of-distribution than in-distribution, suggesting that humans may

be better at providing complementary insights into AI mistakes out-of-distribution. However,

in BIOS, where humans may have more intuitions for detecting professions, humans are less

likely to agree with AI predictions in-distribution than out-of-distribution. This observation

also explains the relatively low in-distribution performance of human-AI teams in BIOS

compared to AI alone.

Finally, although we do not find that interactive explanations lead to improved performance

for human-AI teams, they significantly increase human perception of AI assistance’s usefulness.

Participants with interactive explanations are more likely to find real-time assistance useful

in ICPSR and COMPAS, and training more useful in COMPAS. To better understand the

limited utility of interactive explanations, we conduct an exploratory study on what features

participants find important in recidivism prediction. We find that participants with interactive

explanations are more likely to fixate on demographic features such as age and race, and

less likely to identify the computationally important features based on Spearman correlation.

Meanwhile, they make more mistakes when they disagree with AI. These observations suggest

that interactive explanations might reinforce existing human biases and lead to suboptimal

decisions.

Overall, we believe that our work adds value to the community in the emerging field of

human-AI collaborative decision making in challenging prediction tasks. Our work points out

an important direction in designing future experimental studies on human-AI decision making:
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it is critical to think about the concept of out-of-distribution examples and evaluate the

performance of human-AI teams both in-distribution and out-of-distribution. The implications

for interactive explanations are mixed. On the one hand, interactive explanations improve

human perception of AI usefulness, despite not reliably improving their performance. On the

other hand, similar to ethical concerns about static explanations raised in prior work [Green

and Chen, 2019a,b, Bansal et al., 2021], interactive explanations might reinforce existing

human biases. It is critical to take these factors into account when developing and deploying

improved interactive explanations. Our results also highlight the important role that task

properties may play in shaping human-AI collaborative decision making and provide valuable

samples for exploring the vast space of tasks.

2.3 Related Work and Research Questions

In this section, we review related work and formulate our research questions.

2.3.1 Performance of Human-AI Teams in Prediction Tasks

With a growing interest in understanding human-AI interaction, many recent studies have

worked on enhancing human performance with AI assistance in decision making. Typically,

these decisions are formulated as prediction tasks where AI can predict the outcome and may

offer explanations, e.g., by highlighting important features. For instance, the bailing decision

(whether a defendant should be bailed) can be formulated as a prediction problem of whether

a defendant will violate pretrial terms in two years [Kleinberg et al., 2018]. Most studies have

reported results aligning with the following proposition:

Proposition 1. AI assistance improves human performance compared to without any assistance;

however, the performance of human-AI teams seldom surpasses AI alone in challenging

prediction tasks [Lai and Tan, 2019, Lai et al., 2020, Green and Chen, 2019b,a, Zhang et al.,

2020, Poursabzi-Sangdeh et al., 2021, Carton et al., 2020, Lin et al., 2020, Weerts et al.,
10



2019, Beede et al., 2020, Lundberg et al., 2018, Wang and Yin, 2021, Buçinca et al., 2020].1

This proposition is supported in a wide variety of tasks, including recidivism prediction

[Green and Chen, 2019b,a, Lin et al., 2020], deceptive review detection [Lai and Tan, 2019, Lai

et al., 2020], income prediction [Poursabzi-Sangdeh et al., 2021], and hypoxemia prediction

[Lundberg et al., 2018], despite different forms of AI assistance. To understand this observation,

we point out that Proposition 1 entails that AI alone outperforms humans alone in these

tasks (human < human + AI < AI). Lai et al. [2020] conjectures that the tasks where

humans need AI assistance typically fall into the discovering mode, where the groundtruth

is determined by (future) external events (e.g., a defendant’s future behavior) rather than

human decision makers, instead of the emulating mode, where humans (e.g., crowdworkers)

ultimately define the groundtruth.2 We refer to prediction tasks in the discovering mode as

challenging prediction tasks. Example tasks include the aforementioned recidivism prediction,

deception detection, hypoxemia prediction, etc. These tasks are non-trivial to humans and two

corollaries follow: 1) human performance tend to be far from perfect; 2) the groundtruth labels

cannot be crowdsourced.3 In such tasks, AI can identify non-trivial and even counterintuitive

patterns to humans. These patterns can be hard for humans to digest and leverage when

they team up with AI. As such, it is difficult for human-AI teams to achieve complementary

performance.

A notable exception is Bansal et al. [2021], which shows that human-AI team performance

surpasses AI performance in sentiment classification (beer reviews and Amazon reviews) and

1. Our focus in this work is on understanding the performance of human-AI teams compared to AI
performance and do not recommend AI to replace humans in any means. In fact, many studies have argued
that humans should be the final decision makers in societally critical domains for ethical and legal reasons
such as recidivism prediction and medical diagnosis [Green and Chen, 2019b, Lai and Tan, 2019, Liptak,
2017, Supreme Court of Wisconsin, 2016, Supreme Court of the United States, 1993].

2. In fact, it is unclear what complementary performance means in the emulating mode if humans define
the groundtruth as human performance is by definition 100%. A more subtle discussion can be found in
footnote 4.

3. Whether a task is challenging (in the discovering mode) also depends on characteristics of humans. For
instance, sentiment analysis of English reviews might not be challenging for native speakers, but could remain
challenging for non-native speakers.
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Table 2.1: Definitions of complementary performance and comparable performance.

Complementary performance. An ideal outcome of human-AI collaborative decision
making: the performance of human-AI teams is better than AI alone and human alone.
Comparable performance. The performance of human alone is similar to AI alone,
yielding more potential for complementary performance as hypothesized in Bansal
et al. [2021]. There lacks a quantitative definition of what performance gap counts as
comparable. We explore different ranges in this work.

LSAT question answering. Their key hypothesis is that human-AI teams are likely to excel

when human performance and AI performance are comparable, while prior studies tend to

look at situations where the performance gap is substantial. It naturally begs the question

of what size of performance gap counts as comparable performance, whether comparable

performance alone is sufficient for complementary performance, and whether other factors

are associated with the observed complementary performance (we summarize the definitions

of complementary performance and comparable performance in Table 2.1 to help readers

understand these concepts). For instance, it is useful to point out that sentiment analysis is

closer to the emulating mode.4 We will provide a more in-depth discussion in §2.8.

Our core hypothesis is that a standard setup in current experimental studies on human-AI

interaction might limit the potential of human-AI teams. Namely, researchers typically follow

standard machine learning setup in evaluating classifiers by randomly splitting the dataset

into a training set and a test set, and using the test set to evaluate the performance of

human-AI teams and AI alone. It follows that the data distribution in the test set is similar

to the training set by design. Therefore, this setup is designed for AI to best leverage the

patterns learned from the training set and provide a strong performance. In practice, a critical

growing concern is distribution shift [Goodfellow et al., 2016, Quionero-Candela et al., 2009,

Sugiyama and Kawanabe, 2012]. In other words, the test set may differ from the training set,

4. Although labels in sentiment analysis are determined by the original author, sentiment analysis is
generally viewed as a natural language understanding task that humans are capable of. AI is thus designed
to emulate human capability. In the emulating mode, improving human performance is essentially aligning
single-person decisions with the majority of a handful of annotators. We argue that data annotation is
qualitatively different from decision making in challenging tasks such as recidivism prediction.
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so the patterns that AI identifies can fail during testing, leading to a substantial drop in AI

performance [McCoy et al., 2019, Clark et al., 2019, Jia and Liang, 2017]. Throughout this

paper, we refer to testing examples that follow the same distribution as the training set as

in-distribution (IND) examples and that follow a different distribution as out-of-distribution

(OOD) examples.

Thus, our first research question (RQ1) examines how distribution types affect the

performance of human-AI teams, compared to AI alone. We expect our results in in-

distribution examples to replicate previous findings and be consistent with Proposition 1. In

comparison, we hypothesize that humans are more capable of spotting problematic patterns

and mistakes in AI predictions when examples are not similar to the training set (out-of-

distribution), as humans might be robust against distribution shift. Even if human-AI teams

do not outperform AI alone in out-of-distribution examples, we expect the performance gap

between human-AI teams and AI alone to be smaller out-of-distribution than in-distribution.

Inspired by the above insights on comparable performance, we choose three tasks where

humans and AI have performance gaps of different sizes so that we can investigate the effect

of distribution type across tasks.

2.3.2 Agreement with AI

In addition to human performance, human agreement with AI predictions is critical for

understanding human-AI interaction, especially in tasks where humans are the final decision

makers. When AI predictions are explicitly shown, this agreement can also be interpreted

as the trust that humans place in AI. Prior work has found that in general, the more

information about AI predictions is given, the more likely humans are going to agree with

AI predictions [Lai and Tan, 2019, Feng and Boyd-Graber, 2019, Bansal et al., 2021, Ghai

et al., 2020]. For instance, explanations, presented along with AI predictions, increase the

likelihood that humans agree with AI [Lai et al., 2020, Bansal et al., 2021, Ghai et al., 2020].

13



Confidence levels have also been shown to help humans calibrate whether to agree with AI

[Zhang et al., 2020, Bansal et al., 2021]. In a similar vein, Yin et al. [2019] investigate the

effect of observed and stated accuracy on humans’ trust in AI and find that both stated and

observed accuracy can affect human trust in AI. Finally, expertise may shape humans’ trust

in AI: Feng and Boyd-Graber [2019] find that novices in Quiz Bowl trust the AI more than

experts when visualizations are enabled.

However, little is known about the effect of distribution types as it has not been examined

in prior work. Our second research question (RQ2) inquires into the effect of distribution

types on human agreement with AI predictions. We hypothesize that humans are more

likely to agree with AI in-distribution than out-of-distribution because the patterns that AI

learns from in-distribution examples may not apply out-of-distribution and AI performance is

worse out-of-distribution than in-distribution. Furthermore, given prior results that humans

are more likely to agree with correct AI predictions than wrong AI predictions [Lai and

Tan, 2019, Bansal et al., 2021], it would be interesting to see whether that trend is different

out-of-distribution from in-distribution.

Additionally, we are interested in having a closer look at the effect of distribution types

on human agreement by zooming in on the correctness of AI predictions. Prior work

has introduced three terms to address these different cases of agreement [Wang and Yin,

2021]: appropriate trust [McBride and Morgan, 2010, McGuirl and Sarter, 2006, Merritt

et al., 2015, Muir, 1987] (the fraction of instances where humans agree with correct AI

predictions and disagree with wrong AI predictions; this is equivalent to human-AI team

accuracy in binary classification tasks), overtrust [Parasuraman and Riley, 1997, de Visser

et al., 2014] (the fraction of instances where humans agree with wrong AI predictions), and

undertrust [Parasuraman and Riley, 1997, de Visser et al., 2014] (the fraction of instances

where humans disagree with correct AI predictions). To simplify the measurement, we only

consider agreement with AI predictions in this work because disagreement and agreement add
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Table 2.2: Definition of human agreement based on the correctness of AI predictions.

Correct AI predictions Wrong AI predictions
Humans agree with Appropriate agreement Overtrust
Humans disagree with Undertrust Appropriate disagreement

up to 1. We define the fraction of instances where humans agree with correct AI predictions

as appropriate agreement and the fraction of instances where humans agree with incorrect AI

predictions as overtrust, and similarly the counterparts in disagreement as undertrust and

appropriate disagreement. Table 2.2 shows the full combinations of human agreement and

AI correctness. The term appropriate trust then is the sum of appropriate agreement and

appropriate disagreement. We hypothesize that patterns embedded in the AI model may not

apply to out-of-distribution examples, humans can thus better identify wrong AI predictions

in out-of-distribution examples (i.e., overtrust is lower out-of-distribution). Similarly, our

intuition is that appropriate agreement is also likely lower out-of-distribution as AI may

make correct predictions based on non-sensible patterns. While we focus on how distribution

types affect appropriate agreement and overtrust, it also entails how distribution types affect

undertrust and appropriate disagreement.

2.3.3 Interactive Explanations

A key element in developing AI assistance are explanations of AI predictions, which have

attracted a lot of interest from the research community [Lipton, 2016, Doshi-Velez and Kim,

2017, Ribeiro et al., 2016, Lundberg and Lee, 2017, Koh and Liang, 2017, Lakkaraju et al.,

2016, Gilpin et al., 2018]. Experimental studies in human-AI decision making have so far

employed static explanations such as highlighting important features and showing similar

examples, a few studies have also investigated the effect of explanations with an interactive

interface. However, literature in social sciences has argued that explanations should be

interactive. For instance, Lombrozo [2006] suggests that an explanation is a byproduct of

an interaction process between an explainer and an explainee, and Miller [2018] says that
15



explanations are social in that they are transferable knowledge that is passed from one person

to the other in a conversation. We hypothesize that the one-way conversation in static

explanations is insufficient for humans to understand AI predictions, contributing to the

proposition that human-AI teams have yet to outperform AI alone.

It is worth pointing out that industry practitioners have worked towards developing

interactive interfaces to take advantage of deep learning models’ superior predictive power.

For instance, Tenney et al. [2020] develop an interative interpretability tool that provide

insightful visualizations for NLP tasks. Similar interactive tools have been used to support

data scientists in debugging machine learning models and improving model performance

[Kaur et al., 2020, Hohman et al., 2019, Wu et al., 2019]. While data scientists are familiar

with machine learning, laypeople may not have the basic knowledge of machine learning.

We thus focus on developing an interface that enables meaningful interactive explanations

for laypeople to support decision making rather than debugging. Our ultimate goal is to

improve human performance instead of model performance. In addition, there have been

interactive systems that provide AI assistance for complicated tasks beyond constrained

prediction tasks [Cai et al., 2019b, Xie et al., 2020, Yang et al., 2019]. Our scope in this

work is limited to explanations of AI predictions where the human task is to make a simple

categorical prediction. Most similar to our work is Cheng et al. [2019], which examines

the effect of different explanation interfaces on user understanding of a model and shows

improved understandings with interactive explanations, whereas our work focuses on the

effect of interactive explanations on human-AI decision making.

As such, our final research question (RQ3) investigates the effect of interactive explanations

on human-AI decision making. We hypothesize that interactive explanations lead to better

human-AI performance, compared to static explanations. We further examine the effect of

interactive explanations on human agreement with AI predictions. If interactive explanations

enable humans to better critique incorrect AI predictions, then humans may become less
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reliant on the incorrect predicted labels (i.e., lower overtrust). Finally, we expect interactive

explanations to improve subjective perception of usefulness over static explanations because

interactive explanations enable users to have two-way conversations with the model.

2.3.4 Differences from Interactive Machine Learning and Transfer Learning

It is important to note that our focus in this work is on how distribution types and interactive

explanations affect human performance in decision making and our ultimate goal is to enhance

human performance. While other areas such as transfer learning and interactive machine

learning have conducted user studies where people interact with machine learning models, the

goal is usually to improve model performance. Specifically, interactive machine learning tends

to involve machine learning practitioners, while our work considers the population that does

not have a machine learning background [Hohman et al., 2019, Krause et al., 2016, Tenney

et al., 2020, Wexler et al., 2019]. Similarly, transfer learning focuses on improving models

that would generalize well on other domains (distributions), whereas our work investigates

how examples in different distributions affect human performance [Zhuang et al., 2020, Liang

and Zheng, 2020, Torrey and Shavlik, 2010]. Although improving AI will likely improve

human performance in the long run, we focus on the effect of AI assistance on human decision

making where the AI is not updated.

2.4 Methods

In order to evaluate the performance of human-AI teams, we consider three important

ingredients in this work: 1) Prediction tasks: we consider three prediction tasks that include

both tabular and text datasets as well as varying performance gaps between human alone and

AI alone (§2.4.1); 2) In-distribution (IND) vs. out-of-distribution (OOD): a key contribution

of our work is to highlight the importance of distribution shift and explore ways to design

human-AI experimental studies with considerations of in-distribution and out-of-distribution
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examples (§2.4.2); 3) Explanation type: another contribution of our work is to design novel

interactive explanations for both tabular data and text data (§2.4.3). We further use virtual

pilot studies to gather qualitative insights and validate our interface design (§2.4.4), and then

conduct large-scale experiments with crowdworkers on Mechanical Turk (§2.4.5).

2.4.1 Prediction Tasks

We use two types of tasks, recidivism prediction, and profession prediction. Recidivism

prediction is based on tabular datasets, while profession prediction is based on text datasets.

• ICPSR [United States Department of Justice. Office of Justice Programs. Bureau of Justice

Statistics., 2014]. This dataset was collected by the U.S. Department of Justice. It contains

defendants who were arrested between 1990 and 2009, and the task is to predict if a

defendant will violate the terms of pretrial release. Violating terms of pretrial release

means that the defendant is rearrested before trial, or fails to appear in court for trial, or

both. We clean the dataset to remove incomplete rows, restrict the analysis to defendants

who were at least 18 years old, and consider only defendants who were released before trial

as we only have ground truth for this group. We consider seven attributes as features in

this dataset: Gender, Age, Race, Prior Arrests, Prior Convictions, Prior Failure to Appear,

and Offense Type (e.g., drug, violent). To protect defendant privacy, we only selected

defendants whose features are identical to at least two other defendants in the dataset.

This yielded a dataset of 40,551 defendants.

• COMPAS [Angwin et al., 2016]. The task is to predict if the defendant will recidivate in

two years. The features in this dataset are Sex, Age, Race, Prior Crimes, Charge Degree,

Juvenile Felony Count, and Juvenile Misdemeanor Count. Both datasets have overlapping

features such as Age and Race. There are 7,214 defendants in this dataset.
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• BIOS [De-Arteaga et al., 2019]. This dataset contains hundreds of thousands of online

biographies from the Common Crawl corpus. The task is to predict a person’s profession

given a biography. The original dataset consists of 29 professions, and we narrow it down

to five professions to make the task feasible for humans, namely, psychologist, physician,

surgeon, teacher, and professor.5 This yielded a dataset of 205,360 biographies.

As Bansal et al. [2021] hypothesize that comparable performance between humans and

AI is critical for complementary performance, our tasks cover varying performance gaps.

The in-distribution performance gap between AI alone and human alone in-distribution is

relatively small (∼7%) in recidivism prediction (68.4% vs. 60.9% in ICPSR and 65.5% vs.

60.0% in COMPAS), but large (∼20%) in profession prediction (see Table 2.3 and §2.5 for

a more detailed discussion on performance gap). Note that human performance in ICPSR

and COMPAS is derived from our experiments with crowdworkers. Although they are not

representative of judges (see more discussion in §2.8), they outperform random baselines and

can potentially be improved with AI assistance. In fact, human performance in LSAT is

also ∼60% in Bansal et al. [2021], and crowdworkers were able to achieve complementary

performance. Finally, we include gender and race for recidivism prediction to understand how

humans might use the information, but they should not be included in AI for deployment.

2.4.2 In-distribution vs. Out-of-distribution Setup

As argued in §2.3, prior work randomly split a dataset to evaluate the performance of

human-AI teams. This setup constitutes a best-case scenario for AI performance and may

have contributed to the elusiveness of complementary performance. We expect humans

to be more capable of providing complementary insights (e.g., recognizing that AI falsely

generalizes a pattern) on examples following different distributions from the training data

5. To choose these five professions, we built maximum spanning trees with 4, 5, 6 nodes from a graph
based on the confusion matrix of a classifier trained with all biographies. Thus, the maximum spanning tree
identifies the most confusing professions for the AI.
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Figure 2.2: Histograms of numbers of instances for “Prior Arrests” and “Prior Convictions” in
ICPSR.

(out-of-distribution). Therefore, it is crucial to evaluate the performance of human-AI teams

on out-of-distribution examples. We thus provide the first attempt to incorporate distribution

shift into experimental studies in the context of human-AI decision making.

Designing In-distribution vs. Out-of-distribution

To simulate the differences between in-distribution and out-of-distribution examples, our

strategy is to split the dataset into an in-distribution (IND) subset and an out-of-distribution

(OOD) subset based on a single attribute (e.g., age ≥ 25 as in-distribution and age < 25 as

out-of-distribution to simulate a scenario where young adults are not presented in the training

set). We develop the following desiderata for selecting an attribute to split the dataset: 1)

splitting by this attribute is sensible and interpretable to human (e.g., it makes little sense to

split biographies based on the number of punctuation marks); 2) splitting by this attribute

could yield a difference in AI performance between in-distribution and out-of-distribution

so that we might expect different human behavior in different distribution types; 3) this

attribute is “smoothly” distributed in the dataset to avoid extreme distributions that can

limit plausible ways to simulate IND and OOD examples (see the supplementary materials

for details). Now we discuss the attribute selected for each dataset and present rationales for

not using other attributes.

• ICPSR. We choose the age of the defendant as the attribute. We also tried Gender, but it

failed desiderata 2 due to a small AI performance difference (1%) between in-distribution

and out-of-distribution. Other features such as Prior Arrests and Prior Convictions do not
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satisfy desiderata 3, because they have a huge spike towards the end (see Fig. 2.2) and

thus limit possible IND/OOD splits.

• COMPAS. We choose the age of the defendant as the attribute. We also tried Sex and Prior

Crimes, but they failed desiderata 2 and 3 respectively as Gender and Prior Convictions

did in ICPSR.

• BIOS. We choose the length of the biography (i.e., the total number of characters) as the

attribute. Note that our dataset contains biographies from the web, a dataset created by

De-Arteaga et al. [2019]. Although one may think that professor, surgeon, psychologist,

and physician require more education than teacher and thus resulting in longer biographies,

the average biography length of a teacher’s biography is not the shortest in our dataset.

Interestingly, physicians have the shortest biographies with 348 characters and teachers

have an average biography length of 367 characters. We also experimented with gender

but it does not satisfy desiderata 2 since we observed a small AI performance difference

(3%) between in-distribution and out-of-distribution.

Given the selected attribute, for each dataset, we split the data into 10 bins of equal size

based on the attribute of choice. Then, we investigate which bins to use as in-distribution

and out-of-distribution. Our goal in this step is to maximize the AI performance gap between

in-distribution and out-of-distribution so that we can observe whether humans would behave

differently with AI assistance depending on distribution types (see supplementary materials).

The chosen splits for each dataset are: 1) age ≥ 25 as IND and age < 25 as OOD in ICPSR,

2) age ≥ 26 as IND and age < 26 as OOD in COMPAS, and 3) length ≥ 281 characters as

IND and length < 281 characters as OOD in BIOS. For each potential split, we use 70% of

the data in the IND bins for training and 10% of the data in the IND bins for validation. Our

test set includes two subsets: 1) the remaining 20% of the data in the IND bins, and 2) the

data in the OOD bins. We also balance the labels in each bin of our test set for performance

evaluation.
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Figure 2.3: Accuracy of machine learning models on the in-distribution and out-of-distribution
test set for the user study. Since the test set is balanced, the baseline in ICPSR and COMPAS
is 50%. AI outperforms the random baseline even out-of-distribution in ICPSR and COMPAS
despite that its performance is lower out-of-distribution than in-distribution. AI performance
drops by about 10% in recidivism prediction and about 7% in BIOS for out-of-distribution
examples compared to in-distribution examples.

AI Performance in-distribution and out-of-distribution.

Following prior work [Lai et al., 2020, De-Arteaga et al., 2019], we use a linear SVM classifier

with unigram bag-of-words for BIOS and with one-hot encoded features for recidivism

prediction tasks. The standard procedure of hyperparameter selection (a logarithmic scale

between 10−4 and 104 for the inverse of regularization strength) is done with the validation

set. We focus on linear models in this work for three reasons: 1) linear models are easier to

explain than deep models and are a good starting point to develop interactive explanations

[Feng and Boyd-Graber, 2019, Poursabzi-Sangdeh et al., 2021]; 2) prior work has shown that

human performance is better when explanations from simple models are shown [Lai et al.,

2020]; 3) there is a sizable performance gap between humans and AI even with a linear model,

although smaller than the case of deception detection [Lai and Tan, 2019, Lai et al., 2020].

Finally, to reduce the variance of human performance so that each example receives

multiple human evaluations, we randomly sample 180 IND examples and 180 OOD examples

from the test set to create a balanced pool for our final user study.6 Fig. 2.3 shows AI

performance on these samples: the IND-OOD gap is about 10% in recidivism prediction and

6. We choose from five random seeds the one that leads to the greatest AI performance difference between
in-distribution samples and out-of-distribution samples.
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Figure 2.4: The workflow of our experiments. In the training phase, we introduce a novel
feature quiz where users choose one positive and one negative feature after each example.
Human decisions in the prediction phase are used to study human-AI decision making.

7% in BIOS. It entails that the absolute performance necessary to achieve complementary

performance is lower OOD than IND. Because of this AI performance gap in-distribution

and out-of-distribution, we will focus on understanding the performance difference between

human-AI teams and AI alone (accuracy gain). As discussed in §2.3, we hypothesize that the

accuracy gain is greater out-of-distribution than in-distribution.

2.4.3 Interactive Explanations and Explanation Type

To help users understand the patterns embedded in machine learning models, following

Lai et al. [2020], our experiments include two phases: 1) a training phase where users are

shown no more than six representative examples and the associated explanations; and 2)

a prediction phrase that is used to evaluate the performance of human-AI teams with 10

random in-distribution examples and 10 random out-of-distribution examples. Fig. 2.4 shows

the workflow of our experiments. Our contribution is to develop interactive explanations to

enable a two-way conversation between humans and AI and examine the effect of interactive

explanations. We also consider a static version of AI assistance in each phase for comparison.

We refer to AI assistance during the prediction phase as real-time assistance.

Static Assistance

Our static assistance for an AI prediction includes two components (see Fig. 2.5). First,

we highlight important features based on the absolute value of feature coefficients to help

users understand what factors determine the AI prediction. We color all seven features in

ICPSR and COMPAS to indicate whether a feature contributes positively or negatively to the
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(a) Static assistance for ICPSR. (b) Static assistance for BIOS.

Figure 2.5: Screenshots for static assistance in ICPSR and BIOS. The interface for COMPAS
is similar to ICPSR (see Fig. 6.8.

prediction (Fig. 2.5a). As BIOS has many words as features, we highlight the top 10 most

important words. We only show the colors but hide the feature coefficient numbers because

1) we have not introduced the notion of prediction score; 2) showing numerical values without

interaction may increase the cognitive burden without much gain. Second, we also show the

AI predicted label along with the highlights. In the training phase, following Lai et al. [2020],

the actual label is revealed after users make their predictions so that they can reflect on their

decisions and actively think about the task at hand.

The purpose of the training examples is to allow participants to familiarize themselves

with the task, extract useful and insightful patterns, and apply them during the prediction

phase. We use SP-LIME [Ribeiro et al., 2016, Lai et al., 2020] to identify 5-6 representative

training examples that capture important features (6 in ICPSR and COMPAS and 5 in BIOS).7

We make sure the selected examples are balanced across classes. For the control condition,

we simply include the first two examples. Finally, during training, to ensure that users

7. We include 10 examples in the pilot studies, but mechanical turkers commented that the experiment
took too long.
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understand the highlighted important features, we add a feature quiz after each example

where users are required to choose a positive and a negative feature (see Fig. 6.11).

Interactive Explanations

To help humans better understand how AI makes a prediction and the potential fallacies

in AI reasoning, we develop a suite of interactive experiences. There are two important

components. First, we enable users to experiment with counterfactual examples of a given

instance. This allows participants to interact with each feature and observe changes in AI

predictions. Second, we make the feature highlights dynamic, especially for BIOS where there

are many features. Specifically, our designs are as follows:

• Interactive explanations for tabular-data classification (ICPSR and COMPAS; Fig. 2.6a

gives a screenshot for ICPSR). We present the original profile of the defendant and the

counterfactual (“What-if scenario profile”) on the left of the screen (Fig. 2.6a(1)). Users can

adjust features to change the counterfactual profile (Fig. 2.6a(2)) via sliders, radio buttons,

and select lists (Fig. 2.6a(3-5)). For instance, users can investigate how a younger or older

age affects the prediction by adjusting a defendant’s age using the slider. In addition, we

show all the features and their associated weight on the right, sorted in descending order

(Fig. 2.6a(6)).

• Interactive explanations for text classification (BIOS; see Fig. 2.6b). To enable the counter-

factuals, users can delete any word in the text and see how the prediction would change

(removal can be undone by clicking the same word again). For dynamic highlight, a slider

is available for users to adjust the number of highlighted words (Fig. 2.6b(1)). In addition,

we provide a searchable table to display all words presented in the text and their associated

feature importance, sorted in descending order (Fig. 2.6b(2)).

The searchable table allows users to the explore the high-dimensional feature space in

BIOS, a text classification task. While it may seem that showing coefficients in recidivism
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prediction is not as useful, we highlight that these numerical values make little sense on their

own. The counterfactual profile enables users to examine how these numerical values affect

prediction outcomes.

2.4.4 Virtual Pilot Studies

We conducted virtual pilot studies to obtain a qualitative understanding of human interaction

with interactive explanations. The pilot studies allow us to gather insights on how humans

use interactive explanations in their decision-making process, as well as feedback on the web

application before conducting large-scale randomized experiments.

Experimental design. We employed a concurrent think-aloud process with participants

[Nielsen et al., 2002]. Participants are told to verbalize the factors they considered behind a

prediction. During the user study session, participants first read instructions for the task and

proceed to answer a couple of attention-check questions (see Fig. 6.10), which ensure that

they understand the purpose of the user study. Upon passing the attention-check stage, they

undergo a training phase before proceeding to the prediction phase. Finally, they answer

an exit survey (see Fig. 6.13) that asks for demographic information and semi-structured

questions on the web application and interactive explanations. A participant works on ICPSR

and BIOS in a random order.

We recruited 15 participants through mailing lists at the University of Colorado Boulder:

7 were female and 8 were male, with ages ranging from 18 to 40.8 To understand the

general population that does not have a machine learning background, we sent out emails to

computer science and interdisciplinary programs. Participants included both undergraduate

and graduate students with and without machine learning background. The user study is

conducted on Zoom due to the pandemic. The user study sessions were recorded with the

participants’ consent. Participants were compensated for $10 for every 30 minutes. A typical

8. Note that the wide range in age is due to the available choices in our exit survey. Namely, the first
option is 18-25 and the second option is 26-40.
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user study session lasted between an hour to an hour and a half. Participants were assigned

in a round-robin manner to interactive and static explanations. For instance, if a participant

was assigned to static explanations in BIOS, the participant would be assigned to interactive

explanations in ICPSR. As the user study sessions were recorded on Zoom cloud, we used

the first-hand transcription provided by Zoom and did a second round of transcribing to

correct any mistranscriptions. Subsequently, thematic analysis was conducted to identify

common themes in the think-aloud processes, and thematic codes were collectively coded by

two researchers.

Next, we summarize the key themes from the pilot studies and the changes to our interface.

Disagreement with AI predictions. Participants tend to disagree with AI predictions

when the explanations provided by the AI contradict their intuitions. For instance, although

AI suggests that the drug offense type is correlated with “Will violate”, P4 thinks that “drug

offense is not something serious, a minor offense” and thus disagrees with AI and chooses

“Will not violate”. With a similar train of thought, P7 asks why AI suggests the violent

offense type to be correlated with “Will not violate” and thinks that it should be the other

way around. A potential reason is that people are more likely to restrain themselves after

serious crimes as the consequence can be dire, but it seemed difficult for the participants to

reason about this counterintuitive pattern. The above comments suggest that some patterns

that AI identifies can be counterintuitive and thus challenging for humans to make sense of.

Furthermore, participants disagree with AI predictions due to focusing too much on a

few patterns they learned from AI. For instance, if a participant learns that Prior Failure to

Appear positively relates to “Will violate”, they will apply the same logic on future examples

and disagree with the AI when the pattern and prediction disagrees. Quoting from P9,

“The current example has no for Prior Failure to Appear and drug offense but the previous

examples had yes for Prior Failure to Appear and drug offense”. P9 then chooses “Will not

violate” because of these two features. This observation highlights the importance of paying
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attention to features globally, which can be challenging for humans.

Finally, participants are more confident in BIOS than in ICPSR as they are able to relate to

the task better and understand the explanations provided by the AI better. They believe that

the biography text is sufficient to detect the profession, but much of the crucial information

is missing in ICPSR. P9 said, “there was more background on what they did in their lives,

and how they got there and whatnot, so it helped me make a more educated decision”. This

observation also extends to their evaluation of AI predictions, quoting from P12, “the AI

would be more capable of predicting based on a short snippet about someone than predicting

something that hasn’t happened”.

Strategies in different tasks. Different strategies are employed in different tasks. Since

BIOS is a task requiring participants to read a text, most participants look for (highlighted)

keywords that distinguish similar professions. For instance, while both professor and teacher

teach, participants look for keywords such as “phd” to distinguish them. Similarly, in the

case of surgeon and physician, participants look for keywords such as “practice” and “surgery”.

In ICPSR, as there are only seven features, most participants pay extra attention to a few

of them, including Prior Failure to Appear, Prior Convictions, Prior Arrest, and Offense

Type. We also noticed during the interview that most participants tend to avoid discussing or

mentioning sensitive features such as Race. In §2.8, we elaborate and discuss findings on an

exploratory study on important features identified by participants.

The effect of interactive explanations. Participants could be categorized into two groups

according to their use of the interactive console, either they do not experiment with it, or they

play with it excessively. Participants in the former group interact with the console only when

prompted, while the latter group result in a prolonged user study session. Some participants

find the additional value of interactive console limited as compared to static explanations

such as highlights. They are unsure of the ‘right’ way to use it as P12 commented, “I know

how it works, but I don’t know what I should do. Maybe a few use cases can be helpful.
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Like examples of how to use them”. Other participants do not interact much with it, but

still think it is helpful. With reference to P6, “I only played with it in the first few examples.

I just use them to see the AI’s decision boundaries. Once I get it in training, I don’t need

them when I predict.”

Another interesting finding was that while some participants make decisions due to visual

factors, others make decisions due to numerical factors. P2 said, “the color and different

darkness were really helpful instead of just having numbers”. In contrast, P4, who often made

decisions by looking at the numbers, commented on one of the many justifications that the

defendant “will not violate because the numbers are low.” This observation suggests that our

dynamic highlights may provide extra benefits to static highlights.

Web application feedback. As some participants were unsure of how to use the interactive

console and make the most out of it, we added an animated video that showcased an example

of using the interactive console on top of the walk-through tutorial that guides a user

through each interactive element (see the supplementary materials). We also added a nudging

component describing how many instances they have used interactive explanations with to

remind participants of using the interactive console (see Fig. 2.6).

In addition to Zoom sessions, we conducted pilot studies on Mechanical Turk before

deploying them in large-scale tasks. Since some Zoom sessions took longer than we expected,

we wanted to investigate the total time taken for completing 10 training and 20 test instances.

We noted from the feedback collected from exit surveys of pilot studies that the training was

too time consuming and difficult. We thus reduced the number of training instances and

improved the attention check questions and instruction interfaces. See the supplementary

materials for details.

29



2.4.5 Large-scale Experiments with Crowdworkers

Finally, we discuss our setup for the large-scale experiments on Amazon Mechanical Turk.

First, in order to understand the effect of out-of-distribution examples, we consider the

performance of humans without any assistance as our control setting. Second, another focus

of our study is on interactive explanations, we thus compares interactive explanations and

static explanations.9

Specifically, participants first go through a training phase to understand the patterned

embedded in machine learning models, and then enter the prediction phase where we evaluate

the performance of human-AI teams. We allow different interfaces in the training phase

and in the prediction phase because the ideal outcome is that participants can achieve

complementary performance without real-time assistance after the training phase. To avoid

scenarios where users experience a completely new interface during prediction, we consider

situations where the assistance in training is more elaborate than the real-time assistance in

prediction. Therefore, we consider the following six conditions to understand the effect of

explanation types during training and prediction (the word before and after “/” refers to the

assistance type during training and prediction respectively):

• None/None. Participants are not given any form of AI assistance in either the training

phase or the prediction phase. In the training phase, there are only two examples instead

of 5-6 in other conditions to help participants understand the task. In other words, this

condition is a human-only condition.

• Static/None. Participants are provided static assistance in the training phase. Important

features are highlighted in shades of pink/blue and AI predictions are provided. Participants

are not provided any assistance in the prediction phase.

• Static/Static. Participants are provided static assistance in both training and prediction.

9. A natural question is about the effect of explanations vs. AI assistance without explanations. We refer
readers to prior work on this question [Lai et al., 2020, Lai and Tan, 2019, Green and Chen, 2019b].
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• Interactive/None. Participants are provided interactive explanations during the training

phase, and no assistance in the prediction phase.

• Interactive/Static. Participants are provided interactive explanations in the training

phase and static assistance in the prediction phase.

• Interactive/Interactive. Participants are provided interactive explanations in both

training and prediction.

We refer to these different conditions as explanation type in the rest of this paper. The

representative examples are the same during training in Interactive and Static. Participants

are recruited via Amazon Mechanical Turk and must satisfy three criteria to work on the

task: 1) residing in the United States, 2) have completed at least 50 Human Intelligence

Tasks (HITs), and 3) have been approved for 99% of the HITs completed. Following the

evaluation protocol in prior work [Green and Chen, 2019a,b], each participant is randomly

assigned to one of the explanation types, and their performance is evaluated on 10 random

in-distribution examples and 10 random out-of-distribution examples. We do not allow any

repeated participation. We used the software program G*Power to conduct a power analysis.

Our goal was to obtain .95 power to detect a small effect size of .1 at the standard .01 alpha

error probability using F-tests. As such, we employed 216 participants for each explanation

type, which adds up to 1,296 participants per task. Note that our setup allows us to examine

human performance on random samples beyond a fixed set of 20 examples, which alleviates

the concern that our findings only hold on a dataset of 20 instances.

The median time taken to complete a HIT is 9 minutes and 22 seconds. Participants ex-

posed to interactive conditions took 12 minutes, while participants exposed to non-interactive

conditions took 7 minutes (see Fig. 6.12). Our focus in this work is on human performance,

so we did not limit the amount of time in the experiments. Participants were allowed to

spend as much time as they needed so that they were able to explore the full capacities of our

interface. Participants were paid an average wage of $11.31 per hour. We leave consideration
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Table 2.3: Performance comparison between human alone and AI alone. We also add numbers
from prior work to contextualize these numbers. Note that AI performance here is slightly
different (≤1.2%) from that in Fig. 2.3, because AI performance in this table is calculated
from a subset of examples shown in None/None (human alone) while the AI performance in
Fig. 2.3 is calculated from the out-of-distribution test set of 180 examples.

Task IND (typical setup) OOD (proposed setup)
Human AI Difference

between
humans
and AI

Human AI Difference
between
humans
and AI

ICPSR 60.9 68.4 −7.5 55.9 55.0 0.9
COMPAS 60.0 65.5 −5.5 54.5 56.1 −1.6
BIOS 63.5 84.1 −20.6 68.4 76.6 −8.2

Deception detection
[Lai et al., 2020]
[Lai and Tan, 2019] ∼51 ∼87.0 ∼ −36 — — —
LSAT
[Bansal et al., 2021] ∼58 65 ∼ −7 — — —
Beer reviews
[Bansal et al., 2021] ∼82 84 ∼ −2 — — —

of efficiency (i.e., maintaining good performance while reducing duration of interactions) for

future work.

2.5 RQ1: The Effect of In-distribution and Out-of-distribution

Examples on Human Performance

Our first research question examines how in-distribution and out-of-distribution examples

affect the performance of human-AI teams. Recall that Bansal et al. [2021] hypothesize that

comparable performance is important to achieve complementary performance. Table 2.3

compares the performance of human alone and AI alone in the three prediction tasks both

in-distribution and out-of-distribution (we also add tasks from other papers to illustrate the

ranges in prior work). The performance gap between human alone and AI alone in ICPSR and

COMPAS is similar to tasks considered in Bansal et al. [2021]. In BIOS, the in-distribution
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performance gap between human alone and AI alone is greater than the tasks in Bansal et al.

[2021] but much smaller than deception detection, and the out-of-distribution performance

gap between human alone and AI alone becomes similar to LSAT in Bansal et al. [2021]. As

a result, we believe that our chosen tasks somewhat satisfy the condition of “comparable

performance” and allow us to study human-AI decision making over a variety of performance

gaps between human alone and AI alone.

Note that AI performance here is calculated from the random samples shown in None/None

(human alone), and is thus slightly different (≤1.2%) from AI performance in Fig. 2.3, which

is calculated from the in-distribution and out-of-distribution test set of 180 examples each. To

account for this sample randomness and compare human performance in different explanation

types for these two distribution types, we need to establish a baseline given the random

samples (we show absolute accuracy in the supplementary material as the performance

difference without accounting for the baseline is misleading; see Fig. 6.1). Therefore, we

calculate the accuracy difference on the same examples between a human-AI team and

AI, and use accuracy gain as our main metric. Accuracy gain is positive if a human-AI

team outperforms AI. In the rest of this paper, we will use human performance and the

performance of human-AI teams interchangeably. Since the results are similar between ICPSR

and COMPAS, we show the results for ICPSR in the main paper and include the figures for

COMPAS in the supplementary materials (see Fig. 6.2-Fig. 6.6).

Preview of results. To facilitate the understanding of our complex results across tasks, we

provide a preview of results before unpacking the details of each analysis. Our results indeed

replicate existing findings that AI performs better than human-AI teams in in-distribution

examples. However, human-AI teams fail to outperform AI in out-of-distribution examples.

The silver lining is that the performance gap between human-AI teams and AI is smaller

out-of-distribution than in-distribution. These results are robust across tasks (see Table 2.4

for a summary).
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Table 2.4: Summary of results on human-AI team performance.

IND (typical setup) OOD (proposed setup)
ICPSR COMPAS BIOS ICPSR COMPAS BIOS

AI performs better than human-AI
teams in in-distribution examples.

✓ ✓ ✓ — — —

Human-AI teams perform better than
AI in out-of-distribution examples.

— — — ✗ ✗ ✗

The performance difference be-
tween human-AI teams and AI is
smaller out-of-distribution than
in-distribution.

see the OOD columns ✓ ✓ ✓

✓: holds ✓ : holds in at least half of the explanation types
✗: rejected ✗ : rejected in all except one explanation type

Human-AI teams underperform AI in in-distribution examples (see Fig. 2.7).

We use t-tests with Bonferroni correction to determine whether the accuracy gain for in-

distribution examples is statistically significant. Consistent with Proposition 1, our results

show that accuracy gain is negative across all explanation types (p < 0.001). In other words,

the performance of human-AI teams is lower than AI performance for in-distribution examples.

This observation also holds across all tasks, which means that AI may have an advantage in

both challenging (ICPSR and COMPAS) and relatively simple tasks (BIOS) for humans if the

test set follows a similar distribution as the training set (in-distribution).

Human-AI teams do not outperform AI in out-of-distribution examples, although

the accuracy gain out-of-distribution is sometimes positive (see Fig. 2.7). Simi-

larly, we use t-tests with Bonferroni correction to determine whether the accuracy gain for

out-of-distribution examples is statistically significant. The results are different than what we

expected: humans seldom outperform AI in out-of-distribution examples. Interestingly, we

observe quite different results across different tasks. In BIOS, accuracy gain is significantly

below 0 across all explanation types (p < 0.001). In ICPSR and COMPAS, accuracy gain is oc-

casionally positive, including None/None, Static/Static, Interactive/None, Interactive/Static
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in ICPSR, and Interactive/None in COMPAS, although none of them is statistically significant.

The negative accuracy gain (Static/None) in ICPSR is not significant either. These results

suggest that although AI performs worse out-of-distribution than in-distribution, it remains

challenging for human-AI teams to outperform AI alone out-of-distribution. The performance

of human-AI teams, however, becomes comparable to AI performance in challenging tasks

such as recidivism prediction, partly because the performance of AI alone is more comparable

to human alone out-of-distribution (e.g., 0.9% in ICPSR vs. -8.2% in BIOS in None/None

(human alone) in Fig. 2.7).

Interestingly, Interactive/None leads to the highest accuracy gain in ICPSR, while Interac-

tive/Interactive leads to a tiny negative gain, suggesting interactive explanations as real-time

assistance might hurt human performance in ICPSR. We will elaborate on this observation in

§2.7.

The performance gap between human-AI teams and AI is smaller in out-of-

distribution examples than in in-distribution examples (see Fig. 2.7). We finally

examine the difference between in-distribution and out-of-distribution examples. We use

two approaches to determine whether there exists a significant difference. First, for each

explanation type in each task, we test whether the accuracy gain in out-of-distribution

examples is significantly different from that in in-distribution examples with t-tests after

Bonferroni correction. In both BIOS and COMPAS, accuracy gain is significantly greater in

out-of-distribution examples than in in-distribution examples across all explanation types

(p < 0.001). In ICPSR, accuracy gain is significantly greater in out-of-distribution examples

than in in-distribution examples in all explanation types (p < 0.001) except Static/None.

Second, we conduct two-way ANOVA based on distribution types and explanation types. We

focus on the effect of distribution types here and discuss the effect of explanation types in §2.7.

We observe a strong effect of distribution type across all tasks (p < 0.001), suggesting a clear

difference between in-distribution and out-of-distribution. Note that this reduced performance
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gap does not necessarily suggest that humans behave differently out-of-distribution from

in-distribution, as it is possible that human performance stays the same and the reduced

performance gap is simply due to a drop in AI performance. We further examine human

agreement with AI predictions to shed light on the reasons behind this reduced performance

gap.

In short, our results suggest a significant difference between in-distribution and out-of-

distribution, and human-AI teams are more likely to perform well in comparison with AI

out-of-distribution. These results are robust across different explanation types. In general, the

accuracy gain is greater in recidivism prediction than in BIOS. After all, the in-distribution AI

performance in BIOS is much stronger than humans without any assistance. This observation

resonates with the hypothesis in Bansal et al. [2021] that comparable performance between

humans and AI is related to complementary performance. However, we do not observe

complementary performance in our experiments, which suggests that comparable performance

between humans and AI alone is insufficient for complementary performance.

2.6 RQ2: Agreement/Trust of Humans with AI

Our second research question examines how well human predictions agree with AI predictions

depending on the distribution type. Agreement is defined as the percentage of examples

where the human gives the same prediction as AI. Humans have access to AI predictions in

Static/Static, Interactive/Static, Interactive/Interactive, so agreement in these explanation

types may be interpreted as how much trust humans place in AI predictions (we use overtrust

to refer to agreement with incorrect predictions in all explanation types). Since both ICPSR

and COMPAS yield similar results, we show ICPSR results in the main paper and COMPAS in

the supplementary materials (see Fig. 6.2-Fig. 6.6).

Preview of results. Different from results in performance, we observe intriguing differences

across tasks. Our results show that humans tend to show higher agreement with AI predictions

36



Table 2.5: Summary of results on agreement with AI. Recall that appropriate agreement
refers to humans agreeing with correct AI predictions, and overtrust refers to humans agreeing
with incorrect AI predictions.

IND (typical setup) OOD (proposed setup)
ICPSR COMPAS BIOS ICPSR COMPAS BIOS

Agreement is higher in-distribution
than out-of-distribution.

see the OOD columns ✓ ✓ !

Agreement is higher when AI predic-
tions are correct (appropriate agree-
ment) than when AI predictions are
wrong (overtrust).

! ✗ ✓ ✓ ✓ ✓

When AI predictions are correct,
agreement (appropriate agreement)
is higher in-distribution than out-of-
distribution.

see the OOD columns ✓ ✗ !

When AI predictions are wrong,
agreement (overtrust) is higher in-
distribution than out-of-distribution.

see the OOD columns ✓ ✓ ✗

✓: holds ✓ : holds in at least half of the explanation types
✗: rejected ✗ : rejected in all except one explanation type
!: mostly supported in the reverse
direction except one explanation type

! : reversed only in one explanation type

in in-distribution examples than out-of-distribution examples in ICPSR and COMPAS, but

not in BIOS. When it comes to appropriate agreement vs. overtrust, the results depend

on distribution types. We first compare the extent of appropriate agreement and overtrust

in the same distribution type. In out-of-distribution examples, human agreement with AI

predictions is higher when AI predictions are correct than when AI predictions are wrong

(appropriate agreement exceeds overtrust). But for in-distribution examples, this is only true

for BIOS, but false in ICPSR and COMPAS. To further understand these results, we compare

appropriate agreement and overtrust in-distribution to out-of-distribution. We find that both

appropriate agreement and overtrust are stronger in-distribution than out-of-distribution in

ICPSR, but in BIOS, the main statistical significant results are that appropriate agreement is
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stronger out-of-distribution than in-distribution. See Table 2.5 for a summary.

Humans are more likely to agree with AI on in-distribution examples than out-

of-distribution examples in ICPSR and COMPAS, but not in BIOS (see Fig. 2.8).

As AI performance is typically better in-distribution than out-of-distribution, we expect

humans to agree with AI predictions more often in-distribution than out-of-distribution.

To determine whether the difference is significant, we use t-test with Bonferroni correction

for each explanation type in Fig. 2.8. In ICPSR, agreement is indeed significantly greater

in-distribution than out-of-distribution in all explanation types (p < 0.001). In COMPAS, in-

distribution agreement is significantly higher in all explanation types (p < 0.05 in None/None,

p < 0.01 in Static/None and Interactive/Interactive, p < 0.001 in Interactive/None) except

Static/Static and Interactive/Static (see Fig. 6.3). These results suggest that in ICPSR and

COMPAS, humans indeed behave more differently from AI out-of-distribution. However,

in BIOS, we find the agreement is generally higher for out-of-distribution examples than

for in-distribution examples, and the difference is statistically significant in Static/Static

(p < 0.05). Note that the agreement difference between in-distribution and out-of-distribution

is much smaller in BIOS (<4%, usually within 2%) than in ICPSR and COMPAS (∼10%).

These results echo observations in our virtual pilot studies that humans are more confident

in themselves when detecting professions and are less affected by in-distribution vs. out-

of-distribution differences, and may turn to AI predictions out-of-distribution because the

text is too short for them to determine the label confidently. In comparison, the fact that

humans agree with AI predictions less out-of-distribution than in-distribution in recidivism

prediction suggests that humans seem to recognize that AI predictions are more likely to be

wrong out-of-distribution than in-distribution in ICPSR and COMPAS. To further unpack

this observation, we analyze human agreement with correct AI predictions vs. incorrect AI

predictions.

Out-of-distribution appropriate agreement mostly exceeds out-of-distribution
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overtrust in all of the three tasks; in-distribution appropriate agreement exceeds

in-distribution overtrust only in BIOS (see Fig. 2.9). We next examine the role of

distribution type in whether humans can somehow distinguish when AI is correct from when

AI is wrong. First, for each distribution type, we use t-test with Bonferroni correction to

determine if humans agree with AI more when AI predictions are correct. Consistent with

prior work [Lai and Tan, 2019, Bansal et al., 2021], we find that human-AI teams are more

likely to agree with AI when AI predictions are correct than when AI predictions are wrong

in most explanation types. This is true both in-distribution and out-of-distribution in BIOS

(p < 0.001): the agreement gap between correct and incorrect AI predictions is close to 20%,

and even reaches 30%-40% out-of-distribution with some explanation types (Fig. 2.9b). In

ICPSR and COMPAS, we mostly find significantly greater appropriate agreement than overtrust

out-of-distribution. In fact, IND appropriate agreement tends to be lower than IND overtrust,

though only significantly in Interactive/Interactive (p < 0.05) in ICPSR. In comparison, for out-

of-distribution examples, appropriate agreement is significantly higher than overtrust in three

explanation types in ICPSR (p < 0.01 in None/None, Interactive/None, and Interactive/Static).

In COMPAS, appropriate agreement is also significantly higher than overtrust in out-of-

distribution examples (p < 0.05 in None/None and Interactive/Static, p < 0.01 in Static/None

and Interactive/None) except Static/Static and Interactive/Interactive (see Fig. 6.4). These

results are especially intriguing as they suggest that although the performance of human

alone and AI alone is worse out-of-distribution than in-distribution in recidivism prediction,

humans can more accurately detect AI mistakes, which explains the small positive accuracy

gain in Fig. 2.7.

In-distribution and out-of-distribution appropriate agreement comparison shows

different results in each of the three tasks (see Fig. 2.9). We further compare human

agreement between in-distribution and out-of-distribution when AI is correct. Similarly, we use

t-tests with Bonferroni corrections for each explanation type. Different from our expectation,
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appropriate agreement is significantly higher out-of-distribution than in-distribution in all

explanation types in BIOS except Interactive/Static (p < 0.001 in None/None and Static/None;

p < 0.01 in Static/Static, Interactive/None, and Interactive/Interactive). This is consistent

with the observation of higher overall agreement out-of-distribution than in-distribution in

BIOS in Fig. 2.8. In ICPSR, appropriate agreement for in-distribution examples is significantly

higher than for out-of-distribution examples in all explanation types except None/None

(p < 0.01 in Interactive/None, Interactive/Static, and Interactive/Interactive, p < 0.05 in

Static/None and Static/Static). In COMPAS, no significant difference is found between

in-distribution and out-of-distribution.

These results suggest that appropriate agreement is stronger out-of-distribution than

in-distribution in BIOS. In other words, humans can recognize correct AI predictions better

out-of-distribution than in-distribution. This could relate to that humans have higher

confidence in their own predictions when the text is longer. As a result, they are more likely

to overrule correct AI predictions. However, appropriate agreement is stronger in-distribution

than out-of-distribution in ICPSR, which relatively weakens the performance of human-AI

teams compared to AI alone out-of-distribution, and suggests that a reduced overtrust is the

main contributor to the aforementioned reduced performance gap. In comparison, it seems

that in COMPAS, humans simply tend to agree with AI predictions more in-distribution than

out-of-distribution, without the ability to recognize when AI predictions are correct.

Overtrust is lower out-of-distribution than in-distribution in ICPSR and COMPAS,

but not in BIOS (see Fig. 2.9). In comparison, when AI predictions are wrong, human

agreement is significantly lower for out-of-distribution examples than in-distribution examples

in all explanation types (p < 0.001) in ICPSR. This also holds for some explanation types (p <

0.01 in Static/None, Interactive/None, and Interactive/Static) in COMPAS. However, overtrust

in in-distribution examples has no significant difference from out-of-distribution examples in

BIOS except for None/None (p < 0.01). These results suggest that in recidivism prediction,
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human decisions contradict wrong AI predictions out-of-distribution more accurately than

in-distribution, but it is not the case in BIOS.

In summary, the contrast between appropriate agreement and overtrust is interesting

as it explains the different stories behind the reduced performance gap out-of-distribution

compared to in-distribution in ICPSR and in BIOS: the reduced performance gap in BIOS is

mainly attributed to the higher appropriate agreement out-of-distribution, while the reduced

performance gap in ICPSR is driven by the lower overtrust out-of-distribution. These results

may relate to the task difficulty for humans. Recidivism prediction is more challenging for

humans and the advantage of humans may lie in the ability to recognize obvious AI mistakes.

In constrast, as humans are more confident in their predictions in BIOS, it is useful that they

avoid overruling correct AI predictions. Such asymmetric shifts in agreement rates highlight

the complementary insights that humans can offer when working with AI assistance and

suggest interesting design opportunities to leverage human expertise in detecting AI mistakes.

2.7 RQ3: The Effect of Interactive Explanations

In this section, we focus on the effect of interactive explanations in human decision making.

We revisit human performance and human agreement and then examine human perception of

AI assistance’s usefulness collected in our exit survey. Finally, for ICPSR and COMPAS, we

take a deep look at the most important features reported by humans in the exit survey to

understand the limited improvement in the performance of human-AI teams.

Preview of results. In general, we do not find significant impact from interactive explana-

tions with respect to the performance of human-AI team or human agreement with wrong

AI predictions, compared to static explanations. However, humans are more likely to find

AI assistance useful with interactive explanations than static explanations in ICPSR and

COMPAS, but not in BIOS. Table 2.6 summarizes the results.

Real-time assistance leads to better performance than no assistance in BIOS,
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Table 2.6: Summary of results on the effect of interactive explanations.

IND (typical setup) OOD (proposed setup)
ICPSR COMPAS BIOS ICPSR COMPAS BIOS

Interactive explanations lead to bet-
ter human-AI team performance.

✗ ✗ ✗ ✗ ✗ ✗

Interactive explanations lead to lower
human agreement with wrong AI pre-
dictions (overtrust).

✗ ✗ ✗ ✗ ✗ ✗

Human-AI teams are more likely to
find AI assistance useful with interac-
tive explanations.

see the OOD columns ✓ ✓ ✗

✓: holds ✓ : holds in at least half of the explanation types
✗: rejected ✗ : rejected in all except one explanation type

but interactive explanations do not lead to better human-AI performance than

AI alone (see Fig. 2.7). We conduct one-way ANOVA on explanation type for in-

distribution and out-of-distribution separately on human performance due to the clear

difference between in-distribution and out-of-distribution. We find that explanation type

affects human performance in both distribution types significantly in BIOS (p < 0.001), but

not in ICPSR (p = 0.432 IND, p = 0.184 OOD) nor in COMPAS (p = 0.274 IND, p = 0.430

OOD). We further use Tukey’s HSD test to see if differences between explanation types are

significant. In BIOS, we find Static/Static, Interactive/Static, and Interactive/Interactive

have significantly better performance than None/None, Static/None, and Interactive/None

for in-distribution examples (p < 0.001). For out-of-distribution examples, we have almost

the same observation (p < 0.05) except that the difference between Interactive/Static and

None/None is no longer significant. These results suggest that real-time assistance in the

prediction phase improves human performance in BIOS, consistent with [Lai and Tan, 2019,

Bansal et al., 2021], although there is no significant difference between static and interactive

explanations. In ICPSR and COMPAS, no significant difference exists between any pair of

explanation types. In other words, no explanation type leads to better nor worse human-AI

42



team performance in recidivism prediction.

Interactive explanations do not lead to significantly lower overtrust (see Fig. 2.9).

We use one-way ANOVA to determine whether significant differences in overtrust exist

between different explanation types. We also do this separately for in-distribution and

out-of-distribution examples. We observe a strong effect in all tasks in both distributions

(p < 0.001). However, Tukey’s HSD test shows overtrust in Interactive/Interactive is not

statistically different from Static/Static; similarly, Interactive/None is not statistically different

from Static/None either. The strong effect comes from the significant differences between

explanation types with real-time assistance and those without, likely because predicted

labels are shown in real-time assistance. For example, in out-of-distribution examples

in BIOS, three explanation types without real-time assistance (None/None, Static/None,

Interactive/None) have significantly lower overtrust than the three with real-time assistance

(Static/Static, Interactive/Static, Interactive/Interactive) (p < 0.001 for most pairs; p <

0.01 for Interactive/None vs. Static/Static and Interactive/None vs. Interactive/Static).

Similarly, in out-of-distribution examples in ICPSR, None/None and Interactive/None has

significantly lower overtrust than Static/Static, Interactive/Static, and Interactive/Interactive

(p < 0.001 for most pairs; p < 0.01 for None/None vs. Interstatic/Static, Interactive/None vs.

Static/Static, and Interactive/None vs. Interactive/Static). In fact, Interactive/Interactive

has the highest overtrust in both in-distribution and out-of-distribution examples in ICPSR.

Results in COMPAS are qualitatively similar (see Fig. 6.3).10

These results are contrary to our expectation: interactive explanations do not lead to lower

overtrust. In fact, they lead to the highest overtrust in ICPSR, so they may not encourage

users to critique incorrect AI predictions. Our observations also resonate with prior work

10. For in-distribution overtrust, None/None is significantly lower than explanation types with real-time
assistance (p < 0.05 in Static/Static; p < 0.001 in Interactive/Static and Interactive/Interactive). For
out-of-distribution overtrust, all explanation types without real-time assistance are significantly lower than
Static/Static (p < 0.05) and Interactive/Interactive (p < 0.01). However, similarly to ICPSR, we do not see
significantly lower overtrust in interactive explanations than in static explanations either in-distribution or
out-of-distribution.
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that shows higher overall agreement with AI predictions when predicted labels are shown

[Lai et al., 2020, Lai and Tan, 2019].

Human-AI teams are more likely to find AI assistance useful with interactive

explanations in ICPSR and COMPAS, but not in BIOS (see Fig. 2.10). We ask

participants whether they find training and real-time assistance useful when applicable. Since

only Static/Static, Interactive/Static, and Interactive/Interactive have real-time assistance, we

focus our analysis here on these three explanation types. We use one-way ANOVA to test the

effect of explanation type for the usefulness of training and real-time AI assistance separately.

For training, the effect of explanation type is significant only in COMPAS (p < 0.05). With

Tukey’s HSD test, we find the perception of training usefulness is significantly higher in

Interactive/Interactive than in Static/Static (p < 0.05). These results show that human-AI

team with interactive explanations are more likely to find training useful in COMPAS.

For perception of real-time assistance, explanation type has a significant effect in COMPAS

(p < 0.001) and ICPSR (p < 0.001), but not in BIOS (p = 0.6). We also use Tukey’s

HSD test to determine whether there is a pairwise difference among explanation types. In

COMPAS, Interactive/Interactive achieves a significantly higher human perception of real-time

assistance usefulness than both Static/Static (p < 0.001) and Interactive/Static (p < 0.05)

(see Fig. 6.5). Perception of Interactive/Static is also significantly higher than that of

Static/Static (p < 0.001). We find similar results in ICPSR except that the difference between

Static/Static and Interactive/Static is not significant. In BIOS, Interactive/Interactive has the

highest human perception of AI assistance usefulness, but no significant difference is found.

These results suggest that with interactive explanations, human-AI teams perceive real-time

assistance as more useful, especially in recidivism prediction. A possible reason is that human

perception of usefulness depends on the difficulty of tasks. COMPAS is more challenging

than BIOS to humans as recidivism prediction is not an average person’s experience, thus

interactive explanations may have decreased the difficulty of the task in perception.
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Exploratory study on important features. Finally, since there are only seven features

in ICPSR and COMPAS, we asked participants to identify the top three most important

features that made the biggest influence on their own predictions in the exit survey (see

Fig. 6.13 for the wording of all survey questions). We also identify important features based

on Spearman correlation as a comparison point. The top three are (“Prior Failure to Appear”,

“Prior Arrests”, “Prior Convictions”) in ICPSR, and (“Prior Crimes”, “Age”, and “Race”) in

COMPAS. By comparing these computationally important features with human-perceived

important features, we can identify potential biases in human perception to better understand

the limited performance improvement.

Fig. 2.11a shows the percentage of participants that choose each feature as an important

feature for their decisions in ICPSR. We group participants based on explanation types:

1) without interactions (Static/None and Static/Static) and 2) with interactions (Interac-

tive/None, Interactive/Static, and Interactive/Interactive). Humans largely choose the top

computationally important features in both groups in ICPSR. We use t-test with Bonferroni

correction to test whether there is a difference between the two groups. In ICPSR, we find

participants with interaction choose significantly more “Age” and “Offense Type”, but less

“Prior Convictions” (all p < 0.01). In fact, participants with interaction are less likely to

choose all of the top three features than those without. In COMPAS (see Fig. 6.6), we find

participants with interaction choose significantly more “Race” and “Sex”, but less “Charge

Degree” (p < 0.001 in “Race”, p < 0.05 in “Sex” and “Charge Degree”). These results suggest

that participants with interaction are more likely to fixate on demographic features and

potentially reinforce human biases,11 but are less likely to identify computationally important

features in ICPSR and COMPAS.

This observation may also relate to why interactive explanations do not lead to better

performance of human-AI teams. We thus hypothesize that participants with interaction make

11. Race is indeed important in COMPAS, so this might be justified to a certain extent.
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more mistakes when they disagree with AI predictions, which can explain the performance

difference between Interactive/None and Interactive/Interactive in Fig. 2.7. Fig. 2.8 shows

that users disagree with AI predictions less frequently in Interactive/Interactive than in

Interactive/None, and Fig. 2.11b further shows that they are indeed more likely to be wrong

when they disagree (not statistically significant).

2.8 Discussion

In this work, we investigate the effect of out-of-distribution examples and interactive expla-

nations on human-AI decision making through both virtual pilot studies and large-scale,

randomized human subject experiments. Consistent with prior work, our results show that

the performance of human-AI teams is lower than AI alone in-distribution. This performance

gap becomes smaller out-of-distribution, suggesting a clear difference between in-distribution

and out-of-distribution, although complementary performance is not yet achieved. We also

observe intriguing differences between tasks with respect to human agreement with AI pre-

dictions. For instance, participants in ICPSR and COMPAS agree with AI predictions more

in-distribution than out-of-distribution, which is consistent with AI performance differences

in-distribution and out-of-distribution, but it is not the case in BIOS. As for the effect of

interactive explanations, although they fail to improve the performance of human-AI teams,

they tend to improve human perception of AI assistance’s usefulness, with an important

caveat of potentially reinforcing human biases.

Our work highlights the promise and importance of exploring out-of-distribution examples.

The performance gap between human-AI teams and AI alone is smaller out-of-distribution

than in-distribution both in recidivism prediction, where the task is challenging and humans

show comparable performance with AI, and in BIOS, where the task is easier for both humans

and AI but AI demonstrates a bigger advantage than humans. However, complementary

performance is not achieved in our experiments, suggesting that out-of-distribution examples
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and interactive explanations (as we approach them) are not the only missing ingredients.

Similarly, comparable performance alone might not be a sufficient condition for complementary

performance. While results with respect to human-AI team performance and the effect of

interactive explanations are relatively stable across tasks, the intriguing differences in human

agreement with AI predictions between tasks demonstrate the important role of tasks and

the complexity of interpreting findings in this area. We group our discussion of implications

by out-of-distribution experiment design, interactive explanations, and choice of tasks, and

then conclude with other limitations.

Out-of-distribution experimental design. The clear differences between in-distribution

and out-of-distribution suggest that distribution type should be an important factor when

designing experimental studies on human-AI decision making. Our results also indicate

that it is promising to reduce the performance gap between human-AI teams and AI for

out-of-distribution examples, as AI is more likely to suffer from distribution shift. Out-of-

distribution examples, together with typical in-distribution examples, provide a more realistic

examination of human-AI decision making and represent an important direction to examine

how humans and AI complement each other.

However, it remains an open question of what the best practice is for evaluating the

performance of human-AI teams out-of-distribution.12 To simulate out-of-distribution ex-

amples, we use separate bins based on an attribute (age for ICPSR and COMPAS; length

for BIOS). Our setup is realistic in the sense that it is possible that age distribution in the

training data differs from the testing data and leads to worse generalization performance

in out-of-distribution examples in recidivism prediction. Similarly, length is a sensible di-

mension for distributon mistach in text classification. That said, our choice of separate bins

leads to non-overlapping out-of-distribution and in-distribution examples. In practice, the

difference between out-of-distribution and in-distribution can be continuous and subtle to

12. Concurrently with this work, Chiang and Yin [2021] investigates human reliance on machine predictions
when humans are aware of distribution shifts.
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quantify [Koh et al., 2021]. From an experimental point of view, it is challenging to investiage

the effect of out-of-distribution examples on a continuous spectrum, and out-of-distribution

examples that are very close to in-distribution examples may not be interesting to study.

As a result, it makes sense to zoom in on the challenging out-of-distribution examples and

have a clear separation between in-distribution and out-of-distribution. We believe that our

design represents a reasonable first attempt in understanding the effect of out-of-distribution

examples and future work is required to address the spectrum of out-of-distribution.

Notably, a side effect of our split is that out-of-distribution examples are more difficult

than in-distribution examples for humans in recidivism prediction (but not in BIOS; see

Fig. 6.1). We encourage future work to examine to what extent this is true in practice and

how this shift affects human decision making. Furthermore, out-of-distribution examples

might benefit from new feature representations, which humans can extract, pointing to novel

interaction with AI. Overall, many research questions emerge in designing experiments and

interfaces to effectively integrate humans and AI under distribution shift.

Interactive explanations and appropriate trust in AI predictions. We find that

interactive explanations improve human perception of AI assistance but fail to improve the

performance of human-AI teams. While the idea of interactive explanations is exciting,

our implementation of interactive explanations seems insufficient. That said, our results

suggest future directions for interactive explanations: 1) detecting out-of-distribution ex-

amples and helping users calibrate their trust in-distribution and out-of-distribution (e.g.,

by suggesting how similar an example is to the training set); 2) automatic counterfactual

suggestions [Wachter et al., 2017] to help users navigate the decision boundary as it might be

difficult for decision makers to come up with counterfactuals on their own; 3) disagreement-

driven assistance that frames the decision as to whether to agree with AI predictions or not

and help decision makers explore features accordingly.

Meanwhile, we show that interactive explanations may reinforce human biases. While
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this observation is preliminary and further work is required to understand the effect of

interactive explanations on human biases, this concern is consistent with prior work showing

that explanations, including random ones, may improve people’s trust in AI predictions [Lai

and Tan, 2019, Bansal et al., 2021, Green and Chen, 2019a,b]. Therefore, it is important to

stay cautious about the potential drawback of interactive explanations and help humans not

only detect issues in AI predictions but also reflect biases from themselves. Future work is

required to justify these interactive explanations to be deployed to support human decision

making.

Choice of tasks and the complexity of interpreting findings in human-AI decision

making. Our work suggests tasks can play an important role and it can be challenging to

understand the generalizability of findings across tasks. We observe intriguing differences with

respect to human agreement with AI predictions between recidivism prediction and BIOS. A

surprising finding is that humans agree with AI predictions more out-of-distribution than in-

distribution in BIOS, despite that AI performs worse out-of-distribution than in-distribution.

Furthermore, there exists an asymmetry of human agreement with AI predictions when

comparing OOD with IND: the reduced performance gap out-of-distribution in recidivism

prediction is because humans are less likely to agree with incorrect predictions OOD than

IND, but the reduced performance gap in BIOS is due to that humans are more likely to agree

with correct AI predictions OOD than IND. This asymmetry indicates that humans perform

better relatively with AI OOD than IND for different reasons in different tasks. One possible

interpretation of this observation is that humans can complement AI in different ways in

different tasks. To best leverage human insights, it may be useful to design appropriate

interfaces that guide humans to find reasons to respectively reject AI predictions or accept

AI predictions.

Moreover, by exploring tasks with different performance gaps, our results suggest that

comparable performance alone might not be sufficient for complementary performance,
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echoing the discussion in Bansal et al. [2021]. These differences could be driven by many

possible factors related to tasks, including difficulty levels, performance gap, and human

expertise/confidence. Although these factors render it difficult to assess the generalizability

of findings across tasks, it is important to explore the diverse space and understand how the

choice of tasks may induce different results in the emerging area of human-AI interaction.

We hope that our experiments provide valuable samples for future studies to explore the

question of what tasks should be used and how findings would generalize in the context of

human-AI decision making.

Our choice of tasks is aligned with the discovering mode proposed in Lai et al. [2020],

where AI can identify counterintuitive patterns and humans may benefit from AI assistance

beyond efficiency. In contrast, humans define the labels in tasks such as question answering

and object recognition in the emulating mode, in which case improving performance is

essentially improving the quality of data annotation. We argue that improvement in these

two cases can be qualitatively different.

We include recidivism prediction because of its societal importance. One might argue that

complementary performance is not achieved because crowdworkers are not representative of

decision makers in this task (i.e., judges) and recidivism prediction might be too difficult for

humans. Indeed, crowdworkers are not the best demographic for recidivism prediction and

lack relevant experieince compared to judges. That said, we hypothesized that complementary

performance is possible in recidivism prediction because 1) humans and AI show comparable

performance, in fact <1% out-of-distribution (as a result, the bar to exceed AI performance

out-of-distribution is quite low and the absolute performance is similar to LSAT in Bansal

et al. [2021]); 2) prior studies have developed valuable insights on this task with mechanical

turkers [Green and Chen, 2019a,b] and mechanical turkers outperform random guessing,

indicating that they can potentially offer valuable insights, despite their lack of experience

compared to judges. Therefore, we believe that this was a reasonable attempt, although
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it is possible that the performance of judge-AI teams would differ. As for the difficulty of

this task, it is useful to note that this task is challenging for judges as well. This difficulty

might have contribued to the elusiveness of complementary performance, but is also why it is

especially important to improve human performance in these challenging tasks where human

performance is low, ideally while preserving human agency.

To complement recidivism prediction, we chose BIOS because humans including mechanical

turkers have strong intuitions about this task and can potentially provide complementary

insights from AI. Indeed, mechanical turkers are more likely to override wrong AI predictions

in BIOS than in recidivism prediction. However, the performance gap between AI and humans

in BIOS might be too big to count as “comparable”. As “comparable performance” is a new

term, it is difficult to quantify and decide what performance gap constitutes comparable

performance.

Model complexity and other limitations. In this work, we have focused on linear models

because they are relatively simple to “explain”. However, a growing body of work has shown

that “explaining” linear models is non-trivial in a wide variety of tasks [Lai et al., 2020,

Poursabzi-Sangdeh et al., 2021]. We speculate that the reason is that the relatively simple

patterns in linear models are still challenging for humans to make sense of, e.g., why violent

crimes are associated with “will not violate pretrial terms”. Humans need to infer the reason

might be that the consequence is substantial in that scenario. We expect such challenges

to be even more salient for complex deep learning models. We leave it to future work for

examining the role of model complexity in human-AI decision making.

Our limitations in samples of human subjects also apply to our virtual pilot studies.

University students are not necessarily representative of decision makers for each task. Our

findings may depend on the sample population, although it is reassuring that both virtual

pilot studies and large-scale, randomized experiments show that humans may not identify

important features or effectively use patterns identified by AI.
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(a) Interactive explanation for ICPSR.
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(b) Interactive explanation for BIOS.

Figure 2.6: Screenshots for interactive explanations in ICPSR and BIOS. In addition to
static assistance such as feature highlights and showing AI predictions, users are able to
manipulate the features of a defendant’s profile to see any changes in the AI prediction in
ICPSR. The interactive console for ICPSR includes: 1) the actual defendant’s profile; 2) the
edited defendant’s profile if user manipulates any features; 3) users are able to edit the value
of Gender and Prior Failure to Appear with radio buttons; 4) users are able to edit the value
of Race and Offense Type with dropdown; 5) users are able to edit the value Age, Prior
Arrests, and Prior Convictions with sliders; 6) a table displaying features and coefficients, the
color and darkness of the color shows the feature importance in predicting whether a person
will violate their terms of pretrial release or not. In BIOS, users are able to remove any words
from the biography to see any changes in the AI prediction. The interactive console for BIOS
includes: 1) user is able to edit the number of highlighted words with a slider; 2) a table
displaying features and respective coefficients, the color and darkness of the color shows the
importance of a word in the AI’s predicted class. The interface for COMPAS is similar to
ICPSR (see Fig. 6.9).
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Figure 2.7: Accuracy gain in ICPSR and BIOS. Distribution types are indicated by the color of
the bar and error bars represent 95% confidence intervals. All accuracy gains are statistically
significantly negative in-distribution, indicating that Human-AI teams underperform AI
based on typical random split of training/test sets. However, results are mixed for out-of-
distribution examples. While accuracy gain in BIOS is always negative, accuracy gain in
ICPSR is sometimes positive (although not statistically significant). The performance gap
between human-AI teams and AI is generally smaller out-of-distribution than in-distribution,
suggesting that humans may have more complementary insights to offer out-of-distribution.
Results in COMPAS are similar to ICPSR and can be found in the supplementary materials.
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(a) Agreement with AI predictions in ICPSR.
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(b) Agreement with AI predictions in BIOS.

Figure 2.8: Agreement with AI predictions in ICPSR and BIOS. Distribution types are
indicated by the color of the bar and error bars represent 95% confidence intervals. In
ICPSR and COMPAS, agreement with AI predictions is much higher in-distribution than
out-of-distribution. However, this trend is reversed in BIOS. In BIOS, agreement is generally
higher in Static/Static, Interactive/Static, and Interactive/Interactive, where AI predictions
and explanations are shown. We will discuss the effect of explanation type in §2.7.
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Figure 2.9: Agreement with AI grouped by distribution type and whether AI predictions
are correct. Distribution types are indicated by the color of the bar, bars with stripes
represent wrong AI predictions, and error bars represent 95% confidence intervals. A notable
observation is that when AI is wrong, humans are significantly less likely to agree with AI
predictions out-of-distribution than in-distribution in ICPSR and COMPAS, but it is not the
case in BIOS.
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Figure 2.10: Human perception on whether real-time assistance is useful and whether training
is useful. x-axis shows the percentage of users that answered affirmatively. Error bars
represent 95% confidence interval.
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Figure 2.11: The features in 2.11a are sorted in descending order from top to bottom by their
Spearman correlation with groundtruth labels.
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CHAPTER 3

LEARNING HUMAN-COMPATIBLE REPRESENTATIONS FOR

CASE-BASED DECISION SUPPORT

3.1 Overview

Algorithmic case-based decision support provides examples to aid people in decision making

tasks by providing contexts for a test case. Despite the promising performance of supervised

learning, representations learned by supervised models may not align well with human

intuitions: what models consider similar examples can be perceived as distinct by humans.

As a result, they have limited effectiveness in case-based decision support. In this work, we

incorporate ideas from metric learning with supervised learning to examine the importance of

alignment for effective decision support. In addition to instance-level labels, we use human-

provided triplet judgments to learn human-compatible decision-focused representations.

Using both synthetic data and human subject experiments in multiple classification tasks,

we demonstrate that such representation is better aligned with human perception than

representation solely optimized for classification. Human-compatible representations identify

nearest neighbors that are perceived as more similar by humans and allow humans to make

more accurate predictions, leading to substantial improvements in human decision accuracies

(17.8% in butterfly vs. moth classification and 13.2% in pneumonia classification).

Unlike the previous chapter, which focuses helping humans understand AI systems, this

chapter focuses on helping AI systems understand humans. Most of the work in this chapter

is published in Liu et al. [2023]. This is a joint work with Yizhou Tian, Chacha Chen, Shi

Feng, Yuxin Chen, and Chenhao Tan.
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3.2 Introduction

Despite the impressive performance of machine learning (ML) models, humans are often

the final decision maker in high-stake domains due to ethical and legal concerns [Lai and

Tan, 2019, Green and Chen, 2019b], so ML models as decision support is preferred over

full automation. In order to provide meaningful information to human decision makers, the

model cannot be illiterate in the underlying problem, e.g., a model for assisting breast cancer

radiologists should have a high diagnostic accuracy by itself. However, a model with high

autonomous performance may not provide the most effective decision support, because it

could solve the problem in a way that is not comprehensible or even perceptible to humans,

e.g., AlphaGo’s famous move 37 [Silver et al., 2016, 2017, Metz et al., 2016]. Our work

studies the relation between these two objectives that effective decision support must balance:

achieving high autonomous performance and aligning with human intuitions.

We focus on case-based decision support for classification problems [Kolodneer, 1991,

Begum et al., 2009, Liao, 2000, Lai and Tan, 2019]. For each test example, in addition to

showing the model’s predicted label, case-based decision support shows one or more related

examples retrieved from the training set. These examples can be used to justify the model’s

prediction, e.g., by showing similar-looking examples with the predicted label, or to help

human decision makers calibrate its uncertainty, e.g., by showing similar-looking examples

from other classes. Both use cases require the model to know what is similiar-looking to the

human decision maker. In other words, an important consideration in aligning with human

intuition is approximating human judgment of similarity.

Figure 3.1 illustrates the importance of such alignment on a classification problem of

distinguishing butterfly from moth. A high-accuracy ResNet [He et al., 2016] produces a

highly linearly-separable representation space, which leads to high classification accuracy. But

the nearest neighbor cannot provide effective justification for model prediction because it looks

dissimilar to the test example for humans. The similarity measured in model representation
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Figure 3.1: Nearest neighbor retrieved by the model representation might not align with
human similarity judgment. The MLE representations (512-dim) are visualized using t-SNE
[Van der Maaten and Hinton, 2008]. The purple circle represents a specific test instance. The
nearest neighbor found by MLE representations (pink circle) is not as visually similar as the
instance in cyan circle found by optimizing a metric learning objective.

space does not align with human visual similarity. If we instead use representations from a

second model trained specifically to mimic human visual similarity rather than to classify

images, the nearest neighbor would provide strong justification for the model prediction.

However, using the second model for decision support has the risk of misleading or even

deceiving the human decision maker because the “justification” is generated based on a

representation space that is different from the model used to predict the label; it becomes

persuasion rather than justification.

The goal of this work is to learn a single representation space that satisfies two proper-

ties: (i) producing easily separable representations for different classes to support accurate

classification, and (ii) constituting a metric space that is aligned with human perception

of similarity between examples. Simultaneously matching the best model on classification

accuracy and achieving perfect approximation of human similarity might not be possible, but

we hypothesize that a good trade-off between the two would benefit decision support. We

propose a novel multi-task learning method that combines supervised learning and metric
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learning. We supplement the standard maximum likelihood objective with a triplet margin

loss function from Balntas et al. [2016]. Our method learns from human annotations of

similarity judgments among data instances in the triplet form.

We validate our approach with both synthetic data and user study. We show that

representations learned from our framework identify nearest neighbors that are perceived as

more similar by the synthetic human than that based on supervised classification (henceforth

MLE representations, see §3.3 for details), and are therefore more suitable to provide decision

support. We further demonstrate that the advantage of human-compatible representations

indeed derives from human perception rather than data augmentation.

We further conduct human subject experiments using two classification tasks: (i) butterfly

vs. moth classification from ImageNet [Krizhevsky et al., 2012], and (ii) pneumonia classifica-

tion based on chest X-rays [Kermany et al., 2018]. Our results show that human-compatible

representations provide more effective decision support than MLE representations. In partic-

ular, human-compatible representations allow laypeople to achieve an accuracy of 79.1% in

pneumonia classification, 15.3% higher than MLE representations. A similar improvement has

been observed on the butterfly vs. moth classification task (34.8% over MLE representations

and 17.8% over random).

To summarize, our main contributions include:

• We highlight the importance of alignment in learning human-compatible representations

for case-based decision support.

• We propose a multi-task learning framework that combines supervised learning and metric

learning to simultaneously learn classification and human visual similarity.

• We design a novel evaluation framework for comparing representations in decision support.

• Empirical results with synthetic data and human subject experiments demonstrate the

effectiveness of our approach.
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3.3 Case-Based Decision Support

Consider the problem of using a classification model h : X → Y as decision support for

humans. Simply showing the predicted label from the model provides limited information.

Explanations are commonly hypothesized to improve human performance by providing

additional information [Doshi-Velez and Kim, 2017]. We focus on information presented

in the form of examples from the training data, also known as case-based decision support

[Kolodneer, 1991, Begum et al., 2009, Liao, 2000, Lai and Tan, 2019]. Case-based decision

support can have diverse use cases and goals. Given a test example (x) and its predicted

label (ŷ), two common use cases are:

• Presenting the nearest neighbor of x along with label ŷ as a justification of the predicted

label. We refer to this scenario as justification [Kolodneer, 1991].

• Presenting the nearest neighbor in each class without presenting ŷ. This approach makes a

best-effort attempt to provide evidence and leaves the final decision to humans, without

biasing humans with the predicted label. We refer to this scenario as neutral decision

support [Lai and Tan, 2019].

Formulation. Building on Kolodneer [1991], we formalize the problem of case-based

decision support in the context of representation learning. The goal is to assist humans on a

classification problem with groundtruth f : X → Y. We assume access to a representation

model g, which takes an input x ∈ X and generates an m-dimensional representation

g(x) ∈ Rm. For each test instance x, an example selection policy π chooses k labeled

examples from the training set Dtrain and shows them to the human (optionally along with

the labels); the human then makes a prediction by choosing a label from Y . As discussed in

the two common use cases, we consider nearest-neighbor-based selection policies in this work.

The focus of this work is thus on the effectiveness of g for case-based decision support.

Given a neural classification model h : X → Y, the representation model is the last
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layer before the classification head, which is a byproduct derived from h. We refer to this

model as e(h).1 In justification, the example selection policy is π = NN(x, e(h), Dtrain
ŷ ),

where ŷ = h(x), Dtrain
ŷ refers to the subset of training data with label ŷ (i.e., {(x, y) ∈

Dtrain | y = ŷ}), and NN finds the nearest neighbor of x using representations from e(h)

among the subset of examples with label ŷ. In decision support, the example selection policy

is {NN(x, e(h), Dtrain
y ), ∀y ∈ Y}.

Misalignment with human similarity metric is detrimental. We argue that aligning

model representations with human similarity metric is crucial for case-based decision support;

we refer to it as the metric alignment problem. To illustrate the importance of alignment, we

need to reason about the goal of case-based decision support. Let us start with justification,

which is a relatively easy case. To justify a predicted label, the chosen example should

ideally appear similar to the test image. Crucially, this similarity is perceived by humans

(i.e., interpretable), and the example selection policy identifies the nearest neighbor based

on model representation (i.e., faithful). The gap between human representation and model

representation (Fig. 3.1) leads to undesirable justification.

Neutral decision support, however, represents a more complicated scenario. We start by

emphasizing that the goal is not simply to maximize human decision accuracy, because one

may use policies that intentionally show distant examples to nudge or manipulate humans

towards making a particular decision.2 Choosing the nearest neighbors in each class is

thus an attempt to present faithful and neutral evidence from the representation space so

that humans can make their own decisions, hence preserving their agency. Therefore, the

chosen nearest neighbors should be visually similar to the test instance by human perception,

again highlighting the potential gap between model representation and human representation.

1. In general, we can use the representation in any layer, but in preliminary experiments, we find
representation from the last layer is most effective.

2. We will consider one such policy for the sake of evaluating the quality of representations in §3.4.
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Assuming that humans follow the natural strategy by picking the presented instance that’s

most similar to the test instance and answering with the corresponding label, then ideally,

nearest neighbors in each class retain key information useful for classification so that they

can reveal the separation learned in the model.

It is unlikely that we get high alignment by solely optimizing classification even when

the model’s classification accuracy is comparable to the human’s. Models trained with

supervised learning almost always exploit patterns in the training data that are (i) not robust

to distribution shifts, and (ii) counterintuitive or even unobservable for humans [Ilyas et al.,

2019, Xiao et al., 2020].

Combining metric learning on human triplets with supervised classification. We

propose to address the metric alignment problem with additional supervision on the human

similarity metric. We collect data in the form of human similarity judgment triplets (or

triplets for short). Each triplet is an ordered tuple: (xr, x+, x−), which indicates x+ is

judged by humans as being closer to the reference xr than x− [Balntas et al., 2016]. Given

a triplet dataset T and labeled classification dataset D, we learn a model θ using triplet

margin loss [Balntas et al., 2016] in conjunction with cross-entropy loss, controlled by a

hyperparameter λ:

λ

− ∑
(x,y)∼D

log (pθ(y|x))


︸ ︷︷ ︸

Cross-entropy loss

+(1− λ)

 ∑
(xr,x+,x−)∼T

max
(
dθ(x

r, x+)− dθ(x
r, x−) + 1, 0

)
︸ ︷︷ ︸

Triplet margin loss

(3.1)

where dθ(·, ·) is the similarity metric based on model representations; we use Euclidean

distance. In this work, we initialize θ with a pretrained ResNet [He et al., 2016]. When

λ = 1 and the triplet margin loss is turned off, the model reduces to a finetuned ResNet.

When λ = 0 and the cross-entropy loss is turned off, the model reduces to the triplet

based-learning model of Balntas et al. [2016]; we call it TMLModel and will use it to simulate

humans in some synthetic experiments in the appendix. Our work is concerned with the
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representations learned by these models. Our approach uses the representations learned with

λ = 0.5 (henceforth human-compatible representations and HC for short). We refer to the

representations fine-tuning ResNet with the cross-entropy loss as MLE representations (MLE

for short) and the representations from TMLModel as TML.

3.4 Experimental Setup

In this section, we provide the specific model instantiation and detailed experiment setup.

Models. All models and baselines use ResNet-18 [He et al., 2016] pretrained on ImageNet as

the backbone image encoder. Following Chen et al. [2020], we take the output of the average

pooling layer and feed it into an MLP projection head with desired embedding dimension. We

use the output of the projection head as our final embeddings (i.e., representations), where

we add task-specific head and loss for training and evaluation. We use Euclidean distance

as the similarity metric for both loss calculation and distance measurement during example

selection in decision support.

Our first baseline uses representations from ResNet finetuned with classification labels

using cross-entropy loss (i.e., MLE). ResNet typically achieves high classification accuracy but

does not necessarily produce human-aligned representations. Our second baseline uses repre-

sentations from the same pretrained model finetuned with human triplets using triplet margin

loss [Balntas et al., 2016] (i.e., TML). We expect TML to produce more aligned representations

but achieve lower classification accuracy than MLE and may provide limited effectiveness in

decision support.

Our representations, HC, are learned by combining the two loss terms following Equation 3.1.

The hyperparameter λ controls the trade-off between metric alignment and classification

accuracy: with higher λ we expect HC to be more similar to MLE, while lower λ steers HC

towards TML. Empirically tuning λ confirms this hypothesis. For the main paper, we present

results with λ = 0.5. More details about model specification and hyperparameter tuning can

62



be found in the appendix.

Filtering classification-inconsistent triplets. Human triplets may not always align with

classification: triplet annotators may choose the candidate from the incorrect class over the

one from the correct class. We refer to these data points as classification-inconsistent triplets.

We consider a variant of human-compatible representations where we isolate human intuition

that’s compatible with classification and remove these classification-inconsistent triplets from

the training set; we refer to this condition as HC-filtered. Filtering is yet another way

to strike a balance between human intuition and classification. We leave further details on

filtering in the appendix.

Evaluation metrics. Our method is designed to align representations with human similarity

metrics and at the same time retain the representations’ predictive power for classification.

We can evaluate these representations with classification and triplet accuracy using existing

data, but our main evaluation is designed to simulate case-based decision support scenarios.

• Head-to-head comparisons (“H2H”). To evaluate justification, we set up head-to-head

comparisons between two representations (R1 vs. R2) and ask: given a test instance and

two justifications retrieved by R1 and R2, which justification do humans consider as closer

to the test instance? We report the fraction of rounds that R1 is preferable. In addition to

the typical justification for the predicted label, we also examine that for classes other than

the predicted class, as those examples will be used in decision support for users to examine

the plausibility of each class. We refer to the nearest example in the predicted class as NI,

and the nearest example in the other class as NO.

• Neutral decision support. Following §3.3, we retrieve the nearest neighbors from each

class. We use the accuracy of humans as the measure of effective decision support.

• Persuasive decision support. We retrieve the nearest example with the predicted label

and the furthest example from the other class. If the representation is aligned with human

similarity metric, this approach encourages people to follow the predicted label, which
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(a) Decision boundary (b) Vespula 1 (c) Vespula 2 (d) Weevil 1 (e) Weevil 2

Figure 3.2: VW dataset. (a) shows the dataset where labels are determined (non-linearly) by
two features: the head and the body size of the fictional insects. (b)-(d) show samples of the
two classes; the Weevil has a mid-sized body and mid-sized head, while the Vespula does not.
Tail length and texture are two non-informative features.

likely leads to over-reliance and may be unethical in practice. Here, we use this scenario as

a surrogate to evaluate the quality of the learned representations.

Note that we do not show model predictions so that humans focus on the similarity

between examples.

3.5 Synthetic Experiment

To understand the strengths and limitations of our method, we first experiment with synthetic

datasets. Using simulated human similarity metrics, we control and vary the level of

disagreement between the classification groundtruth and the synthetic human’s knowledge.

3.5.1 Synthetic Dataset and Simulated Human Similarity Metrics

We use the synthetic dataset “Vespula vs Weevil” (VW) from Chen et al. [2018b]. It is a

binary image classification dataset of two fictional species of insects. Each example contains

four features, two of them—head and body size—are predictive of the label, and the other

two—tail length and texture—are completely non-predictive. We generate 2000 images and

randomly split the dataset into training, validation, and testing sets in a 60%:20%:20% ratio.

The labels are determined by various synthetic decision boundaries, such as the one shown in

Fig. 3.2a.

To generate triplets data, we define simulated human similarity metrics as a weighted Eu-

clidean distance over the visual features: for any instance a and b, d(a, b) =
√∑

iwi(ai − bi)2,
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where i refers to the i-th feature. By changing the weight of each feature, we can control the

level of disagreement between a synthetic human and the groundtruth. All procedures that

involve humans (i.e., triplet data collection and evaluation) are done by the synthetic human

in this section.

To quantify the disagreement, we use 1-NN classification accuracy following the synthetic

human similarity metric; we refer to it as the task alignment score. Note that this is different

from our main alignment problem, which is about the representations. The task alignment

score ranges from 50% (setting the informative features’ weights to 0 and distractor weights

to 1) to 100%. See the appendix for more details on how we generate these weights. In each

setting, we generate 40,000 triplets.

3.5.2 Results

We compare HC, MLE, TML on classification accuracy, triplet accuracy, and decision support

performance for the synthetic human. We train all three representations with a large dimension

of 512 and a small dimension of 50 and observe that the 512-dimension representation is

preferable based on most metrics. We also train HC on filtered vs. unfiltered triplets as well

as with different values λ. For our main results, we report the performance with λ = 0.5 and

filtered triplets for the decision boundary in Fig. 3.2a. We will discuss the effect of filtering

later in this section. λ’s role is relatively limited and we will discuss its effect and other

decision boundaries in the appendix.

In synthetic experiments, HC achieves the same perfect classification accuracy as MLE

(100%), and a triplet accuracy of 96.8%, which is comparable to TML (97.3%). This shows

that HC indeed learns both the classification task and human similarity prediction task. We

next present the evaluation of case-based decision support with the synthetic human, which

is the key goal of this work.

HC significantly outperforms MLE in H2H. If there is no difference between HC and MLE,
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Table 3.1: Experiment results on VW with H2H comparison and decision support evaluations.

Task alignment 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.917 0.914 0.903 0.880 0.872 0.808

NO-H2H

HC vs. MLE 0.916 0.968 0.946 0.958 0.962 0.970

Neutral decision support

MLE 0.753 0.899 0.896 0.897 0.901 0.929
TML 0.568 0.775 0.807 0.868 0.877 1.000
HC 0.759 0.901 0.928 0.949 0.955 1.000

Persuasive decision support

MLE 0.704 0.900 0.903 0.903 0.901 0.919
TML 0.906 0.881 0.863 0.876 0.877 1.000
HC 1.000 1.000 1.000 1.000 1.000 1.000

the synthetic human should prefer HC about 50% of times. However, as shown in Table 3.1, our

synthetic human prefer HC over MLE by a large margin (about 90% of times) as justifications

for both nearest in-class examples and nearest out-of-class examples, indicating the NIs and

NOs selected based on the HC representations are more aligned with the synthetic human

than MLE. For NI H2H, the preference towards HC declines as the task alignment improves,

because if alignment between human similarity and classification increases, MLE can capture

human similarity as a byproduct of classification.

HC provides the best decision support. Table 3.1 shows that HC achieves the highest

neutral and persuasive decision support accuracies in all task alignments. In neutral decision

support, MLE consistently outperforms TML, highlighting that representation solely learned

for metric learning is ineffective for decision support. For all models, the decision support

performance improves as the task alignment increases, suggesting that decision support is

easier when human similarity judgment is aligned with the classification task. MLE and TML

are more comparable in persuasive decision support, while HC consistently achieves 100%.

The fact that MLE shows comparable performance between neutral and persuasive decision
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support further confirms that MLE does not capture human similarity for examples from

different classes.

50.0 80.0 83.0 92.0 92.5 100.0
Alignment (%)
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Figure 3.3: Neutral decision sup-
port with HC and HC-filtered.
HC-filtered leads to improved
performance.

Filtering triplets leads to better decision support.

Fig. 3.3 shows that filtering class-inconsistent triplets im-

proves HC’s decision support performance across all align-

ments. Further details in the appendix show that filtering

slightly hurts H2H performance. This suggests that in

terms of decision support, the benefit of filtering out human

noise may outweigh the loss of some similarity judgment.

The importance of human perception. One may ques-

tion whether filtering class-inconsistent triplets essentially

provides additional label supervision in the form of triplets. We show this is not the case by

experimenting with HC trained on label-derived triplets. Assuming that an instance is more

similar to another instance with the same label than one with a different label, we derive

label-derived triplets directly from groundtruth labels (x+ from the same class as xr and

x− from the other class), containing no human perception information. Table 3.2 shows

decision support results for this setting: HC label-derived triplets show worse performance

than HC-filtered. In fact, HC label-derived triplets show even worse neutral and persuasive

decision support than MLE, which may be due to label-derived triplets causing overfitting.

This suggests that triplets without human perception do not lead to human-compatible

representations.

We also experiment with HC trained on same-class triplets, human-triplets but only those

where the non-reference cases (x+, x−) are from the same class; that is, the triplets cannot

provide any label supervision. We observe from Table 3.2 that HC trained on these triplets

show similar results to HC-filtered across all decision support evaluations. This suggests

that human perception is the main factor in driving human-compatible representations’ high
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Table 3.2: Experiment results on VW using synthetic human with 92% alignment. Comparing
MLE representations and HC-filtered with HC trained on label-derived triplets and HC
trained on same-class triplets. 40,000 new triplets were generated for each condition.

Evaluations MLE HC label-derived triplets HC same-class triplets HC-filtered

NI-H2H with MLE N/A 0.509 0.890 0.889
NO-H2H with MLE N/A 0.607 0.970 0.958
Neutral DS 0.897 0.723 0.960 0.949
Persuasive DS 0.903 0.803 0.998 1.000

decision support performance.

3.6 Human Subject Experiments

We conduct human subject experiments on two image classification datasets: a natural image

dataset, Butterflies v.s. Moths (BM) and a medical image dataset of chest X-rays (CXR).

For BM, we followed Singla et al. [2014] and acquired 200 images from ImageNet [Krizhevsky

et al., 2012]. BM is a binary classification problem and each class contains two species. CXR

is a balanced binary classification subset taken from Kermany et al. [2018] with 3,166 chest

X-ray images that are labeled with either normal or pneumonia. We randomly split the

datasets following 60%:20%:20% ratio. The classification accuracy with our base supervised

learning models are 97.5% for BM and 97.3% for CXR. We only present results with human

subjects in the main paper, but results from simulation experiments with TML as a synthetic

agent, such as filtering triplets providing better results, are qualitatively consistent. See §3.13

and §3.14 in the appendix for more details.

3.6.1 Triplet Annotation

We recruit crowdworkers on Prolific to acquire visual similarity triplets. In each question,

we show a reference image on top and two candidate images below, and ask a 2-Alternative-

Forced-Choice (2AFC) question: which candidate image looks more similar to the reference

image? A screenshot of the interface can be found in the appendix. To generate triplets for
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annotation, we first sample the reference image from either the training, the validation, or

the test set. Then for each reference image, we sample two candidates from the training set.

We sample the candidates only from the training set because in decision support, the selected

examples should always come from the training set, and thus we only need to validate and

test triplet accuracies with candidates from the training set.

For BM we recruit 80 crowdworkers, each completing 50 questions, giving us 4000 triplets.

For CXR we recruit 100 crowdworkers, each answering 20 questions, yielding 2000 triplets.

Our pilot study suggests that visual similarity judgment on chest X-rays is a more mentally

demanding task, so we decrease the number of questions for each CXR survey.

3.6.2 Results on Butterflies v.s. Moths

We recruit crowdworkers on Prolific to evaluate representations produced by our models by

doing decision support tasks. We acquire examples with different example selection policies

from HC and MLE. We choose the dimension and training triplets of the representation based

on the models’ classification accuracy, triplet accuracy, and decision support simulation

results based on synthetic agents. See more details in the appendix. We do not include TML

in human studies, because in practice, TML models cannot make predictions on class labels,

therefore are unable to distinguish and select in-class and out-of-class examples and thus

cannot be used for decision support.

H2H comparison results show HC NI examples are slightly but significantly

preferred over MLE NI examples according to human visual similarity. We recruit

30 Prolific workers to make H2H comparisons between HC NI examples and MLE NI examples

over the entire test set. The mean preference for HC over MLE is 0.5316 with a 95% confidence

interval of ±0.0302 (p = 0.0413 with one-sample t-test). This means the HC NI examples

are closer to the test images than MLE NI examples with statistical significance according to

human visual similarity.
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(b) Pneumonia classification.

Figure 3.4: Decision support accuracy with human subject studies. Error bars show 95%
confidence intervals. HC dominates MLE in both neutral and persuasive decision support.

Decision support results show HC is significantly better than MLE both in neutral

and persuasive decision support. Combining two example selection policies with two rep-

resentations, we have four conditions: HC neutral, HC persuasive, MLE neutral, MLE persuasive.

We also add a baseline condition with random supporting examples, which we call random

in-class random out-of-class (RIRO). We recruit 30 Prolific workers for each condition and

ask them to go through the images in the test set with supporting examples from each class

in the training set. Both the order of the test images and the order of the supporting images

within each test question are randomly shuffled.

Figure 3.4a shows the human classification accuracies with different decision support

scenarios and different representations. In neutral decision support, we observe that HC

achieves much higher accuracy than MLE (95.3% vs. 60.5%, p = 4e−19 with two-sample

t-test). In fact, even RIRO provides better decision support than MLE representations,

suggesting that the supporting images based on MLE are confusing and hurt human decision

making (77.5% vs. 60.5%, p = 3e−6). As expected, the accuracies are generally higher

in persuasive decision support. HC enables an accuracy of 97.8%, which is much better

than MLE at 79.5% (p = 2e−13). HC in neutral decision support already outperforms MLE

in persuasive decision support. These findings confirm our results with VW synthetic

experiments that human-compatible representations provide much better decision support

than MLE representations.
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3.6.3 Results on Chest X-rays

We use the same experimental setup as BM to evaluate HC and MLE representations in CXR.

H2H comparison results show HC NI examples are slightly preferred over MLE NI

examples but the difference is not statistically significant. We recruit 50 Prolific

workers to each make 20 H2H comparisons between HC NI examples and MLE NI examples.

The mean preference for HC over MLE is 0.516 with a 95% confidence interval of ±0.0725

(p = 0.379 with one-sample t-test). H2H comparison in CXR is especially challenging as

laypeople need to differentiate between two chest X-rays in the same class, hence the slightly

worse performance in H2H compared to BM.

Similar to BM, HC outperforms MLE in both neutral and persuasive decision support

in CXR. As expected, Fig. 3.4b shows that pneumonia classification is a much harder task

than butterfly vs. moth classification, indicated by the lower accuracies across all conditions.

In neutral decision support, HC enables much better accuracy than MLE (79.1% vs. 63.8%,

p = 2e−8 with two-sample t-test). In fact, similar to the BM setting, MLE provides similar

performance with RIRO (63.8% vs. 65.9%, p = 0.390), suggesting that MLE representations

are no different from random representations for selecting nearest neighbors within a class. To

contextualize our results, we would like to highlight that our crowdworkers are laypeople and

have no medical training. It is thus impressive that human-compatible representations enable

an accuracy of almost 80% in neutral decision support, which demonstrates the potential of

human-compatible representations.

In persuasive decision support, HC provides the highest decision support accuracy at

90.0%, also much higher than MLE at 77.0% (p = 2e−10). Again, while we do not recommend

persuasive decision support as a policy for decision support in practice, these results show

that our human-compatible representations are indeed more compatible with humans than

MLE representations.
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3.7 Related Work

Ordinal embedding. The ordinal embedding problem [Ghosh et al., 2019, Van Der Maaten

and Weinberger, 2012, Kleindessner and von Luxburg, 2017, Kleindessner and Luxburg, 2014,

Terada and Luxburg, 2014, Park et al., 2015] seeks to find low-dimensional representations

that respect ordinal feedback. Currently, there exist several techniques for learning ordinal

embeddings. Generalized Non-metric Multidimensional Scaling [Agarwal et al., 2007] takes

a max-margin approach by minimizing hinge loss. Stochastic Triplet Embedding [Van

Der Maaten and Weinberger, 2012] assumes the Bradley-Terry-Luce noise model [Bradley

and Terry, 1952, Luce, 1959] and minimizes logistic loss. The Crowd Kernel [Tamuz et al.,

2011] and t-STE [Van Der Maaten and Weinberger, 2012] propose alternative non-convex

loss measures based on probabilistic generative models. These results are primarily empirical

and focus on minimizing prediction error on unobserved triplets. In principle, one can plugin

these approaches in our framework as alternatives to the triplet margin loss in Eq. 3.1.

AI explanations and AI-assisted decision making. Various explanation methods

have been developed to explain black-box AI models [Guidotti et al., 2018], such as feature

importance [Ribeiro et al., 2016, Shrikumar et al., 2017], saliency map [Zhou et al., 2016,

Selvaraju et al., 2017], and decision rules [Ribeiro et al., 2018]. Example-based explanations

are also a type of common explanation methods that use examples to explain AI models.

Nearest-neighbor examples can explain a model’s local decision [Wang and Yin, 2021, Nguyen

et al., 2021, Taesiri et al., 2022, Lai and Tan, 2019]. To the best of our knowledge, there

has been no prior work that examines the role of representations in choosing the nearest

neighbors in the context of AI explanations. Meanwhile, global example-based explanations

such as prototypes can explain a model’s global behavior or a model’s understanding of the

data distribution [Kim et al., 2016, Chen et al., 2018a, Cai et al., 2019a, Lai et al., 2020].

Explaining a model’s global behavior is also closely related to machine teaching [Zhu et al.,

2018].
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Many of these explanation methods have been used in AI-assisted decision making to

explain AI predictions or inform users about the AI model or training data [Lai et al., 2021].

Among them, example-based explanations have shown be useful in many high-stake domains

where full AI automation is often not desired, such as recidivism prediction [Hayashi and

Wakabayashi, 2017] and medical diagnosis [Cai et al., 2019c, Rajpurkar et al., 2020, Tschandl

et al., 2020]. While many of the current literature in AI-assisted decision making focus on

generating explanations of AI without considering human feedback, our decision support

methods offer assistance by learning from human perceptions and provide examples from

human-compatible representations.

3.8 Conclusion

Our work formulates the novel problem of learning human-compatible representations for

case-based decision support. As we identify in this paper, the key to providing effective

case-based support with a model is the alignment between the model and the human in terms

of similarity metrics: two examples that appear similar to the model should also appear similar

to the human. But models trained to perform classification do not automatically produce

representations that satisfy this property. To address this issue, we propose a multi-task

learning method to combine two sources of supervision: labeled examples for classification

and triplets of human similarity judgments. With synthetic experiments and user studies, we

validate that human-compatible representations (i) consistently get the best of both worlds

in classification accuracy and triplet accuracy, (ii) select visually more similar examples in

head-to-head comparisons, (iii) and provide better decision support.
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3.9 Ethics Statement

Although coming from a genuine goal to improve human-AI collaboration by aligning AI

models with human intuition, our work may have potential negative impacts for the society.

We discuss these negative impacts from two perspectives: the multi-task learning framework

and the decision support policies.

Multi-task learning framework

Our human-compatible representations models are trained with two sources of data. The

first source of data is classification annotations where groundtruth maybe be derived from

scientific evidence or crowdsourcing with objective rules or guidelines. The second source of

data is human judgment annotations where groundtruth is probably always acquired from

crowdworkers with subjective perceptions. When our data is determined with subjective

perceptions, the model that learns from it may inevitably develop bias based on the sampled

population. If not carefully designed, the human judgment dataset may contain bias against

certain minority group depending on the domain and the task of the dataset. For example,

similarity judgment based on chest X-rays of patients in one gender group or racial group

may affect the generalizability of the representations learned from it, and may lead to fairness

problems in downstream tasks. It is important for researchers to audit the data collection

process and make efforts to avoid such potential problems.

Decision support policies

Among a wide variety of example selection policies, our policies to choose the decision

support examples are only attempts at leveraging AI model representations to increase human

performance. We believe that they are reasonable strategies for evaluating representations

learned by a model, but future work is required to establish their use in practice.
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The neutral decision support policy aims to select the nearest examples in each class,

therefore limiting the decision problem to a small region around the test example. We hope

this policy allow human users to zoom in the local neighborhood and scrutinize the difference

between the relatively close examples. In other words, neutral decision support help human

users develop a local decision boundary with the smallest possible margin. This could be

useful for confusing test cases that usually require careful examinations. However, the neutral

decision support policy adopts an intervention to present a small region in the dataset and

may downplay the importance of global distribution in human users’ decision making process.

The persuasive decision support policy aims to select the nearest in-class examples but the

furthest out-of-class examples. It aims to maximize the visual difference between examples

in opposite class, thus require less effort for human users to adopt case-based reasoning for

classification. It also helps human users to develop a local decision boundary with the largest

possible margin. However, when model prediction is incorrect, the policy end up selecting

the furthest in-class examples with the nearest out-of-class examples, completely contrary to

what it is design to do, may lead to even over-reliance or even adversarial supports.

In general, decision support policies aim to choose a number of supporting examples

without considering some global properties such as representativeness and diversity. While

aiming to reduce humans’ effort required in task by encouraging them to make decision in a

local region, the decision support examples do not serve as a representative view of the whole

dataset, and may bias human users to have a distorted impression of the data distribution.

It remains an open question that how to ameliorate these negative influence when designing

decision support interactions with case-based reasoning.

3.10 Code and Data

Our code and data are available at https://github.com/ChicagoHAI/learning-human-c

ompatible-representations.
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3.11 Limitations

We discuss some of the limitations in our work.

Limitations of decision support policies. Our decision support policies are simple first

steps towards a more general example selection policy for decision support. There are certain

limitations of our selection policies. For example in this work, we only look at selecting two

examples from the two classes in binary image classifcation tasks. We encourage future work

to explore more selection methods towards effective decision-support.

In addition to the ethical concerns discussed in the main paper and the ethics statement,

our neutral decision support and persuasive decision support policies have different limitations

and use cases. Neutral decision support selects the nearest example from each class. Therefore

when a test example lies too close to the decision boundary, the test example, in-class example,

and out-of-class example may appear too similar to be distinguished by humans. This is

where we may need to select examples further away with different features so that users

are more likely to spot the distinction. Persuasive decision support selects the most similar

example in the predicted class and the least similar example in the other class, the latter of

which has a risk of being an outlier. This may invite biases about the data distribution of

the other class and degrade effectiveness of decision support.

Limitations of experimenting with crowdworkers. There are several limitations of

experimenting with crowdworkers. First, crowdworkers may not invest as much time as

domain experts in the tasks. Therefore, collected triplets may come from superficial or

the salient features among the images. Second, crowdworkers or in general lay people have

limited domain knowledge such as basic anatomy of body parts when working with medical

image. Therefore it is less likely for them to notice the most important feature in the images.

In our CXR task, we mitigate this limitation by providing an instruction and quiz section

before our main study that provides basic information about how to examine chest X-rays.

However, in other tasks, we may need to provide more detailed instructions and quizzes to
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help crowdworkers understand the task and in this way polish collected triplets.

As the expertise level of the end users increases, HC should be able to learn a high-quality

representation. The effectiveness of our decision support methods may vary due to experts

strong domain knowledge, but we would still expect our human-compatible representation to

provide more effective decision support than MLE representations.

Our ultimate goal is to apply our method to domain experts. We start with crowdworkers

and the positive results are encouraging. We hope these results could be used to convince and

invite more domain experts to get involved and work towards an applicable system together

in the future.

Limitations of design choices in the algorithm. A number of decision choices were

made in the algorithm. For example, we use Euclidean distance as the distance metric to be

learned for the representation space. Experimenting with different kinds of metrics (e.g., in

the psychology literature) and exploring the effectiveness of their respective representations

in decision support would be an interesting future direction.

We used ResNet as the backbone network for feature extraction of images due to its

competitiveness and popularity. Although model architecture is not the main concern of this

paper, one could also plug in other common backbones such as DenseNet [Huang et al., 2017]

and ViT [Dosovitskiy et al., 2021] into our representation learning algorithm. We leave the

exploration of additional architecture and the effectiveness of their learned representation on

decision support to future work.

3.12 Synthetic Experiment Results

3.12.1 Hyperparameters

For our MLE backbone we use We use different controlling strength between classification and

human judgment prediction, including λs at 0.2, 0.5, and 0.8, and discuss the effect of λ in
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Table 3.3: Classification and triplet accuracy of human-compatible representations with
different λ. TMLModel has no classfication head and no classification accuray.

Model Classification accuracy Triplet accuracy

MLE 0.998 ± 0.003 0.673 ± 0.014
HC λ = 0.8 0.998 ± 0.032 0.970 ± 0.024
HC λ = 0.5 0.995 ± 0.000 0.972 ± 0.004
HC λ = 0.2 0.996 ± 0.016 0.973 ± 0.039
TML N/A 0.973 ± 0.016

the next section. In contrast to the experiments on BM, we observe that human-compatible

representations with 512-dimension embedding shows overall better performance than human-

compatible representations with 50-dimension embedding and show results for the latter in

the next section. We use the Adam optimizer [Kingma and Ba, 2014] with learning rate

1e− 4. We use a training batch size of 40 for triplet prediction, and 30 for classification.

3.12.2 Additional Results

Classification and triplet accuracy. Table 3.3 shows how tuning λ affects human-

compatible representations’s classification and triplet accuracy. Higher λ drives human-

compatible representations to behave more simlar to MLE representations while lower

human-compatible representations is more similar to TMLModel.

Experiment results on VW with confidence intervals. Table 3.4 presents results on

VW with human-compatible representations λ = 0.5. This is is simply Table 1 in the main

paper with 0.95 confidence intervals.

Results for different λ. In Table 3.5 and Table 3.6 we show experiment results with

human-compatible representations using λ = 0.2 and λ = 0.8. We do not observe a clear

trend between λ and evaluation metric performances. In the main paper we present human-

compatible representations with λ = 0.5 as it shows best overall performance.

Number of triplets. We examine the effect of the number of triplets, showing the results
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Table 3.4: Experiment results on VW. Models use 512-dimension embeddings; HC uses λ = 0.5
and filtered triplets. This is the same table as Table 3.1 and adds confidence intervals.

Alignments 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.917 ± 0.064 0.914 ± 0.007 0.903 ± 0.016 0.880 ± 0.022 0.872 ± 0.020 0.808 ± 0.017

NO-H2H

HC vs. MLE 0.916 ± 0.093 0.968 ± 0.011 0.946 ± 0.009 0.958 ± 0.031 0.962 ± 0.008 0.970 ± 0.008

Neutral decision support

MLE 0.753 ± 0.056 0.899 ± 0.025 0.896 ±0.044 0.897 ± 0.045 0.901 ± 0.025 0.929 ± 0.028
TML 0.568 ± 0.049 0.775 ± 0.084 0.807 ± 0.038 0.868 ± 0.012 0.877 ± 0.025 1.000 ± 0.000
HC 0.759 ± 0.080 0.901 ± 0.016 0.928 ± 0.099 0.949 ± 0.034 0.955 ± 0.027 1.000 ± 0.00

Persuasive decision support

MLE 0.704 ± 0.028 0.900 ± 0.017 0.903 ±0.017 0.903 ± 0.017 0.901 ± 0.017 0.919 ± 0.016
TML 0.906 ± 0.011 0.881 ± 0.043 0.863 ± 0.044 0.876 ± 0.027 0.877 ± 0.076 1.000 ± 0.000
HC 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000

in Fig. 3.5. We decrease number of triplets by powers of 2 and find that H2H preference

towards human-compatible representations indeed declines as HC is less human-compatible

with fewer training data. As for decision support, in neutral decision support HC performance

declines and eventually approaches MLE representations except an outlier in the end, while

in persuasive decision support HC performance is able to stay 100% even as the number of

triplets declines.

Additional details on weight generation. We generate alignment scores by searching

through weight combinations of the simulated human visual similarity metrics. We search

the weights in powers of 2, from 0 to 210, producing a sparse distribution of alignments

(Fig. 3.6). Increasing search range to powers of 10 produces smoother distribution, but the

weights are also more extreme and unrealistic. We note that the alignment distribution may

vary across different datasets. In our experiments we choose weights and alignments to be as

representative to the distribution as possible.
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Table 3.5: Experiment results on VW. Models using 512-dimension embeddings; HC uses
λ = 0.2 and filtered triplets.

Alignments 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.920 ± 0.005 0.890 ± 0.032 0.906 ± 0.053 0.895 ± 0.016 0.862 ± 0.254 0.832 ± 0.058

NO-H2H

HC vs. MLE 0.901 ± 0.439 0.948 ± 0.095 0.970 ± 0.019 0.972 ± 0.095 0.933 ± 0.154 0.981 ± 0.040

Neutral decision support

MLE 0.753 ± 0.056 0.899 ± 0.025 0.896 ±0.044 0.897 ± 0.045 0.901 ± 0.025 0.929 ± 0.028
TML 0.568 ± 0.049 0.775 ± 0.084 0.807 ± 0.038 0.868 ± 0.012 0.877 ± 0.025 1.000 ± 0.000
HC 0.740 ± 0.540 0.925 ± 0.127 0.933 ± 0.064 0.935 ± 0.000 0.945 ± 0.349 1.000 ± 0.000

Persuasive decision support

MLE 0.704 ± 0.028 0.900 ± 0.017 0.903 ±0.017 0.903 ± 0.017 0.901 ± 0.017 0.919 ± 0.016
TML 0.906 ± 0.011 0.881 ± 0.043 0.863 ± 0.044 0.876 ± 0.027 0.877 ± 0.076 1.000 ± 0.000
HC 0.996 ± 0.016 0.995 ± 0.000 0.998 ± 0.000 0.996 ± 0.016 0.995 ± 0.000 0.995 ± 0.032

3.12.3 Additional Decision Boundaries

We create a variant of the VW dataset where the labels are populated by a linear separator.

We refer to this dataset as VW-Linear (Fig. 3.7). We find the results are overall similar to

the original VW data.

Classification and triplet accuracy. Table 3.9 shows classification and triplet accuracy

of tuning λ, showing a similar trend to the previous experiment.

H2H and decision support results In Table 3.10 we present results with the best set of

hyperparameter: filtered triplets, 512-dimension embedding, λ = 0.5. We show results for

λ = 0.2 in Table 3.5 and λ = 0.8 in Table 3.6.

Similar to the experiment on VW square decision boundary, we see no clear relation

between λ, embedding dimension and our evaluation metrics.
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Table 3.6: Experiment results on VW. Models using 512-dimension embeddings; HC uses
λ = 0.8 and filtered triplets.

Alignments 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.916 ± 0.082 0.869 ± 0.217 0.891 ± 0.029 0.879 ± 0.066 0.853 ± 0.164 0.828 ± 0.138

NO-H2H

HC vs. MLE 0.902 ± 0.193 0.944 ± 0.093 0.959 ± 0.005 0.956 ± 0.090 0.942 ± 0.026 0.969 ± 0.034

Neutral decision support

MLE 0.753 ± 0.056 0.899 ± 0.025 0.896 ±0.044 0.897 ± 0.045 0.901 ± 0.025 0.929 ± 0.028
TML 0.568 ± 0.049 0.775 ± 0.084 0.807 ± 0.038 0.868 ± 0.012 0.877 ± 0.025 1.000 ± 0.000
HC 0.740 ± 0.095 0.894 ± 0.111 0.929 ± 0.079 0.960 ± 0.032 0.923 ± 0.127 1.000 ± 0.000

Persuasive decision support

MLE 0.704 ± 0.028 0.900 ± 0.017 0.903 ±0.017 0.903 ± 0.017 0.901 ± 0.017 0.919 ± 0.016
TML 0.906 ± 0.011 0.881 ± 0.043 0.863 ± 0.044 0.876 ± 0.027 0.877 ± 0.076 1.000 ± 0.000
HC 0.998 ± 0.032 0.995 ± 0.000 0.998 ± 0.000 0.998 ± 0.032 0.995 ± 0.000 0.999 ± 0.016

3.13 Human Subject Study on Butterflies v.s. Moths

3.13.1 Dataset

Our BM dataset include four species of butterflies and moths including: Peacock Butterfly,

Ringlet Butterfly, Caterpiller Moth, and Tiger Moth. An example of each species is shown in

Fig 3.8.

3.13.2 Hyperparameters

We use different controlling strength between classification and human judgment prediction,

including λs at 0.2, 0.5, and 0.8. We use the Adam optimizer [Kingma and Ba, 2014]

with learning rate 1e − 4. Our training batch size is 120 for triplet prediction, and 30

for classification. All models are trained for 50 epoches. The checkpoint with the lowest

validation total loss in each run is selected for evaluations and applications.
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Table 3.7: Experiment results on VW. Models use 512-dimension embeddings; HC uses λ = 0.5
and unfiltered triplets.

Alignments 50% 80% 83% 92% 92.5% 100%

Weights [0,0,1,1] [1,0,1,1] [0,1,1,1] [1,256,256,256] [256,1,256,256] [1,1,1,1]

NI-H2H

HC vs. MLE 0.921 ± 0.015 0.900 ± 0.035 0.920 ± 0.023 0.895 ± 0.008 0.867 ± 0.034 0.846 ± 0.016

NO-H2H

HC vs. MLE 0.951 ± 0.034 0.969 ± 0.024 0.991 ± 0.002 0.991 ± 0.004 0.958 ± 0.010 0.980 ± 0.023

Neutral decision support

MLE 0.753 ± 0.056 0.899 ± 0.025 0.896 ±0.044 0.897 ± 0.045 0.901 ± 0.025 0.929 ± 0.028
TML 0.568 ± 0.049 0.775 ± 0.084 0.807 ± 0.038 0.868 ± 0.012 0.877 ± 0.025 1.000 ± 0.000
HC 0.603 ± 0.051 0.801 ± 0.025 0.848 ± 0.053 0.880 ± 0.000 0.880 ± 0.081 1.000 ± 0.000

Persuasive decision support

MLE 0.704 ± 0.028 0.900 ± 0.017 0.903 ±0.017 0.903 ± 0.017 0.901 ± 0.017 0.919 ± 0.016
TML 0.906 ± 0.011 0.881 ± 0.043 0.863 ± 0.044 0.876 ± 0.027 0.877 ± 0.076 1.000 ± 0.000
HC 0.996 ± 0.004 0.999 ± 0.004 0.996 ± 0.004 0.996 ± 0.004 0.996 ± 0.004 0.997 ± 0.004
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Figure 3.5: HC performance declines as the number of triplets decreases, but shows strong
persuasive decision support accuracy even with very few triplets.

3.13.3 Classification and Triplet learning/Accuracy

We present the test-time classification and triplet accuracy of our models in Table 3.13. Both

MLE and HC achieve above 97.5% classification accuracy. HC in the 512-dimension unfiltered

setting achieve 100.0% classification accuracy. Both TML and HC achieve above 70.7% triplet

accuracy. Both TML and HC achieve the highest triplet accuracy in the 50-dimension unfiltered

setting with triplet accuracy at 75.9% and 76.2% respectively. Filtering out class-inconsistent

triplets removes 15.75% of the triplet annotations in this dataset.

We also evaluate the pretrained LPIPS metric [Zhang et al., 2018] on our triplet test set
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Figure 3.6: Histogram of alignments generated by searching informative weights in powers of
2.

Figure 3.7: VW-Linear

Table 3.9: HC performance with different λ on VW linear
decision boundary data.

Model Classification accuracy Triplet accuracy

MLE 0.993 ± 0.003 0.673 ± 0.014
HC λ = 0.8 0.988 ± 0.032 0.968 ± 0.030
HC λ = 0.5 0.978 ± 0.013 0.966 ± 0.007
HC λ = 0.2 0.978 ± 0.032 0.970 ± 0.010
TML N/A 0.976 ± 0.012

as baselines for learning perceptual similarity. Results with AlexNet backbone and VGG

backbone are at 54.5% and 55.0% triplet accuracy respectively, suggesting that TML and HC

provides much better triplet accuracy in this task.

3.13.4 Effect of Triplet Amount and Type

We evaluate the effect of the number of triplets on our models in Fig. 3.9. Similar to the

VW experiments, H2H preference towards human-compatible representations and neutral

decision support performance decrease as the number of triplets decreases. Human-compatible

representations achieve strong persuasive decision support performance even with very few

triplets.
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Table 3.10: Experiment results on VW-Linear. Models use 512-dimension embeddings; HC
uses λ = 0.5 and filtered triplets.

Alignments 56% 84% 95% 98.5%

Weights [0,1,1,1] [1,0,1,1] [1,1,1,1] [32,256,1,1]

NI-H2H

HC vs. MLE 0.913 ± 0.023 0.922 ± 0.008 0.899 ± 0.020 0.848 ± 0.055

NO-H2H

HC vs. MLE 0.932 ± 0.034 0.960 ± 0.027 0.921 ± 0.013 0.928 ± 0.034

Neutral decision support

MLE 0.778 ± 0.084 0.792 ± 0.144 0.839 ± 0.130 0.927 ± 0.019
TML 0.554 ± 0.175 0.770 ± 0.318 0.950 ± 0.095 0.914 ± 0.075
HC 0.841 ± 0.053 0.911 ± 0.053 0.967 ± 0.009 0.961 ± 0.014

Persuasive decision support

MLE 0.802 ± 0.249 0.815 ± 0.151 0.848 ± 0.188 0.953 ± 0.051
TML 0.473 ± 1.016 0.653 ± 1.747 0.441 ± 0.016 0.381 ± 0.474
HC 0.979 ± 0.014 0.977 ± 0.009 0.977 ± 0.009 0.978 ± 0.013

3.13.5 Model Evaluation with Synthetic Agent

We trained models with different configurations. We mainly discuss two factors: 1) filtering

out class-inconsistent triplets or not; 2) a large dimension at 512 vs. a small dimension at 50

for the output representations. We also tried different hyperparameters such as different λs

that control the strength of the classification loss and triplet margin loss as well as different

random seeds. We select the best TML / HC / MLE in each filtering-dimension configuration

with the highest average of test classification accuracy and test triplet accuracies.

Label accuracy and triplet accuracy. As this task is relatively simple, both MLE and

HC achieves test accuracy of above 97.5%. In fact, HC without filtering out class-inconsistent

triplets achieved 100%. Note that TML cannot classify alone. As for triplet accuracy, as

expected, both HC and TML outperform MLE. Dimensionality does not affect triplet accuracy,

but filtering out class-inconsistent triplets decrease triplet accuracy (76.2% vs. 70.7% with

50 dimensions, 74.1% vs. 70.9% with 512 dimensions). This is because filtering creates a

distribution shift of the triplet annotations, and limits the models’ ability to learn general
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Table 3.11: Experiment results on VW-Linear. Models use 512-dimension embeddings; HC
uses λ = 0.2 and filtered triplets.

Alignments 56% 84% 95% 98.5%

Weights [0,1,1,1] [1,0,1,1] [1,1,1,1] [32,256,1,1]

NI-H2H

HC vs. MLE 0.936 ± 0.024 0.921 ± 0.008 0.912 ± 0.074 0.856 ± 0.034

NO-H2H

HC vs. MLE 0.946 ± 0.032 0.974 ± 0.032 0.949 ± 0.003 0.934 ± 0.029

Neutral decision support

MLE 0.778 ± 0.084 0.792 ± 0.144 0.839 ± 0.130 0.927 ± 0.019
TML 0.554 ± 0.175 0.770 ± 0.318 0.950 ± 0.095 0.914 ± 0.075
HC 0.845 ± 0.127 0.880 ± 0.127 0.956 ± 0.016 0.956 ± 0.111

Persuasive decision support

MLE 0.802 ± 0.249 0.815 ± 0.151 0.848 ± 0.188 0.953 ± 0.051
TML 0.473 ± 1.016 0.653 ± 1.747 0.441 ± 0.016 0.381 ± 0.474
HC 0.974 ± 0.016 0.970 ± 0.064 0.968 ± 0.064 0.988 ± 0.032

human visual similarity.

To run synthetic experiments for case-based decision support, we select the TML with the

best test triplet accuracy as our synthetic agent, and then evaluate the examples produced

by all representations. We do not show results of TML as we use it as the synthetic agent.

Human-compatible representations is prefered over MLE representations in H2H.

We compare examples selected from different models in different configurations to examples

selected by the MLE baseline with the same dimensionality.

Table 3.15 shows how often the synthetic agent prefers the tested model examples to

baseline MLE examples. In all settings, the preference towards HC is above 50%, but not as high

as those in our synthetic experiments with the VW dataset. Filtering out class-inconsistent

triplets improves the preference for the nearest example with the predicted label, while

hurting the preference for the nearest out-of-class example.

Decision support simulations shows a large dimension benefits MLE representa-

tions but hurts unfiltered human-compatible representations in neutral decision
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Table 3.12: Experiment results on VW-Linear. Models use 512-dimension embeddings; HC
uses λ = 0.8 and filtered triplets.

Alignments 56% 84% 95% 98.5%

Weights [0,1,1,1] [1,0,1,1] [1,1,1,1] [32,256,1,1]

NI-H2H

HC vs. MLE 0.906 ± 0.122 0.909 ± 0.111 0.882 ± 0.135 0.848 ± 0.050

NO-H2H

HC vs. MLE 0.926 ± 0.021 0.955 ± 0.199 0.936 ± 0.053 0.912 ± 0.095

Neutral decision support

MLE 0.778 ± 0.084 0.792 ± 0.144 0.839 ± 0.130 0.927 ± 0.019
TML 0.554 ± 0.175 0.770 ± 0.318 0.950 ± 0.095 0.914 ± 0.075
HC 0.824 ± 0.175 0.895 ± 0.159 0.950 ± 0.032 0.969 ± 0.016

Persuasive decision support

MLE 0.802 ± 0.249 0.815 ± 0.151 0.848 ± 0.188 0.953 ± 0.051
TML 0.473 ± 1.016 0.653 ± 1.747 0.441 ± 0.016 0.381 ± 0.474
HC 0.981 ± 0.048 0.964 ± 0.206 0.961 ± 0.175 0.978 ± 0.064

support. We also run simulated decision support with the TML synthetic agent. Table 3.16

shows decision support accuracy for different settings. MLE have both higher neutral decision

support accuracy and persuasive decision support scores when we use a large dimension at

512. We hypothesize that for MLE, reducing dimension may force the network to discard

dimensions useful for human judgments but keep dimensions useful for classification. We then

use the 512-dimension MLE with the highest intrinsic evaluation scores as our MLE baseline in

later studies.

For HC, neutral decision support accuracy are in general comparable to 87.5% score of

the 512-dimension MLE baseline except unfiltered 512-dimension HC which has only 80%. We

hypothesize that representations of large dimension may struggle more with contradicting

signals between metric learning and supervised classification in the unfiltered settings. For

persuasive decision support, HC achieves perfect scores in all settings.

Overall, to proceed with our human-subject experiments, we choose HC filtered with 50

dimensions as our best HC as it achieves a good balance between H2H and neutral decision
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(a) Ringlet Butterfly (b) Peacock Butterfly (c) Caterpiller Moth (d) Tiger Moth

Figure 3.8: An example of each species in the BM dataset.

Table 3.13: Classification and triplet accuracy of BM models.

Model Classification accuracy Triplet accuracy

Dimension 50

MLE 0.975 0.610
HC 0.975 0.762
HC-filtered 0.975 0.707
TML N/A 0.759
TML-filtered N/A 0.721

Dimension 512

MLE 0.975 0.631
HC 1.000 0.741
HC-filtered 0.975 0.709
TML N/A 0.748
TML-filtered N/A 0.732

support. For MLE, we choose the representation with 512 dimensions. We conduct head-to-

head comparison between these two representations. Our synthetic agent prefers HC in 70%

of the nearest in-class examples and in 97.5% of the nearest out-of-class examples.

3.13.6 Interface

We present the screenshots of our interface at the end of the appendix. Our interface consists

of four stages. Participants will see the consent page at the beginning, as shown in Fig

3.12. After consent page, participants will see task specific instructions, as shown in Fig

3.14. After entering the task, partipants will see the questions, as shown in Fig 3.15. We also
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Figure 3.9: HC performance declines as the number of triplets decreases, but shows strong
persuasive decision support accuracy even with very few triplets.

Table 3.15: BM H2H preference results with
synthetic agent.

Dimensions 50 512

NI H2H with MLE

HC 0.838 0.575
HC filtered 0.863 0.725

NO H2H with MLE

HC 0.775 0.925
HC filtered 0.700 0.775

Table 3.16: BM decision support accuracy
with synthetic agent.

Dimensions 50 512

Neutral Decision Support

MLE 0.675 0.875
HC 0.900 0.800
HC filtered 0.875 0.900

Persuasive Decision Support

MLE 0.825 0.875
HC 1.000 1.000
HC filtered 1.000 1.000

include two attention check questions in all studies to check whether participants are paying

attention to the questions. Following suggestions on Prolific, we design the attention check

with explicit instructions, as shown in Fig 3.17. After finishing all questions, participants will

reach the end page and return to Prolific, as shown in Fig 3.19. Our study is reviewed by the

Institutional Review Board (IRB) at our institution (IRB22-0388).

3.13.7 Crowdsourcing

We recruit our participants on a crowdsourcing platform: Prolific (www.prolific.co) [April-May

2022]. We conduct three total studies: an annotation study, a decision support study, and

a head-to-head comparison study. We use the default standard sampling on Prolific for

participant recruitment. Eligible participants are limited to those reside in United States.

Participants are not allowed to attempt the same study more than once.
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Triplet annotation study We recruit 90 participants in total. We conduct a pilot study

with 7 participants to test the interface, and recruit 83 participants for the actual collection

of annotations. 3 participants fail the attention check questions and their responses are

excluded in the results. We spend in total $76.01 with an average pay at $10.63 per hour.

The median time taken to complete the study is 3’22”.

Decision support study We recruit 161 participants in total. 3 participants fail the

attention check questions and their responses are excluded in the results. We take the first 30

responses in each conditon to compile the results. We spend in total $126.40 with an average

pay at $9.32 per hour. The median time taken to complete the study is 3’53”.

Head-to-head comparison study We recruit 31 participants in total, where 1 participant

fail the attention check questions and their responses are excluded in the results. We spend

in total $24.00 with an average pay at $9.40 per hour. The median time taken to complete

the study is 3’43”.

3.14 Human Subject Study on Chest X-rays

3.14.1 Dataset

Our CXR dataset is constructed from a subset of the chest X-ray dataset used by Kermany

et al. [2018], which had 5,232 images. We take a balanced subset of 3,166 images, 1,583

characterized as depicting pneumonia and 1,583 normal. The pneumonia class contains

bacterial pneumonia and viral pneumoia images, but we do not differentiate them for this

study. An example of each image class is shown in Fig 3.10.

3.14.2 Hyperparameters

For CXR experiment, instead of ResNet-18 pretrained from ImageNet, we use a ResNet-18

finetuned on CXR classifcation as our CNN backbone, as we observe it provides better
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(a) Normal (b) Bacterial pneumonia (c) Viral pneumonia

Figure 3.10: An example of each image class in the CXR dataset.

Table 3.17: Classification and triplet accuracy of CXR models.

Model Classification accuracy Triplet accuracy

Dimension 50

MLE 0.973 0.571
HC 0.954 0.576
HC-filtered 0.955 0.574
TML N/A 0.602
TML-filtered N/A 0.587

Dimension 512

MLE 0.973 0.588
HC 0.968 0.602
HC-filtered 0.971 0.561
TML N/A 0.618
TML-filtered N/A 0.591

decision support simulation results. For training our HC model we use λ of 0.5. We use the

Adam optimizer [Kingma and Ba, 2014] with learning rate 1e− 4. Our training batch size is

16 for triplet prediction, and 30 for classification. All models are trained for 10 epoches. The

checkpoint with the lowest validation total loss in each run is selected for evaluations and

applications.

3.14.3 Classification and Triplet Accuracy

We present the test-time classification and triplet accuracy of our models in Table 3.17.

Both MLE and HC achieve above 95% classification accuracy. Both TML and HC achieve above

above 65% triplet accuracy. Both TML model and HC achieve the highest triplet accuracy in
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Table 3.18: CXR H2H preference results with
synthetic agent.

Dimensions 50 512

NI H2H with MLE

HC 0.536 0.675
HC filtered 0.472 0.599

NO H2H with MLE

HC 0.535 0.635
HC filtered 0.487 0.494

Table 3.19: CXR decision support accuracy
with synthetic agent.

Dimensions 50 512

Neutral Decision Support

MLE 0.711 0.726
HC 0.742 0.779
HC-filtered 0.732 0.804

Persuasive Decision Support

MLE 0.881 0.882
HC 0.949 0.966
HC-filtered 0.948 0.946

the 512-dimension unfiltered setting with triplet accuracy at 69.1% and 72.2% respectively.

Filtering out class-inconsistent triplets removes 20.69% of the triplet annotations in this

dataset.

3.14.4 Model Evaluation with Synthetic Agent

Similar to the BM setting, we select the TML with the best test triplet accuracy as our synthetic

agent, and then evaluate the examples produced by all representations. As table 3.18 shows,

preference for HC over MLE in H2H is less significant compared to BM, likely due to the

challenging nature of the CXR dataset. We still observe the patten that filtering improves

H2H performance.

Table 3.19 shows decision support accuracy for different settings. All models benefit from

a large dimension at 512. We observe consistent patterns such as filtering leading to better

decision support.

3.14.5 Effect of Triplet Amount and Type

We evaluate the effect of the number of triplets on our models in Fig. 3.11. Similar to the

BM experiments, H2H preference towards human-compatible representations and neutral

decision support performance decrease as the number of triplets decreases. Human-compatible
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Figure 3.11: HC performance declines as the number of triplets decreases, but shows strong
persuasive decision support accuracy even with very few triplets.

representations achieve strong persuasive decision support performance even with very few

triplets.

3.14.6 Interface

Our CXR interface is mostly the same as our BM interface, except that we add basic chest

X-ray instructions as participants may not be familiar with medical images. After the consent

page at the beginning, participants will see basic chest X-ray instructions showing where

the lungs and hearts. Then, they enter an multiple-choice attention check, as shown in Fig

3.13. The correct answer in “lungs and adjacent interfaces”. Failing the attention check will

disqualify the participant. After correctly answering the pre-task attention check, participants

will see the same task specific instructions as in the BM studies, as shown in Fig 3.14.

Screenshots of questions are shown in Fig 3.16. We also include two in-task attention check

questions simlar to the BM study. Our study is reviewed by the Institutional Review Board

(IRB) at our institution with study number that we will release upon acceptance to preserve

anonymity.

3.14.7 Crowdsourcing

We recruit our participants on Prolific (www.prolific.co) [September 2022]. We conduct three

total studies: an annotation study, a decision support study, and a head-to-head comparison
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study. We use the default standard sampling on Prolific for participant recruitment. Eligible

participants are limited to those reside in United States. Participants are not allowed to

attempt the same study more than once.

Triplet annotation study We recruit 123 participants in total. 20 partipants fail the

pre-task attention check question and 3 participants fail the in-task attention check questions;

their responses are excluded in the results. We spend in total $80.00 with an average pay at

$10.70 per hour. The median time taken to complete the study is 3’22”.

Decision support study We recruit 296 participants in total. 34 partipants fail the pre-task

attention check question and 10 participants fail the in-task attention check questions; their

responses are excluded in the results. We spend in total $221.67 with an average pay at

$11.00 per hour. The median time taken to complete the study is 3’40”.

Head-to-head comparison study We recruit 57 participants in total. 6 partipants fail the

pre-task attention check question and 1 participants fail the in-task attention check questions;

their responses are excluded in the results. We spend in total $40.00 with an average pay at

$10.54 per hour. The median time taken to complete the study is 3’25”.
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Welcome to our research study! 

Description: We are researchers at [anonymous institution] doing a research study about improving human collaboration with artificial intelligence (AI)
on decision making tasks. The purpose of this study is to understand the human perception of images and build appropriate AI assistance. You will be
asked to judge the similarity between images. You may or may not be asked to recognize the object in an image. You may or may not be asked to
recognize the object in an image. You will also answer a survey at the end of the study. We will not ask any personal or sensitive questions that might be
upsetting. The study should take about 5 minutes. Your participation is voluntary. 

Incentives: You will be compensated $1.00 for completing the study (about $12.00/hr). In the event of an incomplete work, you must contact the
research team and compensation will be determined based on what was completed and at the researchers' discretion. 
PLEASE NOTE: This study contains attention checks to make sure that participants are finishing the tasks honestly and completely. As long as you read
the instructions and complete the tasks, your work will be approved. If you fail these checks, your work will be rejected. 

Risks and Benefits: You may be displayed natural images of birds or insects. If you have ornithophobia or entomophobia, you may experience anxiety
when looking at these images. In this case, please do not participate in this study. Otherwise, your participation in this study does not involve any risk
to you beyond that of everyday life. 
You may benefit from this study by learning to recognize bird and insect species. Insights from this study will help advance possible ways that humans
interact with AI models. Your interaction with our AI model may lead to better training of different professions such as radiologists, and as a result better
healthcare. 

Confidentiality: Your Prolific Worker ID will be used to distribute payment to you but will not be stored with the research data we collect from you. Data
obtained in this study will be processed, analyzed, and possibly published by the research team.

If you decide to withdraw, data collected up until the point of withdrawal may still be included in analysis.
Identifiable data will never be shared outside the research team.
De-identified information from this study may be used for future research studies or shared with other researchers for future research without your
additional informed consent.

Consent: Participation is voluntary. Refusal to participate or withdrawing from the research will involve no penalty or loss of benefits to which you might
otherwise be entitled. 

By clicking on the button below, you confirm that you have read this consent form, are at least 18 years old, and agree to participate in the research.

I Agree

Figure 3.12: The consent form page on our interface.

(a) Basic instructions about chest X-rays. (b) Multiple-choice attention check for CXR
tasks. The correct answer is “lungs and adja-
cent interfaces”.

Figure 3.13: Pre-task instructions and attentions check for CXR tasks
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Welcome to the butterfly-moth visual similarity study. 
Please read the instructions below.

Image similarity annotation

In this task, you will see a reference image and several candidate images.
Amongst the candidate images, you will select the one that looks the most
similar to the reference image. There is no right or wrong answer. Try your
best to break ties.

Enter image similarity annotation

(a) The annotation and head-to-head compari-
sion task instructions.

Welcome to the butterfly-moth visual similarity study. 
Please read the instructions below.

Image classification

In this task, your goal is to decide whether a test image is a butterfly or a
moth. We provide one reference image from each class to support you.
Please classify the test image by determining which reference image looks
the most similar to the test image. Try your best to break ties.

Enter image classification

(b) The decision support task instructions.

Figure 3.14: The task-specific instruction page on our interface.

Question#: 1 / 52
Which candidate image looks most similar to the reference image? (You can click on the image to select)

Reference

Candidate image 1 Candidate image 2

(a) The annotation and head-to-head compari-
sion task questions.

Question#: 1 / 42
Which reference image looks more similar to the test image?

Test

Reference image 1
(Butterfly)

Reference image 2
(Moth)

(b) The decision support task questions.

Figure 3.15: The task-specific questions for BM.

(a) The annotation and head-to-head compari-
sion task questions.

(b) The decision support task questions.

Figure 3.16: The task-specific questions for CXR.
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Question#: 21 / 52
Attention Check: Please click on the left image!

Attention Check: Please click on the left image!

Reference

Candidate image 1 Candidate image 2

(a) The annotation and head-to-head compari-
sion task attention check questions.

Question#: 14 / 42
Attention Check: Please click on the left image!

Attention Check: Please click on the left image!

Test

Reference image 1
(Moth)

Reference image 2
(Butterfly)

(b) The decision support task attention check
questions.

Figure 3.17: The task-specific attention check questions for BM.

Thank you! Please answer the survey below.

Submit

1. How many questions do you think you have answered correctly? (except for attention checks) * 

Current: 0%

2. Do you agree that the reference images are helpful when you decide the class of the test image? *

3. Do you have any general feedback for our study? (Optional)

Strongly
Disagree

Disagree Neutral Agree
Strongly
Agree

Figure 3.18: The survey page of the decision support task on our interface.
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Thank you! This is the end of the current session.

Click the button below to end the study and return to Prolific.

End study

(a) The annotation and head-to-head compari-
sion task end page.

Thank you! This is the end of the current session.

Great, your got 17 out of 40 correct!

Click the button below to end the study and return to Prolific.

End study

(b) The decision support task end page.

Figure 3.19: The task-specific end page on our interface.
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CHAPTER 4

TEACHING HUMANS WITH CONCEPTS AND EXAMPLES

4.1 Overview

In this chapter, we present a novel teaching paradigm that combines concepts and examples

to teach simulated human learners to do fine-grained image classification tasks. We propose

a method to select concepts and examples that are informative for the task to teach a

concept bottleneck learner. We evaluate the effectiveness of the teaching on 200 bird species

identification tasks with different levels of granularity and in both in-distribution and out-of-

distribution examples from two different datasets. Results show that the teaching is more

effective on tasks with the highest level of granularity, which suggests concepts and examples

selected at the proper level of granularity are more informative for the task and have more

potential to improve the performance of human learners.

Unlike the previous chapters, which focuses explanations of tasks and predictions, this

chapter focuses on the transfer of knowledge from AI systems to humans, namely, teaching

humans to perform tasks. This work is exploratory in nature and aims to understand the

effectiveness of the teaching with concepts and examples paradigm on image classification

tasks.

4.2 Introduction

Just like communication among people and each other cancels ambiguity and promotes

agreement, communication between human and AI should also aim for mutual understanding.

In this chapter we seek to find common ground between humans and AI, and discuss

specifically how to teach simulated human learners to do fine-grained image classification

through concepts and examples.
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We argue that the key to mutual understanding lies in the ability to communicate

effectively through distinctive concepts and representative examples. AI models powered by

deep learning have shown remarkable performance in various tasks and demonstrated the

ability to learn from large-scale data. However, the lack of interpretability and explainability

of these models has been a major obstacle to their adoption in high-stakes domains such

as healthcare, criminal justice, and finance. Recent advances in explainable AI (XAI)

have made significant progress in building models that make predictions based on concepts

transferred from natural language descriptions via vision language models [Oikarinen et al.,

2023, Yuksekgonul et al., 2022, Yan et al., 2023, Yang et al., 2023].

In this chapter, we propose to investigate how to leverage these models in building AI-

driven tutorials that can teach learners with concepts and examples. We will also investigate

how to build AI-driven tutorials by identifying key concepts for the tasks and important

examples associated with the concepts. We will evaluate the effectiveness of these tutorials

in improving learner performance and understanding of the underlying concepts on a number

of fine-grained natural image classification tasks.

4.2.1 Recent Advances on Vision Language Models and Explainable AI

Visual perception and language understanding, two of the most important functions of

human brains, have been proved to be well emulated, sometimes even “outperformed,” by

machine-learning models on curated datasets and in specific domains. While human brains

are able to often effortlessly perform and make connections between the two through multiple

levels of abstractions, machine learning models struggles to manage both at the same time.

However, recent advances in contrastive representation learning sheds new light on how to

effectively learn transferable knowledge from supervision signals with a large scale of data in

both the text and the image format [Radford et al., 2021].

Self-supervised deep learning models learned with framework like CLIP [Radford et al.,
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2021] trained from a large scale are black-box models where model behaviors, for example

predictions in classification tasks, are not transparent and interpretable to there human users.

Recent work in explainable AI (XAI) have come up with various techniques to produce global

and local explanations, we argue that these explanations are, on a spectrum of interpretability,

too close to machines but too far from humans.

Example-based explanation techniques usually either select prototypical images from

training set as global explanation, or select nearest neighbors of the input images as local

explanations. These examples can serve as probing to the black-box model’s input/output

space, but hardly an explanation for the decision making process.

Local feature-based explanations like GradCam [Selvaraju et al., 2017] or LIME [Ribeiro

et al., 2016] use gradient-based or perturbation-based methods to identify pixel regions

contributing to the prediction and outputs heatmaps for the input images. These methods

aim to select in the causal chain of the prediction the important parts of the input, but may

sometimes still be incomprehensible should the causal relationship between the highlighted

part and the prediction remained obscure. For example, a heatmap highlighting regions

outside a patient’s liver could be produced by such algorithms, while the task is to predict

from a series of MRI images the malignancy of a lesion inside the patient’s liver.

Another important breakthrough in building explainable AI models is the use of concepts

as intermediate representations. Concept bottleneck models [Koh et al., 2020] have been

proposed to learn interpretable representations by mapping the input data to a set of

predefined concepts. These models can provide explanations in terms of concepts, which are

more interpretable to humans than raw pixels or features. However, these models are still

limited because they rely on predefined concepts, which have to be annotated by humans for

each example in the training data. However, recent work has shown that it is possible to learn

concepts from data without human supervision: [Oikarinen et al., 2023] and [Yuksekgonul

et al., 2022] have proposed models that can learn concepts from natural language descriptions
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through multimodal models and use them to make predictions on images. [Yan et al., 2023]

and [Yang et al., 2023] have proposed models where concepts queried from a large language

model are used to train concept-bottleneck model. These models can leverage concepts for

prediction without any human supervision in the pipeline yet still yield good performance on

image classification tasks.

4.3 Methods

In this work, we propose to investigate how to leverage vision-language models and concept

bottleneck models in building AI-driven tutorials that can teach humans in a more inter-

pretable way. Given a set of concepts and examples, we aim to build a system that can

generate tutorials that identify the most important concepts and examples for a given task,

and present them to the user in an interpretable way. The user can then interact with the

system to learn the concepts and examples that are most relevant to the task.

4.3.1 Problem Formulation

We formulate the teaching problem as follows. Given a labeled image classification dataset

D = {(i, y)}, where i is an image and y ∈ Y is the label, we aim to select teaching examples

M from all of the N images for training the learner to predict the label from the image. To

simulate the thought process of human learners, we assume that the learner is a concept

bottleneck model that can predict the label from the image using a set of concept C, which

are extracted from natural language descriptions.

The goal is to build the concept bottleneck with the most important concepts C∗, and

select the most effective teaching examples M∗ from the dataset D for the learner to learn

to predict the label from the image through the concepts bottleneck. Suppose we have a

vision-language model such as CLIP ([Radford et al., 2021]) that is pretrained with image-text

pair to align images and texts in a shared representation space. We can use the image encoder
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I to encode the image dataset D = {(xi, yi)}Ni=1 where xi ∈ Rd is the extracted feature of

image i with dimension d, and the text encoder T to encode the concepts C into E ∈ RNC×d

from natural language descriptions, where NC is the number of concept, i.e. the largest

possible size of the concept bottleneck. E =
[
T (c1); . . . ; T (cNC

)
]
.

To make a prediction with a concept-bottleneck model, we can then compute the concept

activation ai ∈ RNC of any image i on each concept cj in the bottleneck with a function g:

aij = g(xi, T (cj)), j = 1 . . . NC (4.1)

ai =
(
ai1 . . . aiNC

)⊤ (4.2)

where g is a function g : Rd×Rd → R that computes the activation score from image feature

xi of any given image and any concept feature T (cj) from all NC concepts in the bottleneck.

In our experiments, we use cosine similarity as the function g. Since our image features and

concept features are both normalized, g is equivalent to taking the inner product of xi and

T (cj).

Now we simulate the human learner as a linear classifier that can predict the label yi

of any image i with the concept activation ai. The label prediction function f : ŷi = f(ai)

where f is a linear function f : RNC → Y that predicts the label from the concept activation.

4.3.2 Concept Selection

Identifying the most important concepts to form the concept bottleneck is crucial for the

learner to predict the label from the image. Given a set of concepts S, we aim to select the

most important concepts C∗ for the learner to make predictions on the image dataset D. We

need to design a scoring function FC : 2S → R that scores the importance of a set of concepts

C. We adapt the concept selection objectives from [Yang et al., 2023] to select the most

important concepts for the task. Specifically, we can define D(c) as the discriminability score
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of concept c on the image dataset D, which measures how well the concept can distinguish

the images in the dataset. Concepts with higher discriminability scores are associated with

fewer classes. We can calculate the discriminability score of a concept c by first measuring

the similarity score between a class y and a concept c:

Sim(y, c) =
1∣∣Xy
∣∣ ∑
x∈Xy

x · T (c)⊤ (4.3)

where Xy is the set of images in class y, and T (c) is the text embedding of concept c. We can

normalize the class similarity of a concept as Sim(y | c) = Sim(y, c)/
∑

y′∈Y Sim
(
y′, c

)
. The

normalized similarity score Sim(y | c) measures the conditional likelihood of class y given

concept c. Now we can compute the negative entropy of the normalized similarity score as

the discriminability score of concept c:

D(c) =
∑
y′∈Y

Sim
(
y′ | c

)
· log

(
Sim

(
y′ | c

))
(4.4)

A high discriminability score D(c) indicates the appearance of concept c over examples from

different classes has a skewer distribution, which means the concept c is associated with fewer

classes and can distinguish the images from different classes better. We can rank the concepts

by their discriminability scores and identify the most associated class of each concept by

comparing the class similarity scores:

Class(c) = argmax
y∈Y

Sim(y, c) (4.5)
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We can then select the most important concepts C∗ by picking the top concepts for each class

and maximizing the total discriminability score of the given set of selected concepts C:

C∗ =
⋃
y∈Y

arg max
C⊆Sy

FC(C) (4.6)

where Sy = {c ∈ S | Class(c) = y} are all the concepts in S associated with class y, and C∗y is

the selected set associated with class y. The size of the selected set is balanced for each class

and are denoted by
∣∣C∗y ∣∣ = Ky where Ky · |Y| = K = |C∗| is the size of the bottleneck. For

each class y we select the top Ky concepts and take the union as our final concept bottleneck

C∗.

4.3.3 Example Selection

In this section, we aim to select the most effective teaching examples M∗ from the dataset

D for teaching the learner to predict the label from the image through the selected concept

bottleneck C∗. We need to design a scoring function FM : 2N → R that scores the effectiveness

of the teaching set M. Specifically, we can define Sim(i, C) as the saliency score of image i

on the concept bottleneck C, which measures how well the image can activate the concepts in

the bottleneck. We first split the concepts C into two sets: the concepts that are associated

with the true class of the image as C+y and those that are not as C−y . We can calculate the

saliency score of an image i by measuring the differences between the sum of the activations

on associated concepts and the sum of the activations of non-associated concepts:

Sim(i, C) = α Sim(i, C+y )− β Sim(i, C−y ) (4.7)

= α
∑
c∈C+y

g(xi, T (c))− β
∑
c∈C−y

g(xi, T (c)) (4.8)
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where α and β are hyperparameters that controls the strength of activation of associated

concepts and non-associated concepts correspondingly. Finally we can calculate the scoring

for any teaching set M as FM =
∑

i∈M Sim(i, C∗) and select the optimal set by greedily

adding examples with the highest saliency score Sim(i, C∗).

4.4 Experimental Setup

4.4.1 Dataset

We conduct experiments on different granularities of binary classification tasks from two bird

species image datasets. The iNaturalist dataset 2021 [Van Horn et al., 2018] is a large-scale

natural image dataset with 2.7 million images of 10,000 classes of plants and animals. We use

the bird species subset of the dataset, which contains 414,847 training images of 1,486 bird

species. The CUB-200-2011 dataset [Wah et al., 2011] is a fine-grained dataset with 11,788

images of 200 bird species. The dataset contains 312 binary attributes for each image, which

are annotated by crowd workers. We use these binary attributes as the concept pool for our

concept selection experiments.

We look for the common species between the two datasets and select 175 species in total

for our experiments. For each species in the iNaturalist dataset, we re-split the training

images into 60% for training, 20% for validation, and 20% for testing randomly. We use the

re-splitted training set to select concepts and examples, the validation set to do early stopping,

and the testing set to evaluate the performance of the learner. Since the testing set comes

from the same distribution as the training set, we refer to it as the in-distribution testing set.

For the CUB-200-2011 dataset, we only use the default testing split for evaluation. Since

the testing split comes from a different distribution than the training split in iNaturalist, we

refer to it as the out-of-distribution testing set.

To investigate the effect of teaching with concepts and examples at different levels of
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granularity, we build a taxonomy tree for the bird species in the iNaturalist dataset. The

taxonomy information provided by the dataset contains the scientific names, genus names,

family names, order names, and class names of the species. We use the distance between the

species in the taxonomy tree to define the level of granularity for the binary classification

tasks. For example, two species with a distance of 2 in the taxonomy tree are considered to

be in the same genus, while two species with a distance of 4 are considered to be in the same

family. The binary classification tasks between species in the same genus are considered to

be at the genus level, while the tasks between species in the same family are considered to

be at the family level. Based on the taxonomy tree, we select binary classification tasks by

randomly sampling two species from the dataset. There are four levels of granularity: genus,

family, order, and class. We select 50 binary classification tasks for each level of granularity,

resulting in 200 binary classification tasks in total.

4.4.2 Baseline

We compare our example selection method with two baselines: random selection and kmeans.

The random selection baseline randomly selects examples from the training set to train the

learner, while keeping examples selected balanced for each class. The kmeans baseline clusters

the training examples into |M| /2 clusters for each class using the kmeans algorithm on the

image features. Then we select the images with the smallest Euclidean distance to each

cluster center as the teaching examples.

4.4.3 Implementation Details

We use the CLIP model [Radford et al., 2021] as the vision-language model to encode

images and concepts. We use the pretrained weights of the ViT-L/14 architecture with

768-dimensional embeddings. We use the default PyTorch implementation of linear models

and the Adam optimizer with a learning rate of 1e− 3 to train the concept bottleneck model.
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Table 4.1: Test accuracy of the learner with different concept bottleneck size Ky and number
of examples My on the in-distribution and out-of-distribution testing sets. Accuracy is
averaged over 50 binary classification tasks at each granularity level and each task over 5
runs with different random seeds.

Distribution In-distribution Out-of-distribution
Level Genus Family Order Class Genus Family Order Class
Ky My

1 1 0.563 0.571 0.625 0.629 0.574 0.582 0.643 0.642
1 5 0.574 0.6 0.631 0.642 0.59 0.618 0.651 0.656
1 10 0.578 0.604 0.633 0.642 0.591 0.622 0.653 0.656
3 1 0.524 0.523 0.553 0.552 0.536 0.528 0.564 0.562
3 5 0.528 0.535 0.548 0.558 0.541 0.542 0.557 0.569
3 10 0.528 0.541 0.55 0.556 0.541 0.551 0.56 0.569
5 1 0.577 0.593 0.668 0.688 0.609 0.602 0.693 0.712
5 5 0.61 0.656 0.722 0.74 0.647 0.672 0.759 0.768
5 10 0.622 0.662 0.735 0.749 0.662 0.684 0.772 0.778

Learners can only predict the label from the selected concept activation, and do not take

image features as inputs in the prediction. We use the cosine similarity as the activation

function g to compute the concept activation, and cross-entropy loss to train the linear

classifier f to predict the label from the concept activation. We use the early stopping

strategy to prevent overfitting on the validation set. We train the model for 100 epochs and

evaluate model checkpoints with the highest validation accuracy on the test set.

For each binary classification task, we experiment with different numbers of concepts and

examples. We set the number of concepts per class Ky to be 1, 3, and 5, and the number of

examples per class My = |M| / |Y| to be 1, 5, and 10.
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4.5 Main Results

4.5.1 Comparing Concept Bottleneck Size, Number of Examples, Granularity

Levels, and Distribution Types

We investigate the effect of the concept bottleneck size and the number of examples on the

performance of the learner. We report the test accuracy of the learner aggregated from the

50 binary classification tasks at each granularity level in Table 4.1. Each cell in the table

shows the average accuracy over 5 runs with different random seeds. We report the accuracy

on the in-distribution and out-of-distribution testing sets separately.

Larger bottleneck size does not always lead to better performance. We observe

that the performance of the learner does not always improve with a larger bottleneck size.

Across different levels of granularity and distribution types, the learner with a bottleneck size

of 5 outperforms the learner with a bottleneck size of 3, but the learner with a bottleneck

size of 3 does not always outperform the learner with a bottleneck size of 1.

More examples lead to better performance. We observe that the performance of the

learner improves with more examples. The learner with 10 examples per class outperforms the

learner with 5 examples per class, and the learner with 5 examples per class outperforms the

learner with 1 example per class. This trend is consistent across different levels of granularity

and distribution types.

Learners perform better on higher levels of granularity. We observe that the learner

performs better on higher levels of granularity. The learner achieves the highest accuracy on

the class level, followed by the order level, family level, and genus level. This suggest our

method yield better performance when teaching concepts at higher levels of granularity.
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Table 4.2: Win-rate of the learner over the baselines on the in-distribution and out-of-
distribution testing sets at each granularity level. Number of concepts Ky = 1, number of
examples My = 1. Win-rate greater or equal to 0.5 is highlighted in bold.

In-distribution Out-of-distribution
Level Random KMeans Random KMeans
Genus 0.5 0.625 0.458 0.458
Family 0.417 0.417 0.354 0.292
Order 0.458 0.375 0.375 0.188
Class 0.667 0.604 0.562 0.417

Table 4.3: Win-rate of the learner over the baselines on the in-distribution and out-of-
distribution testing sets at each granularity level. Number of concepts Ky = 3, number of
examples My = 5. Win-rate greater or equal to 0.5 is highlighted in bold.

In-distribution Out-of-distribution
Level Random KMeans Random KMeans
Genus 0.312 0.312 0.271 0.271
Family 0.375 0.396 0.375 0.458
Order 0.125 0.188 0.167 0.167
Class 0.229 0.229 0.229 0.208

Learners perform better on out-of-distribution testing sets. We observe that the

learner performs better on out-of-distribution testing sets than on in-distribution testing sets.

This suggests that our method is more robust to out-of-distribution data than in-distribution

data. This may seem counterintuitive, but through further investigation, we find that the

observation could be due to the fact that the out-of-distribution testing sets have better

image quality than the in-distribution testing sets, which makes the task easier for the learner

to predict the label from the image.

4.5.2 Comparing Example Selection Methods

We compare the performance of our concept selection method with two baselines: random

selection and kmeans. We evaluate the performance of the learners on the in-distribution

and out-of-distribution testing sets. For each binary classification task, we calculate accuracy

of the learners on the testing sets over 5 runs with different random seeds. Our metric is how
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Table 4.4: Win-rate of the learner over the baselines on the in-distribution and out-of-
distribution testing sets at each granularity level. Number of concepts Ky = 5, number of
examples My = 10. Win-rate greater or equal to 0.5 is highlighted in bold.

In-distribution Out-of-distribution
Level Random KMeans Random KMeans
Genus 0.146 0.375 0.146 0.375
Family 0.188 0.188 0.167 0.25
Order 0.312 0.438 0.292 0.458
Class 0.438 0.542 0.417 0.562

many times the learner outperforms the baselines in all of the 50 tasks at each granularity

level. We report results with three settings of bottleneck size Ky and number of examples

My: Ky = 1,My = 1, Ky = 3,My = 5, and Ky = 5,My = 10 in Table 4.2, Table 4.3, and

Table 4.4 respectively.

Ours outperforms random selection and kmeans on genus and class level across

with small bottleneck size and number of examples. (Ky = 1,My = 1) When the

bottleneck size is 1 and the number of examples is 1, our method outperforms random selection

and kmeans on both genus and class level for in-distribution examples and outperforms random

selection on the class level for out-of-distribution examples. This suggests that our method is

effective in selecting concepts and examples for teaching the learner to predict the label from

the image when the bottleneck size is small and the number of examples is small.

Out method does not outperform random selection and kmeans with median

bottleneck size and number of examples. (Ky = 3,My = 5) When the bottleneck

size is 3 and the number of examples is 5, our method does not outperform random selection

and kmeans on different levels of granularity for either in-distribution examples and out-of-

distribution examples.

Ours outperforms kmeans on class level with larger bottleneck size and number of

examples. (Ky = 5,My = 10) When the bottleneck size is 5 and the number of examples
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is 10, our method outperforms kmeans on the class level for out-of-distribution examples.

This suggests that our method has more potential in selecting concepts and examples for

higher levels of granularity when the bottleneck size is large and the number of examples is

large.

4.6 Discussion

From the results we can see that the effectiveness of the teaching with concepts and examples

paradigm is subject to several factors.

First, both the quality of the concept pool and the selected bottleneck is crucial for the

effectiveness of the teaching. The concept pool could be improved by including more diverse

concepts that capture the distinctive features of data from different classes. The bottleneck

selection could be improved by selecting a bottleneck that is more informative for the task.

In our experiemnts, we perform teaching on tasks with different levels of granularity, and

the results show that the teaching has different effectiveness on different tasks. Tasks with

different levels of granularity may require different levels of abstraction in the concepts and

examples. When the task is too fine-grained, the concepts pool may not be detailed enough

to capture the nuanced differences between classes. When the task is too coarse-grained, the

concepts pool may not be diverse enough to capture the broad distribution of the data. In

our experiments, we find that the teaching is more effective on tasks with the highest level

of granularity, which suggests that our concept pool may be too general and not detailed

enough to capture the differences between very similar looking classes. In future work, we

could improve the concept pool by including more class-specific concepts that capture the

distinctive features that are unique to one class or only appear in a few classes.

Second, the effectiveness of the teaching is also subject to the quality of the examples.

In our experiments, we find that the teaching is more effective when the examples are more

diverse and representative of the data distribution. This is observed from the performance of
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random and kmeans examples, which covers a broader distribution of the data. They are

more effective than our concept selection method that are based on the concept bottleneck

and does not consider coverage of the data distribution. The comparasion of the performance

of different example selection methods in out-of-distribution examples also suggests that the

examples should be more diverse and representative to teach more generalizable learners. In

future work, we could improve the example selection by selecting examples that are more

diverse and representative of the data distribution besides the objective of having stronge

concept association.

4.7 Conclusion

In conclusion, we have presented a novel teaching paradigm that combines concepts and

examples to teach simulated human learners to perform natural image classification tasks

from four different levels of granularity and in both in-distribution and out-of-distribution

examples. We find that the teaching is more effective on tasks with the highest level of

granularity, which suggests that our concept pool may be too general and not detailed enough

to capture the differences between very similar looking classes. These exploratory results

suggest that the teaching with concepts and examples paradigm has the potential to improve

the performance of human learners on image classification tasks when the concept pool and

examples are carefully selected to be properly informative for the task.
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CHAPTER 5

FUTURE WORK

In this dissertation, we have investigated how to enable a two-way communication between

humans and AI systems. We have explored three different aspects: understanding machines

through data and explanations, learning from humans for better decision support, and

teaching humans with concepts and examples. In this chapter, we discuss future directions

for human-AI collaboration in these three aspects.

From the perspective of understanding machines, we have explored how to understand

machine predictions through data distribution and interactive explanations. We have shown

that human-AI teams have different interactions when making predictions on in-distribution

and out-of-distribution examples. One way to extend our current work is to investigate how to

improve human-AI interactions on out-of-distribution examples. When human-AI teams make

predictions on out-of-distribution examples, we should provide more informative explanations

to help humans understand the machine’s predictions. We need to inform humans about the

distribution shift and the potential biases in the data and safeguard against over-reliance on

the machine’s predictions.

We have also shown that interactive explanations may not always improve human per-

formance and may reinforce human biases. We should also investigate how to help humans

understand the machine’s predictions in a way that does not change humans’ decision-making

processes on the task.

From the perspective of learning from humans, we have explored how to learn human-

compatible representations for case-based decision support. We have shown that AI systems

that are trained to capture human similarity judgments can produce human-compatible rep-

resentations. With different decision support policies, we have shown that human-compatible

representations can lead to better decision support and improve human performance. One

way to extend our current work is to investigate which decision support policies are more
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suitable for given tasks and human preferences. When AI systems have good performance

on a task, we may consider policies that encourage humans to rely more on the AI system.

When AI systems have poor performance on a task, we may consider policies that encourage

humans to rely more on their own intuition. We can explore methods to adapt the decision

support policies to the task and human preferences.

From the perspective of teaching humans, we have explored how to teach fine-grained

image classification with concept and example selection. We have shown that teaching with

informative concepts and examples can improve human performance. One way to extend our

current work is to investigate how to incorporate coverage and diversity into the concept and

example selection algorithm. When we select concepts and examples, we should consider the

coverage of the concept pool and the diversity of the examples to help humans understand

the task more comprehensively.

Another way to extend our current work is to enforce contrastive thinking during the

human learning process. We should investigate how to teach humans in batches where we

encourage them to think about the similarities and differences between examples. This could

be implemented with careful design of an interactive interface that asks humans to reflect on

the differences between examples in a batch. We hope to see better teaching performance

when we encourage humans to think contrastively.

In conclusion, there are many opportunities for future work in encouringe two-way

communication between humans and AI systems. We invite researchers to explore different

aspects of human-AI collaboration and think about what is the best way to enable humans

and AI systems to work together effectively. We hope that our work will inspire future

research in this area and help to build AI systems that empower humans to make better

decisions.
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CHAPTER 6

APPENDIX

6.1 Appendix for Chapter 2

6.1.1 Human Performance in Absolute Accuracy

Fig. 6.1 shows human performance in absolute accuracy.
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Figure 6.1: Human-AI team performance of different explanation types. Distribution types
are indicated by color of the bar and error bars represent 95% confidence intervals. In ICPSR,
human-AI team performance is significantly higher in-distribution than out-of-distribution in
all explanation types (p < 0.01) except Interactive/None. In COMPAS, in-distribution perfor-
mance is significantly higher only in None/None (p < 0.005). In BIOS, out-of-distribution
performance is significantly higher only in None/None (p < 0.01).

6.1.2 COMPAS Figures

We also present the figures related to our hypotheses and results for COMPAS. The accuracy

gain in COMPAS is shown in Fig. 6.2. The agreement and agreement by correctness are

shown in Fig. 6.3 and Fig. 6.4. The subjective perception on whether real-time assistance is

useful and whether training is useful is shown in Fig. 6.5. Fig. 6.6 shows the percentage of

participants who rate a feature important.
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Figure 6.2: Accuracy gain of different conditions in COMPAS. Distribution types are indicated
by color of the bar and error bars represent 95% confidence intervals. Accuracy gain is
only sometimes positive (although not statistically significant). Performance gap between
human-AI teams and AI is significantly smaller in all explanation types except None/None.
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Figure 6.3: Agreement with AI predictions of different conditions in COMPAS. Distribution
types are indicated by color of the bar and error bars represent 95% confidence intervals.
As compared to BIOS, agreement with AI predictions is much higher in-distribution than
out-of-distribution in all explanation types except Static/Static and Interactive/Static.

None/None Static/None Static/Static Inter./None Inter./Static Inter./Inter.
0

20

40

60

80

100

A
gr

ee
m

en
t

(%
)

77.4 76.9 77.3 77.3 78.1
82.0

73.6 74.1
79.6

75.0
78.6 79.2

71.8
75.2

79.7 78.4
82.5 81.5

67.5 66.8
74.7

61.4

72.1
75.8

IND Correct

OOD Correct

IND Wrong

OOD Wrong

Figure 6.4: Agreement with AI grouped by distribution type and whether AI predictions are
correct in COMPAS. Distribution types are indicated by color of the bar, bars with stripes
represent wrong AI predictions, and error bars represent 95% confidence intervals. human-AI
teams are only more likely to agree with correct AI predictions out-of-distribution for all
explanation types except None/None.
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Figure 6.5: Subjective perception on whether real-time assistance is useful and whether
training is useful. x-axis shows the percentage of users that answered affirmatively.
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Figure 6.6: Percentage of users finding a feature important in COMPAS. The features are
sorted in decreasing order from top to bottom by their Spearman correlation with groundtruth
labels.
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6.1.3 In-distribution vs. Out-of-distribution Setup

In this section, we will explain how we split in-distribution examples and out-of-distribution

examples in ICPSR as an demonstration of the in-distribution vs. out-of-distribution setup

procedures. First, we need to select an attribute for splitting. For each candidate attribute,

we split the data into 10 bins of equal size based on this attribute. We do this because we

want to explore different settings of splitting, e.g. different ranges of bins to use for training.

In other words, we hope to have as much control as possible when we consider which bins are

IND and which are OOD. For example in Fig. 6.7a we show the histogram of four candidate

attributes that we can use to split the examples. The distribution is so extreme in Gender

and Prior Arrests (too many “Male” in Gender and too many “10” in Prior Arrests) that if

we choose any of these two attributes, we would have no choice but to use nearly half of

our data as either IND or OOD, because we want to avoid having the same value in both

distribution types. Similarly Prior Convictions also limits our choices of bins due to its

extreme distribution. Since there are too many instances with value “0,” bin 1 and bin 2

would both consist of defendants who have 0 prior convictions after binning. If we were to

use a splitting where bin 1 is IND and bin 2 is OOD, then this splitting does not make sense

(one distribution type falls into the other’s distribution). Therefore we finally choose Age

as the attribute. We also design desiderata 3) for the in-distribution vs. out-of-distribution

setup to avoid these situations.

After selecting the attribute, we also need to decide which bins we use as in-distribution

examples and which bins as out-of-distribution examples. In ICPSR, the options we explore

are: 1) bin 1-5 as IND: age ≥ 30 as IND and age > 30 as OOD. 2) bin 4-7 as IND: age between

25-36 as IND and age < 25 or age > 36 as OOD; 3) bin 4-10 as IND: age ≥ 25 as IND and

age < 25 as OOD; We finally settled on option 3) because it gives us the largest performance

gap between in-distribution examples and out-of-distribution examples (Fig. 6.7b). Note

that this performance gap looks different from what we present in Fig. 2 in the main paper
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(a) Histograms of a subset of features in ICPSR. We choose
Age as the attribute to split the distribution types because
it has a relatively uniform distribution.
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Figure 6.7: Figures for ICPSR in-distribution vs. out-of-distribution setup.

because here we use the entire testset (after balancing labels) for evaluation, instead of the

360 randomly sampled examples we prepare for the user study. The in-distribution examples

in the random samples are easier for AI, therefore giving us an even larger performance gap

between in-distribution and out-of-distribution.

6.1.4 User Interface Designs

Screenshots for static assistance for COMPAS. Fig. 6.8 shows the static assistance for

COMPAS.
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Figure 6.8: Static assistance for COMPAS.
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Interactive interface for COMPAS. Fig. 6.9 shows the interactive interface for COMPAS.
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Figure 6.9: In addition to static assistance such as feature highlights and showing AI
predictions, users are able to manipulate the features of defendant’s profile to see any changes
in the AI prediction. Illustration of interactive console for COMPAS: 1) actual defendant’s
profile; 2) edited defendant’s profile if user manipulates any features; 3) user is able to edit
the value of Sex and Charge Degree with radio buttons; 4) user is able to edit the value of
Race with dropdown; 5) user is able to edit the value Age, Prior Crimes, Juvenile Felony
Count, and Juvenile Misdemeanor Count with sliders; 6) a table displaying features and
respective coefficients, the color and darkness of the color shows the importance of a feature
in predicting whether a person will recidivate or not.
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(a) Attention check for ICPSR. The user is required to select the correct answers before they are
allowed to proceed to the training phase. The answers to the attention check questions can be found
in the same page.

Attention check. In the recidivism prediction task, many participants found one of the

attention-check questions to be very tricky. As the purpose of the attention-check questions

was not to intentionally trick users into answering the wrong answer, we made edits to one

of the attention-check questions to remove any confusion. In addition, many participants

felt that it was better if they could refer to the definitions of certain terminology. As such,

we combined the instructions and attention-check questions step in one page so participants

are able to look up on the definitions if they had forgotten. Fig. 6.10 shows screenshots of

attention check questions in all the three tasks.
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(b) Attention check for COMPAS. The user is required to select the correct answers before they are
allowed to proceed to the training phase. The answers to the attention check questions can be found
in the same page.
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(c) Attention check for BIOS. The user is required to select the correct answers before they are
allowed to proceed to the training phase. The answers to the attention check questions can be found
in the same page.

Figure 6.10: Attention check questions.
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Feature quiz. In the training phase of each task, for all explanation types except None/None,

we also design a feature quiz to see if users understand the association between features and

labels correctly. For each training instance in the training phase, we prompt users the quiz

as in Fig. 6.11 after they make the prediction. We ask users to identify the positive and

negative feature from two candidate features. The correct candidate is prepared by a random

sampling from all the features that are currently shown in the interface, while the incorrect

candidate is sampled from all features that do not have the correct polarity as prompted.

The submit button is disabled for five seconds starting from the appearance of the check to

refrain users from submitting a random answer.
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(a) Features quiz for ICPSR. The user is required to select the correct positive and negative feature
before they are allowed to proceed to the next instance. In this example, the correct answer for
positive feature is Prior Failure to Appear Yes, and the correct answer for negative feature is Race
Black.

(b) Features quiz for COMPAS. The user is required to select the correct positive and negative feature
before they are allowed to proceed to the next instance. In this example, the correct answer for
positive feature is Juvenile Felony Count, and the correct answer for negative feature is Age.
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(c) Features quiz for BIOS. The user is required to select the correct positive and negative feature
before they are allowed to proceed to the next instance. In this example, the correct answer for
positive feature is she, and the correct answer for negative feature is mixed.

Figure 6.11: Feature quiz.
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Figure 6.12: Median of time taken by MTurk users in each explanation type.

Details for experiments on Mechanical Turk. We report the median time taken by

the users to complete each task. The median time taken for ICPSR, COMPAS, and BIOS are

9’55”, 9’16”, and 8’59” respectively. In Fig. 6.12, we show the median time taken for each

explanation type. We are reporting the median time taken due to a few outliers in the data

collected where user is inactive for a long period of time during the study.

6.1.5 Survey Questions
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(a) Survey questions for ICPSR and COMPAS.
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(b) Survey questions for BIOS.

Figure 6.13: Survey questions.
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Figure 6.14: Architecture of the human-compatible representations model.

6.2 Appendix for Chapter 3

6.2.1 Implementation Detail

The architecture of our model is presented in Fig. 6.14. We first encode image inputs

using a Convolutional Neural Network (CNN), and then project the output into an high-

dimension representation space with a projection head made of multi-layer perceptron (MLP).

In our experiments we use one non-linear layer to project the output of the CNN into

our representation space. For classifcation task we add an MLP classifier head. We also

use one non-linear layer with softmax activation. For triplet prediction, we re-index the

representations with the current triplet batch and calculate prediction or loss. We use the

PyTorch framework [Paszke et al., 2019] and the PyTorch Lightning framework [Falcon et

al., 2019] for implementation. Hyperparameters will be reported in §3.12 for models in the

synthetic experiments and in §3.13 and §3.14 for models in the human experiments.

6.2.2 Computation Resources

We use a computing cluster at our institution. We train our models on nodes with different

GPUs including Nvidia GeForce RTX2080Ti, Nvidia GeForce RTX3090, Nvidia Quadro RTX

8000, and Nvidia A40. All models are trained on one allocated node with one GPU access.
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