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Many pathogens evolve to escape immunity, yet it remains difficult to predict whether
immune pressure will lead to diversification, serial replacement of one variant by
another, or more complex patterns. Pathogen strain dynamics are mediated by cross-
protective immunity, whereby exposure to one strain partially protects against infection
by antigenically diverged strains. There is growing evidence that this protection is
influenced by early exposures, a phenomenon referred to as original antigenic sin
(OAS) or imprinting. In this paper, we derive constraints on the emergence of the
pattern of successive strain replacements demonstrated by influenza, SARS-CoV-2,
seasonal coronaviruses, and other pathogens. We find that OAS implies that the
limited diversity found with successive strain replacement can only be maintained
if R0 is less than a threshold set by the characteristic antigenic distances for cross-
protection and for the creation of new immune memory. This bound implies a “speed
limit” on the evolution of new strains and a minimum variance of the distribution of
infecting strains in antigenic space at any time. To carry out this analysis, we develop
a theoretical model of pathogen evolution in antigenic space that implements OAS by
decoupling the antigenic distances required for protection from infection and strain-
specific memory creation. Our results demonstrate that OAS can play an integral
role in the emergence of strain structure from host immune dynamics, preventing
highly transmissible pathogens from maintaining serial strain replacement without
diversification.

traveling waves | blunting | transmissibility

Antigenically variable pathogens consist of immunologically distinct strains whose
spatiotemporal dynamics depend on the pathogen’s capacity to diversify and on the extent
to which host immune responses elicited by one strain protect against infection with other
strains. This interdependence gives rise to qualitatively distinct patterns of diversity or
strain structures (1–6). Examples include pathogens with high antigenic diversity at the
host population scale [e.g., Neisseria meningitidis (7–10), enteroviruses (11)] and others
with lower antigenic diversity at any given time but fast turnover [e.g., influenza A in
humans (12, 13), seasonal coronaviruses (14), SARS-CoV-2 (15–17), and others (18)].

Successive strain replacement typifies the dynamics of many common respi-
ratory pathogens, yet it only arises in transmission models in some conditions
(1, 2, 6, 12, 19–30). Large individual-based models have found that low antigenic
diversity and fast turnover result from low mutation rates and strong cross-immunity
between strains (6, 31). Short-term strain-transcending immunity (12, 27) and
punctuated antigenic changes (19, 32) have been hypothesized to be essential for
serial antigenic replacement. Intrinsic transmissibility also plays a role, with higher
R0 promoting frequent emergence of antigenically novel strains (30, 31). From a
theoretical standpoint, successive strain replacement corresponds to epidemic dynamics
that admit traveling wave solutions, in which infections create immunity that pushes
existing strains in a single direction in phenotypic space (24, 33–36). These dynamics
agree with representations of H3N2 antigenic evolution, with strains following a low-
dimensional trajectory in a higher-dimensional antigenic space (13, 37).

A common assumption in these investigations is that individuals acquire immunity
specific to any strain that infects them, regardless of infection history (3, 20, 22, 23, 33).
Decades of experimental and observational evidence of original antigenic sin (OAS)
have demonstrated that secondary responses expand memory B cell responses that
target previously encountered epitopes, limiting the generation of responses to new sites
(38–49). This is especially apparent in responses to less immunogenic influenza vaccines
(42, 50, 51). Proposed mechanisms for this limited response to new sites include clearance
of antigen by preexisting immunity (52, 53) and the reduced requirements for memory
compared to naive B cell activation (e.g., refs. 54, 55, and 56). A straightforward corollary
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is that no protection can be derived from nonexistent responses
to new sites, and thus individuals infected or vaccinated with the
same strain may differ in their protection against other strains,
depending on which epitopes they target (57).

OAS might sometimes boost antibody responses to a site that
are cross-reactive, blunting new responses to that site, but are
not necessarily so protective. Decoy nonneutralizing epitopes
are a feature of some pathogens (58, 59), but in influenza,
this discrepancy between reactivity and protection appears to
arise occasionally from OAS. For instance, middle-aged adults
infected with H3N2 sometimes boost antibody titers that bind
well by enzyme linked immunoabsorbent assay (ELISA) but
show negligible neutralization activity against the infecting strain
(60). Ferrets infected with one influenza A subtype boost their
stalk antibodies to that subtype on later infection with another
subtype, blunting new responses (61). The same pattern appears
in children infected with H1N1 before H3N2 (61). These
recalled antibodies appear to be very poor binders to the second
subtype, and although the in vivo consequences of hundreds-fold
reductions in affinity are uncertain (62), it is plausible they might
be accompanied by reduced protection, as suggested by experi-
mental infections in mice (63). Thus, OAS might influence the
protection derived from secondary exposures in two ways: first,
by preventing any response to new sites, and second, by recalling
memory responses to new but similar sites that poorly bind and
weakly neutralize the new site. Either mechanism can in theory
prevent the creation of protective memory to the infecting strain.

It is not known how OAS might affect pathogen evolution.
Transmission models involving OAS have assumed that only
one strain circulates at any time and always mutates between
seasons (64, 65), and thus have not addressed how OAS impacts
antigenic evolution. These transmission models predict that OAS
impacts population immunity, leading to “immune blind spots”
in different age groups (65), which might relate to recent evidence
of ∼24-y cycles in the induction of strong antibody responses to
H3N2 (66).

We investigate the consequences of OAS for pathogen evo-
lution, and specifically for the conditions that permit successive
strain replacement. Our mathematical models of host-pathogen
coevolution incorporate OAS via the mechanisms described
above. Both models allow for infection without creation of strain-
specific memory through tunable parameters that allow cross-
reactive responses to blunt the generation of new ones without
conferring protection at that epitope. One model assumes a
cross-reactive response at one epitope is sufficient to block the
induction of new memory to the rest, and the other assumes
that any epitope that is sufficiently diverged will elicit a new
response. Nature is likely somewhere in between, depending on
the type and number of secondary exposures (53, 63, 67, 68).
We show that these contrasting assumptions do not change
our main result: OAS implies an upper bound on the basic
reproduction number R0 of pathogens that can exhibit successive
strain replacement, and this bound implies limits on the speed
of evolution, the standing antigenic diversity, and the time to
the most recent common ancestor in this regime. OAS thus
narrows the conditions in which serial strain replacement is likely
to occur.

Model

We separately consider the dynamics of protection and memory
creation in individuals before describing pathogen dynamics in
the host population.

Host-Scale Protection. Pathogen strains and strain-specific mem-
ories are parameterized as real vectors in an abstract, continuous
d -dimensional antigenic space in which the distance between two
points represents the extent to which a strain-specific memory at
one point protects against infection with a strain at the other
point, as detailed mathematically below. The model assumes
that each of the d dimensions of antigenic space corresponds
to a physical region bound by antibodies, and the footprints of
antibodies binding this region are entirely contained within it.
We refer to these antibody-binding regions as epitopes. A similar
model with each axis corresponding to one epitope was used in
ref. 69.

Individuals infected with a strain of the pathogen are also in-
fectious. An infected individual can transmit either the infecting
strain or a mutant strain. Infected individuals expose on average
R0 other individuals during their infection, where R0 is the basic
reproduction number and does not vary by strain. The duration
of infection also does not vary by strain.

Individuals are born without immunological memory. A naive
individual always becomes infected when exposed to a strain
and forms strain-specific memory on infection. A nonnaive
individual who becomes infected might develop memory specific
to that strain. The set S of strains Es to which an individual has
strain-specific memory at time t is their memory profile at t.
An individual has at most one specific memory targeting (i.e.,
derived from infection with) each strain. The number of strains
in S equals m. In general, the number of strains in memory,
m, would be expected to vary among individuals, though the
population-scale model will assume that a fixed value of m is a
reasonable approximation for computing protection.

Memory decreases the probability of infection on exposure.
Individuals cannot be reinfected by strains in their memory
profile. Memory is cross-protective, meaning that strain-specific
memory decreases the probability of infection with similar
strains (Fig. 1). Cross-protection declines exponentially with the
Euclidean antigenic distance between the strain in memoryEs and
the challenge strain Es ′,

Pr(memory at Es protects host | host is exposed to Es ′)

= e−||Es−Es
′
||/r , [1]

with ||Es − Es ′|| =
(∑d

i=1(si − s′i)
2
)1/2

. The quantity r is the
cross-protection distance. It is an independent parameter that
determines how antigenic change affects the protectiveness of

A B

0

0.2

0.4

0.6

0.8

Pr(infection|exposure)

Fig. 1. Cross-protection and blunting from a single memory in 2-dimen-
sional antigenic space. A strain-specific memory Es at the center protects
against infection by nearby strains according to Eq. 1. The distance over
which protection drops by a factor of 1/e is r; the blunting distance is b;
hatched regions represent excluded regions in the (A) every- and (B) any-
epitope models. Only infections with strains outside these regions would
generate new memory. Here, b = 1.7 and r = 1.25.
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existing memory to related strains. If r is high, cross-protection
is high, and large mutations in antigenic space are required for
protection to drop.

Eq. 1 defines the probability that a single strain-specific
memory protects against infection by another strain. Each strain
Es in an individual’s memory profile S contributes to protection
against a challenge strain Es ′. The probability of infection for an
individual with memory profile S exposed to a challenge strain
Es ′ is given by the product of the probabilities of each memory
separately failing to protect,

Pr(infection at Es ′| exposure to Es ′) =
∏
Es∈S

(1− e−||Es−Es
′
||/r). [2]

Implicit in Eq. 2 is the assumption that protection against
infection depends on the unordered set of strains in the memory
profile, yet we have claimed that OAS induces a dependence
on the order of exposure. Order dependence arises from the
dynamics of memory creation.

Creation of New Memory. Infections and vaccinations do not
always generate new specific memory to the challenge strain.
Whether an individual generates a strain-specific memory de-
pends on their existing memory profile. We model OAS via
blunting, and consider two models, the “every-epitope” model
and the “any-epitope” model, corresponding to the limits of
biologically plausible scenarios. In each, a blunting distance, b,
sets a threshold antigenic distance for developing new memory.

In the every-epitope model, the challenge strain Es ′ must
escape immunity at every epitope to create strain-specific memory
(Fig. 1); escape at only some epitopes can be overcome by adap-
tive immune responses, such as antibodies, binding conserved
regions (69). More precisely, an individual challenged with a
strain Es ′creates strain-specific memory if Es ′ differs from every
strain Es in their memory profile S by an antigenic distance of at
least b in each of its d antigenic space coordinates,

every-epitope condition for memory creation:
min
Es∈S

min
i=1,...,d

|s′i − si| ≥ b . [3]

In the any-epitope model, it is enough for the challenge strain
Es ′ to escape immunity in a single epitope to create strain-specific
memory (Fig. 1) (3). An individual challenged with a strain Es ′
creates strain-specific memory if Es ′ differs from every strain Es in
their memory profile S by at least b in at least one epitope (which
may not be the same epitope across S),

any-epitope condition for memory creation:
min
Es∈S

max
i=1,...,d

|s′i − si| ≥ b . [4]

These models can be conceptualized as different types of
exposures. The every-epitope model could represent an exposure
to a small dose of antigen, for example via natural infection,
where the presence of any neutralizing memory can limit
pathogen replication, reducing antigen availability enough to
prevent the generation of new memory. The any-epitope model
could represent an exposure to a high dose of antigen or an
immunogenic vaccine that forces a response to diverged epitopes
even in the presence of memory that would ordinarily suppress
a new response. This effect has been shown in animal models
since the earliest observations of OAS (46), and more recently in
molecular detail in mice (48, 68).

Throughout the remaining analysis, we assume that immune
memory can cross-react with a larger set of strains than it can
protect against (b > r). That is, it can suppress the formation
of new memory against some infecting strains. While it is not
biologically impossible that r would be greater than b, this would
require enough antigen to provoke a memory response without
causing an infection. This might occur through vaccination but
will not be explored here.

Population-Scale Infection-Immunity Coupling. At the popula-
tion scale, our model is equivalent to the model of pathogen-
immune coevolution developed in ref. 36 with the added
assumptions that each dimension corresponds to an epitope in
the proper coordinates and that each epitope antigenically evolves
at a rate that does not depend on time. The population-scale
description is formulated in terms of two densities in antigenic
space: the total number of individuals infected by each strain
Es at time t and the total number of individuals with strain-
specific memory to Es at time t, denoted n(Es, t) and h(Es, t),
respectively. In transitioning to a density-based approach, we
trade complete information about each individual’s memory
profile for tractability. This is similar to the choice of a previous
cohort-level description for studying OAS (65), although the
motivation is different as we do not incorporate age structure.

Strain fitness is determined by the number of new infections
per infectiousness period, which depends on individuals’ immu-
nity. The expected protection against infection upon exposure
to strain Es conferred by a single memory chosen uniformly at
random from h(Es ′, t) is denoted c(Es, t). Using the definition in
Eq. 1, this is equal to

c(Es, t) =
1

mNh

∫
Es ′ in antigenic space

d Es ′ h(Es ′, t)e−||Es−Es
′
||/r , [5]

where Nh is the size of the population and the factor mNh adjusts
for the normalization of h(Es ′, t). In analogy with Eq. 2, we have

Pr(infection at Es | exposure at Es) ≈ (1− c(Es, t))m . [6]

Eqs. 5 and 6 rely on an assumption that the average protection
against infection across individuals is well approximated by the
average protection in a system where the h(Es, t) memories are
distributed randomly among individuals, with each individual
having the same number of memories, m (see SI Appendix
for further discussion on this point). Defining R0, the basic
reproduction number of the pathogen, to be the expected number
of people an infected individual encounters during their infection
and would infect (assuming complete susceptibility), the fitness
of strain Es at time t is

f (Es, t) = log (R0 (1− c(Es, t))m) , [7]

as in ref. 36.
We model the successive strain replacement regime using

the traveling wave model described in ref. 36. Traveling wave
solutions arise from stochastic coupled dynamical equations
between the infection density and the memory density that take
into account fitness differences among strains, mutations, noise
in the transmission process, and memory addition and deletion:

∂tn(Es, t) = f (Es, t)n(Es, t) + D E∇2n(Es, t) +
√
n(Es, t) �(Es, t), [8]

∂th(Es, t) = n(Es, t)−
NI (t)
mNh

h(Es, t). [9]
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The first equation (Eq. 8) states that as the pathogen spreads,
each strain grows or shrinks according to its fitness (Eq. 7);
mutations are frequent and have small effect, such that the
diffusion approximation is appropriate with diffusion constant
D; and pathogen spread is stochastic, with Gaussian process noise,
where �(Es, t) is a unit Gaussian (〈�(Es, t)〉 = 0, 〈�(Es, t)�(Es ′, t ′)〉 =
�(Es − Es ′)�(t − t ′)), and the prefactor

√
n(Es, t) sets the mean

and SD. The second equation (Eq. 9) states that the change in
memory at a given time is determined by memory addition at
the locations of infections and by memory deletion uniformly
at random: each person acquires a new strain-specific memory
at Es when they are infected by strain Es, and at that time, they
lose one memory from their memory profile S, such that each
person maintains a fixed number of m memories over time. Time
is modeled in units of the duration of infection.

Successive Strain Replacement Dynamics. Successive strain
replacement dynamics are conceptualized as an infection dis-
tribution that takes the form of a localized clump that maintains
its shape as it moves through antigenic space at a constant speed
and direction and is Gaussian in the direction of motion to
reflect the assumption that the mutation process is diffusive. The
localization implies that strains are immunologically well defined,
with low antigenic diversity around any point at any time. The
constant speed and direction amount to assuming that the effect
of stochasticity in orthogonal directions is negligible. While the
speed at which the wave travels is a derived quantity determined
by the transmission and immunity parameters governing the
dynamics, its direction of travel is determined by the relative rates
at which different epitopes antigenically evolve, an independent
input to the system which we parameterize by the angles between
the direction the wave is traveling and the axes for individual
epitopes, �1, . . . , �d (Fig. 2C ).

A number of  infections number of memories

epitope 1

x2

epitope 2

infections
memories

x1=vt

x1

x1 x1

B

C
x1=vt x1=vt

Fig. 2. Successive strain replacement as traveling waves in antigenic space.
(A) Strain replacement is modeled as a localized infection distribution moving
along a one-dimensional trajectory in d-dimensional antigenic space with
constant velocity Ev. (B) The memory distribution is an exponentially decaying
distribution with wavefront at x1 = vt, localized in orthogonal directions. (C)
The axes aligned with the direction of motion of the infection and memory
distributions are not the same as the epitope-aligned axes. The localized
infection peak is visualized as a point at the location of the wavefront.

Successive strain dynamics are most simply expressed in
coordinates where one axis is aligned with the direction of
motion, with the remaining axes aligned orthogonally. We use
Ex (rather than Es ) to indicate “wave-adapted” antigenic space
coordinates where the x1 axis lies along the axis of antigenic
evolution.

As in ref. 36, the infection distribution takes the form

n(Ex, t) =
NI

(2��2)1/2 e
−

(x1−vt)2

�2 �(x2, . . . , xd ), [10]

where NI is the number of infected individuals, v is the wave
velocity, � is the SD of the Gaussian in the direction of motion,
and � is a normalized distribution. Both the Gaussian and � are
taken to be localized to a region of linear dimension much less
than the cross-protection distance r (� � r) (Fig. 2A). We are
interested in the case where the cross-protection distance is less
than the blunting distance, and thus these are also localized to a
region of linear dimension much less than the blunting distance
b (� � b).

When the pathogen undergoes serial strain replacement, rep-
resented by the infection distribution in Eq. 10, the population
develops a memory distribution in the shape of a wavefront
with maximum at the peak of the infection distribution that
falls off exponentially fast in the direction of earlier infections
(Fig. 2B). There is no specific memory ahead of the peak of
infections. The wavefront travels at the same speed, v, as the
infection distribution, and in the same direction. Since in this
model each person has m memories in their memory profile, the
total number of memories in the population (the integral over
the entire memory distribution) equals the size of the population,
Nh, times m.

As derived in ref. 36, the speed of antigenic evolution, v;
SD of the infection distribution, �; and number of infected
individuals, NI , are not independently specified. Given the
dynamics specified by Eqs. 8 and 9, they are determined by
the cross-protection distance, r; the number of individuals in the
population, Nh; the diffusion coefficient characterizing the effect
of mutations, D; the number of memories per person, m; and the
basic reproduction number, R0. See Materials and Methods for
the relevant expressions.

Results

We first describe static properties that the population memory
and protection distributions must satisfy to be consistent with the
two blunting models, regardless of the transmission dynamics
that give rise to them. We then derive the consequences for
pathogen evolution: to obtain serial strain replacement, the speed
of evolution, v; the strain diversity, �; and the time to the most
recent common ancestor, tMRCA, are constrained by an upper
bound on the basic reproduction number, R0. This upper bound
is determined by the characteristic distances defining memory
creation and cross-protection (b and r, respectively), and by how
changes in individual epitopes impact protection (the blunting
model).

Blunting Neighborhoods. In both the every-epitope model and
the any-epitope model, blunting implies a geometric condition
that no individual’s memory profile contains specific memory to
strains that are too close to one another. The precise definition
of “too close” differs between the models.

The every-epitope assumption (Eq. 3) implies that for every
pair of strains Es,Es ′ in a host’s memory profile S, the difference

4 of 12 https://doi.org/10.1073/pnas.2400202121 pnas.org
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b/2

b/2

A

epitope 1

epitope 2 B

epitope 1

epitope 2

b/2

b/2

Fig. 3. Blunting neighborhoods about reference point Ep for two blunting
models, shown in 2d antigenic space. If an individual has memory to a strain
in a blunting neighborhood of a given reference point and is later infected
by a different strain in that neighborhood, no new memory will be created.
(A) Blunting neighborhoods for epitope 1 (yellow) and epitope 2 (blue) about
Ep in the every-epitope model. (B) Blunting neighborhood about Ep in the any-
epitope model.

|si − s′i| is at least b in each dimension i = 1, . . . , d . This
means that given any reference point Ep in antigenic space, for
any dimension i, there exists at most one strain in S that is a
distance less than or equal to b

2 from Ep in that dimension. The set
of all such strains defines d stripe-shaped regions in which there
can be at most one memory: the set of points Ep ′ with |pi−p′i| <

b
2

for at least one value of i (Fig. 3A). Each stripe has width b parallel
to the ith axis and extends infinitely in the remaining (d − 1)
axes (derivation in SI Appendix). We refer to these stripes as the
blunting neighborhoods of Ep in the every-epitope model and
denote them E

〈〈Ep〉〉ib.
The any-epitope assumption (Eq. 4) implies that for every pair

of strainsEs,Es ′ in a host’s memory profile S, the difference |si− s′i|
is at least b in at least one dimension i = 1, . . . , d . This means
that given any reference point Ep in antigenic space, there exists
at most one strain in S that is within the distance b

2 from Ep in
all dimensions, defining a d -dimensional cube with side length b
centered at Ep (Fig. 3B) (derivation in SI Appendix). We refer to
this cube as the blunting neighborhood of Ep in the any-epitope
model and denote it A

〈〈Ep〉〉b.

Order-Dependent Protection. Both proposed blunting models
are consistent with a major observation motivating our study of
OAS: they imply that individuals’ immunity depends not only
on the set of strains to which they have been exposed but also on
the order of exposure (Fig. 4) (60, 70).

Consider the simplest case of a pathogen whose evolution takes
place in one-dimensional antigenic space. In one dimension, the
every-epitope model and the any-epitope model are equivalent.
Two strains are present: one, Esi, at the origin and the other, Esj, at
b/2. Consider two different hosts, h1 and h2, both of whom have
been infected by strains Esi and Esj but in different orders: h1 was

time

time epitope 1Pr
(in
fe
ct
io
n)

0
0.25
0.5
0.75
1

h1
h2

A B

h1

h2

b/2

Fig. 4. Protection is order-dependent with blunting. (A) Infection history of
hosts h1 and h2. (B) Memory profiles and protection distributions of hosts h1
and h2. Here, r = b

2 .

infected byEsi followed byEsj, and h2 was infected byEsj followed by
Esi (Fig. 4A). Host h1 develops specific memory to strainEsi but not
to strain Esj, whereas host h2 develops specific memory to strain Esj
but notEsi (Fig. 4B). Given these memory profiles, the probability
that each host is infected by any strain Es ′ is given by

Pr(infection by Es ′|exposure at Es ′, h1) = (1− e−|s
′
|/r), [11]

Pr(infection by Es ′|exposure at Es ′, h2) = (1− e−|
b
2−s
′
|/r). [12]

For example, if host h1 is exposed to the strain Es ′ at b, they
will be infected with probability (1 − e−b/r), whereas if host
h2 is exposed to the same Es ′ = b, they will be infected with
probability (1 − e−b/2r), a smaller value. Although h1 and h2
have the same set of exposures in their history, blunting dynamics
lead to h1 having less protection to Es ′ than h2 (Fig. 4B). Both
blunting models therefore predict order-dependent protection to
antigenically diverged strains.

In higher dimensions, the mechanism by which the every-
and the any-epitope models exhibit order-dependent protection
is essentially the same as in one dimension, but because blunting
neighborhoods are infinitely extended in the every-epitope model
and localized in the any-epitope model, they differ in their
implications for heterogeneity of protection in the population.
In the every-epitope model, order dependence can induce strong
heterogeneity of protection, as a pathogen with some slowly
evolving (i.e., conserved) epitopes and at least one fast-evolving
epitope travels far before exiting blunting neighborhoods in
the conserved direction. Since individuals do not create new
memory until the pathogen exits the blunting region, and
protection decreases exponentially with distance between the
memory and challenge strains, experienced individuals will be
less protected to circulating strains than individuals with more
recent primary infections. By contrast, in the any-epitope model,
order dependence can have less impact over time, as there is a
maximum distance the pathogen travels before leaving blunting
neighborhoods. This means that two individuals’ protection
cannot diverge arbitrarily as the pathogen evolves, since new
infections will trigger memory creation more frequently even
in experienced individuals. This distance is maximized when all
epitopes evolve at similar rates.

Immune Blind Spots. Epidemiological observations indicate that
individuals do not always develop specific memory against a strain
Es ′ even after repeated exposures (60, 71). Those strains occur in
“immune blind spots” (65), which we show here create blind
spots in protection as well. In both the every-epitope model
and the any-epitope model, immune blind spots arise when b
is large compared to r: the blunting conditions guarantee the
existence of points that are too antigenically similar to existing
memory to trigger creation of new memory upon exposure but are
nonetheless far enough to escape cross-protection from infection.
Intuitively, this is because OAS prevents memory profiles from
becoming too dense, and thus limits the antigenic “coverage” of
protection.

To demonstrate the existence of immune blind spots, we will
consider a scenario for each model. In the every-epitope model,
any strain Es in the memory profile defines an infinitely extended
d -dimensional cross-shaped region where no additional memory
can be created (Fig. 5A). For example, any strain Es ′ sharing at
least one epitope withEs can never be added to the memory profile.
Suppose strain Es ′ has all but one epitope conserved with Es, and
the remaining epitope is so far diverged as to escape all existing
memory (i.e., the distance in that direction is much greater than
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Fig. 5. Immune blind spots arise when b is large compared to r. Given a memory at the origin, the “allowed strains” are examples of the closest possible
strains that could be added to the memory profile. The protection is necessarily low at the immunity blind spot strains regardless of infection history in (A) the
every-epitope model and (B) the any-epitope model as long as b

r is sufficiently large (and, in (A), the distance from the memory strain to the immune blind spot
is greater than both the blunting distance and the cross-protection distance). (C and D) show the probability of infection at the blind spot points considered
here for (C) the every-epitope model and (D) the any-epitope model. Vertical dotted lines indicate approximate values of b/r above which infection is essentially
guaranteed [decreasing with dimension in (C), dimension-independent in (D)].

both the cross-protection distance and the blunting distance).
Since cross-protection to Es ′ depends on the Euclidean distance
from Es, the diverged epitope prevents Es from protecting against
Es ′ despite shared epitopes. In fact, if the blunting distance is
much greater than the cross-protection distance, an individual
with Es in their memory profile will never develop protection to
Es ′. This is because future exposures will create memory only
to strains diverged from Es by at least the blunting distance in
every direction, and if b� r, such strains cannot protect against
strains sharing epitopes with Es, including Es ′ (Fig. 5A). When
the blunting and cross-protection distances are comparable, a
strain diverged from Es (and therefore Es ′) by exactly the blunting
distance in the conserved directions can partially cross-protect
against Es ′. This means that the immune blind spot disappears if
the blunting distance b is sufficiently close to the cross-protection
distance r. An explicit calculation of the loss of protection atEs ′ as
a function of the ratio of blunting to cross-protection (Materials
and Methods) shows that the immune blind spot appears at
modest values of b/r, and the approximate minimum threshold
for the appearance of immune blind spots shrinks as the number
of epitopes (d ) increases (Fig. 5C ).

Similarly, in the any-epitope model, any strain Es ′ that is
diverged by less than the blunting length from Es in at least one
epitope cannot be added to the memory profile, and individuals
will maintain some susceptibility to that strain as long as b > r.
One example is a strain Es ′ which is diverged from Es by antigenic
distance of half the blunting length (b/2) in every epitope
(s′i = si + b

2 , for example) (Fig. 5B). The closest strains to Es ′
that could be added to the memory profile are strains that are
diverged from the reference strain Es in at least one epitope by
exactly the blunting distance (+b). The strain Es ′ escapes cross-
protection if b

r is very large, but may be protected from these
nearby strains if the cross-protection distance is comparable to
the blunting distance (Fig. 5D). As long as b

r ≳ 8, infection upon
exposure to strain Es ′ is essentially guaranteed, and so Es ′ falls in
an immune blind spot (Fig. 5D) (Materials and Methods).

Population-Scale Memory Constraint. Both blunting models
imply maximum total numbers of specific memories the pop-
ulation maintains in certain regions of antigenic space. This
follows from the existence of blunting neighborhoods. Each host
has at most one memory within the blunting neighborhood(s)
E,A
〈〈Ep 〉〉(i)b of any reference point Ep in antigenic space. (The i

index applies to the every-epitope model only.) It follows by
taking the sum of memories at each point over all hosts that
in any collection of Nh nonnaive individuals with collective
memory distribution h(Es, t), the total number of memories in
each blunting neighborhood of Ep cannot exceed Nh. In symbols,
for both blunting models, we have∫

Es ′∈E,A〈〈Ep 〉〉(i)b

dEs ′h(Es ′, t) ≤ Nh. [13]

The every-epitope model and the any-epitope model differ
in the regions over which the integral is taken, with the every-
epitope model integrating over d infinitely extended stripes that
include Ep, and the any-epitope model integrating over a single
d -cube centered at Ep (Fig. 3).

We refer to Eq. 13 as the OAS constraint. It holds in any
model of OAS with blunting.

Limits on Successive Strain Replacement Dynamics. We find
that the conditions for serial strain replacement are harder to
obtain in models that assume blunting (OAS). Only pathogens
with a sufficiently low R0 compared to the ratio of the cross-
reactivity distance to the blunting distance (formally, eb/r) can
exhibit successive strain replacement dynamics in populations
where individuals accumulate many immune memories (i.e., in
the large-m limit).* This bound implies a maximum speed of
antigenic evolution that depends on the blunting model.

*See Materials and Methods, Eq. 22, for the finite-m correction, which quickly approaches
the large-m behavior.
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In the dynamics described by Marchi et al. (36), the population
accumulates memories in a small interval close to the wavefront.
This localized buildup of memory is necessary for maintaining
the fitness gradient required to force the infection distribution to
move at a constant speed while maintaining its shape. We have
shown, however, that the OAS constraint prevents arbitrarily
localized buildup of memory. Since the shape of blunting
neighborhoods depends on the blunting model, the amount
of memory close to the wavefront is also sensitive to specific
assumptions about blunting. Specifically, OAS prevents memory
accumulation in an interval whose length is determined by
the projection of the direction the wave travels in the fastest
(every-epitope model) or slowest (any-epitope model) direction
(Materials andMethods). We refer to the angle between the fastest
(slowest) direction in the every- (any-) epitope model as �∗.

The OAS constraint requires that

log R0 ≤
r cos �∗

b
, [14]

in the large-m limit (Fig. 6; derivation in Materials and Methods).
Since cos �i measures how quickly the ith epitope evolves
compared to the other (d − 1) epitopes, this equation says that
successive strain replacement is possible only if R0 is not too large
compared to the inverse of the blunting distance b in units of the
cross-protection distance r, modulated by the projection onto the
most important epitope for that model.

In the traveling wave model, the cross-protection distance, r;
the population size, Nh; the diffusion constant, D; and the basic
reproduction number, R0 govern pathogen evolution, including
the speed v at which the pathogen evolves, the SD � of infections
in the direction of evolution, and the time to the most recent
common ancestor, tMRCA, of cocirculating strains (36). The
inequality in Eq. 14 implies that blunting leads to (Nh- and
D-dependent) maximum v, minimum �, and minimum tMRCA
in the context of successive strain replacement (Fig. 7). These
limiting values are achieved for pathogens that saturate the
inequality (Materials and Methods). For example, if the blunting
length b is equal to twice the cross-protection length r and there
are two epitopes evolving at the same rate (�∗ = �

4 for both
blunting models), then r cos �∗/b ∼ 0.35, and the maximum R0
consistent with successive strain replacement dynamics is∼1.42.
In this case, the minimum time required for the viral population
(peak of the infection distribution) to travel the cross-reactivity
distance varies up to ∼100 times the duration of infection

(for, e.g., r = 5); the minimum SD of the viral population
varies between∼0.1 and 0.5 cross-protection distances for values
of r between 1 and 5; and the minimum time to the most recent
common ancestor for two cocirculating strains varies between
∼100 to 400 times the duration of infection for values of
r between 1 and 5.

Discussion

Many factors have been hypothesized to lead to serial strain
replacement, but theoretical tests of these hypotheses have tended
to assume that individuals uniformly develop protective strain-
specific immunity from infection. We have shown that OAS
limits the density of population memory in antigenic space,
a picture we expect to hold broadly across models of strain
evolution. This bound on the number of memories constrains
the successive strain replacement regime to low-transmissibility
pathogens, with “more OAS”—a greater ability of memory
to blunt the formation of new responses—corresponding to a
tighter bound. Our results imply that observed patterns of serial
replacement in nature may be less stable than thought.

This work represents a different approach compared to past
studies of successive strain replacement. Previous work on waves
in antigenic space (36) found that traveling waves solve the model
for any set of parameters. Other investigations into the existence
of traveling waves in pathogen evolution (24, 72–74) focused on
phenomena such as disease treatment (73, 74) without including
OAS. These models found traveling wave solutions for all R0 > 1
with a minimum speed of evolution, as opposed to our result,
which implies that OAS imposes a maximum speed of evolution.
The previous studies that implemented OAS assumed successive
strain replacement and examined its impact in age-structured
models (64, 65). Our results are complementary, in that we
identify where successive strain replacement is likely to arise in
the first place.

By preventing arbitrary buildup of population memory in
localized regions of antigenic space, OAS effectively limits the
steepness of the fitness landscape that drives selection to escape
immunity, and thus restricts the space of possible infection
dynamics. Traveling waves are one example of a dynamical
pattern that is subject to this restriction, as they require a dense
buildup of memory near the wavefront. The necessary density
depends on the characteristic cross-protection distance r and
the basic reproduction number R0, with smaller r and larger R0
resulting in more memory near the wavefront. Since the blunting
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r for different values of �∗.
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Fig. 7. Dynamical limits implied by the OAS constraint. (A) Maximum speed of evolution v (antigenic distance per infection), which depends on the diffusion
constant D and the blunting distance modulated by the projection onto the fastest (slowest) evolving epitope for every (any) epitope model (Left), and the
time for the infection peak to travel the cross-protection distance as a function of b

r for different values of r and �∗ at saturating value of vmax (Right). (B)
Minimum standing diversity � (antigenic distance) as a function of the diffusion coefficient and blunting distance modulated by the projection onto the fastest
(slowest) evolving epitope for the every (any) epitope model (Left), and the minimum standing diversity in units of cross-protection distance as a function of b

r
for different values of r and �∗. Parameter combinations lying near or above the black solid line at �min/r = 1 cannot lead to serial strain replacement, as the
traveling wave solution requires �/r � 1. (C) Minimum time to the most recent common ancestor, tMRCA (measured in duration of infection), as a function of
the diffusion coefficient D and the blunting distance modulated by the projection onto the fastest (slowest) evolving epitope for the every (any) epitope model
(Left), shown as a function of b/r for different values of r and �∗ (Right). Here, Nh = 109 (Left and Right) and D = 0.004 (Right).

distance b controls the number of memories that are “captured”
in the blunting neighborhood at the wavefront, traveling wave
dynamics are only consistent for small enough b in relation to
r−1 and R0. If the OAS bound is not satisfied, then the wave
solution is unstable to the frequent generation of escape mutants.
Depending on the diffusion coefficient, this could lead to the
wave spreading or to continual generation and disappearance
of multiple peaks, similar to the mound and comb patterns
described in a similar model of virus-immune coevolution (75).

The implementation of the OAS bound in terms of blunt-
ing neighborhoods also demonstrates an intimate connection
between OAS and the rules of memory creation in the presence
of multiple evolving epitopes. The geometry of blunting neigh-
borhoods runs parallel to the epitope-aligned axes. By contrast,
as long as more than one epitope is evolving, the traveling wave
does not travel parallel to any axis. Consequently, the number
of memories captured in the blunting neighborhood near the
wavefront depends on the relative speeds at which different
epitopes evolve. Because the shape of blunting neighborhoods

depends on the interactions among epitopes, the slowest evolving
epitope determines the upper bound on R0 for the every-epitope
model, and the fastest evolving epitope determines the bound for
the any-epitope model.

The importance of R0 and epitopes’ rates of evolution suggests
that effective public health measures, including nonpharmaceu-
tical interventions and vaccines, might make pathogens more
likely to exhibit successive strain replacement. An immunogenic,
well-matched vaccine can deliver a high enough or “long enough”
dose of antigen to overcome immune memory, forcing responses
to new sites and the creation of strain-specific memory (e.g., refs.
48, 53, and 68). In contrast, at small doses of antigen, immune
memory might effectively clear antigen unless every epitope is
so antigenically diverged that new strain-specific memory can
form. This suggests that population immunity dominated by
immunogenic vaccines is likely better approximated by the any-
epitope model. Since cos �∗ is always greater in the any-epitope
model than in the every-epitope model, the OAS bound on R0 is
weaker. In other words, we expect pathogens will be more likely
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to exhibit successive strain replacement and less likely to diversify
when vaccines can induce broader memory than infections.

One limitation of this work is that the population-level OAS
constraint is imposed, rather than allowed to emerge from the
individual-level model dynamics. Although we expect successive
strain replacement models to generically induce memory buildup
near the wavefront, we would need to incorporate additional
mechanisms into the model for memory dynamics to recapitulate
OAS endogenously. We still expect that regimes with a moving
wavefront exist, but their functional form may be more complex
or even time-dependent. Since all solutions to such a model
would satisfy the OAS constraint by design, restrictions on the
parameter regimes where successive strain replacement occurs
would derive from existence conditions on wavelike solutions
to the differential equation rather than consistency conditions
on memory at the wavefront. Since in such a model memory
could saturate, we hypothesize that a cross-protective, short-term
immunity might be required to avoid repeated infections from
accumulating, consistent with the conditions in refs. 12 and 27.
With dynamics that enforce OAS, evolutionary dynamics could
be explored in more regimes, e.g., to identify the conditions under
which branching occurs. It would be interesting to compare such
a study to refs. 6 and 34, which construct similar phase diagrams
in models without OAS.

There is substantial heterogeneity in antibody-mediated pro-
tection against influenza and SARS-CoV-2 in the human
population, with individuals showing diversity in their antibody
landscapes (39, 66, 76, 77) and the particular epitopes they
target, including their sensitivity to different escape mutations
(71, 78–81). Some of this heterogeneity arises from differences in
initial exposures (71), but there is striking diversity within birth
cohorts (66, 77). Future versions of this model could include
different subpopulations, distinguished by their memory reper-
toires, that are tracked over time and parameterized empirically.

Several assumptions should be reexamined in applying this
theory to data, namely, the constant cross-protection distance r
across epitopes, the simple memory creation and cross-protection
functions, the single dimension of antigenic space for each
epitope, and the artificial dichotomy of the any-epitope and
every-epitope models. The correlates of protection for pathogens
including influenza and SARS-CoV-2, necessary for understand-
ing the cross-protection distance r, are not well understood
and require additional investigation via prospective studies and
challenge experiments. Other model assumptions, especially the
blunting distance b and any- and every-epitope model forms,
require a more quantitative understanding of the dynamics of
immune memory. Longitudinal studies that combine diverse
exposure histories with detailed immune profiling will help to
accelerate understanding on these fronts.

Materials and Methods

Immune Blind Spots Calculations. We derive the existence of immune blind
spots in the large- br limit, and extend the argument to explain how Fig. 5 C and
D were generated. For both the every- and any-epitope models, immune blind
spots exist because the every- and any-epitope conditions prevent memories
from being too closely spaced. The arguments thus proceed by determining,
given a strain Es in the memory profile, the maximum possible protection that
could be achieved at specially chosen pointsEs ′ in the case of a maximally “dense”
memory profile nearEs ′.

In the every-epitope model, if strain Es is in a host’s memory profile S , no
strain Es ′ that differs from Es by a distance less than b in at least one dimension
can be in the memory profile. Let Es ′ be a strain with s′1 = s1, s′i > si + b for

all i = 2, . . . , d, and (
∑d

i=2(s
′

i − si)2)1/2
� r, as shown in Fig. 5A in the

case where d = 2 (so s′2 > s2 + b and s′2 � s2 + r). Note that the host with
memory (only) at Es is essentially not protected at Es,′, as its Euclidean distance
from Es is much greater than the cross-protection distance, and the strain Es ′

cannot be added to the memory profileS even if the host is infected byEs ′, since
Es andEs ′ share the first epitope. The closest strains toEs ′ that could be added toS
are the two strains displaced from Es ′ by b in the first epitope [with coordinates
(s1 ± b, s′2, . . . , s

′

d)], and the strains are mutually exclusive; that is, at most
one of these strains can be added without violating the every-epitope condition
in epitopes 2 through d. If the blunting distance b is sufficiently large compared
to the cross-protection distance r, the maximum protection the individual could
have atEs ′ is well approximated by the protection conferred by one of these two
closest strains, even if the memory profile S also contains strains further away.
The minimum probability of infection upon exposure toEs ′ is thus approximately
1 − e−b/r , which approaches 1 as b/r becomes large. The host thus has an
immune blind spot atEs ′ (Fig. 5A) in the large-b/r limit.

A similar observation holds for the any-epitope model. An individual with
strain Es in their memory profile S cannot have specific memory to any strain
Es ′ whose coordinates are all within a distance b of Es. Let Es ′ be the strain with
coordinates s′i = si + b/2 for i = 1, . . . , d. In addition toEs, there are (2d− 1)
strains that differ fromEs ′ by a distance of b/2 in each epitope: these are strains
that are located at either sj or sj + b in each direction j (with at least one

coordinate differing from Es). Each of these strains is distance d1/2b/2 from Es ′,
and these are the closest strains toEs ′ that could be inS . As in the every-epitope
case, for sufficiently large b/r, the maximum protection the individual could
have at Es ′ is well approximated by the protection conferred by these closest
strains if memory had been acquired to all of them. The minimum probability
that an individual withEs in their memory profile is infected byEs ′ upon exposure
therefore equals the probability that neitherEs nor any of the other closest strains

is protective, which is equal to (1− e−d
1/2b/2r)2d . This is close to 1 when b/r

is very large, meaning that the host has an immune blind spot atEs ′ (Fig. 5B).
In reality, we don’t expect the blunting distance to be many orders of

magnitude greater than the cross-protection distance. If the blunting distance
is not too much larger than the cross-protection distance, so that the large-b/r
limit does not hold, the immune blind spots may cease to be blind spots, as
cross-protection from allowed strains (outside the Es excluded region) can be
high enough to provide protection atEs ′. In this case, to determine the existence
of immune blind spots, it may not be enough to compute only the protection
conferred from the closest allowed strains, as the contribution to protection atEs ′

from further allowed strains may be nonnegligible. We therefore consider how
much protection from further allowed strains can contribute at Es ′ in both the
every- and any-epitope models in order to calculate the maximum achievable
protection at the points that become blind spots in the large-b/r limit considered
above.

In the every-epitope model, the coordinates of the nearest allowed memories
are all equal to s′i ± b; however, at most one such memory can be added.
The next-nearest memories are distance 2b away in the first coordinate, and
distance b in the remaining (d− 1) coordinates. In general, for the kth-nearest
memories, the first coordinate is distance (kb + 1) away and the remaining
(d−1) coordinates are distance kb away, and only one such point can be added
for each k (without violating the every-epitope condition), no matter the number
of dimensions. Each of these points is distance((d−1)∗(kb)2+(kb+1)2)1/2

from Es ′, and so the probability it protects against infection at Es ′ equals pk =

e−
1
r (d·(kb)

2+(2kb)+1)1/2
). If all of these strains were in the individual’s

memory profile, the total probability of infection at Es ′ would be equal to the
product Πk(1− pk), a quantity which is very close to 1 for b/r ≳ 5 (d = 2),
2 (d = 3), 1.8 (d = 4), etc. (Fig. 5C).

In the any-epitope model, blind spots occur in the center of a d-dimensional
hypercube, and the densest memory possible profile containing a strain at
the origin has strains at each point on a lattice with edges of distance b. The
probability of protection given the densest possible distribution of memory is
thus the product over lattice points of (1 − e−Δl/r), where Δl is the distance
from the point Es ′ to the lattice point l. To compute the probability of infection
plotted in Fig. 5D, we explicitly computed the given product over all lattice points
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up to a distance sufficiently far from the immune blind spot such that adding
further lattice points does not appreciably impact the probability of protection.
Note that the number of such lattice points at each distance depends on the
number of epitopes d in a complicated way, and so we calculated separately
for each d. The associated minimum probability of infection at the blind spot
for an individual with memory at Es, computed by subtracting the probability of
protection from 1, is shown in Fig. 5D.

Details of Transmission Bound Calculation. The general strategy for deter-
mining the transmission bound for either blunting model is to impose the OAS
constraint over blunting neighborhoods of the appropriate geometry, find the
neighborhood over which the integral of the memory distribution is maximized,
carry out the integral, and determine the consistency conditions for the inequality
to be satisfied.

In the every-epitope model, the ith blunting neighborhood about a point Ep
takes the form E

〈〈Ep〉〉ib = {Es : pi − b/2 < si < pi + b/2;−∞ < sk <

∞ for k 6= i}. The memory distribution in the successive strain regime falls
off exponentially into the past from the wavefront x1 = vt. While blunting
neighborhoods are infinitely extended rectangles parallel to the axes, the
direction in which the wave travels is not generally parallel to the axes, so
the amount of memory captured in the blunting neighborhoods depends on
the direction the wave is traveling. The blunting neighborhood over which the
integral of memory is maximized is parallel to the axis of the slowest-evolving
epitope, with the wavefront at one of its corners (SIAppendix, Fig. S1AandB). The
memory captured therefore corresponds to the interval vt− b

cos(�∗) < x1 < vt

in wave-adapted coordinates. The every-epitope OAS constraint simplifies to∫ vt

x′1=vt− b
cos(�∗)

dx′1

(
mNh
v�

e−(vt−x′1)/v�
)
≤ Nh. [15]

In the any-epitope model, the blunting neighborhood about a point Ep takes
the form A

〈〈Ep〉〉b = {Es : pi − b/2 < si < pi + b/2 for i = 1, . . . , d}.
These blunting neighborhoods are d-dimensional cubes with side length b and
sides parallel to the axes. As in the every-epitope model, the amount of memory
captured in the blunting neighborhoods depends on the direction the wave
is traveling. For the any-epitope geometry, the blunting neighborhood over
which the integral of memory is maximized again has the wavefront at one
of its corners. This time, however, the length of the interval captured in the
neighborhood depends on the direction of the fastest-evolving epitope. The
memory captured still corresponds to the interval vt − b

cos(�∗) < x1 < vt in

wave-adapted coordinates (SI Appendix, Fig. S1 C and D), but now �∗ indicates
the fastest-evolving rather than the slowest-evolving direction. The any-epitope
OAS constraint simplifies to∫ vt

x′1=vt− b
cos(�∗)

dx′1

(
mNh
v�

e−(vt−x′1)/v�
)
≤ Nh. [16]

Both of these integrals are of the form
∫ vt
x′1=vt−` dx

′

1

(
mNh
v� e−(vt−x′1)/v�

)
with different values of `, so we evaluate this integral and then substitute for
` to obtain the relevant inequalities for each blunting model. The inequality
simplifies to the condition

m(1− e−`/v�) ≤ 1. [17]

This is equivalent to the condition that

`

v�
≤ − log(1−

1
m

). [18]

The derived quantity v� can be expressed in terms of the fundamental
parameters that characterize the system by manipulating several expressions
derived in ref. 36. The timescale � equals mNh/NI. The incremental fitness
gradient along the direction of motion of the wave is analogous to the fitness

effect of mutations, s, and equals m
r

(
R1/m

0 − 1
)

in the traveling wave system.

Marchi et al. argue that s is related to v via the relation s = NI
Nhv

. It follows that

1
v�

=
1
v

NI
mNh

=
s
m

=
1
r

(
R1/m

0 − 1
)
, [19]

so that the inequality in Eq. 18 becomes

`

r

(
R1/m

0 − 1
)
≤ − log(1−

1
m

). [20]

The limit asm becomes large ofm
(
R1/m

0 − 1
)

is equal to log R0, and more

generally the following inequality holds for any value of m greater than 1,

log R0 < m
(
R1/m

0 − 1
)

. [21]

Together, Eqs. 20 and 21 imply that the following inequality among
the fundamental parameters that characterize transmission and the immune
response must hold,

log R0 <
r
`
· m log

(
m

m− 1

)
. [22]

In the large-m limit, Eq. 22 simplifies to

log R0 <
r
`
. [23]

This is the same as the expressions given in the Results, where ` equals b
cos �∗ .

Bounds onDynamical Quantities in TravelingWaveModel. In this section,
we give the expressions for dynamical quantities in the antigenic space model,
originally derived in ref. 36, and numerically demonstrate the monotonicity of
these quantities in the ratio b

cos �∗ , implying D-dependent extrema when R0

equals the limiting value r cos �∗
b , as in Eq. 14.

The quantities v, � and tMRCA are simply expressed in terms of the fitness

increment s = m
r

(
R1/m

0 − 1
)

:

Wave velocity: v =
NI
Nhs

, [24]

= D2/3s1/3
(

24 log
(
NI(Ds

2)1/3
))1/3

. [25]

Wave width: � =

√
v
s
. [26]

Average time to the most recent common ancestor:

tMRCA ≈ (1.66) ·
�2

2D
. [27]

Note that the wave velocity is defined implicitly through Eqs. 24 and 25,
which determine both v and the number of infected hosts NI in terms of the
independent parameters of the system (m, R0, r, D, and Nh).

The quantities v (SI Appendix, Fig. S2A),� (SI Appendix, Fig. S2B), and tMRCA
(SI Appendix, Fig. S2C) are monotonic in the fitness gradient s. The bound on
R0 for serial strain replacement, Eq. 14, is equivalent to the statement that

s ≤ cos �∗
b in the large-m limit, since s = m

r

(
R1/m

0 − 1
)

approaches log R0
r

and log R0 ≤
r cos �∗

b . It follows that a monotonically increasing (decreasing)
function of s is maximized (minimized) over all traveling wave solutions at
the limiting value s = cos �∗

b . Thus for any values of D, b, �∗, and Nh, there
exists a maximum limit on v and minimum limits on � and tMRCA which are
independent of m in the large-m limit. These bounds are plotted in the Left
panels of Fig. 7.
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