
THE UNIVERSITY OF CHICAGO

NEW RESULTS ON THE APPROXIMABILITY OF SOME CLASSICAL CONSTRAINT

SATISFACTION PROBLEMS

A DISSERTATION SUBMITTED TO

THE FACULTY OF THE DIVISION OF THE PHYSICAL SCIENCES

IN CANDIDACY FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

BY

NENG HUANG

CHICAGO, ILLINOIS

AUGUST 2024

Copyright © 2024 by Neng Huang

All Rights Reserved

To my parents

"Ars longa, vita brevis"

TABLE OF CONTENTS

LIST OF FIGURES . vii

LIST OF TABLES . viii

ACKNOWLEDGMENTS . ix

ABSTRACT . x

1 INTRODUCTION . 1
1.1 Historical Background . 5
1.2 Future Directions and Adjacent Topics . 7

2 PRELIMINARIES . 11
2.1 Constraint Satisfaction Problems . 11
2.2 Unique Games Conjecture . 13
2.3 Gaussian Density Functions . 14
2.4 Fourier Analysis of Boolean Functions . 16
2.5 Approximation Algorithms and Approximation Ratios 19
2.6 Interval Arithmetic . 20

3 THE BASIC SDP AND ROUNDING SCHEMES 22
3.1 SDP-Based Approximation Algorithms: Framework and Challenges 22
3.2 Formulation of the Basic SDP . 25
3.3 Austrin’s Formulation for 2-CSPs . 29

3.3.1 Proof of Theorem 3.9 . 33

4 TIGHT INAPPROXIMABILITY RESULTS FOR MAX 2-SAT AND ITS SUBPROB-
LEMS . 39
4.1 Overview . 39
4.2 MAX 2-SAT and Simplicity Conjecture . 41
4.3 MAX CSP({x ∨ y, x, x̄}) . 45

4.3.1 The Rounding Algorithm . 45
4.3.2 Matching Hardness . 46

4.4 MAX HORN-2-SAT . 48
4.4.1 The Rounding Algorithm . 48
4.4.2 Matching Hardness . 50

5 SEPARATING MAX DI-CUT FROM MAX CUT AND MAX 2-AND 59
5.1 Three Problems: MAX CUT, MAX DI-CUT and MAX 2-AND 59
5.2 Separating MAX DI-CUT and MAX CUT 61
5.3 Separating MAX DI-CUT and MAX 2-AND 69

v

6 7/8-HARDNESS FOR MONOTONE MAX NAE-SAT 75
6.1 The MAX NAE-SAT Problem . 75
6.2 Rounding Schemes for MAX NAE-SAT . 77
6.3 Moment Functions of RPR2 Rounding Schemes 81
6.4 7/8-Hardness for Non-Monotone MAX NAE-SAT 85
6.5 7/8-Hardness for Monotone MAX NAE-SAT 88
6.6 Constructing an Explicit Gap Instance . 92

REFERENCES . 98

vi

LIST OF FIGURES

4.1 A contour plot of Prob(Θ2, t1, t2), where the x-axis is Φ(t1) and the y-axis is Φ(t2) 55

vii

LIST OF TABLES

4.1 The approximation ratios of MAX 2-SAT and its subproblems, assuming UGC.
Table taken from [BHZ24]. 39

4.2 The hardest distribution of configurations for MAX CSP({x ∨ y, x, x̄}) 46
4.3 The hardest distribution of configurations for MAX HORN-2-SAT 50

5.1 A hard distribution of configurations for MAX DI-CUT 62
5.2 A distribution that uses two pairs of biases that seems to yield an upper bound

αDI-CUT ≤ 0.8745896786, where b1 = 0.1644279457 and b2 = 0.1797733117. (Not
verified rigorously.) Table taken from [BHPZ23]. 68

5.3 Austrin’s hard distribution of configurations for MAX 2-AND [Aus10], b = 0.33633 69
5.4 A T HRESH rounding scheme F that gives a rigorously verified approximation

ratio of at least 0.87447 for MAX DI-CUT. (The actual ratio is probably about
0.874502.) This table is taken from Table 1 in [BHPZ23]. 70

viii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude for my amazing advisor

Aaron Potechin for his advice and support during the past few years. Aaron’s optimism,

enthusiasm, and kindness will continue to be an inspiration for me.

I would like to thank my collaborators Joshua Brakensiek and Uri Zwick on these

MAX CSP projects. I learned a great deal from both of them during these years of col-

laboration. I feel extremely fortunate to have them, as well as Aaron, as collaborators on

these projects.

I would like to thank Madhur Tulsiani and Janos Simon for being on my committee. I

would also like to thank Andy Drucker for being on my master’s committee.

I would like to thank Aaron Potechin and Kunal Marwaha for reading the early drafts of

this thesis and giving many helpful comments.

Now for projects not directly related to this thesis: I am grateful to Antares Chen and

Kunal Marwaha for the good times that we spent working on the random CSP project

together. I would like to thank the IDEAL institute for organizing the summer research

exchange in 2023 and funding me during that summer. I would like to thank Will Perkins

for his guidance during and after the IDEAL summer research exchange. I would like to

thank Bill Fefferman for his guidance on quantum-related readings.

Thanks to all my good friends and colleagues in the UChicago CS / TTIC community.

Because of them, this PhD journey is more enjoyable and memorable.

Finally, I want to thank my family and especially my parents. Their love and support

made all this possible.

ix

ABSTRACT

In a constraint satisfaction problem (CSP), we are given a set of variables and a set of

constraints over these variables and the goal is to assign the variables so that as many

constraints as possible are satisfied. Many problems in computer science can be phrased in

this language so it is of great interest to either design efficient algorithms for this task or

prove that such algorithms don’t exist.

In a breakthrough result, Raghavendra proved that for all CSPs there is a canonical semi-

definite programming (SDP) relaxation that is optimal under the famous Unique Games

Conjecture (UGC). More specifically, any integrality gap instances for this SDP relaxation

can be turned into hardness results assuming UGC (or at least that unique games is hard)

and there is a polynomial time rounding algorithm that achieves the integrality gap curve.

However, this result does not tell us how to explicitly construct integrality gap instances

for this SDP or what the optimal approximation ratio is for a given CSP. Moreover, the

rounding algorithm has a doubly exponential dependency on the error parameter, which

makes it practically infeasible.

Based on Raghavendra’s framework, we study the approximability for some classical

CSPs, including MAX DI-CUT, MAX 2-SAT and its subproblems, and MAX NAE-SAT. In

particular, assuming UGC (or at least that unique games is hard), we show that MAX DI-

CUT is strictly harder to approximate than MAX CUT and MAX NAE-SAT does not have

a 7/8-approximation algorithm. To do so, we construct explicit integrality gap instances

for the canonical SDP relaxation for these problems. For MAX 2-SAT and its subproblems,

we give tight approximability results (modulo UGC) by presenting matching approximation

algorithms and unique games hardness results.

x

CHAPTER 1

INTRODUCTION

We often encounter the following task, both in computer science and in real-world scenarios,

where we are given a set of variables and a list of constraints on these variables and we need

to find an assignment to these variables that satisfy all the constraints. This is known as

a constraint satisfaction problem (CSP). For example, the following problem shows up in

nearly all intro CS theory classes.

Problem 1 (3-SAT). Given a set of Boolean variables and a set of constraints of the form

x ∨ y ∨ z, find an assignment that satisfies all given constraints.

In the same classes where it would show up, we would also be taught that this problem is

NP-complete and there is no hope to solve it in polynomial time, unless the widely believed

P ̸= NP conjecture should turn out to be false. This is in fact true for most CSPs that

we are interested in. We then have to ask for the next best thing: satisfying as many

given constraints as possible. This turns the 3-SAT problem into the following MAX 3-SAT

problem.

Problem 2 (MAX 3-SAT). Given a set of Boolean variables and a set of constraints of the

form x ∨ y ∨ z, find an assignment that satisfies as many given constraints as possible.

MAX 3-SAT is an example of the maximum constraint satisfaction problems (MAX CSP).

Many more natural combinatorial optimization problems fall into this category. We mention

a few more examples below.

Problem 3 (MAX 3-LIN(q)). Given a set of linear equations over Zq with exactly 3 variables

in each equation, find an assignment that that satisfies as many given equations as possible.

Problem 4 (MAX CUT and MAX DI-CUT). MAX CUT is the problem where given a

graph G = (V,E), we are asked to find a partition of the vertices into two parts L and R

1

such that the number of edges in E with endpoints in different parts is maximized. MAX

DI-CUT is the directed version of this problem where we are given a directed graph, and we

need to maximize the number of edges in E whose first endpoint is in L and second endpoint

in R.

One way to find an assignment for these problems is simply choosing one uniformly

at random. In the case of MAX 3-SAT, a uniformly random assignment satisfies a 7/8-

fraction of the given constraints in expectation. Of course, we are unlikely to get an optimal

assignment this way, but we do obtain a mathematical guarantee that in expectation the

number of satisfied constraint by the assignment is at least a 7/8-fraction of what the optimal

solution satisfies. This type of algorithms are called approximation algorithms, and this

guaranteed fraction is called the approximation ratio of the algorithm.

It is then natural to ask if we can design approximation algorithms with an approximation

ratio better than the uniformly random assignment, and if so, what’s the best ratio that we

can achieve? To answer these questions, two tasks are involved:

1. Design good approximation algorithms with provable guarantees. The difficulty here

is not only coming up with the algorithm but also proving that the algorithm works

for all instances of the given problem.

2. Prove that no approximation algorithms exist beyond a certain approximation ra-

tio (under plausible complexity-theoretic assumptions). The difficulty here is proving

hardness against all polynomial-time algorithms.

The best case scenario is proving tight approximability results, namely, for some α >

0, showing that there exists a polynomial-time approximation algorithm that achieves an

approximation ratio of α, and that it is hard to achieve an approximation ratio of α + ϵ for

any ϵ > 0.

2

In addition to understanding the approximability of one problem, we are also interested in

comparing the approximability of two problems. This is usually the case when one problem

is a subproblem of the other problem. In the context of MAX CSPs, we may have two

problems A and B where problem A allows all constraint types in problem B as well as

some other constraint types that are not allowed in problem B. In this case, any instance of

problem B is automatically an instance of problem A, so any approximation algorithm for

problem A is in turn an algorithm for problem B. It is then natural to ask the following: is

problem A strictly harder to approximate than problem B due to the additional constraint

types? Or do they in fact have the same approximation ratio? To answer these questions,

we need to either present an optimal algorithm for problem B that works equally well for

problem A, or prove hardness for problem A that separates it from problem B.

In this thesis, we will investigate a few classical MAX CSPs and obtain some tight

approximability results, as well as separation results. In particular, we will present the

following results:

• In Chapter 4, we study the approximability of MAX 2-SAT and its subproblems.

For MAX 2-SAT, the best hardness result is due to Austrin [Aus07], and the best

algorithmic result is the LLZ algorithm due to Lewin, Livnat and Zwick [LLZ02].

However, the algorithmic result is numerical and does not give a rigorous guarantee

on the approximation ratio. It is conjectured that the approximation ratio achieved

by the LLZ algorithm actually matches the hardness ratio proved by Austrin. We

present a plan to prove this conjecture in Chapter 4, which was carried out in more

details in [BHZ24]. We also give a full characterization of the subproblems of MAX

2-SAT in terms of their approximability. The characterization is obtained by giving

matching hardness constructions and algorithms for these subproblems. The results in

this chapter are based on [BHZ24].

• In Chapter 5, we study the approximability of the MAX DI-CUT problem. While
3

the approximability of MAX CUT has been well understood, the understanding for

its counterpart in directed graphs lagged woefully behind. Nothing much could be

said about MAX DI-CUT, other than the fact that its approximation ratio is between

MAX CUT and MAX 2-AND (which as we will see is a natural generalization of MAX

DI-CUT), with the possibility of attaining equality on either end. We rule out this

possibility by giving a new algorithm as well as a new hardness construction for MAX

DI-CUT. The results in this chapter are based on [BHPZ23].

• In Chapter 6, we study the approximability of the MAX NAE-SAT problem, in which a

constraint is satisfied if and only if its inputs are not all equal. We prove that assuming

UGC, it is NP-hard to approximate MAX NAE-{3, 5}-SAT (the restriction of MAX

NAE-SAT to clauses of lengths 3 and 5) within a factor of 0.8739. This ratio improves

upon the previous hardness bound of 7/8 + ϵ for MAX NAE-SAT, which it inherits

from MAX NAE-4-SAT. Intuitively, for clauses of length 3, a good rounding algorithm

should create correlation between variables, but correlation hurts the performance of

the algorithm on clauses of length 5. We formalize this intuition by analyzing the

moment functions of the rounding schemes for MAX NAE-SAT. We believe moment

functions themselves are of independent interest. The results in this chapter are based

on [BHPZ21].

To describe these results, we set up the formal definitions in Chapter 2. In Chapter 3,

we will give an overview on the SDP-approach to approximating MAX CSPs. In particular,

we will discuss the Basic SDP, due to Raghavendra [Rag08], which our results rely heavily

on.

In the remainder of this chapter, we will discuss some historical background for approx-

imating MAX CSPs in Section 1.1. We conclude this chapter by surveying some adjacent

areas as well as future directions in Section 1.2.

4

1.1 Historical Background

The satisfiability problem (SAT), one of the prototypical CSPs, is also one of the first prob-

lems shown to be NP-complete, as well as its special case 3-SAT [Coo71]. These problems

are in Karp’s 21 NP-complete problems [Kar72], among which the decision version of MAX

CUT is also included.

For MAX CSPs, it was observed early on that many of them have constant-factor approx-

imation algorithms. The approximation ratios are not obtained directly from, but coincides

with those obtained by a uniform assignment, for example 1/2 for MAX SAT [Joh74] and

MAX CUT [SG76]. It was later observed that these ratios can be obtained deterministically

by derandomizing the uniform assignment using conditional expectation (see e.g. [Spe94]).

Many attempts were made to improve these ratios. For MAX SAT, Yannakakis [Yan94] gave

the first 3/4-approximation algorithm. Later, Goemans and Williamson [GW94] presented

a simpler algorithm that achieves the same ratio. The situation for MAX CUT was a bit

more embarrassing: a series of works (see e.g. [Vit81, HV91]) achieved a ratio of 1/2 + o(1)

where the o(1) term depends on various quantities in the graph, but none of them was able

to obtain a ratio that’s a constant strictly larger than 1/2.

A major algorithmic breakthrough came in the mid-90s, when Goemans and Williamson

used semi-definite programming (SDP) to give a 0.878-approximation algorithm for MAX CUT

[GW95]. This drastically improved the previous ratio of 1/2+ o(1). In the same paper, they

showed that SDP can also be used to improve the ratios for MAX DI-CUT and MAX 2-SAT.

This quickly led to an explosion of SDP-based algorithmic results for MAX CSPs, including

further improvements on MAX DI-CUT and MAX 2-SAT [LLZ02], MAX 3-SAT [KZ97],

MAX k-AND [MM14], MAX SAT and MAX NAE-SAT [ABZ06]. The readers are referred

to [MM17] to a more detailed survey of these algorithmic results. However, due to reasons

that we will explain in the next section, many of these results are numerical and do not yield

a theoretical guarantee on the approximation ratio.

5

In terms of inapproximability results, Papadimitriou and Yannakakis, in their pioneering

work [PY91], defined the complexity class of MAX SNP and proved that MAX 3-SAT and

several other natural combinatorial optimization problems are complete for this class. Con-

sequently, MAX 3-SAT has a polynomial time approximation scheme (PTAS) if and only if

the whole class of MAX SNP does. A PTAS for a MAX CSP can be thought of as a family of

algorithms such that for any ϵ > 0, it contains an algorithm that achieves an approximation

ratio of 1 − ϵ. This means that if we can show that MAX 3-SAT cannot be approximated

beyond some constant bounded away from 1, then the same will hold for many other natural

combinatorial optimization problems. This was achieved with the discovery of the PCP the-

orem [AS98, ALM+98]. The PCP theorem led to a flourish of inapproximability results for

combinatorial optimization problems (see e.g. [Tre14] for a survey of these results). This line

of work culminated in Håstad’s seminal paper [Hå01], in which he showed that for any k ≥ 3,

it is NP-hard to approximate MAX k-SAT within a ratio of (2k−1)/2k+ ϵ for any ϵ > 0. He

also showed that it is NP-hard to approximation MAX k-LIN(2) within a ratio of 1/2+ ϵ for

any ϵ > 0, again for k ≥ 3. Note that since the constants (2k − 1)/2k and 1/2 are the ratios

achieved by a random assignment on these problems, Håstad’s results are optimal. In the

same paper, Håstad also proved NP-hard ratios for several MAX 2-CSPs, including 16/17+ϵ

for MAX CUT, 11/12+ ϵ for MAX DI-CUT and 21/22+ ϵ for MAX 2-SAT. However, these

ratios do not match the best SDP-based algorithms for their respective problems.

In 2002, Khot proposed the Unique Games Conjecture (UGC) [Kho02], which can be

thought of as a conjecture on the existence of a certain kind of PCP system. As it turned out,

UGC becomes crucial in addressing the aforementioned gap for MAX 2-CSPs. Assuming

UGC (or at least that unique games is hard), Khot, Kindler, Mossel and O’Donnell proved

that the approximation ratio achieved by the Goemans-Williamson algorithm is in fact op-

timal [KKMO07]. Their proof used the Majority is Stablest theorem, proved by [MOO10].

Extending these techniques, Austrin improved the hardness results for some other MAX

6

2-CSPs, including MAX 2-SAT [Aus07] and MAX 2-AND [Aus10].

In a breakthrough result [Rag08], Raghavendra showed that assuming Khot’s UGC (or

at least that unique games is hard), the approximation ratio of any MAX CSP is given by

the integrality gap ratio of a generic SDP relaxation for that MAX CSP. This SDP relaxation

is called the Basic SDP. Furthermore, it was shown that this integrality gap ratio can be

achieved (up to an arbitrarily small additive error ϵ) in polynomial time by applying a generic

rounding algorithm to the Basic SDP [Rag08, RS09]. However, this rounding algorithm is

obtained via brute-force techniques and takes time doubly exponential in 1/ϵ, which makes

calculating integrality gap ratios using this algorithm practically infeasible. This means that,

as powerful as Raghavendra’s framework is, it does not tell us everything we want to know

about MAX CSPs, in particular the explicit approximation ratio for any given MAX CSP.

That said, the investigation for approximability of MAX CSPs has more or less stagnated

since Raghavendra’s work. We hope that this thesis will renew the interest in this area.

1.2 Future Directions and Adjacent Topics

In this section, we describe some topics that are adjacent to, but won’t be explored in this

thesis. Nonetheless, we hope that techniques introduced in this thesis could be useful for

them. They also serve as possible directions for future research.

The MAX SAT problem: The most interesting open question in this area is arguably

whether the MAX SAT problem has a 7/8-approximation algorithm. Due to the result of

Håstad [Hå01], we know that it is NP-hard to approximate MAX 3-SAT within a factor of

7/8 + ϵ for any ϵ > 0. The question is to understand whether by allowing clauses of various

lengths we can make the problem more difficult. We suspect that the answer is affirmative

by the following intuitive reasoning. For clauses with length ≤ 3, it is known that hyperplane

rounding achieves a ratio of 7/8 [KZ97, Zwi02], whereas for clauses with length ≥ 3, a simple

7

uniformly random assignment will give a ratio of 7/8. However, these two rounding functions

are drastically different, and it seems unlikely that there is one unified rounding function

that achieves best of both worlds.

The result on MAX NAE-SAT presented in this thesis can be thought of as some evi-

dence that there is no 7/8-algorithm for MAX SAT. However, much more work seems to be

required to actually arrive at a proof for this. In general, it seems in order to obtain tight

approximability results for MAX SAT and other higher-arity MAX CSPs we would need a

much better understanding of extremal problems involving some generalized notion of noise

stability for high-dimensional sets.

Approximation resistance and approximability: Informally, a predicate P is called

approximation resistant if it defines a MAX CSP for which the optimal approximation ratio is

achieved by the uniform random assignment, up to an o(1) term, and approximable otherwise.

If we are given a predicate, deciding whether it is approximation resistant is an easier task

than finding out its approximation ratio. However, here we are interested in finding a

characterization which tells us which predicates are approximation resistant and which are

approximable. Khot, Tulsiani, and Worah [KTW13] gave such a characterization based on

whether there exist certain vanishing measures over the polytope of satisfying assignments,

but their characterization is not known to be decidable. It remains an open question to

give a decidable characterization for approximation resistance, or to prove that one of the

existing characterizations is decidable.

There has also been some interest in a special case for this problem, where the predicates

are restricted to balanced linear threshold functions (balanced LTFs). These are predicates

of the form f(x1, . . . , xk) = sign
(∑k

i=1wkxk

)
for some arity k and a1, . . . , ak ∈ R. It

is known that for some simple cases where w2 = · · · = wk, the predicate is approximable

([Pot18, HP20]), and it was conjectured that all balanced LTFs are approximable [ABM10].

This conjecture was recently refuted by Potechin [Pot18] who constructed a balanced LTF

8

that is approximation resistant, assuming UGC. It is still wide open to decide which balanced

LTFs are approximation resistant and which are not.

MAX CSPs with global constraints: For some MAX CSPs it is natural to consider the

variant where there are additional constraints on the number of variables that are assigned

true. One such example is the maximum bisection (MAX BISECTION) problem, which is

the same as MAX CUT except we also require that the two parts in the partition have the

same size (same number of true variables and false variables). In contrast to the constraints

that are given by the predicates, the constraint on the number of true variables is of a global

nature, since it acts on all variables at the same time. Not many tight approximability results

are known in the presence of global constraints. Even for MAX BISECTION, it is not known

whether we can approximate it as well as MAX CUT (the current best approximation ratio

for MAX BISECTION is ≈ 0.8776 [ABG16], just shy of the Goemans-Williamson ratio which

is > 0.878).

More importantly, Raghavendra’s Basic SDP no longer gives a clean dichotomy in this

case. It would be very interesting to develop a general theory for MAX CSPs with global

constraints.

Rounding schemes based on Brownian motion: Recently, inspired by tools from the

discrepancy theory, Abbasi-Zadeh, Bansal, Guruganesh, Nikolov, Schwartz and Singh pro-

posed a new framework for rounding schemes based on sticky Brownian motions [AZBG+22].

On a very high level, their algorithm assigns to each variable a Brownian motion, whose ve-

locity depends on the SDP solution as well as current location in the space; they then let the

Brownian motions evolve within the unit cube, and once a Brownian motion hits a boundary

surface, it gets absorbed and the corresponding variable gets the integral value represented

by that surface. Eldan and Naor showed that this technique can be used to achieve the

same guarantee as the Goemans-Williamson algorithm [EN19]. Their proof seems readily

9

generalizable to other 2-CSPs as well. However, when the arity of CSP is 3 or more, the

analysis of such rounding schemes seems to become much more involved.

Other optimization objectives: Finally, it is also of interest to explore other optimiza-

tion objectives for the approximation algorithms. For example, instead of trying to max-

imize the number of satisfied constraints, we can also minimize the number of unsatisfied

constraints. This may seem like an equivalent objective, but note that the notion of approx-

imation ratio is now based on the number of unsatisfied constraints: an algorithm achieves a

ratio of α > 1 if given an instance that’s (1−ϵ)-satisfiable, it returns a solution that satisfies a

(1−αϵ)-fraction of the constraints. In particular, if the input instance is perfectly satisfiable

then the algorithm has to find a satisfying assignment. This makes the problem much harder

than the maximizing version. For example, if we consider MIN 2-SAT-DELETION which is

the minimizing version of MAX 2-SAT, then it is known that assuming UGC this problem

is NP-hard to approximate within any constant factor [Kho02]. It would be interesting to

develop a more general theory for Minimizing CSPs.

10

CHAPTER 2

PRELIMINARIES

2.1 Constraint Satisfaction Problems

Definition 2.1. Let D be some finite set with |D| ≥ 2. A predicate P with domain D is a

function Dk → {0, 1}, where k ∈ N+ is the arity of P .

We say that P is a Boolean predicate when |D| = 2.

Definition 2.2. Let Γ = (D,P), where D is a finite set called the domain, and P is a

set of predicates P each with domain D. A MAX CSP(Γ) instance is given by a finite set

of variables V and a finite set of constraints (sometimes also called clauses) C, where each

constraint is some predicate P ∈ P applied to a subset of variables. Given an assignment

A : V → D, we say that a constraint is satisfied if it evaluates to 1. The objective of

the problem is to find an assignment A that satisfies as many constraints as possible. We

can also consider a weighted version where the instance also specifies a weight function

w : C → R≥0, and the objective is to find an assignment that maximizes the total weight of

satisfied constraints.

In this thesis, we will only study Boolean MAX CSPs (i.e. MAX CSPs where the domain

set has size 2). We will often work with the weighted version where the weight is given by

a probability measure, i.e., the total weight is 1. To make the analysis easier, we will use

D = {−1, 1}, where −1 represents TRUE and 1 represents FALSE. Since the domain has

been fixed, we will just write MAX CSP(P).

We will refer to a variable or a negated variable as a literal. For Boolean MAX CSPs, it

is often the case that we want to apply a predicate to negated variables, which isn’t allowed

in the above definition. To remedy this, for a Boolean predicate P : {−1, 1}k → {0, 1}, we

11

define the closure of P under negation to be the set

cl(P) =
{
P⊕b : (x1, . . . , xk) 7→ P (b1x1, b2x2, . . . , bkxk) | b = (b1, . . . , bk) ∈ {−1, 1}k

}
.

For a set of Boolean predicates P , define cl(P) =
⋃

P∈P cl(P). Now if we want to apply a

predicate to negated variables in our CSP, we just expand the predicate set to its closure

under negation.

We now introduce the predicates that we will study in the rest of this thesis.

Definition 2.3. Let k ∈ Z+. The OR predicate on k variables is defined as

ORk(x1, . . . , xk) =

 0 if xi = 1 for all i ∈ [k], 1

1 otherwise.

Let PSAT = {ORk | k ≥ 1}, and for any ℓ ∈ Z+, Pℓ-SAT = {ORk | 1 ≤ k ≤ ℓ}.

The MAX SAT problem is defined as MAX CSP(cl (PSAT)). We won’t be dealing with

MAX SAT in this thesis, but we will work with MAX 2-SAT in Chapter 4, defined as MAX

CSP(cl (P2-SAT)), as well as its subproblems, namely, MAX CSP(P) where P ⊆ cl (P2-SAT).

Definition 2.4. Let CUT : {−1, 1}2 → {0, 1} be the predicate which is satisfied if and only

if the two inputs are not equal. Let DI-CUT : {−1, 1}2 → {0, 1} be the predicate which is

satisfied if and only if the first input is 1 and the second input −1.

The MAX CUT problem is defined as MAX CSP({CUT}), the MAX DI-CUT prob-

lem is defined as MAX CSP({DI-CUT}), and the MAX 2-AND problem is defined as

MAX CSP(cl({DI-CUT})). We will study these three problems in Chapter 5.

Definition 2.5. Let k ≥ 2 be an integer. The Not-All-Equal predicate on k variables is

1. Note that 1 represents FALSE in the domain, so xi = 1 means xi is FALSE.

12

defined as

NAEk(x1, . . . , xk) =

 0 if x1 = x2 = · · · = xk,

1 otherwise.

Let PNAE = {NAEk | k ≥ 1}.

In words, an NAE predicate is satisfied if and only if the inputs are not all equal. The

MAX NAE SAT problem is defined as MAX CSP(cl (PNAE)), and the monotone MAX NAE

SAT problem is defined as MAX CSP(PNAE), where negated literals are not allowed. These

two problems will be investigated in Chapter 6.

2.2 Unique Games Conjecture

The Unique Games Conjecture (UGC), introduced by Khot [Kho02], plays a crucial role in

the study of hardness of approximation of CSPs. It concerns the hardness of the following

unique games problem, which is a CSP defined with certain permutation constraints.

Definition 2.6 (Unique Games, as stated in [BHPZ23]). In a unique games instance I =

(G,L,Π), we are given a weighted graph G = (V (G), E(G), w), a set of labels [L] =

{1, 2, . . . , L} and a set of permutations Π = {πve : [L] → [L] | e = {v, u} ∈ E(G)} such

that for every e = {u, v} ∈ E(G), πve = (πue)
−1. An assignment to this instance is a function

A : V (G)→ [L]. We say that A satisfies an edge e = {u, v} if πue (A(u)) = A(v). The value of

an assignment A is the weight of satisfied edges, i.e., Val(I, A) =
∑

e∈E(G):A satisfies ew(e),

and the value of the instance Val(I) is defined to be the value of the best assignment, i.e.,

Val(I) = maxAVal(I, A).

A version of the conjecture can be stated as follows.

Conjecture 1 (Unique Games Conjecture, as stated in [BHPZ23]). For any η, γ > 0, there

exists a sufficiently large L such that the problem of determining whether a given unique

games instance I with L labels has Val(I) ≥ 1− η or Val(I) ≤ γ is NP-hard.
13

We say that a problem is UG-hard if it is NP-hard assuming the UGC.

UGC is one of the more divisive conjectures in theoretical computer science. Recently,

Khot, Minzer and Safra showed that the “2-to-2” conjecture, which is a weaker version of

UGC, is true [KMS23]. This seems to be the most convincing evidence for UGC being true

to date. That said, even if UGC should turn out to be false, it could still be the case that

solving unique games is not in polynomial time (it might be NP-intermediate for example),

and this intermediate hardness would still extend to all UG-hardness results including for

MAX CSPs.

All of the hardness results in this thesis are UG-hardness results.

2.3 Gaussian Density Functions

Let φ(x) = 1√
2π

exp(−x2/2) be the probability density function and Φ(x) =
∫ x
−∞ φ(t)dt be

the cumulative probability function of the standard normal distribution N(0, 1). Let

φρ(x, y) =
1

2π
√
1− ρ2

exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)

be the probability density function of a pair (X, Y) of standard normal variables with cor-

relation E[XY] = ρ, where −1 < ρ < 1. (Note that φ0(x, y) = φ(x)φ(y).) The cumulative

distribution function of (X, Y) is then:

Φρ(x, y) = Φ(x, y, ρ) = Pr[X ≤ x ∧ Y ≤ y] =

∫ x

−∞

∫ y

−∞
φρ(t1, t2)dt1dt2 .

We will sometimes use the notation X, Y ∼ρ N(0, 1) to denote that the pair (X, Y) is

sampled from this distribution.

14

Lemma 2.7. The partial derivatives of Φ(x, y, ρ) = Φρ(x, y) are:

∂Φ(x, y, ρ)

∂x
= φ(x)Φ

(
y − ρx√
1− ρ2

)
,

∂Φ(x, y, ρ)

∂y
= φ(y)Φ

(
x− ρy√
1− ρ2

)
,

∂Φ(x, y, ρ)

∂ρ
=

1

2π
√

1− ρ2
exp

(
−x2 − 2ρxy + y2

2(1− ρ2)

)
.

The first two partial derivatives can be easily derived from definition and the last equation

is Equation 4 from [DW90].

The following proposition is taken from [Aus06] where a simple proof can also be found.

Proposition 2.8. For all x, y ∈ R, ρ ∈ [−1, 1], we have

Φρ(x, y)− Φρ(−x,−y) = Φ(x) + Φ(y)− 1 .

Definition 2.9. Let t1, t2 ∈ R. Define

Tρ(t1, t2) = E
X,Y∼ρN(0,1)

[Tt1(X)Tt2(Y)]

where Tt(x) = 1{x ≤ t} − 1{x ≥ t}.

Proposition 2.10. For any t1, t2 ∈ R,

Tρ(t1, t2) = 4Φρ(t1, t2)− 2(Φ(t1) + Φ(t2)) + 1.

15

Proof. By definition we have

Tρ(t1, t2) = Pr
X,Y∼ρN(0,1)

[X ≤ t1 ∧ Y ≤ t2] + Pr
X,Y∼ρN(0,1)

[X ≥ t1 ∧ Y ≥ t2]

− Pr
X,Y∼ρN(0,1)

[X ≤ t1 ∧ Y ≥ t2]− Pr
X,Y∼ρN(0,1)

[X ≥ t1 ∧ Y ≤ t2]

= Φρ(t1, t2) +
(
Φρ(t1, t2)− Φ(t1)− Φ(t2) + 1

)
−
(
Φ(t1)− Φρ(t1, t2)

)
−
(
Φ(t2)− Φρ(t1, t2)

)
= 4Φρ(t1, t2)− 2(Φ(t1) + Φ(t2)) + 1.

Here in the second equality we used Proposition 2.8.

2.4 Fourier Analysis of Boolean Functions

We recall some definitions and basic facts from the analysis of Boolean functions. The most

important fact that we need is the following Fourier expansion theorem which allows us to

express any Boolean function as a multilinear polynomial.

Theorem 2.11 (See e.g. Theorem 1.1 in [O’D14]). Every function f : {−1, 1}n → R can

be uniquely expressed in the form

f(x1, . . . , xn) =
∑
S⊆[n]

f̂S ·
∏
i∈S

xi. (2.1)

This expression is called the Fourier expansion of f , and the coefficients f̂S are called Fourier

coefficients.

One way to prove the Fourier expansion theorem is to think of the monomials as an

orthonormal basis of the space of functions {−1, 1}n → R, equipped with the expectation

norm induced by the uniform distribution over {−1, 1}n. This can be generalized to the

situation where instead of the uniform distribution, we have independent but biased coin
16

flips for each coordinate. More specifically, for some q ∈ (0, 1), let Bn
q be the probability

space over {−1, 1}n where each bit is independently set to −1 with probability q and to 1

with probability 1− q. Let Uq(1) =
√

q
1−q and Uq(−1) = −

√
1−q
q , and for any S ⊆ [n], let

US
q (x1, . . . , xn) =

∏
i∈S Uq(xi). Then it is easy to verify (c.f., Proposition 2.7 of [Aus10])

that {
US
q : Bn

q → R | S ⊆ [n]
}

is an orthonormal basis for real-valued functions on Bn
q with respect to the inner product de-

fined via expectation. We can again define the Fourier coefficients as f̂S = E
x∼Bn

q

[f(x)US
q (x)]

(note that q is implicit in the domain of f), which gives us the following decomposition:

f =
∑
S⊆[n]

f̂SU
S
q . (2.2)

The decomposition (2.2) generalizes (2.1), which is a special case where we have q = 1/2.

In our application, we are also interested in computing correlation of two functions with

different biases.

Definition 2.12. Let f : Bn
q1 → R and g : Bn

q2 → R. The ρ-correlation between f and g is

defined as

Sρ(f, g) := E[f(x)g(y)],

where x ∼ Bn
q1 , y ∼ Bn

q2 , and furthermore the i-th coordinate of x and the i-th coordinate

of y has correlation ρ, i.e., E[xiyi]−E[xi]E[yi]√
(1−E[xi]2)(1−E[yi]2)

= ρ.

Definition 2.13. Let f : Bn
q → R and k ∈ [n]. The k-low-degree influence of coordinate i

on f is defined as

Inf≤ki [f] :=
∑

S:i∈S⊆[n],|S|≤k
f̂2S .

It is straightforward from the definition that Inf≤ki is convex.

17

Proposition 2.14. Let f : Bn
q → [−1, 1]. For any η > 0 and k ∈ [n], we have

∣∣∣{i ∈ [n] | Inf≤ki [f] > η
}∣∣∣ ≤ k

η
.

Proof. We have

n∑
i=1

Inf≤ki [f] =
n∑

i=1

∑
S:i∈S⊆[n],
|S|≤k

f̂2S =
∑
|S|≤k

|S|f̂2S ≤ k ·
∑
|S|≤k

f̂2S ≤ k.

The proposition follows immediately.

It turns out that for functions with small low-degree influences, the extremal behavior of

their ρ-correlations is characterized by threshold functions in Gaussian space.

Theorem 2.15 (Corollary 2.19, [Aus10]). For any ϵ > 0 and ρ ∈ (−1, 1), there exist k ∈ N

and η > 0 such that for all f : Bn
q1 → R and g : Bn

q2 → R satisfying min(Inf≤ki [f], Inf≤ki [g]) ≤

η for every i ∈ [n], we have

4Φ−|ρ|(t1, t2)− ϵ ≤ Sρ(f, g)− E[f]− E[g] + 1 ≤ 4Φ|ρ|(t1, t2) + ϵ,

where t1 = Φ−1
(
1−E[f]

2

)
and t2 = Φ−1

(
1−E[g]

2

)
.

We will use a restatement of the above theorem in terms of Tρ(t1, t2).

Corollary 2.16. For any ϵ > 0, there exist k ∈ N and η > 0 such that for all f : Bn
q1 → R

and g : Bn
q2 → R satisfying min(Inf≤ki [f], Inf≤ki [g]) ≤ η for every i ∈ [n], we have

−T|ρ|(t1, t2)− ϵ ≤ Sρ(f, g) ≤ T|ρ|(t1, t2) + ϵ,

where t1 = Φ−1
(
1−E[f]

2

)
and t2 = Φ−1

(
1−E[g]

2

)
.

Proof. Follows directly from Proposition 2.10 and Theorem 2.15.
18

In the above corollary we can also take t1 = Φ−1
(
1+E[f]

2

)
= −Φ−1

(
1−E[f]

2

)
and

t2 = Φ−1
(
1+E[g]

2

)
= −Φ−1

(
1−E[g]

2

)
, since Tρ(x, y) = Tρ(−x,−y) for any ρ, x, y.

2.5 Approximation Algorithms and Approximation Ratios

An approximation algorithm for an optimization problem is an efficient algorithm which

produces a solution that is provably close to the optimal solution. In the study of MAX CSPs,

“closeness” can be formalized using the notion of approximation ratios.

Definition 2.17. We say that an (possibly randomized) algorithm A achieves an approxi-

mation ratio of α for MAX CSP(P), if for every instance I of MAX CSP(P), we have

E
[
Val(I,A(I))

]
≥ α ·OPT(I).

Here, A(I) is the (possibly random) assignment that A produces given I.

We will also talk about the approximation ratio of some MAX CSP(P), by which we mean

the best approximation ratio achieved by any polynomial time algorithm for this problem.

We will sometimes denote this ratio by αP . To compare the approximation ratios between

two problems, we can use an approximation ratio preserving reduction.

Definition 2.18 (See e.g. [Vaz03]). An approximation ratio preserving reduction from

MAX CSP(P) to MAX CSP(Q) is a pair of functions (f, g) with the following properties.

• Both f and g can be computed in polynomial time.

• f maps instances of MAX CSP(P) to instances of MAX CSP(Q), and for every instance

I of MAX CSP(P), OPT(I) ≤ OPT(f(I)).

• Given any instance I of MAX CSP(P), and an assignment A to f(I) (which is an

instance of MAX CSP(Q), g produces an assignment g(A) to I such that Val(I, g(A)) ≥

Val(f(I), A).
19

Lemma 2.19. If there exists an approximation ratio preserving reduction from MAX CSP(P)

to MAX CSP(Q), then αP ≥ αQ.

Proof. Let (f, g) be an approximation ratio preserving reduction from MAX CSP(P) to

MAX CSP(Q). Let A be an approximation algorithm for MAX CSP(Q) that achieves

achieves an approximation ratio of αQ. Consider the following algorithm for MAX CSP(P):

given any instance I of MAX CSP(P), we apply f on I to obtain f(I), solve f(I) using A,

and apply g on A(f(I)) to obtain an assignment for I. We have

E[Val(I, g(A(f(I))))] ≥ E[Val(f(I),A(f(I)))]

≥ αQ ·OPT(f(I))

≥ αQ ·OPT(I).

It follows that this algorithm achieves an approximation ratio of αQ on MAX CSP(P), so

αP ≥ αQ.

2.6 Interval Arithmetic

A few results discussed in this thesis are proved with the help of computer assistance using

a technique called interval arithmetic. In interval arithmetic, instead of doing arithmetic

with numbers, we apply arithmetic operations to intervals of numbers. More specifically,

let op be a k-ary operation, and I1, I2, . . . , Ik intervals, then the interval arithmetic for

op(I1, I2, . . . , Ik) produces an interval Iop with the following guarantee:

∀(g1, g2, . . . , gk) ∈ I1 × I2 × · · · × Ik, op(g1, g2, . . . , gk) ∈ Iop.

This can be used to certify inequalities of the form f ≥ 0 where f is a function defined on some

direct product of intervals. To do this, we simply implement f using interval arithmetic, and

20

if the output interval is contained in [0,+∞), this will give us a computer-assisted, rigorous

proof that f ≥ 0.

However, since the implementation of arithmetic operations are usually not exact when

floating-point numbers are involved, to maintain correctness, the interval Iop usually also

contains elements that are not in the range of the operation. One way to deal with this is

using a divide-and-conquer approach. The idea is simple: if the intervals I1, . . . , Ik are all

small, then the output interval Iop will also be small and the absolute error will be reduced.

This works well when we are certifying inequalities of the form f ≥ 0 but f is actually

sufficiently bounded away from 0. Note that this does come with a price: the number of

arithmetic operations increase exponentially as the desired accuracy increases.

In the case that f actually achieves 0, we cannot hope to certify f ≥ 0 using interval

arithmetic alone, unless we have some very special condition on f that makes exact evaluation

possible. In this scenario, we may need to check the partial derivatives of f . This may also

be combined with analytical proofs for properties of f .

The interval arithmetic proofs discussed in this thesis are implemented using the Arb

library [Joh17].

21

CHAPTER 3

THE BASIC SDP AND ROUNDING SCHEMES

In this chapter, we describe the SDP framework for approximating CSPs. We describe a

generic SDP relaxation called the Basic SDP, formulated by Raghavendra [Rag08, Rag09],

and its special case for 2-CSPs [Aus10]. We also describe optimal or conjectured optimal

rounding algorithms for these SDP relaxations, which provide the framework for the approx-

imability and inapproximability results in later chapters.

3.1 SDP-Based Approximation Algorithms: Framework and Chal-

lenges

Semi-definite programming (SDP) plays a central role in the design of approximation algo-

rithms for MAX CSP, as well as for many other combinatorial optimization problems. In

a semi-definite program, we have a set of vector-valued variables, and both the constraints

and the objective function are expressed in terms of inner products of these vector-valued

variables. For MAX CSP, a typical SDP-based approximation algorithm consists of the

following two steps:

• Relaxation. We write the given instance of MAX CSP as an integer program, where

each variable takes a value in {−1, 1}. This can usually be done in a straightforward

manner. The integer program describes the original problem in an exact way, such

that if we could solve the integer program, we would be able to recover a solution

to the original problem. However, solving integer programs in general is NP-hard.

We therefore relax the integer program to a semi-definite program by replacing each

integer-valued variable with a vector-valued variable.

• Rounding After solving the semi-definite program, the algorithm then uses a rounding

scheme which is an algorithm that produces integer values based on the SDP vectors.
22

This rounding scheme will usually be a randomized algorithm, and we will analyze its

performance in expectation.

As an illustrating example, let us consider the MAX CUT problem. Given an instance

G = (V,E), we can formulate MAX CUT using the following integer program.

maximize
∑
{i,j}∈E

1− xixj
2

subject to x2i = 1, ∀i ∈ V

Note that xi is restricted to being either −1 or 1, which naturally induces a cut. The

expression 1−xixj
2 is evaluated to 1 if xi and xj have different signs, and 0 if they have the

same sign, so the objective is indeed maximizing the number of edges across the cut. This

integer program is NP-hard to solve, so we relax it to a semi-definite program, where each

variable is now vector-valued:

maximize
∑
{i,j}∈E

1− vi · vj
2

subject to vi · vi = 1, ∀i ∈ V

This is the famous Goemans-Williamson SDP [GW95]. A semi-definite program can be

alternatively formulated using the moment matrix B = (bi,j)1≤i,j≤n where bi,j = bj,i =

vi · vj . In this alternative formulation, the objective function, as well as the constraints,

will be expressed as linear functions on the entries of B, and B, being a Gram matrix, has

to be positive semi-definite (hence the name of semi-definite programming). On the other

hand, as long as B is a positive semi-definite matrix, we can find vectors v1, . . . ,vn such

that vi · vj = bij , so this is indeed an equivalent formulation. From this formulation it is

straightforward to see that semi-definite programming is a convex optimization problem, and

23

therefore it can be solved up to any fixed additive error in polynomial time (see e.g. [VB96]).

Solving the Goemans-Williamson SDP produces a set of unit vectors v1, . . . ,vn. Note

that since the semi-definite program is a relaxation of the integer program, we have SDP(G) ≥

OPT(G), where SDP(G) is the value of the semi-definite program and OPT(G) is the value

of the integer program (i.e., the value of the maximum cut in G). We now have the task

of rounding these vectors to Boolean values 1 or −1. To do this, Goemans and Williamson

proposed the following hyperplane rounding algorithm.

Algorithm 1 Hyperplane rounding algorithm [GW95]
Input: v1, . . . ,vn ∈ Rn unit vectors obtained by solving the Goemans-Williamson SDP

Output: x1, . . . , xn ∈ {−1, 1} rounded Boolean assignment to the variables

r← N(0, In)

for i← 1 to n do

ti ← r · vi

xi ← 1 if ti ≥ 0, and xi ← −1 otherwise

We will see that hyperplane rounding algorithm lies in the RPR2 rounding family ([FL06]),

which we will discuss in Chapter 6. The algorithm is called hyperplane rounding because

we can think of r as the normal vector of some random hyperplane, and variables on one

side of the hyperplane are rounded to 1, while those on the other side are rounded to −1.

Given any edge {i, j}, the probability that it is cut by the hyperplane rounding is equal to

the probability that vi and vj lie on different sides of the hyperplane, which happens with

probability 1
π arccos(vi · vj). It then follows that

∑
{i,j}∈E

E
[
1− xixj

2

]
=

∑
{i,j}∈E

1

π
arccos(vi · vj) ≥

∑
{i,j}∈E

α ·
1− vi · vj

2
= α · SDP(G),

where α = minb∈(−1,1)
2 arccos(b)
π(1−b) ≥ 0.87856. Since SDP(G) ≥ OPT(G), this produces the

guarantee that the output of the hyperplane rounding achieves an approximation ratio of α
24

in expectation.

The crucial observation here is that the analysis for the algorithm is local in nature: a

lower bound on the ratio achieved by the algorithm on all individual constraint will give us

a lower bound on the overall approximation ratio of this algorithm. We remark that this is

true for SDP-based algorithms for MAX CSPs in general.

As it turns out, there is in fact a generic SDP relaxation, called the Basic SDP for all

MAX CSPs. Raghavendra [Rag08] showed that if UGC is true, then an algorithm optimal

up to any additive error can be obtained from rounding this SDP. We will describe this

relaxation in the next section. Raghavendra’s result takes away the “creativity” part of the

relaxation step, so to design an SDP-based approximation algorithm, it is sufficient to focus

on the rounding step. The challenge for the rounding step is two-fold:

• Find a good rounding scheme. This is a highly non-trivial task since there is a huge

space of potential rounding schemes. In the hyperplane rounding algorithm, only one

Gaussian vector r is used, and we only looked at the sign of the product r · vi, but

in general we can consider any number of Gaussian vectors and the rounding scheme

can depend arbitrarily on the numerical values of the inner products obtained from the

Gaussian vectors.

• Given a candidate good rounding scheme, certify the approximation ratio that it

achieves. This is also difficult because we need to show that the rounding scheme

works on all instances, which is again an optimization problem over a very large do-

main. In many cases, computer assisted proofs are necessary for such certification.

3.2 Formulation of the Basic SDP

Suppose we have an MAX CSP instance with variable set V = {x1, . . . , xn}, constraint set

C and weight function w : C → R≥0, then the basic SDP for this instance is formulated as

25

follows [Rag08, Rag09]1:

maximize
∑
C∈C

w(C)

 ∑
α∈A(C)

pC(α)C(α)


subject to vi · vi = 1, ∀i ∈ {0, 1, 2, . . . , n}

vi · vj =
∑

α∈A(C)

α (xi)α
(
xj
)
pC(α), ∀C ∈ C,∀zi, zj ∈ C

vi · v0 =
∑

α∈A(C)

α (xi) pC(α), ∀C ∈ C,∀zi ∈ C

pC(α) ≥ 0, ∀C ∈ C, ∀α ∈ A(C).

The SDP variables are the vectors v0,v1, . . . ,vn and non-negative real numbers {pC(α) |

C ∈ C, α ∈ A(C)}. We can think of v0,v1, . . . ,vn as “global variables” and {pC(α) | C ∈

C, α ∈ A(C)} as “local variables”. In particular, pC(α) represents the probability of choosing

the local assignment α for variables that are involved in constraint C. Note that pC(α) can

be easily expressed using vector products, by introducing some new vector-valued variables

vC,α and have pC(α) = vC,α · vC,α, but for conceptual clarity we will keep them as scalars

instead.

For any constraint C, the SDP looks at the set A(C) which contains all local assignments

to the variables which appear in C, and chooses {pC(α) | α ∈ A(C)} which describes

a distribution over A(C) (the first two constraints imply that
∑

α pC(α) = 1). For a local

assignment α to C, C(α) denotes the value (satisfied/unsatisfied) of C under this assignment,

and α(xi) denotes the value that the local assignment α assigns to the variable xi. We use

zi to denote a literal that is either xi or the negation of xi.

As for the “global variables” v0,v1, . . . ,vn, they correspond to the variables in the original

MAX CSP instance (v0 is used as a special vector intended to be the truth value “False”),

1. In [Rag08, Rag09], the SDP is formulated for MAX CSP over general finite domains. The formulation
here is a special case for Boolean MAX CSPs.

26

and are a relaxation of the one-dimensional case in which they would be assigned Boolean

values in {−1, 1}. Using these variables the SDP enforces upon all local constraints the

consistency requirement that the first and second moments of the local distributions match.

Namely, if we define biases bi := v0 ·vi and pairwise biases bi,j := vi ·vj , then the second and

third constraints in the SDP require that bi = EpC [xi], bi,j = EpC [xixj] for every C. Under

this consistency requirement, the SDP searches for a distribution pC of local assignments for

every clause C ∈ C that maximizes the probability that C is satisfied.

We remark that in order to be able to solve this SDP in polynomial time, the number

of constraints should be a polynomial in the size of given MAX CSP. This requires that the

arity of any predicate in the given MAX CSP should be uniformly bounded by a constant.

This condition is satisfied by all MAX CSPs analyzed in this thesis.

It is natural to ask if we can strengthen the SDP by adding even more consistency

constraints. For example, what happens if we insist that the third moments also match?

This can be captured by the SOS hierarchy, also known as the Lasserre hierarchy [Las01],

which is a family of more and more powerful semi-definite programs. Raghevendra showed

that if UGC is true, then adding (polynomially many) more constraints does not help in the

worst case. To formally state his results, we introduce the notion of approximability curve.

Definition 3.1. For any MAX CSP instance Φ, let SDP(Φ) be its objective value in the

Basic SDP2. The approximability curve of MAX CSP(Γ) is a function sΓ : [0, 1] → [0, 1]

defined as

sΓ(c) = inf{OPT(Φ) | Φ ∈ MAXCSP(Γ), SDP(Φ) = c}.

Theorem 3.2 ([Rag08, Rag09, RS09]). Fix any ϵ > 0. Assuming UGC, then for any c it is

NP-hard to distinguish between instances of MAX CSP(Γ) with SDP value at least c and those

with OPT value at most sΓ(c + ϵ) + ϵ. Moreover, there exists a polynomial-time algorithm

that, given an instance Φ of MAX CSP(Γ) with SDP value c, produces an assignment to Φ

2. This is sometimes also called the completeness of Φ.

27

with value at least sΓ(c− ϵ)− ϵ.

We briefly discuss the proof ideas for Theorem 3.2. To show the hardness result, Raghaven-

dra’s construction takes any MAX CSP(Γ) instance with SDP value at least c and OPT value

at most sΓ(c) (such instances are called integrality gap instances since there is a gap between

the optimal integral value and the SDP value) and converts them into dictatorship tests with

corresponding completeness and soundness values (with a loss of ϵ). This then gives UG-

hardness results via standard machinery. We shall give a proof of the special case of this for

2-CSPs in the next section.

As for the algorithmic result, [RS09] shows that we can project the SDP vectors into some

d-dimensional space, such that if d is chosen to be a large enough constant, then most of the

SDP constraints will be approximately preserved. They then use an ϵ-net to group those

variables together whose corresponding projected vectors are close enough and identify the

variables in the same group. This will give as an instance with constantly many variables,

which can then be solved using brute force.

Theorem 3.2 is a remarkable breakthrough result. It would appear that Theorem 3.2

completely resolves the problem of approximating MAX CSPs assuming UGC. However,

this is not the case. There are two main drawbacks.

• Theorem 3.2 does not tell us where to find the hardest instance. That is, for each c, we

don’t know how to quickly find Φ which achieves or nearly achieves the infimum in the

definition of sΓ(c). It merely converts any given integrality gap instance into a UG-

hardness result. Furthermore, the rounding algorithm in Theorem 3.2 is a brute-force

algorithm and has running time that is doubly exponential in 1/ϵ. While theoretically

for fixed ϵ > 0 this is a polynomial time algorithm, but in practice, as soon as ϵ is

moderately small, this algorithm quickly becomes infeasible.

• Given two MAX CSPs, this algorithm is unable to certify that the two problems have

the same approximation ratio. Indeed, if the approximation ratios are different, then
28

by choosing ϵ smaller than the difference the algorithm would be able to certify that

they have different approximation ratios. However, if the two MAX CSPs have the

same approximation ratio, then no longer how small ϵ we choose, the algorithm won’t

be able to return a definitive answer.

That said, Theorem 3.2 gives us a powerful framework for studying the approximability

of MAX CSPs. On one hand, to design approximation algorithms for MAX CSPs, it suffices

to construct clever rounding schemes for the Basic SDP. On the other hand, to obtain

inapproximability results, it is sufficient to prove limitations on rounding algorithms for the

Basic SDP.

3.3 Austrin’s Formulation for 2-CSPs

In this section, we look at the special case of the Basic SDP where all predicates in the given

MAX CSP have arity at most 2. It can be formulated as follows [Aus10].

Maximize
∑

C(xi,xj)∈C
w(C) ·

(
Ĉ∅ + Ĉ1v0 · vi + Ĉ2v0 · vj + Ĉ1,2vi · vj

)
subject to vi · vi = 1, ∀i ∈ {0, 1, 2, . . . , n}

∥vi − vj∥2 + ∥vj − vk∥2 ≥ ∥vi − vk∥2, ∀i, j, k ∈ {0, 1, 2, . . . , n}

The most obvious difference here is that all the local variables pC(α) and constraints

involving them are gone. Instead, we have the new inequalities ∥vi − vj∥2 + ∥vj − vk∥2 ≥

∥vi − vk∥2, which are called triangle inequalities. Note that these are not typical triangle

inequalities in the sense of the L2 norm, but it can be easily verified that any one dimensional

solution satisfies them. As for the objective, instead of having to express the value using the

local distribution, we can now take the Fourier expansion of the predicate and replace the

linear and quadratic terms with inner products between corresponding SDP vectors.

29

It is clear that the global variables v0, . . . ,vn in any solution to the Basic SDP satisfy

the triangle inequality. To show that this formulation is actually equivalent to the Basic

SDP in the case of 2-CSPs, it suffices to show that any vectors v0, . . . ,vn satisfying the

triangle inequalities induce a local distribution matching the biases and pairwise biases on

any constraint involving at most 2 variables.

Proposition 3.3. Let v0,v1,v2 be three unit vectors such that

∥vi − vj∥2 + ∥vj − vk∥2 ≥ ∥vi − vk∥2, ∀i, j, k ∈ {0, 1, 2}.

Then there exists a distribution over (x1, x2) ∈ {−1, 1}2 such that E[x1] = v0 · v1,E[x2] =

v0 · v2,E[x1x2] = v1 · v2.

Proof. We can take the following probabilities:

Pr[x1 = −1, x2 = −1] = 1− v0 · v1 − v0 · v2 + v1 · v2
4

,

Pr[x1 = −1, x2 = +1] =
1− v0 · v1 + v0 · v2 − v1 · v2

4
,

Pr[x1 = +1, x2 = −1] = 1 + v0 · v1 − v0 · v2 − v1 · v2
4

,

Pr[x1 = +1, x2 = +1] =
1 + v0 · v1 + v0 · v2 + v1 · v2

4
.

By the triangle inequalities, these values are all non-negative. Since they also sum up to 1,

we obtain a valid distribution, and we indeed have E[x1] = v0 ·v1,E[x2] = v0 ·v2,E[x1x2] =

v1 · v2.

Proposition 3.3, together with the previous discussion, shows that the two SDP formu-

lations are indeed equivalent. It follows from Theorem 3.2 that it suffices to analyze the

simpler form with the triangle inequalities. It turns out that not only does the SDP become

simpler in this case, Austrin [Aus10] gave evidence that the optimal rounding scheme might

also be simpler. To state his results, we first define the notion of configurations.
30

Definition 3.4. A configuration consists of biases and pairwise biases that appear in the

same constraint, as well as a predicate type which is the predicate that is used to define

this constraint. It can be represented using a tuple θ = ((bij)
k
j=1, (bij ,iℓ)1≤j<ℓ≤k, P) where

P is some k-ary constraint containing variables i1, . . . , ik. To emphasize the arity, we will

sometimes call this a k-configuration. We will also write (bi, bj , bi,j , P) in the case where

k = 2 and (bi, P) where k = 1, for the sake of simplicity. We use Θ to denote a distribution

over configurations.

Definition 3.5. We say that a configuration is feasible, if its biases and pairwise biases can

be obtained from a local distribution. In particular, a 2-configuration is feasible if and only

if it satisfies the triangle inequalities.

Definition 3.6. For any configuration θ = ((bi)
k
i=1, (bi,j)1≤i<j≤k, P), let SDP(θ) be the

SDP value achieved by this configuration in the Basic SDP. For 2-configurations, this can be

written as SDP(θ) = P̂∅+ P̂1v0 ·vi+ P̂2v0 ·vj + P̂1,2vi ·vj . Let SDP(Θ) = Eθ∼Θ[SDP(θ)].

For 2-CSPs, we will pay special attention to the following family of rounding schemes.

Algorithm 2 T HRESH− rounding scheme with threshold function f : [−1, 1]→ [−1, 1]
Input: v0,v1, . . . ,vn ∈ Rn unit vectors obtained by solving the Basic SDP
Output: x1, . . . , xn ∈ {−1, 1} rounded Boolean assignment to the variables
r← N(0, In)
for i← 1 to n do

if |bi| ≠ 1 then
v⊥i ←

vi−bi·v0√
1−b2i

else
v⊥i ← some unit vector that’s orthogonal to all other vectors seen in this algorithm

if v⊥i · r ≥ Φ−1(1+f(bi)
2) then

xi ← −1
else

xi ← 1

T HRESH−, introduced and named by Lewin, Livnat and Zwick [LLZ02], is a small

but powerful class of rounding algorithms. They also proposed using a distribution of
31

T HRESH− rounding schemes, and they called this larger family T HRESH. Intuitively,

in a T HRESH− rounding scheme with threshold function f , the function f tells us how

much confidence we have in the biases produced by the SDP (recall that bi is intended to

be E[xi]), so that the expected value of any output xi is equal to E[f(bi)]. It also tries to

maximize the correlation between the output values using a threshold rounding scheme.

Definition 3.7. For any configuration θ = ((bi)
k
i=1, (bi,j)1≤i<j≤k, P), let Prob(θ, f) be the

probability that the T HRESH− rounding scheme with threshold function f satisfies the

constraint represented by θ. Let Prob(Θ, f) = Eθ∼Θ[Prob(θ, f)].

Definition 3.8. Let θ = (bi, bj , bi,j , P) be a 2-configuration. We define its relative pairwise

bias to be ρ(θ) =
bi,j−bibj√

(1−b2i)(1−b
2
j)

, if (1 − b2i)(1 − b2j) ̸= 0, and ρ(θ) = 0 otherwise. We say

that θ is a positive configuration if P̂i,j · ρ(θ) ≥ 0.

We are now ready to state Austrin’s hardness result for 2-CSPs.

Theorem 3.9. Let MAX CSP(Γ) be such that any predicate in Γ has arity at most 2. Let

Θ be a distribution of configurations for MAX CSP(Γ) such that any 2-configuration in the

support of Θ is a positive configuration. Let c = SDP(Θ), s = supf Prob(Θ, f), then it is

NP-hard to approximate MAX CSP(Γ) within a factor of s/c + ϵ for any ϵ > 0, assuming

UGC.

Theorem 3.9 is a slight extension of Theorem 5.1 in [Aus10]. Austrin in his work only

considered the case where the MAX CSP is defined by one single predicate with arity 2,

and negating variables is allowed in the instances. Here we state the result for general MAX

CSPs with arity at most 2. For completeness, we include the proof, although the proof

is only a minor modification from that in [Aus10]. Intuitively, when all configurations are

positive, the rounding scheme should try to maximize the correlation between variables, and

this is achieved by T HRESH− due to Theorem 2.15.

32

All existing hardness constructions for MAX 2-CSPs use only positive configurations. In

fact, Austrin made the following conjecture:

Conjecture 2 (Positivity Conjecture, [Aus10]). For all 2-CSPs, the hardest distribution of

configurations consists of only positive configurations.

It would be very interesting to resolve this conjecture, since a proof for it would imply

the optimality of T HRESH. We note that in the search for hardest distributions it is easy

to rule out distributions consisting of only negative configurations, since for them a uniform

random assignment will do very well. The tricky part of the conjecture is to rule out the

case where we have a distribution that contains both positive and negative configurations.

That said, we do not need to rely on this conjecture to establish hardness result for a given

2-CSP.

3.3.1 Proof of Theorem 3.9

The following proof is taken and slightly modified from Appendix A in [BHPZ23], which is

in turn a small modification from that in [Aus10].

For any permutation π : [L]→ [L] and vector x = (x1, . . . , xL) ∈ RL, let πx be the vector

(xπ(1), . . . , xπ(L)). Given a distribution of configurations Θ for MAX CSP(Γ), consider the

PCP protocol VerifierΘ(I, F) shown in Algorithm 3 (c.f., Algorithm 1 in [Aus10]).

Lemma 3.10 (Completeness, c.f., Lemma 5.2 of [Aus10]). If Val(I) ≥ 1 − η, then there

exists F such that VerifierΘ(I, F) accepts with probability at least (1− 2η) · SDP(Θ).

Proof. Since Val(I) ≥ 1−η, there exists an assignment A such that Val(I, A) ≥ 1−η. For any

v ∈ V (G), let fv : {−1, 1}L → {−1, 1} be the dictatorship function (x1, x2, . . . , xL) 7→ xA(v),

and let F = {fv | v ∈ V (G)}. If θ has arity 1, then we have

µ = fu(π
u
ex) = (πuex)A(u) = xπue (A(u))) = xA(v),

33

Algorithm 3 PCP protocol VerifierΘ(I, F)

Input: A Unique Games instance I = (G,L,Π), and a set of functions F = {fv : {−1, 1}L →
{−1, 1} | v ∈ V (G)}
Output: Accept or Reject
Sample v ∼ V (G) ▷ probability proportional to the weights in G
Sample θ ∼ Θ.
if θ has arity 2 then

(b1, b2, b12, P)← θ
Sample two edges e1 = {v, u1}, e2 = {v, u2} incident to v
for i← 1 to L do ▷ Independently for each i

Sample x
(1)
i , x

(2)
i ∼ {−1, 1} such that E[x(1)i] = b1,E[x

(2)
i] = b2,E[x

(1)
i x

(2)
i] = ρ(θ)

x(1) ← (x
(1)
1 , x

(1)
2 , . . . , x

(1)
L), x(2) ← (x

(2)
1 , x

(2)
2 , . . . , x

(2)
L)

µ1 ← fu1(π
u1
e1 x

(1)), µ2 ← fu2(π
u2
e2 x

(2))
Accept if P (µ1, µ2), and reject otherwise.

else ▷ θ has arity 1
(b, P)← θ
Sample an edge e = {v, u} incident to v
for i← 1 to L do ▷ Independently for each i

Sample xi ∼ {−1, 1} such that E[xi] = b

x← (x1, x2, . . . , xL), µ← fu(π
u
ex)

Accept if P (µ), and reject otherwise.

and it follows that

Pr[VerifierΘ(I, F) accepts | θ has arity 1]

≥ Pr[A satisfies e] · Pr[VerifierΘ(I, F) accepts | A satisfies e, and θ has arity 1]

≥ (1− η) · E
θ∼Θ

[
P
(
xA(v)

)
| θ has arity 1

]
≥ (1− η) · E

θ∼Θ
[P (b) | θ has arity 1]

= (1− η) · E
θ∼Θ

[SDP(θ) | θ has arity 1] .

Here we used the fact that Pr[A satisfies e] ≥ 1− η since Val(I, A) ≥ 1− η.

34

If θ has arity 2, then by similar computations we have µ1 = x
(1)
A(v)

and µ2 = x
(2)
A(v)

, and

Pr[VerifierΘ(I, F) accepts | θ has arity 2]

≥ Pr[A satisfies e1, e2] · Pr[VerifierΘ(I, F) accepts | A satisfies e1, e2, and θ has arity 2]

≥ (1− 2η) · E
θ∼Θ

[
P
(
x
(1)
A(v)

, x
(2)
A(v)

)
| θ has arity 2

]
≥ (1− 2η) · E

θ∼Θ
[P (b1, b2) | θ has arity 2]

= (1− 2η) · E
θ∼Θ

[SDP(θ) | θ has arity 2] .

The lemma now follows from the Law of Total Expectation.

Lemma 3.11 (Soundness, c.f., Lemma 5.3 of [Aus10]). For any ϵ > 0 there exists γ > 0

such that, if Val(I) ≤ γ, then for any F , VerifierΘ(I, F) accepts with probability at most

suph Prob(Θ, h) + ϵ.

Proof. Fix some ϵ > 0. We need to find some γ > 0 with the following property: if there

exists F = {fv | v ∈ V (G)} such that VerifierΘ(I, F) accepts with probability greater than

suph Prob(Θ, h) + ϵ, then Val(I) > γ. Assume the existence of such F , it suffices to show

that Val(I) is lower-bounded by some constant only depending on ϵ.

For v ∈ V (G) and b ∈ (−1, 1), we define gbv : BL
(1−b)/2 → [−1, 1] as

gbv(x) = E
e={v,u}∈E(G)

[fu(π
u
ex)].

Notice that the family of functions {gbv} naturally lead to the family of thresholds hv(b) :=

Φ−1
(

1+Ex[g
b
v(x)]

2

)
, under which a variable with bias b has expected value Ex[g

b
v(x)] after

35

rounding. For each v, this gives us a T HRESH− rounding scheme. We have

sup
h

Prob(Θ, h) + ϵ ≥ E
v
[Prob(Θ, hv)] + ϵ

= E
θ∼Θ,v

[Prob(θ, hv)] + ϵ.

On the other hand, we can express the accepting probability of the verifier as Eθ∼Θ,v,µ [P (µ)]

where P is the predicate type of θ and we used µ to denote that there may be 1 or 2 inputs

to P . By our assumption, we have

E
θ∼Θ,v,µ

[P (µ)] ≥ E
θ∼Θ,v

[Prob(θ, hv)] + ϵ.

It follows that there exists θ0 with predicate type Q in the support of Θ such that

E
v,µ

[Q(µ)] ≥ E
v
[Prob(θ0, hv)] + ϵ.

Note that for any θ with arity 1, we have

E
v,µ

[P (µ)] = E
v,u,x

[P (fu(π
u
ex))] = E

v,x

[
P̂∅ + P̂1 · gbv(x)

]
= E

v
[Prob(θ, hv)] ,

so θ0 must be some 2-configuration (b1, b2, b1,2, Q). We then have, by a similar computation,

E
v,µ1,µ2

[Q(µ1, µ2)] = E
v,x1,x2

[
Q̂∅ + Q̂1 · gb1v (x1) + Q̂2 · gb2v (x2) + Q̂1,2 · gb1v (x1)g

b2
v (x2)

]
= E

v

[
Q̂∅ + Q̂1 · E

x1
[gb1v (x1)] + Q̂2 · E

x2
[gb2v (x2)] + Q̂1,2 · Sρ(θ)(g

b1
v , gb2v)

]
.

We also have

E
v
[Prob(θ0, hv)] = E

v

[
Q̂∅ + Q̂1 · E

x1
[gb1v (x1)] + Q̂2 · E

x2
[gb2v (x2)] + Q̂1,2 · Tρ(θ)(hv(b1), hv(b2))

]
.

36

This and the previous equation together imply that

E
v

[
Q̂1,2 · Sρ(θ)(g

b1
v , gb2v)

]
≥ E

v

[
Q̂1,2 · Tρ(θ)(hv(b1), hv(b2))

]
+ ϵ.

Since both Sρ(θ)(g
b1
v , gb2v) and Tρ(θ)(hv(b1), hv(b2)) are bounded by some absolute con-

stant, we can find C > 0 such that for at least an ϵ fraction of v ∈ V (G), we have

Q̂1,2 · Sρ(θ)(g
b1
v , gb2v)− Q̂1,2 · Tρ(θ)(hv(b1), hv(b2)) ≥

ϵ

C
.

Let V0 be the set of v ∈ V (G) that satisfy the above inequality. Since the 2-configurations

in Θ are all positive, we have Q̂1,2 · ρ(θ) ≥ 0. Since Q̂1,2 ̸= 0, we have either Q̂1,2 > 0 and

Sρ(θ)(g
b1
v , gb2v) ≥ T|ρ(θ)|(hv(b1), hv(b2)) +

ϵ

C · Q̂1,2

or Q̂1,2 < 0 and

Sρ(θ)(g
b1
v , gb2v) ≤ −T|ρ(θ)|(hv(b1), hv(b2))−

ϵ

C · |Q̂1,2|
.

In either case, by Corollary 2.16, there exist η > 0 and k ∈ N such that, for every v ∈ V0

there is some i ∈ [n] with

Inf≤ki [gb1v] ≥ min(Inf≤ki [gb1v], Inf≤ki [gb2v]) ≥ η.

Since Inf≤ki is convex, we also have

η ≤ Inf≤ki [gb1v] = Inf≤ki

[
E

e={v,u}∈E(G)
[fu ◦ πue]

]

≤ E
e={v,u}∈E(G)

[
Inf≤ki [fu ◦ πue]

]
.

37

Since Inf≤ki takes value in [0, 1], there is an η/2 fraction of u ∼ v such that

Inf≤ki [fu ◦ πue] = Inf≤k
(πue)

−1(i)
[fu] ≥ η/2.

Now let L1(v) = {i ∈ [n] | Inf≤ki [gb1v] ≥ η} and L2(v) = {i ∈ [n] | Inf≤ki [fb1v] ≥ η/2}.

By Proposition 2.14, we have |L1(v)| ≤ k
η and |L2(v)| ≤ 2k

η , and by union bound |L1(v) ∪

L2(v)| ≤ 3k
η .

Now consider the following labeling strategy for I: for every v ∈ V (G), if L1(v)∪L2(v) is

non-empty, then choose a label A(v) ∈ L1(v)∪L2(v) uniformly at random, otherwise choose

A(v) ∈ [R] uniformly at random. By our analysis above, if we choose an edge e = (u, v)

with v ∈ V0, then there is at least ϵ · η/2 probability such that there is some i ∈ L1(v)

with πve (i) ∈ L2(u), which our strategy will then find with probability at least 1/(3k/η)2,

so Val(I, A) is at least ϵ · η/2 · 1/(3k/η)2, which is a constant only depending on ϵ, and the

lemma is proven.

38

CHAPTER 4

TIGHT INAPPROXIMABILITY RESULTS FOR MAX 2-SAT

AND ITS SUBPROBLEMS

In this chapter, we study the approximability of MAX 2-SAT and its subproblems. We will

a classification of these subproblems in terms of their approximability by giving tight ap-

proximability/inapproximability results for each of them. This chapter is based on [BHZ24],

which appeared in SODA’24.

4.1 Overview

We summarize the results in the following table, which is taken from [BHZ24].

Name x ∨ y x̄ ∨ y x̄ ∨ ȳ x x̄ Approximation Ratio

MAX 2-SAT ✓ ❍ ✓ ❍ ❍ ≈ 0.94016567

MAX HORN-2-SAT ✓ ✓ ✗ ❍ ✓ ≈ 0.94615981

MAX CSP({x ∨ y, x, x̄}) ✓ ✗ ✗ ❍ ✓ ≈ 0.95397990

MAX CSP({x̄ ∨ y, x, x̄}) ✗ ❍ ✗ ❍ ❍ 1

MAX CSP({x ∨ y, x̄ ∨ y, x}) ❍ ❍ ✗ ❍ ✗ 1

Table 4.1: The approximation ratios of MAX 2-SAT and its subproblems, assuming UGC.
Table taken from [BHZ24].

In this table, ✓ indicates that the type of constraints is allowed, ✗ indicates that the type

of constraints is not allowed, and ❍ indicates that whether allowing the type of constraints

or not does not change the approximation ratio of the problem since it does not appear in

the hardness construction.

The first subproblem is MAX 2-SAT itself. The hardness result for the MAX 2-SAT ratio

provided in the table was proved by Austrin [Aus07]. Austrin’s proof only uses constraint
39

types x∨y and x̄∨ ȳ, so any restriction that contains these two types is automatically as hard

as MAX 2-SAT itself. On the other hand, Lewin, Livnat and Zwick gave an algorithm for

MAX 2-SAT that has a conjectured performance matching this ratio [LLZ02]. In [BHZ24],

we proved that the LLZ algorithm is indeed tight, thereby establishing tight approximability

result for MAX 2-SAT.

Moving on to other subproblems, we disallow the constraint type x̄ ∨ ȳ so that Aus-

trin’s hardness proof does not apply. The next two problems, MAX HORN-2-SAT and

MAX CSP({x ∨ y, x, x̄}), cover the case where we do not allow x̄ ∨ ȳ, but allow x ∨ y and

x̄ (as it turns out, for these two cases constraints of type x do not affect the approximation

ratio). Their approximability hasn’t been studied previously in the literature. We prove

tight approximability results for them by giving matching algorithmic and hardness results,

showing that the approximation ratios slightly improve from that of MAX 2-SAT. Roughly

speaking, our strategy is first giving a conjectured optimal algorithm for the problem, and

then using the hardest configurations for the algorithm to construct a distribution that is

hard for any T HRESH rounding scheme. This combined with Theorem 3.9 establishes

UG-hardness and confirms the optimality of the algorithm that we started with.

The last two of these subproblems, where we disallow the constraint type x̄ ∨ ȳ and

in addition disallow either x ∨ y or x̄, can be solved exactly in polynomial time. For

MAX CSP({x ∨ y, x̄ ∨ y, x}), we can assign true to every variable, and this satisfies all con-

straints since there is at least one positive literal in every constraint. MAX CSP({x̄∨y, x, x̄})

can be solved exactly using a reduction to the Minimum s-t Cut problem. Indeed, given an

instance Φ of MAX CSP({x̄∨y, x, x̄}), we can construct a directed graph G whose vertex set

is the variable set of Φ plus two new vertices s, t, and add edges (s, x) for every constraint

x, (x, t) for every constraint x̄, and (x, y) for every constraint x̄ ∨ y. If we think of variables

connected to s as those assigned true, and variables connected to t as false, then it is easy to

see that any truth assignment is in 1-1 correspondence to s-t cuts in G, and the constraints

40

violated by an assignment are exactly the edges cut by the corresponding s-t cut.

4.2 MAX 2-SAT and Simplicity Conjecture

We first take a look at MAX 2-SAT itself. Lewin, Livnat and Zwick proposed using a

linear threshold function f in the T HRESH− rounding scheme (see Algorithm 2) for MAX

2-SAT [LLZ02], namely, for some parameter β ∈ [0, 1], we have f : b 7→ βb. To make

the parameter explicit, we will denote this function by fβ . Given a 2-configuration θ =

(bi, bj , bi,j) whose predicate type is x ∨ y, we have

SDP(θ) = SDP(bi, bj , bi,j) =
3− bi − bj − bi,j

4
,

and since the probability that both variables in this configuration are set to false (+1) is

equal to Φρ(θ)

(
Φ−1

(
1+βbi

2

)
,Φ−1

(
1+βbj

2

))
,

Prob(θ, fβ) = 1− Φρ(θ)

(
Φ−1

(
1 + βbi

2

)
,Φ−1

(
1 + βbj

2

))
.

Note that here the quadratic coefficient in the Fourier expansion is equal to −1/4, and

therefore θ is a positive configuration if and only if ρ(θ) ≤ 0. The approximation ratio

achieved by T HRESH− with fβ is then equal to

inf
θ:SDP(θ)̸=0

Prob(θ, fβ)

SDP(θ)
. (4.1)

We wish to find β that maximizes this expression. However, this is a highly nontrivial

task because finding the minimizing θ for (4.1) which depends on three parameters is not

easy. Austrin proposed that we reduce the number of parameters by focusing on simple

configurations instead.

Definition 4.1. A 2-configuration (bi, bj , bi,j) is called simple, if bi = bj and bi,j = −1+2|bi|.
41

Note that the condition bi,j = −1 + 2|bi| ensures that a simple configuration in on the

boundary of one of the triangle inequalities. It can be easily checked that for a simple

configuration θ = (b, b,−1+2|b|), we have ρ(θ) =
−(1−|b|)2

1−b2 ≤ 0, so simple configurations are

all positive configurations for 2-SAT. Austrin showed the following result.

Theorem 4.2 ([Aus07]). There exists β−LLZ ≈ 0.94016567 such that

inf
θ=(b,b,−1+2|b|)

Prob(θ, fβ−LLZ
)

SDP(θ)
= max

β
inf

θ=(b,b,−1+2|b|)

Prob(θ, fβ)

SDP(θ)
= β−LLZ .

This theorem shows that, surprisingly, the best ratio that can be achieved on simple

configurations by T HRESH− with fβ is achieved when β is chosen to be this ratio itself!

Austrin proved Theorem 4.2 by looking at a distribution over two simple configurations

θ1 = (−b0,−b0,−1 + 2b0) and θ2 = (b0, b0,−1 + 2b0), where b0 ≈ 0.169. He showed that on

these two configurations, the optimal choice for β is equal to β−LLZ . More specifically, for all

odd f ,

min

{
Prob(θ1, f)

SDP(θ1)
,
Prob(θ2, f)

SDP(θ2)

}
≤ β−LLZ ,

where the equality is achieved by taking f = fβ−LLZ
. He then showed that among all sim-

ple configurations, θ1 and θ2 are the two minimizers for the ratio Prob(θ, fβ−LLZ
)/SDP(θ).

Since simple configurations are all positive configurations for MAX 2-SAT, by Theorem 3.9,

Austrin’s argument immediately implies the following theorem.

Theorem 4.3 ([Aus07]). Assuming UGC, for any ϵ > 0, it is NP-hard to approximate MAX

2-SAT with an approximation ratio of β−LLZ + ϵ.

So far there remains the possibility that for T HRESH− with fβ−LLZ
, there exist even

harder configurations that are not simple, in which case we can hope to obtain a hardness

result with an even lower ratio. However, numerical experiments in [LLZ02] suggest that

42

this is not the case, and that θ1 and θ2 are very likely the hardest configurations for fβ−LLZ
1.

Based on this, Austrin conjectured that β−LLZ = βLLZ , where βLLZ is the ratio obtained by

the optimal T HRESH− algorithm on all, not necessarily simple, configurations, and hence

on all instances of MAX 2-SAT (this conjecture is also implicit in [LLZ02]).

Our main result for MAX 2-SAT is a proof for this conjecture. More specifically, we show

the following theorem.

Theorem 4.4 ([BHZ24]). Let gβ(bi, bj , bi,j) = Prob((bi, bj , bi,j), fβ) − β · SDP(bi, bj , bi,j).

We have min(bi,bj ,bi,j) gβ−LLZ
(bi, bj , bi,j) = 0, where (bi, bj , bi,j) ranges over all feasible con-

figurations.

In words, this confirms the numerical evidence that θ1 and θ2 are indeed the hardest

configurations for fβ−LLZ
. The proof of Theorem 4.4 uses both analytical tools and computer-

assisted tools. Here we give a brief outline of how this theorem is obtained, and refer

interested readers to [BHZ24] for more detail. Our proof consists of the following steps.

• We first show that any minimizer of gβ−LLZ
(bi, bj , bi,j) is of the form (bi, bj ,−1 + |bi +

bj |). This means that any minimizer must be on the boundary of one of the triangle

inequalities. This step is obtained by certifying that any point in the interior of the

feasible region either has gβ−LLZ
> 0 or a nonzero gradient for gβ−LLZ

using interval

arithmetic.

• We then restrict our attention to the boundary of triangle inequalities. We show

that if any feasible configuration is on the boundary, but still far away from the two

configurations θ1 and θ2, then it cannot be a minimizer. This step is similarly obtained

using interval arithmetic.

1. We remark here that in [LLZ02] a slightly different parametrization for the T HRESH− rounding
family was used, and therefore it wasn’t observed that the optimal ratio is also the optimal paramter for β.

43

• Finally, we show that for any bias b near b0 or −b0, the function

hb,β−LLZ
(t) := Probβ−LLZ

(b+ t, b− t,−1 + 2|b|)

achieves its minimum at t = 0 in a large enough neighborhood of 0. This means that

the minimizer must be a simple configuration.

The first two steps were obtained using interval arithmetic, whereas the last step was

proven analytically.

Theorem 4.3 and Theorem 4.4 together settle the approximation ratio for MAX 2-SAT,

modulo UGC. We can summarize the strategy as following:

• Identify the optimal rounding scheme. For MAX 2-SAT, this is the LLZ algorithm:

T HRESH− scheme with fβ−LLZ
. We don’t need a proof of optimality for this step, as

it will be confirmed later.

• Find the hardest configurations for the optimal rounding scheme. We DO require

a proof that the configuration are hardest in this step. In other words, we need to

certify the approximation ratio (but not optimality) for the candidate optimal rounding

scheme. The corresponds to proving Theorem 4.4 for MAX 2-SAT.

• Using the configurations from the last step to construct a distribution that is hard

against all T HRESH− schemes. The corresponds to proving Theorem 4.2 for MAX

2-SAT. This gives a matching hardness result to the ratio certified in the previous

step, thereby establishing optimality of the candidate rounding scheme and pinpoint

the approximation ratio for the problem.

In the following sections, we will carry out this plan for other subproblems of MAX

2-SAT.

44

4.3 MAX CSP({x ∨ y, x, x̄})

This section is mostly taken from Section 4 in [BHZ24].

4.3.1 The Rounding Algorithm

Let us consider the T HRESH− rounding scheme with f : b 7→ −1 + γ(1 + b) for some

parameter γ ∈ [0, 1]. For any x̄ constraint with bias b, we have that its SDP value is

equal to 1+x
2 , and b 7→ −1 + γ(1 + b) satisfies it (assigns false to x) with probability

Φ
(
Φ−1

(
1−1+γ(1+b)

2

))
=

γ(1+b)
2 . For any x constraint with bias b, its SDP value is 1−x

2

and b 7→ −1 + γ(1 + b) satisfies it with probability

1− Φ

(
Φ−1

(
1− 1 + γ(1 + b)

2

))
= 1− γ(1 + b)

2
≥ γ(1− b)

2
,

where the last inequality is because γ ∈ [0, 1]. This shows that the parameter γ is also the

approximation ratio that the rounding scheme achieves on unary constraints. Note that the

function −1+ γ(1+ b) is increasing in γ for every b, which means we are less likely to satisfy

any x∨ y constraints if we increase γ. To optimize γ, it is then sufficient to find γ = γ∗ such

that b 7→ −1 + γ∗(1 + b) achieves an approximation ratio of also γ∗ on 2-configurations.

Similar to gβ , we define hγ(bi, bj , bi,j) =
(
1− Φρ

(
Φ−1

(
γ(1+bi)

2

)
,Φ−1

(
γ(1+bj)

2

)))
−

γ · SDP(bi, bj , bi,j) where ρ = ρ(bi, bj , bi,j).

Proposition 4.5. For every feasible configuration (bi, bj , bi,j), hγ(bi, bj , bi,j) monotonically

decreases with γ. In particular min(bi,bj ,bi,j) hγ(bi, bj , bi,j) decreases with γ, where the mini-

mum is taken over all feasible configurations. Furthermore min(bi,bj ,bi,j) hγ∗(bi, bj , bi,j) = 0.

Proof. hγ(bi, bj , bi,j) monotonically decreases since Φρ

(
Φ−1

(
γ(1+bi)

2

)
,Φ−1

(
γ(1+bj)

2

))
and

γ · SDP(bi, bj , bi,j) are both increasing in γ. Note that minhγ(bi, bj , bi,j) ≥ 0 implies that

−1 + γ(1 + b) achieves an approximation ratio of at least γ, and therefore for the optimal

γ = γ∗ the equality must be achieved.
45

The following theorem is proved with computer assistance, with a plan similar to the

Simplicity Conjecture that we discussed earlier.

Theorem 4.6. We have γ∗ ∈ [0.9539798, 0.95398]. Furthermore, the minimum in the ex-

pression minθ=(bi,bj ,bi,j)
hγ∗(bi, bj , bi,j) is achieved at some point (b, b,−1 − 2b) for some

b ∈ [b0 − ϵ, b0 + ϵ] where b0 = −0.1824167935 and ϵ = 10−6.

4.3.2 Matching Hardness

Let b∗ = b(γ∗) ≈ −0.1824 be the hardest bias for γ∗ from Theorem 4.6 and p1, p2 ∈ [0, 1] be

some parameters to be chosen later. Consider the following distribution Θ1 of configurations.

Configuration Probability Predicate type

θ1 = (b∗, b∗,−1− 2b∗) p1 x ∨ y

θ2 = (b∗) p2 x̄

Table 4.2: The hardest distribution of configurations for MAX CSP({x ∨ y, x, x̄})

We will prove that Θ1 is hard against all T HRESH− rounding schemes b 7→ f(b). Since

there is only one bias involved, it is sufficient to consider the threshold for that bias. Let ρ =

ρ(θ1) = −1+b∗
1−b∗ . Recall that SDP(Θ1) denotes the SDP value of this distribution, and slightly

abusing the notation, let Prob(Θ1, t) be the probability of satisfying a configuration sampled

from Θ1 if f(b∗) = 2Φ(t) − 1. With this parametrization, we have that the T HRESH−

rounding scheme with f sets any variable with bias b∗ to false with probability 1+f(b∗)
2 = Φ(t)

and to true with probability (1− Φ(t)).

Proposition 4.7. We have SDP(Θ1) = p1+ p2 · 1+b∗
2 and Prob(Θ1, t) = p1 · (1−Φρ(t, t))+

p2 · Φ(t).

Proof. For the first configuration in Θ1, we have that its SDP value is 1, and its satisfied by

46

f unless both variables are set to false, which happens with probability Φρ(t, t). The second

configuration has SDP value 1+b∗
2 and is satisfied with probability Φ(t).

It is straightforward to find the best threshold t using calculus. We have

Proposition 4.8. Let t∗ =
√

1+ρ
1−ρ · Φ

−1
(
p2
p1

)
. For every t ∈ R ∪ {±∞} we have

Prob(Θ1, t) ≤ Prob(Θ1, t
∗) .

Proof. Using Lemma 2.7, we have

∂

∂t
Prob(Θ1, t) = −p1 · φ(t) · Φ

(√
1− ρ

1 + ρ
· t
)
+ p2 · φ(t)

= φ(t) ·
(
−p1 · Φ

(√
1− ρ

1 + ρ
· t
)
+ p2

)
.

The proposition follows since ∂
∂tProb(Θ1, t) > 0 when t ≤ t∗ and ∂

∂tProb(Θ1, t) < 0 when

t ≥ t∗.

Theorem 4.9. For every ϵ > 0, it is UG-hard to approximate MAX CSP({x∨y, x, x̄} within

a ratio of γ∗ + ϵ. Moreover, there exists a T HRESH− rounding scheme that achieves an

approximation ratio of γ∗ for MAX CSP({x ∨ y, x, x̄}.

Proof. Let us take p2
p1

= Φ
(√

1−ρ
1+ρ · Φ

−1
(
γ∗(1+b∗)

2

))
. Then the value of t∗ in Proposition 4.8

will be √
1 + ρ

1− ρ
· Φ−1

(
p2
p1

)
= Φ−1

(
γ∗(1 + b∗)

2

)
,

and this coincides with the value given by b 7→ −1 + γ∗(1 + b) at b = b∗. This shows that

for such p1 and p2, b 7→ −1 + γ∗(1 + b) is an optimal T HRESH− scheme on Θ1. Since we

already know that b 7→ −1+ γ∗(1+ b) has approximation ratio γ∗ on both configurations in

this distribution, it follows that any T HRESH− scheme has approximation ratio at most γ∗,

47

and Theorem 3.9 immediately implies the UG-hardness. The algorithmic result is essentially

a restatement of Theorem 4.6.

4.4 MAX HORN-2-SAT

This section is mostly taken from Section 5 in [BHZ24].

4.4.1 The Rounding Algorithm

We consider the following T HRESH rounding scheme Fα:

b 7→ b with probability α,

b 7→ −1 with probability 1− α.

In other words, with some probability α we round with the odd threshold function b 7→ b,

and with the remaining probability 1 − α we set every variable to true. We need to find

α that maximizes the approximation ratio of Fα. We have the following property for the

optimal α.

Proposition 4.10. Assume that the approximation ratio of Fα is maximized when α = α∗.

Then the approximation ratio of Fα∗ is also equal to α∗.

Proof. Observe that any 1-configuration with bias b and predicate type x̄ has SDP value 1+b
2 ,

while the function b 7→ b satisfies it with probability 1+b
2 as well. This implies that b 7→ b

achieves an approximation ratio of 1 on all x̄ constraints. On the other hand, if we set every

variable to true, then we never satisfy any x̄ constraint. Therefore, on the 1-configurations,

Fα has an overall approximation ratio α for every α.

Now, note that by setting every variable to true we satisfy all constraints of the forms

x∨y and x̄∨y, so by decreasing α we increase the approximation ratio on the 2-configurations

and vice versa. This means that for the optimal α, Fα must achieve the same approximation

48

ratio on both 1-configurations and 2-configurations, otherwise we can adjust α to increase

the approximation ratio.

For θ = (bi, bj , bi,j), we define

Prob(θ) = Prob(bi, bj , bi,j) = 1− Φρ(θ)

(
Φ−1

(
1 + bi
2

)
,Φ−1

(
1 + bj

2

))

and g(bi, bj , bi,j) = Prob(bi, bj , bi,j)− SDP(bi, bj , bi,j). The following lemma gives an expres-

sion for α∗.

Lemma 4.11. α∗ satisfies the following equality:

1− 1

α∗
= min

θ=(bi,bj ,bi,j)
g(bi, bj , bi,j),

where θ ranges over all feasible 2-configurations.

Proof. The probability that Fα∗ satisfies any 2-configuration (bi, bj , bi,j) is given by

1− α∗ + α∗ · Prob(bi, bj , bi,j) ,

where 1− α∗ is contributed by the function b 7→ −1 and α∗ · Prob(bi, bj , bi,j) is contributed

by b 7→ b. Since Fα∗ achieves an approximation ratio of α∗, we have

1− α∗ + α∗ · Prob1(bi, bj , bi,j) ≥ α∗ · SDP(bi, bj , bi,j) .

Rearranging, we obtain that

1− 1

α∗
≤ Prob(bi, bj , bi,j)− SDP(b1, b2, b12) .

Since this is true for every feasible configuration and equality is achieved on some configu-

49

ration, we obtain that

1− 1

α∗
= min

θ=(bi,bj ,bi,j)
Prob(bi, bj , bi,j)− SDP(bi, bj , bi,j).

We use interval arithmetic to prove the following theorem.

Theorem 4.12. The minimum in the expression minθ=(b1,b2,b12)
f(b1, b2, b12) is achieved at

some point (b∗, b∗,−1 + 2|b∗|) for some b∗ with |b∗| ∈ [b0 − ϵ, b0 + ϵ] where b0 = 0.1489442

and ϵ = 10−6.

4.4.2 Matching Hardness

Let b∗ > 0 be a hardest bias on which f achieves its minimum as in Theorem 4.12. Using

b∗, we construct the following distribution Θ2.

Configuration Probability Predicate type

θ1 = (−b∗,−b∗,−1 + 2b∗) p1 x ∨ y

θ2 = (b∗, b∗,−1 + 2b∗) p2 x ∨ y

θ3 = (−b∗, b∗, 1− 2b∗) p3 x̄ ∨ y

θ4 = (b∗,−b∗, 1− 2b∗) p4 x̄ ∨ y

θ5 = (−b∗) p5 x̄

θ6 = (b∗) p6 x̄

Table 4.3: The hardest distribution of configurations for MAX HORN-2-SAT

Let ρ = ρ(b∗) = −1−b∗
1+b∗ be the relative pairwise bias of the configuration (−b∗,−b∗,−1+

2b∗).

Similar to the definitions in Section 4.3.2, let SDP(Θ2) be the SDP value of this dis-

tribution and Prob(Θ2, t1, t2) be the probability of a T HRESH− scheme f satisfying a

configuration sampled from Θ2 if f(−b∗) = 2Φ(t1)− 1 and f(b∗) = 2Φ(t2)− 1.
50

Proposition 4.13. We have

SDP(Θ2) = (p1 + p4) + (p2 + p3) · (1− b∗) + p5 ·
1− b∗

2
+ p6 ·

1 + b∗

2

and

Prob(Θ2, t1, t2) = p1 · (1− Φρ(t1, t1)) + p2 · (1− Φρ(t2, t2)) + p3 · (1− Φρ(−t1, t2))

+ p4 · (1− Φρ(−t2, t1)) + p5 · Φ(t2) + p6 · Φ(t1).

We also have the following partial derivatives for Prob(Θ2, t1, t2).

Proposition 4.14. We have

∂

∂t1
Prob(Θ2, t1, t2)

= −2p1φ(t1)Φ
(√

1− ρ

1 + ρ
t1

)
+ p3φ(t1)Φ

(
t2 + ρt1√
1− ρ2

)
− p4φ(t1)Φ

(
−t2 − ρt1√

1− ρ2

)
+ p6φ(t1)

= φ(t1) ·

(
−2p1Φ

(√
1− ρ

1 + ρ
t1

)
+ p3Φ

(
t2 + ρt1√
1− ρ2

)
− p4Φ

(
−t2 − ρt1√

1− ρ2

)
+ p6

)

and

∂

∂t2
Prob(Θ2, t1, t2)

= −2p2φ(t2)Φ
(√

1− ρ

1 + ρ
t2

)
− p3φ(t2)Φ

(
−t1 − ρt2√

1− ρ2

)
+ p4φ(t2)Φ

(
t1 + ρt2√
1− ρ2

)
+ p5φ(t2)

= φ(t2) ·

(
−2p2Φ

(√
1− ρ

1 + ρ
t2

)
− p3Φ

(
−t1 − ρt2√

1− ρ2

)
+ p4Φ

(
t1 + ρt2√
1− ρ2

)
+ p5

)

We have the following second derivatives for Prob(Θ2, t1, t2).

51

Proposition 4.15. We have

∂2

∂t21
Prob(Θ2, t1, t2)

= −t1φ(t1) ·

(
−2p1Φ

(√
1− ρ

1 + ρ
t1

)
+ p3Φ

(
t2 + ρt1√
1− ρ2

)
− p4Φ

(
−t2 − ρt1√

1− ρ2

)
+ p6

)

+ φ(t1) ·

(
−2p1

√
1− ρ

1 + ρ
· φ
(√

1− ρ

1 + ρ
t1

)
+ (p3 + p4) ·

ρ√
1− ρ2

· φ

(
t2 + ρt1√
1− ρ2

))
,

and

∂2

∂t22
Prob(Θ2, t1, t2)

= −t2φ(t2) ·

(
−2p2Φ

(√
1− ρ

1 + ρ
t2

)
− p3Φ

(
−t1 − ρt2√

1− ρ2

)
+ p4Φ

(
t1 + ρt2√
1− ρ2

)
+ p5

)

+ φ(t2) ·

(
−2p2

√
1− ρ

1 + ρ
· φ
(√

1− ρ

1 + ρ
t2

)
+ (p3 + p4) ·

ρ√
1− ρ2

· φ

(
t1 + ρt2√
1− ρ2

))
,

and

∂2

∂t1∂t2
Prob(Θ2, t1, t2) = (p3 + p4) · φρ(t1,−t2)

= (p3 + p4) ·
1√

1− ρ2
· φ(t1)φ

(
t2 + ρt1√
1− ρ2

)
.

We would like to find the probabilities p1, . . . , p6 that minimizes the maximum ratio

achieved by any T HRESH− scheme maxt1,t2 Prob(Θ2, t1, t2)/SDP(Θ2). To do this, we will

first heuristically derive a set of probabilities assuming t1 = −t2, and then verify that for

these probabilities Prob(Θ2, t1, t2) is indeed maximized at a point where t1 = −t2.

For Prob(Θ2, t,−t), we have

Prob(Θ2, t,−t) = (p1 + p4) · (1−Φρ(t, t)) + (p2 + p3) · (1−Φρ(−t,−t)) + p5Φ(−t) + p6Φ(t).

52

We will choose p5 = p6 = p, which intuitively makes sense as Fα∗ achieves the same ratio

α∗ on all 1-configurations. Under this assumption we have

Prob(Θ2, t,−t) = (p1 + p4) · (1− Φρ(t, t)) + (p2 + p3) · (1− Φρ(−t,−t)) + p,

and

∂

∂t
Prob(Θ2, t,−t) = (p1+p4)·

(
−2φ(t) · Φ

(√
1− ρ

1 + ρ
t

))
+(p2+p3)·

(
2φ(t) · Φ

(
−
√

1− ρ

1 + ρ
t

))

Following the same strategy we used in Section 4.3.2, we want the above to attain 0 at

t = t∗ = Φ−1((1− b∗)/2). This implies that

p2 + p3
p1 + p2 + p3 + p4

= Φ

(√
1− ρ

1 + ρ
· t∗
)

:= r.

This gives us the ratio between the probabilities of the 2-configurations, we can then

choose p so that the two T HRESH− schemes b 7→ b and b 7→ 0 in Fα∗ achieves the same

satisfying probability on Θ2, i.e.,

Prob(Θ2, t
∗,−t∗) = (p1 + p4) · (1− Φρ(t

∗, t∗)) + (p2 + p3) · (1− Φρ(−t∗,−t∗)) + p

= p1 + p2 + p3 + p4.

This implies that

p

p1 + p2 + p3 + p4
= 1− (1− r) · (1− Φρ(t

∗, t∗))− r · (1− Φρ(−t∗,−t∗)) := r′.

Since we also have p1 + p2 + p3 + p4 + 2p = 1, the above gives

p =
2r′

1 + 2r′
, p1 + p4 = (1− r) · (1− 2p), p2 + p3 = r · (1− 2p) .

53

Finally, by setting the partial derivatives

∂

∂t1
Prob(Θ2, t

∗,−t∗) = ∂

∂t2
Prob(Θ2, t

∗,−t∗) = 0,

we obtain that p1 = p2 = p as well. In summary, we obtain the following probabilities:

p1 = p2 = p5 = p6 = p =
2r′

1 + 2r′
, p3 = r · (1− 2p)− p, p4 = (1− r) · (1− 2p)− p.

The numeric values for these probabilities are listed as follows:

p1 = p2 = p5 = p6 ≈ 0.0858, p3 ≈ 0.1737, p4 ≈ 0.4831.

We remark that since we have chosen the hardest bias b∗, the approximation ratio

achieved by Fα∗ on this distribution is exactly α∗. In fact, by design, both functions in

Fα∗ achieve exactly α∗ = Prob(Θ2,−∞,−∞)
SDP(Θ2)

=
Prob(Θ2,t

∗,−t∗)
SDP(Θ2)

.

Now we prove that with the probabilities computed in the previous section, (t∗,−t∗) ∈ R2

is indeed a global maximum for Prob(Θ2, t1, t2). To give a better sense of the function that

we are working with, we give a contour plot of Prob(Θ2, t1, t2) in Figure 4.1.

It can be seen that aside from (t∗,−t∗), there are two other critical points which are

saddle points. This creates complications for an analytic proof. We will circumvent this

difficulty by employing interval arithmetic. We first prove the following statement with

interval arithmetic.

Lemma 4.16 (Interval arithmetic). For every t1, t2 ∈ R, at least one of the following is

true:

• Prob(Θ2, t1, t2) < Prob(Θ2, t
∗,−t∗).

• t1, t2 ≤ Φ−1(0.0001) or t1, t2 ≥ Φ−1(0.9999).

54

• |t1− t∗|, |t2+ t∗| < 0.01 and the Hessian matrix for Prob(Θ2, t1, t2) is negative definite.

• ∂
∂t1

Prob(Θ2, t1, t2) ̸= 0 or ∂
∂t2

Prob(Θ2, t1, t2) ̸= 0

Figure 4.1: A contour plot of Prob(Θ2, t1, t2), where the x-axis is Φ(t1) and the y-axis is
Φ(t2)

Since the gradient of Prob(Θ2, t1, t2) vanishes at (t∗,−t∗), the third item shows that

Prob(Θ2, t1, t2) ≤ Prob(Θ2, t
∗,−t∗) for every t1 ∈ [t∗−0.01, t∗+0.01], t2 ∈ [−t∗−0.01,−t∗+

0.01].

The following proposition deals with the boundary situation that our interval arithmetic

does not certify directly.

Proposition 4.17. Let t1, t2 ∈ R2 be such that t1, t2 ≤ Φ−1(0.0001) or t1, t2 ≥ Φ−1(0.9999),

then we have ∂
∂t1

Prob(Θ2, t1, t2) ̸= 0 or ∂
∂t2

Prob(Θ2, t1, t2) ̸= 0.

Proof. Assume that t1, t2 ≤ Φ−1(0.0001).

55

Since φ(t1), φ(t2) > 0, the partial derivatives being 0 is equivalent to

−2pΦ
(√

1− ρ

1 + ρ
t1

)
+ p3Φ

(
t2 + ρt1√
1− ρ2

)
− p4Φ

(
−t2 − ρt1√

1− ρ2

)
+ p = 0,

−2pΦ
(√

1− ρ

1 + ρ
t2

)
− p3Φ

(
−t1 − ρt2√

1− ρ2

)
+ p4Φ

(
t1 + ρt2√
1− ρ2

)
+ p = 0.

Using the fact that Φ(x) = 1− Φ(−x), we can rewrite the above as

−2pΦ
(√

1− ρ

1 + ρ
t1

)
+ (p3 + p4)Φ

(
t2 + ρt1√
1− ρ2

)
− p4 + p = 0,

−2pΦ
(√

1− ρ

1 + ρ
t2

)
+ (p3 + p4)Φ

(
t1 + ρt2√
1− ρ2

)
− p3 + p = 0.

Since
t2 + ρt1√
1− ρ2

+
t1 + ρt2√
1− ρ2

=
(t1 + t2)

√
1 + ρ√

1− ρ
,

we have either
t2 + ρt1√
1− ρ2

≤ (t1 + t2)
√
1 + ρ

2
√
1− ρ

or
t1 + ρt2√
1− ρ2

≤ (t1 + t2)
√
1 + ρ

2
√
1− ρ

.

A simple estimation shows that we would then have either

Φ

(
t2 + ρt1√
1− ρ2

)
≤ Φ

(
(t1 + t2)

√
1 + ρ

2
√
1− ρ

)
< 0.12

or

Φ

(
t1 + ρt2√
1− ρ2

)
≤ Φ

(
(t1 + t2)

√
1 + ρ

2
√
1− ρ

)
< 0.12.

56

But in either case we would violate at least one of the equations, since we’d have either

−2pΦ
(√

1− ρ

1 + ρ
t1

)
+ (p3 + p4)Φ

(
t2 + ρt1√
1− ρ2

)
− p4 + p < (p3 + p4) · 0.12− p4 + p < 0

or

−2pΦ
(√

1− ρ

1 + ρ
t2

)
+ (p3 + p4)Φ

(
t1 + ρt2√
1− ρ2

)
− p3 + p < (p3 + p4) · 0.12− p3 + p < 0.

This shows that at least one of the partial derivatives is non-zero. The case where t1, t2 ≥

Φ−1(0.9999) can be dealt with similarly.

Proposition 4.18. For every t1, t2 ∈ R ∪ {±∞}, we have

Prob(Θ2, t1, t2) ≤ Prob(Θ2, t
∗,−t∗).

Proof. We first consider the infinity cases. If t1 = −∞, then we have

Prob(Θ2, t1, t2) = p1 · (1− Φρ(t1, t1)) + p2 · (1− Φρ(t2, t2)) + p3 · (1− Φρ(−t1, t2))

+ p4 · (1− Φρ(−t2, t1)) + p5 · Φ(t2) + p6 · Φ(t1)

= p1 + p2 · (1− Φρ(t2, t2)) + p3 · (1− Φ(t2)) + p4 + p5 · Φ(t2).

Since p3 > p5, the Prob(Θ2,−∞, t2) is monotonically decreasing in t2, so we should choose

t2 = −∞ as well. A similar analysis shows that if t1 = +∞, then we should also set

t2 = +∞, and furthermore Prob(Θ2,−∞,−∞) = Prob(Θ2,∞,∞).

Now assume that there is a global maximum (t1, t2) with

Prob(Θ2, t1, t2) > Prob(Θ2, t
∗,−t∗) = Prob(Θ2,−∞,−∞).

Since Prob(Θ2, t1, t2) is a smooth function, the gradient vanishes at the global maximum,
57

so by Lemma 4.16 and Proposition 4.17 we must have |t1 − t∗|, |t2 + t∗| < 0.001. However,

the negative definiteness of the Hessian matrix in that neighborhood would then imply

that Prob(Θ2, t1, t2) ≤ Prob(Θ2, t
∗,−t∗). This contradiction shows that there is no global

maximum strictly larger than Prob(Θ2, t
∗,−t∗), and therefore (t∗,−t∗) itself must be a global

maximum.

The above analysis combined with Theorem 3.9 immediately implies the following theo-

rem.

Theorem 4.19. For every ϵ > 0, it is UG-hard to approximate MAX HORN-2-SAT within

a factor of α∗ + ϵ.

58

CHAPTER 5

SEPARATING MAX DI-CUT FROM MAX CUT AND MAX

2-AND

In this chapter, we study the MAX DI-CUT problem, which can be thought of a variant of

MAX CUT on directed graphs. While the approximability of MAX CUT is well understood,

the same cannot be said for MAX DI-CUT. Via a simple reduction, it can be shown that

MAX DI-CUT is at least as hard to approximate as MAX CUT, but strict separation between

the two problems was not known. Moreover, MAX 2-AND, being a generalization of MAX

DI-CUT for reasons we will see in a moment, is at least as hard as MAX DI-CUT, but here

strict separation was also unknown. The main result of this chapter is the following theorem,

which shows that there is strict separation in both cases if we assume UGC.

Theorem 5.1. Let α2-AND, αDI-CUT, αCUT be the approximation ratios of MAX 2-AND, MAX

DI-CUT and MAX CUT respectively. Assuming UGC, we have

α2-AND < αDI-CUT < αCUT.

This chapter is based on [BHPZ23] which appeared in FOCS’23.

5.1 Three Problems: MAX CUT, MAX DI-CUT and MAX 2-AND

Recall the following definitions from Section 2.1. We have predicates CUT,DI-CUT :

{−1, 1}2 → {0, 1} where CUT is satisfied if and only if the two inputs are not equal and

DI-CUT is satisfied if and only if the first input is 1 and the second input −1. MAX CUT is

defined by MAX CSP({CUT}), MAX DI-CUT is defined by MAX CSP({DI-CUT}). Note

that if we think of 1 as false and −1 and true, then the DI-CUT predicate can be expressed as

DI-CUT(x, y) = x̄∧y. This means that by allowing variable negations we can obtain 2-AND

59

constraints, and therefore MAX 2-AND can be defined as MAX CSP(cl({DI-CUT})). We

first show the following folklore proposition which explains why we are comparing them.

Proposition 5.2. Let α2-AND, αDI-CUT, αCUT be the approximation ratios of MAX 2-AND,

MAX DI-CUT and MAX CUT respectively. We have

α2-AND ≤ αDI-CUT ≤ αCUT.

Proof. It is clear that α2-AND ≤ αDI-CUT since MAX DI-CUT is a subproblem of MAX 2-

AND. To show that αDI-CUT ≤ αCUT, we exhibit an approximation ratio preserving reduction

(f, g) from MAX CUT to MAX DI-CUT as defined in Definition 2.18. Given a MAX CUT

instance I, which is an undirected graph, f simply replaces each undirected edge with two

opposing directed edges, each having the same weight as the undirected edge. g is the identity

function, that is, given a solution A to f(I) which is a cut, g(A) = A is the same cut on the

original graph. It is easy to see that Val(I, A) = Val(f(I), A) for any assignment A, so all

conditions for an approximation ratio preserving reduction are satisfied. By Lemma 2.19,

we have αDI-CUT ≤ αCUT.

Given Proposition 5.2, it is then natural to ask whether these two inequalities are strict.

We do know that at least one of them is strict assuming UGC: for MAX CUT, we have

αCUT ≥ 0.878 due to Goemans and Williamson [GW95] as mentioned earlier, and for MAX

2-AND, Austrin showed that we have α2-AND ≤ 0.87435 assuming UGC [Aus10]. This puts

αDI-CUT in a narrow interval [0.87435, 0.878]. However, we do not know towards which end of

the interval αDI-CUT lies. The best hardness result for MAX DI-CUT is inherited from MAX

CUT, and the best algorithm for MAX DI-CUT, due to Lewin, Livnat and Zwick [LLZ02],

achieves an approximation ratio1 of ≈ 0.874 < 0.87435. This means that prior to our

work it could still be the case that equality might be achieved in one of the inequalities in

1. This result is numerical and the claimed ratio is not rigorous.

60

Proposition 5.2.

In the following two sections, we will present both new algorithm and hardness results for

MAX DI-CUT. Before we proceed, let us record the following Fourier expansion of DI-CUT

which will be heavily used throughout this chapter.

Proposition 5.3. DI-CUT(x, y) = 1+x−y−xy
4 .

Since the quadratic coefficient in the Fourier expansion is −1/4, a DI-CUT configuration

is positive if and only if its relative pairwise bias is not positive.

We also note that we have the following symmetry for the MAX DI-CUT problem: given

a directed graph, if we flip the direction of every edge in the graph, then an optimal solution

to this new instance can be obtained by flipping all the signs in an optimal solution to the

original instance. For configurations, this symmetry corresponds to swapping the two biases

and then changing the signs.

Definition 5.4 (Flipping a configuration). Let θ = (bi, bj , bij) be a DI-CUT configuration.

We define its flip to be flip(θ) = (−bj ,−bi, bij).

The following proposition can be easily verified.

Proposition 5.5. Let θ = (bi, bj , bij) be a DI-CUT configuration. We have

1. ρ(θ) = ρ(flip(θ)).

2. SDP(θ) = SDP(flip(θ)).

5.2 Separating MAX DI-CUT and MAX CUT

In this section, we prove the following theorem, which improves the upper bound on the

approximation ratio of MAX DI-CUT and thereby separates MAX DI-CUT from MAX

CUT. The proofs presented in this section are taken from Section 3 in [BHPZ23].

61

Theorem 5.6. Assuming the Unique Games Conjecture, it is NP-hard to approximate MAX

DI-CUT within a factor of 0.87461.

To prove Theorem 5.6 we construct a distribution of positive configurations Θ, compute

its completeness, and show that no T HRESH− rounding scheme can achieve an approxi-

mation ratio of 0.87461 on it. The UG-hardness result then follows from Theorem 3.9.

The distribution Θ used to obtain the upper bound is extremely simple. Let p1, p2, b, c

be some parameters to be chosen later. We will choose them so that b, p1, p2 ∈ (0, 1),

c ∈ (−1,−b2), and 2p1 + p2 = 1. Consider the following distribution of configurations Θ

supported on {θ1, θ2, θ3}:

Configuration Probability

θ1 = (−b,−b,−1 + 2b) p1

θ2 = (b,−b, c) p2

θ3 = (b, b,−1 + 2b) p1

Table 5.1: A hard distribution of configurations for MAX DI-CUT

Note that in the θ1 and θ3 one of the triangle inequalities is tight, while in θ2 none of the

triangle inequalities are tight. This is in stark contrast to MAX 2-SAT and its subproblems:

in Chapter 4, we have seen that for them the hardest configurations lie on the boundary of

the triangle inequalities. We remark that the current best hardness construction for MAX

2-AND, given by Austrin [Aus10], is also supported on boundary inequalities.

We remark that this distribution is symmetric with respect to flip, since flip(θ1) = θ3

and flip(θ2) = θ2.

We first verify that Θ satisfies the positivity condition.

Proposition 5.7. Θ is a distribution of positive configurations.

62

Proof. In θ1 and θ3, the relative pairwise bias is equal to ρ1 = −1+2b−b2
1−b2 = −1−b

1+b < 0. In

θ2, the relative pairwise bias is equal to ρ2 = c+b2

1−b2 < 0 since we choose c < −b2.

The completeness of this instance can be easily computed.

Proposition 5.8. SDP(Θ) = p1 · (1− b) + p2 ·
1 + 2b− c

4
.

Proof. We have

SDP(Θ)

= p1 ·
1 + (−b)− (−b)− (−1 + 2b)

4
+ p2 ·

1 + b− (−b)− c

4
+ p1 ·

1 + b− b− (−1 + 2b)

4

= p1 ·
2− 2b

4
+ p2 ·

1 + 2b− c

4
+ p1 ·

2− 2b

4

= p1 · (1− b) + p2 ·
1 + 2b− c

4
.

We now give an upper bound on the performance of any T HRESH− rounding scheme

on this distribution. Let t1, t2 be the thresholds for −b, b respectively. Let s(t1, t2) be the

soundness of this rounding scheme on Θ. By definition of T HRESH−, we have

s(t1, t2) = p1 · Φ−ρ1(t1,−t1) + p2 · Φ−ρ2(t2,−t1) + p1 · Φ−ρ1(t2,−t2) ,

where ρ1, ρ2 < 0 are computed in Proposition 5.7. We first look at the case where −∞ <

t1, t2 <∞. The case where t1 = ±∞ or t2 = ±∞, which corresponds to always setting one

or both variables to 1 or −1, can be dealt with separately via a simple case analysis.

As we discussed earlier, a T HRESH− rounding scheme for MAX DI-CUT is not nec-

essarily odd, but as the following lemma shows, the simple and symmetric structure of our

construction ensures that any finite critical point of s is necessarily symmetric around the

origin.

Lemma 5.9. Let x, y ∈ R. If (x, y) is a critical point of s(t1, t2), then y = −x = |x|.

63

Proof. Recall that by Lemma 2.7 we have

∂

∂t1
Φρ(t1, t2) = φ(t1) · Φ

(
t2 − ρt1√
1− ρ2

)
.

The partial derivatives of s(t1, t2) are

∂s

∂t1
= p1

(
φ(t1)− 2φ(t1) · Φ

(√
1− ρ1
1 + ρ1

t1

))
+ p2

−φ(t1) · Φ
t2 − ρ2t1√

1− ρ22

 ,

∂s

∂t2
= p1

(
φ(t2)− 2φ(t2) · Φ

(√
1− ρ1
1 + ρ1

t2

))
+ p2

φ(t2)− φ(t2) · Φ

t1 − ρ2t2√
1− ρ22

 .

In the above computation, we used Lemma 2.7 and the chain rule. Since (x, y) is a critical

point of s and φ is strictly positive, we have

p1

(
1− 2Φ

(√
1− ρ1
1 + ρ1

x

))
+ p2

−Φ
 y − ρ2x√

1− ρ22

 = 0 ,

p1

(
1− 2Φ

(√
1− ρ1
1 + ρ1

y

))
+ p2

1− Φ

 x− ρ2y√
1− ρ22

 = 0 .

The first equation can be rewritten as

p1

(
1− 2Φ

(√
1− ρ1
1 + ρ1

x

))
= p2 · Φ

 y − ρ2x√
1− ρ22

 . (5.1)

Since Φ is a positive function, the right hand side of (5.1) is positive and therefore we have

1− 2Φ
(√

1−ρ1
1+ρ1

x
)
> 0, which implies that x < 0.

Since 1− Φ(t) = Φ(−t), the second equation can be rewritten as

p1

(
1− 2Φ

(√
1− ρ1
1 + ρ1

y

))
= −p2 · Φ

−x+ ρ2y√
1− ρ22

 . (5.2)

64

By similar logic we can deduce that y > 0. We now show that we must have |x| = |y|.

Assume for the sake of contradiction that |x| ≠ |y|. We have two cases:

• |x| > |y|. It follows that

p1 ·
∣∣∣∣1− 2Φ

(√
1− ρ1
1 + ρ1

x

)∣∣∣∣ = p1 ·
∣∣∣∣Φ(−√1− ρ1

1 + ρ1
x

)
− Φ

(√
1− ρ1
1 + ρ1

x

)∣∣∣∣
> p1 ·

∣∣∣∣Φ(−√1− ρ1
1 + ρ1

y

)
− Φ

(√
1− ρ1
1 + ρ1

y

)∣∣∣∣
= p1 ·

∣∣∣∣1− 2Φ

(√
1− ρ1
1 + ρ1

y

)∣∣∣∣ .

Note that here we again used 1−Φ(t) = Φ(−t), as well as the fact that |Φ(t)−Φ(−t)|

is an increasing function in |t|. On the other hand, by (5.1) and (5.2) this implies that

∣∣∣∣∣∣p2 · Φ
 y − ρ2x√

1− ρ22

∣∣∣∣∣∣ >
∣∣∣∣∣∣−p2 · Φ

−x+ ρ2y√
1− ρ22

∣∣∣∣∣∣ .
Since Φ is a positive and monotone function, this implies that

y − ρ2x√
1− ρ22

>
−x+ ρ2y√

1− ρ22

,

Rearranging the terms, we obtain

(1− ρ2)y > (1− ρ2) · (−x) .

But this would imply that |y| > |x|, which contradicts our assumption.

• |y| > |x|. This can be dealt with in a similar manner.

We conclude that we must have y = −x = |x|.

65

Lemma 5.10. If p1 > p2, then s(t1, t2) has a unique critical point.

Proof. Assume (x, y) is a critical point. In the previous lemma, we established that x =

−y < 0, so we can now plug y = −x into (5.1) and get

p1

(
1− 2Φ

(√
1− ρ1
1 + ρ1

· x
))

= p2 · Φ

−1− ρ2√
1− ρ22

· x

 = p2 · Φ
(
−
√

1 + ρ2
1− ρ2

· x
)

.

We need to show the equation above has only one solution when p1 > p2. To this end, define

g(t) = p1

(
1− 2Φ

(√
1− ρ1
1 + ρ1

· t
))
− p2 · Φ

(
−
√

1 + ρ2
1− ρ2

· t
)

, t ≤ 0 .

We have g(0) = −p2/2 < 0 and limt→−∞ g(t) = p1− p2 > 0, so g(t) = 0 has at least one

solution in (−∞, 0) by Intermediate Value Theorem. To show that the solution is unique,

we compute the derivative of g:

g′(t) = p1

(
−2
√

1− ρ1
1 + ρ1

· φ
(√

1− ρ1
1 + ρ1

· t
))

+ p2 ·
√

1 + ρ2
1− ρ2

· φ
(
−
√

1 + ρ2
1− ρ2

· t
)

.

By setting g′(t) = 0, we obtain

2p1

√
1− ρ1
1 + ρ1

· φ
(√

1− ρ1
1 + ρ1

· t
)

= p2 ·
√

1 + ρ2
1− ρ2

· φ
(
−
√

1 + ρ2
1− ρ2

· t
)

Plugging in the definition of φ, we get

2p1

√
1− ρ1
1 + ρ1

· 1√
2π

exp

(
−1− ρ1
1 + ρ1

· t
2

2

)
= p2 ·

√
1 + ρ2
1− ρ2

· 1√
2π

exp

(
−1 + ρ2
1− ρ2

· t
2

2

)
,

66

which is equivalent to

2p1

√
1− ρ1
1 + ρ1

· exp
(
−
(
1− ρ1
1 + ρ1

− 1 + ρ2
1− ρ2

)
· t

2

2

)
= p2 ·

√
1 + ρ2
1− ρ2

.

Since ρ1, ρ2 < 0 and exp is monotone, this equation has exactly one solution t∗ ∈ (−∞, 0).

Furthermore, g′(t) > 0 for t ∈ (−∞, t∗) and g′(t) < 0 for t ∈ (t∗, 0). It follows that g has no

root in (−∞, t∗) and has a unique root in (t∗, 0).

We now deal with the boundary cases. Since our distribution is symmetric with respect

to flip, it is sufficient to look at the case where t1 = ±∞.

Lemma 5.11. We have s(+∞,+∞) = s(−∞,−∞) = s(+∞,−∞) = 0, s(−∞,+∞) = p2.

For t2 ∈ R, we have s(−∞, t2) > s(+∞, t2). Furthermore, if p1 > p2, then s(−∞, t2) is

maximized when t2 = t∗ =
√

1+ρ1
1−ρ1 · Φ

−1(p1+p2
2p1

).

Proof. Setting a threshold to +∞ corresponds to always setting a variable to false, and −∞

corresponds to always true. When (t1, t2) ∈ {(+∞,+∞), (−∞,−∞), (+∞,−∞)}, none of

the configurations are satisfied, giving a soundness of 0. When (t1, t2) = (−∞,+∞), only

the second configuration is satisfied and this gives a soundness of p2. For the second claim,

we have

s(−∞, t2) = p2 · Φ(t2) + p1 · Φ−ρ1(t2,−t2) > p1 · Φ−ρ1(t2,−t2) = s(+∞, t2) ,

and
∂s(−∞, t2)

∂t2
= φ(t2)

(
p2 + p1

(
1− 2Φ

(√
1− ρ1
1 + ρ1

t2

)))
.

When p1 > p2, we have ∂s(−∞,t2)
∂t2

> 0 on (−∞, t∗) and ∂s(−∞,t2)
∂t2

< 0 on (t∗,∞).

With Lemma 5.10 and Lemma 5.11, it becomes very easy to determine the maximum

of s by simply computing the unique critical point and comparing it with the boundary

67

cases. It turns out that when b = 0.1757079776, c = −0.6876930116, p1 = 0.3770580295,

the unique critical point of s(t1, t2) is at (−t0, t0) where t0 ≈ 0.1887837358, which is also a

global maximum whose value is about 0.8746024732. It follows that with these parameters,

any T HRESH− rounding scheme achieves a ratio of at most 0.87461.

We remark that by adding more biases to Θ, we seem to obtain an even harder distribu-

tion. However, analyzing this new distribution by hand seems impossible so we only have a

numerical bound.

Configuration Probability

(b2, b1,−1 + b1 + b2) 0.1907744673

(−b1,−b2,−1 + b1 + b2) 0.1907744673

(b2, b2,−1 + 2b2) 0.1858539509

(−b2,−b2,−1 + 2b2) 0.1858539509

(b1,−b1,−0.6874089540) 0.2371153723

(b1,−b2,−0.6876719134) 0.0048138957

(b2,−b1,−0.6876719134) 0.0048138957

Table 5.2: A distribution that uses two pairs of biases that seems to yield an upper bound
αDI-CUT ≤ 0.8745896786, where b1 = 0.1644279457 and b2 = 0.1797733117. (Not verified
rigorously.) Table taken from [BHPZ23].

From the numerical experiments it seems that the hardness ratio of the distribution

continues to improve if we add even more biases. Based on this observation we make the

following conjecture.

Conjecture 3. The hardest distribution of configurations for MAX DI-CUT is supported

on infinitely many configurations.

Austrin made a similar observation for MAX 2-AND in [Aus10]. It would be very inter-

esting to understand why MAX DI-CUT and MAX 2-AND behave so differently from other

68

MAX 2-CSPs like MAX CUT and MAX 2-SAT, for which the hardest distributions take on

very simple forms.

5.3 Separating MAX DI-CUT and MAX 2-AND

In this section, we present the following theorem. The materials in the section are taken

from Section 4 in [BHPZ23].

Theorem 5.12. αDI-CUT ≥ 0.87447.

Since α2-AND ≤ 0.87435 (assuming UGC), this separates MAX DI-CUT from MAX 2-

AND (again assuming UGC) and completes the other part of Theorem 5.1. Let us quickly

discuss some intuition for why this separation can be expected. To prove that α2-AND ≤

0.87435, Austrin used a family of hard distributions, the simplest (and easiest) of which is

of the following form:

Configuration Probability

(0,−b, b− 1) 0.64612

(0, b, b− 1) 0.35388

Table 5.3: Austrin’s hard distribution of configurations for MAX 2-AND [Aus10], b = 0.33633

Harder distributions in Austrin’s construction can be obtained by adding more non-zero

biases, but the bias 0 always appears in these distributions. This is due to an important

restriction in MAX 2-AND: the threshold function used by any optimal T HRESH rounding

scheme for MAX 2-AND has to be odd, since the variables can be freely negated when we

construct a MAX 2-AND instance. This restriction is absent from MAX DI-CUT, for which

negated variables are not allowed. Indeed, for the distribution in Table 5.3, we can take a

T HRESH rounding scheme in which variables with bias 0 are always rounded to some fixed

truth value, and this will give an approximation ratio better than 1!
69

g1 g2 g3 g4 g5 g6 g7

prob 0.996902 0.000956 0.000956 0.000393 0.000393 0.000200 0.000200

−1.000000 −1.601709 −2.000000 −2.000000 −0.034381 −0.430994 −2.000000 2.000000

−0.700000 −0.853605 −2.000000 −2.000000 −0.034381 −0.430994 −2.000000 2.000000

−0.450000 −0.517014 −2.000000 −0.629564 −0.440988 −0.896878 −2.000000 2.000000

−0.300000 −0.333109 −1.520523 1.711824 −1.406591 1.643936 −2.070000 1.970000

−0.250000 −0.274589 −0.687582 2.019266 −0.622399 −0.127984 −1.629055 2.070000

−0.179515 −0.192926 −0.195474 −0.229007 −0.268471 −0.339566 −0.544957 −0.103307

−0.164720 −0.175942 −0.381789 −0.649998 −0.116530 −0.073069 −0.361234 −0.575047

−0.100000 −0.105428 −0.026636 −1.175439 0.066139 −0.123693 2.070000 −1.351740

0.000000 0.000000 2.046025 −2.046025 1.728858 −1.728858 2.050000 −2.050000

0.100000 0.105428 1.175439 0.026636 0.123693 −0.066139 1.351740 −2.070000

0.164720 0.175942 0.649998 0.381789 0.073069 0.116530 0.575047 0.361234

0.179515 0.192926 0.229007 0.195474 0.339566 0.268471 0.103307 0.544957

0.250000 0.274589 −2.019266 0.687582 0.127984 0.622399 −2.070000 1.629055

0.300000 0.333109 −1.711824 1.520523 −1.643936 1.406591 −1.970000 2.070000

0.450000 0.517014 0.629564 2.000000 0.896878 0.440988 −2.000000 2.000000

0.700000 0.853605 2.000000 2.000000 0.430994 0.034381 −2.000000 2.000000

1.000000 1.601709 2.000000 2.000000 0.430994 0.034381 −2.000000 2.000000

Table 5.4: A T HRESH rounding scheme F that gives a rigorously verified approximation
ratio of at least 0.87447 for MAX DI-CUT. (The actual ratio is probably about 0.874502.)
This table is taken from Table 1 in [BHPZ23].

To prove Theorem 5.12, we give a new algorithm for MAX DI-CUT from the T HRESH

family that achieves the claimed ratio. The specifications for this algorithm can be found in

Table 5.3. The table describes a distribution over 7 piecewise-linear functions g1, g2, . . . , g7

defined on 17 control points. The first column contains the control points, and the following

columns describe the value of each function at the corresponding control point. The function

g1 is odd and is very close to the function used by [LLZ02] in their MAX DI-CUT algorithm.

The other six functions come in pairs. The two functions in each pair are flips of each other.

70

Note that here the threshold function is parameterized in a slightly different way than in

Algorithm 2. For each i ∈ [7], if we define fi : [−1, 1]→ [−1, 1], b 7→ 2Φ(gi(b))−1, then each

fi gives a T HRESH− rounding scheme as defined in Algorithm 2. This distribution F is

obtained via a computer search, the details of which can be found in Section 4 of [BHPZ23].

It should be noted that this algorithm is not optimal: by adding more functions to the

distribution, we can get a new T HRESH scheme with marginally better approximation

ratio. In fact, we make the following conjecture that is similar in spirit to Conjecture 3.

Conjecture 4. The optimal T HRESH rounding scheme for MAX DI-CUT is supported

on infinitely many T HRESH− schemes.

Conjectures 3 and 4 are in some sense dual to each other. We believe understanding one

of them will also help us understand the other.

Verifying the approximation ratio of such a complicated algorithm is an impossible task by

hand. We will use a computer-assisted proof, deploying the technique of interval arithmetic

which we discussed earlier in Section 2.6. We need to prove the following inequality

(
SDP(θ) ̸= 0 =⇒

Ef∼F [Prob(θ, f)]

SDP(θ)
≥ α

)
,

for every configuration θ, or equivalently

E
f∼F

[Prob(θ, f)]− α · SDP(θ) ≥ 0 .

The pseudocode of the algorithm is presented in Algorithm 4. The CheckValidity

function checks if there exists a valid configuration in I1 × I2 × I1,2 (recall that a DI-

CUT configuration is represented by a triple), i.e., a configuration that satisfies all triangle

inequalities, and returns true if it does. If CheckValidity returns false, then the algorithm

returns true, since in this case the region consists entirely of invalid configurations and there

is nothing to check. Otherwise, the algorithm continues to compute an interval I, using the
71

IntervalArithmeticEvaluate subroutine, such that

∀θ ∈ I1 × I2 × I1,2, E
f∼F

[Prob(θ, f)]− α · SDP(θ) ∈ I.

The algorithm then checks if I is entirely non-negative or entirely negative, in which cases

we can decide that either the ratio is achieved over the entire region, or there exists a

valid configuration that violates the ratio, and exit the algorithm accordingly. Otherwise,

I consists of both positive and negative values, but the negative values may come from

evaluation of invalid configurations, or more intrinsically the error produced by interval

arithmetic itself. In this case, we subdivide the longest interval into two equal-length sub-

intervals and recursively apply the algorithm.

We implemented this verification algorithm in C using the interval arithmetic library

Arb [Joh17]. To speed up the computation, we split the various tasks between cores using

GNU Parallel [O11].

Remark 5.13. To further speed up the computation, we also computed partial derivatives of

Ef∼F [Prob(θ, f)]−α ·SDP(θ) with respect to the biases and pairwise bias, and skip a region

entirely if we find that one of the partial derivatives is strictly positive or strictly negative.

This is justified by the fact that the minimizer of Ef∼F [Prob(θ, f)]−α ·SDP(θ) will never be

in the interior of such a region. We stress that we only perform this optimization in regions

that are within the interior of the valid region defined by the triangle inequalities, since the

minimum could appear on the boundary.

72

Algorithm 4 Interval arithmetic verification algorithm
procedure CheckRatio(I1, I2, I1,2) ▷ Returns a Boolean value

if CheckValidity(I1, I2, I1,2) = FALSE then

return TRUE

I ← IntervalArithmeticEvaluate(I1, I2, I1,2).

if I ⊆ [0,∞) then

return TRUE

else if I ⊆ (∞, 0) then

return FALSE

else

if |I1| = max(|I1|, |I2|, |I1,2|) then

Split I1 into two equal-length sub-intervals I1 = I l1 ∪ Ir1 .

return CheckRatio(I l1, I2, I1,2) ∧CheckRatio(Ir1 , I2, I1,2)

else if |I2| = max(|I1|, |I2|, |I1,2|) then

Split I2 into two equal-length sub-intervals I2 = I l2 ∪ Ir2 .

return CheckRatio(I1, I l2, I1,2) ∧CheckRatio(I1, Ir2 , I1,2)

else

Split I1,2 into two equal-length sub-intervals I1,2 = I l1,2 ∪ Ir1,2.

return CheckRatio(I1, I2, I l1,2) ∧CheckRatio(I1, I2, Ir1,2)

We obtain the following lemma.

Lemma 5.14. F achieves an approximation ratio of 0.87448 on all DI-CUT configurations

with completeness at least 10−4.

Note that in the lemma above there is a requirement on completeness in the next subsec-

tion. As we discussed, interval arithmetic in general cannot certify nonnegativity of a func-

tion which attains 0. Unfortunately, the function that we care about, Ef∼F [Prob(θ, f)]−α ·

73

SDP(θ), does attain 0, regardless of the choice of r, as the following proposition shows.

Proposition 5.15. Let θ = (bi, bj , bij) be a DI-CUT configuration with bi = bj = b and

ρ(θ) = 1. Then for any f ,

Prob(θ, f) = SDP(θ) = 0 .

Proof. Since ρ(θ) = 1, we have bij = bibj + ρ
√

1− b2i

√
1− b2j = b2 + (1− b2) = 1 and

SDP(θ) =
1 + bi − bj − bij

4
=

1 + b− b− 1

4
= 0 .

For soundness, we have Prob(θ, f) = Φ−ρ(f(bi),−f(bj)) = Φ−ρ(f(b),−f(b)). Since ρ = 1,

this is equal to PrX∼N(0,1)[X ≤ f(b) ∧ −X ≤ −f(b)] = PrX∼N(0,1)[X = f(b)] = 0.

Luckily, on configurations with small completeness, it is known that independent round-

ing, which assigns true to each variable independently with probability 1/2, does very well.

Indeed, this rounding scheme achieves satisfies the DI-CUT constraint with probability 1/4

on every configuration. This implies that F combined with the independent rounding will

achieve a good approximation ratio over all DI-CUT configurations.

Proof of Theorem 5.12. Consider the rounding algorithm where we use the T HRESH round-

ing scheme F with probability (1− 10−5) and independent rounding with probability 10−5.

We show that this algorithm achieves a ratio of 0.87447 on all configurations of DI-CUT.

Let θ be a DI-CUT configuration. If SDP(θ) ≥ 10−6, then by Lemma 5.14, we achieve

a ratio of at least 0.87448 × (1 − 10−5) > 0.87447. If SDP(θ) < 10−6, then independent

rounding contributes a soundness of 0.25× 10−5 = 2.5× 10−6 > 0.87447 · SDP(θ).

Remark 5.16. In a subsequent version of [BHPZ23], the use of independent rounding in

the proof of Theorem 5.12 is replaced with a more careful analysis of the behavior of the

algorithm on the small-completeness configurations, and consequently we no longer lose 10−5

in the verified ratio.

74

CHAPTER 6

7/8-HARDNESS FOR MONOTONE MAX NAE-SAT

In this chapter, we study the MAX NAE-SAT problem, which can be thought of as a sym-

metrized and harder version of the MAX SAT problem. We prove that obtaining a 7/8-

approximation for MAX NAE-SAT is UG-hard. We then extend this result to its monotone

version, where variable negations are not allowed. This chapter is based on [BHPZ21] which

appeared in SODA’21 and its extended version.

6.1 The MAX NAE-SAT Problem

MAX NAE-SAT can be thought of as a symmetrized and harder version of MAX SAT. For

any MAX SAT constraint, the only non-satisfying assignment is the all-false assignment,

whereas for a MAX NAE-SAT constraint, there are two non-satisfying assignments: the

all-true assignment and the all-false assignment. This makes the two truth values symmetric

for MAX NAE-SAT. More concretely, we have the following well-known proposition.

Proposition 6.1. There exists an approximation-preserving reduction from MAX {k}-SAT

to MAX NAE-{k + 1}-SAT.

Proof. Let Φ be a MAX {k}-SAT instance, with variable set V = {x1, . . . , xn} and constraint

set C = {C1, . . . , Cm}. We construct a MAX NAE-{k + 1}-SAT instance Ψ as follows. The

variable set of Ψ will be V ′ = V ∪ {x0}. For any clause Ci = ORk(ℓi,1, . . . , ℓi,k), we

create a clause C ′i = NAEk+1(x0, ℓi,1, . . . , ℓi,k). We then take the constraint set of Ψ to be

C′ = {C ′1, . . . , C
′
m}. Given any solution to Ψ, we may assume x0 = 1 (false) since NAEk+1

is an even predicate, and with this assumption we have that

Ci is satisfied ⇐⇒ There exists a true literal in Ci

⇐⇒ C ′i is satisfied.

75

It follows that this reduction is approximation-preserving.

By allowing clauses of arbitrary length, the same reduction in the above proof also implies

the following proposition.

Proposition 6.2. There exists an approximation-preserving reduction from MAX SAT to

MAX NAE-SAT.

For this reason, if there is a 7/8-approximation algorithm for MAX NAE-SAT, then

it would also imply the existence of a 7/8-approximation algorithm for MAX SAT. It is

therefore very natural to ask whether such an algorithm exists for MAX NAE-SAT.

Question: is there a 7/8-approximation algorithm for MAX NAE-SAT?

One glimmer of hope is that tight approximation algorithms are known for MAX NAE-

{k}-SAT, for every k ≥ 2, under the assumption of Unique Games Conjecture and/or P is

not equal to NP, and all of them have approximation ratios at least 7/8:

• When k = 2, it is known that there is an algorithm achieving an approximation ratio of

αGW ≈ 0.8786 [GW95], but achieving αGW + ϵ for any ϵ > 0 is UG-hard [KKMO07].

• When k = 3, it is known that there is an algorithm achieving an approximation ratio

of αNAE3
≈ 0.9089, but achieving αNAE3

+ ϵ for any ϵ > 0 is UG-hard [BHPZ21].

• When k ≥ 4, taking a uniformly random assignment gives an approximation ratio of

1/2k−1, and achieving 1/2k−1 + ϵ for any ϵ > 0 is NP-hard [Hå01].

However, it turns out that assuming UGC (or at least that unique games is hard), there

is no 7/8-approximation algorithm for MAX NAE-SAT.

Theorem 6.3. It is UG-hard to approximate monotone MAX NAE-{3, 5}-SAT (i.e., the

version of MAX NAE-SAT with clauses of length ∈ {3, 5} and no negated literals) with a

ratio better than 3(
√
21−4)
2 ≈ 0.8739.

76

This chapter will be organized as follows. In Section 6.2, we describe the RPR2 rounding

family which contains the optimal rounding algorithm for MAX NAE-SAT and monotone

MAX NAE-SAT. In Section 6.3, we introduce moment functions of RPR2 rounding schemes

and prove several useful properties about them. As a warm-up, we then prove the hardness

result for MAX NAE-SAT (with negated literals) in Section 6.4. Finally, we prove the result

for monotone MAX NAE-SAT in Section 6.5. The proofs in Section 6.4 and Section 6.5 are

obtained via showing limitations of RPR2 rounding schemes. We will also give a construction

for a explicit family of gap instances that achieve the same result in Section 6.6.

Before we proceed further, we recall the following Fourier expansion for not-all-equal

predicates.

Proposition 6.4. The Fourier expansion of NAEk : {−1, 1}k → {0, 1} is given by

NAEk(x1, . . . , xk) =
∑
S⊆[k]

N̂AEk(S)
∏
i∈S

xi,

where N̂AEk(∅) = 1 − 1
2k−1 , N̂AEk(S) = 0 if |S| is odd, and N̂AEk(S) = − 1

2k−1 if |S| is

even and at least 2.

We explicitly write down the Fourier expansions when k = 3 and k = 5, which will be

needed in the following sections.

• NAE3(x1, x2, x3) =
3−x1x2−x1x3−x2x3

4 ,

• NAE5(x1, x2, . . . , x5) =
15−

∑
1≤i<j≤5 xixj−

∑
1≤i<j<k<l≤5 xixjxkxl

16 .

6.2 Rounding Schemes for MAX NAE-SAT

In this section we introduce RPR2 rounding schemes and argue that for MAX NAE-SAT

it is sufficient to consider these rounding schemes only. These rounding schemes were first

formulated and named (RPR2 is short for “random projection, randomized rounding”) by
77

Feige and Langberg [FL06]. A RPR2 rounding scheme chooses a function f : R → [−1, 1],

which is referred to as a rounding function, and performs the actions described in Algorithm 5.

Algorithm 5 RPR2 rounding scheme with rounding function f : R→ [−1, 1]
Input: v1, . . . ,vn ∈ Rn unit vectors obtained by solving the Basic SDP

Output: x1, . . . , xn ∈ {−1, 1} rounded Boolean assignment to the variables

r← N(0, In)

for i← 1 to n do

ti ← r · vi

xi ← 1 with probability 1+f(ti)
2 , and xi ← −1 with probability 1−f(ti)

2 .

It can be easily seen that RPR2 generalizes hyperplane rounding, which is simply RPR2

using the sign function as the rounding function. In fact, we can easily generalize RPR2

even further, by using a higher dimensional rounding function.

Algorithm 6 RPR2 rounding scheme with rounding function f : Rd → [−1, 1]
Input: v1, . . . ,vn ∈ Rn unit vectors obtained by solving the Basic SDP

Output: x1, . . . , xn ∈ {−1, 1} rounded Boolean assignment to the variables

for j ← 1 to d do

rj ← N(0, In)

for i← 1 to n do

for j ← 1 to d do

ti,j ← vi · rj

xi ← 1 with probability 1+f(ti,1,··· ,ti,d)
2 , and xi ← −1 with probability 1−f(ti,1,··· ,ti,d)

2 .

We now compare Algorithm 6 with the brute-force rounding scheme described in Chap-

ter 3. The brute-force rounding scheme there can be thought of as a variation on Algorithm 6,

where we are allowed to choose the best f after seeing the projections ti,j (the dimension

78

d has to be chosen beforehand). This gives the rounding algorithm extra power. Indeed,

Algorithm 6 as written does not have access to v0, which is crucial for the rounding of many

problems including MAX SAT. However, if we are allowed to choose f after projecting the

vectors, then we may choose some f that has the "built-in" knowledge of v0 · rj as well,

which, if d is sufficiently large, essentially give us all information on v0. However, for MAX

NAE-SAT, since the predicates are even, the Basic SDP can be assumed not to be biased

toward either 1 or −1, and v0 does not play a role in the rounding algorithm at all. For this

reason, Algorithm 6 does capture the full power of the brute-force rounding scheme in the

case of MAX NAE-SAT. We formally prove it in the following lemma.

Lemma 6.5. Let c > s > 0 and Φ be a MAX NAE-SAT instance with the following proper-

ties:

• SDP(Φ) ≥ c, and

• for all f , Algorithm 6 with rounding function f satisfies at most s fraction of the

constraints in expectation,

then it is UG-hard to approximate MAX NAE-SAT within a ratio of s/c+ ϵ for any ϵ > 0.

Proof. Fix ϵ > 0. Let d > 0 be a large integer to be chosen later, and v1, . . . ,vn ∈ Rn

be an SDP solution to Φ that achieves the completeness c. Let Bϵ be an ϵ-net on the unit

sphere in Rd, i.e., a partition of the unit sphere such that any two vectors that belong to the

same piece of Bϵ have ℓ2 distance at most ϵ. Let us now construct another MAX NAE-SAT

Φ′ instance. The variables of Φ′ will be the pieces in Bϵ. The constraints of Φ′ will be

constructed in the following way:

• sample a constraint P (xi1 , . . . , xik) ∼ Φ,

• sample i.i.d. standard Gaussian vectors r1, . . . , rd ∈ Rn

79

• for j ∈ [k], compute uj =
1√
d
(vij · r1, . . . ,vij · rd) ∈ Rd, and let pj be the piece in Bϵ

that is closest to uj .

• if |uj · uℓ − vij · viℓ | ≤ ϵ for every j, ℓ ∈ [k], then output the constraint P (p1, . . . , pk),

otherwise we output some dummy clause.

Note that although Φ′ is described using probabilistic terms, it is fully deterministic since the

probabilities translate to the weights on the clauses. Using the same arguments in [RS09],

we can show that |SDP(Φ′)− SDP(Φ)| ≤ ϵ if d is sufficiently large. On the other hand, any

good assignment to Φ′ automatically induces a rounding function f with which Algorithm 6

achieves the same satisfying fraction (within o(1)) on Φ.

In the following, we will refer to Algorithm 6 with function f as RPR2 scheme with

function f . The following lemma shows that when negations are allowed, we only need to

consider RPR2 schemes with odd f .

Lemma 6.6. Let f : Rd → [−1, 1] and fodd(x) = (f(x) − f(−x))/2 be its odd part. For

any MAX CSP, the worst case performance of the RPR2 scheme with f ′ is at least as good

as the RPR2 scheme with fodd .

Proof. Consider an arbitrary MAX CSP and let Φ be a worst-case instance for Roundf ′ .

Observe that the Roundf ′ procedure is equivalent to the following: independently for every

variable xi, with probability 1/2 apply the rounding function f on vi, and with probability

1/2 apply the rounding function f on −vi and flip the result. Observe further that by

replacing vi with −vi and flipping the outcome, we are essentially applying f to a new

instance with −xi in place of xi in Φ. This implies that the value of Roundf ′ on Φ is an

average of 2n values (n is the number of variables in Φ) where each value is Roundf evaluated

on an instance obtained by flipping some variables in Φ. It follows that in some of these

instances Roundf has a value as bad as the value of Roundf ′ on Φ.

80

6.3 Moment Functions of RPR2 Rounding Schemes

In this section, we define moment functions of RPR2 Rounding Schemes, which will be an

indispensable tool for us to analyze the performances of these rounding algorithms. We then

state and prove a few lemmas about the moment functions that are needed in our analysis.

Definition 6.7. For any k ≥ 2, we say that (bi,j)1≤i<j≤k is a tuple of valid pairwise biases

if there exist unit vectors u(1), . . . ,u(k) such that bi,j = u(i) · u(j) for every 1 ≤ i < j ≤ k.

Definition 6.8. Let f : Rd → [−1, 1], ρ ∈ [0, 1], k ∈ N+. Let (bi,j)1≤i<j≤k be a tuple of

valid pairwise biases. We define

Fk[f](b1,2, b1,3, . . . , bk−1,k) = E
x(1),...,x(k)

[
f
(
x(1)

)
· · · f

(
x(k)

)]
.

Here x(1), . . . ,x(k) are d-dimensional standard Gaussian vectors such that x(i) and x(j) are

bi,j-correlated1. When b1,2 = b1,3 = . . . = bk−1,k = ρ, we will write Fk[f](ρ) as a short hand

for Fk[f](b1,2, b1,3, . . . , bk−1,k). When k = 1, the moment function has no input and we have

F1[f] = Ex∼N(0,Id)
[f(x)]. We will write Ex∼N(0,Id)

[f(x)] as E[f] if the context is clear.

Note that one way to generate the vectors x(1), . . . ,x(k) in the above definition is by

taking u(1), . . . ,u(k) from the definition of valid pairwise biases and d independent standard

Gaussian vectors r(1), . . . , r(d) and letting x(i) = (r(1) ·u(i), . . . , r(d) ·u(i)). These are exactly

the vectors generated by the RPR2 rounding scheme with function f . In other words, moment

functions describe the expected values of monomials where each variable in the monomial is

the rounded value output by the given RPR2 rounding scheme.

The first lemma we need is the following simple result concerning the case in which there

is one vector that’s orthogonal to all other vectors.

1. We say that two d-dimensional standard Gaussian vectors x and y are ρ-correlated if the correlation

matrix of (x1, . . . ,xd,y1, . . . ,yd) is given by
(

Id ρId
ρId Id

)
.

81

Lemma 6.9. Let f : Rd → [−1, 1], ρ ∈ [0, 1], k ∈ N+. Let (bi,j)1≤i<j≤k be a tuple of valid

pairwise biases. If bi,k = 0 for every 1 ≤ i ≤ k − 1, then

Fk[f](b1,2, b1,3, . . . , bk−1,k) = Fk−1[f](b1,2, b1,3, . . . , bk−2,k−1) · E[f].

Proof. By definition we have

Fk[f](b1,2, b1,3, . . . , bk−1,k) = E
x(1),...,x(k)

[
f
(
x(1)

)
· · · f

(
x(k)

)]
.

where x(1), . . . ,x(k) are d-dimensional standard Gaussian vectors such that x(i) and x(j) are

bi,j-correlated. If bi,k = 0 for every 1 ≤ i ≤ k − 1, then x(k) is independent from all other

vectors, and it follows that

E
x(1),...,x(k)

[
f
(
x(1)

)
· · · f

(
x(k)

)]
= E

x(1),...,x(k−1)

[
f
(
x(1)

)
· · · f

(
x(k−1)

)]
E
x(k)

[
f
(
x(k)

)]
= Fk−1[f](b1,2, b1,3, . . . , bk−2,k−1) · E[f].

The following corollary is immediate.

Corollary 6.10. Let f : Rd → [−1, 1], ρ ∈ [0, 1], k ∈ N+. Let (bi,j)1≤i<j≤k be a tuple of

valid pairwise biases. If f is an odd function and bi,k = 0 for every 1 ≤ i ≤ k − 1, then

Fk[f](b1,2, b1,3, . . . , bk−1,k) = 0.

Proof. f being an odd function implies that E[f] = 0. The corollary then follows directly

from Lemma 6.9.

The next lemma gives us an alternative expression for the moment function when the

input biases are all equal and non-negative.

82

Lemma 6.11. Let f : Rd → [−1, 1], ρ ∈ [0, 1], k ∈ N+. We have

Fk[f](ρ) = E
x∼N(0,Id)

[(
U√ρf(x)

)k]
.

Proof. By definition,

Fk[f](ρ) = E
x(1),...,x(k)

[
f
(
x(1)

)
· · · f

(
x(k)

)]

where x(1), . . . ,x(k) are d-dimensional Gaussian vectors such that each x(i) ∼ N(0, Id), and

x(i) and x(j) are ρ-correlated for 1 ≤ i < j ≤ k. One way to generate such a distribution is

by having k + 1 independent d-dimensional standard Gaussian vectors u, ϵ(1), . . . , ϵ(k), and

setting x(i) =
√
ρ · u+

√
1− ρ · ϵ(i) for 1 ≤ i ≤ k. It follows that

Fk[f](ρ) = E
x(1),...,x(k)

[
f
(
x(1)

)
· · · f

(
x(k)

)]

= E
u,ϵ(1),...,ϵ(k)

 k∏
i=1

f
(√

ρ · u+
√

1− ρ · ϵ(i)
)

= E
u

 k∏
i=1

E
ϵ(i)

[
f
(√

ρ · u+
√

1− ρ · ϵ(i)
)]

= E
u

[(
U√ρf(u)

)k]
.

We will write Ex∼N(0,Id)

[(
U√ρf(x)

)k]
as E

[(
U√ρf

)k]
if the context is clear.

Corollary 6.12. Let f : Rd → [−1, 1], ρ ∈ [0, 1]. We have

F4[f](ρ) ≥ F2[f](ρ)
2.

Proof. By Lemma 6.11, we have F4[f, f, . . . , f](ρ) = E
[(

U√ρf
)4]

and F2[f, f, . . . , f](ρ) =

83

E
[(

U√ρf
)2]

. The corollary then follows from Jensen’s inequality.

Given a function f : Rk → [−1, 1], we will use fodd to denote its odd part, defined by

v 7→ f(v)−f(−v)
2 , and feven its even part, defined by v 7→ f(v)+f(−v)

2 . Clearly, feven, fodd :

Rk → [−1, 1] and f = feven + fodd.

Lemma 6.13. Let f : Rd → [−1, 1], η ∈ [0, 1], k ∈ N+. We have

E
[(
Uηf

)k]
=

⌊k/2⌋∑
i=0

(
k

2i

)
· E
[(

Uηf
odd
)2i (

Uηf
even)k−2i] .

Proof. It can be easily seen from the definition of Uη that it is a linear operator, so Uηf =

Uηf
odd+Uηf

even. Lemma 6.13 is then a simple consequence of the binomial theorem, plus

the fact that any term that contains an odd power of Uηf
odd will have zero expectation.

To end this section, we remark that F2 coincides with the notion of noise stability,

which has been studied previously and is well understood. Indeed, we have the following

characterization:

Lemma 6.14 (c.f. [OW08]). Let ρ ∈ [−1, 1], f : Rk → [−1, 1]. Then there exist constants

c0(f), c1(f), . . . such that F2[f](ρ) =
∑∞

i=0 ci(f)
2 · ρi.

Corollary 6.15. Let ρ ∈ [−1, 1], f : Rk → [−1, 1]. If f is even, then F2[f](ρ) ≥ 0.

Corollary 6.16. Let ρ ∈ [−1, 1], f : Rk → [−1, 1]. Then

F2[f](ρ) = F2[f
even](|ρ|) + sign(ρ)F2[f

odd](|ρ|).

Proof. By Lemma 6.14, we have F2[f](ρ) =
∑∞

i=0 ci(f)
2·ρi, F2[feven](ρ) =

∑
i even ci(f)

2·ρi,

F2[f
odd](ρ) =

∑
i odd ci(f)

2 · ρi. The proposition follows by observing that F2[f
even](ρ) =

F2[f
even](|ρ|) and F2[f

odd](ρ) = sign(ρ)F2[f
odd](|ρ|).

84

6.4 7/8-Hardness for Non-Monotone MAX NAE-SAT

In this section, we present a construction of hard-to-round SDP solutions. As a warm-up, we

will first show in Theorem 6.17 that this construction is hard to round as MAX NAE-SAT

configurations, i.e., when the rounding schemes have to choose an odd f . We will show in

the next section that actually this construction is hard to round even as monotone MAX

NAE-SAT configurations, in which case f can be arbitrary.

Theorem 6.17. It is UG-hard to approximate MAX NAE-{3, 5}-SAT (i.e., the version of

MAX NAE-SAT with clauses of length ∈ {3, 5}) with a ratio better than 3(
√
21−4)
2 ≈ 0.8739.

We will use the following pairwise biases in the SDP solution:
(
−1

3 ,−
1
3 ,−

1
3

)
for NAE3

and
(
1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 , 0, 0, 0, 0

)
for NAE5. We show that these pairwise biases “fool” the Basic

SDP (has completeness 1) but are in fact very difficult to round.

Lemma 6.18. Let Φ be a MAX NAE-{3, 5}-SAT instance whose 3-clauses all have pairwise

biases (b1,2, b1,3, b2,3) = (−1
3 ,−

1
3 ,−

1
3) and 5-clauses all have pairwise biases (b1,2, b1,3, . . . , b4,5) =

(13 ,
1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 , 0, 0, 0, 0), then Φ has completeness 1.

Proof. It suffices to show that for every clause, there exists a distribution of satisfying as-

signments that agrees with the pairwise biases.

• 3-clauses. The uniform distribution on {(1, 1,−1), (1,−1, 1), (−1, 1, 1)} has the same

pairwise biases.

Probability x1 x2 x3

1/3 1 −1 −1

1/3 −1 1 −1

1/3 −1 −1 1

• 5-clauses. The following distribution on satisfying assignments has the same pairwise

biases.
85

Probability x1 x2 x3 x4 x5

1/6 −1 1 1 1 1

1/6 1 −1 1 1 1

1/6 1 1 −1 1 1

1/6 1 1 1 −1 1

1/3 1 1 1 1 −1

Note that although these distribution don’t have zero biases, we can easily transform them

into ones that do by taking the negations of the assignments.

Lemma 6.19. Let Φ be a MAX NAE-{3, 5}-SAT instance with completeness 1, and A a

distribution of assignments to Φ. If the following conditions hold for some F2, F4 ∈ [0, 1],

1. The expected fraction of 3-clauses satisfied by A is at most 3+3F2
4 ,

2. The expected fraction of 5-clauses satisfied by A is at most 15−6F2−F4
16 ,

3. F4 ≥ F 2
2 ,

then by possibly re-weighting the clauses in Φ we can obtain another instance Φ′ with com-

pleteness 1 such that the expected fraction of clauses satisfied by A on Φ′ is at most 3(
√
21−4)
2 <

0.8739.

Proof. Let p ∈ [0, 1] be some parameter to be chosen later. We construct Φ′ by taking the

distribution where we choose a random 3-clause from Φ with probability 1 − p and choose

a random 5-clause from Φ with probability p (here we think of weights on the clauses as

probability weights). Then the expected fraction of clauses in Φ′ satisfied by A is at most

(1− p)
3 + 3F2

4
+ p

15− 6F2 − F4
16

=
12 + 3p+ (12− 18p)F2 − pF4

16
.

86

Since F4 ≥ F 2
2 , this is at most

12 + 3p+ (12− 18p)F2 − pF 2
2

16
=

12 + 3p+
(6−9p)2

p − p
(
F2 −

(6−9p)
p

)2
16

≤
84p+ 36

p

16
− 6 .

Taking the derivative with respect to p, we get that this expression is minimized when

1
16(84−

36
p2
) = 0, which happens when p = 3√

21
. When p = 3√

21
,

84p+ 36
p

16
− 6 =

12
√
21 + 12

√
21

16
− 6 =

3(
√
21− 4)

2
,

and this completes the proof.

Theorem 6.20. A 0.8739-approximation for MAX NAE-{3, 5}-SAT (clauses of size 3 and

5) is UG-hard, even when the instance has completeness 1− ϵ, for ϵ > 0 arbitrarily small.

Proof. Let Φ be an instance that satisfies the conditions in Lemma 6.18. Note that such an

instance always exists, since we can take one 3-clause and one 5-clause on disjoint variables.

We first analyze how an RPR2 scheme with odd f performs on the SDP solution described

in Lemma 6.18. Recall that we have the Fourier expansions:

NAE3(x1, x2, x3) =
3− x1x2 − x1x3 − x2x3

4
,

NAE5(x1, x2, x3, x4, x5) =
15−

∑
1≤i<j≤5 xixj −

∑
1≤i<j<k<l≤5 xixjxkxl

16
.

Using this, we make the following observations:

1. If we have a 3-clause NAE3(x1, x2, x3) where b1,2 = b1,3 = b2,3 = −1
3 then

E[NAE3(x1, x2, x3)] =
3− 3F2[f](−1/3)

4
=

3 + 3F2[f](1/3)

4
.

87

In the second equality we used the fact that f is odd and Corollary 6.16.

2. If we have a 5-clause NAE5(x1, x2, x3, x4, x5) where b1,2 = b1,3 = b1,4 = b2,3 = b2,4 =

b3,4 = 1
3 and b1,5 = b1,5 = b2,5 = b3,5 = b4,5 = 0 then

E[NAE5(x1, x2, x3, x4, x5)] =
15− 6F2[f](1/3)− F4[f](1/3)

16
.

Here, all moments that contain the 5th variable evaluate to 0 due to Lemma 6.9.

We can now apply Lemma 6.19, with F2 = F2[f](1/3), F4 = F4[f](1/3), A being the distri-

bution of assignments induced by the RPR2 scheme, to obtain another instance Φ′ such that

the expected satisfied fraction by the RPR2 scheme on Φ′ is at most 3(
√
21−4)
2 < 0.8739.

The theorem now follows from Lemma 6.5 and Lemma 6.6.

6.5 7/8-Hardness for Monotone MAX NAE-SAT

In this section, we extend the analysis in the previous section to monotone MAX NAE-SAT,

i.e., when negated literals do not appear in the instance. The only difference here is that

now the RPR2 rounding scheme doesn’t need to use an odd f .

Let ρ = 1
3 . For the soundness of the 3-clause, we have

3− 3F2[f] (−ρ)
4

. (6.1)

For the soundness of the 5-clause, we now have

15− 6F2[f] (ρ)− 4F2[f](0)− F4[f](ρ)− 4F4[f](ρ, ρ, ρ, 0, 0, 0)

16
(6.2)

We will show that both (6.1) and (6.2) increase if we replace f with its odd part fodd.

This is spelled out in the following lemma.

88

Lemma 6.21. Let f : Rk → [−1, 1] and ρ ∈ [0, 1]. Then the following inequalities hold:

(a) 3−3F2[f](−ρ)
4 ≤ 3−3F2[f

odd](−ρ)
4 .

(b) 15−6F2[f](ρ)−4F2[f](0)−F4[f](ρ)−4F4[f](ρ,ρ,ρ,0,0,0)
16 ≤ 15−6F2[f

odd](ρ)−F4[f
odd](ρ)

16 .

Note that this lemma immediately implies that the analysis in the previous section works

for monotone MAX NAE-SAT as well.

The remainder of the section will be denoted to the proof of Lemma 6.21. It will be seen

that part (a) of Lemma 6.21 is straightforward to prove, but part (b) is trickier, mostly be-

cause of the term F4[f](ρ, ρ, ρ, 0, 0, 0) which can be either positive or negative. Our strategy,

roughly speaking, is to show that the gain in other terms more than compensates for what’s

potentially lost in F4[f](ρ, ρ, ρ, 0, 0, 0). To implement this, we first write down explicitly how

these terms change if we replace f with its odd part.

Proposition 6.22. Let f : Rk → [−1, 1] and ρ ∈ [0, 1]. We have the following equalities:

(a) F4[f](ρ, ρ, ρ, ρ, ρ, ρ) = E
[
(U√ρf

odd)4
]
+E

[
(U√ρf

even)4
]
+6E

[
(U√ρf

odd)2(U√ρf
even)2

]
.

(b) 6F2[f] (ρ) + 4F2[f](0) = 6E
[
(U√ρf

odd)2
]
+ 6E

[
(U√ρf

even)2
]
+ 4E[f]2.

(c) F4[f](ρ, ρ, ρ, 0, 0, 0) = E[f]·
(
E
[
(U√ρf

even(x))3
]
+ 3E

[
U√ρf

even(x) · (U√ρfodd(x))2
])

.

Proof. For (a), by Lemma 6.11, F4[f](ρ, ρ, ρ, ρ, ρ, ρ) = E
[
(U√ρf)

4
]
. By Lemma 6.13,

E
[
(U√ρf)

4
]
= E

[
(U√ρf

odd)4
]
+ E

[
(U√ρf

even)4
]
+

(
4

2

)
· E
[
(U√ρf

odd)2(U√ρf
even)2

]
.

Part (b) follows directly from Lemma 6.11 and Corollary 6.16.

For part (c), by Lemma 6.9, we have

F4[f](ρ, ρ, ρ, 0, 0, 0) = F3[f](ρ) · E[f].

89

By Lemma 6.11, we have F3[f](ρ) = E
[
(U√ρf(x))

3
]
. Again, by Lemma 6.13,

E
[
(U√ρf(x))

3
]
= E

[
(U√ρf

even(x))3
]
+ 3E

[
U√ρf

even(x) · (U√ρfodd(x))2
]
.

We now show that

Proposition 6.23. Let f : Rk → [−1, 1] and ρ ∈ [0, 1]. We have

(a) E
[
(U√ρf

odd)2(U√ρf
even)2

]
+ E[f]2 ≥

∣∣∣2E[f] · E [(U√ρfodd)2 · U√ρfeven]∣∣∣.
(b) E[f]2 + F2[f

even](ρ) ≥
∣∣∣2E[f] · E [(U√ρfeven)3]∣∣∣.

Proof. For part (a), note that for any random variables X and Y we have E
[
X2(Y − E[Y])2

]
=

E[X2Y 2] + E[X2]E[Y]2 − 2E
[
X2Y

]
E[Y] ≥ 0, and by letting X = U√ρf

odd and Y =

U√ρf
even we have

E
[
(U√ρf

odd)2(U√ρf
even)2

]
+ E[f]2 ≥ E

[
(U√ρf

odd)2(U√ρf
even)2

]
+ E

[
(U√ρf

odd)2
]
E[f]2

≥ 2E[f] · E
[
(U√ρf

odd)2 · U√ρfeven
]
.

By considering E
[
X2(Y + E[Y])2

]
, a similar argument shows that

E
[
(U√ρf

odd)2(U√ρf
even)2

]
+ E[f]2 ≥ −2E[f] · E

[
(U√ρf

odd)2 · U√ρfeven
]
.

Thus, part (a) follows. For part (b), we have

∣∣∣E [(U√ρfeven)3]∣∣∣ ≤ E
[∣∣∣U√ρfeven∣∣∣3]

≤ E
[
(U√ρf

even)2
]
≤
√

F2[feven](ρ).

90

Here we have used the fact that |U√ρfeven| ≤ 1. It follows that

∣∣∣2E[f] · E [(U√ρfeven)3]∣∣∣ ≤ ∣∣∣2E[f]√F2[feven](ρ)
∣∣∣ ≤ E[f]2 + F2[f

even](ρ).

We are now finally ready to prove Lemma 6.21.

Proof of Lemma 6.21. The first part follows from Corollary 6.15 and Corollary 6.16:

3− 3F2[f] (−ρ)
4

=
3− 3F2[f

even] (ρ) + 3F2[f
odd] (ρ)

4
≤ 3 + 3F2[f

odd] (ρ)

4
.

For the second part, by Proposition 6.22 we have

15− 6F2[f
odd] (ρ)− F4[f

odd](ρ)

16

− 15− 6F2[f] (ρ)− 4F2[f](0)− F4[f](ρ)− 4F4[f](ρ, ρ, ρ, 0, 0, 0)

16

=
6E
[
(U√ρf

even)2
]
+ 4E[f]2 + E

[
(U√ρf

even)4
]
+ 6E

[
(U√ρf

odd)2(U√ρf
even)2

]
16

+
4E[f] ·

(
E
[
(U√ρf

even(x))3
]
+ 3E

[
U√ρf

even(x) · (U√ρfodd(x))2
])

16

≥
2E
[
(U√ρf

even)2
]
+ 8E[f]2 + 6E

[
(U√ρf

odd)2(U√ρf
even)2

]
16

+
4E[f] ·

(
E
[
(U√ρf

even(x))3
]
+ 3E

[
U√ρf

even(x) · (U√ρfodd(x))2
])

16

=
2E
[
(U√ρf

even)2
]
+ 2E[f]2 + 4E[f] · E

[
(U√ρf

even(x))3
]

16

+
6E
[
(U√ρf

odd)2(U√ρf
even)2

]
+ 12E[f] · E

[
U√ρf

even(x) · (U√ρfodd(x))2
]
+ 6E[f]2

16

≥ 0.

Here in the first inequality we used E
[
(U√ρf

even)2
]
≥ E[f]2 and E

[
(U√ρf

even)4
]
≥ 0,

while in the second inequality we used Proposition 6.23.

91

6.6 Constructing an Explicit Gap Instance

In this section, we explicitly construct a family of gap instances whose integrality ratio tends

to 3(
√
21−4)
2 ≈ 0.8739. Let {ei | i ∈ [n]} be the canonical basis of Rn. Consider the subset

of Rn containing vectors that have exactly three nonzero coordinates, each being 1/
√
3 or

−1/
√
3, namely

Vn =

{
b1ei + b2ej + b3ek√

3

∣∣∣∣ b1, b2, b3 ∈ {−1, 1}, 1 ≤ i < j < k ≤ n

}
.

Note that Vn is closed under vector negation. For every v ∈ Vn, we assign a Boolean

variable xv ∈ {−1, 1}. In the following we will assume xv = −x−v and prove the result

for MAX NAE-SAT, but this assumption can be removed and the result strengthened to

monotone MAX NAE-SAT, as explained in Remark 6.34. We will define a MAX NAE-SAT

instance Φ with variables xv such that assigning v to xv is an SDP solution with perfect

completeness, while any integral solution has value at most 3(
√
21−4)
2 as n tends to infinity.

Definition 6.24. We define C3 to be the set of 3-clauses of the form NAE(xv1 , xv2 , xv3)

where

1. v1 = 1√
3
(s1ei1 − s2ei2 + s4ei4)

2. v2 = 1√
3
(s2ei2 − s3ei3 + s5ei5)

3. v3 = 1√
3
(s3ei3 − s1ei1 + s6ei6)

for some distinct indices i1, . . . , i6 ∈ [n] and signs s1, . . . , s6 ∈ {−1, 1}.

Definition 6.25. We define C5 to be the set of 5-clauses of the form NAE(xv1 , xv2 , xv3 , xv4 , xv5)

where

1. For all j ∈ {1, 2, 3, 4}, vj = 1√
3
(s1ei1 + s2jei2j + s2j+1ei2j+1

)

92

2. v5 = 1√
3
(s10ei10 + s11ei11 + s12ei12)

for some distinct indices i1, . . . , i12 ∈ [n] and signs s1, . . . , s12 ∈ {−1, 1}.

Remark 6.26. These sets of clauses are designed so that the pairwise biases for the 3-clauses

are (−1
3 ,−

1
3 ,−

1
3) and the pairwise biases for the 5-clauses are (13 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 , 0, 0, 0, 0).

Definition 6.27. Let Φ be the MAX NAE-{3, 5}-instance with variable set {Xv | v ∈ Vn}

and clause set C3∪C5, where every clause in C3 has weight
1− 3√

21
|C3|

and every clause in C5 has

weight 3√
21|C5|

.

Theorem 6.28. For any integral solution to Φ, the weight of the satisfied clauses is at most
3(
√
21−4)
2 +O(1n).

Proof. To analyze the weight of the satisfied constraints for a given solution, we consider the

following distributions.

Definition 6.29. For every k < n/2, we define Dk to be the following distribution over V k
n :

1. Sample 2k + 1 distinct indices i1, i2, . . . , i2k+1 ∈ [n] uniformly at random.

2. Sample 2k + 1 independent random coin flips b1, . . . , b2k+1 ∈ {−1, 1}.

3. For every j ∈ [k], let vj = 1√
3
(b1ei1 + b2jei2j + b2j+1ei2j+1

). Return the k-tuple

(v1,v2, . . . ,vk).

Informally speaking, this distribution samples k vectors from Vn of “sunflower shape” in

the sense that all of them share exactly one index on which they are nonzero.

Definition 6.30. Given an assignment, we let

F2 = E
(v1,v2)∼D2

[xv1xv2] , F4 = E
(v1,v2,v3,v4)∼D4

[xv1xv2xv3xv4] .

Remark 6.31. Here F2 and F4 come from an actual assignment rather than a rounding

scheme, but they play the same role in the argument.
93

Proposition 6.32. Given an assignment, the proportion of 3-clauses which are satisfied is
3+3F2

4 and the proportion of 5-clauses which are satisfied is 15−6F2−F4
16 .

Proof sketch. This can be shown by expanding out each constraint as a polynomial.

By Lemma 6.19, if we had that F4 ≥ F 2
2 then we would have that the total weight of

the satisfied clauses is at most 3(
√
21−4)
2 . Instead, we show that F4 ≥ F 2

2 −O(1n). Adapting

the argument in Lemma 6.19 accordingly, this implies that the total weight of the satisfied

clauses is at most 3(
√
21−4)
2 +O(1n).

Lemma 6.33. For any assignment,

F4 ≥ F 2
2 −O

(1
n

)
.

Proof. Let k = ⌊n/2⌋ − 1 < n/2. Sample (v1, . . . ,vk) ∼ Dk. Note that the marginal

distribution of any pair of these vectors is exactly D2 and any 4 vectors exactly D4. Now let

X =
∑k

i=1 xvi . By Jensen’s inequality

E[X4]−
(
E[X2]

)2
≥ 0.

We have that

E
[
X2
]
= E


 k∑

i=1

Xvi

2
 =

k∑
i=1

E[X2
vi] +

∑
i̸=j

E[XviXvj] = k + k(k − 1)F2 .

Here we used the fact that Xvi ∈ {−1, 1} and X2
vi = 1. Similarly we can compute

E
[
X4
]
= E


 k∑

i=1

Xvi

4
 = 3k2 − 2k + k(k − 1)(6k − 8)F2 + k(k − 1)(k − 2)(k − 3)F4 .

94

Plugging in these two expressions to the inequality above, we get

3k2 − 2k + k(k − 1)(6k − 8)F2 + k(k − 1)(k − 2)(k − 3)F4 − (k + k(k − 1)F2)
2 ≥ 0.

Our lemma follows by shifting terms. dividing both sides by k(k − 1)(k − 2)(k − 3), and

using the fact that k = Θ(n).

Remark 6.34. As mentioned earlier, we can remove the constraint xv = −x−v and treat

the instance as a monotone MAX NAE-SAT instance. Then, the proofs in Section 6.5 will

go through with 1
k

∑k
i=1 xvi playing the role of U√ρf , where (v1, . . . ,vk) ∼ Dk as in the

previous lemma. The computation will stay essentially the same, with an error term that

goes to 0 as n goes to infinity.

A natural question is whether there exists an assignment such that the weight of the

satisfied constraints is at least 3(
√
21−4)
2 . If no such assignment exists, then it would be pos-

sible to further improve the upper bound. However, we show that for this set of constraints,

our analysis is tight and there exists an assignment such that the weight of the satisfied

constraints is at least 3(
√
21−4)
2 . That said, there may be another set of constraints which

gives a better upper bound.

Theorem 6.35. There is an assignment that satisfies a 3(
√
21−4)
2 -fraction of the clauses in

Φ.

Proof. It suffices to show there exists a probability distribution that satisfies 3(
√
21−4)
2 -

fraction of the clauses in Φ in expectation. From the proof of Lemma 6.19 it can be seen

that in order for a solution to achieve 3(
√
21−4)
2 it suffices to have F2 = 2

√
21 − 9 and

F4 = F 2
2 . We verify this as follows: given that F2 = 2

√
21 − 9 and F4 = F 2

2 , on 3-clauses

95

we achieve a ratio of

3 + 3F2
4

=
3 + 3 · (2

√
21− 9)

4
=

3
(√

21− 4
)

2
,

and on 5-clauses we achieve a ratio of

15− 6F2 − F4
16

=
15− 6(2

√
21− 9)− (2

√
21− 9)2

16

=
15− 6(2

√
21− 9)− (165− 36

√
21)

16

=
3
(√

21− 4
)

2
.

Let us now consider the following rounding algorithm: if v has 3 positive coordinates, round

Xv to 1 with probability p1 and −1 with probability 1 − p1; if v has exactly 2 positive

coordinates, round Xv to 1 with probability p2 and −1 with probability 1 − p2; if v has

less than 2 positive coordinates, we let Xv = −X−v. We need to analyze the quantity

Ev1,...,vk∼Dk
[Xv1 · · ·Xvk] for k = 2 and k = 4.

Let (v1, . . . ,vk) ∼ Dk. Recall that these vectors have a “sunflower” shape: they all share

a common non-zero coordinate and each vector has a “petal” of two non-zero coordinates.

Without loss of generality, assume that their common coordinate is positive. Then, every

vector independently has 3 positive coordinates with probability 1/4, 2 positive coordinates

with probability 1/2 and 1 positive coordinate with probability 1/4. So every variable Xvi

is rounding to 1 independently with probability

1

4
· p1 +

1

2
· p2 +

1

4
· (1− p2) =

p1 − p2 + 1

4
.

So we have

E[Xvi] =
p1 − p2 + 1

4
−
(
1− p1 − p2 + 1

4

)
=

p1 − p2 − 1

2

96

and

F2 =

(
p1 − p2 − 1

2

)2

, F4 =

(
p1 − p2 − 1

2

)4

= F 2
2 .

Note that the range of F2 is [0, 0.25] and 2
√
21 − 9 ≈ 0.165, so by setting p1 and p2

appropriately we can also have F2 = 2
√
21− 9. This completes the proof.

97

REFERENCES

[ABG16] Per Austrin, Siavosh Benabbas, and Konstantinos Georgiou. Better Balance by
Being Biased: A 0.8776-Approximation for Max Bisection. ACM Transactions
on Algorithms, 13(1):2:1–2:27, October 2016.

[ABM10] Per Austrin, Siavosh Benabbas, and Avner Magen. On Quadratic Threshold
CSPs. In Alejandro López-Ortiz, editor, LATIN 2010: Theoretical Informatics,
Lecture Notes in Computer Science, pages 332–343. Springer Berlin Heidelberg,
2010.

[ABZ06] Adi Avidor, Ido Berkovitch, and Uri Zwick. Improved Approximation Algo-
rithms for MAX NAE-SAT and MAX SAT. In Thomas Erlebach and Giuseppe
Persinao, editors, Approximation and Online Algorithms, pages 27–40, Berlin,
Heidelberg, 2006. Springer.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario
Szegedy. Proof verification and the hardness of approximation problems. Jour-
nal of the ACM, 45(3):501–555, May 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new char-
acterization of NP. Journal of the ACM, 45(1):70–122, January 1998.

[Aus06] Per Austrin. Balanced Max 2-Sat might not be the hardest. Technical Report
TR06-088, Electronic Colloquium on Computational Complexity (ECCC), July
2006. ISSN: 1433-8092.

[Aus07] Per Austrin. Balanced max 2-sat might not be the hardest. In Proceedings of
the thirty-ninth annual ACM symposium on Theory of computing, STOC ’07,
pages 189–197, New York, NY, USA, June 2007. Association for Computing
Machinery.

[Aus10] Per Austrin. Towards Sharp Inapproximability for Any 2-CSP. SIAM Journal
on Computing, 39(6):2430–2463, January 2010. Publisher: Society for Industrial
and Applied Mathematics.

[AZBG+22] Sepehr Abbasi-Zadeh, Nikhil Bansal, Guru Guruganesh, Aleksandar Nikolov,
Roy Schwartz, and Mohit Singh. Sticky Brownian Rounding and its Applica-
tions to Constraint Satisfaction Problems. ACM Transactions on Algorithms,
18(4):33:1–33:50, October 2022.

[BHPZ21] Joshua Brakensiek, Neng Huang, Aaron Potechin, and Uri Zwick. On the Mys-
teries of MAX NAE-SAT. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), Proceedings, pages 484–503. Society for In-
dustrial and Applied Mathematics, January 2021.

98

[BHPZ23] Joshua Brakensiek, Neng Huang, Aaron Potechin, and Uri Zwick. Separating
MAX 2-AND, MAX DI-CUT and MAX CUT. In 64th IEEE Symposium on
Foundations of Computer Science (FOCS) 2023, Santa Cruz, CA, USA, 2023.

[BHZ24] Joshua Brakensiek, Neng Huang, and Uri Zwick. Tight approximability of
MAX 2-SAT and relatives, under UGC. In Proceedings of the 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), Proceedings, pages
1328–1344. Society for Industrial and Applied Mathematics, January 2024.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceed-
ings of the third annual ACM symposium on Theory of computing, STOC ’71,
pages 151–158, New York, NY, USA, May 1971. Association for Computing
Machinery.

[DW90] Zvi Drezner and G. O. Wesolowsky. On the computation of the bi-
variate normal integral. Journal of Statistical Computation and Simula-
tion, 35(1-2):101–107, March 1990. Publisher: Taylor & Francis _eprint:
https://doi.org/10.1080/00949659008811236.

[EN19] Ronen Eldan and Assaf Naor. Krivine diffusions attain the Goemans–
Williamson approximation ratio, June 2019. arXiv:1906.10615 [cs].

[FL06] Uriel Feige and Michael Langberg. The RPR2 rounding technique for semidef-
inite programs. Journal of Algorithms, 60(1):1–23, July 2006.

[GW94] Michel X. Goemans and David P. Williamson. New $\frac{3}{4}$-
Approximation Algorithms for the Maximum Satisfiability Problem. SIAM
Journal on Discrete Mathematics, 7(4):656–666, November 1994. Publisher:
Society for Industrial and Applied Mathematics.

[GW95] Michel X. Goemans and David P. Williamson. Improved Approximation Algo-
rithms for Maximum Cut and Satisfiability Problems Using Semidefinite Pro-
gramming. Journal of the ACM, 42(6):1115–1145, November 1995.

[HP20] Neng Huang and Aaron Potechin. On the Approximability of Presidential Type
Predicates. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2020), volume 176 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 58:1–58:20,
Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.
ISSN: 1868-8969.

[HV91] D.J. Haglin and S.M. Venkatesan. Approximation and intractability results for
the maximum cut problem and its variants. IEEE Transactions on Comput-
ers, 40(1):110–113, January 1991. Conference Name: IEEE Transactions on
Computers.

99

[Hå01] Johan Håstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, July 2001.

[Joh74] David S. Johnson. Approximation algorithms for combinatorial problems. Jour-
nal of Computer and System Sciences, 9(3):256–278, December 1974.

[Joh17] Fredrik Johansson. Arb: Efficient Arbitrary-Precision Midpoint-Radius Interval
Arithmetic. IEEE Transactions on Computers, 66(8):1281–1292, August 2017.

[Kar72] Richard M. Karp. Reducibility among Combinatorial Problems. In Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Com-
puter Computations: Proceedings of a symposium on the Complexity of Com-
puter Computations, held March 20–22, 1972, at the IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, and sponsored by the Office of
Naval Research, Mathematics Program, IBM World Trade Corporation, and the
IBM Research Mathematical Sciences Department, pages 85–103. Springer US,
Boston, MA, 1972.

[Kho02] S. Khot. On the power of unique 2-prover 1-round games. In Proceedings 17th
IEEE Annual Conference on Computational Complexity, pages 25–, May 2002.
ISSN: 1093-0159.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal
Inapproximability Results for MAX-CUT and Other 2-Variable CSPs? SIAM
Journal on Computing, 37(1):319–357, January 2007. Publisher: Society for
Industrial and Applied Mathematics.

[KMS23] Subhash Khot, Dor Minzer, and Muli Safra. Pseudorandom sets in Grassmann
graph have near-perfect expansion. Annals of Mathematics, 198(1):1–92, July
2023. Publisher: Department of Mathematics of Princeton University.

[KTW13] Subhash Khot, Madhur Tulsiani, and Pratik Worah. A Characterization of
Approximation Resistance. arXiv:1305.5500 [cs], May 2013. arXiv: 1305.5500.

[KZ97] Howard Karloff and Uri Zwick. A 7/8-Approximation Algorithm for MAX
3SAT? In Proceedings of the 38th Annual Symposium on Foundations of Com-
puter Science, FOCS ’97, page 406, USA, October 1997. IEEE Computer Soci-
ety.

[Las01] Jean B. Lasserre. Global Optimization with Polynomials and the Problem
of Moments. SIAM Journal on Optimization, 11(3):796–817, January 2001.
Publisher: Society for Industrial and Applied Mathematics.

[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick. Improved Rounding Techniques
for the MAX 2-SAT and MAX DI-CUT Problems. In William J. Cook and
Andreas S. Schulz, editors, Integer Programming and Combinatorial Optimiza-
tion, Lecture Notes in Computer Science, pages 67–82, Berlin, Heidelberg, 2002.
Springer.

100

[MM14] Konstantin Makarychev and Yury Makarychev. Approximation Algorithm for
Non-Boolean Max-k-CSP. Theory of Computing, 10:341–358, October 2014.
Number: 13 Publisher: Theory of Computing.

[MM17] Konstantin Makarychev and Yury Makarychev. Approximation Algorithms for
CSPs. DROPS-IDN/v2/document/10.4230/DFU.Vol7.15301.287, 2017. Pub-
lisher: Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[MOO10] Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability
of functions with low influences: Invariance and optimality. Annals of Mathe-
matics, 171(1):295–341, 2010. Publisher: Annals of Mathematics.

[O11] Tange O. Gnu parallel-the command-line power tool. USENIX Mag, 36(1):42,
2011.

[O’D14] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press,
June 2014. Google-Books-ID: 5xlvAwAAQBAJ.

[OW08] Ryan O’Donnell and Yi Wu. An optimal sdp algorithm for max-cut, and equally
optimal long code tests. In Proceedings of the fortieth annual ACM symposium
on Theory of computing, STOC ’08, pages 335–344, New York, NY, USA, May
2008. Association for Computing Machinery.

[Pot18] Aaron Potechin. On the Approximation Resistance of Balanced Linear Thresh-
old Functions. arXiv:1807.04421 [cs], July 2018. arXiv: 1807.04421.

[PY91] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approxi-
mation, and complexity classes. Journal of Computer and System Sciences,
43(3):425–440, December 1991.

[Rag08] Prasad Raghavendra. Optimal Algorithms and Inapproximability Results for
Every CSP? In Proceedings of the Fortieth Annual ACM Symposium on Theory
of Computing, STOC ’08, pages 245–254, New York, NY, USA, 2008. ACM.

[Rag09] Prasad Raghavendra. Approximating NP-hard Problems: Efficient Algorithms
and their Limits. PhD thesis, University of Washington, 2009.

[RS09] Prasad Raghavendra and David Steurer. How to Round Any CSP. In 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pages 586–594,
October 2009. ISSN: 0272-5428.

[SG76] Sartaj Sahni and Teofilo Gonzalez. P-Complete Approximation Problems. Jour-
nal of the ACM, 23(3):555–565, July 1976.

[Spe94] Joel Spencer. Ten Lectures on the Probabilistic Method. CBMS-NSF Regional
Conference Series in Applied Mathematics. Society for Industrial and Applied
Mathematics, January 1994.

101

[Tre14] Luca Trevisan. Inapproximability of Combinatorial Optimization
Problems. In Paradigms of Combinatorial Optimization, pages
381–434. John Wiley & Sons, Ltd, 2014. Section: 13 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119005353.ch13.

[Vaz03] Vijay V. Vazirani. Approximation Algorithms. Springer, Berlin, Heidelberg,
2003.

[VB96] Lieven Vandenberghe and Stephen Boyd. Semidefinite Programming. SIAM
Review, 38(1):49–95, March 1996. Publisher: Society for Industrial and Applied
Mathematics.

[Vit81] Paul M. B. Vitányi. How well can a graph be n-colored? Discrete Mathematics,
34(1):69–80, January 1981.

[Yan94] M. Yannakakis. On the Approximation of Maximum Satisfiability. Journal of
Algorithms, 17(3):475–502, November 1994.

[Zwi02] Uri Zwick. Computer assisted proof of optimal approximability results. In
Proceedings of the thirteenth annual ACM-SIAM symposium on Discrete algo-
rithms, SODA ’02, pages 496–505, USA, January 2002. Society for Industrial
and Applied Mathematics.

102

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	1.1 Historical Background
	1.2 Future Directions and Adjacent Topics

	2 Preliminaries
	2.1 Constraint Satisfaction Problems
	2.2 Unique Games Conjecture
	2.3 Gaussian Density Functions
	2.4 Fourier Analysis of Boolean Functions
	2.5 Approximation Algorithms and Approximation Ratios
	2.6 Interval Arithmetic

	3 The Basic SDP and Rounding Schemes
	3.1 SDP-Based Approximation Algorithms: Framework and Challenges
	3.2 Formulation of the Basic SDP
	3.3 Austrin's Formulation for 2-CSPs
	3.3.1 Proof of Theorem 3.9

	4 Tight Inapproximability Results for MAX 2-SAT and Its Subproblems
	4.1 Overview
	4.2 MAX 2-SAT and Simplicity Conjecture
	4.3 MAX CSP({xy,x,})
	4.3.1 The Rounding Algorithm
	4.3.2 Matching Hardness

	4.4 MAX HORN-2-SAT
	4.4.1 The Rounding Algorithm
	4.4.2 Matching Hardness

	5 Separating MAX DI-CUT from MAX CUT and MAX 2-AND
	5.1 Three Problems: MAX CUT, MAX DI-CUT and MAX 2-AND
	5.2 Separating MAX DI-CUT and MAX CUT
	5.3 Separating MAX DI-CUT and MAX 2-AND

	6 7/8-Hardness for Monotone MAX NAE-SAT
	6.1 The MAX NAE-SAT Problem
	6.2 Rounding Schemes for MAX NAE-SAT
	6.3 Moment Functions of RPR2 Rounding Schemes
	6.4 7/8-Hardness for Non-Monotone MAX NAE-SAT
	6.5 7/8-Hardness for Monotone MAX NAE-SAT
	6.6 Constructing an Explicit Gap Instance

	References

