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Muonium hydride: The lowest density crystal
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A muonium hydride molecule is a bound state of muonium and hydrogen atoms. It has half the mass of
a parahydrogen molecule and very similar electronic properties in its ground state. The phase diagram of an
assembly of such particles is investigated by first-principles quantum simulations. In the bulk limit, the low-
temperature equilibrium phase is a crystal of extraordinarily low density, lower than that of any other known
atomic or molecular crystal. Despite the low density and particle mass, the melting temperature is surprisingly
high (close to 9 K). No (metastable) supersolid phase is observed. We investigated the physical properties of
nanoscale clusters (up to 200 particles) of muonium hydride and found the superfluid response to be greatly
enhanced compared to that of parahydrogen clusters. The possible experimental realization of these systems is
discussed.

DOI: 10.1103/PhysRevResearch.3.023113

I. INTRODUCTION

An intriguing open question in condensed matter physics,
one with potential practical significance, is whether there
exists a lower bound for the density of a crystal. In other
words, how large can the average distance be between
nearest-neighbor atoms, before crystalline long-range order is
suppressed by thermal and quantum fluctuations? It remains
unclear whether a lower limit exists, or how to approach it
experimentally. We begin our discussion by rehashing a few
basic facts about the crystalline phase of matter.

Crystallization occurs at low temperatures (T ) in almost all
known substances, as the state of lowest energy (ground state)
is approached. Classically, the ground state is one in which
the potential energy of the interaction among the constituent
particles is minimized, a condition that corresponds to an
orderly arrangement of particles in regular, periodic lattices.
In most cases, quantum mechanics affects this fundamental
conclusion only quantitatively, as the zero-point motion of
particles results in lower equilibrium densities and melting
temperatures, with respect to what one would predict classi-
cally; typically, these corrections are relatively small. Only in
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helium is the classical picture upended by quantum mechan-
ics, as the fluid resists crystallization all the way down to a
temperature T = 0 K, under the pressure of its own vapor.

In many condensed matter systems, the interaction among
atoms is dominated by pairwise contributions, whose ubiq-
uitous features are a strong repulsion at interparticle distances
less than a characteristic length σ , as well as an attractive part,
which can be described by an effective energy well depth ε.
The dimensionless parameter � = h̄2/[mεσ 2], where m is the
particle mass, quantifies the relative importance of quantum-
mechanical effects in the ground state of the system.

It has been established for a specific model pair potential
incorporating the above basic features, namely the Lennard-
Jones potential, and for Bose statistics, that the equilibrium
phase is a crystal if � < �c ≈ 0.15; it is a (super)fluid if
0.15 � � � 0.46, while, for � > 0.46, the system only exists
in the gas phase [1]. The value of �c is estimated [2] to be
slightly higher (≈20%) for systems obeying Fermi statistics.
For substances whose elementary constituents are relatively
simple atoms or molecules, this result provides a useful,
general criterion to assess their propensity to crystallize, as
measured by their proximity in parameter space to a quantum
phase transition to a fluid phase. It can be used to infer, at
least semiquantitatively, macroscopic properties of the crystal,
such as its density and melting temperature, both of which
generally decrease [1] as � → �c.

The two stable isotopes of helium have the highest known
values of �, namely 0.24 (0.18) for 3He (4He); for all other
naturally occurring substances, � is considerably lower. The
next highest value is that of molecular hydrogen (H2), namely
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� = 0.08, quickly decreasing for heavier elements and com-
pounds. At low temperatures, H2 forms one of the least dense
crystals known, of density ρ = 0.0261 Å−3 (mass density
0.086 g/cc). The low mass of a H2 molecule (half of that
of a 4He atom) and its bosonic character (its total spin is
S = 0 in its ground state) led to the speculation that liquid
H2 may turn into a superfluid at low temperatures [3], just as
4He. In practice, no superfluid phase is observed (not even a
metastable one), as molecular interactions, and specifically [4]
the relatively large value of σ (∼3 Å), cause H2 to crystallize
at a temperature T = 13.8 K.

The present consensus is that H2 is a nonsuperfluid, in-
sulating crystal at low temperatures, including in reduced
dimensions [5,6]; only small clusters of parahydrogen (∼30
molecules or less) are predicted [7–10] to turn into a su-
perfluid at T ∼ 1 K, for which some experimental evidence
has been reported [11]. If, hypothetically, the mass of the
molecules could be progressively reduced, while leaving the
interaction unchanged, thus increasing � from its value for
H2 all the way to �c, several intriguing scenarios might arise,
including a low-temperature superfluid liquid phase, freezing
into a low-density crystal at T = 0, and even a supersolid
phase, namely one enjoying at the same time crystalline order
and superfluidity [12]. Obviously, the value of � can also
be modified by changing one or both of the interaction pa-
rameters (ε and σ ) independently of the mass; in this work,
however, we focus for simplicity on the effect of mass on the
physics of the system.

One potential way to tune the mass is via the substitution
of protons or electrons with muons. For example, an assembly
of molecules of muonium hydride (HMu) differs from H2 by
the replacement of one of the two protons with an antimuon
(μ+), whose mass is approximately 11% of that of a proton.
Quantum chemistry calculations have shown that it is very
similar in size to H2, and has the same quantum numbers in
the ground state [13]. It is therefore not inconceivable that the
interaction between two HMu might be quantitatively close to
that between two H2 (we further discuss this aspect below).
In this case the value of the parameter � is ∼0.14, i.e., very
close to �c for a Bose system. This leads to the speculation
that this substance may crystallize into a highly quantal solid,
displaying strikingly unique behavior, compared to ordinary
crystals. In order to investigate such a scenario, and more
specifically to gain insight into the effect of mass reduction,
we studied theoretically the low-temperature phase diagram
of a hypothetical condensed phase of HMu, by means of
first-principles computer simulations of a microscopic model
derived from that of H2.

The main result is that the equilibrium phase of the system
at low temperature is a crystal of very low density, some ∼5%
lower than the T = 0 equilibrium density of liquid 4He. De-
spite the low density, however, such a crystal melts at a fairly
high temperature, close to 9 K, i.e., only a few K lower than
that of H2. No superfluid phases are observed, either fluid or
crystalline, as exchanges of indistinguishable particles, known
to underlie superfluidity [14], are strongly suppressed in this
system, much as they are in H2, by the relatively large size of
the hard-core repulsion at short distances (i.e., σ ). As a result,
the behavior of this hypothetical system can be largely under-
stood along classical lines. This underscores once again the

crucial role of exchanges of identical particles in destabilizing
the classical picture, which is not qualitatively altered by the
zero-point motion of particles alone [15]; it also reinforces
the conclusion [4] reached elsewhere that it is the size of
the hard-core diameter of the intermolecular interaction that
prevents superfluidity in H2, not the depth ε of its attractive
part.

To complement our investigation, we also studied
nanoscale HMu clusters of varying sizes, comprising up to
few hundred molecules. We find the behavior of these clusters
to be much closer to that of 4He (rather than H2) clusters.
For example, at T = 1 K the structure of HMu clusters is liq-
uidlike, and their superfluid response approaches 100%, even
for the largest cluster considered (200 HMu molecules). Thus,
while mass reduction does not bring about substantial physical
differences between the behavior of bulk HMu and that of
H2, it significantly differentiates the physics of nanoscale size
clusters.

II. MODEL

We model the HMu molecules as pointlike, identical parti-
cles of mass m and spin S = 0, thus obeying Bose statistics.
For the bulk studies, the system is enclosed in a cubic cell of
volume V = L3 with periodic boundary conditions in the three
directions, giving a density of ρ = N/V . For the cluster stud-
ies, the N particles are placed in a supercell of large enough
size to remove the boundary effects. The quantum-mechanical
many-body Hamiltonian reads as follows,

Ĥ = −λ
∑

i

∇2
i +

∑

i< j

v(ri j ), (1)

where the first (second) sum runs over all particles (pairs of
particles), λ ≡ h̄2/2m = 21.63 K Å2 (reflecting the replace-
ment of a proton with a μ+ in a H2 molecule), ri j ≡ |ri − r j |,
and v(r) denotes the pairwise interaction between two HMu
molecules, which is assumed spherically symmetric.

In order to decide on an adequate model potential to adopt
in our calculation, we use as our starting point the H2 in-
termolecular potential, for which a considerable amount of
theoretical work has been carried out [16–18]. We consider
here for definiteness the ab initio pair potential proposed in
Ref. [18]. The most important effect of the replacement of
one of the protons of the H2 molecule with a μ+ is the shift of
the center of mass of the molecule away from the midpoint,
and toward the proton. We assume that this effect provides the
leading-order correction with respect to the H2 intermolecular
potential, and we set out to obtain a corrected version of the
interaction for the new geometry, as illustrated in Fig. 1. We
use the program provided in Ref. [18] to generate a potential
as a function of the distance between the midpoints and the
angular configurations, and then transform that to a potential
as a function of the distance between the centers of mass
and the angular configurations. Finally, we average over the
angular configurations to obtain a one-dimensional isotropic
potential. We take the distance between the proton and the μ+
to be that computed in Ref. [19], which differs only slightly
from the distance between the two protons in the H2 molecule.

In Fig. 2, we compare the potential energy of interaction
between two HMu molecules resulting from this procedure
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FIG. 1. Geometry utilized in the calculation of the effective in-
teraction between two HMu molecules. Shown is the line connecting
the centers of mass of the two molecules, as well the three angles
describing their relative orientation, i.e., the two polar angles θ1, θ2,
as well as the azimuthal angle φ.

with that obtained for two H2 molecules, i.e., with the center
of mass at the midpoint. The comparison suggests that the
displacement of the center of mass of the molecule results in a
slight stiffening of the potential at a short distance. Indeed, in
the range of average interparticle separations explored in this
work (namely the 3.5–3.7 Å range), the differences between
the interactions are minimal. Also shown in Fig. 2 is the
Silvera-Goldman potential [16], which is arguably the most
widely adopted in theoretical studies of the condensed phase
of H2, and has proven to afford a quantitatively accurate [20]
description of the structure and energetics of the crystal. As
one can see, it has a significantly smaller diameter and is con-
siderably “softer” than the potential of Ref. [18]; the reason
is that it incorporates, in an effective way, nonadditive contri-
butions (chiefly triplets), whose overall effect is to soften the
repulsive core of the pairwise part computed ab initio.

It therefore seems reasonable to utilize the Silvera-
Goldman potential [16] to carry out our study, as the use of
a quantitatively more accurate potential is not likely to affect
the conclusions of our study in a significant way. Furthermore,
because the majority of the theoretical studies of condensed

FIG. 2. The intermolecular interaction energy E (in K) as a func-
tion of distance (Å) between the centers of mass of the molecules, for
the H2 (red, dashed) and HMu (black, solid line) cases, obtained with
the aid of the programs provided in Ref. [18]. Also shown (blue, solid
line) is the Silvera-Goldman potential.

H2 have been carried out using the Silvera-Goldman potential,
its use in this study allows us to assess the effect of mass alone.

III. METHODOLOGY

The low-temperature phase diagram of the thermodynamic
system described by Eq. (1) as a function of density and
temperature has been studied in this work by means of first-
principles numerical simulations, based on the continuous-
space worm algorithm [21,22]. Since this technique is by
now fairly well established, and extensively described in the
literature, we shall not review it here; we used a variant of
the algorithm in which the number of particles N is fixed
[8,9]. Details of the simulation are standard; we made use of
the fourth-order approximation for the short imaginary-time
(τ ) propagator (see, for instance, Ref. [23]), and all of the
results presented here are extrapolated to the τ → 0 limit.
We generally found numerical estimates for structural and
energetic properties of interest here, obtained with a value
of the time step τ ∼ 3.0 × 10−3 K−1 to be indistinguishable
from the extrapolated ones, within the statistical uncertainties
of the calculation. We carried out simulations of systems
typically comprising a number N of particles. In the cluster
calculations, N can be chosen arbitrarily. For the bulk, the
precise value of N depends on the type of crystalline structure
assumed; typically, N was set to 128 for simulations of body-
centered-cubic (bcc) and face-centered-cubic (fcc) structures,
and 216 for hexagonal-close-packed (hcp). However, we also
performed a few targeted simulations with twice as many
particles, in order to gauge the quantitative importance of
finite-size effects.

Physical quantities of interest for the bulk calculations
include the energy per particle and pressure as a function of
density and temperature, i.e., the thermodynamic equation of
state in the low-temperature limit. We estimated the contri-
bution to the energy and the pressure arising from pairs of
particles at distances greater than the largest distance allowed
by the size of the simulation cell (i.e., L/2), by approximat-
ing the pair-correlation function g(r) with 1, for r > L/2.
We have also computed the pair-correlation function and the
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FIG. 3. Energy per particle e in (K) as a function of density ρ in
Å−3, computed at temperature T = 1 K. The solid line is a quadratic
fit to the data. These energies are computed assuming a bcc solid
structure.

related static structure factor, in order to assess the presence
of crystalline order, which can also be detected through visual
inspection of the imaginary-time paths.

We probed for possible superfluid order through the
direct calculation of the superfluid fraction using the well-
established winding number estimator [24]. In order to assess
the propensity of the system to develop a superfluid response,
and its proximity to a superfluid transition, we also rely on
a more indirect criterion, namely we monitor the frequency
of cycles of permutations of identical particles involving a
significant fraction of the particles in the system. While there
is no quantitative connection between permutation cycles and
the superfluid fraction [25], a global superfluid phase requires
exchanges of macroscopic numbers of particles (see, for in-
stance, Ref. [14]).

IV. RESULTS

A. Bulk

We simulated crystalline phases of HMu assuming differ-
ent structures, namely bcc, fcc, and hcp. At low temperatures,
all of these crystals remain stable in the simulation. The en-
ergy difference between different crystal structures is typically
small, of the order of the statistical errors of our calculation,
i.e., few tenths of a K. This is similar to what is observed in
H2 [20]). Consequently, we did not attempt to establish what
the actual equilibrium structure is, as this is not central to our
investigation.

As a general remark, we note that the estimates of the phys-
ical quantities in which we are interested remain unchanged
below a temperature T = 2 K. Thus, results for temperatures
lower than 2 K can be considered ground state estimates.

We begin by discussing the equation of state of the sys-
tem in the T → 0 limit. Figure 3 shows the energy per
HMu molecule computed as a function of density for a

FIG. 4. Static structure factor computed at temperature T = 1 K,
for a hcp crystal of HMu of density ρ = 0.0209 Å−3. The simulated
system comprises N = 216 molecules.

temperature T = 1 K. The solid line is a quadratic fit to the
data, whose fitting parameters yield the equilibrium density
ρ0 = 0.020 90(5) Å−3, corresponding to an average inter-
molecular distance 3.63 Å, as well as the ground state energy
e0 = −45.75(2) K. The ground state energy is almost exactly
[20] one-half of that of H2, with a kinetic energy of 70.4(1) K,
virtually identical to that of H2 at equilibrium, i.e., at a 30%
higher density.

The equilibrium density ρ0 is lower than that of superfluid
4He, which is 0.021 83 Å−3. The system is in the crystalline
phase, however, as we can ascertain through the calculation
of the static structure factor S(q), shown in Fig. 4. The result
shown in the figure pertains to a case in which particles are
initially arranged into a hcp crystal. The sharp peaks occurring
at values of q corresponding to wave vectors in the reciprocal
lattice signal long-range crystalline order.

It is interesting to compare the structure of a HMu crystal
to that of two other reference quantum solids, namely H2

(more precisely, para-H2) at its equilibrium density, namely
ρ = 0.0261 Å−3, and solid 4He near melting, at density
ρ = 0.0287 Å−3. The pair-correlation functions shown in
Fig. 5 were computed for hcp crystals at temperature T = 1
K (the results for H2 and 4He were obtained in Ref. [26]).
While the fact that the peaks appear at different distances
reflects the difference in density, 4He being the most and HMu
the least dense crystals, the most noticeable feature is that the
height of the peaks is much more pronounced in H2 than in
HMu and 4He, whose peak heights and widths are similar.

Figure 6 shows the pressure of a HMu crystal computed
at T = 1 K, as a function of density. In the relatively narrow
density range considered, a linear fit is satisfactory, and allows
us to compute the speed of sound v = (mρκ )−1/2, where κ =
ρ−1(∂ρ/∂P) is the compressibility. We obtained the speed of
sound 1300 ± 100 m/s at the equilibrium density.

Next, we discuss the possible superfluid properties of the
crystal, as well as of the fluid into which the crystal melts
upon raising the temperature. There is no evidence that the
crystalline phase of HMu may display a finite superfluid re-
sponse in the T → 0 limit. Indeed, the observation is that
the behavior of this crystal is virtually identical to that of
solid H2, as far as superfluidity is concerned. The main
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FIG. 5. Pair-correlation function g(r) for HMu at density ρ0 =
0.0209 Å−3 and T = 1 K (squares). Also shown for comparison
are the corresponding correlation functions for para-H2 at ρ =
0.0261 Å−3 (circles), and solid 4He at ρ = 0.0287 Å−3 (triangles),
at the same temperature. In all three cases the crystalline structure is
hcp. Statistical errors are smaller than symbol sizes.

observation is that exchanges of identical particles, which
underlie superfluidity, are strongly suppressed in HMu, much
as they are in H2, mainly due to the relatively large diame-
ter of the repulsive core of the pairwise interaction. Indeed,
exchanges are essentially nonexistent in solid HMu at the
lowest temperature considered here (T = 1 K), much as in
solid H2; the reduction of particle mass by a factor of 2 does
not quantitatively alter the physics of the system in this regard.

As temperature is raised, we estimate the melting temper-
ature to be around T ∼ 9 K. We arrive at that conclusion
by computing the pressure as a function of temperature for
different densities (at and below ρ0), and by verifying that the
system retains solid order even at negative pressure, all the
way up to T = 8 K. No evidence is seen of any metastable,
underpressurized fluid phase; on lowering the density, the
system eventually breaks down in solid clusters, just as in
H2 [5]. Above 8 K, the pressure of the solid phase jumps
and stable fluid phases appear at lower densities, signaling the

FIG. 6. Pressure of the HMu bcc crystal as a function of density
at T = 1 K (circles). The line is a linear fit to the data. Statistical
errors are smaller than symbol sizes.

occurrence of melting. These fluid phases do not display any
superfluid properties; exchanges of two or three particles oc-
cur with a frequency of approximately 0.1%. It is known that
quantum-mechanical effects in H2 contribute about one-half
of the Lindemann ratio at melting [26]; we did not perform
the same calculation for this system, but in this system quan-
tum mechanics should be more important, on account of the
lighter mass. However, qualitatively melting appears to occur
very similarly as in H2. Also, our results suggest that thermal
expansion, which is negligible [27] in solid H2, is likely very
small in this crystal.

B. Clusters

It is also interesting to study the physics of nanoscale size
clusters of HMu, and compare their behavior to that of parahy-
drogen clusters, for which, as mentioned above, superfluid
behavior is predicted at temperatures of the order of 1 K, if
their size is approximately 30 molecules or less. Crystalline
behavior emerges rather rapidly for parahydrogen clusters of
greater size [28], with “supersolid” behavior occurring for
specific clusters [29]. This calculation is carried out with the
same methodology adopted for the bulk phase of the system,
the only difference being that the simulation cell is now taken
large enough that a single cluster forms. In this respect, the
behavior of HMu clusters is closer to that of parahydrogen
than 4He clusters, in that no external potential is required
to keep them together (as in the case of 4He), at least at
sufficiently low temperature (�4 K).

However, the reduced molecular mass makes the physics
of HMu clusters both quantitatively and qualitatively different
from that of parahydrogen clusters. The first observation is
that the superfluid response is greatly enhanced; specifically, it
is found that clusters with as many as N = 200 molecules are
close to 100% superfluid at T = 1 K, and remain at least 50%
superfluid up to T � 4 K, at which point they begin to evapo-
rate, i.e., they do not appear to stay together as normal clusters.
This is in stark contrast with parahydrogen clusters, where
exchanges are rare in clusters of more than 30 molecules
at this temperature, and they would involve at most ∼10
particles. Consistently, the superfluid response is insignificant
in parahydrogen clusters, and they stay together almost ex-
clusively due to the potential energy of the interaction. Our
results highlight the importance of the energetic contribution
of quantum-mechanical exchanges in the stabilization of HMu
clusters at low temperatures. Indeed, at T = 1 K we observe
cycles of exchanges involving all of the particles in HMu
clusters comprising as many as 200 molecules.

Figure 7 shows density profiles computed with respect to
the center of mass of the system for three different clus-
ters of HMu, comprising N = 30, 100, and 200 molecules.
As mentioned above, all these clusters are essentially fully
superfluidic at this temperature. These density profiles are
qualitatively similar, nearly featureless, and reminiscent of
those computed for 4He droplets [30]. The comparison with
the density profile computed for a cluster of 30 parahydro-
gen molecules, also shown in Fig. 7, illustrates how the
latter is much more compact and displays pronounced oscil-
lations, which are indicative of a well-defined, solidlike shell
structure.
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FIG. 7. Radial density profiles (computed with respect to the
center of mass) for HMu clusters comprising N = 30, 100, and 200
molecules, at a temperature T = 1 K. At this temperature, all of these
clusters are essentially 100% superfluid. Also shown for comparison
is the same quantity for a cluster of N = 30 parahydrogen molecules,
at the same temperature; this cluster has no significant superfluid
response.

As the number of molecules increases, clusters of HMu
ought to evolve into solidlike objects, their structure approach-
ing that of the bulk. The calculation of the radial superfluid
density [25,31] suggests that crystallization begins to occur at
the center of the cluster; for example, at T = 1 K the largest
HMu cluster studied here (N = 200) displays a suppressed
superfluid response inside a central core of approximately 5 Å
radius, in which crystalline order slowly begins to emerge,
while the rest of the cluster is essentially entirely superfluid.
We expect the nonsuperfluid core to grow with the size of
the cluster. In other words, large clusters consist of a rigid,
insulating core and a superfluid surface layer, with a rather
clear demarcation between the two. This is qualitatively dif-
ferent from the behavior observed in parahydrogen clusters,
in which crystallization occurs for much smaller sizes, and
“supersolid” clusters simultaneously displaying solidlike and
superfluid properties can be identified [29].

V. CONCLUSIONS

We have investigated the low-temperature phase diagram
of a bulk assembly of muonium hydride molecules, by means
of first-principles quantum simulations. Our model assumes
a pairwise, central interaction among HMu molecules which
is identical to that of H2 molecules. By a mapping of the H2

interatomic potentials derived from ab initio calculations, we
showed that this model provides a reasonable description of
the HMu-HMu interation. It is certainly possible to carry out
a more accurate determination of the pair potential, but the
main effect of the lower μ+ mass should be that of increasing
the diameter of the repulsive core of the interaction, in turn
suppressing exchanges even more. As illustrated in Ref. [15],
the exchanges of identical particles play a crucial role in

destabilizing the classical picture in a many-body system;
when exchanges are suppressed, quantum zero-point motion
can only alter such a picture quantitatively, not qualitatively.
Alternatively, this can be understood by the fact that � is
decreased as the hard-core radius is increased, making the
system more classical. Obviously, regarding the interaction as
spherically symmetric is also an approximation, but one that
affords quantitatively accurate results for parahydrogen [20],
for which the potential energy of interaction among molecules
plays a quantitatively more important role in shaping the
phase diagram of the condensed system.

Perhaps the most significant observation of this study is
the different physics of bulk and nanoscale size clusters of
HMu. Bulk HMu is very similar to H2; despite its very low
density (lower than that of superfluid 4He), the equilibrium
crystalline phase is stable below a temperature of about 9 K,
much closer to the melting temperature of H2 (13.8 K) than
the mass difference may have led one to expect. No evidence
is observed of any superfluid phase, neither liquid nor crys-
talline, underscoring once again how, in order for a supersolid
phase to be possible in continuous space, it requires some
physical mechanism to cause a “softening” of the repulsive
part of the pair potential at short distances [32], even if only
along one direction, as in the case of a dipolar interaction
[33]. On the other hand, clusters of HMu including up to a
few hundred molecules display superfluid behavior similar to
that of 4He clusters. This suggests that, as the value of the
quantumness parameter � approaches �c from below, one
may observe nanoscale superfluidity in clusters of rather large
size.

We conclude by discussing the possible experimental real-
ization of the system described in this work. The replacement
of elementary constituents of matter, typically electrons, with
other subatomic particles of the same charge, such as muons
[34], has been discussed for a long time, and some experimen-
tal success has been reported. Even a bold scenario consisting
of replacing all electrons [35] in atoms with muons (the
so-called “muonic matter”) has been considered; recently, a
long-lived “pionic helium” has been created [36]. Thus, it
also seems plausible to replace a proton in a H2 molecule
with an antimuon; indeed, muonium chemistry has been an
active area of research for several decades [37]. In order for
“muonium condensed matter” to be feasible, a main challenge
to overcome is the very short lifetime of the μ+, of the order
of a μs.
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